
Hardware in the Loop Testing of
Explicit Model Predictive COntrol
of The CubeSat Selfie-Sat

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Martin Mostad

2019
M

artin M
ostad

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Hardware in the Loop Testing of Explicit
Model Predictive COntrol of The CubeSat
Selfie-Sat

Martin Mostad

Cybernetics Engineering
Submission date: June 2019
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Amund Gjersvik

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Hardware in the Loop Testing of Explicit Model
Predictive Control of The CubeSat Selfie-Sat

Martin Mostad

Supervisors: Jan Tommy Gravdahl
Amund Gjersvik

June 3, 2019

Abstract

Tow explicit Model Predictive Controllers where developed for the CubeSat Selfie-Sat.
One was intended to be used for camera pointing and the other was intended to be used to
keep the satellite in ideal chagrin orientation. In addition a initial design of a Hardware in
the Loop test setup for testing the controller was developed. As part of the Hardware in the
Loop development disturbance, sensor and actuator models where also developed tailored
to the Selfi-Sat. In the end the two controllers where somewhat successful working in
ideal conditions, but not when exposed to disturbances. The controller where not tested
using the Hardware in the Loop environment as the proposed design could not handle the
necessary data flow.

i

Abstrakt

To eksplisite Model Prediktive Kontrollere ble utviklet for CubeSaten Selfie-Sat. Den
ene kontroller skulle bruke til å peke et kamera, mens den andre skulle bruke til å holde
satellitten i en ideell orientasjon for lading. I tilleg bel en test benk maskinvare i løken
(Hardware in the Loop) utviklet for å teste kontrollene. Som en del av maskinvare i løken
ble også utviklet modeller for forstyrrelser, sensorer og aktuatorer som var skreddersydd
for Selfie-Sat. Kontrollene som ble utviklet var noenlunde suksessfulle, de fungerte i
ideelle tilfeller, men ikke når de ble utsatt for forstyrrelser. Kontrollene ble ikke teste
i maskinvare i løkke systemet ettersom det foreslått designet ikke kunne håndtere den
nødvendige dataflyten.

ii

Preface

I would like to start this thesis by thanking everybody who has helped me with this thesis
in some shape or form. I would especially like to thank Prof Jan Tommy Gravdahl for his
continued support, advice, regular meetings and helping me giving this thesis a direction.
I would also like to thank Amund Gjersvik for his support and help with procurement of
hardware components.

A special thank should go to the MOVE-II project and to the "Lehrstuhl für Raumfahrt-
technik" at Technische Universität München for allowing me to use and modify their
Hardware in the Loop setup including both their simulation environment and interface
which almost is the entire foundation on which this thesis stands. David Messman and
Jonis Kiesbye from the MOVE-II ADCS team deserve extra mention, not only have they
thought me almost everything I know about ADCS, but they have always been willing to
help and answer any question I may have had.

Big thank to Petter Tøndel for allowing me to use his Matlab code for solving eMPC
problems. His code has helped my understanding of the problem tremendously. The
developer of the Multi-Parametric Toolbox 3.0: M. Herceg, M. Kvasnica, C.N. Jones, and
M. Morari. Multi-Parametric will forever have my gratitude for publishing such a great
toolbox free of charge. Their toolbox have saved me many hours of work on this project.

Orbit NTNU deserves their thanks as well for allowing me to write this thesis for them
and providing me with the necessary lab equipment, a place for me to talk to like-minded
people and overall for being an amazing organization to be a part of. The ADCS team
shall have a special thank for being such a hardworking group. It has been a pleasure
leading the group this last two semesters. Andreas Westre extra recognition for helping
with the modification of all the sensor models.

At the very end I would like to thank my friends and fellow students for making such a
memorable student experience. My family for all ways being there when I needed them
no matter what. Lastly a special thank Melanie Mügler not only for being so supportive
and understanding during this whole ordeal but also for the countless hours she has spent
helping me proofreading my thesis.

To everybody thanks for everything.

iii

Contents

1 Introduction 1
1.1 Selfie-Sat Attitude Determination and Control System 1
1.2 Explicit Model Predictive Control . 2
1.3 Hardware in the Loop . 3
1.4 Contributions From This Thesis . 3

2 Background 4
2.1 Attitude Mechanics . 4

2.1.1 Reference frames . 4
2.1.2 Attitude Kinematics . 5
2.1.3 Attitude dynamics . 5
2.1.4 External Torques . 6

2.2 Hardware in the Loop . 7
2.3 Explicit Model Predictive Control . 8

2.3.1 Multiparametric Quadratic Program and Model Predictive Control 9
2.3.2 Solving the MpQP . 10
2.3.3 Representing the Explicit Model Predictive Controller as a Binary

Tree . 13

3 ADCS Architecture 15
3.1 ADCS Modes . 15
3.2 Hardware Architecture . 18
3.3 Explicit Model Predictive Control Implementation 20

3.3.1 Camera Pointing Mode eMPC Formulation 20
3.3.2 Charging Mode eMPC Formulation 23

4 Hardware in the Loop Architecture 26
4.1 Simulation . 26

4.1.1 Sensor Models . 27
4.1.2 Actuator Model . 32
4.1.3 Disturbance models . 32

4.2 Simulation and Hardware Interface . 34

5 Results 38
5.1 Camera Pointing eMPC Results . 38
5.2 Charging Mode eMPC Results . 43

6 Discussion 45

iv

CONTENTS 0.0

6.1 Explicit Model Predictive Control Discussion 45
6.2 Hardware in the Loop Architecture discussion 46

7 Conclusion 47

8 Outlook 48
References . 49

v

List of Figures

1.1 3D model of the Selfie-Sat. 1

2.1 Illustration of Hardware in the Loop concept. 8
2.2 Illustrations showing how the search regions are created and that that a

critical region might belong to two search regions. Inspired by [25] 12

3.1 Different figures showing different properties of the angle θ. θ is always
the angel marked with one line. 17

3.2 Overview of the ADCS hardware. Showing all components and the inter-
faces between them. The PC-104 represents the main satellite bus con-
necting all the different subsystems together. 18

3.3 Simulink diagram of the control selection. The doted line is the trigger
signal that will activate the appropriate sub systems. In each of the sub
systems is one of the eight controllers. 22

4.1 The Simulink module used to generate the gyroscope sensor values. . . . 27
4.2 Relationship between the Sensor Frame and Body Frame. 28
4.3 The Simulink model used to generate the magnetometer sensor values. . . 30
4.4 Orientation of the IMU relative to the Satellite Body Frame. The blue

frame shows the Body Frame and the orange frame shows the magne-
tometer Sensor Frame. 30

4.5 The Simulink model used to generate the Sun Sensor values for the sensor
on the y- side panel. 31

4.6 Illustration of the different Sun Sensor Frames and the Body Frame. The
Body Frame is blue and the different Sun Sensor Frames are orange. . . . 31

4.7 Simulink implementation of gravity gradient torque with added function-
ality to switch between inertia matrix dependent on whether the boom is
out or not. 33

4.8 Illustrates the data flow between all the components in the HiL setup.
Each arrow indicates the direction of data flow and the text what kind of
protocol is used. 35

4.9 Shows the sequence of commands that the Beaglebone Black executes
each time it gets a new UPD message. 36

5.1 Plot of Euler angles between Body Frame and Orbit Frame. Using the
camera pointing controller. 39

5.2 Plot of the Euler angles between Body Frame and Orbit Frame, angular
velocity and actuated magnetic moment of a complete orbit. There is a
strange spice in the Euler angles at the end of the orbit. 40

vi

LIST OF FIGURES 0.0

5.3 Plot of the Euler angles between Body Frame and Orbit Frame, angular
velocity and actuated magnetic moment of a complete orbit. There is
some initial. 41

5.4 Plot of the Euler angles between Body Frame and Orbit Frame, angular
velocity and actuated magnetic moment of a complete orbit. The simula-
tion also included disturbance forces. 42

5.5 Plot of the angular velocity, angle between the Body Frame z-axis, the
ECI Frame z-axis and the actuated magnetic moment. The desired angular
velocity ωz and desired angle between the z-axes is marked by a black line. 43

5.6 Plot of the angular velocity, angle θ between the Body Frame z-axis, the
ECI Frame z-axis and the actuated magnetic moment. The desired angular
velocity ωz and desired angle between the z-axes is marked by a black
line. The simulation is running with disturbances. 44

vii

List of Tables

4.1 Noise density of different gyroscopes 29
4.2 Parasitic Dipol-Moment reported by different sources 33

5.1 Parameters of the camera pointing controller. 38
5.2 Parameters of the camera pointing controller 43

viii

Chapter 1

Introduction

Orbit is a student organization that aims to promote an interest in space at the Norwegian
University of Science and Technology. The main way it is trying to achieve this is through
its Selfie-Sat project. The project is building a two unit CubeSat. The main goal of the
CubeSat is to take a "selfie" in space. This is achieved by having a camera on a deployable
boom with a camera at the end which is pointing back to the satellite. On the face of the
satellite is a screen that can display a picture. So a picture can be taken of the screen with
the Earth in the background creating a "selfie" in space. A 3D rendering of the satellite
created by the PR and mechanical team at Orbit can be seen in Figure 1.1.

Figure 1.1: 3D model of the Selfie-Sat.

1.1 Selfie-Sat Attitude Determination and Control Sys-
tem

The attitude determination and control system (ADCS) is needed for three reasons: To
detumble the satellite after separation from the rocket, to point the camera towards the

1

1.2. EXPLICIT MODEL PREDICTIVE CONTROL 1.2

Earth so that it is in the background when the "selfies" are being taken and to keep the
satellite in optimal charging position.The ADCS consist of several parts to complete its
tasks:

• Attitude Controller: It is the actual control algorithm that controls the satellite
which is developed as part of this thesis.

• Attitude Determination: It is estimating the attitude of the satellite using several
sensors and environmental models. It is currently being developed as an Extended
Kalman filter.

• Environmental models: They are different models, for example models of the
orbit of the satellite, position of the Sun and magnetic field of the Earth. They are
used by the attitude determination system to estimate the attitude of the satellite.

• Sensors: Several sensors such as Inertia Measurement Units (IMU) and Sun Sen-
sors are used to gather information about the orientation of the satellite which will
be used in the attitude estimate.

• Actuator: Three coils are used to create a magnetic moment which interacts with
the Earth’s magnetic field to create a torque. This is in turn used to control the
attitude of the satellite.

1.2 Explicit Model Predictive Control

Orbit tries to build as many systems on the satellite as it can. One of the systems that
is almost completely made by Orbit is the ADCS. One of the big challenges when de-
veloping a CubeSat is the power budget. The satellite has very strict mass and volume
restrictions as it is limited to 1.33 kg and 0.10m3 per unit. This puts hard limit on the
battery capacity a CubeSat can have. The limited volume also means limited surface area
to put solar cells on. All this factors makes the power budget very tight. As a result of
this, it is very important that every subsystem on the satellite is as energy efficient as
possible. This especially applies for the ADCS as it is estimated to be one of the most
energy consuming subsystems on the satellite. A natural choice of controller to use on
the ADCS might therefore be Model Predictive Control (MPC) as this is often good when
efficiency is important. The MPC has another advantage, as it is very good at handling
constrained control problems, like controlling the attitude of the satellite. Not only does
the satellite have very limited actuation possibilities as it only has mangetorquers which
can produce a maximum of 0.2Am2. It is also very constrained as the torques are a result
of the cross product between the magnetic moment and the magnetic field of the Earth.
The big downside of the MPC is the huge amount of computing power that is required to
continuously solve the optimization problem live fast enough to keep up with the system.
This means that traditionally the only systems that could use MPC were slove systems that
had access to a lot of computing power. For example in some kind of production setting
[25]. Around 2002 [1], [25] development explicit solutions to the MPC problem started
to emerge. The idea behind the explicit Model Predictive Control (eMPC) is to find all
the explicit solutions to the MPC problem offline and then to create a loop-up table of
all the solutions to be used online. This is achieved by transforming the MPC problem
into a multiparametric quadratic programming (mpQP) . By use of this technique faster

2

1.3. HARDWARE IN THE LOOP 1.4

systems and systems with limited computing power could also get access to the MPC.
The eMPC fits perfectly for the ADCS of a CubeSat as it is a very constrained control
problem with high demand for efficiency, but with limited computing power. This is not
the first satellite that tries to take advantage of the eMPC, it has been written about it in
[15] and [8].

1.3 Hardware in the Loop

A big challenge when developing systems for space is testing. Any system that is going
to space only has one shot at working. If it does not work, it is lost for ever. As a result
making a reliable and well tested system is a priority for most teams developing something
for space. One big challenge when developing tests for space applications on ground is
that the environment on Earth is very different from the space environment which is very
difficult to recreate on Earth. To overcome this, many teams relay heavily on simulations
to test their satellite. The Hardware in the Loop (HiL) concept tries to take this one step
further by linking the simulation and hardware together. By including the true hardware
and software in the simulation, tests can be taken to a new level. The system can actually
be tested with realistic inputs and outputs. This might revile new errors that could not be
found by separate simulations and hardware tests.

1.4 Contributions From This Thesis

• The use of eMPC for controlling the attitude of a satellite with magnetorquers is
explored.

• Two eMPCs were created and tested in simulation. One was similar to the one
described in [15] and the second was developed using a tracking cost function.

• The simulation environment gotten from the MOVE-II team was updated so it fitted,
the "Selfie-Sat" with the intent to use the simulation in a HiL test setup.

• An initial design for a HiL test setup for the satellite based on the work in [14] was
developed.

3

Chapter 2

Background

2.1 Attitude Mechanics

In this section the fundamental theory for attitude mechanics will be presented. It is the
basis for the controller that is developed.

2.1.1 Reference frames

When working with satellite mechanics, there are a few reference frames that are useful.
They will be described in the following:

Body Frame The Body Frame Fb is defined to have its origin at the center of mass
of the satellite and has its axes aligned so that the inertia matrix of the satellite only has
diagonal elements. This means that the Body Frame will always follow the motions of
the satellite. Defining the Body Frame in this way should not lose any generality, because
one can always go from any Body Frame to this Body Frame with a simple transformation
according to the parallel axis theorem [6].

Earth Centered Inertia Frame The Earth Centered Inertia Frame (ECI) Fi is assumed
to be an Inertial Frame so anything in relation to an Inertial Frame will be in relation to
this frame. The ECI Frame is defined to have its origin at the center of the Earth. The
z-axis goes through the north pole, the x-axis is oriented so that it points directly at the
center of the sun on the vernal equinox and the y-axis is defined to complete the right-hand
rule [17].

Earth Centered Earth Fixed Frame The Earth Centered Earth Fixed Frame (ECEF)
Fe has its origin at the center of the Earth. Its z-axis goes through the north pole, the
x-axis goes through the Earth at zero longitude and latitude while the y-axis is defined to
complete the right-hand rule. This means that the frame moves with the Earth. This is
useful when talking about things that follow the movement of the Earth like the Earth’s
magnetic field [17].

4

2.1. ATTITUDE MECHANICS 2.1

Orbit Frame The Orbit Frame Fo has its origin in the center of gravity of the satellite.
Its z-axis is defined to always point directly towards the center of the Earth, the y-axis
is perpendicular to the orbit plane and points in the same direction as the negative orbit
normal while the x-axis is defined to complete the right-hand rule. For a circular orbit it
means that the x-axis is parallel to the velocity vector of the satellite [16].

2.1.2 Attitude Kinematics

Unit quaternions are chosen to represent the attitude of the satellite as they provide a sin-
gularity free repression of attitude. Where a unit quaternion is defined as q = [η iε1 jε2 kε3]

T

and |q| = 1. The relationship between the unit quaternion and the angular velocity is
given by Equation 2.1 [6].

q̇ib = T(qib)ω
b
b/i (2.1a)

T(q) =
1

2

−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 (2.1b)

Where qib represents the rotation from the Body Frame to the Inertia Frame and ωbb/i is the
angular speed between the Body Frame and the Inertia Frame.

2.1.3 Attitude dynamics

The attitude dynamics of the satellite is assumed to be the same as of a rigid body where
we only look at the rotational dynamics as the transnational movement has no effect on
the attitude. The dynamic equations for the rotation of a rigid body can be seen in Equa-
tion 2.2 [6].

ω̇bb/i = I−1(S(Iωbb/i)ω
b
b/i + τ

b) (2.2)

Where ωbb/i is the angular rotation speed between the Body Frame and Inertia Frame, I is
the inertia matrix and τ b represents all the external torques acting on the satellite including
the ones produced by the ADCS. The S(a) is the skew-symmetric matrix operator and
creates a skew-symmetric matrix from the vector a. As one can see from Equation 2.2,
the dynamic of the satellite is entirely decided by the inertia matrix. The Body Frame can
always be defined in a way where the inertia matrix I only has diagonal elements so I =
diag(ixx, iyy, izz). Then Equation 2.2 can be written as Equation 2.3.

ixxω̇x = (izz − iyy)ωyωz + τx (2.3a)
iyyω̇y = (ixx − izz)ωxωz + τy (2.3b)
izzω̇z = (iyy − ixx)ωxωy + τz (2.3c)

5

2.1. ATTITUDE MECHANICS 2.1

2.1.4 External Torques

The external torques acting on the satellite can be divided into two categories: Control
torque τ bc and disturbance torques τ bd so τ b = τ bc + τ

b
d. The control torque is created by

a coil producing a magnetic moment that interacts with the magnetic field of the Earth to
create a torque according to Equation 2.4.

τ bc = S(mb
c)B

b (2.4)

There are several disturbance torques acting on the satellite. The normal ones to con-
sider are gravity gradient, parasitic dipole-moment, aerodynamic drag and solar radiation
pressure. For the control design only the gravity gradient torque will be considered. The
gravity gradient, parasitic dipole-moment and aerodynamic drag torques will be modeled
in the simulation. The solar radiation pressure is considered to be so small that it will not
be included in the simulation.

Gravity Gradient Torque Gravity gradient torque is a result of different parts of the
satellite experiencing different gravitational forces. Since the gravitational field is depen-
dant on the distance from the center of the Earth, the field is not uniform. The gravity
gradient can be expressed in vector form as in Equation 2.5

~τ = −
∫
V

~r × µ (
~R + ~r)

|~R + ~r|3
dm ≈ 3µ

R5
~R× Ĩ · ~R (2.5)

Where V is the volume of the satellite, ~r is the distance from the satellite center of mass to
the small mass element dm, ~R is the vector from the center of the Earth to the gravitation
center of the satellite and µ is the gravitational constant of the Earth. The formula can
be expressed in matrix form relative to the Body Frame by replacing ~R with the z-axis
of the Orbit Frame and its magnitude. The z-axis of the Orbit Frame can be expressed
in the Body Frame by a simple rotation zbo = Rb

oz
o
o. This leads to the matrix form in

Equation 2.6 [16].

τ bg = 3ω2
0S(z

b
o)Iz

b
o (2.6)

ω0 is the angular speed of the orbit and the relationship µ/|R| = ω2
0 is used, which is true

for circular orbits.

Parasitic Dipole-Moment The parasitic dipole-moment is caused by unwanted mag-
netic moments created by the satellite. These moments can be caused by ferromagnetic
materials in the satellite or current loops in the electronics of the satellite. The parasitic
dipole-moment creates a torque in the same way the coils do as shown in Equation 2.7.

τ bp = mb
p ×Bb (2.7)

6

2.2. HARDWARE IN THE LOOP 2.2

Aerodynamic Drag In Low Earth Orbit (LEO) there is still sufficient atmospheric den-
sity to create drag forces which lead to torques acting on the satellite. The force acting on
a flat surface can be calculated using Equation 2.8 [18].

dFb
i = −

1

2
CDρv

2 cosαAi (2.8)

Where CD is the drag coefficient, ρ is the atmospheric density, v is the magnitude of
the relative velocity between the atmosphere and the satellite, α is the angle between the
surface norm and the relative velocity and Ai is the area of the surface. Note that the
force is only created if cosα > 0, otherwise the surface is not facing in the direction of
the relative velocity and no drag is created. The torque generated from this force can be
expressed as shown Equation 2.9.

τ bi = S(Fb
i)l

b
i (2.9)

Where li is the distance from the center of gravity to the center of pressure of the surface
Ai. The total aerodynamic drag torque is then given by summing the torque generated by
each surface i of the satellite where cosα > 0.

2.2 Hardware in the Loop

Hardware in the Loop (HiL) is a technique for testing a controller on the hardware without
having to assemble the complete product and put it in its intended operational environ-
ment. This is achieved by having the hardware that needs to be tested interact with a
simulation of the plant instead of the actual plant itself. This way of testing has several
advantages as testing on the actual plant can be very expensive or sometimes even impos-
sible as for satellites. Once the satellite is launched, it can not come back. HiL normally
works by having a simulation of the plant and models of the sensors. The output of the
modeled sensors is then given to the hardware through similar interfaces as it would get
the real sensor data. Afterwards the controller processes the sensor data and calculates
the appropriate actuation. This actuation is then given back to the simulation through
similar interfaces as the true actuator uses. This allows the simulation to propagate to the
next step while taking into account the actuation of the hardware controller. The relation
between hardware and simulation can be seen in Figure 2.1.

7

2.3. EXPLICIT MODEL PREDICTIVE CONTROL 2.3

Figure 2.1: Illustration of Hardware in the Loop concept.

The HiL approach has been used by several other CubeSat projects to great effect in [14],
[21] and [20]. Each project differs slightly, but the underlying principal is the same. The
biggest differences are in how much hardware they included in the loop. In [21] is almost
no interaction between the simulation and hardware and it is using almost all of the sensors
and actuators. This is achieved by having an extensive lab setup including a Helmholtz
cage to create a magnetic field representing the one the satellite will experience in space.
This has the main advantage that the system that is actually tested is very similar to the
final system. The main drawback is that the test setup is not exactly the same as in space
so some modifications have to be made in the software. There are also some problems
with evaluating the result as there are a lot more disturbance forces in the test setup than
the satellite would experience in orbit. The solution to this problem presented in [21] was
to model the disturbances and take them into account when evaluating the result.

In [14] and [20] on the other hand there is much more interaction between the simulation
and hardware. They are only testing the main micro-controller and using the simulations
to generate all sensor values and to receive the actuation output. The main difference is
in how the interface between the simulation and hardware works. [20] has made modules
that can generate the current and voltage values the sensors would produce based on input
from the simulation. [14] connects to the hardware digitally as almost all of the sensors
information is at some point transferred on a digital bus. The main advantage of this
approach is that there are no limitations to what kind of tests can be run and the software
can be completely identical to the final product. The main drawback is that you get to test
less of the complete system and you are still dependent on accurate models.

In all of [14], [21] and [20] it is reported that they found bugs or other errors in their
system they would not have found if they did not do HiL tests. This showcases how
important it is to do such tests.

2.3 Explicit Model Predictive Control

An explicit model predictive control (eMPC) is a way to get an approximation of the opti-
mal control law normally gained by model predictive control (MPC) without the computa-

8

2.3. EXPLICIT MODEL PREDICTIVE CONTROL 2.3

tional effort needed to constantly solve the MPC live. This can be achieved by formulating
the linear constrained MPC problem as a multiparametric quadratic program (mpQP). The
mpQP will give a piecewise affine (PWA) function that can be stored in memory. During
any given instant one can look up into the PWA to find the approximate optimal gain [15].

2.3.1 Multiparametric Quadratic Program and Model Predictive Con-
trol

Multiparametric programming is finding not only the optimal solution to a single opti-
mization problem, but an explicit solution to a range of similar optimization problems
based on a parameter. MpQP is then concerned with finding this explicit solutions to
quadratic programming. The general formulation of a mpQP can be seen in Equation 2.10

V ∗(θ) = min
z

zTHz+ θTFz+ cTz (2.10a)

s.t Az ≤ b+ Sθ (2.10b)

The optimal solution to an mpQP will be an continuous PWA function dependent on the
parameter θ.

According to [15], the MPC problem can easily be formulated as a mpQP. For a linear
discreet system defined by Equation 2.11 where xk ∈ Rn are the states and uk ∈ Rm are
the inputs to the system at time k. A ∈ Rnxn and B ∈ Rmxn form the stabilizing pair
(A,B) .

xk+1 = Axk +Buk (2.11a)
yk = Cxk (2.11b)

For controlling the system towards the origin, the MPC is normally formulated as shown
in Equation 2.12

min
U,s

[J(U,x(t)) + ρ||s||2L2] (2.12a)

s.t ymin − s ≤ yt+k|t ≤ ymax + s, k = 1,, N (2.12b)
umin ≤ ut+k ≤ umax, k = 0,,M − 1 (2.12c)
ut+k = Kxt+k|t,M ≤ k ≤ N − 1 (2.12d)
xt|t = x(t) (2.12e)
xt+k+1|t = Axt+k|t +But+k, k ≥ 0 (2.12f)
yt+k|t = Cxt+k|t, k ≥ 0 (2.12g)

Where J(U,x(t)) is given by Equation 2.13.

9

2.3. EXPLICIT MODEL PREDICTIVE CONTROL 2.3

J(U,x(t)) = xTt+N |tPxt+N |t +
N−1∑
k=0

xTt+k|tQxt+k|t + uTt+kRut+k (2.13)

Where ||s||L2 is the euclidean norm of the slack variable s, ρ is the penalty weight of
the slack variables, U , [uTk ,u

T
k+1, ...,u

T
k+N−1]

T is the vector of inputs at each sample
time, s , [s(k)T , ..., s(k+N − q)T]T is the vector of slack variables at each sample time,
K is the control gain matrix used when there are no constraints, xt+k|t is the prediction
of xt+k at time t, and N is the output constraint horizon while M is input constraint
horizon. The solution to this problem will be a sequence of optimal inputs U∗ given by
U∗ = [u∗Tk ,u

∗T
k+1, ...,u

∗T
k+N−1]

T and s∗ = [s∗(k)T , ..., s∗(k +N − q)T]T .

The MPC problem can be formulated as a mpQP as shown in Equation 2.14 according
to [25], where z , U + H−1FTx(t). x(t) is the current state and will be treated as the
parameter to the optimization problem.

Vz(x) = min
z

1

2
zTHz (2.14a)

s.t Gz ≤W + Sx(t) (2.14b)

The transformation is made by using the fact that xt+k|t = Akx(t)+
∑k−1

j=0 A
jBut+k−1−j

to transform Equation 2.12 to Equation 2.15 and then completing the square to get Equa-
tion 2.14. H � 0 as R � 0 [15]

V(x(t)) =
1

2
x′(t)Yx(t)+min

U

{1
2
U′HU+x′(t)FU, s.t GU ≤W+Ex(t)

}
(2.15)

H, F,Y, G, W and E are obtained from the MPC formulation and Q and R. S is given
by S = E+GH−1F′ [1]

2.3.2 Solving the MpQP

To solve the mpQP the work of [25] will be followed and for a more detailed description
of the solution, the reader is referred to his work. The solution to the mpQP problem
Equation 2.14 can be solved by applying the Karush-Kuhn-Tucker (KKT) conditions as
shown in Equation 2.16.

Hz+GTλ = 0, λ ∈ Rq (2.16a)

λi(G
iz−Wi − Six) = 0, i = 1, ..., q (2.16b)

λ ≥ 0 (2.16c)
Gz−W − Sx ≤ 0 (2.16d)

Where q is the number of inequality constraints and a matrix with superscript i indicated
the ith row of the matrix. In Equation 2.16 it can be seen that z can be given by Equa-
tion 2.17 as H has full rank.

10

2.3. EXPLICIT MODEL PREDICTIVE CONTROL 2.3

z = −H−1GTλ (2.17)

Suppose that z ∗ (x) is the optimal solution. We can then define active constraints as
constraints where Giz∗ (x)−Wi−Six = 0 and inactive constraints as constraints where
Giz ∗ (x)−Wi − Six ≤ 0. We also define A as a set of all indices of active constraints,
A = {i | Giz ∗ (x) = Wi − Six}. From A we can form the matrices GA, WA and SA

and the Lagrange multipliers λA ≥ 0 corresponding to the active constraints. Assuming
that GA has full row rank λA = −(GAH−1(GA)T)−1(WA + SAx). This gives the final
solution Equation 2.18.

z = H−1(GA)T (GAH−1(GA)T)−1(WA + SAx) (2.18)

As long as a given A stays the optimal active set, the solution in Equation 2.18 remains
the optimal solution as a function of x. A given A remains the optimal active set as long
as z stays feasible and the Lagrange multipliers remains non-negative. These conditions
are given by the inequalities Equation 2.19. These inequalities describe a polyhedron in
the state space called the critical region CR0.

GH−1(GA)T (GAH−1(GA)T)−1(WA + SAx) ≤W + Sx (2.19a)

−(GAH−1(GA)T)−1(WA + SAx) ≥ 0 (2.19b)

To solve the mpQP, an expression for z and the region in which it is valid needs to be
found. As shown by Equation 2.18 and Equation 2.19, they are both completely defined
by the optimal active set. This means that finding a solution to the mpQP is equivalent
with finding all the optimal active sets of the mpQP.

There are several algorithms that can be used to solve the mpQP, but they all follow the
same principal of searching for the optimal active sets. They only differ in how they
search for it. The algorithm proposed by [1] can be explained as the following. Solve the
Linear Programming (LP) in Equation 2.20 to find a feasible x0 ∈ X where X is the set
of parameters for which the mpQP is to be solved.

max
x,z,ε

ε, (2.20a)

s.t Tix+ ε||Ti|| ≤ Z, (2.20b)
Gz− Sx ≤W (2.20c)

Using x = x0 in Equation 2.14 to solve the mpQP as a normal Quadratic Programming
(QP) and to find the optimal active set for x0. Use Equation 2.19 to describe the region
called CR0 where the solution is valid. Then use the hyperplanes of CR0 to define new
regions in X as shown in Figure 2.2. For each of the new regions repeat this process until
the entire space of X is explored.

11

2.3. EXPLICIT MODEL PREDICTIVE CONTROL 2.3

CR0
X0

CR0
X0

R1

CR0
X0

R1

R2

R4

R3 CR0
X0

R1

CR0

Figure 2.2: Illustrations showing how the search regions are created and that that a critical
region might belong to two search regions. Inspired by [25]

This method has several draw backs. The first is that the new regions do not take into
account where the critical regions will be so there can exist critical regions which are in
multiple regions. This means that they will be found multiple times by the algorithm. The
second problem is that LP problem has to be solved multiple times which takes a lot of
time.

Another approach has been developed by [25]. This method takes advantage of the hyper-
planes separating the critical regions. He defines two types of separating hyperplanes H
separating two critical regions CR0 and CRi. Where CR0 and CRi are neighboring criti-
cal regions and CR0 is defined by the optimal active set {i1, i2,, ik} and Equation 2.19.
The two types are:

Type 1 If H is given by Gik+1z∗0(x) = Wik+1 + Sik+1x, then the optimal active set in
CRi is {i1,ik, ik+1} or {i2, ...Ik, ik+1}

Type 2 IfH is given by λik0 (x) = 0, then the optimal active set in CRi is {i1,ik, ik−1}
or {i2, ...Ik, ik−1}

So the main idea for the algorithm presented in [25] is to find an initial optimal active set
with the LP in Equation 2.20 as in the previous algorithm. For each of the hyperplanes
defining CR0 based on the optimal active set, investigate which type of hyperplane it is
and thereby determine what the active set is in the neighboring critical region CRi. Use
the active set to define CRi. Repeat this process until the entire space X is explored. This
algorithm has several advantages. The first is that it uses the property of the critical regions
to find future optimal active sets. This means that there is no need to solve multiple QPs
to find new active sets. It also searches the space of X in a better way so it does not find
the same critical region multiple times. It should be noted that this is a very simplified

12

2.3. EXPLICIT MODEL PREDICTIVE CONTROL 2.3

way of describing the algorithm only outlining the general idea. For a more in-depth view
of the algorithm the reader is referred to [25].

2.3.3 Representing the Explicit Model Predictive Controller as a Bi-
nary Tree

The solution to the eMPC problem is a PWA control law that needs to be included on
the computer implementing the controller. To achieve that, the controller needs a way to
determine in which region of the PWA the current state is. The simplest way of evaluating
the PWA is a sequential search through all the regions of the PWA. This is however not
very efficient as you might have to search through the entire PWA to find a solution. The
efficiency can be increased somewhat by starting the search with the same region as in
the last solution and then expanding the search to more and more neighboring regions.
In [25] there are multiple reasons stated why this is not always a good idea, which all
revolve around sudden changes to the state. This can be caused by changes in the set
point, mode switching, disturbances and slow sampling. [25] suggests a much faster way
off evaluating the PWA by turning it into a binary search tree. The leaf nodes in the
tree contain the appropriate control law and all the parent nodes contain an inequality
to determine if the search should continue to the left or right. In the following only the
relation between the tree and the regions of the PWA will be explained. For information
about the algorithm to generate the tree, the reader is referred to [25].

For each hyperplane j given by aTj x = bj defining one of the regions in the PWA, a
function dj(x) = aTj − bj is defined. Each parent node contains an index to one of
the dj(x) functions to be evaluated. When searching the tree at each node, evaluate if
dj(x) < 0. If dj(x) < 0, go to the left child node, if not, go to the right child. To get an
intuition for how the search tree divides up the state-space, one can also imagine that each
node contains two sets I and J . I is a set of indexes containing regions that x can still
be a part of. J contains indexes of previously tested functions dj(x) and a sign to show
what they evaluated to. So a node with I = {3, 5} and J = {−3, 2} means, that x could
still be in region 3 and 5 and that d3(x) < 0 and d2(x) > 0.

13

2.3. EXPLICIT MODEL PREDICTIVE CONTROL 2.3

(a) Example of regions dividing up a state space. Inspired by [25]

I = {1,...,6}
J = {Ø}

j = 3

I = {1,3,4,6}
J = {-4}

j = 1

I = {1,2,5}
J = {1}
j = 4

I = {1,3}
J = {-1,-1}

F2

I = {4,6}
J = {-4,1}

F1

I = {1,3,4,6}
J = {-1,4}

F2

I = {1,3,4,6}
J = {-1,-4}

F3

(b) Example binary search tree based on the regions in the figure above. Inspired by [25]

In Figure 2.3a one can see an example of how a two dimensional state space could be
divided into 6 regions, which each have their own control law Fi. In Figure 2.3b one
can see an example of a binary search tree for the regions. Some of the regions share a
common control law, which is used to make as few nodes as possible.

14

Chapter 3

ADCS Architecture

The ADCS has three main objectives that should be achieved. The first task is to detumble
the satellite after it is separated from the rocket. The second objective is to orient the
satellite in a way that maximizes charging capabilities of the satellite. The third is to point
the camera towards the Earth when the satellite should take pictures aka the "selfies".
What these modes mean in more technical terms is presented in section 3.1. For the
detumbling a B-dot algorithm is used that is provided by the magnetorquer board iMTQ.
For the other two modes the two self developed eMPC presented in section 3.3 are used.

3.1 ADCS Modes

The three control modes of the ADCS are: detumbling mode, charging mode and camera
pointing mode.

Detumbling Mode This mode is mainly used to reduce the angular velocity that the
satellite has after it is deployed from the rocket. When the satellite is deployed from the
rocket it will have an unknown angular velocity that needs to be reduced before normal
operations of the satellite can start and the camera boom can be released. It will also
be used as a failsafe to keep the satellite under control, in case it starts spinning up for
some reason. For this reason the Detumbling mode uses a simple controller with very
few sensor to make sure it always works. The chosen controller is a B-dot controller that
comes with the iMTQ magnetorquer board.

md = kḂb (3.1)

The B-dot control law works as shown in Equation 3.1 where md is the desired magnetic
moment that is used as an input to the mangetorquers, k is the control gain and Ḃb is
the derivative of the measured magnetic field of the Earth in Body Frame. The controller
works not by trying to reduce the angular velocity but by trying to reduce the change in the
magnetic field. If the magnetic field is assumed to be static in the Inertia Frame, reducing
the angular velocity is equivalent to reducing the change in the magnetic field in the Body
Frame, because a rotating body is the only way to have a changing magnetic field in the

15

3.1. ADCS MODES 3.1

Body Frame. It is a valid assumption that the magnetic field is static in the Inertia Frame,
as the magnetic field changes very slowly over one orbit.

Charging Mode The charging mode is used to try and maximize the charging of the
satellites batteries. The charging can be maximized by two criteria: Maximizing the
total area of solar cells facing the Sun at any given time and giving each solar cell equal
exposure to the Sun. The first criteria is self evident as the power produced by the solar
cells are directly proportional to the solar cell area facing the Sun. The second criteria is
important as the solar cells have reduced efficiency if they are too hot and the only way
of cooling down the solar cells is having them face away from the Sun. This means that
the charging efficiency is the highest, if all the solar cells are kept as cool as possible
which is achieved by having equal exposure to the Sun. On the satellite there are only
solar cells on the x and y panels. This means that the optimal solution is one where
the z-axes is perpendicular to a vector pointing towards the Sun and with some rotation
around the z-axis. At any given point in the orbit, multiple orientation can have the z-axis
perpendicular to the Sun vector. To make the criteria easier, the following is observed:
If the z-axis of the satellite is normal to the orbit plane of the Earth, the satellite’s z-axis
is perpendicular to the Sun vector when the it crosses the orbit plane as illustrated in
Figure 3.1a. This can be used as an approximation for an orientation where the z-axis of
the satellite is perpendicular to the Sun vector. Figure 3.1b shows that the angle, which is
representing how much this approximation is wrong, depends on θ. The maximum value
of θ is illustrated in Figure 3.1c and can be calculated to θ = arctan(R

D
) ≈ 2.7040 when

R = 6.971× 106 km and D = 1.476× 108 km is the orbital radius and the distance from
the Earth to the Sun respectively.

16

3.1. ADCS MODES 3.1

A

Z-axis

B

(a) Illustration showing that when the satellite passes through the orbit plane of the Earth, the z-
axis is normal to the Sun vector as long as the z-axis is normal to the plane. Point A represents the
Sun, point B represents the center of the Earth, the circle represents the orbit of the satellite and
the line segment AB represents the orbital plane of the Earth.

A B

C

D

F

E

(b) Illustration showing how the angle between two lines intersecting in A is equal to the angle
between the two lines perpendicular to the first two lines. This can be seen as ∆ ABC must be
similar to ∆ AEF as they have two angles in common. This means that the angle between line AE
and line EF has the same angle as the angle between the line AC and line CB. This shows that the
angle between DF and EF must be equal to the angel between AB and AC.

A B

C

(c) Illustration showing that the maximum θ happens when the point is on the intersection between
the circle and the line perpendicular to AB when B is placed in the center of the circle.

Figure 3.1: Different figures showing different properties of the angle θ. θ is always the
angel marked with one line.

The z-axis of the ECI Frame is not normal to the orbital plane of the Earth, but rather at a
23.5◦ angle this is called the obliquity of the Earth. This means that the simplest desired
orientation for charging is the Body Frame of the satellite rotated 23.5◦ around the x-axis
relative to the ECI Frame. In quaternions this is qib = [cos 23.5

2
sin 23.5

2
0 0]′.

17

3.2. HARDWARE ARCHITECTURE 3.2

Camera Pointing Mode The camera pointing mode is used to point the camera towards
the Earth so that the Earth will be in the background for the "selfies". As the camera is
pointing in the z- direction, pointing the camera towards Earth is the same thing as point-
ing the -z-axis of the satellite towards the Earth or so called nadir pointing. Relative to the
ECI Frame, this orientation is not easily expressed as the expression would continuously
change throughout the orbit. Instead the orientation relative to the Orbit Frame is used as
nadir pointing is always expressed as qob = [1 0 0 0]′. Therefore the controller for the
camera pointing mode is developed using the dynamics of the systems expressed relative
to the Orbit Frame. The estimated states are still relative to the ECI Frame, so a rotation
matrix to go from ECI to the Orbit Frame is needed. This rotation matrix can be calculated
based on the position and linear velocity of the satellite according to Equation 3.2.

R1 = S(R2)R3 R2 = S(vi)ri R3 = −ri (3.2a)

Ro
i =

[
R1 R2 R3

]
(3.2b)

Where ri and vi is the unit vector of the satellite position and linear velocity expressed in
the ECI Frame.

3.2 Hardware Architecture

The ADCS hardware consists of two PCBs and five Sun Sensors. The first PCB, called
the ADCS PCB, contains the main micro-controller and two Inertial Measurement Units
(IMU). The second PCB is the iMTQ [11] which contains the magnetorquers and the
necessary components to control them. An overview of the ADCS hardware architecture
can be seen in Figure 3.2.

Figure 3.2: Overview of the ADCS hardware. Showing all components and the interfaces
between them. The PC-104 represents the main satellite bus connecting all the different
subsystems together.

18

3.2. HARDWARE ARCHITECTURE 3.2

The ADCS uses the CAN bus protocol to talk to the rest of the satellite, and SPI and I2C
buses to talk to its internal components. The ADCS PCB also contains all the necessary
components to support the MCU and all other components on the board such as voltage
regulators, extra memory, CAN transverse and so forth. Only the parts directly related to
ADCS as a control system will be discussed future.

ADCS Micro-Controller The ADCS micro-controller is a TMS570LS1224 [24]. It
has an ARM Cortex -R4F 32-bits CPU with a double precision FPU. It has two CPUs
running in lock step to ensure high reliability. It is the same micro-controller that is used
on the On-board Computer. They are both running the same custom made operation
system developed by Orbit NTNU to take advantage of the reliability features of the
micro-controller. The operation system also comes with all the needed low level drivers
and file functionality. This means that all ADCS software will be developed as high level
applications.

Inertial Measurement Unit The Inertial Measurement Unit is a nine degrees of free-
dom unit of type LSM9DS1 [12]. It consists of a accelerometer, gyroscope and magne-
tometer, all capable of measuring in three directions. It is therefore capable of measuring
the acceleration and angular velocity of the satellite as well as the magnetic field surren-
dering the satellite. Only the gyroscope and magnetometer measurements will be used in
the ADCS. The IMU has both a SPI and I2C interface but only the SPI interface will be
used.

Sun Sensor The Sun Sensor is a sensor capable of detecting the direction of the Sun.
The model used on the ADCS is the Nano Sens Fine Sun Sensor from GOMSpace [19].
The sensor uses the pin hole pricipe. This means that the sensor calculates the direction
of the Sun by allowing a small ray of light tto ravel through a small hole. Behind the
hole are four light sensitive diodes. The ratio of light between the diodes can then be
used to determine the angle of the incoming light which in turn can be used to determine
the direction of the Sun. The values of the four pads are transferred to the ADCS-MCU
through an I2C bus.

The direction can then be calculated using the equations in Equation 3.3 from the data
sheet. Some parts of the equation that relate to calibration parameters are removed to
make the equations simpler.

xd =
(A+B)− (C +D)

A+B + C +D
yd =

(A+D)− (B + C)

A+B + C +D
(3.3a)

φ = arctan
xd
yd

θ = arctan

√
x2d + y2d
h

(3.3b)

Ss =

 cos θ
sin θ cosφ
sin θ sinφ

 (3.3c)

Where A, B, C, D is the intensity of each diode, h is some calibration parameter and
Ss is the direction of the Sun in the Sensor Frame. The Sun Sensor also comes with a

19

3.3. EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTATION 3.3

look-up table for calculating the direction of the Sun based on the diode values. Using
the loop-up table should give more accurate results as the table is custom made for each
sensor. The sensor also comes with code for using the look-up table so it can be regarded
as a black box that gives out the direction of the Sun.

Magnetorquer Board iMTQ The iMTQ from ISIS contains three magnetorquers al-
lowing the board to produce magnetic moments in all directions. Two of the magnetor-
quers have a soft magnetic core working as an amplifier for the magnetic moment. All
the magnetorquers are capable of producing a mangetic moment of 0.2Am2. The board
also comes with its own micro-controller for controlling the coils and interfacing with the
ADCS. The interface between the iMTQ and the ADCS is through an I2C bus. The board
has B-dot capabilities and can be commanded to use the B-dot controller to reduce the
angular velocity of the satellite. It is this board’s B-dot controller that is intended to be
used for detumbling the satellite.

3.3 Explicit Model Predictive Control Implementation

For the eMPC implementation the Matlab toolbox MPT3[9] is used. The toolbox has a
variety of functions and features that are very useful when developing an eMPC. The most
important ones are the "MPCController" and "EMPCController" objects. The "MPCCon-
troller" object allows for easy formulation of the MPC problem and can transformed into
an eMPC problem using a built in function. The MPT3 toolbox has built in solvers for the
eMPC problem. The toolbox also has functions for generating C and S-function files for
the solved controller. These files are used on the micro-controller and in the simulation to
test the micro-controller simulations.

To create the MPC problem, the dynamics of the satellite need to be linearized as they are
highly nonlinear. The camera pointing and charging mode have two very different goals
and therefore require their own MPC problem. The formulation of the tow problem will
be presented in the following.

3.3.1 Camera Pointing Mode eMPC Formulation

The eMPC formulation for the nadier pointing satellite using magnetorquers has already
been developed in [15] so the formulation presented there will be used. The kinematic and
dynamic equations presented in section 2.1 need to be transformed so they apply to the
relation between the Body Frame and Orbit Frame instead of the relation between Body
Frame and ECI Frame. For the quaternions this is straight forward as all that is needed is
to replace ωbb/i with ωbb/o. The kinematic equation then becomes as in Equation 3.4.

q̇ob = T(qob)ω
b
o/i (3.4)

For the angular velocity we assume a circular orbit and therefore have the relationship in
Equation 3.5.

20

3.3. EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTATION 3.3

ωbi/b = ω
b
o/b +Rb

oω
o
i/o

˙ωbi/b =
˙ωbo/b + Ṙb

oω
o
i/o (3.5)

Whereωbo/b = [0 −ω0 0]
T and ω0 is the angular velocity of the satellite around the Earth.

The external torques that are considered for this system are the gravity gradient torque τ bg
and the torque from the magnetorquers τ bm as presented in Equation 2.6 and Equation 2.4.
Combining Equation 2.6, Equation 2.4, Equation 2.2 and Equation 3.5 gives Equation 3.6.

˙ωbo/b = I−1S(I(ωbo/b +Rb
oω

o
i/o))(ω

b
o/b +Rb

oω
o
i/o)

+ S(ωbo/b)R
b
oω

o
i/o + 3ω2

0I
−1S(zbo)Iz

b
o + I−1S(mb)Bb (3.6)

This is then linerized around the point x0 = [qob_0 ω
b
o/b_0]

T = [1 0 0 0 0 0 0]T . Given in
Equation 3.7.

A =

0 0 0 0 0 0 0
0 0 0 0 1

2
0 0

0 0 0 0 0 1
2

0
0 0 0 0 0 0 1

2

0 −8kwω2
0 0 0 0 0 (1− kw)ω0

0 0 6kyω
2
0 0 0 0 0

0 0 0 −2kzω2
0 (kz − 1)ω0 0 0

(3.7a)

B =

0 0 0
0 0 0
0 0 0
0 0 0

0 Bb
z

ixx
−Bb

y

ixx

−Bb
z

iyy
0 Bb

x

izz
Bb

z

izz

Bb
x

izz
0

(3.7b)

Where kx = iyy−izz
ixx

, ky = ixx−izz
iyy

, kz =
iyy−ixx
izz

and ixx, iyy and izz are the diagonal ele-
ments of the inertia matrix. This linearization has assumed only elements on the diagonal
of the inertia matrix. From the linear model presented in Equation 3.7 it can be seen that
the first element of q0

b is not controllable. This is not a problem as it can be controlled by
the remaining elements of q0

b as |q0
b| = 1 must be true for quaternions used to represent

rotation.

The cost function in the MPC formulation will be a quadratic cost function with a final
penalty P calculated by solving the discre-time Riccati equations. In addition all the
states and actuators have inequality constraints to form an upper and lower bound. So the
full MPC formulation will be as in Equation 3.8.

21

3.3. EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTATION 3.3

min
U

[J(U,x(t))] (3.8a)

s.t xmin ≤ xt+k|t ≤ xmax, k = 1,, N (3.8b)
umin ≤ ut+k ≤ umax, k = 0,, N − 1 (3.8c)
xt|t = x(t) (3.8d)
xt+k+1|t = Axt+k|t +But+k, k ≥ 0 (3.8e)

(3.8f)

J(U,x(t)) = xTt+N |tPxt+N |t +
N−1∑
k=0

xTt+k|tQxt+k|t + uTt+kRut+k (3.8g)

There is one problem with this formulation. The Bb is actually time-varying and the
MPC problem can not have a time-varying B matrix. The solution to this is the same as
presented in [15]. Instead of having a time-varying Bb the average value is used. The only
problem then is for when Bb changes sign. To solve this eight controllers are created, one
for each of the sign combinations of Bb. Then the controller chooses which of this eight
controllers to use based on the measured sign of the magnetic field.

In the same way as described in [15], the model is also scaled to try and improve the
numerical stability of the solvers. Because of this scaling and the fact that the states
in the controller are different from the states of the simulation, some prepossessing is
needed on the simulation data before it can be used in the controller. For the simulation
implementation of the controller, it can be said that it consists of three parts. The first part
transforms the simulation’s states into the states used by the controller, the second part
selects which of the eight controllers to use based on the magnetic field, and the last part
the controller itself. The controllers are the S-functions generated by the MPT3 toolbox
while the control selector is a S-function that sends out trigger signals to the appropriate
controllers. This means that only one controller will run at a time to make the simulation
run a bit faster. This selection mechanism can be seen in Figure 3.3

Figure 3.3: Simulink diagram of the control selection. The doted line is the trigger signal
that will activate the appropriate sub systems. In each of the sub systems is one of the
eight controllers.

22

3.3. EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTATION 3.3

3.3.2 Charging Mode eMPC Formulation

For the charging mode controller a tracking cost function similar to the one presented in
[1] is used in the MPC formulation. The tracking formulation is used because the charging
mode wants a specific orientation for the z-axis as well as a specific angular velocity. If
there is an angular velocity, there is always a changing quaternion value. This means that
a static desired state as used in the camera pointing controller will not work. A tracking
cost function can have a changing desired state by changing the reference state. The MPC
formulation becomes as shown in Equation 3.9.

min
U

[J(U,y(t)), r(t)] (3.9a)

s.t ymin ≤ yt+k|t ≤ ymax, k = 1,, N (3.9b)
xmin ≤ xt+k|t ≤ xmax, k = 1,, N (3.9c)
umin ≤ ut+k ≤ umax, k = 0,, N − 1 (3.9d)
xt|t = x(t) (3.9e)
xt+k+1|t = Axt+k|t +But+k, k ≥ 0 (3.9f)
yt+k|t = Cxt+k|t, k ≥ 0 (3.9g)

J(U,x(t)) =
N−1∑
k=0

(yt+k|t − r(t))TQ(yt+k|t − r(t)) + uTt+kRut+k (3.9h)

Where r(t) is the time varying reference signal. The dynamic and kinematic equations
that are used for the charging mode controller are also slightly different. The kinematic
equation is the same as the one presented in Equation 2.1, while the dynamic equation is
the same as the one in Equation 2.2 but without disturbance forces. This leads to the state
equations as shown in Equation 3.10.

q̇ib = T(qib)ω
b
b/i (3.10a)

ω̇bb/i = I−1(S(Iωbb/i)ω
b
b/i + S(mb)Bb) (3.10b)

This time the linerization is around the point qib = [1 0 0 0]T and ωbb/i = [0 0 ωz_0]
T

where ωz_0 is the desired angular velocity around the z-axis to optimize charging. The
linerized equation is shown in Equation 3.11.

23

3.3. EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTATION 3.3

A =

0 0 0 −ωz0

2
0 0 0

0 0 ωz0

2
0 1

2
0 0

0 −ωz0

2
0 0 0 1

2
0

−ωz0

2
0 0 0 0 0 1

2

0 0 0 0 0 Ixωz0 0
0 0 0 0 Iyωz0 0
0 0 0 0 0 0 0

(3.11a)

B =

0 0 0
0 0 0
0 0 0
0 0 0

0 Bb
z

ixx
−Bb

y

ixx

−Bb
z

iyy
0 Bb

x

izz
Bb

z

izz

Bb
x

izz
0

(3.11b)

Where Ix =
izz−iyy
ixx

Iy =
ixx−izz
iyy

Ix =
iyy−ixx
izz

As the new cost function uses the output, the C matrix needs to be defined. There are
seven states, but one of the states in the quaternion is redundant so only six states are
needed to control the attitude and angular velocity of the satellite. The C is expressed in
Equation 3.12.

C =

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 (3.12)

To calculate the reference value, a function to calculate the quaternion representation of
a rotation object with the desired angle θ between its z-axis and the z-axis of the Inertia
Frame is needed. This is done by combining two rotations. The first one is a rotation θ
around the x-axis to get the correct angle between the z-axes expressed as q1. The second
one is a rotation around the new position of the z-axis with an angular velocity ωz_0. This
can be expressed as q2. This two rotations can then be combined using the quaternion
product as shown in Equation 3.13.

q1 = [cos
θ

2
sin

θ

2
0 0]T (3.13a)

q2 = [cos
ωz_0t

2

√
1 cos (

π

4
− θ) sin ωz_0t

2

√
1 sin (

π

4
− θ) sin ωz_0t

2
0]T (3.13b)

q2 ⊗ q1 =

cos θ

2
cos ωz_0t

2
+ sin θ

2
cos (π

4
− θ) sin ωz_0

2

cos ωz_0t
2

sin θ
2
+
√
1 cos θ

2
cos (π

4
− θ) sin ωz_0

2√
1 sin (π

4
− θ) sin ωz_0t

2√
1 sin θ

2
sin (π

4
− θ) sin ωz_0t

2

 (3.13c)

24

3.3. EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTATION 3.3

Where t is time. Taking the last three elements of the combined quaternion and the desired
angular velocity of ωd = [0 0 ωz_0]

T gives r(t) = [q2 ⊗ q1(2 : 4)T ωTd]T .

The controller is in similar manner to what was done in subsection 3.3.2 where eight
different controllers are created, one for each combination of the signs of Bb.

25

Chapter 4

Hardware in the Loop Architecture

4.1 Simulation

The simulation that is used for the Hardware in the Loop is completely based on the simu-
lation environment developed by the ADCS team for the CubeSat MOVE-II at Technische
Universität München. As most of the simulation was developed by the MOVE-II team,
only a short introduction to the overall simulations will be given. For a more in depth
view, the reader is referred to [14] and [18]. There are some changes that needed to be
made to the simulation, as it has a few parts that are specific to their satellite. The changes
are discussed in the following sub sections.

The simulation consists of mainly five different subsystems:

• Plant: Contains all the dynamics and kinematics of the satellite as described in sec-
tion 2.1. In addition it contains all the environment models that are needed, like the
orbit propagator, model of the Earth’s magnetic field and Sun position model. The
orbit propagator is the simplified perturbations model SGP4 [27] that is available in
matlab. The Earth’s magnetic field is modeled using the International Geomagnetic
Reference Field (IGRF) [13], also released as an official matlab function. The Sun
position model is carried out by implementing the approximate equations presented
in Astronomical Almanac [7]

• Controller: Contains the implementation of the eMPC as described in section 3.3.
It takes in the attitude and angular velocity and outputs the desired magnetic mo-
ment. It will later, when the attitude estimator is a bit more mature, take the esti-
mated attitude and angular velocity from the estimator.

• Sensors: Contain models of all the sensors on the satellite. The models take in the
necessary environmental and state data and output data on a similar format as it
would be produced by the sensor.

• Actuator: Has the desired magnetic moment from the controller and the magnetic
field as inputs and it outputs the resulting torque.

• Disturbances: Take in the attitude information and environmental information to
calculate the different disturbance torques in the Body Frame.

26

4.1. SIMULATION 4.1

4.1.1 Sensor Models

As described in section 3.2, the ADCS has two IMUs and four Sun Sensors. Only the
gyroscope- and magnetometer-part of the IMU is used.

Gyroscope The gyroscope is modeled as a system with bias and white noise as shown
in [17] . In addition, the bias of the gyroscope is assumed to be a random walk process.
The mathematical model of the gyroscope is shown in Equation 4.1

ω̃mb/i = ω
m
b/i + bmgyro + η

m
gyro_v (4.1a)

ḃmgyro = η
m
gyro_u (4.1b)

Where ω̃sb/i is the measured angular velocity between the Inertia Frame and the Body
Frame expressed in the Sensor Frame Fm, ωmb/i is the true angular velocity between the
Inertia Frame and the Body Frame, bmgyro is the bias of the gyroscope and ηmgyro_v and
ηmgyro_u are independent zero-mean Gaussian white noise processes. It is assumed that
there is no movement between the IMU and the satellite, so that ωbm/i = ω

b
b/i.

The model is different from the one used in [14] as the gyroscope bias bmgyro is not con-
stant, but varies like a random walk process. The model with a none constant bias is
needed for testing of the Extended Kalman filter (EKF) which is used on the satellite for
attitude estimation, as this filter uses a model where the bias is a random walk.

As shown in Figure 4.1, the gyroscope signal is generated in the simulation by sampling
the angular velocity ωbb/i. The angular velocity is calculated by the plant using the zero
order hold block in Simulink before it is rotated into the Sensor Frame, where the bias
and noise are added. After that, the signal is discretized using the Quantizer block to get
the same discretization error as the sensor signal.

0 1 0

1 0 0

0 0 1

Rbody2sensor

1

omega_real

1

gyro_meas

Measurement

Noise

Gyro

samplig time

-K-

gyroscopeNoise

Matrix
Multiply

Transformation

from Body to Sensor Frame

1 2

gyro_status

Figure 4.1: The Simulink module used to generate the gyroscope sensor values.

The transformation between the Sensor Frame and Body Frame needs to be calculated.
Looking at the definition of the Sensor Frame given in the data sheet and the orientation
of the IMU on the ADCS-PCB shown in Figure 4.2, one can see that the transformation
can be achieved by changing the y and x-axis as expressed in Equation 4.2. Both IMUs
have the same orientation, so only one transformation matrix is needed.

27

4.1. SIMULATION 4.1

(a) Sensor frame for the IMU taken from the data sheet [12]

X

Y Z

Y

X Z

(b) Orientation of the IMU relative to the Satellite Body Frame. The blue frame shows the Body
Frame and the orange frame shows the Sensor Frame.

Figure 4.2: Relationship between the Sensor Frame and Body Frame.

Tm
b =

0 1 0
1 0 0
0 0 1

 (4.2)

28

4.1. SIMULATION 4.1

There is no information in the IMU data sheet [12] about the noise characteristics. It is
also considered out of scope for this thesis to do empirical investigations into the noise
characteristics of the sensors. Therefore an initial estimate to get right magnitude is based
on literature found about similar sensors. Three sources are used: The first source is
[23], which is a technical article posted by STMicroelectronics (ST). The article contains
characteristic data about their gyroscopes, but does not specify what gyroscopes they are
referring to. The second source used is [3], which conducted empirical investigation on
IG-500N [10]. The third source is the data sheet for the BMX055 IMU [2], used by the
MOVE-II team. They all report noise density in the 0.010 - 0.025 deg /s√

Hz
range as shown in

Table 4.1.

Table 4.1: Noise density of different gyroscopes

Source: Noise Density: [deg /s√
Hz

]
ST 0.023
IG-500N 0.012
BMX055 0.014

Assuming that the chosen samples are representative for the gyroscope on the ADCS, the
noise density is chosen to be 0.020 deg /s√

Hz
. The ADCS gyroscope will operate at 59.5Hz,

which leads to a standard deviation σgyro_v = 0.1543 deg /s.

The values for the random walk are based on two sources: The [3] as before and . They
both did empirical studies of their respective gyroscope and used Allan variance to try
and determine the standard deviation for the random walk process. In [3] the noise den-
sity for the random walk has a magnitude of 1× 10−4 deg /s√

Hz
, while ref messman master

thesis has a lot more uncertainty in its analysis and reports anything from 1× 10−2 to
1× 10−5 deg /s√

Hz
. Based on this, it seams reasonable to have a random walk with magnitude

of 1× 10−4 deg /s√
Hz

.

Magnetometer The magnetometer is modeled as in [17], [6] and [14] as a system with
bias and white noise. The bias is assumed to be constant for the magnetometer. The
mathematical model can be seen in Equation 4.3.

B̃m = Rm
i (q

m
i)B

i + bmmag + η
m
mag (4.3)

Where B̃m is the measured magnetic field in the Sensor Frame Fm, Rm
i (q

m
i) is the ro-

tation matrix from the ECI Frame Fi to the Sensor Frame, Bi is the true magnetic field,
bmmag is the bias and ηmmag is a zero-mean white noise.

As seen in Figure 4.3, the input to the model is the magnetic field in ECI Frame calculated
by the IGRF model, which is part of the plant and the attitude, which is the rotation matrix
from ECI to Body Frame. The magnetic field is sampled and transformed into the Sensor
Frame in two steps. First it is transformed into the Body Frame using the attitude matrix,
then it is transformed into the Sensor Frame using a static transformation matrix, which
is dependent on the orientation between the Body Frame and the Sensor Frame.

29

4.1. SIMULATION 4.1

2

b_ECI

1

b_meas

magnetometer

noise

Matrix
Multiply

Transformation

from Body to Sensor Frame

-1 0 0

 0 -1 0

 0 0 1

Rbody2sensor

bias_mgm

1

Attitude

Matrix
Multiply

Transformation

from ECI to Body Frame

b_sensor

Figure 4.3: The Simulink model used to generate the magnetometer sensor values.

As it can be seen in Figure 4.2a, the magnetometer and gyroscope have different Sensor
Frames so a new transformation matrix is needed for the magnetometer. It can be seen
from Figure 4.4, that the rotation from Body Frame to Sensor Frame can be done by
rotating 180 degrees around the z-axis. This gives rise to the transformation matrix in
Equation 4.4.

X

Y
Z

X

YZ

Figure 4.4: Orientation of the IMU relative to the Satellite Body Frame. The blue frame
shows the Body Frame and the orange frame shows the magnetometer Sensor Frame.

Tb
m =

−1 0 0
0 −1 0
0 0 1

 (4.4)

Sun Sensor The Sun Sensor model shown in Figure 4.5 works as in [14]. The input to
the Sun Sensor model is the Sun vector in Body Frame. The Sun vector is created by the
Sun position model in the plant. The vector is then transformed into the Sensor Frame.
Noise and bias are added to the measurement afterwards. The noise and bias in the sensor
model should behave as similar to the actual sensor noise and bias as possible. To archive
that, the Cartesian representation of the vector is transformed into a spherical coordinate
system. Where noise and bias are added to the angles θ and φ. This resembles more how
the inaccuracies will be on the sensor as it actually calculates the angels θ and φ [19]. The

30

4.1. SIMULATION 4.1

signal is then transformed back to a Cartesian representation and normalized as this is the
form the measurements will be given from the sensor.

1

s_real

1

s_meas

Matrix
Multiply

Transformation

from Body to Sensor Frame

-1 0 0

 0 0 1

 0 1 0

Body2Sensor

sun_vector_in sun_vector_out

Add noise

[0 0 1]

Normal Vector

>= cosd(FOV/2)

2

s_intensity

u

u

s_intensity

S_sensor
s_meas

Figure 4.5: The Simulink model used to generate the Sun Sensor values for the sensor on
the y- side panel.

To determine if the Sun is in the field of view of the Sun Sensor, a cross product be-
tween the Sun vector and the normal to the x-y plane in the Sensor Frame is compared to
cosFOV , where FOV is the field of view of the sensor. This cross product is also used to
determine how directly a given sensor is facing the Sun. This is later used to select which
Sun Sensor to use as only the one facing the most directly towards the Sun will be used.
This is done for two reasons: First, according to the data sheet, the Sun Sensor is more
accurate if the Sun is within 45 deg field of view [19]. The second reason is to mitigate
the effect of the albedo of the Earth, as the sensor facing directly towards the Sun faces
the least towards the Earth.

The Sensor Frame for the Sun Sensors is not stated in the data sheet. So it is simply
assumed that the z-axis is normal to the surface that the Sun Sensor is mounted on. The
y-axis is always pointing in the negative z direction of the Body Frame as shown in Fig-
ure 4.6, except for the Sun Sensor on the Top-panel where the Sensor Frame is equal to
the Body Frame.

X

Y

Z
X

Y

Z

Figure 4.6: Illustration of the different Sun Sensor Frames and the Body Frame. The
Body Frame is blue and the different Sun Sensor Frames are orange.

31

4.1. SIMULATION 4.1

This leads to the transformation matrices shown in Equation 4.5. Where Tx+ denotes the
transformation for the sensor on the x+ side of the satellite, Tx− for the sensor on the x−
of the satellite and so forth.

Tx+ =

 0 −1 0
0 0 1
−1 0 0

 Tx− =

 0 1 0
0 0 1
1 0 0

 (4.5a)

Ty+ =

 1 0 0
0 0 1
0 −1 0

 Ty− =

−1 0 0
0 0 1
0 1 0

 (4.5b)

Tz+ =

 1 0 0
0 1 0
0 0 1

 (4.5c)

4.1.2 Actuator Model

For the most part, the actuator will be treated as a black box, as a complete magnetorque
system is bought. The system also has its own micro-controller, which controls the coils
and compensates for their dynamics, their dependency on temperature and so forth [11].
Therefore the mangetorquer model takes the cross product between the desired magnetic
moment and the magnetic field to produce the control torque. A small error is added to
the magnetic moment before the torque is calculated to represent the inaccuracies in the
magnetorquer. There is no information about what kind of error this is or how it affects
the produced magnetic moment. The desired magnetic moment from the controller is also
discretized.

4.1.3 Disturbance models

The disturbance models are not changed from what is described in [14] and [18], only the
parameters are changed as the satellite is not the same. They are all based on the formulas
presented in subsection 2.1.4.

Gravity Gradient Torque For the gravity gradient torque a way of changing the inertia
matrix during the simulation was needed, as the satellite has two different inertia matrices
dependent on whether the boom is out or not. When the boom is out, the differences
between the elements of the inertia matrix and the gravity gradient torque increases. This
functionality was realized by a switch block in Simulink, which switches the inertia matrix
based on the control signal "Ctrl_Arm_out" as shown in Figure 4.7.

32

4.1. SIMULATION 4.1

1

Gravity Gradient torque

2

q_bi

1

r_ECI
u1

u2

y

q DCM
be4 (1)

[3x3] (1)

Matrix
Multiply

I_arm

Inertia

Matrix
Multiply

G*M

Gravitational Constant

3

u y

5

 > 0Ctrl_Arm_out

I

Viss_gg

Viss_r_Body

Figure 4.7: Simulink implementation of gravity gradient torque with added functionality
to switch between inertia matrix dependent on whether the boom is out or not.

In this model it is assumed that the boom is instantaneously deployed and in its final
position. No effort has been made to create a model of what happens while the boom is
being deployed. This should not be needed, as no advanced maneuvering is taking place
while the boom is being deployed. Any changes to the angular velocity caused by the
deployment will be compensated by the detumbling controller once the boom has settled.

Parasitic Dipole-Moment The torque generated by the parasitic dipole-moment is mod-
eled as described in subsection 2.1.4. The only parameter needed is an estimate for the
parasitic dipole-moment. The parasitic dipole-moment is unknown, as not all the parts for
the satellite are selected and the satellite is not assembled yet, so no measurements can be
done. Therefore an estimate based on values found in the literature is used to get an initial
estimate. Values from four sources were used. The first source[14] has an initial esti-
mate of the MOVE-II satellites dipole-moment. The second source is the dipole-moment
measured by the MOVE-II team and has been taken from internal documents that have
not been published. The third source [4] is the estimated dipole-moment of the UWE-3
satellite based on data gathered when the satellite was in orbit. The fourth source is the
estimate in [22] for the dipole-moment of the Alto-2 satellite gotten by measurements on
ground. The different values can be seen in Table 4.2

Table 4.2: Parasitic Dipol-Moment reported by different sources

Source: Magnitude: [Am2] Vector: [Am2]
MOVE-II estimate 0.02 [0.0115 0.0115 0.0115]
MOVE-II measured 0.0066 [0.00595 0.00220 0.00179]
UWE-3 estimate 0.045 [−0.001 0.0012 0.045]
Alto-2 estimate 0.058 [0.0145 0.0219 0.0523]

As the Selfie-Sat is a 2U, while both the UWE-3 and MOVE-II are 1U and the Alto-2 is
a 3U, it is reasonable to assume that the magnitude of the parasitic dipole-moment is in

33

4.2. SIMULATION AND HARDWARE INTERFACE 4.2

between the Alto-2 and the 1U satellites. So the parasitic dipole-moment is estimated to
|mp| = 0.05Am2. To estimate the direction of the dipole-moment, one can observe that
for both UWE-3 and Alto-2 satellites, the z-axis is clearly the most dominant axis. This
also makes sense if we imagine a simplified case, where all the parasitic dipole-moments
are caused by current loops. On each PCB in the satellite, there is one current loop. All
the current loops have the same area and current. Then there would be two loops creating
a moment in the x and y-direction and five loops creating a moment in the z-direction.
Therefore mp = [0.0151 0.0151 0.0452]′ Am2.

Aerodynamic Drag For the aerodynamic drag torque an estimate of all the area and
position of pressure for all the surfaces of the satellite is needed. For the Selfie-Sat this
is fairly straightforward, as all the surfaces of the satellite are squares with either A1 =
0.01m2 or A2 = 0.02m2. The center of pressure of a square is in its center [5]. This
means that the center of pressure for each panel is located on one of the axes with a
distance of 0.05m for panels with areaA1 or 0.1m for panels with areaA2. The remaining
parameters are the drag coefficientCD and the atmospheric density ρ. The drag coefficient
is set to a worst case scenario of CD = 2.5 [5].

4.2 Simulation and Hardware Interface

The simulation hardware interface consists of mainly three parts. Where the first two
are modified versions of the one used in the HiL setup developed by [14] and the last is
developed as part of this thesis. The first part of the interface is a server written in Python
that relays messages between the simulation and the beaglebone black (BBB) which is
the second part. The BBB is used as a gateway connecting all the hardware components
to the internet. The BBB forwards the data received from the server to a STM32-L0R8T6
micro-controller which is mounted on a STM32L053 Nucleo-64 board [26]. The STM
micro-controller replaces all sensors and actuators on the ADCS-PCB and communicates
with the ADCS-MCU on the same interfaces as the MCU communicates with the sensors
and actuators. A full picture of the end to end communication between the simulation and
the ADCS-MCU can be seen in Figure 4.8.

34

4.2. SIMULATION AND HARDWARE INTERFACE 4.2

Desktop

Simulink
Simulation

Python
Server

UDP

UDP Beaglebone
Black

UDP

STM-32 ADCS-MCU

SPI

SPI

I2C

I2C

Figure 4.8: Illustrates the data flow between all the components in the HiL setup. Each
arrow indicates the direction of data flow and the text what kind of protocol is used.

The Python server does nothing other than forwarding the message between the simula-
tion and the BBB and uses a standard python WebSocket library. It will therefore not
be discussed any future in this thesis. In the simulation the interface towards the Python
server consists of four blocks. One block that transforms the data to be sent into binary
data of the appropriate form, an UDP transmit block, an UPD receive block and lastly a
block that decodes the binary data into data types that Simulink can work with.

Beaglebone Black Beaglebone Black is a small single-board computer capable of run-
ning various Linux distributions which is shipped with Debian. The BBB also has wireless
capabilities. The BBB uses an open source WebSocket library called "WebSocket++" for
the networking and a SPI driver developed by the MOVE-II team for the SPI communica-
tion. For the communication between the BBB and the STM-MCU, a simple communi-
cation protocol was created to specify what data the BBB is transferring or what data the
BBB is requesting. The BBB has to be the SPI master, as there is no SPI slave support
on any standard Linux distribution. This is one of the main reasons why the STM-MCU
is needed, as both the BBB and the ADCS-MCU have to be SPI masters, so a node, that
can be SPI slave to both, is needed in between.

The BBB is programmed to listen to any UDP message it might get from the Python
server. Once the BBB receives a new message, it decodes the data into the appropriate
sensor data and forwards it to the STM-MCU. Once all data has been transferred to the
STM-MCU, it requests new magnetometer data from the SMT-MCU, which it then sends
back to the Python Server. An illustration of the program flow of the BBB can be seen in
Figure 4.9.

35

4.2. SIMULATION AND HARDWARE INTERFACE 4.2

Figure 4.9: Shows the sequence of commands that the Beaglebone Black executes each
time it gets a new UPD message.

STM32-L0R8T6 The STM32-L0R8T6 micro-controller is micro-controller developed
by STMicroelectronics and it has a 32-bit ATM Cortex M0 core. For the development on
the micro-controller the Hardware Abstraction layer (HAL) library is used for interfacing
with the lower level hardware components on the micro-controller. To set up all the con-
figuration of the pins and low level drivers, the STM32Cubemx is used to auto-generate
the initialization functions. The micro-controller uses four different interfaces to talk to
the BBB and the ADCS-MCU. There is one SPI interface to the BBB, one SPI and two
I2C interfaces to the ADCS-MC. The SPI interface is used to replicate data that should
have come from the IMUs. One of the I2C interfaces is used to replicate data that should
come from the Sun Sensor and the last I2C interface is used to receive data that should
have been sent to the magnetorquer board.

On each of the interfaces the STM-MCU is a slave and for each interface there is a state
machine. All the state machines work in the same way: They have an idle mode where
they are waiting for a command from the master. Based on the command it goes in the
appropriate state preparing either to receive or transmit the appropriate data. So each
transaction between the STM-MCU and one of the master is initiated by a command
message telling the STM-MCU what type of transaction is about to start followed by the
master initiating the transaction of the actual data.

36

4.2. SIMULATION AND HARDWARE INTERFACE 4.2

ADCS-MCU The idea behind a HiL test setup is to use as much of the hardware and
software that is going on the final product in testing. With that in mind when designing
the HiL specific parts of the ADCS, no changes are done to the hardware. Everything
is running on the latest iteration of the PCB design and all the interfaces replacing the
sensors and actuator are the same as the ones used by the replaced sensors and actuators.
The underlying low level drivers that are used for this interfaces are also used. What is
different is the communication protocol used. This means that the sensor specific driver
is not used but replaced by HiL specific drivers. To connect the ADCS-MCU and the
STM-MCU the exposed headers on the PCB is used.

37

Chapter 5

Results

There are no results for the HiL tests as the system was not working well enough to give
any meaningful data. Instead the results will be from normal simulation.

5.1 Camera Pointing eMPC Results

The parameters of the best performing controller for camera pointing, which is the one
used to get the results in this section are listed in Table 5.1. All the tests are run without
changing magnetic field but rather using a static one equal to the one used when creating
the controller of Bb = [5×10−5 5×10−5 5×10−5]T . This is mainly because the difference
between having a realistic model and using a static magnetic field were negligible for the
control performance, but increases the simulation time tenfold. For all tests the gravity
gradient is always on as it was modeled as a part of the system. The other disturbance
forces are only part of the simulations when specified.

Table 5.1: Parameters of the camera pointing controller.

Parameter: Value:
Q diag{100 100 100 100 100 10}
R diag{10000 10000 10000}
N (Horizon) 2
State constraints [−1 − 1 − 1 − 1 − 1 − 1]T ≤ x ≤ [1 1 1 1 1 1]T

Actuator constraints [−0.2 − 0.2 − 0.2]T ≤ u ≤ [0.2 0.2 0.2]T

Scaling state Nx = diag{10 10 10 1000 1000 1000}
Scaling actuator Nx = diag{0.1 0.1 0.1}

From Figure 5.1 it can be seen that the controller works reasonably well. It is capable of
holding all the angles within 20 deg.

If we however look at Figure 5.3 where the time has increased to one whole orbit, it can
be seen that the controller has one sudden problem at the end of the orbit. It seams like
this has more to with the way the rotation between the Body Frame and Orbit Frame is
calculated than with the controller. Before the spike a jump can also be observed in the
quaterion representation. This jump is probably caused by some kind of wrapping when

38

5.1. CAMERA POINTING EMPC RESULTS 5.1

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

-20

-10

0

10

20

30

40

50

E
u
le

r
A

n
g
e
ls

 [
d
e
g
]

Euler Angels body to Orbit

Yaw

Pitch

Roll

Figure 5.1: Plot of Euler angles between Body Frame and Orbit Frame. Using the camera
pointing controller.

the satellite completes one orbit. It can also be seen that the angular velocity is kept very
low which is good for picture taking. There is also a minimum of actuation which also is
good for the power budget.

It can be seen a spike in the quaternion representation . It has probably less to do with the
controller because

If the initial condition changes so that there is an angular velocity, the result becomes
much worse. It can be seen that the controller is able to reduce the angular velocity to
some reasonable value, but it is not able to control the orientation in any meaningful way.
It should also be noted that despite the fact that the orientation is far away from the desired
orientation, there is almost no actuation. The controller seems to emphasize reducing the
amount of actuation too much.

The controller can also not handle the remaining disturbance forces very well. The plot
in Figure 5.4 is completely chaotic and the controller has no control over the satellite.
This is not that surprising if we look at the actuated magnetic moment. It is only in the
magnitude of 10−2 which only results in a torque in the order of 10−6 which is the same
level as the combined disturbance forces. The actuation just gets drowned in disturbance
forces. Once again it seem like the controller is too focused on reducing the actuation to
actually reach the desired orientation.

39

5.1. CAMERA POINTING EMPC RESULTS 5.1

0 1000 2000 3000 4000 5000 6000

Time [s]

-200

-100

0

100

200

E
u

le
r

A
n

g
e

ls
 [

d
e

g
]

Euler Angels body to Orbit

Yaw

Pitch

Roll

0 1000 2000 3000 4000 5000 6000

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

A
n

g
u

la
r

v
e

lo
c
it
y
 [

d
e

g
/s

]

Angular velocity

w
x

w
y

w
z

0 1000 2000 3000 4000 5000 6000

Time [s]

-2

-1

0

1

2

3

M
a

g
n

e
ti
c
 M

o
m

e
n

t
[A

m
2
]

10
-3 Control Magnetic Moment

m
x

m
y

m
z

Figure 5.2: Plot of the Euler angles between Body Frame and Orbit Frame, angular ve-
locity and actuated magnetic moment of a complete orbit. There is a strange spice in the
Euler angles at the end of the orbit.

40

5.1. CAMERA POINTING EMPC RESULTS 5.1

0 2000 4000 6000 8000 10000 12000

Time [s]

-200

0

200

E
u
le

r
A

n
g
e
ls

 [
d
e
g
]

Euler Angels body to Orbit

Yaw

Pitch

Roll

0 2000 4000 6000 8000 10000 12000

Time [s]

0

2

4

A
n
g
u
la

r
v
e
lo

c
it
y
 [
d
e
g
/s

]

Angular velocity

w
x

w
y

w
z

0 2000 4000 6000 8000 10000 12000

Time [s]

-0.05

0

0.05

M
a
g
n
e
ti
c
 M

o
m

e
n
t
[A

m
2
]

Control Magnetic Moment

m
x

m
y

m
z

Figure 5.3: Plot of the Euler angles between Body Frame and Orbit Frame, angular ve-
locity and actuated magnetic moment of a complete orbit. There is some initial.

41

5.1. CAMERA POINTING EMPC RESULTS 5.1

0 2000 4000 6000 8000 10000 12000

Time [s]

-200

0

200

E
u
le

r
A

n
g
e
ls

 [
d
e
g
]

Euler Angels body to Orbit

Yaw

Pitch

Roll

0 2000 4000 6000 8000 10000 12000

Time [s]

-1

0

1

2

A
n
g
u
la

r
v
e
lo

c
it
y
 [
d
e
g
/s

]

Angular velocity

w
x

w
y

w
z

0 2000 4000 6000 8000 10000 12000

Time [s]

-0.05

0

0.05

M
a
g
n
e
ti
c
 M

o
m

e
n
t
[A

m
2
]

Control Magnetic Moment

m
x

m
y

m
z

Figure 5.4: Plot of the Euler angles between Body Frame and Orbit Frame, angular ve-
locity and actuated magnetic moment of a complete orbit. The simulation also included
disturbance forces.

42

5.2. CHARGING MODE EMPC RESULTS 5.2

5.2 Charging Mode eMPC Results

The parameters for the charging mode controller were listed in Table 5.2 for all the results.
For the charging mode the magnetic field will also be constant.

Table 5.2: Parameters of the camera pointing controller

Parameter: Value:
Q diag{10× 105 10× 105 10× 105 100× 105 100× 105 100× 105}
R diag{100000 100000 100000}
N (Horizon) 2
State constraints [−1 − 1 − 1 − 1 − 1 − 1]T ≤ x ≤ [1 1 1 1 1 1]T

Actuator constraints [−0.2 − 0.2 − 0.2]T ≤ u ≤ [0.2 0.2 0.2]T

Output constraints [−1 − 1 − 1 − 1 − 1 − 1]T ≤ y ≤ [1 1 1 1 1 1]T

Scaling state Nx = diag{1 1 1 1 1 1 1}
Scaling actuator Nx = diag{1 1 1}

0 2000 4000 6000 8000 10000 12000

Time [s]

0

2

4

A
n

g
u

la
r

v
e

lo
c
it
y
 [

d
e

g
/s

]

Angular velocity

Desiered w
z

w
x

w
y

w
z

2000 4000 6000 8000 10000 12000

Time [s]

0

10

20

30

A
n

g
u

la
r

[d
e

g
]

Angel between Body Frame z-axis and ECI Frame z-axis

Desiered angel

0 2000 4000 6000 8000 10000 12000

Time [s]

-0.05

0

0.05

M
a

g
n

e
ti
c
 M

o
m

e
n

t
[A

m
2
]

Control Magnetic Moment m
x

m
y

m
z

Figure 5.5: Plot of the angular velocity, angle between the Body Frame z-axis, the ECI
Frame z-axis and the actuated magnetic moment. The desired angular velocity ωz and
desired angle between the z-axes is marked by a black line.

For the case with only gravity gradient disturbance, the results are looking very good.
The controller is able to hold the satellite in the right orientation and with the right angular

43

5.2. CHARGING MODE EMPC RESULTS 5.2

velocity while almost not actuating. There are some oscillations around the desired values
but that is acceptable.

0 2000 4000 6000 8000 10000 12000

Time [s]

0

2

4

A
n

g
u

la
r

v
e

lo
c
it
y
 [

d
e

g
/s

]
Angular velocity

Desiered w
z

w
x

w
y

w
z

2000 4000 6000 8000 10000 12000

Time [s]

0

10

20

30

A
n

g
u

la
r

[d
e

g
]

Angel between Body Frame z-axis and ECI Frame z-axis

Desiered angel

0 2000 4000 6000 8000 10000 12000

Time [s]

-0.05

0

0.05

M
a

g
n

e
ti
c
 M

o
m

e
n

t
[A

m
2
]

Control Magnetic Moment m
x

m
y

m
z

Figure 5.6: Plot of the angular velocity, angle θ between the Body Frame z-axis, the ECI
Frame z-axis and the actuated magnetic moment. The desired angular velocity ωz and
desired angle between the z-axes is marked by a black line. The simulation is running
with disturbances.

When all disturbances are turned on the controller is having problems again. The motion
of the satellite is not as chaotic as it was for the camera pointing controller, but still the
system is not stable. The oscillations of the system are much larger than what they were
when there was no disturbance. In addition it can be seen that the value for both the angle
θ and ωz is slowly moving away from their desired values. It can be seen that the actuation
is still minimal from the controller despite the disturbance foresees changing the satellites
orientation far away from the desired orientation. It can seem like the controller is way
too concerned with actuating as little as possible and not concerned enough about keeping
the satellite in the desired orientation.

44

Chapter 6

Discussion

Both the controllers and HiL test setup did not come out satisfactory. The controller only
worked in very ideal situations and the HiL setup was not able to handle the amount
of data that it needed to pass between the ADCS and the simulations. Therefore, the
discussion will mostly revolve around what the challenges were with the development
process and what can be done to improve the final product.

6.1 Explicit Model Predictive Control Discussion

Numerical issues and approximations There are some numerical issues when using
the algorithm to generate the controller. The algorithm often reports that it has encoun-
tered inaccuracies and that approximations have been used. This was especially prevalent
when generating the controller for the camera pointing mode. Two attempts were made to
improve this. The first was regarding the underlying solvers used by the MPT3 toolbox.
The default solver for both linear and quadratic programming is the LCP solver. Using
the LCP solver often resulted in the algorithm reporting inaccuracies and the need for
an approximation, it also sometimes failed to find a solution. When the solver for linear
programming were changed to the CDD, no more failures were reported and the need for
approximations also seem to have been reduced. So changing to the CDD solver seems
to improve the numerical stability even though the underlying reason is not clear.

The second attempt was changing the scaling of the system. In [15] it is mentioned that
the the system was scaled to improve numerical stability. To look at the effects of the
scaling, Matlabs condition number were investigated for both the A and B matrices. The
conditioning number gives an indication about the inaccuracies of the matrix inversion. A
low condition number means that the matrix is well conditioned for matrix inversion. The
unscaled condition number for A is about 1.2 for both the camera pointing and charging
mode controllers. The condition number for B is unsatisfactory in both cases as it is in
the 1016 order of magnitude. The B matrix is also almost skew-symmetric in the lower
half which means that it can not become well conditioned with scaling. So if the reason
for the numerical issues arises from the bad conditioning of the B matrix the problem can
not be solved with scaling.

45

6.2. HARDWARE IN THE LOOP ARCHITECTURE DISCUSSION 6.2

Tuning of the Q and R Matrix Tuning the Q and R to get good results turned out
to be challenging. Looking at the magnetic moment the controller produces when the
satellite does not have the desired orientation it can be seen that it is very low. Relative
to the maximum magnetic moment it is often hundred or thousand times smaller than the
maximum magnetic moment the satellite can produce. From this one might reasonably
conclude that the problem is a too big R matrix which to an actuation, which is too
heavily punished in the MPC formulation. The problem is that there seems to be some
kind of lower bound for what the elements of R can be before the number of regions in
the solution explodes. If the elements of R are around 100000, the number of regions in
the solution are 100 or 200 which is reasonable, but as soon as the elements of R become
any lower than that, the number of regions in the solution become in the thousands. There
also seem to be an upper limit on how high the elements of Q can be. If the values of Q
get to high the problem becomes infeasible so no solution can be found. This combination
of the upper bound on Q and lower bound on R means that there is not a lot of room to
find good values for Q and R that give a satisfying controller.

No Slack variable The addition of slack variables is something that is often added to
MPC or eMPC problem to make them a bit more robust and avoid the problem with infea-
sibility. Several attempts at formulating a problem with slack variables were attempted,
but non of them were successful. They all either led to the number of regions going into
the thousands or the complete opposite where the solution only contained one region.

6.2 Hardware in the Loop Architecture discussion

The architecture works in the sense that it can send data from the simulation to the ADCS
and back again. However it fails in actually being useful for testing the proposed con-
trollers. As soon as the sampling rate of the HiL setup becomes too, low the STM32-
MCU starts having problems and is not capable of handling all the data requests coming
from the BBB and the ADCS-MCU. It can do it for some time, but eventually there will
be an instance where it can not handle all the requests at once. There are several steps
that could be taken to mitigate this. The first could be to add propper error handling so
that the entire system does not lock up when the STM-MCU gets too many requests and
simply live with some data loss. A second option is to try and speed up the code running
on the STM32-MCU. The SPI module has some room for improvement as it is currently
using blocking mode for SPI transfer which takes up a lot of the CPU time. A better
way would be to use the direct memory access (DMA) both for transfer and receive. The
third and arguably the simplest solution is to introduce one more slave node. One node
for transferring data from the BBB to the ADCS and another one for transferring the data
back again. By dividing the load between the two nodes, they should be able to handle all
the data requests.

46

Chapter 7

Conclusion

The eMPC presented in this thesis where proven to work in ideal conditions will being
very power efficient. They where able to achieve good enough accuracy without have to
produce a lot of magnetic moment. Both controller failed as soon as they where exposed
to none ideal conditions by adding disturbances. The camera pointing controller failed
when it had initial conditions with some angular velocity. The failures of the controllers
when exposed to disturbances seem to be a result of the controllers not producing a high
enough magnetic moment. The controllers missing ability to produce sufficient magnetic
moment might be traced back to the problems related to solving the eMPC problem and
having a need for a very large R matrix to archive reasonable solutions. If this issues
related to solving the eMPC problem can be solved than eMPC controllers might have
potential in attitude control of satellite as shown in other sources and by the results in the
ideal conditions.

The lack of result form the HiL can mostly be attributed to pore design which was not
capable of scaling to the handle the needed data flow. There is nothing inherent to the
problem that says it can not be solved by a better design or implementation. That un-
der laying principles seem to be good and the design seems perfectly fixable by some
improvements as adding an extra slave node.

47

Chapter 8

Outlook

There are several open questions that remain regarding the eMPC for attitude of satellites.
The natural place to start is future investigate why there seem to be this upper and lower
bound to the Q and R matrices respectively so that better tuning of the controller can be
preformed. There should also be some look into the numerical stability of the problem
to understand what causes it and how bad the approximations that sometime are needed
affect the quality of the final controller. In regards to numerical stability some effort
could also be put into trying to find LP and QP solvers that work beather with the current
problem formulation as there was some small indication that the underlying solvers had
different performance.

For the HiL setup there are two paths going forward. The first is to get it to actually func-
tion properly. This can probably be archived by following one or more of the suggestions
in chapter 6. Once the setup works the next natural step is to test the proposed controller
in ideal conditions to verify that they still work when they are implemented on the actual
hardware.

The second is looking into improving the all the sensor models by adding better estimates
of the sensor characteristics which are not only based on literature but on actual data from
the sensors. Once Orbit has bought all it sensor it can do extensive testing on them to try
and get good estimations of all sensor characteristics.

A minor improvement that can be done to the setup is also to try and make the interface
between the ADCS and the STM-MCU closer to the way the interface between the ADCS
and its peripherals. This way more of the driver code on the ADCS can be also used when
communicating with the HiL environment and even more of the ADCS can be tested using
HiL.

48

Bibliography

[1] Alberto Bemporad et al. “The explicit linear quadratic regulator for constrained
systems”. In: Automatica 38.1 (Jan. 2002), pp. 3–20. DOI: 10.1016/s0005-
1098(01)00174-1.

[2] BMX055 Small, versatile 9-axis sensor module. Bosch. Oct. 2013. URL: https:
//www.bosch-sensortec.com/bst/products/all_products/
bmx055.

[3] Thomas Brunner et al. “Magnetometer-Augmented IMU Simulator: In-Depth Elab-
oration”. In: Sensors 15.3 (Mar. 2015), pp. 5293–5310. DOI: 10.3390/s150305293.

[4] S. Busch et al. “UWE-3, in-orbit performance and lessons learned of a modular and
flexible satellite bus for future pico-satellite formations”. In: Acta Astronautica 117
(Dec. 2015), pp. 73–89. DOI: 10.1016/j.actaastro.2015.08.002.

[5] Yunus A. Cengel and John M. Cimbala. Fluid Mechanics fundamentals and Appli-
cations Third edition in SI Units. Mc Graw Hill, 2014.

[6] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, Ltd, Apr. 2011. DOI: 10.1002/9781119994138.

[7] D. Harper. “The Astronomical Almanac”. In: Astronomy & Geophysics 39.1 (Feb.
1998), pp. 16–16. DOI: 10.1093/astrog/39.1.1.6.

[8] Øyvind Hegrenæs, Jan Tommy Gravdahl, and Petter Tøndel. “Spacecraft attitude
control using explicit model predictive control”. In: Automatica 41.12 (Dec. 2005),
pp. 2107–2114. DOI: 10.1016/j.automatica.2005.06.015.

[9] M. Herceg et al. “Multi-Parametric Toolbox 3.0”. In: Proc. of the European Control
Conference. http://control.ee.ethz.ch/~mpt. Zürich, Switzerland,
July 2013, pp. 502–510.

[10] IG-500N GPS aided Orientation Sensor. URL: http://www.alava-ing.
es/repositorio/6f24/pdf/2609/2/unidad-inercial-gps-
peq-dim.pdf?d=1.

[11] iMTQ Inerface Control Document. ISIS.
[12] iNEMO inertial module: 3D accelerometer, 3D gyroscope, 3D magnetometet. STMi-

croelectronics. URL: https://www.st.com/resource/en/datasheet/
DM00103319.pdf.

[13] International Geomagnetic Reference Field. URL: https://www.ngdc.noaa.
gov/IAGA/vmod/igrf.html.

[14] Jonis Kiesbye. “Hardware-in-the-Loop Verification of the Distributed, Magnetorquer-
Based Attitude Determination & Control System of the CubeSat MOVE-II”. MA
thesis. Technische Universität München, 2017.

[15] T. Krogstad, J.T. Gravdahl, and P. Tondel. “Explicit Model Predictive Control of a
Satellite with Magnetic Torquers”. In: Proceedings of the 2005 International Sym-

49

https://doi.org/10.1016/s0005-1098(01)00174-1
https://doi.org/10.1016/s0005-1098(01)00174-1
https://www.bosch-sensortec.com/bst/products/all_products/bmx055
https://www.bosch-sensortec.com/bst/products/all_products/bmx055
https://www.bosch-sensortec.com/bst/products/all_products/bmx055
https://doi.org/10.3390/s150305293
https://doi.org/10.1016/j.actaastro.2015.08.002
https://doi.org/10.1002/9781119994138
https://doi.org/10.1093/astrog/39.1.1.6
https://doi.org/10.1016/j.automatica.2005.06.015
http://control.ee.ethz.ch/~mpt
http://www.alava-ing.es/repositorio/6f24/pdf/2609/2/unidad-inercial-gps-peq-dim.pdf?d=1
http://www.alava-ing.es/repositorio/6f24/pdf/2609/2/unidad-inercial-gps-peq-dim.pdf?d=1
http://www.alava-ing.es/repositorio/6f24/pdf/2609/2/unidad-inercial-gps-peq-dim.pdf?d=1
https://www.st.com/resource/en/datasheet/DM00103319.pdf
https://www.st.com/resource/en/datasheet/DM00103319.pdf
https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

BIBLIOGRAPHY 8.0

posium on, Mediterrean Conference on Control and Automation Intelligent Con-
trol, 2005. IEEE. DOI: 10.1109/.2005.1467064.

[16] Thomas R. Krogstad. “Attitude control and stability analysis of satellites in earth
and moon orbit”. MA thesis. Norwegian University of Science and Technology,
2004.

[17] F. Landis Markley and John L. Crassidis. Fundamentals of Spacecraft Attitude De-
termination and Control. Springer New York, 2014. DOI: 10.1007/978-1-
4939-0802-8.

[18] David MESSMANN et al. “Magnetic Attitude Control for the MOVE-II Mission”.
Eng. In: 7th European conferance for aeronautics and aerospace sciences (EU-
CASS) (2017). DOI: 10.13009/eucass2017-664.

[19] NanoSense Fine Sun Sensor Datasheet. GOMspace. URL: https://gomspace.
com/shop/subsystems/attitude- orbit- control- systems/
nanosense-fss-(1).aspx.

[20] Óscar R. Polo et al. “End-to-end validation process for the INTA-Nanosat-1B At-
titude Control System”. In: Acta Astronautica 93 (2014), pp. 94, 105.

[21] Meghan Kathleen Quadrion. “Testing the Attitude Determination and Control of A
CubeSat with Hardware-in-the-Loop”. MA thesis. Massachusetts Institute of Tech-
nology, 2014.

[22] Bagus Adiwiluhung Riwanto. “CubeSat Attitude System Calibration and Testing”.
MA thesis. Alto University School of electrical Engineering, Aug. 2015.

[23] TA0343 Technical article Everything about STMicroelectronics’ 3-axis digital MEMS
gyroscopes. STMicroelectronics. July 2011. URL: https://www.elecrow.
com/download/TA0343.pdf.

[24] TMS570LS1224 16- and 32 Bit RISC Flash Microcontroller. Texas Instruments.
Feb. 2015. URL: http://www.ti.com/product/TMS570LS1224#.

[25] Petter Tøndel. “Constrained Optimal Control via Multiparametric Quadratic Pro-
gramming”. PhD thesis. Department of Engineering Cybernetics, Norwegian Uni-
versity of Science and Technology, 2003.

[26] UM1724 User manual STM32 Nucleo-64 boards. STMicroelectroncis. Dec. 2017.
URL: https://www.st.com/en/evaluation- tools/nucleo-
l053r8.html.

[27] David Vallado and Paul Crawford. “SGP4 Orbit Determination”. In: AIAA/AAS As-
trodynamics Specialist Conference and Exhibit. American Institute of Aeronautics
and Astronautics, Aug. 2008. DOI: 10.2514/6.2008-6770.

50

https://doi.org/10.1109/.2005.1467064
https://doi.org/10.1007/978-1-4939-0802-8
https://doi.org/10.1007/978-1-4939-0802-8
https://doi.org/10.13009/eucass2017-664
https://gomspace.com/shop/subsystems/attitude-orbit-control-systems/nanosense-fss-(1).aspx
https://gomspace.com/shop/subsystems/attitude-orbit-control-systems/nanosense-fss-(1).aspx
https://gomspace.com/shop/subsystems/attitude-orbit-control-systems/nanosense-fss-(1).aspx
https://www.elecrow.com/download/TA0343.pdf
https://www.elecrow.com/download/TA0343.pdf
http://www.ti.com/product/TMS570LS1224#
https://www.st.com/en/evaluation-tools/nucleo-l053r8.html
https://www.st.com/en/evaluation-tools/nucleo-l053r8.html
https://doi.org/10.2514/6.2008-6770

