
Abstract

Initial investigations into the dynamics and control of the satellite attitude was conducted
for the CubeSat being built by the student organization Orbit. The biggest concern was
how the planed deplyable boom with a camera module would affect the dynamics. There-
fore a dynamic model for a CubeSat under the influence of gravity gradient was devel-
oped. The model was then linerized for stability analysis. Two fundamental controllers
were also designed and tested in simulation. One controller was based on the linerized
system while the other was just a straight up PD-controller. It was shown that the posi-
tioning of the arm has a great influence on the dynamic as it is mostly governed by the
inertia matrix of the satellite. It was also shown that the linerized model fits well for the
pitch dynamic and is suitable for control design. For the roll and yaw dynamics on the
other hand the linerized model is not that suitable.
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Chapter 1

Introduction

Orbit is a student organization at NTNU working towards increasing its students interest
in all aspects of space and space technology, with a specific focus on satellite technology.
The organization mostly consists of students working as volunteers and students writing
project or master thesis with the support from NTNU. The organization consists of about
30 students. Currently the organization is developing the CubeSat Selfi-Sat.

1.1 Introduction to CubeSat

A CubeSat is a satellite that follows the CubeSat standard. The CubeSat standard im-
poses a lot of restrictions on the satellite, most notably with regards to form factors. The
CubeSat standard is built around a ’unit’ called 1U. Where 1U is a 0.10 mx0.10 mx0.10 m
cube with a maximum mass of 1.33 kg. A CubeSat can come in different sizes which are
all defined by combining several 1Us together. Normal sizes are 1U, 2U, 3U and 6U[1].
The big advantages with following this standard is that it makes the process of finding
a launch a lot easier as there has also been developed standardized launch interfaces to
comply with the CubeSat standard. This means that the CubeSat can be launched with
any rocket having the interface and it is starting to be a very common interface to include.
Even the International Space Station has the capability to deploy CubeSats[5].

Another big advantage with the standard is that a lot of companies and universities are
following the standard so there is also starting to come more and more parts that are sold.
All these factors make CubeSatsn an ideal starting point for small organizations without
a million dollar budget.

1.2 Selfie-Sat

Selfie-Sat is the first satellite developed by the student organization Orbit. It is still in
a very early stage of development and everything is not properly defined yet. The main
mission of the satellite is determined. To summarize the satellite shall have a screen on
it and a camera on an arm. The camera will then take a picture of the screen with the
Earth in the background see, Figure 1.1. On the screen, a picture that is uploaded from

1



1.3. ATTITUDE DETERMINATION AND CONTROL SYSTEM 1.3

Figure 1.1: Illustration of Selfi-Sat with camera boom and screen.

Earth will be displayed. The picture or selfie will then be sent back to Earth. For the high
data rate transition of the picture a S-band radio will be used. In addition to the payload
the Selfie-sat will consist of the following sub subsystems to make a complete CubeSat
bus: Electronic Power Supply (EPS), On-Board Computer (OBC), Ultra High Frequency
(UHF) radio, the mechanical structure and the Attitude Determination and Control System
(ADCS).

The EPS main purpose is to supply the satellite with the necessary electrical power. It
consists of a battery and a charging circuit to charge the batteries. The power needed to
charge the batteries comes from solar cells on the outside of the satellite. The OBC is in
charge commands and data handling. In addition, it monitors the health of the satellite and
is responsible for keeping the satellite in the correct state. The UHF radio will be used for
receiving commands from the ground station and sending telemetry data from the satel-
lite back to the ground station. The mechanical structure holds everything together and
because of all the shock and vibration that the satellite experiences is especially important
during launch. The ADCS is responsible for controlling and determining the attitude of
the satellite. This is necessary to make sure that the Earth is in the background of when
the pictures are taken.

1.3 Attitude Determination and Control System

The ADCS is in charge of determining and controlling the attitude of the satellite. This is
necessary for a number of reasons. The first is to detumble the satellite after deployment
from the rocket. After deployment the satellite normally has a high angular velocity which
often needs to be reduced before deployables like antenna and other instruments can be
released.

The second reason is that very often the payload of the satellite is an instrument that
requires the satellite to be in a specific orientation. For the Selie-Sat it is necessary to
making sure that the Earth is in the background when the pictures are taken. There are
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also satellite designs that need a specific orientation of the satellite to maximize its solar
power production.

ADCS is a complex system that can take on many forms and mean different things for
different missions, but it can almost always be looked at as a classical control system
consisting of a controller, actuators and sensors creating a closed loop. Very of then there
is also an observer or estimator. There is large variety in both actuators and sensors. The
most common actuators are magnetorquers, reaction wheels and thrusters[7]. Magnetor-
quers are magnetic coils used to interact with the magnetic field of the Earth to create a
torque. Reaction wheels are spinning discs that use the fact that moment is preserved to
change the angular velocity of the satellite. If the speed in which the discs are spinning
changes, the angular velocity of the satellite will also change. Thrusters are normally only
used on bigger satellites, but they are starting to see some use on CubeSat [7].

There also exist many sensors that are used as part of the ADCS and it is normal to use a
combination of sensors. The three main sensors are: magnetometers, optical sensors and
gyroscopes. The Magnetometers are used to measure the magnetic field of the Earth. The
optical sensors are a broad category that ranges from simple light diodes to more complex
camera sensors, and are used to detect anything from the horizon of the Earth, the Sun or
the stars[7].

There are generally two ways of estimating the orientation of the satellite. Direct methods
that mostly consist of solving Wahba’s problem and filtering methods like the Kalman
filter. Both methods require a reference model in addition to the sensor inputs to make an
estimation of the satellite attitude[3].

1.4 Selfi-Sat ADCS

The ADCS for the Selfi-Sat has three main objectives:

• Orient the satellite so that the Earth is in the background of the selfies

• Orient the satellite so that the S-band antennas are pointing towards the ground
during passes for radio transmission.

• Orient the satellite to maximize the power generated by the solar cells.

In hardware the ADCS consists of the ADCS-PCB, magetorquers-PCB and Sun sensors.
The ADCS-PCB consists of a micro-controller of type TMS570 which runs all the ADCS
related software, IMUs for gyroscope, magnetometer and acceleration measurements, op-
erational amplifiers for the Sun sensor measurements and H-bridges for controlling the
magnetorquers. The ADCS-PCB is connected to the rest of the satellite bus through a
PCI-104 connector. The hardware architecture of the ADCS can be seen in Figure 1.2.

The software of the ADCS is broken down as shown in the Figure 1.3. For this project, the
main focus will be the "Attitude Controller" while it is assumed that the rest of the system
works. So in the simulations all the other parts are not considered. This means that the
desired and estimated attitude of the satellite will be given directly from the simulation
without any estimation. The output of the controller will be a torque that affects the
system directly without a simulation of the hardware needed to create the torque.
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Figure 1.2: Overview of the hardware architecture for the ADCS on Selfi-Sat
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Figure 1.3: Software Architecture of the ADCS.

As the satellite is still in development there are a few assumptions that are made about
the satellite. These are made in a way that the dynamics of the satellite can be well
defined and can therefore be used for stability analysis, simulations and control design.
The assumptions are:

• The Selfi-Sat follows the CubeSat standard for a 2U.

• The Selfi-Sat has an arm of length 0.30 m.

• The camera module at the end of the arm has a mass of 50 g.

• The mass distribution within the main frame of the satellite is uniform.

• The mass of the camera can be seen as a point mass.

• The center of mass is at the geometric center of the satellite.

• Before the arm is released the principal axes of the satellite are aligned with the axis
of symmetry. As shown in Figure 1.4.

4



1.4. SELFI-SAT ADCS 1.4
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Figure 1.4: The dotted lines are the axis of symmetry for the satellite. The read arrows
show the inertia matrix.

• The Selfi-Sat has a estimator capable of determining the quaternion and angular
velocity.

• The Selfi-Sat has magnetorquers capable of producing 550 mA2 on each axis re-
sulting in a max torqu of about 1 µN m.
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Chapter 2

Background

2.1 Rigid Body Dynamics

Satellite attitude dynamics are normally modeled with rigid body dynamics. In this work
we only look at rotational motion about the center of gravity, as this is what affects the
attitude of the satellite. The rotational motions are independent of the translation motions
as can be seen in Equation 2.1 [2].

[
mI3x3 03x3

03x3 Ig

] [
v̇bg/n
ω̇bb/n

]
+

[
mS(ωbb/n) = 03x3

03x3 −S(Igω
b
b/n)

] [
vbg/n
ωbb/n

]
=

[
f bg
gbg

]
(2.1)

Where Ig is the inertia matrix of the satellite in the center of gravity and will for the
reminder of the text simply be denoted I for simplicity. vbg/n is the transnational velocity
between center of gravity and an inertial frame resolved in the body reference frame. ωbb/n
is the angular velocities between the body frame and an internal frame resolved in body
frame. S(x) is the skew symmetric matrix of x. As we are only interested in the rotation
we can reformulate Equation 2.1 into Equation 2.2.

ω̇bb/n = I−1(S(Iωbb/n)ωbb/n + gbg) (2.2)

The attitude of the satellite is represented through a rotation between the body frame of
the satellite and an inertial frame. For satellites, a common inertial frame is the Earth
Centered Inertial frame (ECI). It is defined as having its origin at the center of mass of
the Earth, the z-axis is aligned with the Earth’s north pole, the x-axis is aligned with the
vernal equinox and the y-axis is defined by completing the right hand rule. The vernal
equinox is the intersection between Earth’s orbital plane and Earth’s equatorial plane[3].

Unit quaternions are used to represent the rotation between the frames. The unit quater-
nion is defined as q = [η iε1 jε2 kε3]T and |q| = 1. Quaternions are used as a represen-
tation when a singularities free representation is needed are needed. This is need for the
satellite dynamics because the satellite unlike many other rigid bodies on Earth can rotate
freely around any of its axes. It can therefore have any attitude. The relationship between
quaternions and angular velocity can be seen in Equation 2.3a. Where T(q) is defined
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2.1. RIGID BODY DYNAMICS 2.2

as in Equation 2.3b and represents the relation between quaternions and angular velocity
[2].

q̇ib =T(qib)ω
b
b/n (2.3a)

T(q) =


−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 (2.3b)

Combining the kinematic and dynamic equations gives the full state space model as shown
in Equation 2.4. The state space model is highly nonlinear with multiplication between
states for both the quaternion and the angular velocity. It is also worth noting that the
system is only in equilibrium when the angular velocity is zero as any angular velocity
will make q̇ 6= 0. This comes from the requirement that the quaternion should be an unit
quaternion that means that one of the elements of the quaternion must be non zero, and
as can be seen by Equation 2.3b all elements of the quaternion are multiplied with all
elements of the angular velocity, making ω = 0 the only equilibrium.

q̇ib =T(qib)ω
b
b/n (2.4a)

ω̇bb/n =I−1(S(Iωbb/n)ωbb/n + gbg) (2.4b)

If we are only looking at the angular velocity, there will be one more equilibrium points
for a pure rotation around each axes. This can easily be seen as each element of ω̇ is
dependent on the multiplication of two different elements of ω which will always be zero
as long asω only has one non zero element. Only the rotation around the minor and major
principle axis are locally stable but not asymptotically stable[4]. This can be illustrated
by looking at the linerized model of the angular velocity. The Jacobin for Equation 2.2 is
given by Equation 2.5 where Ix = Iyy−Izz

Ixx
, Iy = Izz−Ixx

Iyy
and Iz = Ixx−Iyy

Izz
. Ixx, Iyy, Izz are

the diagonal elements of the principal inertia matrix.

A =

 0 Ixωz Ixωy
Iyωz 0 Iyωx
Izωy Izωx 0

 (2.5)

If we look at rotation only around the z-axis, the expression for the eigenvalues is given by
−λ(λ2 − IxIyω2) = 0. This leads to the eigenvalues being λ1 = 0 and λ2,3 =

√
IxIyω2.

So if IxIyω2 > 0 then λ2,3 will become a positive and a negative real number and the
system is unstable. If IxIyω2 < 0 then λ2,3 becomes imaginary conjugates with no real
part. In the later case the system will be a harmonic oscillator. The sign of IxIyω2 is
dependent on the relation between Ixx, Iyy and Izz as shown if Table 2.1. It can be seen
that the rotation around the z-axis is stable, if the z-axis is a minor or major axis and
unstable, if the the z-axis is an intermediate axis.
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2.2. INERTIA MATRIX 2.3

Ixx < Izz Iyy < Izz IxIyω
2 < 0 stable

Ixx < Izz Iyy > Izz IxIyω
2 > 0 unstable

Ixx > Izz Iyy < Izz IxIyω
2 > 0 unstable

Ixx > Izz Iyy > Izz IxIyω
2 < 0 stable

Table 2.1: Shows the sign of the argument for the square root of the eigenvalues of the
linearized angular rotation dynamics.

2.2 Inertia Matrix

From Equation 2.1 it can also be seen that the angular velocity is only dependent on
external moments gbg and the inertia matrix. The external forces will be discussed in more
detail later in the chapter. The inertia matrix is defined as in Equation 2.6 [2].

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (2.6)

Where the elements are defined as in Equation 2.7

Ix =

∫
V

ρ(y2 + z2)dV Ixy = Iyx =

∫
V

ρxydV (2.7a)

Iy =

∫
V

ρ(x2 + z2)dV Ixz = Izx =

∫
V

ρxzdV (2.7b)

Iz =

∫
V

ρ(x2 + y2)dV Iyz = Izy =

∫
V

ρyzdV (2.7c)

There always exists a principal inertia matrix Λ which has only diagonal terms where
the diagonal terms, then become the inertia of the principal axis. Any inertia matrix
can be transformed into a principal inertia matrix by rotation. This also means that any
angular velocity defined in a frame that does not creating a principal inertia matrix can
be transformed into this frame by a rotation. So there is no loss of generality by only
considering the principal inertial in the stability analysis in section 2.1. The rotation
matrix, to go from any inertia matrix to the principal inertia matrix, can be found by
eigendecomposition of the inertia matrix into the rotation matrix and the principal inertia
matrix as in Equation 2.8.

I = RΛRT (2.8)

2.3 Gravity Gradient Torque

Gravity gradient is one of three main torques acting upon a satellite orbiting the earth.
The parasitic magnetic dipole moment and drag from air resistance are the other two
torques. Gravity gradient is a result of an uneven mass distribution in the satellite. Which
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2.3. GRAVITY GRADIENT TORQUE 2.3

leads to uneven gravitational forces on the satellite creating a torque. Satellites with long
deployables like an arm will therefore be affected a lot by gravity gradient torques as they
have a very uneven mass distribution due to the deployables.

For the derivation of the equations for the gravity gradient we will follow [6] and [8].
The gravity gradient torque can be calculated by considering a small mass element dm on
the satellite. The gravitational force acting on this from Earth is given by Equation 2.9.
µ = GM and G is the gravitational constant and M is the mass of Earth. ~R is a vector
going from the center of the Earth to the center of the satellite. ~r is a vector going from
the center of the satellite to the mass element dm.

d~f = −µ
~R + ~r

|~R + ~r|3
dm (2.9)

The gravity gradient torque is expressed by the integral in Equation 2.10a. As this integral
has no closed form solution [6], an approximation using a Taylor series expression is done
as it is shown in Equation 2.10b. This leads to the solution shown in Equation 2.10c.

~g =

∫
v

~r × d~fdm = −
∫
V

~r × µ (~R + ~r)

|~R + ~r|3
dm (2.10a)

(~R + ~r)

|~R + ~r|3
=

(~R + ~r)

((~R + ~r)(~R + ~r))3/2
=

(~R + ~r)

R3(1 + 2~R~r/R2 + r2/R2)3/2
≈ (~R + ~r)

R3
(1− 3

~R · ~r
R2

)

(2.10b)

~g ≈ − µ

R3

∫
V

(1− 3
~R · ~r
R2

) · ~r × (~R + ~r)dm = − µ

R3

∫
V

(1− 3
~R · ~r
R2

) · (~r × ~R)dm

(2.10c)

The integral can be solved by using the fact that dm is only dependent on ~r so that
− 3µ
R3

∫
v
~rdm × ~R = 0. The remaining integral can be expressed using the inertia ten-

sor Ĩ as shown in Equation 2.11.

~g =
3µ

R5

∫
v

(~R · ~r)(~r × ~R) =
3µ

R5
~R× Ĩ · ~R) (2.11)

Resolving all the vectors in the body frame gives rise to a new state-space model as shown
in Equation 2.12. The individual components of the gravity gradient torque can be seen
in Equation 2.13. The inertia matrix is a principal inertia matrix. From this it can be seen
that the difference in the principal components is what creates gravity gradient torques.
It can also be seen that there is a new requirement to have an equilibrium. Only one of
the components of Rb can be none zero. This is achieved if any of the axes of the body
frame is aligned with z-axis of the orbit frame. Where the orbit frame is defined so that
the z-axis points directly toward the center of Earth, the x-axis is in the same direction as
the velocity of the satellite and the y-axis is found by completing the right hand rule.

ω̇bb/n = I−1(S(Iωbb/n)ωbb/n +
3µ

R5
S(Rb)IRb) (2.12)

9



2.3. GRAVITY GRADIENT TORQUE 2.3

gx =
3µ

R5
RyRz(Izz − Iyy) (2.13a)

gy =
3µ

R5
RxRz(Ixx − Izz) (2.13b)

gz =
3µ

R5
RxRy(Iyy − Ixx) (2.13c)

For the stability analysis of the system we will replace the non linear kinematic equation.
The quaternion parameterisation will also be replaced by Euler angels. To derive this
new equations a similar approach as in [6] and [8] will be used. We will also assume
to have circular orbit which means that the angular velocity between the orbit frame and
the inertia frame can be expressed as ωoo/n = [0 −ωc 0]T . ωc is the angular velocity of
the orbit and for a circular motion it is given by ωc =

√
GM/R3. The angular velocity

between the body and orbit frame is ωbb/o = θ̇ and ωbb/n = ωbb/o +ωbo/n. This gives rise to
the new kinematic equations given in Equation 2.14.

θ̇ = ωbb/i −R0
b(θ)Tωoo/n (2.14)

To linerize the kinematic equation we use the linerized rotation matrix Ro
b(θ) which as-

sumes that the angles are so small that sinθi = θi, cosθi = 1 and θiθj = 0. This leads to
the rotation matrix shown in Equation 2.15. Leading to a new linear kinematic equation
Equation 2.16.

Rb
o(θ) = 1− S(θ) =

 1 θ3 −θ2
−θ3 1 θ1
θ2 −θ1 1

 (2.15)

θ̇1θ̇2
θ̇3

 =

ωx + ωcθ3
ωy + ωc
ωz − ωcθ1

 (2.16)

The gravity gradient torque can be expressed easily in the orbit frame as z-axis ~oz =
−~R/R and using the relationship between R and ωc leads to Equation 2.17. To exprec
the gravity gradient torque in the body frame the rotation matrix Ro

b(θ)T is used so that
~oz = R(1, 3)~bx+R(2, 3)~by+R(3, 3)~bz. Combining this with Equation 2.12 gives the new
dynamic Equation 2.18, where R(3)b/o is the third column of Ro

b(θ).

~gc = 3ω2
c~oz × Ĩ · ~oz (2.17)

ω̇bb/n = I−1(S(Iωbb/n)ωbb/n + 3ω2
cS(R(3)b/o)IR(3)b/o) (2.18)

Equation 2.16 is used to get an expression for ω̇bb/n. Substituting this and Equation 2.16
into Equation 2.18 gives Equation 2.19. The assumption that θiθj = 0 and θ̇iθ̇j = 0 is
also used to keep the system linear.
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2.3. GRAVITY GRADIENT TORQUE 2.3

Ixxθ̈1 + (Ixx + Izz − Iyy)ωcθ̇3 − 4(Izz − Iyy)ω2
cθ1 = 0 (2.19a)

Iyyθ̈2 + 3ω2
c (Ixx − Izz)θ2 = 0 (2.19b)

Izz θ̈3 + (Ixx + Izz − Iyy)ωcθ̇1 + (Iyy − Ixx)ω2
cθ3) = 0 (2.19c)

It can be seen from Equation 2.19 that θ2 is decoupled from the other states and can
therefore be analyzed independently of the rest of the system. It can also be seen that
the equation is on the form of an harmonic oscillator. The state is therefore stable if
Ixx > Izz. For the two remaining states the equations can be reformulated as the form in
Equation 2.20, where the matrices are defined as in Equation 2.21 and θ̃ = [θ1 θ3]

T .

M¨̃θ + G˙̃θ + Kθ̃ = 0 (2.20)

M =

[
Ixx 0
0 Izz

]
(2.21a)

G = ωc(Ixx + Izz − Iyy)
[
0 −1
1 0

]
(2.21b)

K = ω2
c

[
4(Iyy − Izz) 0

0 (Iyy − Ixx)

]
(2.21c)

To investigate the stability of the system the, poles of the transfer function are calculated.
The transfer function is given in Equation 2.22 and the poles can be calculated by finding
the s for which the determinant of Ms2 + Gs+ K is zero.

θ̃(s) =
(Ms+G)θ̃(0) + M ˙̃θ(0)

(Ms2 + Gs+ K)−1
(2.22)

The determinant can be expressed as in Equation 2.23a and reduced to Equation 2.23b
by dividing by IxxIzz and inserting the new variables k1 = (Iyy − Izz)/Ixx and k2 =
(Iyy − Ixx)/Izz. Looking at Equation 2.23b, it becomes clear that it is a biquadratic
function and can be solved by λ = s2. This means that the only time s has none positive
real parts of its roots is when λ < 0. The resulting quadratic function λ2 + bλ + c = 0
is only negative following the criteria in the Table 2.2. The criteria is also translated into
dependencies on k1 and k2 and the the criteria for stability for θ2 is added.

s4IxxIzz + s2ω2
c [Ixx(Iyy − Ixx) + 4Izz(Iyy − Izz) + (Ixx + Izz − Iyy)2] + 4ω4

c (Iyy − Ixx)(Iyy − Izz) = 0
(2.23a)

s4 + s2ω2
c (1 + 3k1 + k1k3) + 4ω4

ck1k3 = 0 (2.23b)

This also leads the criteria on the inertia on the principal axis as shown in Equation 2.24.

Iyy > Ixx > Izz and Iyy < Ixx + Izz (2.24a)
Ixx > Izz > Iyy and Ixx < Iyy + Izz (2.24b)
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2.3. GRAVITY GRADIENT TORQUE 2.3

k1 > k2
c > 0 k1k3 > 0
b > 0 1 + 3k1 + k1k3 > 0
b2 − 4c > 0 (1 + 3k1 + k1k2)

2 − 16k1k3 > 0

Table 2.2: Stability criteria for satellite when considering gravity gradient.
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Chapter 3

Methods

3.1 Simulation

To test the controller and verify the stability analysis a simulation was created. The simu-
lation consists of the rigid body kinematics and dynamics as described in section 2.1, and
simulation of the gravity gradient torque as described in section 2.3. The gravity gradient
torque also requires the simulation of the orbit, so an orbit propagator was created. The
stability analysis was also done in relation to the orbit frame and not the inertia frame,
so it was also necessary to create the kinematics for the body orbit frame relation. This
was done by calculation the rotation between the inertia frame and the orbit frame and
using the relation sheep qob = qoi ⊗ qib where ⊗ is the quaternion product. Both the orbit
propagator and the Orbit frame calculations are discussed in more detail in later sections.
An overview of the simulation can be seen in Figure 3.1.

Figure 3.1: Overview of the simulation’s main components and how they are connected
to each other.

For the dynamic equation and the gravity gradient torque, the inertia of the satellite is
needed. As the satellite has a deployable arm that changes the inertia matrix, two inertia
matrices where needed. The inertia matrices where calculated based on the assumptions
stated in section 1.4. For an uniform prism only four parameters are needed: height h,
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3.1. SIMULATION 3.2

width w, depth d and mass m, where the parameters are related to the coordinate frame
as shown in Figure 3.2. Then the inertia matrix I becomes as shown in Equation 3.1,
where the parameter values follows the CubeSat standard so h = 0.20 m, w = 0.10 m,
d =0.30 m and m = 2.66 kg. It is worth noting that d = w, which means that Ixx = Iyy
and only spin around the z-axis is stable.

Z

X

Y

d
w

h

m
m_cam

p_cam_x

p_cam_y = 0
p_cam_z = 0

Figure 3.2: Illustration showing what the different parameters used in the calculation of
the inertia matrix represent.

I =

 1
12
m(h2 + d2) 0 0

0 1
12
m(h2 + w2) 0

0 0 1
12
m(w2 + d2)

 (3.1)

The inertia matrix Iarm may also contain non diagonal elements. As the camera is mod-
eled as a single point mass, the integrals in Equation 2.6 may be replaced by sums and the
inertia matrix Iarm is simply found by adding the contribution from the arm to I as shown
in Equation 3.2. The contribution of the camera to the inertial matrix is only dependent
on the position of the camera in the body frame given by pbcam = [pcamx pcamy pcamz ]

T and
the mass of the cameramcam. As the new inertia matrix may have none diagonal elements
it is not given that any of the axes are stable. The frame where the axes are stable can be
foun using Equation 2.8.

Iarm =

Ixx +mcam(p2camy
+ p2camz

) mcampcamxpcamy mcampcamxpcamz

mcampcamxpcamy Iyy +mcam(p2camx
+ p2camz

) mcampcamypcamz

mcampcamxpcamz mcampcamypcamz Izz +mcam(p2camx
+ p2camy

)


(3.2)
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3.2. ORBIT PROPAGATOR 3.3

3.2 Orbit Propagator

The orbit propagator is based on a state space model for the position and translational
velocity of the satellite, ri and vi respectively. It is assumed that the only external force
acting action on the satellite is the gravitational pull from earth. No other forces are
considered. The goal is to get a perfectly circular orbit because this is what is assumed in
the stability proof. The state space equations can then be derived from Newton’s universal
gravitation law and the fact that ṙi = vi. This gives rise to the state space model shown
in Equation 3.3, where G and M are the gravitational constant and mass of the Earth
respectively.

ṙi = vi (3.3a)

v̇i = −GMri

||ri||3
(3.3b)

There are some numerical issues with the numerical solution to the set of differential
equations. The simple solution to this problem is to force the length of both vectors to
stay the same as they should not change in a perfectly circular orbit. This has the down
side of only allowing for perfectly circular. This makes the simulation less ideal for
future testing as it is not expected that the Selfi-Sat will have a perfectly circular orbit.
Another possible solution to the numerical issue might be to use a solver of higher order
as the current implementation only uses "Euler’s method". A different and more physical
approach is to force the answers to maintain the systems energy as the system has no loss.
Therefore the sum of potential and kinetic energy should stay the same at all times.

The factor that is deciding if a orbit becomes circular or not, is its initial conditions. For a
circular motion the translational velocity is a tangent to the circle, meaning that the initial
state of vi should be perpendicular to the initial state of ri. It is also a well known fact
that the centripetal acceleration is given by a = v2/r, and always in the direction of the
circle’s center. As gravity is the only source of a force in the system, the equation for
acceleration in Equation 3.3 can substitute a solving for v gives the expression as shown
in Equation 3.4 for the magnitude of the initial velocity for vi.

||vi0|| =

√
GM

||ri0||
(3.4)

3.3 Orbit Frame

As discussed earlier calculating, qob has great value for visualization and is needed for the
controller. The rotations needed to go from the inertia frame to the orbit frame can be
done in two steps. The first step is to rotate the inertia frame so that the z-axis of the
inertia frame aligns with the −ri. The second step is to rotate around the new z-axis so
that the x-axes align.

A rotation can be described using an axis angle representation. An axis angle represen-
tation consist of a vector describing an axis that will be rotated around, and an angle
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3.4. CONTROLLER 3.4

describing how much to rotate around the axis. This can be used to describe the rotation
in the first step. To find the axis, the cross product can be used. As the result of a cross
product is a new vector that is normal to both vectors. This vector can be used as our
rotation vector in the axis angle representation. The definition of the dot product can be
used to find the angle. It can be seen that acos(a · b) gives the angel θ. The axis angle rep-
resentation can be written as in Equation 3.5, where wi1 and θ represent the rotation axis
and angle respectively and zi and ri are the z-axis of the inertial frame and the position of
the satellite.

wi
1 =

[
wi1
θ

]
=

[
zi ×−ri
− ri

||ri|| · z
i

]
(3.5)

For the rotation in step two, the same idea can be used. Here it is not necessary to find the
rotation axis as this will always be the z-axis in the orbit frame zo. zo in the inertia frame
can be expressed as qzoi z

i(qzoi )−1, and qzoi is the quaternion representing the rotation in
step one. This gives rise to the angle axis representation as shown in Equation 3.6, where
once again the dot product is used to find the angle. Where vi and x̂ are the velocity of
the satellite, and the inertia x-axis undergone the rotation wi

1.

wi
2 =

[
zo

vi

||vi|| · x̂

]
(3.6)

To go from an angle axis representation to quaternion representation, see the formula in
Equation 3.7. The final rotation to go from the inertia frame to the body frame can then
be expressed as the quaternion product of the two rotations.

q =
[
cos( θ

2
) sin( θ

2
)wx sin( θ

2
)wy sin( θ

2
)wz
]T (3.7)

3.4 Controller

As it was shown in section 2.3, the linearized pitch dynamic is decoupled from the lin-
earized roll and yaw dynamics. Therefore the control design is split into two controllers,
one for pitch and one for roll and yaw. Both controller are PD controllers based on the
linearized dynamics about the orbit frame.

3.4.1 Pitch Linear Controller

The linearized pitch dynamic is a mass-damper-spring system without any dampening.
This gives rise to the harmonic oscillations seen in the open loop system. A PD controller
is suitable for this type of system as it allows to the control both the dampening and
the natural frequency. The linearized dynamics can be written as in Equation 3.8, where
K = 3∗ω2

c (Ixx−Izz)/Iyy and τ is the control input to the system. By choosing a controller
of the form in Equation 3.9 with θ2d as the desired pitch angle, the result becomes a system
as shown in Equation 3.10a and transfer function Equation 3.10b.
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3.4. CONTROLLER 3.4

θ̈2 +Kθ =
τ

Iyy
(3.8)

τ = Iyy(−Kdθ̇2 +Kp(θ2d − θ2) (3.9)

θ̈2 +Kdθ̇2 + (K +Kp)θ2 = Kpθ2d (3.10a)
θ2(s)

θ2d(s)
=

Kp

s2 +Kds+ (K +Kp)
(3.10b)

The transfer function in Equation 3.10b can be compared to the characteristic function of
a mass damper spring system s2 + 2ζω0s+ω0 to find values for Kp and Kd, that depends
on the natural frequency ω0 and dampening ζ . This gives rise to the expression forKd and
Kp shown in Equation 3.11, including the divided by Iyy. As this controller is dependent
on Iyy different values for Kd and Kp should be calculated depending on if the arm is out
or not.

Kd = 2ζω0Iyy (3.11a)
Kp = (ω2

0 −K)Iyy (3.11b)

3.4.2 Roll and Yaw Linear Controller

For the roll and yaw controller it is the same principal as for the pitch controller as this
is also a mass damper spring system. The only difference is that this time the states are
coupled. From section 2.3 we know that the linearized equations can be written as in
Equation 3.12. Choosing an controller as in Equation 3.13 gives rise to Equation 3.14a
and the transfer function Equation 3.14b. As we have two states now all the constants are
matrices.

M¨̃θ + G˙̃θ + Kθ̃ = τ (3.12)

τ = M(−Kd
˙̃θ + Kp(θ̃d − θ̃)) (3.13)

¨̃θ + (G + Kd) ˙̃θ + (K + Kp)θ̃ = Kpθ̃d (3.14a)

θ̃(s)

θ̃d(s)
=

Kp

I2x2s2 + (G + Kd)s+ (K + Kp)
(3.14b)

To calculate values for Kd and Kd it can once again be done by comparing the transfer
function Equation 3.14b to the characteristic equation of the mass damper spring sys-
tem. If ω0 and ζ are 2x2 matrices where element (1,1) and (2,2) representing the natural
frequency and dampening for roll and yaw respectively.
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3.4. CONTROLLER 3.4

3.4.3 Quaternion Based Controller

A much simpler approach is also designed where the controller is simply given by Equa-
tion 3.15. q̃ob is the imaginary parts of the quaternion product between the conjugate of
the desired quaternion and the current quaternion q̃ob = q̄d ⊗ qob . This is a better repre-
sentation of the difference in rotation between the two quaternions[3]. A quaternion that
represents rotation has to be a unit quaternion. Therefore it is enough to specify only the
three imaginary parts to fully describe any orientation. ω̃bb/n = ωbd−ωbb/n is the difference
between the desired angular velocity and the true angular velocity.

τ c = −I(Kpq̃
o
b + Kdω̃

b
b/n) (3.15)

This controller should work as long as Kp and Kd are sufficiently large compared to I,
as this is what drives the rest of the system’s dynamic.
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Chapter 4

Results

The results will mainly focus on verifying the linearized analysis as it was not not con-
clusive, looking at the effects of releasing the arm and the effectiveness of the proposed
controller.

4.1 Open Loop Stability

To invest gate the open loop stability two scenarios are investigated. One for when the
camera is not yet released and the second for when the camera is released and positioned
along the x-axis of the body frame. This results in the two different inertia matrices I and
Iarm shown in Equation 4.1.

Iarm =

0.0111 0 0
0 0.0172 0
0 0 0.0106

I =

0.0111 0 0
0 0.0111 0
0 0 0.0044

 (4.1)

4.1.1 Open Loop Pitch Stability

According to the linearized pitch equations from section 2.3, the pitch dynamics should
form a harmonic oscillation around the equilibrium. The oscillation should have a period
according to Equation 4.2. The stability of the dynamic is only dependent on Ixx > Izz.
As this is the case for both I and Iarm only the former will be investigated for the pitch.

Tp =
2π

ωn
=

2π√
3ω2

c (Ixx − Izz)/Iyy
≈ 1.83 · 104s (4.2)

Looking at the pitch dynamics from different initial conditions as seen in Figure 4.1, it
is clear that the linearized model fits very well with the nonlinear model. The dynamic
behaves perfectly like a harmonic oscillator and the period is almost exactly the same as
the theoretical period calculated in Equation 4.2.
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4.1. OPEN LOOP STABILITY 4.2

Figure 4.1: Pitch dynamics for different initial conditions 5, 10 and 15 deg. The read line
marks the expected period.

4.1.2 Open Loop Roll and Yaw Stability

For the roll and yaw dynamics there are two cases, as the dynamic of the linearized system
changes drastically if Ixx = Iyy. If Ixx = Iyy, it can be seen from Equation 2.19 that the
dynamic of yaw θ3 only depends on the roll θ1. This can be used to get a second order
equation for the roll as shown in Equation 4.3 where the equation is transformed to the
laplace domain. This is again a harmonic oscillator as long as Izzω4

c +ω2
c4(Iyy − Izz > 0.

For the situation where the arm is not released yet, this is the case as the inertia matrix I
is given by Equation 4.1.

θ3(s) =
−ωcθ1(s)

s
(4.3a)

Ixxθ1(s)s
2 + (Izzω

2
c + ω2

c4(Iyy − Izz)θ1(s) = 0 (4.3b)

As time period can be calculated for roll using Equation 4.4. The period for the yaw will
be the same as the period for the roll.

Tp =
2π

ωn
=

2π√
ω2
cIzz + ω2

c (Iyy − Izz)/Ixx
≈ 3.31 · 103s (4.4)

In Figure 4.2a and Figure 4.2b it can be seen that both roll and yaw have the expected
behaviour as harmonic oscillations that are phase shifted.

When the camera arm is released the roll and yaw dynamics can no longer be understood
in terms of harmonic oscillations, because of the compelling between them. They quickly
become very nonlinear as shown in Figure 4.3. It also shows the the pitch dynamics
are actually not decoupled from the rest of the dynamics as it can be be seen clearly in
Figure 4.3.
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4.1. OPEN LOOP STABILITY 4.2

(a) Roll and yaw dynamics for different initial conditions for yaw. The read line marks the expected
period. The plots for yaw are centered around 0 deg make it more readable.

(b) Roll and yaw dynamics for different initial conditions for roll. The read line marks the expected
period.
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4.2. CONTROLLER 4.2

Figure 4.3: Roll, pitch and yaw response to different initial conditions when the arm is
deployed.

4.2 Controller

4.2.1 Pitch Control

It can be seen in Figure 4.4a and Figure 4.4b the linear pitch controller works well for
both cases with and without the arm out. This is not very surprising as the results shown
in subsection 4.1.1 show that the linearized model is a good approximation of the nonlin-
ear system. It can also be seen that the controller struggles a bit more when the arm is
deployed and from 10◦ and up there is a visible overshoot. It is the easiest to see that in
the control torque plot. Additionally the controller is rather slow. Asit needs around 500 s
to reach the desired value. It can also be seen that less torque is needed from the con-
troller when the arm is deployed. This is as expected as the gravity gradient is pulling the
satellite towards the equilibrium and all the controller need to do is to damp the system.

4.2.2 Roll and Yaw Control

In Figure 4.4a and Figure 4.5b the controller struggles a lot more than for the pitch.
The system ends up being under-damped and slowly settling towards the desired values.
In both cases it has not been able to reach the desired value within 3 orbits. This is
mainly because the controller had to be tuned down to be stable where ζrool = 3 and
ζyaw = 0.001. So the roll is extremely over-damped and the yaw is extremely under-
damped. There might be better values for the ζ , but it would require more investigation.
Anyways, the linearization is not a good way of finding values for Kp and Kd as a lot of
tuning is required for tuning.
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4.2. CONTROLLER 4.2

(a) Pitch controlled towards zero by linear controller. The arm is not deployed.

(b) Pitch controlled towards zero by linear controller. The arm is deployed.
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4.2. CONTROLLER 4.2

(a) Roll and yaw controlled towards zero by linear controller. The arm is not deployed.

(b) Roll and yaw controlled towards zero by linear controller. The arm is deployed.
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4.2. CONTROLLER 4.2

4.2.3 Quaternion Based Control

The quaternion based control shows a lot of promises for all the angles. It can be seen
in Figure 4.6a and Figure 4.6b. In both cases the controller gives a good response that
is much faster than the other controllers. The biggest concern with this controller is that
it uses a lot of torque and it is not necessarily given that the satellite can produce such a
high torque. This is not that surprising as it is designed around the controller dominating
the dynamics of the system. It is therefore required that the controller produces a large
torque.

As this controller is quaternion based and therefore has no singularities it can hold any
desired orientation. It is shown in Figure 4.7 where the desired orientation is roll = 170◦,
pitch = −10◦ and yaw = 80◦. It can be seen from the plot that there is some steady state
error in the controller, but that it is reasonably fast even for such large jumps in desired
orientation.

25



4.2. CONTROLLER 4.2

(a) Pitch controlled towards zero by nonlinear controller. The arm is deployed.

(b) Roll and yaw controlled towards zero by nonlinear controller. The arm is deployed.
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4.2. CONTROLLER 4.2

Figure 4.7: Quaternion based controller used to reach desired values. The Desiree values
are shown as horizontal lines.
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Chapter 5

Conclusion

As the Selfi-Sat project still is in an early phase of development, it is important that some
early investigation into some of the design desertion are tested. Therefore an investigation
into how the deployable camera boom would affect the dynamics of the satellite. A model
of the satellite dynamic under the influence of a gravity gradient torque was created for
this reason. The model was linearized for stability investigation and it was reviled that
there were two stable configurations as described in Equation 2.24. This was only de-
pendent on the inertia matrix which is in return where dependent on the position of the
camera. It was also shown that the magnitude of the gravity gradient torque was depen-
dent on the difference between the diagonal elements of the inertia matrix as shown in
Equation 2.13. So it is clear that great care should be taken when placing the camera and
the internal components of the satellite so that the inertia matrix is the most suitable for
the mission. If the mission requires a stationary pointing towards the Earth for the most
part, the design should aim to maximize the difference between the elements of the inertia
matrix. This will create a large gravity gradient that will have a stabilizing effect. It was
shown with the pitch controller described in subsection 3.4.1 that it was easier to stabilize
the satellite around the pitch when the boom is deployed.

On the other hand, if the mission require a lot of dynamic movement, the design should
aim to make the difference between all the elements of the inertia matrix as small as
possible. If the goal is to have any other position than the equilibrium, the gravity gradient
torque will work against the controller and drain a lot of power from the satellite.

There were also some simple attempts at controller design. They showed that though the
linearized model is suitable for stability analysis, it is not very suitable for control design
for roll and yaw, but for pitch it worked well. This was also reflected in how well the
linearized model fitted compared to the nonlinear model. For pitch the linearized model
resembled the nonlinear one much more than for roll and yaw.

The controllers also indicated what is required from the magnetorquers with maximum
values in the range of 10 µN m while the maximum values that can be expected from the
magnetorquers are in the range of 1 µN m. This should not pose a too big problem for the
project as the controllers can always be tuned down or a more optimal controller can be
choosen.
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Chapter 6

Outlook

Going forward there are many things that can be investigated in the future as the project
is still in an early phase. To make sure that the mission is feasible from an ADCS point of
view, the model should be expanded so that it can take more of the expected disturbance
torque like the parasitic diplomoment and drag torques into account.

The orbit propagator could be expanded to become a more general one and the numerical
efforts could be investigated further.

Some effort should also be invested into improving upon the control design in order to
find something that is more energy efficient. It should also be noted that this simulation
and control design does not consider the actuation that is needed to generate the torque.
So a more accurate simulation of the actuation would be needed to make sure that the
controller also works in real life conditions.

The current control design also assumes that it has perfect information about both attitude
and angular velocity. This is not very realistic, so appropriate sensor models and estimator
models should be developed to make sure that the controller can work with real inputs.
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