
Anton Stolbunov

Cryptographic Schemes
Based on Isogenies

Thesis for the degree of Philosophiae Doctor

Trondheim, January 2012

Norwegian University of
Science and Technology
Faculty of Information Technology, Mathematics and Electrical
Engineering
Department of Telematics

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Telematics

©Anton Stolbunov

ISBN 978-82-471-3295-1 (printed ver.)
ISBN 978-82-471-3296-8 (electronic ver.)
ISSN 1503-8181

Doctoral Theses at NTNU, 2012:16

Printed by Tapir Uttrykk

iii

Abstract

In this thesis we use isogenies between ordinary elliptic curves for the construction
of new cryptographic schemes. The thesis is organized into an introductory chapter
followed by three articles.

In the introduction we motivate our work by the necessity of exploring new
computationally hard problems applicable to cryptography. We describe our work
and results, and survey the related work. We also give the background material
from algebraic number theory and provide explanatory examples.

In the first paper we propose a number of cryptographic schemes based on the
group action on a set: a public-key encryption scheme PE , a key agreement protocol
KA1, three authenticated key agreement protocols, and some related schemes. We
construct an implementation of these schemes for the action of the ideal class group
CL(OK) of an imaginary quadratic field K on the set ELLp,n(OK) of isomorphism
classes of elliptic curves over Fp with n points and the endomorphism ring OK .
Implementation details, such as representation of set and group elements, group ac-
tion, sampling from CL(OK), and cryptosystem parameter generation, are described
as well. The paper presents speed measurements of our trial implementation.

In the second paper we provide security reductions for the protocol KA1 and
the encryption scheme PE . For the KA1 protocol we use the notion of session key
security in the authenticated-link model proposed by Canetti and Krawczyk. For the
PE scheme we use a version of the semantic security notion proposed by Goldwasser
and Micali. We prove that the security of the KA1 protocol and the PE scheme
is based on the decisional Diffie-Hellman group action (DDHA) problem, which is
defined in our paper. The class-group DDHA problem is reducible to the isogeny
problem: given two isogenous ordinary elliptic curves, compute an isogeny between
them.

The isogeny problem is studied in our third paper. A low storage algorithm
for this problem was proposed by Galbraith, Hess and Smart (GHS) in 2002. We
give an improvement of the GHS algorithm by modifying the pseudorandom walk so
that lower-degree isogenies are used more frequently. This is motivated by the fact
that high degree isogenies are slower to compute than low degree ones. We analyse
the running time of the parallel collision search algorithm when the partitioning is
uneven. We also give experimental results. We conclude that our isogeny problem
algorithm is around 14 times faster than the GHS algorithm when constructing
horizontal isogenies between random isogenous elliptic curves over a 160-bit prime
field. The expected running time of our improved algorithm indicates that the
computational complexity of the isogeny problem is currently exponential.

v

Acknowledgements

This thesis contains my research work done between November 2006 and July 2011.
Most of this time I was employed by the Department of Telematics at the Norwegian
University of Science and Technology (NTNU). My advisor has been Prof. Stig
Frode Mjølsnes, and my co-advisor was Prof. Alexei Rudakov, until he moved from
Trondheim in 2008. I am very grateful to Stig and Alexei for the lessons they have
taught me and for their support. I am also thankful to Prof. Kristian Gjøsteen for
his tremendous help and expertise.

From March to May 2010 I visited Prof. Steven Galbraith in Auckland, New
Zealand. Numerous constructive discussions in a hospitable atmosphere evolved
into a joint research work with Steven. I thank him for this opportunity.

I am also grateful to Prof. Alexander Rostovtsev for his lectures and advisory
during my master’s studies in Saint-Petersburg, Russia, and for the suggestion of
the topic of this research.

Contents

1 Introduction 1
1.1 Research Questions . 1
1.2 Our Work and Results . 4
1.3 Related Work: Cryptographic Schemes Based on Isogenies 6
1.4 Background: the Class Group Action on the Set of j-invariants 10

2 Constructing Cryptographic Schemes Based on Isogenies 21
2.1 Introduction . 21
2.2 Public-Key Cryptography Based on Group Action 22
2.3 Isogenous Elliptic Curves over Prime Fields 27
2.4 Elements of ELLp,n and CL . 30
2.5 Implementation of CL Action on ELLp,n 32
2.6 Implementation of Sampling from CL 35
2.7 Security of ELL-Based Cryptographic Schemes 37
2.8 Numerical Experiments . 40
2.9 Concluding Remarks . 41
2.A System Parameters Used in Time Measurements 43
2.B More Schemes Based on Group Action 43

3 Security Reductions for Schemes Based on Group Action 51
3.1 Introduction . 51
3.2 Notation . 52
3.3 Cryptographic Schemes . 53
3.4 Computational Problems . 55
3.5 Reductionist Security Arguments . 57
3.6 Concluding Remarks . 63

4 Improved Algorithm for the Isogeny Problem 67
4.1 Introduction . 67
4.2 Definitions and Notation . 69
4.3 Algorithm for Solving the GAIP and the CL-GAIP 71
4.4 Theoretical Analysis of the Algorithm 76
4.5 Comparing Theory and Practice . 80
4.6 The Algorithm in Practice . 86
4.7 Conclusion . 90
4.A Proof of Theorem 4.1 . 90
4.B Argument for Heuristic 4.2 . 99
4.C Numerical Experiments . 102

Bibliography 111

vii

Chapter 1

Introduction

1.1 Research Questions

Encryption was first applied thousands of years ago. This started a contest between
cryptanalysis and improvement of cryptographic means. A steady advancement of
attackers’ intelligence and computational power led to failure of many cryptographic
schemes.

Security of public-key cryptographic schemes relies on the hardness of particu-
lar computational problems, called hard problems. Among the most broadly used
hard problems nowadays are the integer factoring problem, the discrete logarithm
problem (DLP) in a multiplicative subgroup of integers modulo a prime, and the
DLP on an ordinary elliptic curve. Cryptographic properties of these problems are
summarized in Table 1.1. Here s denotes the desired security level, e.g. s = 96 is
believed to provide protection until the year 2020 [41]. We see that among the three
named problems only the elliptic-curve DLP can be used with short keys, because
the complexity of the other two problems has been already reduced to subexponen-
tial. Needless to say, the situation will change for the worse if stronger attacks are
invented in the future.

The anticipated arrival of quantum computers adds fuel to the flame, as quantum
computers can solve the aforementioned and many other hard problems in polyno-
mial time. The main challenge of the post-quantum cryptography is to identify hard
problems that remain hard also for quantum computers. Among the most promising
alternatives are the hash collision and preimage problems, the lattice-based prob-
lems, e.g. the shortest vector problem, and the problem of decoding certain linear
codes [10]. These problems are listed in Table 1.1 as well. To solve all problems
presented in the table, only a relatively small quantum register is needed (having a
poly(s) qubits). However, the best known quantum algorithms for the hash-, code-
and lattice-based problems require an exponential number of quantum gates. These
presumably quantum-resistant problems also have some disadvantages. Hash-based
signatures are long (tens of kilobytes), require a signature key per each message, and

1

Hard problem
Example
scheme

Recomm. pub-
lic key size, bits

Operation
complexity

Encryption
overhead, bits

Quantum
complexity

Integer
factoring 1 RSA

0.05(s+ 14)3

log(s+ 14)2
O

(
s6

log(s)3

)
0 O

(
s9

log(s)5

)
DLP in F∗

p
2 ElGamal

0.05(s+ 14)3

log(s+ 14)2
O

(
s6

log(s)3

)
0.05(s+ 14)3

log(s+ 14)2
O

(
s9

log(s)5

)
Ell. curve DLP 3 ECIES 2s O(s2.6) 4s O(s3)

Hash collision
and preimage 4

Merkle’s
sign.

2s O(shash) 12s2 + 20s O(20.67s hash)

Linear code
decoding 5 McEliece 2.25s2 log(s)2 O(s2 log(s)2) 1.5s log(s) O(20.5s)

Lattice shortest
vector problem 6 NTRU 3s log(s) + 1000 O(s log(s)2) 2.5s log(s)+840 O(2s)

Isogeny
problem 7 PE 4s−8 log(s)−16 O(s5.3) 4s−8 log(s)−16 O

(
26
√
s log(s)

)

Table 1.1: Comparison of hard problems used in cryptography, for the security level
of s bits. Provided values are approximated. All example schemes are public-key
encryption schemes, except for the Merkle’s digital signature scheme. In the column
“Recommended public key size” we assume that common system parameters (e.g.
the DLP group order) are not included in public keys. The “Operation complexity”
column shows the asymptotic number of bit operations in one encryption or signature
verification operation. The “Encryption overhead” column contains the difference
between the ciphertext length and the “default” message length (e.g. the RSA
message length is log(n) bits, where n is the modulus), or the length of a digital
signature for the Merkle’s scheme. This absolute overhead size is important when
sending short messages over low-bandwidth channels, for instance SMS messages.
The column ”Quantum complexity” contains an O-bound for the expected number
of quantum gates needed to solve a random problem instance.

1 The security level of the RSA encryption scheme in Z/nZ∗ is (64/9)1/3 log(e) ln(n)1/3 ln(ln(n))2/3−14 bits [41,
p. 27], hence one should choose log(n) ≈ 0.05(s + 14)3/ log(s + 14)2. Decryption takes O(log(n)2 log(log(n)))
bit operations with fast multiplication. Factoring n on a quantum computer requires O(log(n)3 log(log(n)))
gates [4].

2 The complexity of the DLP in a sufficiently large cyclic subgroup of F∗p is similar to the complexity of factoring
an RSA modulus n such that log(n) ≈ log(p) [41].

3 We consider the Elliptic Curve Integrated Encryption Scheme (ECIES). In elliptic curve cryptosystems over
Fq it is customary to choose q having 2s bits. We assume that the length of the message authentication code
in the ECIES is 2s, hence the overhead is 4s. One point multiplication takes O(log(q)2.6) bit operations using
the modular multiplication by Karatsuba’s and Montgomery’s algorithms. Solving the ECDLP on a quantum
computer requires O(log(q)3) gates [86, §6].

4 The security of Merkle’s signature scheme with an n-bit hash function is n/2 bits [10, p. 89]. We assume that the
tree height is 10 and that the Lamport-Diffie one-time signature scheme is used. The size of Merkle’s signature
is 3n2 + 10n, verification requires n + 11 hash evaluations. Quantum complexity is approximately 2n/3 hash
evaluations.

5 We consider the McEliece’s hidden-Goppa-code public-key encryption scheme. Decoding a code of length n
requires approximately 2(0.5+o(1))n/ log(n) operations [9], hence n ≈ 3s log(s). For a code of rate 0.5 the public
key size is n2/4, and the ciphertext of a 0.5n-bit message is n bits long. Encryption takes O(n2) bit operations.
The fastest quantum attack takes time approximately 2(0.25+o(1))n/ log(n) [9].

6 We consider the NTRU encryption scheme in Zq [X]/(XN−1) for q = 1024. Based on [56, Table 5] recommended
values of N roughly approximate as 0.3s log(s) + 100. The public key size is N log(q), encryption is O-bound by
the polynomial multiplication, thus it is O(N log(N)) bit operations when q is constant. Encryption overhead is
N(log(q)− log(3)) bits. Quantum complexity has been shown to approximately follow the classical one [117].

7 We consider the PE public-key encryption scheme defined in Fig. 3.2. The complexity of the isogeny problem
over Fq is proportional to q1/4 log(q)2 log(log(q)) operations in Fq (see Chapter 4). Hence we take log(q) ≈
4s − 8 log(s) − 16. One encryption takes O(log(q)3.7) field operations (see Section 2.5), and each modular
multiplication is O(log(q)1.6) bit operations. Solving the isogeny problem over Fq with the quantum algorithm

proposed by Childs, Jao and Soukharev [26] requires exp[(
√

3/2+
√

2+o(1))
√

ln(q) ln(ln(q))] quantum operations.

1.1. Research Questions 3

the number of signatures that can be verified by one public key is limited. Code-
based schemes require very long public keys (hundreds of kilobytes). Lattice-based
schemes have relatively long public keys and overheads (kilobits).

The discussion above shows that it is important to examine new hard problems.
In this work we investigate the potential of isogenies of elliptic curves for building
secure cryptographic schemes.

Let K be a field of characteristic larger than 3. An elliptic curve E over the field
K is a non-singular algebraic curve defined by the equation

Y 2 = X3 + aX + b, (1.1)

where a, b ∈ K. For a field L ⊇ K, the set of points (x, y) ∈ L× L satisfying (1.1),
together with an extra “point at infinity” O, is denoted by E(L). The set E(L) is
an additive abelian group with the zero element O.

For elliptic curves E1 and E2 defined over K, an isogeny φ from E1 to E2 is a
group homomorphism

φ : E1(K)→ E2(K)

that is given by rational functions. If the coefficients of these rational functions lie in
K, the isogeny φ is said to be defined over K. The x-coordinate map of an isogeny
φ can be expressed as a univariate rational function p(X)/q(X) in reduced form.
The maximum of the degrees of p(X) and q(X) is called the degree of the isogeny φ.
Two elliptic curves are said to be isogenous if there exists a non-constant isogeny
between them. According to the theorem of Tate, two elliptic curves E1 and E2 over
a finite field F are isogenous over F if and only if #E1(F) = #E2(F).

Since the Schoof’s algorithm and its extension, the Schoof-Elkies-Atkin algo-
rithm, were proposed, isogenies have been used for efficient calculation of the num-
ber of points on an elliptic curve over a finite field [96]. Other cryptographic ap-
plications of isogenies include the reduction of the DLP between isogenous elliptic
curves [45, 61], computation of the endomorphism ring of an elliptic curve [71], com-
putation of modular polynomials [18, 23] and Hilbert class polynomials [6]. Isogenies
have been applied in constructing key escrow systems, ordered signature schemes
and hash functions. These cryptographic constructions are fundamentally different
from our proposal, as we discuss later in Section 1.3.

For an elliptic curve E over a field K, the set of all isogenies E(K) → E(K)
defined over K is a ring under the addition (φ + ψ)(P) = φ(P) + ψ(P) and the
multiplication (φψ)(P) = φ(ψ(P)). It is called the endomorphism ring of E and
denoted EndK(E). An elliptic curve E over a finite field F is called ordinary if
EndF (E) is an order in an imaginary quadratic field, defined later in Section 1.4.

We consider the following problem as a potential hard problem suitable for cryp-
tography:

Problem 1.1 (Isogeny Problem). Let E1 and E2 be ordinary elliptic curves over
a finite field F satisfying #E1(F) = #E2(F). Compute an isogeny φ : E1(F) →
E2(F) defined over F .

4 Introduction

The isogeny problem was studied by Galbraith [44] and Galbraith, Hess and
Smart [45]. Both papers proposed exponential-time algorithms, which indicates
that the isogeny problem may indeed be interesting for cryptography.

The following questions naturally arise in the scope of our work:

Question 1. How can isogenies between ordinary elliptic curves be used for building
cryptographic schemes? Which schemes can be built? What is the efficiency of such
schemes?

Question 2. On which computational problems does the security of the proposed
schemes depend?

Question 3. What is the computational complexity of these problems?

1.2 Our Work and Results

Answer to Question 1. Isogenies between ordinary elliptic curves allow efficient
evaluation of a particular abelian group action: the class group action on a set of
j-invariants of isogenous elliptic curves, defined later in Section 1.4. In Chapter 2
we build cryptographic schemes based on this group action. We describe implemen-
tation details and ways to improve efficiency, suggest a method for cryptosystem
parameter selection, and report results of our practical implementation. Our imple-
mentation of the class group action is available in an open-source software package
ClassEll [104].

The asymptotic complexity of one cryptographic operation, such as an encryp-
tion or a key agreement protocol run, is O(s5.3) bit operations, where s is the desired
security level in bits. Practical speed measurements of our unoptimized implemen-
tation show that for s = 96 one encryption takes under a minute with a dual-core
desktop processor.

We propose isogeny-based cryptographic schemes for public-key encryption, au-
thenticated key agreement, digital signature, secret-key encryption (i.e. the Pohlig-
Hellman encryption scheme), no-key secret message transfer, and commitment. The
proposed schemes are generalizations of the corresponding DLP-based schemes to
the context of a group action on a set. In particular, let B be a cyclic multiplicative
group of a prime order q, and let a DLP-based cryptographic scheme S be defined
in B. If the only arithmetic operations involved in S are the exponentiation in B,
the multiplication and the multiplicative inverse in Zq, then the scheme S can be
defined in a more general setting where a group G (generalized from Zq) acts on a
set X (generalized from B). Consequently, such a scheme S can be implemented
using isogenies between ordinary elliptic curves.

Answer to Question 2. In Chapter 3 we provide security reductions for two of
the proposed schemes, thus proving that their security relies on the hardness of

1.2. Our Work and Results 5

the isogeny problem and related computational problems. More specifically, our
proofs use the decisional Diffie-Hellman group action problem (DDHAP), defined in
Section 3.4. The class-group DDHAP is not harder than the isogeny problem, and
currently there is no faster way to solve the class-group DDHAP than through the
solution of the associated isogeny problem.

Answer to Question 3. In Chapter 4 we propose an algorithm for solving the
isogeny problem that improves upon the previously known algorithm of Galbraith,
Hess and Smart (GHS). Our improvement is due to the idea of modifying the random
walk on the isogeny graph such that small-degree isogenies are used more frequently.
This provides an order of magnitude speed-up for feasible problem sizes. Since our
algorithm is currently the fastest, we conclude that the computational complexity
of the isogeny problem over Fq is proportional to q1/4 log(q)2 log(log(q)) operations
in Fq.

Sections 4.1–4.7 constitute a preprint of a joint paper with Prof. Steven Gal-
braith [43]. Below we identify author’s independent contribution to this paper. The
key idea of using smaller-degree isogenies more frequently first appeared in author’s
earlier work (see Section 2.6). The author then discussed the possibility of applying
this idea to the GHS algorithm with Galbraith. Author’s independent contribution
included writing the original text of the paper. It was then edited and partially
rewritten by Galbraith, but approximately 70 % of the text remained untouched.
All experimental work was performed by the author using a computer cluster at the
Department of Telematics, NTNU. Appendices 4.A–4.C were written by the author
and were not included into the paper in order to reduce its size.

The results of our work can be summarized as follows. The isogeny problem
can be used as a hard problem for building cryptographic schemes. It satisfies the
two key requirements for a cryptographically interesting hard problem: an exponen-
tial complexity of the problem and a polynomial complexity of the cryptographic
operations. However the latter complexity is also the main drawback of the isogeny-
based schemes. In practice these schemes are currently slower than contemporary
alternatives.

The isogeny problem is compared with some other hard problems in Table 1.1.
We see that in the pre-quantum scenario, assuming no stupendous attacks on the
elliptic-curve DLP are found, isogeny-based schemes have no advantage over the
elliptic-curve-based ones. It only makes sense to use our schemes in off-line ap-
plications, such as a scheduled batch processing, where speed is not a concern.
Isogeny-based schemes can also be used in combination with other hard problems
in order to diversify the set of security assumptions, e.g. by onion-like encrypting a
message with different algorithms.

In the post-quantum scenario, however, our schemes look more interesting. First
of all, it is not clear whether the superpolynomial quantum attack of Childs, Jao

and Soukharev [26] will pose a realistic threat. The attack requires O(26
√
s log(s))

6 Introduction

quantum gates. Physicists are in doubt about the possibility of large-scale quantum
computations, because of errors introduced by the quantum decoherence [39]. If
no key length adjustment will be needed to protect against the named attack, then
the isogeny-based schemes will offer, in general, shorter keys and more efficient
bandwidth usage, as compared to other quantum-resistant hard problems. But this
will come at a cost of lower operational speeds. If, on the other hand, scientists will
find a way to implement large quantum circuits, then the key length will have to be
increased and the isogeny-based schemes will loose their advantage over the most
promising post-quantum candidates, such as NTRU.

1.3 Related Work: Cryptographic Schemes Based

on Isogenies

The use of isogenies for building cryptographic schemes is a recent topic. We shall
list isogeny-based cryptosystem proposals in the order of their publication. We
shall describe protocols that rely on the isogeny problem in separate figures, for
completeness.

The first proposal known to the author is by Teske [112, 113]. In her key escrow
system, a secret curve Es isogenous to the public curve Epb is stored at a trusted
authority. Epb is used in a conventional elliptic curve cryptosystem, while Es is
chosen such that the ECDLP is feasible using the Weil descent attack, hence Es

can be used for key escrow. Teske reasons that it is very difficult for an attacker
to construct an isogeny from Epb to a curve suitable for the Weil descent attack,
because the proportion of such curves is approximately 2−68 when Epb is defined
over F2161 . This task is more complex than the isogeny problem in the sense that
the attacker only knows Epb and has to find any one of approximately 212 curves
among approximately 280 curves isogenous to Epb. The best solution seems to be to
use a random walk on the isogeny graph (i.e. the graph consisting of isomorphism
classes of elliptic curves connected by isogenies of degrees smaller than some bound
lmax) starting from Epb until a vulnerable curve is found.

Rostovtsev, Makhovenko and Shemyakina [90] described an ordered digital signa-
ture scheme, where an existing signature algorithm, e.g. ECDSA or the elliptic-curve
Schnorr signature, is used to sign a sequence of documents. In order to impose the
sequential ordering of signatures, an isogeny of small degree (2, 3 or 5) is applied
to compute the elliptic curve and the points which are used for signing of the next
document. This is convenient in the case of blind signatures, where the signer can-
not add a sequence number or a timestamp to the document. Note that the isogeny
problem is not used in this cryptosystem.

The author began to work on the topic of isogeny-based cryptographic schemes
in his master’s thesis in early 2004 [105]. Building on this, a preprint of our joint
work with Prof. Alexander Rostovtsev was archived on-line in April 2006 [89]. We

1.3. Related Work: Cryptographic Schemes Based on Isogenies 7

P V

Input: skP Input: pkP
a

R←− G
y ← a ∗ x

yoo

z ← skP ∗ y
z //

a ∗ pkP
?
= z

Output: − Output: 1

Figure 1.1: Two-pass authentication protocol of Couveignes [30].

proposed to build an ElGamal-like encryption scheme using isogenies between ordi-
nary elliptic curves (a “hashed” variant of this scheme is presented in Fig. 3.2). We
described the choice of system parameters, gave implementation details and briefly
analysed the security of the proposed algorithm. A numerical example of encryp-
tion was included as well. This work was presented at the European Network of
Excellence for Cryptology (ECRYPT) workshop Curves, Isogenies and Cryptologic
Applications in July 2006.

A few months later a preprint by Couveignes [30] was made public. The preprint
was written in 1997, but not published. Couveignes proposed to use homogeneous
spaces (group acting simply transitively on a set) for constructing cryptographic
primitives. He presented three protocols: a generalized Diffie-Hellman key exchange
protocol (Fig. 3.1), a two-pass authentication protocol pictured in Fig. 1.1 and a Σ-
protocol for authentication pictured in Fig. 1.2. Couveignes then proposed to use
the action of imaginary quadratic ideals on ordinary elliptic curves for a conjectural
hard homogeneous space. He also discussed implementation details and security.
There are many similarities between Couveignes’ work and our preprint [89] and
Chapter 2. Presence of this independent research shows the importance of our
topic.

All figures in this section use the following notation: a finite abelian group G acts
on a set X, and an element x ∈ X is publicly known. An entity P has a private key

skP ∈ G and a public key pkP = skP ∗x. The comparison operator a
?
= b is equivalent

to “if a 6= b then output 0”. That is, when the comparison operator returns false,
the algorithm immediately aborts and outputs zero, indicating a failure.

The Σ-protocol in Fig. 1.2 stems from the graph isomorphism proof by Goldreich,
Micali and Wigderson [48, 49], and from the protocol for demonstrating possession of
discrete logarithms proposed by Chaum, Evertse and van de Graaf [25, Protocol 1].
The protocol should be repeated t times to reduce the probability of cheating to 2−t.

Charles, Goren and Lauter [24] designed a hash function based on an isogeny

8 Introduction

P V

Input: skP , pkP Input: pkP
a

R←− G
y ← a ∗ pkP

y //

b
R←− {0, 1}

boo

c← a(skP)b

c //

if b = 0 then

c ∗ pkP
?
= y

else c ∗ x ?
= y

Output: − Output: 1

Figure 1.2: Σ-protocol of Couveignes [30].

graph of supersingular elliptic curves over Fp2 . For any prime isogeny degree l 6= p,
the l-isogeny graph of supersingular curves is (l + 1)-regular. For a fixed hash
function, the walk is always started from a fixed curve. For every hop of the walk, the
input to the hash function is used to choose one of the l edges, without backtracking.
The hash output is the ending vertex of the walk. We note that this construction
is very different from ours. E.g., the endomorphism ring of a supersingular elliptic
curve is isomorphic to an order in a quaternion algebra [100, Ch. V Theorem 3.1].
Since quaternion algebras are non-commutative, it is not straightforward how to use
isogeny graphs of supersingular elliptic curves for constructing many of the schemes
proposed in our work. This issue has been addressed by Jao and De Feo in their
recent paper [60].

Weiwei and Debiao [120], based on our work [89], proposed to use isogenies
between ordinary elliptic curves to implement the key agreement protocol of Popescu
[85]. Popescu’s protocol, generalized to the context of group action, is shown in
Fig. 1.3. In addition to the notation introduced earlier, the protocol uses a hash
function H() which is publicly known. Popescu’s protocol has the following security
attributes proposed by Blake-Wilson, Johnson and Menezes [15]:

• Known session key security. A protocol still achieves its goal in the face of an
adversary who has learned some previous session keys.

• Forward secrecy. If long-term secrets of one or more entities are compromised,
the secrecy of previous session keys is not affected.

• Unknown key-share. Entity A cannot be coerced into sharing a key with entity

1.3. Related Work: Cryptographic Schemes Based on Isogenies 9

A B

Input: skA, pkB Input: skB, pkA
yA ← skA ∗ pkB yB ← skB ∗ pkA
a

R←− G b
R←− G

xA ← a ∗ x xB ← b ∗ x
eA ← H(xA, yA) eB ← H(xB, yB)

xA, eA //
xB, eBoo

H(xB, yA)
?
= eB H(xA, yB)

?
= eA

kA ← a ∗ xB kB ← b ∗ xA
Output: kA Output: kB

Figure 1.3: Generalized key agreement protocol of Popescu [85].

B without A’s knowledge, i.e., when A believes the key is shared with some
entity C 6= B.

Contrary to what is stated in [85, 120], the protocol does not provide security to
key-compromise impersonation. If A’s private key skA is compromised, then an
adversary can impersonate other entities to A. E.g. to impersonate B to A, it is
sufficient to compute yB = skA ∗ pkB and participate in the protocol with A on
behalf of B.

A random number generator based on isogenies was proposed by Debiao, Jianhua
and Jin [34]. The algorithm is seeded with a secret elliptic curve E and an isogeny
path r1. On round n the algorithm computes the curve En = rn ∗ E. The pseudo-
random number output by the round n is xn = An ⊕ Bn, i.e. the XOR-ed equation
coefficients of the curve En. The path rn+1 is computed as a function of xn and n.

We note that starting from an output value xn it is straightforward for an attacker
to compute rn+1 (n is a small integer, in some circumstances it is known or can be
guessed). Thus, by observing the algorithm’s output, it is possible to collect pairs
(ri, Ai ⊕ Bi) satisfying Ei = ri ∗ E. This information might be used for calculating
the secret curve E and for predicting the algorithm’s output more efficiently than
by brute-forcing.

One more authenticated key agreement protocol using isogenies was proposed by
Debiao, Jianhua and Jin [35]. A generalized and slightly modified version of their
protocol is shown in Fig. 1.4. The protocol of Debiao, Jianhua and Jin provides
the security properties listed above. In addition to this it protects against the key-
compromise impersonation. The authors also provide a security reduction in the
Bellare-Rogaway authenticated key exchange model [7] with a random oracle.

Microsoft Corporation holds three patents [63, 64, 65] that cover various aspects
of using isogenies for design of cryptosystems.

10 Introduction

A B

Input: skA, pkB Input: skB, pkA
a

R←− G b
R←− G

xA ← a ∗ x xB ← b ∗ x
xA //

yA ← a ∗ pkB yB ← skB ∗ xA
eB ← H(xB, yB)

xB, eBoo

H(xB, yA)
?
= eB

zA ← skA ∗ xB zB ← b ∗ pkA
eA ← H(zA)

eA //

H(zB)
?
= eA

kA ← H(a ∗ xB) kB ← H(b ∗ xA)
Output: kA Output: kB

Figure 1.4: Generalized key agreement protocol of Debiao, Jianhua and Jin [35].

1.4 Background: the Class Group Action on the

Set of j-invariants

In this section we introduce facts from algebraic number theory that will be necessary
for our work. Further details can be found in textbooks of the following authors:
Schertz [92, §10], Cox [31, §14], Lang [73, Part Two], Washington [118, §10] and
Cohen [28, §7.2]. Throughout the section we provide a running example that extends
the one given in Fig. 2.5. The example is marked by a vertical bar on the left.

A number field L is a field containing Q which, considered as a Q-vector space,
is finite dimensional. The dimension of L over Q is called the degree of the number
field L.

Let θ be a root of the polynomial A(X) = X2+38 over C. Then K = Q(θ) is a
number field of degree 2. A basis of K over Q is {1, θ}. The field K is isomorphic
to the quotient ring Q[X]/〈A〉 by the map (1, θ) 7→ (1 + 〈A〉, X + 〈A〉).

Theorem 1.1 ([28, Th. 4.1.8]). Let L be a number field of degree n. Then there exists
an element θ ∈ L such that L = Q(θ). Its minimal polynomial A (i.e. the smallest
degree polynomial with integer coefficients, such that A(θ) = 0, A is primitive over
Z and the leading coefficient of A is greater than zero) is an irreducible polynomial
of degree n. There exist exactly n field embeddings of L in C, given by θ 7→ θi, where

1.4. Background: the Class Group Action on the Set of j-invariants 11

the θi are the roots in C of the polynomial A. The images Li of these embeddings in
C are isomorphic to L.

The images Li ⊆ C are called the conjugate fields of L. A number field L is said
to be Galois over Q if L is invariant by the n embeddings of L in C (in other words,
if the conjugate fields Li coincide).

Let A, θ and K be as above. The polynomial A is minimal, it has two complex
roots: θ1 =

√
−38 and θ2 = −

√
−38. This gives two embeddings of K in C, one

defined by θ 7→ θ1 and the other one by θ 7→ θ2. Now the image of the first
embedding, denoted Q(

√
−38), is an isomorphic copy of K. The same holds for

the image of the second embedding Q(−
√
−38). It is easy to see that K is Galois,

since θ2 = −θ1.

An element α ∈ C is called an algebraic integer if there exists a monic (i.e. with
leading coefficient equal to 1) polynomial A ∈ Z[X] such that A(α) = 0, and A not
identically zero. The set of algebraic integers of a number field L is a ring. It is
called the ring of integers of L and denoted OL.

Theorem 1.2 ([28, Th. 4.4.2]). The ring OL is a free Z-module (i.e. a module that
has a basis) of rank equal to the degree of L.

Let L be a number field of degree n, σi be the n embeddings of L in C, and αj
be n algebraic integers forming a basis of OL over Z. Then ∆(L) = det(σi(αj))

2 is
called the discriminant of the field L. The field discriminant is independent of the
choice of an integral basis αj.

The elements θ1 and θ2 defined above are examples of algebraic integers. The
set {1, θ} is a Z-basis of the ring of integers OK . Indeed, any element α = a+ bθ,
where a, b ∈ Z, is a root of the monic polynomial Y 2 − 2aY + a2 + 38b2 with
integer coefficients. Thus we can write OK = Z + θZ.

The discriminant of the field K is

∆(K) = det

(
σ1(1) σ1(θ)
σ2(1) σ2(θ)

)2

= det

(
1 θ1

1 θ2

)2

= (θ2−θ1)2 = (−2
√
−38)2 = −152.

An integral ideal a ⊆ OL is a sub-Z-module of OL such that for every α ∈ OL
and a ∈ a we have αa ∈ a.

Theorem 1.3 ([28, Pr. 4.6.3]). Let a be a non-zero integral ideal of OL. Then a is
a module of maximal rank. In other words, OL/a is a finite ring.

The cardinality of OL/a is called the norm of a and denoted N (a). An integral
ideal a is said to be prime if a 6= OL and the quotient ring OL/a is an integral
domain (i.e. xy ∈ a implies x ∈ a or y ∈ a). In a ring of algebraic integers OL, a
non-zero ideal a is prime if and only if the quotient ring OL/a is a field.

12 Introduction

We write aZ+ bZ to denote the Z-module generated by the elements a and b.
Let a2 = 3Z+(θ+2)Z ⊂ OK . The quotient ring OK/a2 consists of three elements:
0 + a2, 1 + a2 and 2 + a2. Hence N (a2) = 3. Furthermore, a2 is a prime ideal.

A fractional ideal a of a number field L is a non-zero submodule of L such that
there exists a non-zero integer a with aa an integral ideal of OL. It is clear that any
integral ideal of OL is also a fractional ideal.

The ideal (3/2)Z + (θ/2 + 1)Z is a fractional ideal that is not integral. Mul-
tiplication by 2 turns it into the integral ideal a2.

The product of two fractional ideals a and b of OL is defined as

ab =
{∑

ij | i ∈ a, j ∈ b
}
.

Theorem 1.4 ([28, Th. 4.6.14]). Every fractional ideal of OL is invertible. In other
words, if a is a fractional ideal and if we set a−1 = {α ∈ L | αa ⊂ OL}, then
aa−1 = OL. The set of fractional ideals of OL is an abelian group.

We say that two fractional ideals a and b are equivalent if there exists α ∈ L∗
such that b = αa. The set of equivalence classes is called the class group of OL and
is denoted CL(OL).

Theorem 1.5 ([28, Th. 4.9.2]). For any number field L, the class group CL(OL) is
a finite abelian group.

The cardinality of CL(OL) is called the class number and denoted h(OL).

The class group of OK consists of six equivalence classes of ideals repre-
sented by:

a1 = OK ,
a2 = 3Z + (θ + 2)Z,
a3 = 6Z + (θ + 4)Z,
a4 = 2Z + θZ,
a5 = 6Z + (θ − 4)Z,
a6 = 3Z + (θ − 2)Z.

The class group is isomorphic to the additive group Z/6Z and is generated by [a2].
Let us show that [a2

2] = [a3] in CL(OK). First we find that a2
2 = 9Z + (θ + 5)Z.

To show the equivalence we take α = −2/3 + θ/6 and verify that αa3 = a2
2.

A lattice Λ is an additive subgroup of C which is generated by two complex
numbers which are linearly independent over R. Let K be an imaginary quadratic

1.4. Background: the Class Group Action on the Set of j-invariants 13

field (i.e. a number field of degree 2 with a negative discriminant). Then the ring of
integers OK and all non-zero fractional ideals of OK are lattices.

The j-invariant j(Λ) of the lattice Λ is defined to be the complex number

j(Λ) = 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
, where (1.2)

g2(Λ) = 60
∑

ω∈Λ\{0}

1

ω4
, g3(Λ) = 140

∑
ω∈Λ\{0}

1

ω6
.

Theorem 1.6 ([31, Pr. 10.7]). If Λ is a lattice, then g2(Λ)3 − 27g3(Λ)2 6= 0.

To compute approximated j-invariants of the ideals a1, . . . , a6 defined above
we use Magma [16] with precision set to 25 decimal digits. For the lattices of
ideals ai in the embedding Q(

√
−38) we get the following j values:

j1 = j(a1) ≈ 66246265662298399.44546049,

j2 = j(a2) ≈ −201569.2502947957453982949 + 350415.9857691279142845026
√
−1,

j3 = j(a3) ≈ 247.9253742178749886512781 + 328.7306929095367517930038
√
−1,

j4 = j(a4) ≈ 257384243.2043806673300122,

j5 = j(a5) ≈ 247.9253742178749886512781− 328.7306929095367517930038
√
−1,

j6 = j(a6) ≈ −201569.2502947957453982949− 350415.9857691279142845026
√
−1.

In the conjugate embedding Q(−
√
−38) some j-invariants interchange: a2 has

the value j6, a6 has j2, a3 has j5, and a5 has j3.

Theorem 1.7 ([31, Th. 10.9]). If Λ and Λ′ are lattices, then j(Λ) = j(Λ′) if and
only if Λ and Λ′ are homothetic (i.e. there exists α ∈ C such that Λ′ = αΛ).

Theorem 1.7 implies that equivalent fractional ideals ofOK have equal j-invariants.
For a fixed embedding σ of K in C we define the action ∗ of the class group

CL(OK) on the set ELLσ(OK) of j-invariants of the fractional ideals of OK as
follows:

∗ : CL(OK)× ELLσ(OK) → ELLσ(OK)

([a], j(b)) 7→ [a] ∗ j(b) = j(a−1b).

Table 1.2 illustrates the action of the class group of K = Q(
√
−38) on the set

of j-invariants ELLσ(OK).

Theorem 1.8 ([28, Th. 7.2.14]). Let K be an imaginary quadratic field. Then j(OK)
is an algebraic integer of degree exactly equal to h(OK). The minimal polynomial

of j(OK) over Z is
∏h(OK)

i=1 (X − j(ai)), where ai runs over representatives of the
equivalence classes of fractional ideals of OK.

14 Introduction

[a] ∈ CL Action [a] ∗ ELLσ
[a1] (j1)(j2)(j3)(j4)(j5)(j6)
[a2] (j1 j6 j5 j4 j3 j2)
[a3] (j1 j5 j3)(j6 j4 j2)
[a4] (j1 j4)(j2 j5)(j3 j6)
[a5] (j1 j3 j5)(j2 j4 j6)
[a6] (j1 j2 j3 j4 j5 j6)

Table 1.2: Action of CL(OK) on ELLσ(OK), where K = Q(
√
−38).

The minimal polynomial of j(OK), for K quadratic of discriminant −152, is

B(X) =X6 − 66246265919280000X5 + 17024071380555203520000000X4+

6854544294799483688960000000000X3+

2783058624787093614292992000000000000X2−
1380504171426125758791680000000000000000X+

472390748138731280269312000000000000000000.

The polynomial B(X) can be obtained from the six j-invariant values given above,
however a higher precision is needed to get the right coefficients.

Note that Q(j(OK)) is not necessarily Galois. However, we have the following
result:

Theorem 1.9 ([31, Cor. 11.34]). If K is an imaginary quadratic field, then K(j(OK))
is a Galois extension of degree h(OK) over K.

The field H = K(j(OK)) is called the Hilbert class field, and the polynomial

B(X) =
∏h(OK)

i=1 (X − j(ai)) is called the Hilbert class polynomial.

Let η be a root of the polynomial B(X), and consider the field H = K(η).
A K-basis of H is {1, η, η2, η3, η4, η5}. The polynomial B(X) splits completely
over the field H. Its six roots, written as elements of H, are:

η1 = η,

η2 = −664317066145375419971340320072169θ+7036203355242182387338025312177151
240323110893153632236073765614960414825266544640000000000000

η5+

289529769857344691559913963006245432026850351θ−3066593411423401590898049521543650382527593097
1581073097981273896289958984308950097534648320000000000

η4+

−88216837022837308843021098376082071885774095736973θ+937295675821346527895945423612868452157618980150267
1877524303852762751844326293866878240822394880000000

η3+

−8884228271985605942082470094296626358665481306876227θ−336223916285407270639040678968023893170208610915691
234690537981595343980540786733359780102799360000

η2+

824789051624769538270893252044016206417937013313θ+29657802561821746541946427199083900499763011993
44081618704281619831055745066371108208640

η+

−65922867207607915872482524989630144998975θ−745587984124265828558831797412257255175
10291082262424993612445813433856

,

η3 = 1408889702799016561080264603846870423θ−7036203281986169006978219139140607
240323110893153632236073765614960414825266544640000000000000

η5+

−122807476187577196261925353925635599178543797789θ+613318675899236455619867759808405659836631989
316214619596254779257991796861790019506929664000000000

η4+

187382935180739141548900568577198603552458180990593651θ−937295669719857352364305135414528549040742827244539
1877524303852762751844326293866878240822394880000000

η3+

1887353469960681251729497710710612777467772023214508697θ+67244844740923864476524347571664589381162895633071
46938107596319068796108157346671956020559872000

η2+

5947593102173412408289569168250573935442693000511369θ−244912053515007181034869673872939314688598561
364310898382492725876493760879100067840

η+

−41634114309722434311112790258530551225626869375θ+340872886822163476295073756575649771067691290375
10291082262424993612445813433856

.

1.4. Background: the Class Group Action on the Set of j-invariants 15

Embedding σ(η1) σ(η2) σ(η3) σ(η4) σ(η5) σ(η6)

σ11 : θ 7→
√
−38, η 7→ j1 j1 j2 j3 j4 j5 j6

σ12 : θ 7→
√
−38, η 7→ j2 j2 j3 j4 j5 j6 j1

σ13 : θ 7→
√
−38, η 7→ j3 j3 j4 j5 j6 j1 j2

σ14 : θ 7→
√
−38, η 7→ j4 j4 j5 j6 j1 j2 j3

σ15 : θ 7→
√
−38, η 7→ j5 j5 j6 j1 j2 j3 j4

σ16 : θ 7→
√
−38, η 7→ j6 j6 j1 j2 j3 j4 j5

σ21 : θ 7→ −
√
−38, η 7→ j1 j1 j6 j5 j4 j3 j2

σ22 : θ 7→ −
√
−38, η 7→ j2 j2 j1 j6 j5 j4 j3

σ23 : θ 7→ −
√
−38, η 7→ j3 j3 j2 j1 j6 j5 j4

σ24 : θ 7→ −
√
−38, η 7→ j4 j4 j3 j2 j1 j6 j5

σ25 : θ 7→ −
√
−38, η 7→ j5 j5 j4 j3 j2 j1 j6

σ26 : θ 7→ −
√
−38, η 7→ j6 j6 j5 j4 j3 j2 j1

Table 1.3: Embeddings of the Hilbert class field K(η) and the roots ηi in C.

η4 = − 37241004347143131
61086275409374022366895991083011911680000000000000

η5 + 8115386426002977377110122749
200941695425572441996368391720433920000000000

η4−
6203602255291182678954543223483869

954473053271469099482749860672061120000000
η3 − 19535256704748057815260482019925267

7456820728683352339708983286500477500
η2−

98590292859218222240497622286383
92601979853380014277576460705

η + 927752232303046955117178819200
14899755406818988620688087

,

the coefficients of η5 are the K-conjugates of the corresponding coefficients of η3,
and the coefficients of η6 are the K-conjugates of the ones of η2. The elements ηi
are algebraic integers and hence lie in OH .

We now consider embeddings of H in C. Table 1.3 lists how the field elements
ηi map to the complex numbers ji under different embeddings.

Let p be a prime number and p a prime ideal of the ring of integers OL of some
number field L. Then p is said to be a prime ideal above p if p ∩ Z = pZ.

Theorem 1.10 ([28, Th. 4.8.3]). Let p be a prime number. There exist positive
integers ei such that pOL =

∏
peii , where the pi are all the prime ideals above p.

The prime p is said to be inert if pOL = p. p is said to split completely if
pOL =

∏n
i=1 pi, where n is the degree of L over Q, and all pi are different. Finally,

p is ramified if there is an ei which is greater than or equal to 2 (in other words if
pOL is not squarefree).

In the quadratic number field K of discriminant −152, the prime 3 splits
completely: 3OK = (3Z + (θ + 2)Z) (3Z + (θ − 2)Z); the prime 5 is inert because
5OK is a prime ideal; and the prime 19 is ramified: 19OK = (19Z + θZ)2.

Theorem 1.11 ([31, Th. 5.26]). Let H be the Hilbert class field of K = Q(
√
−n),

where n is squarefree, n 6≡ 3 mod 4, and let p be an odd prime not dividing n. Then
p splits completely in H if and only if there exist integers x, y such that p = x2 +ny2.

16 Introduction

Field η1 η2 η3 η4 η5 η6

OH/p1 12 15 24 41 19 27
OH/p2 19 27 12 15 24 41
OH/p3 27 12 15 24 41 19
OH/p4 15 24 41 19 27 12
OH/p5 24 41 19 27 12 15
OH/p6 41 19 27 12 15 24
OH/p7 15 12 27 19 41 24
OH/p8 24 15 12 27 19 41
OH/p9 41 24 15 12 27 19
OH/p10 12 27 19 41 24 15
OH/p11 19 41 24 15 12 27
OH/p12 27 19 41 24 15 12

Table 1.4: Reductions of ηi at prime ideals of OH above 47.

Consider the prime p = 47 = 32 +38∗12. The ideal pOH factors into a product
of twelve distinct prime ideals p1, . . . , p12 above p. Each of these ideals can be
written as pi = 47OH + αiOH . We give α7 below; other ideal generators αi can
be obtained by running the following code in Magma:

D := -152;

K<t> := QuadraticField(D);

H<n> := ext< K | HilbertClassPolynomial(D) >;

p := Factorization(47*RingOfIntegers(H));

for i := 1 to #p do

print "P", i; for g in Generators(p[i][1]) do print H!g; end for;

end for;

α7 = 239θ−4446
30761358194323664926217441998714933097634117713920000000000000000η

5+
−5386568045946380445θ+20707375010996628762

40475471308320611745022949998309122496886996992000000000000η
4+

−23798509068090472680757025053112837θ−76819373778551000431853994197009462
240323110893153632236073765614960414825266544640000000000 η3+

−889584356128270969488268327246861695856887θ−2379548923009369172959341497435459777066418
6008077772328840805901844140374010370631663616000000 η2+

50153466246841432967398477454864219281480457θ−70317356194612998179604017514235201073465618
5642447194148047338375135368495501850705920000 η+

6306595388487148467910910952802940469θ−81449781137284730188951948910490925002
10538068236723193459144512956268544 .

For the Hilbert class field H of an imaginary quadratic field K, and a prime
ideal p of OH , the quotient ring F = OH/p is a finite field. Since the roots ηi of the
Hilbert class polynomial B(X) lie in OH , their images ηi in F are well-defined. The
elements ηi ∈ F are called the reductions of ηi at p.

Table 1.4 lists reductions of the six algebraic integers ηi at the prime ideals pi
above 47.

Reduction modulo a prime ideal of OH induces the action ∗ of the class group

1.4. Background: the Class Group Action on the Set of j-invariants 17

CL(OK) on the set of reduced j-invariants. More specifically, for a fixed embedding
σ of H in C, the reduction modulo a prime ideal p of OH defines a bijection between
the complex values ji and their reductions i in the finite field F = OH/p. The
action of CL(OK) on the set of reduced j-invariants ELLσ,p(OK) ⊂ F is defined as
follows:

∗ : CL(OK)× ELLσ,p(OK) → ELLσ,p(OK)(
[a], j(b)

)
7→ [a] ∗ j(b) = j(a−1b).

Choose one of the embeddings σ11, . . . , σ16 listed in Table 1.3 and one of the
ideals p7, . . . , p12 listed in Table 1.4. Then Fig. 2.5 depicts the action ∗ of CL(OK)
on ELLσ,p(OK) (cf. Table 1.2).

In our work we use the action ∗ for building cryptographic schemes. In order
to evaluate the action ∗ we employ elliptic curves over the finite field OH/p, this is
described in Sections 2.3–2.5. The action ∗ can be evaluated in time polynomial of
log(N (p)), when the class group element is represented as a product of prime ideals
of small norms. Another important result is that the inverse problem: given two
j-invariants 1 and 2 find a fractional ideal a such that [a] ∗ 1 = 2 (equivalently,
the isogeny problem for curves with the endomorphism ring OK), has exponential
complexity with the best up-to-date algorithm proposed in Chapter 4.

Paper I

Chapter 2, excluding Appendix 2.B, is published in

Anton Stolbunov

Constructing Public-Key Cryptographic Schemes Based on Class Group
Action on a Set of Isogenous Elliptic Curves

Advances in Mathematics of Communications, Volume 4 (2010), 215–235

Chapter 2

Constructing Public-Key
Cryptographic Schemes Based on
Class Group Action on a Set of
Isogenous Elliptic Curves

Abstract. We propose a public-key encryption scheme and key agreement
protocols based on a group action on a set. We construct an implementation
of these schemes for the action of the class group CL(OK) of an imaginary
quadratic field K on the set ELLp,n(OK) of isomorphism classes of elliptic
curves over Fp with n points and the endomorphism ring OK . This introduces
a novel way of using elliptic curves for constructing asymmetric cryptography.

2.1 Introduction

The two most practical mathematical problems constituting the basis for security
of modern asymmetric cryptographic schemes are integer factoring and computing
discrete logarithms. Security of the former problem has decreased fast as new factor-
ing methods and computer technology are developed. The latter problem remains
exponential-time for some groups, e.g. elliptic curves. However, the Shor’s algo-
rithm can solve factoring and discrete logarithm problems in polynomial time when
sufficiently large quantum computer registers become available [98]. These facts
put a need for the development of asymmetric schemes that are based on new hard
computational problems.

A potential mathematical object for this purpose is a low degree isogeny graph of
ordinary elliptic curves over a finite field. Vertices in this graph are elliptic curves and
edges are morphisms between them. Among the popular applications of low degree
isogenies are the elliptic curve point counting, e.g. the Schoof-Elkies-Atkin (SEA)
algorithm [96], reduction of the elliptic curve discrete logarithm problem (ECDLP)

21

22 Constructing Cryptographic Schemes Based on Isogenies

between different elliptic curves [45, 61], computation of the endomorphism ring of an
elliptic curve [71] and computation of modular polynomials [18, 23]. Galbraith [44]
and Galbraith, Hess and Smart [45] have proposed algorithms for constructing an
isogeny between two given elliptic curves, i.e. searching for a route on an isogeny
graph. Elliptic curve isogeny graphs have also been proposed for building crypto-
graphic primitives. Rostovtsev et al. [90] have described an ordered digital signature
scheme that implements the sequence number functionality for digitally signed doc-
uments using a small degree isogeny sequence. Teske [113] has constructed a key
escrow system where a curve isogenous to the public curve is stored at a trusted au-
thority and can be used to feasibly solve the ECDLP on the public curve, if needed.
Charles, Goren and Lauter [24] have designed a hash function based on an isogeny
graph of supersingular elliptic curves.

In this paper we use elliptic curve isogeny graphs for constructing new asymmet-
ric cryptographic schemes. First we generalize some existing cryptographic schemes
to the context of a group action on a set, and discuss their security. We then
apply results of the complex multiplication theory to implement the proposed cryp-
tographic schemes. Namely we use the action of the ideal class group CL(OK) of
an imaginary quadratic field K on the set ELLp,n(OK) of isomorphism classes of
elliptic curves over Fp with n points and the endomorphism ring OK . The involved
implementation-related solutions are then explained in more detail. We take advan-
tage of available computational algorithms on elliptic curves and ideal class groups
to implement the necessary operations. Finally we present our experimental re-
sults. Besides being interesting from the theoretical point of view, the proposed
cryptographic schemes might also have an advantage against quantum computer
attacks. However this question requires a further research, as we only point at the
inapplicability of some currently known quantum algorithms.

This paper develops ideas of Rostovtsev and Stolbunov [89] originally appeared
in their draft article. Independently of this work, research on a similar topic has
been reported by Couveignes [30].

2.2 Public-Key Cryptography Based on Group Ac-

tion

2.2.1 Notation

We start with the basic notation. Let G be a finite abelian group, and X a set. A
(left) action of G on X is a map

G×X → X

(g, x) 7→ g ∗ x,

2.2. Public-Key Cryptography Based on Group Action 23

A B

Input: − Input: −
a

R←− G b
R←− G

mA ← a ∗ x mB ← b ∗ x
mA //
mBoo

kA ← a ∗mB kB ← b ∗mA

Output: kA Output: kB

Figure 2.1: Key agreement protocol KA1.

which satisfies the associativity property (gh)∗x = g∗(h∗x) for all g, h ∈ G, x ∈ X,
and the property e ∗ x = x for the identity element e ∈ G and all x ∈ X. The orbit
of a set element x ∈ X is the subset G ∗ x = {g ∗ x : g ∈ G}. The orbits of the
elements of X are equivalence classes.

By a ← b we denote the assignment of value b to a variable a. By a
R←− G

we mean that a is sampled from the uniform distribution on the set of elements of
G. We write #S for the number of elements in S. By log n we denote the binary
logarithm of n.

As a general rule, we assume that all algorithms take descriptions of G and X,
and an element x ∈ X, as part of implied system parameters. By descriptions of
G and X we mean the information needed, besides the input, to implement the
operations involved in the algorithm, such as the random sampling from G, the
action of G on X, the group operation etc.

2.2.2 Key Agreement Protocols Based on Group Action

We present three key agreement protocols based on the action of G on X. A key
agreement protocol KA1 pictured in Fig. 3.1 is a generalization of the Diffie-Hellman
key agreement. The KA1 protocol has been proposed by Monico [79]. By A and B
we denote the algorithms run by the participants Alice and Bob, respectively.

Due to the commutativity of G and the associativity of the action, the following
holds:

kA = a ∗ β = a ∗ (b ∗ x) = (ab) ∗ x = (ba) ∗ x = b ∗ (a ∗ x) = b ∗ α = kB,

so A and B output the same session key k. The protocol KA1 provides secrecy of k
from passive adversaries.

The next two key agreement protocols make use of long-term public key pairs
and thus require a one-time setup. Alice randomly chooses her secret key skA ∈ G
and then computes the corresponding public key pkA = skA ∗x. Alice then provides

24 Constructing Cryptographic Schemes Based on Isogenies

A B

Input: skA, pkB Input: skB, pkA
a

R←− G b
R←− G

mA ← (a skA) ∗ pkB mB ← (b skB) ∗ pkA
mA //
mBoo

kA ← a ∗mB kB ← b ∗mA

Output: kA Output: kB

Figure 2.2: Key agreement protocol KA2.

A B

Input: skA, pkB Input: skB, pkA
a

R←− G b
R←− G

mA ← a ∗ pkB mB ← b ∗ pkA
mA //
mBoo

kA ← (a sk−1
A) ∗mB kB ← (b sk−1

B) ∗mA

Output: kA Output: kB

Figure 2.3: Key agreement protocol KA3.

her public key to Bob in an authentic manner. Bob does the same setup with his
key pair skB, pkB. Key Agreement 2 and 3 protocols are shown in Fig. 2.2 and 2.3,
respectively.
A and B output the same session key k in the protocol KA2 since

kA = a ∗mB = a ∗ ((b skB) ∗ (skA ∗ x)) = (a b skB skA) ∗ x =

= b ∗ ((a skA) ∗ (skB ∗ x)) = b ∗mA = kB.

In the KA3 protocol, A and B output the same session key k since

kA = (a sk−1
A) ∗mB = (a sk−1

A) ∗ (b ∗ (skA ∗ x)) = (ab) ∗ x =

= (b sk−1
B) ∗ (a ∗ (skB ∗ x)) = (b sk−1

B) ∗mA = kB.

Whereas the KA1 protocol does not provide authenticity, the protocols KA2 and
KA3 are designed to provide mutual key authentication, i.e. Alice is assured that
no other party aside from the one in possession of skB may gain access to k, and
vice-versa. The protocols KA2 and KA3 are generalizations of the MTI/C1 and
MTI/C0 protocols proposed by Matsumoto, Takashima and Imai [78, §12.6].

2.2. Public-Key Cryptography Based on Group Action 25

K: Key generation

Input: -

sk
R←− G

y ← sk ∗ x
k

R←− K
pk← (y, k)
Output: sk, pk

E : Encryption

Input: pk, m

a
R←− G

u← a ∗ y
h← Hk(u)
z ← a ∗ x
c← h⊕m
ct← (c, z)
Output: ct

D: Decryption

Input: sk, pk, ct
u← sk ∗ z
h← Hk(u)
m← h⊕ c
Output: m

Figure 2.4: Public-key encryption scheme PE .

2.2.3 Public-Key Encryption Based on Group Action

We now generalize the ElGamal public-key encryption scheme to the context of
group action. An approach proposed by Monico [79] requires the set X to be a
group in order to mask a message m ∈ X. In contrast with this, we use a “hashed”
version of the ElGamal encryption scheme, which eliminates these restrictions on X
and m through the use of a hash function family H, which, however, introduces a
need for a security assumption about H (see Theorem 2.2).

For a fixed message length w, the message space is the set of bit strings {0, 1}w,
and thus we can write m ∈ {0, 1}w. We use a hash function familyH = {Hk : k ∈ K}
indexed by a finite set K, such that each Hk is a function

Hk : G ∗ x→ {0, 1}w.

The public-key encryption scheme PE = (K, E ,D) is pictured in Fig. 3.2. Some of
the notation we use are: m is a message, sk ∈ G is a secret key, pk ∈ X ×K is a
public key and ct ∈ {0, 1}w ×X is a ciphertext. We have that x, y, z, u ∈ X. The
algorithm K also takes the description of K as part of implied system parameters.

The encryption scheme PE is sound, that is to say, for all pairs (sk, pk) which
can be output by K() and for all m ∈ {0, 1}w we have that D(sk, pk, E(pk,m)) = m.
Indeed, we can write Hk(a ∗ r) = Hk(sk ∗ y) since

a ∗ r = a ∗ (sk ∗ x) = (a sk) ∗ x = sk ∗ (a ∗ x) = sk ∗ y.

2.2.4 Security of Cryptographic Schemes Based on Group
Action

In this section we provide reductionist security arguments for the KA1 protocol
and the PE scheme, thus showing that breaching the security of these schemes is
not easier than solving particular computational problems. A detailed discussion,
together with proofs of Theorems 2.1 and 2.2, can be found in our earlier work [106].

26 Constructing Cryptographic Schemes Based on Isogenies

For a finite abelian group G acting on a set X and a fixed element x ∈ X we
define the following computational problems:

Problem 2.1 (Group Action Inverse Problem (GAIP)). Given a randomly chosen
element y ∈ G ∗ x, find a group element g ∈ G such that g ∗ x = y.

A problem similar to GAIP was defined for semigroups by Maze et al. [77] as the
semigroup action problem. However we prefer the name GAIP as the problem asks
to invert the function f(a) = a ∗ x.

Problem 2.2 (Decisional Diffie-Hellman Group Action Problem (DDHAP)). Given
a triple (y, z, u) ∈ X3 sampled with probability 1

2
from one of the two following

probability distributions:

• (a ∗ x, b ∗ x, (ab) ∗ x), where a and b are randomly chosen from G,

• (a ∗ x, b ∗ x, c ∗ x), where a, b and c are randomly chosen from G,

decide which distribution the triple is sampled from.

Using a GAIP solver it is straightforward to construct a solver for the DDHAP,
thus the DDHAP is not harder than the GAIP.

For a DDHAP distinguisher S, its probability of returning the correct solution
will be denoted by PrDDH

S . PrDDH
S is a function of a security parameter s = log # G ∗ x.

Since the distinguisher S can gain a success probability of 1
2

by returning a random
solution, the advantage of S is defined to be

AdvDDH
S =

∣∣∣∣PrDDH
S −1

2

∣∣∣∣ .
We can now define the following assumption about the computational complexity

of the DDHAP:

Assumption 2.1 (DDHAP). For any polynomial-time DDHAP distinguisher S,
the advantage AdvDDH

S is a negligible1 function of s.

To model the security of the KA1 protocol we will use a notion of session-key
(SK) security in the authenticated-links adversarial model (AM) proposed by Canetti
and Krawczyk [21, 22]. In outline, this security notion asserts that any polynomial-
time adversary I that cannot change the information transmitted between parties,
does not learn anything about the value of the session key established between
uncorrupted parties. This is formalized via the infeasibility for I to distinguish
between the real value of the session key and an independent random value in a
specially designed experiment. We refer to the papers of Canetti and Krawczyk for a

1A function µ(x) is negligible, if for every positive integer c there exists an Nc > 0 such that
for all x > Nc, the following holds: |µ(x)| < 1/xc.

2.3. Isogenous Elliptic Curves over Prime Fields 27

formal definition of the SK security in the AM. After a few implementation-specific
modifications to the protocol KA1, namely introducing party identifiers, session
identifiers and requiring to erase variables a and b before returning the output, the
following theorem can be proved:

Theorem 2.1. If the DDHAP assumption holds for the finite abelian group G acting
on the set X, then the KA1 protocol is SK-secure in the AM.

The classical goal of encryption is to preserve the privacy of messages: an adver-
sary should not be able to learn from a ciphertext information about its plaintext
beyond the length of that plaintext. This idea is captured via the notion of semantic
security of an encryption scheme, proposed by Goldwasser and Micali [50], which
asserts that any polynomial-time adversary cannot effectively distinguish between
the encryption of two messages of his choosing. We will use an equivalent notion,
indistinguishability of encryptions in a chosen-plaintext attack (IND-CPA) [8]. The
equivalence of these two security notions has been shown by Goldreich [46].

In our security argument we will also use a property of a hash function family H
to be entropy smoothing (ES). The smooth entropy denotes the number of almost
uniform random bits in a random variable [19, 20]. The ES hash function should be
able to produce almost uniformly distributed outputs by decreasing the output size,
as compared to the size of the input. This is formalized via the requirement that
any polynomial-time adversary cannot effectively distinguish between the values
(k,Hk(u)) and (k, h), where k ∈ K, u ∈ U and h ∈ {0, 1}w are chosen at random,
and U is the domain of the hash function. When applied to the PE scheme, U is
the set of bit strings that represent the elements of G ∗ x.

Assumption 2.2 (ES). The hash function family H is entropy smoothing.

Theorem 2.2. If the DDHAP assumption holds for the finite abelian group G acting
on the set X, and the hash function family H is ES, then the public-key encryption
scheme PE is secure in the sense of IND-CPA.

We have shown that the security of the encryption scheme PE and the protocol
KA1 is based on the hardness of the DDHAP and the GAIP. The PE security is
also subject to the ES assumption about the used hash function family.

2.3 Isogenous Elliptic Curves over Prime Fields

We show that elliptic curves provide an option for implementing the cryptographic
schemes presented in Sect. 2.2. The aim of this section is to define mathematical
structures that will be used as a set X and a finite abelian group G acting on X.

An elliptic curve E over a field F , char(F) 6∈ {2, 3}, is an algebraic curve defined
by an equation y2 = x3 +Ax+B, where A,B ∈ F and 4A3 + 27B2 6= 0. The set of
rational points on E over F , together with the “point at infinity” O, is an additive

28 Constructing Cryptographic Schemes Based on Isogenies

group with the zero element O. The elliptic curve E over F is denoted E/F , and
its group of rational points is denoted E(F). For elliptic curves E1/F and E2/F ,
an isogeny between E1 and E2 is a morphism φ : E1 → E2 of varieties that satisfies
φ(O) = O. The elliptic curves E1 and E2 are called isogenous if there is a non-
constant isogeny between them. Every isogeny E1 → E2 induces a homomorphism
of the groups E1(F) and E2(F). For an elliptic curve E/F , the set of all isogenies
E → E defined over F̄ is called the endomorphism ring of E and denoted End(E).

We review basic facts about elliptic curves over C to establish notation [101,
Ch. II §1]. For a pair of complex numbers ω1, ω2 ∈ C, such that ω2/ω1 6∈ R, the
additive group Λ = ω1Z + ω2Z is called a complex lattice. For a complex lattice Λ,
the Weierstrass ℘-function gives rise to an elliptic curve

EΛ/C : y2 = 4x3 − g2(Λ)x− g3(Λ) (2.1)

and a group isomorphism C/Λ ∼= EΛ(C). For any nonzero α ∈ C the multiplication-
by-α map induces the isomorphism EΛ(C) ∼= EαΛ(C), and for the endomorphism
ring of EΛ we have End(EΛ) ∼= {α ∈ C : αΛ ⊂ Λ}. When End(EΛ) is larger than Z,
EΛ is said to have complex multiplication, and End(EΛ) is then isomorphic to an
imaginary quadratic order.

Let OK be the ring of integers of an imaginary quadratic field K. By ELL(OK)
we denote the set of isomorphism classes of elliptic curves over C having the endo-
morphism ring OK :

ELL(OK) =
{E/C : End(E) ∼= OK}

isomorphism over C
.

For convenience we will write E ∈ ELL(OK) meaning that E belongs to the corre-
sponding isomorphism class [E] in ELL(OK).

There is a well-defined action of the ideal class group CL(OK) on ELL(OK) given
by

[a] ∗ EΛ = Ea−1Λ,

where a is a fractional ideal, [a] is the corresponding ideal class and Λ is a lattice
with EΛ ∈ ELL(OK).

For every ideal class [a] there exists an integral ideal b ⊂ OK for which [b] = [a].
Then Λ ⊂ b−1Λ, and the homomorphism

C/Λ → C/b−1Λ

z 7→ z,

induces a natural isogeny ψ : EΛ → Eb−1Λ. The kernel of ψ is isomorphic to
b−1Λ/Λ ∼= OK/b, and the degree of ψ equals the norm NK

Q (b).
We now reduce elliptic curves over C to the ones over a finite field2 [31, §14.C].

Let H be the Hilbert class field of K, and OH its ring of integers. Then the elliptic

2We use ordinary elliptic curves. With supersingular curves the endomorphism ring is noncom-
mutative and so does not lead to an action by an abelian group. This is why our cryptographic
schemes do not have the same efficiency as the hash function of Charles, Goren and Lauter [24].

2.3. Isogenous Elliptic Curves over Prime Fields 29

curves in ELL(OK) are defined over H. Let p > 3 be a prime in Z which splits
completely in H, and fix a prime P of H lying above p, so that OH/P ∼= Fp. Finally,
let E ∈ ELL(OK) be an elliptic curve which has good reduction at P. Hence g2 and
g3 of (2.1) can be written in the form α/β where α, β ∈ OH , β 6∈ P, so that [g2] and
[g3] can be defined in OH/P. The elliptic curve Ē : y2 = 4x3 − [g2]x− [g3] over the
finite field OH/P is called the reduction of E modulo P. The reduction preserves
the endomorphism ring, namely EndF̄p(Ē) ∼= OK , and every elliptic curve over Fp
with the endomorphism ring OK arises in this way. For two elliptic curves E1, E2 ∈
ELL(OK) that have good reduction at P, the natural reduction map Hom(E1, E2)→
Hom(Ē1, Ē2) is injective and preserves degrees [101, Proposition II.4.4].

Let now E1/Fp be an ordinary elliptic curve such that End(E1) ∼= OK for some
imaginary quadratic field K. According to a theorem of Tate, E1 is Fp-isogenous
to an elliptic curve E2/Fp if and only if #E1(Fp) = #E2(Fp) [110, §3 Theorem 1].
We denote n = #E1(Fp) and restrict ourselves to the isogeny class of elliptic curves
with n points. We define a set of isomorphism classes of elliptic curves with the
endomorphism ring OK to be

ELLp,n(OK) =
{E/Fp : #E(Fp) = n and End(E) ∼= OK}

isomorphism over F̄p
.

In terms of horizontal and vertical isogenies introduced by Kohel [71] this set corre-
sponds to the surface, i.e. the topmost level, of the isogeny graph.

The reduction modulo P maps ELL(OK) to ELLp,n(OK) and induces the action
of CL(OK) on ELLp,n(OK). Since the reduction preserves isogeny degrees, for an
action [a] ∗E1/Fp = E2/Fp by an integral ideal a there exists a separable Fp-isogeny
ψ : E1 → E2 of degree NK

Q (a).

In order to shorten the notation, we will often write ELLp,n or even ELL instead
of ELLp,n(OK), and CL instead of CL(OK), where we do not need to explicitly refer
to OK , p and n.

Remarkably, the set ELLp,n is a principal homogeneous space over the group CL
[119, Theorem 4.5]. In particular, CL acts freely and transitively on ELLp,n, i.e. for
any x, y ∈ ELLp,n there exists precisely one g ∈ CL such that g ∗ x = y. It follows
that # CL = # ELLp,n.

For the sake of a small example, consider the elliptic curve E : y2 = x3+x+5 over
the field F47. E has 42 points, the Frobenius discriminant ∆π = −152 is fundamental
and jE = 27. Figure 2.5 shows the action of CL(O−152) on ELL47,42(O−152). Nodes
of the graph are the j-invariants of the elliptic curves in ELL47,42(O−152). Ideal
classes are represented by the reduced binary quadratic forms. Permutations are
written in the cyclic notation, that is (27 15 41) means that the ideal class [(6, 4, ·)]
maps the curves with j-invariant 27 to curves with j-invariant 15, 15 to 41 and 41
to 27. Since the ideal 7Z + −4+

√
−152

2
Z belongs to the ideal class [(6, 4, ·)] and has

norm 7, isogenies of degree 7 form cycles (27 15 41) and (19 12 24).

30 Constructing Cryptographic Schemes Based on Isogenies

Elements of
CL(O−152)

Permutations on
ELL47,42(O−152)

g = [(3, 2, ·)] (27 12 15 24 41 19) ///o/o/o

g2 = [(6, 4, ·)] (27 15 41)(19 12 24) //

g3 = [(2, 0, ·)] (27 24)(19 15)(41 12) +3

g4 = [(6,−4, ·)] (27 41 15)(19 24 12)
g5 = [(3,−2, ·)] (27 19 41 24 15 12)
g6 = [(1, 0, ·)] (27)(19)(41)(24)(15)(12)

?>=<89:;27 ///o/o

&&MMMMMMMMMMMMMMS[

��
...............

...............
?>=<89:;12

��
�[

�[
�[

�[

��

CK

�� ���������������

���������������

?>=<89:;19

CC
C�

C�
C�

C�

88qqqqqqqqqqqqqq
ks +3 ?>=<89:;15

��
�C
�C
�C
�C

xxqqqqqqqqqqqqqq

?>=<89:;41

[[
[�
[�
[�
[�

OO

?>=<89:;24oo o/ o/

ffMMMMMMMMMMMMMM

Figure 2.5: CL(O−152) action on ELL47,42(O−152).

Thus for an abelian group G and a set X defined by

G = CL(OK),

X = ELLp,n(OK)

it is possible to implement the cryptographic schemes proposed in Sect. 2.2. The
next three sections describe the implementation in greater detail.

2.4 Elements of ELLp,n and CL
We show how one can store elements of X and G when implementing the crypto-
graphic schemes of Sect. 2.2 on a set of isomorphism classes of elliptic curves.

2.4.1 Elements of ELLp,n
Elements of a set ELLp,n are isomorphism classes of elliptic curves. Since two
elliptic curves are isomorphic over F̄p if and only if they have the same j-invariant
[100, Proposition III.1.4.b], we represent the elements of ELLp,n by j-invariants. As
j-invariants lie in Fp they can be stored as non-negative integers less than p.

However, for calculations described in Sect. 2.5 one will need an explicit equa-
tion of a curve E ∈ ELLp,n with a given j-invariant. Here we see two ways for
implementation: either to transmit the explicit curve equation, or to transmit the
j-invariants and compute the equations when it is needed. The former approach
saves computational resources while the latter one saves bandwidth. In the latter
case, the elliptic curve equation can be obtained in the following way. At first one
sets c = j/(j − 1728) and considers the curve E : y2 = x3 − 3cx + 2c. E is either a
desired elliptic curve or a twist, i.e. #E(Fp) correspondingly equals n or 2p+ 2−n.
When these numbers are relatively prime, #E can be tested by taking a random
point on E and multiplying it by n. If in the twisted case, one takes a quadratic
non-residue v ∈ F∗p and sets the desired curve to be E ′ : y2 = x3 − 3cv2x+ 2cv3.

2.4. Elements of ELLp,n and CL 31

2.4.2 Elements of CL
Elements of an ideal class group CL(OK) are classes of fractional ideals modulo
principal fractional ideals of the imaginary quadratic order OK . A traditional ap-
proach is to use reduced ideals or, equivalently, reduced binary quadratic forms, as
representatives of the ideal classes. However for storing elements of CL we will use
a different approach, which is more suitable in the context of the action on ELLp,n.

We first recall an important result by Kohel [71]. For an ordinary elliptic curve
E/Fp with endomorphism ring OK of discriminant ∆, and a prime l, there are(

∆
l

)
+ 1 isogenies of degree l to curves with endomorphism ring isomorphic to OK .

We immediately observe that inert primes, namely those satisfying
(

∆
l

)
= −1, do

not appear as degrees of isogenies inside ELLp,n, and therefore will not be further
considered. Ramified primes, that is when l | ∆, yield only one horizontal isogeny
of degree l. Due to the existence of dual isogenies, isogenies of a ramified degree
form loops of length 2. In other words, since lOK = l2, the ideal l has order 2 in
CL. As compared to split primes, a ramified isogeny degree l does not introduce
much diversity when moving on the isogeny graph, because the number of hops by
l-isogenies has to be considered modulo 2. When l is split, there are two horizontal
isogenies of degree l, and l-isogeny cycles can be much longer. For this reason it is
beneficial to select an elliptic curve with an endomorphism ring where most of the
small primes are split, when choosing the system parameters. Our further attention
will be concentrated on split primes.

For a fixed positive integer lmax let L be an indexed set

L =

{
primes li :

(
∆

li

)
= 1 and li ≤ lmax

}
. (2.2)

Let also d = #L. Then for each i, 1 ≤ i ≤ d, we define a prime ideal li of OK to be

li = liZ +
bi +
√

∆

2
Z, (2.3)

where bi = min{b ∈ N : b2 ≡ ∆ (mod 4li)}. Now a homomorphism

φ : Zd → CL (2.4)

(v1, . . . , vd) 7→
d∏
i=1

[li]
vi

lets us use vectors in Zd to store elements of CL. Obviously, the addition of vectors
corresponds to the multiplication in CL, and the additive vector inverse is to be
used as the ideal class inverse (used in the KA3 protocol).

Remark 2.1. Whether the map φ is onto depends on the choice of L. It is proved
that, if the generalized Riemann hypothesis (GRH) is true, then there exists a
constant c0 such that for lmax = c0 log2 |∆| in the setting above, the ideal classes [li],

32 Constructing Cryptographic Schemes Based on Isogenies

1 ≤ i ≤ d, generate the group CL [52, Theorem 2]. In practice for a majority of ideal
class groups it suffices to take c0 = 0.5. Moreover, it is believed that the average
minimum value of lmax needed to generate CL is O(log1+ε |∆|) for any ε > 0 [5]. In
our practical experiments we chose lmax ≈ log |∆|. Note that when the structure of
CL is pre-computed during the system parameters selection, the fact that the prime
ideals li of norms in L generate CL can be tested and nonconforming class groups
can be discarded. Otherwise, when the structure of CL is not pre-computed, the
fact that any element of CL can be represented as a product in (2.4) depends on the
GRH and the choice of lmax.

2.4.3 Generating the System Parameters

In order to choose the set ELLp,n one first picks a prime p of sufficient size (see
Sect. 2.7.1). One then tries arbitrary elliptic curves over Fp until an appropriate
curve is found. For every curve E one computes #E(Fp) using the SEA algorithm.
The trace t of the Frobenius endomorphism π : (x, y) 7→ (xp, yp) is then obtained as
t = p + 1 − #E(Fp), and to test that E is ordinary one verifies that t 6= 0. The
Frobenius discriminant ∆π is then obtained by the formula

∆π = t2 − 4p. (2.5)

The discriminant ∆ of End(E) satisfies

∆ = ∆π/g
2 (2.6)

for some integer g. A straightforward way to ensure that End(E) is a maximal
imaginary quadratic order is to check whether ∆π is a fundamental discriminant.
Besides, when the conductor of ∆π is not divisible by a large prime, one may use an
algorithm of Kohel [71] to move from E to a curve with the maximal endomorphism
ring. In this case one should also check that li - g for all li ∈ L, so that there are no
li-isogenies down.

Once ∆ is known, one chooses lmax (see Remark 2.1) and examines how many
of the primes less or equal to lmax are split. The more small primes are split the
better performance the CL action will have. One can even do an “early abort” of
the SEA algorithm when t is computed modulo small primes and too few of them
satisfy (t

2−4p
li

) = 1. When the curve is chosen, the structure of CL(O∆) should be
computed, as we discuss later in Sect. 2.6.

The obtained elliptic curve E ∈ ELLp,n is to be used as the set element x in the
proposed cryptographic schemes.

2.5 Implementation of CL Action on ELLp,n
We show how to implement the group action ∗ used in the cryptographic schemes
of Sect. 2.2. Let an elliptic curve E ∈ ELLp,n be defined by y2 = x3 +Ax+B, and

2.5. Implementation of CL Action on ELLp,n 33

an ideal class be given by a vector ~v ∈ Zd according to the notation of Sect. 2.4.2.
Our aim is to compute φ(~v) ∗ E ∈ ELLp,n.

From (2.4) we have that

φ(~v) ∗ E = (
d∏
i=1

[li]
vi) ∗ E. (2.7)

The associativity property of the group action implies that we can compute (2.7)
by gradually acting by the factors [li] or [li]

−1 in (2.7), depending on the sign of vi.
We call the operation [li] ∗ E = E1 a hop, this corresponds to an isogeny E → E1

of degree li. The computation of (2.7) consists of
∑d

i=1|vi| hops between elliptic
curves. We further explain the implementation of a single hop.

Throughout this section we use a notation

(l, b, ·) = lZ +
b+
√

∆

2
Z

for the prime ideals li defined by (2.3), in order to explicitly refer to b. Since(
∆
l

)
= 1, the prime l is split and we can write lOK = (l, b, ·)(l,−b, ·). It follows

that [(l, b, ·)]−1 = [(l,−b, ·)], and for the negative coordinates in ~v we should use the
action by [(l,−b, ·)].

To compute the elliptic curve E1 = [(l, b, ·)] ∗ E we apply ideas used in the
SEA algorithm [29, 96]. For the action [(l, b, ·)]∗E = E1 there exists a separable Fp-
isogeny ψ : E → E1 of degree NK

Q (l, b, ·) = l. The same holds for [(l,−b, ·)]∗E = E2.
The j-invariants of E1 and E2 are computed as roots of the equation

Φl(x, j(E)) = 0 (mod p), (2.8)

where Φl is the modular polynomial of level l. When l does not divide the conductor g
of ∆π, the equation (2.8) has exactly 2 roots. We should determine which root is
the j-invariant of the curve E1. For that we take one of the roots ̂ and apply
the algorithm of Elkies to compute the equation of an isogenous elliptic curve Ê,
j(Ê) = ̂, and the polynomial ĥ(x) that vanishes on the l-isogeny E → Ê kernel.

The kernel of an l-degree isogeny is a subgroup of the l-torsion group, and the
Frobenius endomorphism π on the kernel points satisfies the characteristic equation

π2 − tπ + p ≡ 0 (mod l). (2.9)

For split l the equation (2.9) has two different roots π1, π2 ∈ Zl called Frobenius
eigenvalues. These are related to the ideals (l, b, ·) and (l,−b, ·) by the following
formula:

π1,2 ≡
t± gb

2
(mod l),

34 Constructing Cryptographic Schemes Based on Isogenies

where t is the trace of the Frobenius endomorphism. Indeed, we have that b2 ≡ ∆
(mod 4l), thus g2b2 ≡ ∆π (mod 4l) and (t+ gb)/2 satisfies (2.9):(

t+ gb

2

)2

− tt+ gb

2
+ p =

g2b2 −∆π

4
≡ 0 (mod l).

The same holds for (t − gb)/2. The eigenvalue π1 ≡ (t − gb)/2 (mod l) corre-
sponds to the action of π on the kernel of the isogeny associated with (l, b, ·) and
π2 ≡ (t+ gb)/2 (mod l) corresponds to the isogeny associated with (l,−b, ·).

We then check that the eigenvalue π1 satisfies the relation

(xp, yp) ≡ [π1](x, y) (mod y2 − x3 − Ax−B, ĥ(x)), (2.10)

where [π1](x, y) stands for the point multiplication by π1. If (2.10) holds, we set the
resulting elliptic curve E1 to be Ê. Otherwise E1 is obtained from the second root
of (2.8).

The computational complexity of a single hop between l-isogenous elliptic curves
is dominated by solving the equation (2.8). The degree of the polynomial f(x) =
Φl(x, j(E)) is l+1. The roots are found by computing the gcd(xp−x, f(x)). The left-
right binary exponentiation xp (mod f(x)) takes log p polynomial squarings, and
multiplications by x are given “for free”. Each polynomial multiplication through
the number-theoretic transform (NTT) requires O(l log l) field multiplications. Also
the division with remainder of the 2l-degree product polynomial by f(x) can be
implemented in O(l log l) multiplications in Fp [12]. In practice for l less than ap-
proximately 70 these operations are faster implemented with the “schoolbook” and
related algorithms, but for the asymptotic analysis we use the O(l log l) estimation
anyway. This results in a total of O(l log l log p) field multiplications needed to com-
pute xp (mod f(x)). The GCD of l-degree polynomials is computed with O(l log2 l)
field multiplications [12], and since log l < log p, the resulting complexity of solving
f(x) = 0 is O(l log l log p).

The second most demanding operation in an l-isogenous hop is the verification
of (2.10). A substitution yp−1 = (x3 +Ax+B)(p−1)/2 allows the exponentiation to be
performed in the univariate polynomial ring Fp[x]/h1(x). Since the degree of h1(x)
is (l − 1)/2, the binary exponentiation requires O(l log l log p) field multiplications.
When several consecutive hops are done along the same isogeny degree l, the verifi-
cation of (2.10) is needed only on the first hop. This is because when moving along
a cycle, at the second and the subsequent hops we know where we came from.

Thus the running time of one hop between l-isogenous elliptic curves is

O(l log l log p) (2.11)

multiplications in Fp.
To estimate the average running time of the action (2.7), we use the following

approximations: h ≈ 0.46(−∆)1/2 for the class number # CL(O∆) [28]; lmax ≈ log|∆|

2.6. Implementation of Sampling from CL 35

for the biggest prime in L (see Remark 2.1); ∆ = cp, where c is a constant (follows
from (2.5), the Hasse’s bound |t| ≤ 2

√
p, (2.6) and the fact that the conductor

g is chosen to be small during the system parameter generation); li ≈ 2i ln 2i for
the value of the i-th prime in L; and d ≈ 1

2
lmax/ ln lmax for the number of primes

in L. In the last two approximations we use the prime number theorem and the fact
that almost half of the primes are split. Let each vi take values from an interval
[−v̂, v̂]. The number of allowed values for each vi approximates as log1/ log e p, since
being raised to power d it gives p1/2 possible vectors. The average running time of
the group action (2.7) is then O(

∑d
i=1 log0.7 p li log li log p). We use the fact that∑d

i=1 i ln2 i is O(d2 ln2 d) and the above approximation for d. This gives

O
(
log3.7 p

)
multiplications in Fp needed for an average action of CL on ELLp,n.

2.6 Implementation of Sampling from CL

We show how to implement the sampling operation · R←− G used in the cryptographic
schemes of Sect. 2.2.

2.6.1 Random Sampling from CL
We use the notation for L, li, d, ~v and φ(·) introduced in Sect. 2.4.2. A vector ~v ∈ Zd
is said to be a relation if φ(~v) = [OK], i.e. ~v maps to the identity element of CL(OK).
Let the set L be chosen such that the set of ideal classes [li], 1 ≤ i ≤ d, generates the
group CL(OK). Following a class group computation algorithm of Jacobson [57], we
compute a lattice Λ = kerφ ⊂ Zd of relations among the ideal classes [li], 1 ≤ i ≤ d,
so that CL(OK) ∼= Zd/Λ. Then we choose a minimal generating set of ideals li,
i ∈ J , for a subset of indices J ⊂ {1, ..., d}, and find the orders mi = ord[li], i ∈ J .

Now, using the Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algorithm,
we compute a short basis of Λ and store it in a matrix BΛ of column vectors. All
the above described steps are needed only once and therefore can be done during
the parameter choice or the pre-computation phase. This allows to reject elliptic
curves that require lmax larger than approximately log|∆| (see Remark 2.1) or yield
long vectors in BΛ. Practical experiments for dlog pe = 224 and lmax ≈ log|∆| show
that the coordinates of vectors in BΛ are generally less than 50.

In order to implement the random sampling from CL, we construct a vector
~u ∈ Zd by choosing the coordinates

ui ←

{
R←− {0, 1, . . . ,mi − 1}, i ∈ J ;

← 0, i 6∈ J.

36 Constructing Cryptographic Schemes Based on Isogenies

Now φ(~u) is a random element of CL, as the uniform distributions on the cyclic
subgroups 〈[li]〉, i ∈ J , give the uniform distribution on CL.

Some of the coordinates of ~u will be large. For instance, if the class group is
generated by an ideal li, then ui is a random number between 0 and # CL−1. The
following optimisation steps are aimed at computing an equivalent vector ~v ≡ ~u
(mod Λ) which is faster than ~u in terms of its action on ELL.

We first find a lattice vector ~b ∈ Λ close to ~u and set ~w = ~u−~b. The vector ~b can
be found by Babai rounding [2] as ~b = BΛbB−1

Λ ~uc, where b·c is the coordinate-wise
floor function, and ~u is a column vector, or by any other algorithm for the closest
lattice vector problem.

To further optimize ~w, we will need a d-dimensional row vector ~t = (t1, . . . , td),
where each coordinate ti is the average time used to compute the action [li]∗E. The
row vector ~t can be obtained experimentally during the parameter choice phase.
Now for a column vector ~v ∈ Zd, the approximate time needed to compute the
action φ(~v) ∗E is ~t |~v |, where |·| is the coordinate-wise absolute value function. We
thus need to solve the following (mixed) integer linear program (ILP):

minimize ~t |~v |
subject to ~v = ~w +BΛ

~k, int ~k.
(2.12)

The problem (2.12) can be solved by various ILP algorithms, e.g. the branch and
bound algorithm, the simplex algorithm or a primitive search. Note that we do not
require finding the optimal solution, as it can take a long time. Even a quick run of
an ILP algorithm allows to significantly improve the value of the objective function
in (2.12). Moreover, in some applications, for instance when ~v is the private key
in the encryption scheme PE (Fig. 3.2), it is beneficial to spend more time on the
optimization of ~v during the pre-computation phase.

The random sampling from CL proposed in this section requires the pre-compu-
tation of an ideal class group structure and therefore cannot be used with large class
groups. However the group size threshold keeps increasing due to the development
of computational resources and algorithms. The up-to-date class group computation
record reported by Biasse [11] employs a 366-bit discriminant. This is enough for
achieving the 112-bit security level, as discussed later in Sect. 2.7.

2.6.2 Pseudo-Random Sampling from Large CL
We show how to implement the sampling operation without prior knowledge of the
class group structure.

An algorithm for random sampling proposed by Srinivasan [103] outputs an
ideal of a large norm. To further factor this ideal over the smooth factor base (2.2),
techniques from index calculus algorithms for imaginary quadratic fields could be
used as it is done by Galbraith et al. [45]. However this approach would have
exponential running time and still yield an ideal representation which is slow in

2.7. Security of ELL-Based Cryptographic Schemes 37

terms of its action on ELLp,n, as compared to optimized representations discussed
in Sect. 2.6.1.

We propose to use a non-uniform probability distribution S on the set of elements
of CL instead of the uniform distribution R. Note that in order to complete the
proofs of Theorems 2.1 and 2.2 we have to additionally assume that R and S are
computationally indistinguishable. Several authors, including Galbraith [44], Jao et
al. [61] and Teske [113], construct samplings from CL that employ ideals with small
split norms, in order to emulate the random sampling from CL. Below we propose a
candidate probability distribution S that is constructed to optimize the speed of the
CL action on ELL. How plausible it is that S is computationally indistinguishable
from R is a difficult question that requires further analysis.

The probability distribution S is constructed as follows. For a fixed lmax we
use the notations ∆, d, li and φ from Sect. 2.4.2. Let also h ≈ 0.46(−∆)1/2 be
an approximation for the class number # CL(O∆). We then choose a set V ⊂ Zd
such that #V = ch for a small c > 1, and the random sampling from V is easy to
implement. For instance, if V is the set of vectors inside a d-dimensional box

V = {~v : − v̂i ≤ vi ≤ v̂i, 1 ≤ i ≤ d} (2.13)

defined by non-negative integers v̂i, 1 ≤ i ≤ d, then the random sampling from V
can be achieved through d random samplings of the coordinates. We define S to be
the probability distribution on CL induced by the uniform probability distribution
on V and the map (2.4).

To construct the box V we start with a d-cube. Since for smaller primes li
the action [li] ∗ E can be computed faster, we stretch the box V along the faster
dimensions and squeeze it along the slower ones, so that the average time used for
the computation along the i-th axis is the same for all the dimensions 1 ≤ i ≤ d.
The values v̂i in (2.13) can be computed using the timing vector ~t (see Sect. 2.6.1).
This approach has an advantage against timing side-channel attacks, as the running
time of the group action is almost the same for different randomly chosen vectors
from V .

2.7 Security of ELL-Based Cryptographic Schemes

In this section we discuss the plausibility of the DDHAP and the ES assumptions
with respect to the cryptographic schemes based on the CL action on ELLp,n.

2.7.1 Plausibility of the CL-DDHAP Assumption

The DDHAP formulated for the CL action on ELLp,n (CL-DDHAP) has not been
considered in the literature. As far as we are concerned, the most efficient approach
is to solve the corresponding CL group action inverse problem (CL-GAIP).

38 Constructing Cryptographic Schemes Based on Isogenies

Let us estimate the computational complexity of the CL-GAIP. Galbraith et
al. proposed an algorithm for constructing isogenies between elliptic curves [45].
Stages 2 and 3 of this algorithm particularly solve the CL-GAIP, that is, find an
ideal that maps a given elliptic curve to another given curve in the set ELLp,n(OK).
The algorithm is based on the Pollard’s rho method [84] and requires approximately
(πh)1/2 hops between li-isogenous curves, li ∈ L, h = # CL. We have estimated the
running time of one hop by (2.11), so the average running time of the algorithm
equals O(h1/2

∑d
i=1

1
d
li log li log p). After using the approximations for h, d and li as

in Sect. 2.5 this becomes

O(p1/4(log2 p) log log p) (2.14)

multiplications in Fp. We do not count the O(p1/4+ε) complexity of finding a short
smooth representation of the resulting ideal.

In order to choose appropriate system parameters we use cryptographic security
levels defined by the European Network of Excellence in Cryptology II (ECRYPT2)
[40]. Computational complexities of 80, 96, 112 and 128 bits are assumed to be
infeasible during the next 4, 10, 20 and 30 years, respectively. The size of p is
chosen such that the number of bits in (2.14) equals the corresponding security level
recommendation. The resulting values of log p are listed in Table 2.1.

2.7.2 Solving the CL-GAIP with a Quantum Computer

Quantum computers allow to solve certain computational problems with a signifi-
cantly greater efficiency than classical computers. An intriguing question is whether
the CL-GAIP can be efficiently solved on a quantum computer.

Since the problem involves the action of an ideal class group CL of an imaginary
quadratic field, we will firstly review current advances in the computations in CL. In
the classical computation case, sub-exponential algorithms have been proposed for
computing the structure of CL and solving the discrete logarithm problem (DLP)
in a cyclic subgroup of CL (see, for example, Jacobson [57, 58]). Note however that
these results do not imply sub-exponential complexity for the CL-GAIP, which is
still exponential-time (2.14).

In the quantum computation case, a polynomial-time algorithm for the structure
of CL has been described by Hallgren [53]. The ability of quantum computer to solve
the hidden subgroup problem is employed for computing the lattice of relations
between generators of CL. Schmidt [93] has carefully described an implementation
of Shor’s algorithm for solving the DLP in a cyclic subgroup of CL and estimated
the necessary quantum register size.

These classical and quantum computation results for problems in the ideal class
group do not apply to the CL-GAIP. Indeed, the CL-GAIP is defined for elements
of the set ELLp,n that the group CL acts on. One is given the j-invariants of two
elliptic curves Ex, Ey ∈ ELLp,n, and the problem is to find an ideal r such that
Ey = r ∗Ex. In order to reduce the CL-GAIP to a similar problem over C and look

2.7. Security of ELL-Based Cryptographic Schemes 39

at the relationship between corresponding complex lattices, one has to lift these
elliptic curves to C, namely to solve the following problem:

Problem 2.3 (Coherent Lifting Problem). For given ordinary elliptic curves Ex/Fp,
Ey/Fp with End(Ex) ∼= End(Ey) ∼= OK, find complex lattices Λx, Λy such that there
is a prime P | p of the Hilbert class field H of K for which

EΛx (mod P) ∼= Ex ,

EΛy (mod P) ∼= Ey .

One can solve the coherent lifting problem by constructing H through the com-
putation of the class polynomial H∆ =

∏h
i=1(X−j(τi)), where the complex numbers

τi are obtained from the reduced representatives of the elements of CL. One then
finds a prime P of H and reduces the values j(τi) modulo P. Since the degree of
H∆ is h = # CL, this approach requires time and space exponential in log h. In fact,
the best way to solve the coherent lifting problem seems to be to solve the CL-GAIP
first.

Now we will try to apply Shor’s DLP algorithm [98] directly to the elements of
ELLp,n. The original algorithm relies on the following idea. Let y = xr in a finite
cyclic group, so that the DLP asks to compute r knowing x and y. A function
f(a, b) = xayb has the value (r,−1) as its period, since f(a, b) = f(a + r, b − 1).
When f(a, b) is implemented in quantum gates, one can efficiently find the period
by means of the quantum Fourier transform, thus obtaining r. Quantum computers
use reversible computation, and implementing a deterministic function on a quantum
computer reversibly requires as much space as it does time. So it is essential for
implementing the Shor’s algorithm that the periodic function is polynomial-time.
For solving the CL-GAIP we try to construct a function f̂(a, b) similar to f(a, b),
that takes imaginary quadratic ideals a and b. Even though it is possible to compute
a∗Ex and b∗Ey, we do not know of any polynomial-time composition operation for
the two obtained elliptic curves that would be suitable for the purpose. We leave it
as an open question to find a polynomial-time periodic function on ELLp,n with the
period dependent on r, such that Ey = r ∗ Ex.

It has been recently proposed to use quantum computers for solving the hidden
shift problem. The problem asks, for a given finite group G, a finite set X and
maps f, g : G → X such that g(a) = f(a + r) for all a ∈ G and a fixed shift
r ∈ G, to find r. When applied to the CL-GAIP, these functions can be defined
as g(a) = a ∗ Ey and f(a) = a ∗ Ex. Then r is a (multiplicative) shift because
f(ar) = ar ∗ Ex = a ∗ Ey = g(a). However polynomial-time quantum algorithms
for the hidden shift problem have been described only for some special types of
functions, namely the Legendre symbol [114] and several classes of bent functions,
a type of boolean functions [91].

40 Constructing Cryptographic Schemes Based on Isogenies

2.7.3 Plausibility of the ES Assumption

The ES assumption about a hash function family H = {Hk : k ∈ K} concerns the
hash function’s ability to extract entropy from a “partially random” source. In the
ELL-based PE scheme the hash function Hk(u) is applied to the elliptic curve u
represented by its j-invariant. Since there is log p bits in the representation of a
j-invariant as an element of Fp, but only h ≈ p1/2 elliptic curve isomorphism classes
exist in the ELLp,n, the entropy of the random variable u is approximately 1

2
log p

bits. Thus, on input u, the hash function Hk should output an almost uniformly
distributed string of 1

2
log p bits. A similar problem appears, for example, when

the Diffie-Hellman key agreement protocol is implemented in, say, a 160-bit multi-
plicative subgroup of a 1024-bit finite field. The shared secret output by the key
agreement protocol needs to be transformed into a secret keying material. A func-
tion that implements this transformation is called a key derivation function. The
National Institute of Standards and Technology (NIST) defines two approved key
derivation functions [81]. The length of the output keying material in these func-
tions is adjustable. The NIST key derivation functions are based on hash algorithms
approved by NIST, namely the SHA-1 function and the SHA-2 family of hash func-
tions. The applicability for key derivation is also a requirement for the upcoming
SHA-3 family of hash functions. These facts suggest that it is indeed possible to
construct an ES hash function family suitable for the ELL-based PE scheme.

2.8 Numerical Experiments

In this section we report about a trial implementation of the arithmetic used in the
proposed cryptographic schemes3.

We have implemented the CL group action on ELLp,n using the computer alge-
bra system PARI/GP 2.4.3 created by Cohen, Belabas et al. The exponentiation in
Fp[x]/f(x) for degrees of f(x) higher than approximately 70 is more efficiently real-
ized in the Number Theory Library (NTL) 5.5.2 by Shoup, so we make external calls
to NTL when it is appropriate. PARI and NTL libraries were compiled with GNU
Multiple Precision Arithmetic Library (GMP) 5.0.0. A database of Atkin modular
polynomials of levels 3–499 was downloaded from the web site of the Elliptic Curves
and Higher Dimensional Analogues (ECHIDNA) project by Kohel. For the class
group structure computation we used the quadratic order class implemented by
Jacobson in the LiDIA 2.2.0 library.

The largest discriminant for which we could compute the class group structure
using LiDIA was 226 bits long. This took approximately 3 hours and the process
occupied 3 gigabytes of memory space. This size of discriminant corresponds to 75
bits of security and we have included it in our results. The class group structure

3The source code of the implementation is available at the author’s personal web page, currently
at http://www.item.ntnu.no/people/personalpages/phd/anton/software.

http://www.item.ntnu.no/people/personalpages/phd/anton/software

2.9. Concluding Remarks 41

Security (bits) dlog pe (bits) Time (seconds)

75 224 19

80 244 21
96 304 56
112 364 90
128 428 229

Table 2.1: Average running time of one CL action on ELLp,n.

was employed in the random sampling as described in Sect. 2.6.1. In the top row of
Table 2.1, Time is the average time used for one random sampling of ~v followed by
an optimization of ~v that lasts about 2 seconds and then the action φ(~v)∗E. Longer
optimisation runs generally yield better group action times, which is relevant when
the optimised vector can be precomputed off-line.

Table 2.1 shows the average time for one CL action on ELLp,n. For security
levels 80–128, the Time column is the average time for a sampling of ~v from V , as
described in Sect. 2.6.2, followed by the action φ(~v) ∗ E.

The system parameters which were used for time measurements in Table 2.1 are
listed in Appendix 2.A.

We stress that the provided time estimations are valid for one class group action.
For the PE scheme, an encryption requires two group actions that can be computed
in parallel. Since modern processors often have several processing cores the “wall
clock” encryption time can be treated as one group action time. The decryption in
the PE scheme takes one group action. In the three proposed KA protocols each
party has to perform two consecutive group actions. However the first action can
be precomputed before the protocol starts.

Timings in Table 2.1 were obtained on a Ubuntu Linux 9.04 system with Intel
Core i7 920 processor clocked at 3.6 GHz. The implementation is single-threaded,
so only one of the four processor cores was used at a time. Note that whereas PARI,
NTL and GMP are fast computation oriented libraries, a customized implementation
of the arithmetic may result in better speeds. For instance the reduction modulo p
can be implemented faster for p = 2n±a for small a, as compared to the generic long
division algorithm used in GMP. Also the polynomial multiplication and division
operations can be efficiently parallelized [12].

2.9 Concluding Remarks

Let us compare the proposed cryptographic schemes with the ones based on the
ECDLP, namely the elliptic curve Diffie-Hellman key agreement scheme, the elliptic
curve digital signature algorithm and others. For an elliptic curve over a field Fq,
the ECDLP is usually considered in a cyclic subgroup of order approximately q.

42 Constructing Cryptographic Schemes Based on Isogenies

For the CL-GAIP, the cardinality of the set ELLp,n is the class number h, and the
elliptic curves are defined over Fp, where p ≈ h2. We shall consider the ECDLP
and the CL-GAIP of similar sizes q and h, respectively. First of all, we note that
the system parameters for an ECDLP-based cryptographic scheme can be gener-
ated in polynomial in log q time, whereas a CL-GAIP-based cryptographic scheme
requires sub-exponential in log h time for computing the class group structure. The
second aspect is the cryptosystem running time. The average running time of one
scalar multiplication on an elliptic curve is 10 log q [55], or O(log q) multiplications
in Fq. For the CL action on ELL, the average running time is O(log3.7 h) multi-
plications in Fp, which is much slower than for the ECDLP-based schemes. The
third aspect we will consider is the computational complexity of the problems. The
ECDLP complexity for a cryptographically strong elliptic curve is widely believed
to be O(q1/2 log q) field operations. The computational complexity of the CL-GAIP
is O(h1/2(log2 h) log log h) multiplications in Fp, i.e. the CL-GAIP has higher com-
plexity than the ECDLP.

It is not yet clear whether the CL-GAIP can be efficiently solved on a quantum
computer. Arguments against the applicability of some currently known quantum
algorithms have been provided in Sect. 2.7.2. In case a quantum attack is discovered
later, the proposed cryptographic schemes would seemingly become of theoretical
interest only.

The encryption scheme and the key agreement protocols proposed in this paper
use random sampling from the ideal class group CL. Since the implementation of the
CL action on ELLp,n employs short smooth ideal representations, efficient random
sampling is only possible for class groups with known structure. This provides
security levels of up to 112 bits, as of 2009 class group computation records. Higher
security levels are only achievable with a pseudo-random sampling which has to offer
good randomness characteristics. It should be also noted that when the class group
structure is not pre-computed, the fact that all elements of CL can be represented
and used in the cryptographic scheme depends on the GRH.

Acknowledgements

The author would like to thank Prof. Alexander Rostovtsev, Prof. Alexei Rudakov
and Prof. Stig F. Mjølsnes for their valuable support during the period of work on
this topic. Very useful comments were also received from the Advances in Mathe-
matics of Communications journal’s anonymous reviewers. The author is grateful
to Dr. Steven Galbraith for his feedback on this paper and for suggestion of the
coherent lifting problem.

2.A. System Parameters Used in Time Measurements 43

2.A System Parameters Used in Time Measure-

ments

We use the notation params to refer to the s-bit security level specified in Table 2.1.
The following parameters are listed in Table 2.2: p is the prime field characteristic;
E is an elliptic curve from the set ELLp,n, where n = p + 1 − t; t is the Frobenius
trace for the curves in ELLp,n; h is the class number (calculated only for the 75-bit
security); lmax is the maximal isogeny degree used in the implementation; {(li, v̂i)}
is the list of tuples consisting of an isogeny degree li and the corresponding hop limit
v̂i, as in (2.13) (listed only for the 128-bit security). The elliptic curves were chosen
to have fundamental Frobenius discriminants ∆π = t2 − 4p in order to ensure that
their endomorphism rings are maximal imaginary quadratic orders.

2.B More Schemes Based on Group Action

In addition to the cryptographic schemes proposed in Section 2.2 and schemes of
other authors listed in Section 1.3, we propose more constructions based on the
isogeny problem.

Throughout this section we let G be a finite abelian group acting on a set X. In
the context of the isogeny problem we have that G = CL(OK) and X = ELLp,n(OK)
for suitably chosen elliptic curves over Fp having n rational points and the endo-
morphism ring OK . In all public-key protocols the private key sk is chosen to be a
random element of G, and the corresponding public key is computed as pk← sk∗x,
where x ∈ X is a part of the common system parameters.

The digital signature scheme DS pictured in Fig. 2.6 is based on the idea of Fiat
and Shamir [42] to obtain a signature scheme from an interactive authentication
protocol by replacing the verifier’s challenge with a hash value (this idea was later
used by Schnorr to obtain a DLP-based signature scheme [94]). The scheme DS
is constructed from the Σ-protocol of Couveignes shown in Fig. 1.2. It is assumed
that a security parameter t ∈ N and a hash function H : (G ∗ x)t×M → {0, 1}t are
publicly known.

A signature generated by Algorithm 2.1 is always accepted by Algorithm 2.2
because, for each i, the following holds:

yi =

{
ci ∗ pk = ai ∗ pk, when bi = 0;

ci ∗ x = (ai sk) ∗ x = ai ∗ (sk ∗ x) = ai ∗ pk, when bi = 1.

To forge a DS signature without knowledge of the private key, a forger has to
find a hash input (y1, . . . , yt,m) that yields a hash value (b1, . . . , bt) for which he
knows values ci satisfying: if bi = 0 then yi = ci ∗ pk, else yi = ci ∗ x. To achieve
this, the forger can choose values (b1, . . . , bt, c1, . . . , ct), compute (y1, . . . , yt), and
verify the condition H(y1, . . . , yt,m) = (b1, . . . , bt). If the condition does not hold,

Parameter Value

p75 2224 − 63
E75 y2 = x3 + x+ 5217
t75 706283819635943803784155145600859
h75 3672598916562470204969585254128081
lmax,75 163

p80 2243 + 59
E80 y2 = x3 + x+ 20321
t80 697564694854065258432585807924187581
lmax,80 263

p96 2303 + 101
E96 y2 = x3 + x+ 3704
t96 5784700169441488234170957034053732866951220027
lmax,96 443

p112 2363 + 309
E112 y2 = x3 + x+ 1919
t112 −5934497458439110580585040693584143729918014330138929037
lmax,112 487

p128 2427 + 69
E128 y2 = x3 + x+ 1025
t128 14933846636205862089595788320503564108095537034421076949568186265
lmax,128 499
{(li, v̂i)}128 (3, 2669), (7, 1094), (13, 475), (17, 317), (19, 269), (29, 121), (31, 107),

(37, 74), (41, 64), (53, 41), (59, 37), (61, 35), (71, 25), (83, 20), (89, 19),
(97, 17), (101, 17), (103, 16), (107, 14), (127, 13), (131, 9), (137, 9), (149, 8),
(167, 7), (181, 6), (197, 6), (199, 6), (223, 5), (229, 5), (239, 5), (307, 2),
(311, 3), (313, 2), (317, 2), (331, 2), (337, 2), (347, 2), (367, 2), (379, 2),
(383, 2), (389, 1), (409, 2), (421, 1), (449, 1), (457, 1), (461, 1), (499, 1)

Table 2.2: System parameters used in the numerical experiments.

2.B. More Schemes Based on Group Action 45

Alg. 2.1 Signature generation

Input: sk, pk, m
for i = 1 to t do
ai

R←− G
yi ← ai ∗ pk

end for
(b1, . . . , bt)← H(y1, . . . , yt,m)
for i = 1 to t do
ci ← ai(sk)bi

end for
s← (b1, . . . , bt, c1, . . . , ct)

Output: s

Alg. 2.2 Signature verification

Input: pk, m, s
(b1, . . . , bt, c1, . . . , ct)← s
for i = 1 to t do

if bi = 0 then
yi ← ci ∗ pk

else
yi ← ci ∗ x

end if
end for
H(y1, . . . , yt,m)

?
= (b1, . . . , bt)

Output: 1

Figure 2.6: Digital signature scheme DS.

the forger chooses another values (b1, . . . , bt, c1, . . . , ct) or a message m, and tries
again. The hash function H() should be indistinguishable from a random function
(i.e. entropy smoothing). Due to this requirement, forger’s success probability at
every trial is approximately 1/2t. The forger performs a sequence of Bernoulli trials,
and the number of necessary trials is described by the geometric distribution with
the mean value 2t. Hence the parameter t should be larger than or equal to the
security level s.

Another requirement on the function H() is that it should be one-way with
respect to m. Otherwise the forger can choose values (b1, . . . , bt, c1, . . . , ct), compute
(y1, . . . , yt), and solve H(y1, . . . , yt,m) = (b1, . . . , bt) to find m. There is no need for
the functionH() to be one-way with respect to (y1, . . . , yt) because, given (y1, . . . , yt),
it is hard to compute the group action inverses (c1, . . . , ct).

When speaking about the DS implementation using the CL action, there is one
operation that has not been discussed before: the multiplication in CL. When bi = 1,
the value ci is a product of a random element ai and the private key sk. The value
ci is a part of the signature, and hence it should not leak any information about sk.
Elements of CL are represented by integer vectors, as in (2.4). We note that it is
unsecure to just add two vectors and write the result into ci. However, when CL
is cyclic with a small-norm generator of a known order h, elements of CL can be
represented by integers modulo h. This ensures that no information about sk leaks
from the representation of ci.

Finally, we note that one signature generation or verification requires t group
actions. Because of this, the DS scheme implemented on isogenous elliptic curves
is currently slow.

A one-way authenticated key agreement protocol KA4 (see Fig. 2.7), based on
group action, can be obtained as a generalization of ElGamal’s one-pass protocol,

46 Constructing Cryptographic Schemes Based on Isogenies

A B

Input: pkB Input: skB

a
R←− G

y ← a ∗ x
y //

kA ← a ∗ pkB kB ← skB ∗ y
Output: kA Output: kB

Figure 2.7: One-pass authenticated key agreement protocol KA4.

Alg. 2.3 Key generation
Input: −

ek
R←− G

dk← ek−1

Output: ek, dk

Alg. 2.4 Encryption

Input: ek ∈ G, m ∈ X
c← ek ∗m

Output: c

Alg. 2.5 Decryption

Input: dk ∈ G, c ∈ X
m← dk ∗ c

Output: m

Figure 2.8: Encryption scheme ES1.

also called a half-certified Diffie-Hellman protocol [78, Protocol 12.51]. Here entity
A a-priory possesses B’s authentic public key pkB. The key authentication is only
one-way because B has no assurance in who he shares kB with.

A secret key encryption scheme ES1 (see Fig. 2.8) on group action can be ob-
tained by generalizing the Pohlig-Hellman encryption scheme [82]. In this scheme
the decryption key dk can be easily computed from the encryption key ek, and
vice-versa.

It is sometimes not convenient to have a message space X, as it is in the scheme
ES1. For instance, a set X = ELLp,n(OK) is represented by approximately p1/2

bit strings sparsely distributed among the bit strings of length dlog(p)e. To address
this problem we construct a “hashed” variant of ES1, called ES2 (see Fig. 2.9).
The key generation for ES2 is done by Algorithm 2.3. The message space in ES2
is the set of bit strings of length w ≤ log(#G ∗ x). The scheme employs a hash
function H : G ∗ x 7→ {0, 1}w that is entropy smoothing. Note that a hybrid
encryption scheme similar to ES2 would make little sense because one can use a
bare symmetric encryption instead.

It is also possible to send confidential messages without any pre-shared secret
keys, given that the channel is authentic. The protocol T P pictured in Fig. 2.10 is
a generalization of the three-pass protocol proposed by Shamir4.

The protocol T P can be easily transformed into a “hashed” version with the

4According to Massey [74, §IV.C], this three-pass protocol was proposed by A. Shamir in an
unpublished work. The protocol was patented by Massey and Omura [75].

Alg. 2.6 Encryption

Input: m ∈ {0, 1}w, ek

a
R←− G

y ← a ∗ x
k ← H(y)
e← m⊕ k
c← ek ∗ y

Output: (e, c)

Alg. 2.7 Decryption

Input: (e, c), dk
y ← dk ∗ c
k ← H(y)
m← e⊕ k

Output: m

Figure 2.9: Encryption scheme ES2.

A B

Input: m ∈ X Input: −
a

R←− G b
R←− G

m1 ← a ∗m
m1 //

m2 ← b ∗m1

m2oo

m3 ← a−1 ∗m2

m3 //

m← b−1 ∗m3

Output: − Output: m

Figure 2.10: Three-pass message transfer protocol T P .

48 Constructing Cryptographic Schemes Based on Isogenies

P V

Input: v ∈ {0, 1}w, skP Input: pkP
a

R←− G
y ← a ∗ x
z ← skP ∗ y
c← H(z)⊕ v

Commit: y, c //

Reveal: a //

a ∗ x ?
= y

z ← a ∗ pkP
v ← H(z)⊕ c

Output: − Output: v

Figure 2.11: Commitment scheme CS.

message space {0, 1}w or a “hybrid encryption” version with the message space
{0, 1}∗. A possible implementation is: Alice chooses a random hash preimage (or
key material) k ∈ G ∗ x and securely transmits it to Bob using the protocol T P . In
her third protocol message, Alice also transmits m⊕H(k) (or m encrypted with a
symmetric algorithm using a key derived from k). Bob then uses k to recover (or
decrypt) the message m.

A commitment scheme CS (see Fig. 2.11) is constructed using the ideas from the
ElGamal encryption. As before, the entity P possesses a private key skP ∈ G and a
public key pkP = skP ∗ x. The entity P first commits to a value v and then reveals.

The commitment scheme CS is perfectly binding. Indeed, suppose that for a
commitment (y, c) there exist two reveal values a and a′ that can be accepted by the
verifier with two different results v and v′, respectively. From the checks performed
by the verifier we have that a∗x = y and a′∗x = y. Hence z = a∗pkP = a∗(skP ∗x) =
skP ∗ (a ∗x) = skP ∗ y and similarly z′ = a′ ∗ pkP = skP ∗ (a′ ∗x) = skP ∗ y. We have
shown that z = z′ and hence v = v′, a contradiction.

The scheme CS is computationally hiding: an attacker can compute v from x,
pkP , y and c by solving the Diffie-Hellman group action problem (x, y, pkP) which
gives the value z. The attacker then computes v = H(z)⊕ c.

Paper II

Chapter 3 is published in

Anton Stolbunov

Reductionist Security Arguments for Public-Key Cryptographic
Schemes Based on Group Action

“Norwegian Information Security Conference (NISK 2009)” (ed. Stig F. Mjølsnes),
Tapir Akademisk Forlag, (2009), 97–109

Chapter 3

Reductionist Security Arguments
for Public-Key Cryptographic
Schemes Based on Group Action

Abstract. We provide reductionist security arguments for a key agree-
ment protocol KA, which is the Diffie-Hellman key agreement protocol gener-
alized to the context of a group action on a set, and for a public-key encryption
scheme PE , which is the “hashed” ElGamal scheme generalized for a group
action on a set. For the KA protocol we use the notion of session key security
in the authenticated links model, proposed by Canetti and Krawczyk. For
the PE scheme we use a version of the semantic security notion proposed by
Goldwasser and Micali. We prove that the security of the KA protocol and
the PE scheme is based on the decisional Diffie-Hellman group action prob-
lem, defined later in this paper. The PE scheme security also depends on the
entropy smoothing property of the hash function family used in the scheme.

3.1 Introduction

The formulation of public-key cryptographic schemes in terms of a semigroup action
on a set allows to use new mathematical structures for implementing the schemes.
Several implementations have been proposed that use (semi)group actions different
from the exponentiation in a cyclic group [67, 77, 79, 89]. A common feature of
these cryptographic schemes is that their security goes beyond the conventional
discrete logarithm problem and is based on some new computational problems. The
new problems might prove themselves to be asymptotically harder than those used
nowadays. For instance, some known discrete logarithm solvers are difficult to adapt
for the computational problems discussed in Section 3.4.

To identify the computational problems constituting the basis for security of a
cryptographic scheme, one should construct a reduction from a particular computa-

51

52 Security Reductions for Schemes Based on Group Action

tional problem(s) to an attack against the cryptographic scheme. This reduction is
often called a security proof, however Koblitz and Menezes have recently advocated
a more accurate name: a reductionist security argument [69, 70].

Our paper provides a reductionist security argument for a key agreement protocol
KA based on a group action on a set. For this we firstly define the protocol KA
and the computational problem DDHAP (decisional Diffie-Hellman group action
problem, defined in Section 3.4) that is used in the reduction. We then proceed
with defining a security notion, i.e. a very general attack, and show that this attack,
if successful, can be used to solve the DDHA problem. We thus conclude that
attacking the KA protocol is not easier than solving the DDHA problem.

Formalizing the security of cryptographic protocols turned out to be more com-
plicated than that of cryptographic primitives. Among the main reasons for this is
the interactive nature of the protocols in the presence of two or more participants.
This opens the possibility for many different types of attacks that use concurrent
sessions, participant collusions, corrupt communication channels and so on. Bellare
and Rogaway presented the first formal security notion for key agreement proto-
cols [7]. Despite of its later extensions by various authors, the model appears to
be rather difficult to work with. In our paper we will use a key agreement pro-
tocol security model proposed by Canetti and Krawczyk [21, 22]. The security in
this model is formalized via the infeasibility for an adversary to distinguish between
the real value of the session key and an independent random value. The adversary
is modelled to have essentially the same characteristics as those specified by the
Dolev-Yao threat model [37]. There exist more recent works on the the topic of key
agreement protocol security, e.g. by Kudla and Paterson [72], but we consider the
Canetti-Krawczyk model to be well-suited and sufficient for the scope of this paper.

Another important result of this paper is a reductionist security argument for a
public-key encryption scheme PE based on a group action on a set. We use a version
of the semantic security notion [50] called indistinguishability of encryptions in a
chosen-plaintext attack (IND-CPA). The equivalence of the semantic security and
the IND-CPA security notions has been shown by Goldreich [46]. We prove that the
PE scheme is secure in the sense of IND-CPA if the DDHA problem is hard and the
hash function family is entropy smoothing.

3.2 Notation

We start with the basic notation. Let G be a finite commutative semigroup. We
will omit the (semi)group operation sign, writing gh for the product of elements
g, h ∈ G. For a set X, a semigroup action of G on X is a map

G×X → X

(g, x) 7→ g ∗ x,

3.3. Cryptographic Schemes 53

Elements of G Permutations on X

1 (3)(4)(5)(9)
2 (3 9 4 5)
3 (3 5 4 9)
4 (3 4)(5 9)

Table 3.1: Action of G = Z∗5 on X = {3, 4, 5, 9} ⊂ Z∗11 by exponentiation.

which satisfies the associativity property (gh) ∗ x = g ∗ (h ∗ x) for all g, h ∈ G and
x ∈ X. When G is a group, the group action of G on X also satisfies e ∗ x = x for
the identity element e ∈ G and all x ∈ X. An example of a group action is provided
in Table 3.1. The orbit of a set element x ∈ X is the subset G ∗x = {g ∗x | g ∈ G}.
When G is a group, the orbits are equivalence classes on X [38, Proposition 4.1.2].

By a ← b we denote the assignment of a value b to a variable a. By a
R←− G we

mean that a is sampled from the uniform distribution on the set of elements of G.
We write #S for the number of elements in S. By ⊕ we denote the bitwise XOR
operation.

As a general rule, we assume that all the discussed algorithms take descriptions
of G and X, and a fixed element x ∈ X, as part of implied system parameters.
By descriptions of G and X we mean the information needed to implement the
operations involved in the algorithms, i.e. the random sampling from G, the action
of G on X, the semigroup operation etc.

3.3 Cryptographic Schemes

Since the cryptographic schemes proposed in this section do not require inverses and
the identity element in G, we let G be a finite commutative semigroup acting on a
set X.

3.3.1 Key Agreement Protocol Based on Semigroup Action

We define a key agreement protocol KA depicted in Fig. 3.1. Here A and B are
identifiers of the participants Alice and Bob, and i is a unique session identifier. In
this protocol Alice is the initiator and Bob is the responder. By A and B we denote
the algorithms run by Alice and Bob, respectively.

Due to the commutativity of G and the associativity of the action, the following
holds:

kA = a ∗ β = a ∗ (b ∗ x) = (ab) ∗ x = (ba) ∗ x = b ∗ (a ∗ x) = b ∗ α = kB, (3.1)

so A and B output the same session key.

54 Security Reductions for Schemes Based on Group Action

A B

Input: A,B, i Input: B

a
R←− G

α← a ∗ x
A, i, α //

b
R←− G

β ← b ∗ x
B, i, βoo

kA ← a ∗ β kB ← b ∗ α
erase a erase b
Output: kA, i Output: kB, i

Figure 3.1: Key agreement protocol KA.

If we choose G and X in a way as in Table 3.1, it becomes clear that the pro-
tocol KA is a generalization of the key agreement protocol proposed by Diffie and
Hellman [36]. A simplified version of the KA protocol that did not contain session
identifiers, party identifiers and “erase” statements, was proposed by Monico [79].

3.3.2 Public-Key Encryption Based on Semigroup Action

We now generalize the ElGamal public-key encryption scheme to the context of
semigroup action. An approach proposed by Monico [79] requires the set X to be a
group in order to mask a message m ∈ X. In contrast with this, we use a ”hashed”
version of the ElGamal encryption scheme, which eliminates these restrictions on
X and m. For a fixed message length w, the message space is the set of bit strings
{0, 1}w, and thus we can write m ∈ {0, 1}w. We use a hash function family H =
{Hk : k ∈ K} indexed by a finite set K, such that each Hk is a function

Hk : G ∗ x→ {0, 1}w.

We define a public-key encryption scheme PE = (K, E ,D) in Fig. 3.2. Some of
notations we use are: sk ∈ G is a secret key, pk ∈ X × K is a public key and
ct ∈ {0, 1}w ×X is a ciphertext. We also have that x, y, z, u ∈ X.

The encryption scheme PE is sound, that is to say, for all pairs (sk, pk) which
can be output by K and for all m ∈ {0, 1}w we have that D(sk, pk, E(pk,m)) = m.
Indeed, we can write Hk(a ∗ y) = Hk(sk ∗ z) since

a ∗ y = a ∗ (sk ∗ x) = (a sk) ∗ x = sk ∗ (a ∗ x) = sk ∗ z.

3.4. Computational Problems 55

K: Key generation

Input: -

sk
R←− G

y ← sk ∗ x
k

R←− K
pk← (y, k)
Output: sk, pk

E : Encryption

Input: pk, m

a
R←− G

u← a ∗ y
h← Hk(u)
z ← a ∗ x
c← h⊕m
ct← (c, z)
Output: ct

D: Decryption

Input: sk, pk, ct
u← sk ∗ z
h← Hk(u)
m← h⊕ c
Output: m

Figure 3.2: Public-Key Encryption Scheme PE .

3.4 Computational Problems

In this section we define computational problems that will serve as the basis for the
security of the cryptographic schemes defined above.

We note that a generic semigroup action has some disadvantages, as compared
to a group action, when viewed from the security perspective. Without inverses in
G, an action by a ∈ G on X might not be a permutation, and so α = a ∗ x does
not necessarily imply x ∈ G ∗ α. In other words, the orbits G ∗ x and G ∗ α might
be of different sizes. This may, for instance, reduce the session key space in the
KA protocol. An easy example is the semigroup of the subsets of the set of two
elements {p, q} with the join composition ∪, acting on itself. The orbit of {} has
four elements, whereas the orbit of {p, q} has only one element. Thus, semigroups
which are not groups should be chosen carefully. On the other hand, a group action
eliminates this kind of flaw, as the orbits are equivalence classes. We note that
if G is a group acting on a set X, then due to the orbit-stabilizer theorem [38,
Proposition 4.1.2], we have that

G ∗ x = [G : Gx],

where Gx = {g ∈ G | g ∗ x = x} is the stabilizer of x. Since the cosets in G/Gx

have the same cardinality, the random sampling a
R←− G followed by the group action

u← a∗x produces the same result as the random sampling from the orbit u
R←− G∗x.

For the rest of this paper we let G be a finite abelian group acting on a set X,
and x a fixed element in X.

Problem 3.1. Group Action Inverse (GAI) Problem: given a randomly chosen
element y ∈ G ∗ x, find a group element g ∈ G such that g ∗ x = y.

Problem 3.1 is a generalization of the discrete logarithm problem. To show this,
consider X to be a multiplicative group, x a generator of a cyclic subgroup and

56 Security Reductions for Schemes Based on Group Action

G = Z∗ordx. However there exist instances of G and X which are outside of this
trivial scope1. In order to adapt conventional algorithms such as the Pollard rho,
Pollard kangaroo, Pohlig-Hellman or index calculus for the generic GAI problem,
one may try to define a group on G ∗ x which is isomorphic to G/Gx. This is
achieved by choosing x to be the identity element and defining the product of any
two elements y, z ∈ G ∗ x as

y · z = (ab) ∗ x, (3.2)

where a and b are such that y = a ∗x and z = b ∗x. But, when both a and b are not
known, the multiplication (3.2) is equivalent to Problem 3.2 and is hard for some
instances of G and X. Thus it is still a question how the named discrete logarithm
solvers can be adapted for the GAI problem.

Problem 3.2. Computational Diffie-Hellman Group Action (CDHA) Problem: given
elements y = a ∗ x and z = b ∗ x, where a and b are chosen at random from G, find
(ab) ∗ x.

Problem 3.3. Decisional Diffie-Hellman Group Action (DDHA) Problem: given
a triple (y, z, u) ∈ X3 sampled with probability 1/2 from one of the two following
probability distributions:

• (a ∗ x, b ∗ x, (ab) ∗ x), where a and b are randomly chosen from G,

• (a ∗ x, b ∗ x, c ∗ x), where a, b and c are randomly chosen from G,

decide which distribution the triple is sampled from.

Problems 3.2 and 3.3 are generalizations of the computational Diffie-Hellman
problem and the decisional Diffie-Hellman problem, respectively. Using a GAIP
solver it is straightforward to construct a solver for the CDHA problem, thus the
CDHA problem is not harder than the GAI problem. Similarly, the DDHA problem
is not harder than the CDHA problem.

For a DDHAP distinguisher S, its probability of returning the correct solution
will be denoted by PrDDH

S . PrDDH
S is a function of a security parameter s = log #G∗x.

Since the distinguisher S can gain a success probability of 1/2 by returning a random
solution, the advantage of S is defined to be

AdvDDH
S =

∣∣∣∣PrDDH
S −1

2

∣∣∣∣ .
We can now formulate the following assumption about the computational com-

plexity of the DDHA problem:

1A good example is the action of the class group CL(OK) of an imaginary quadratic field K
on the set ELLp,n(OK) of isomorphism classes of elliptic curves over Fp with n points and the
endomorphism ring OK [89]

3.5. Reductionist Security Arguments 57

Assumption 3.1. DDHAP Assumption: for any polynomial-time DDHAP distin-
guisher S, the advantage AdvDDH

S is a negligible2 function of s.

3.5 Reductionist Security Arguments

3.5.1 Session-Key Security of the KA Protocol

To model the security of a key agreement protocol we will use a notion of session-
key (SK) security in the authenticated-links adversarial model (AM) proposed by
Canetti and Krawczyk [21]. We refer to their paper for a formal definition of the
SK security in the AM. Below we provide an outline of this security notion.

A protocol Π is modelled as a collection of interactive probabilistic polynomial-
time (PPT) algorithms run by the parties. These algorithms are triggered by arriving
messages. A session is an instantiation of Π run at a party. Note that there can be
more parties than roles in Π, and any number of sessions can be run within each
party.

The adversary I is a PPT algorithm that has full control over the communication
links. In addition to this, I can:

• activate a session within some party by either sending it an action request
message or a protocol message;

• corrupt a party, i.e. learn its current internal state;

• learn the current internal state of the specified session within a party;

• learn the session key output by the specified session;

• perform a test-session query (see below).

The only restriction the AM imposes on I is that it cannot inject or modify messages
(except for messages from corrupted parties) and that any message can be delivered
at most once.

The notion of SK security captures the idea that such an adversary I does
not learn anything about the value of the key of an uncorrupted session. This is
formalized via the infeasibility for I to distinguish between the real value of the
session key and an independent random value. In particular, I participates in the
following SK experiment. After some period of its regular actions described above,
the adversary I chooses a session in which it wants to be tested, by issuing a test-
session query. We then toss a coin and provide I with either the value of the session
key for the queried session, or with a random value from the key space. I is then
allowed to continue with the regular actions, but not allowed to expose the test

2A function µ(x) is negligible, if for every positive integer c there exists an Nc > 0 such that
for all x > Nc, the following holds: |µ(x)| < 1/xc.

58 Security Reductions for Schemes Based on Group Action

session. At the end, I outputs its guess. We will denote by PrSK
I the probability

that I guesses correctly, and by

AdvSK
I =

∣∣∣∣PrSK
I −

1

2

∣∣∣∣
the I’s advantage.

Definition 3.1. A key exchange protocol Π is called SK-secure if the following
properties hold for any polynomial-time adversary I in the AM:

1. If two uncorrupted parties complete matching sessions then they both output
the same key.

2. AdvSK
I is a negligible function of the security parameter s.

Theorem 3.1. If the DDHAP assumption holds for the finite abelian group G acting
on the set X, then the KA protocol is SK-secure in the AM.

Proof. Our proof will be a generalization of that proposed by Canetti and Krawczyk
for the case of X = Z∗q [21, §5.1].

It has been shown in (3.1) that two uncorrupted parties in matching sessions
output the same session key, what satisfies the first requirement of Definition 3.1. To
show that the second requirement holds for the KA as well, let us assume there is a
polynomial-time adversary I with a non-negligible advantage ε. We now construct a
DDHAP distinguisher S that employs the adversary I as depicted in Algorithm 3.1.

Alg. 3.1 DDHAP distinguisher S
Input: (y, z, u) ∈ X3

1: r
R←− {1, ..., l}, where l is an upper bound on the number of sessions activated

by I in any interaction
2: invoke I and simulate the environment of the SK experiment in the AM, except

for the r-th activated protocol session
3: upon the activation of the r-th session (say it is between Alice and Bob and has

a session identifier i), let Alice send (A, i, y) to Bob, and let Bob send (B, i, z)
to Alice

4: if the r-th session is chosen by I as the test session then
5: provide u as the answer to the test query
6: d← I’s output
7: else
8: d

R←− {0, 1}
9: end if

Output: d

3.5. Reductionist Security Arguments 59

Consider the case when the r-th session is not chosen by I as the test session.
The distinguisher S outputs a random guess, and thus AdvDDH

S = 0. Now when
the r-th session is the test session, the definition of Problem 3.3 ensures that the
probability distributions observed by I are the same as in the SK experiment, and
thus AdvDDH

S = ε. Since this “lucky” case happens with 1/l probability, we have
that in general

AdvDDH
S = ε/l,

which is non-negligible. Since S is polynomial-time, we have a contradiction with
the DDHAP assumption.

3.5.2 IND-CPA Security of the PE Scheme

The classical goal of encryption is to preserve the privacy of messages: an adversary
should not be able to learn from a ciphertext information about its plaintext beyond
the length of that plaintext. This idea is captured via the notion of semantic security
of an encryption scheme, which asserts that any polynomial-time adversary cannot
effectively distinguish between the encryption of two messages of his choosing [50].
We will use an equivalent notion, indistinguishability of encryptions in a chosen-
plaintext attack (IND-CPA) [8, §2.2].

For a public-key encryption scheme Π = (K, E ,D) the IND-CPA experiment is
depicted in Algorithm 3.2.

Alg. 3.2 IND-CPA experiment

1: (pk, sk)← K
2: (m0,m1, j)← I1(pk)

3: d
R←− {0, 1}

4: ct← E(pk,md)
5: d′ ← I2(j, ct)

An adversary is viewed as a pair of algorithms I = (I1, I2). Algorithm I1 can
output some state information j that is then passed to I2. The messages m0 and
m1 output by I1 are required to have the same length. By PrIND

I we denote the
probability that d = d′ in the IND-CPA experiment. The advantage of I is

AdvIND
I =

∣∣∣∣PrIND
I −1

2

∣∣∣∣ .
Definition 3.2. A public-key encryption scheme Π is said to be secure in the sense
of IND-CPA if I being polynomial-time implies that the advantage AdvIND

I is neg-
ligible.

In our security argument we will also use a property of a hash function family H
to be entropy smoothing (ES). The smooth entropy denotes the number of almost

60 Security Reductions for Schemes Based on Group Action

uniform random bits in a random variable [20]. The ES hash function should be
able to produce almost uniformly distributed outputs by decreasing the output size,
as compared to the size of the input. This is formalized via the requirement that
any polynomial-time adversary cannot effectively distinguish between the values
(k,Hk(u)) and (k, h), where k ∈ K, u ∈ U and h ∈ {0, 1}w are chosen at ran-
dom, and U is the domain of the hash functions. The ES property is a reasonable
assumption for modern ad hoc hash function families [99].

Definition 3.3. Let H = {Hk : k ∈ K} be an indexed family of hash functions,
where each Hk is a function

Hk : U → {0, 1}w

for a fixed w. Consider two probability spaces over K × {0, 1}w, namely P0 is the
uniform probability space and P1 is induced by the uniform distribution on K × U
and a function

K × U → K × {0, 1}w

(k, u) 7→ (k, Hk(u)) .

H is said to be entropy smoothing, when the probability spaces P0 and P1 are
computationally indistinguishable, i.e. the advantage AdvES

S of any polynomial-time
distinguisher S, that takes an element of K×{0, 1}w and outputs a bit, is negligible.

In the following theorem, the hash function’s domain U is the orbit G ∗ x.

Theorem 3.2. If the DDHAP assumption holds for the finite abelian group G acting
on the set X, and the hash function family H is entropy smoothing, then the public-
key encryption scheme PE is secure in the sense of IND-CPA.

Proof. We use a sequence-of-games technique described by Shoup [99] to construct
our proof. Let an adversary I participate in Game 0 (see Algorithm 3.3), which is
exactly the standard IND-CPA experiment.

Alg. 3.3 Game 0

1: sk
R←− G , y ← sk ∗ x , k

R←− K
2: (m0,m1, j)← I1(y, k)

3: d
R←− {0, 1}

4: a
R←− G , u← a ∗ y , h← Hk(u) , z ← a ∗ x , c← h⊕md

5: d′ ← I2(j, c, z)

Algorithm 3.4 defines Game 1. The only difference from Game 0 is that u is now
chosen at random from the orbit G ∗ x.

Let us define Ei to be the event when d = d′ in Game i.

3.5. Reductionist Security Arguments 61

Alg. 3.4 Game 1

1: sk
R←− G , y ← sk ∗ x , k

R←− K
2: (m0,m1, j)← I1(y, k)

3: d
R←− {0, 1}

4: a
R←− G , u

R←− G ∗ x , h← Hk(u) , z ← a ∗ x , c← h⊕md

5: d′ ← I2(j, c, z)

Alg. 3.5 DDHAP distinguisher S01

Input: (y, z, u) ∈ X3

1: k
R←− K

2: (m0,m1, j)← I1(y, k)

3: d
R←− {0, 1}

4: h← Hk(u) , c← h⊕md

5: d′ ← I2(j, c, z)
Output: d⊕ d′

We construct a DDHAP distinguisher S01 as shown in Algorithm 3.5. S01 outputs
0 when I guesses correctly, and 1 otherwise. When S01 receives a “right” triple
(y, z, u) on input, i.e. when y = a ∗ x, z = b ∗ x and u = ab ∗ x, the probability
distributions observed by I when run in S01 are equivalent to those in Game 0, and
we have that

Pr
[
S01(a ∗ x, b ∗ x, ab ∗ x) = 0

∣∣∣ (a, b)
R←− G2

]
= Pr[E0].

Similarly we observe that

Pr
[
S01(a ∗ x, b ∗ x, c ∗ x) = 0

∣∣∣ (a, b, c)
R←− G3

]
= Pr[E1].

As a result,

AdvDDH
S01 =

∣∣∣∣PrDDH
S01 −

1

2

∣∣∣∣ =

∣∣∣∣Pr[E0] + (1− Pr[E1])

2
− 1

2

∣∣∣∣ =
1

2
|Pr[E0]− Pr[E1]| .

(3.3)
It may seem that in Game 1 the adversary I already has no information about

the bit d. But this is not exactly right. For instance, I can compute h0 ← c ⊕m0

and h1 ← c ⊕ m1. If there is a way to check that one of the h0, h1 is not a hash
image of an element from G ∗ x, then I can conclude on the value of d. We see that
the ability of the hash function to hide preimage is important, what is expressed by
the entropy smoothing property.

We proceed with Game 2, where h is now a random bit string (see Algorithm 3.6).

62 Security Reductions for Schemes Based on Group Action

Alg. 3.6 Game 2

1: sk
R←− G , y ← sk ∗ x , k

R←− K
2: (m0,m1, j)← I1(y, k)

3: d
R←− {0, 1}

4: a
R←− G , u

R←− G ∗ x , h
R←− {0, 1}w , z ← a ∗ x , c← h⊕md

5: d′ ← I2(j, c, z)

Alg. 3.7 ES distinguisher S12

Input: (k, h) ∈ K × {0, 1}w

1: sk
R←− G , y ← sk ∗ x

2: (m0,m1, j)← I1(y, k)

3: d
R←− {0, 1}

4: a
R←− G , z ← a ∗ x , c← h⊕md

5: d′ ← I2(j, c, z)
Output: d⊕ d′

Algorithm 3.7 illustrates an ES distinguisher S12.
When a tuple (k,Hk(u)) with random k ∈ K and u ∈ G ∗ x is supplied to S12,

the adversary I observes the same probability distributions as in Game 1. On the
other hand, when (k, h) is supplied such that k ∈ K and h ∈ {0, 1}w are random,
we get the setting of Game 2. Hence

AdvES
S12 =

1

2
|Pr[E1]− Pr[E2]| . (3.4)

Since in Game 2 h is chosen at random, the encryption c = h⊕md is equivalent
to the one-time pad. So I’s output is independent of the bit d, meaning that

Pr[E2] =
1

2
. (3.5)

Getting together (3.3), (3.4) and (3.5) and applying the triangle inequality, we
have ∣∣AdvIND

I
∣∣ =

∣∣Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]− 1
2

∣∣ ≤
≤ 2

∣∣AdvDDH
S01

∣∣+ 2
∣∣AdvES

S12

∣∣ .
Note that when I is polynomially bounded, so are the distinguishers S01 and

S12. Hence if follows from the DDHAP assumption and the ES assumption that the
advantage AdvIND

I is negligible.

3.6. Concluding Remarks 63

3.6 Concluding Remarks

As it has been noticed by Koblitz and Menezes [69], reductionist security argu-
ments should be taken with care. To illustrate, the following considerations can be
expressed about the security arguments provided in our paper.

To begin with, the computational problem used in the reductions is somewhat
artificial. The DDHA problem is not harder than the corresponding CDHA problem,
which is in turn not harder than the corresponding GAI problem. In practice, more
research is often devoted to the latter two problems, leaving the former problem
unexamined. However only well-studied problems can provide some sort of confi-
dence about their hardness to the scientific community. Without a careful analysis
of the DDHA problem complexity, nothing credible can be said about the security of
cryptographic schemes based on this problem, and the security of the KA protocol
and the PE scheme in particular.

Secondly, the reduction provided in Theorem 3.1 is not tight. Namely, having
an adversary with an advantage ε, the advantage of the DDHAP distinguisher con-
structed during the proof is ε/l. Although l is polynomially bound, it might still
be so big that the attack is not practical for solving the DDHAP instance, i.e. the
advantage is too small to effectively obtain the solution. This inconsistency between
asymptotic and practical results can damage one’s assurance in security.

It should be also noted that our security argument for the KA protocol only con-
cerns (concurrent sessions of) the KA protocol in isolation. We have not considered
the question of composing the KA protocol with other cryptographic schemes, such
as authentication protocols or encryption schemes. A trivial example of such a bad
composition could be a weak symmetric cipher with the session key established by
the KA protocol. If the cipher allows some kind of attack, then the whole composi-
tion is obviously insecure. Cremers has shown that many cryptographic protocols,
proven to be correct in isolation, are vulnerable to multi-protocol attacks [32]. To
prevent these attacks one may, for example, separate key material between different
protocols, or tag protocol messages according to their context.

To summarize, in case when the DDHA problem is hard for a finite abelian group
G acting on a set X, the result of this paper assures that the key agreement protocol
KA based on G and X is secure when used over a channel providing authenticity,
and that the public-key encryption scheme PE based on G and X is secure when
the adversary does not have access to a decryption oracle and when the used hash
function family has good pseudorandom generation capabilities.

Paper III

Chapter 4, excluding Appendices 4.A–4.C, is archived in

Steven Galbraith and Anton Stolbunov

Improved Algorithm for the Isogeny Problem
for Ordinary Elliptic Curves

Preprint (2011), http://arxiv.org/abs/1105.6331v1

http://arxiv.org/abs/1105.6331v1

Chapter 4

Improved Algorithm for the
Isogeny Problem for Ordinary
Elliptic Curves

Co-authored with Steven Galbraith

Abstract. A low storage algorithm for constructing isogenies between or-
dinary elliptic curves was proposed by Galbraith, Hess and Smart (GHS). We
give an improvement of this algorithm by modifying the pseudorandom walk
so that lower-degree isogenies are used more frequently. This is motivated by
the fact that high degree isogenies are slower to compute than low degree ones.
We analyse the running time of the parallel collision search algorithm when
the partitioning is uneven. We also give experimental results. We conclude
that our algorithm is around 14 times faster than the GHS algorithm when
constructing horizontal isogenies between random isogenous elliptic curves
over a 160-bit prime field.

The results apply to generic adding walks and the more general group action
inverse problem; a speed-up is obtained whenever the cost of computing edges
in the graph varies significantly.

4.1 Introduction

Let E1 and E2 be elliptic curves over a finite field Fq. If #E1(Fq) = #E2(Fq) then
there is an isogeny φ : E1 → E2 over Fq [110, Theorem 1]. The isogeny problem is
to compute such an isogeny.

Problem 4.1 (Isogeny Problem). Let E1/Fq and E2/Fq be ordinary elliptic curves
satisfying #E1(Fq) = #E2(Fq). Compute an Fq-isogeny φ : E1 → E2.

67

68 Improved Algorithm for the Isogeny Problem

The isogeny problem for ordinary elliptic curves (we do not consider the super-
singular case in this paper, though it is also interesting) over finite fields is a natural
problem, which has at least two important applications in cryptography.

First, it allows to understand whether the difficulty of the discrete logarithm
problem (DLP) is equal for all elliptic curves with the same number of points over
Fq. If E1 and E2 are ordinary then O1 = EndFq(E1) and O2 = EndFq(E2) are
orders in a quadratic imaginary field K. Let OK be the ring of integers of K and
define the conductor c(Ei) = [OK : Oi] for i = 1, 2. If there is a large prime `
such that ` | c(E1) and ` - c(E2) (or vice versa) then it seems to require at least
`2 operations in Fq to compute an isogeny between E1 and E2, as explained in
Section 4.6.1. However, if this does not happen (in which case we say that the
curves have comparable conductors) then it can be feasible to compute an isogeny
from E1 to E2 using the algorithms due to Galbraith [44] or Galbraith, Hess and
Smart [45] (GHS); the heuristic complexity is Õ(q1/4+o(1)) bit operations. As has
been observed by Jao, Miller and Venkatesan [61], and further discussed by Koblitz,
Koblitz and Menezes [68, §11], it follows that the DLP is random self-reducible
among curves with the same number of points and comparable conductors.

Second, the problem of constructing isogenies between ordinary elliptic curves is
the basis of security of some recently proposed cryptographic schemes [30, 35, 89,
107, 113]. Cryptographic key sizes for these schemes should be chosen based on the
complexity of the isogeny problem.

Galbraith, Hess and Smart [45] gave an algorithm, based on pseudorandom walks
in the isogeny graph, to solve the problem. At each step in the GHS algorithm an
isogeny of relatively small degree ` is computed. The starting point of our work is
the observation that the cost of computing an isogeny depends on ` (see Fig. 4.3),
and so it makes sense to choose a pseudorandom walk which “prefers” to use the
fastest possible isogenies. Similar ideas have also been used previously by authors:
Bisson and Sutherland [13] in their algorithm for computing the endomorphism ring
of ordinary elliptic curves; Stolbunov [107] in a family of cryptographic schemes
based on isogenies.

The main problem is that making the pseudorandom walks “uneven” means
that the walks are “less random”, and so the number of steps in the algorithm
to solve the isogeny problem increases. However, this increase in cost is offset by
the saving in the cost of computing isogenies. We analyse the effect of “uneven”
partitions and suggest some good choices of parameters for the algorithm. We also
give experimental results to support our analysis.

The paper is organised as follows. In Section 4.2 we introduce a generalisation
of the isogeny problem called the group action inverse problem (GAIP). We then
explain why the isogeny problem is the same as GAIP in the case of an ideal class
group; we call this the CL-GAIP. In Section 4.3 we re-formulate (a variant of) the
GHS algorithm as a generic algorithm for solving the GAIP and describe how it ap-
plies to the CL-GAIP. In Section 4.4 we provide a theoretical analysis of the expected

4.2. Definitions and Notation 69

running time of the idealised algorithm. Section 4.5 discusses how the idealised al-
gorithm and the real implementation differ, and gives some experimental results.
Section 4.6 then makes some predictions about how the algorithm will perform for
isogeny computations, and determines the speedup of our ideas compared with the
algorithm described by Galbraith, Hess and Smart. The main consequence of our
work is that the isogeny problem can be solved in less than one tenth of the time of
the GHS algorithm.

4.2 Definitions and Notation

4.2.1 The Group Action Inverse Problem

Let G be a finite abelian group, and X a non-empty set. A (left) action of G on X
is a map

G×X → X

(g, x) 7→ g ∗ x,

which satisfies the associativity property (gh)∗x = g∗(h∗x) for all g, h ∈ G, x ∈ X,
and the property e ∗ x = x for the identity element e ∈ G and all x ∈ X. The orbit
of a set element x ∈ X is the subset G ∗ x = {g ∗ x | g ∈ G}. The orbits of the
elements of X are equivalence classes. The stabilizer of x is the set of all elements
in G that fix x: Gx = {g ∈ G | g ∗ x = x}.

Problem 4.2 (Group Action Inverse Problem). Let G be a finite abelian group
acting on a non-empty set X. Given elements x, y ∈ X, find a group element g ∈ G
such that g ∗ x = y.

When the action of G on X is transitive, that is, X is finite and there is only
one orbit, then the GAIP has at least one solution. When the action is free, i.e. the
stabilizer of any set element is trivial, then the GAIP has at most one solution. In
the case of a free and transitive action, the set X is called a principal homogeneous
space for the group G, and the GAIP has exactly one solution. This last type of
GAIP will be considered in the rest of the paper.

4.2.2 The Isogeny Problem and the Class Group Action In-
verse Problem

Recall from the introduction that E1 and E2 are ordinary elliptic curves over Fq with
#E1(Fq) = #E2(Fq), Oi = EndFq(Ei) and c(Ei) = [OK : Oi] for i = 1, 2. As noted
by Galbraith [44] (building on work of Kohel [71]), a natural approach to compute
an isogeny from E1 to E2 is to first take “vertical” isogenies to elliptic curves E ′1 and
E ′2 such that EndFq(E

′
i) = OK , and the isogeny problem is reduced to computing

70 Improved Algorithm for the Isogeny Problem

a “horizontal” isogeny from E ′1 to E ′2. Alternatively, if O1 and O2 are comparable,
but both c(E1) and c(E2) have a large prime factor, one can use horizontal and/or
vertical isogenies from E1 to a curve E ′1 such that EndFq(E

′
1) = O2 and the problem

is again reduced to computing a horizontal isogeny.
So, without loss of generality, we assume for the remainder of the paper that

EndFq(E1) = EndFq(E2). Define O to be the order EndFq(E1). Write CL(O) for
the group of invertible O-ideals modulo principal O-ideals and h(O) for the order
of CL(O).

The theory of complex multiplication (CM) implies that there are h(O) isomor-
phism classes of elliptic curves E over Fq with EndFq(E) = O and a fixed number of
points #E(Fq). There is a (non-canonical) one-to-one-correspondence between iso-
morphism classes of elliptic curves E over Fq with EndFq(E) = O and ideal classes in
CL(O) [119]. There is a (canonical) one-to-one correspondence between invertible
O-ideals l and isogenies, such that if l is an ideal of norm ` and E is an elliptic
curve corresponding to the ideal a then there is an `-isogeny from E to E ′ where
E ′ corresponds to the ideal al−1. Galbraith, Hess and Smart [45] show how, given
an elliptic curve E and an ideal b, one can efficiently compute an explicit isogeny
φ : E → E ′ corresponding to b via the above correspondence.

LetX be the set of isomorphism classes of elliptic curves over Fq with EndFq(E) =
O and a fixed #E(Fq). It follows that CL(O) acts on X and so we can define b ∗E
to be the isomorphism class of the image curve for the isogeny corresponding to b.
The horizontal isogeny problem is a special case of the GAIP, which we call the class
group action inverse problem (CL-GAIP).

Problem 4.3 (Class Group Action Inverse Problem). Let E1/Fq and E2/Fq be or-
dinary elliptic curves satisfying #E1(Fq) = #E2(Fq) and EndFq(E1) = EndFq(E2) =
O. Find the ideal class [b] ∈ CL(O) such that the curves b ∗E1 and E2 are isomor-
phic.

Hence, for the rest of the paper we study the GAIP, keeping in mind this specific
application.

Let H = {l1, . . . , lr} be a set of distinct prime ideals. We define the ideal class
graph to be the graph with vertex set CL(O) and, for each l ∈ H, an edge (a, al−1)
for all a ∈ CL(O). Similarly, we define the isogeny graph to have vertex set being
isomorphism classes of elliptic curves with endomorphism ring O and an edge be-
tween two isomorphism classes if there is an isogeny between them corresponding
to an ideal l ∈ H.

4.2.3 Other Notation

By a← b we denote the assignment of value b to a variable a. By a
R←− G we mean

that a is sampled from the uniform distribution on the set of elements of G. We
write #S for the number of elements in S. By log(n) we denote the binary logarithm

4.3. Algorithm for Solving the GAIP and the CL-GAIP 71

of n. All equalities of the form f(x) = O(g(x)) are one-way equalities that should
be read as “f(x) is O(g(x))”.

4.3 Algorithm for Solving the GAIP and the CL-

GAIP

4.3.1 Previous Isogeny Problem Algorithms

The first algorithm for solving the isogeny problem (equivalently, the CL-GAIP)
was proposed by Galbraith [44]. Let E1 and E2 be elliptic curves over Fq with
End(Ei) = O (alternatively, let x an y be O-ideal classes). The idea was to construct
two graphs of elliptic curves (subgraphs of the isogeny graph), one rooted at E1 and
the other at E2 (equivalently, two subgraphs of the ideal class graph rooted at x
and y respectively). Edges in the graph correspond to small-degree ideals. By
the birthday paradox, when the graphs have total size approximately

√
πh(O) one

expects them to have a vertex in common, in which case we have a path of isogenies
from E1 to E2. Indeed, under the assumption that the graphs behave like random
subgraphs from the point of view of their intersection, it is natural to conjecture
that the algorithm halts when the total number of vertices visited is, on average,√
πh(O). Note that this algorithm requires an exponential amount of time and

memory.

The second, and previously the best, algorithm was due to Galbraith, Hess and
Smart [45] (in particular the stage 1 of the algorithm described in that paper). The
major improvement was to use pseudorandom walks and parallel collision search in
the isogeny graph, rather than storing entire subgraphs. We give a generic descrip-
tion of this method in the next section. The advantage of the GHS method is that
it only requires a polynomial amount of memory, and can be easily parallelised or
distributed.

Although this paper considers the classical computational model, we note that a
subexponential-time quantum algorithm for the isogeny problem has been proposed
by Childs, Jao and Soukharev [26].

4.3.2 Generic Description of the GAIP Solving Algorithm

Let the GAIP (x, y) be defined for a group G acting on a set X, and let r be a
positive integer greater than or equal to the rank of G. Choose a generating set
H = {g1, . . . , gr} ⊂ G and consider a graph Γ with vertices the elements of X,
and edges (z, gi ∗ z), for all 1 ≤ i ≤ r. In the special case G = CL(O), X the
set of isomorphism classes of elliptic curves with the endomorphism ring O, and
H = {l1, . . . , lr}, we obtain the isogeny graph defined in Section 4.2.2.

To solve the GAIP it suffices to find an (undirected) path in Γ between x and y.

72 Improved Algorithm for the Isogeny Problem

A natural way to do this is to use (pseudo)random walks in Γ, starting from x and
y. For instance one can use a random function v : X → {1, . . . , r} and the map

ψ : X → X

z 7→ gv(z) ∗ z.

The following language will be used throughout the paper: the function v(z) is a
partitioning function, because it defines a partition P on the set X. By an abuse of
notation we will call parts in P partitions. Note that we do not require all partitions
to be of the same size. Partitioning probabilities p1, . . . , pr are defined as

pi = Pr
[
v(z) = i | z R←− X

]
for all 1 ≤ i ≤ r.

A walk on Γ is a sequence of nodes computed as

zj+1 = ψ(zj).

A hop is one edge in the graph (i.e., one step of the walk). The set H is called the
supporting set for walks on Γ. The above walk is a generalization of the adding walk
proposed by Teske for groups [111].

One can apply the parallel collision search concept, as proposed by van Oorschot
and Wiener [115]. To do this, define a subset XD of distinguished elements in X,
such that it is easy to verify that z ∈ XD. Pseudorandom walks in Γ are formed
by taking a random initial vertex1, moving along edges with a certain probability,
and halting when the current vertex is a distinguished element. This framework was
used by Galbraith, Hess and Smart [45]. Figure 4.1 presents Algorithm A, which is
an algorithm to solve the GAIP following this approach.

Algorithm A uses 2t client threads, where t ≥ 1, and one server thread. The
algorithm takes as input a GAIP instance (x0, x1) and an integer t. The server
starts t clients, each performing a walk starting from a randomized node h0,i ∗x0 for
1 ≤ i ≤ t. The server starts another t clients, each performing a walk starting from
a randomized node h1,i ∗ x1. Each client continues the deterministic pseudorandom
walk until it hits a distinguished node. Once a thread hits a distinguished node
z = a∗xs, it puts the triple (z, a, s) on the shared queue and terminates. The server
stores all received triples in a database D and restarts clients from new randomized
starting nodes.

A collision is an event when some node is visited by client threads twice, while
the preceding nodes visited by the threads are different. Since the walks are de-
terministic, after a collision the two threads follow the same route unless they hit
a distinguished node. Thus every collision results in two triples of the form (z, ·, ·)

1The GHS algorithm [45] does not specify how to sample random vertices in the isogeny graph.
We use an algorithm from Stolbunov [107, §6.1], which will be briefly explained at the end of
Section 4.3.4.

Alg. 4.1 Server

Input: (x0, x1, t) ∈ X ×X × N
1: for i = 1 to t do
2: (h0, h1)

R←− G×G
3: start client(h0 ∗ x0, h0, 0)
4: start client(h1 ∗ x1, h1, 1)
5: end for
6: D ← {}
7: while true do
8: fetch (z, a, s) from queue
9: if (z, b, 1 − s) ∈ D for some b

then
10: break loop
11: end if
12: D ← D ∪ {(z, a, s)}
13: h

R←− G
14: start client(h ∗ xs, h, s)
15: end while
16: stop all clients
Output: a1−2sb2s−1

Alg. 4.2 Client

Input: (z, a, s) ∈ X ×G× {0, 1}
1: c← 0
2: while z 6∈ XD do
3: i← v(z)
4: z ← gi ∗ z
5: a← agi
6: c← c+ 1
7: if c > cmax then
8: (z, a, s)←⊥
9: break loop

10: end if
11: end while
Output: (z, a, s)

Figure 4.1: Algorithm A for solving the GAIP.

74 Improved Algorithm for the Isogeny Problem

being submitted to the server. A collision of walks, one of which was started from
x0 and the other one from x1, is called a good collision. After a good collision the
server detects two triples (z, a, 0) and (z, b, 1). It then halts all clients and outputs
the solution b−1a.

Since a walk might loop before it hits a distinguished node, clients use a simple
loop detection mechanism that checks whether the walk remains shorter than a fixed
maximum length cmax. The value cmax is usually chosen to be a function of θ, e.g.
cmax = 30/θ, which means that walks 30 times longer than expected are abandoned2.

Denote by α the number of nodes visited by Algorithm A, counted with repe-
tition. If nodes were sampled uniformly at random then the expected value E(α)
would be close to

√
π#G by a variant of the birthday paradox (see Section 4.4.1).

The expected total (serial) running time of Algorithm A approximately equals the
product of E(α) with the average cost of computing gi ∗ z in line 4 of the client
algorithm3. Our main observation is that the cost of computing gi ∗ z is not the
same for all gi. Hence, one can speed up the algorithm by favoring the gi which are
faster to compute.

In the CL-GAIP, the supporting set H is usually chosen to consist of prime ideals
above the smallest integer primes which split in O. In some rare cases it may be
necessary to add one or more prime ideals of larger norm to ensure that H generates
CL(O). Ramified primes can also be used, but since their order equals two in CL(O)
they suffer from the defect mentioned in the next section.

4.3.3 A Remark on the GHS Algorithm

The GHS paper [45] states that “it is usually enough that H contains about 16
distinct split primes”, and the partitioning function should “have a distribution
close to uniform”. In other words, it was advised to use about r = 16 partitions of
approximately equal size. We will compare our algorithm against those suggested
parameters in the remainder of the paper.

We note a potentially serious problem4 with the algorithm of Galbraith, Hess
and Smart [45]. On every hop the algorithm chooses a small prime ` and a bit b
uniformly at random. Typically, ` is split and the algorithm chooses one of the two
`-isogenous elliptic curves deterministically using the bit b. Hence for a fixed `, every
hop where ` is chosen produces an action by, equally likely, the ideal l or l−1 (where
(`) = ll−1). Thus, since the ideal class group is abelian, the expected power of the
ideal l that has acted on the starting elliptic curve after any number of hops equals

2Van Oorschot and Wiener [115] suggest cmax = 20/θ. Our value is larger in order to preserve
more non-looped walks.

3We do not count database access times and expected Lθ
√
n random samplings of a group

element.
4This remark also applies to the isogeny walk given by Teske [113, Algorithm 1]. Interestingly,

another isogeny walk is given in Algorithm 3 of the same paper, which is not affected by this
problem.

4.3. Algorithm for Solving the GAIP and the CL-GAIP 75

0. Such a walk is far from random, as it tends to remain “close” to its initial node.
Hence, most likely the method of Galbraith, Hess and Smart does not perform as
well in practice as the heuristic predictions stated in [45]. To avoid this problem,
our algorithm always acts by the same ideal l when the prime ` is chosen (i.e., the
set H never contains both l and l−1; unless l is ramified). We stress that the speed
improvement of our algorithm is not due to the correction of the named flaw but
because of the use of an uneven partitioning.

4.3.4 Better Choices for Solving the CL-GAIP

We now discuss the main idea of the paper, which is to make the pseudorandom
walks faster by using smaller degree prime ideals more often than larger degree ones.

Recall that α denotes the number of nodes visited by Algorithm A, counted
with repetition, and that E(α) is close to

√
πn, where n = #G. Therefore it is more

convenient to consider the variable

L =
α√
n
.

The value of L is fully determined by the group, the problem instance (x0, x1),
the supporting set H, the partitioning function v(), the subset XD of distinguished
nodes, the loop detection value cmax and the random choices made by the algorithm.
We define E(L | r, ~p,m, θ, cmax) to be the expected value of L, taken over random
choices of all the above parameters, conditioned on the values of the parameters:

r the number of partitions;

~p = (p1, . . . , pr) the partitioning probabilities;

m = dlog(n)e the ceiling function of the binary logarithm of #G;

θ the probability of distinguished nodes;

cmax the loop detection value.

To shorten the notation we will write E(L) instead of E(L | r, ~p,m, θ, cmax).
The average running time of a step in the algorithm (equivalently, hop) is ~p~t =∑r
i=1 piti, where ~t is a column vector of timings of actions by the r chosen primes

(see Fig. 4.3 for such timings). Hence, the expected serial running time of Algorithm
A is approximately

E(L)
√
n ~p~t. (4.1)

Ideally, the number of partitions r and the probability distribution ~p should be
chosen by solving the optimization problem: given n, θ,~t, choose r and ~p to minimize
the expected running time E(L)

√
n ~p~t. We do not claim in this paper a complete

solution to this optimization problem. But we do discuss how E(L) depends on r
and ~p, and we suggest some choices for these parameters.

For simplicity, and because they seem to give good results in practice, we restrict
our attention to vectors ~p = (p1, . . . , pr) such that the probabilities are in geometric

76 Improved Algorithm for the Isogeny Problem

progression pi+1/pi = w for 1 ≤ i < r. For example, taking r = 4 and w = 1/2
means probabilities (p1,

1
2
p1,

1
4
p1,

1
8
p1) which add up to 1 (and so p1 = 8/15 ≈ 0.53).

In our practical analysis we restrict to 3 ≤ r ≤ 16 and ~p is the geometric progression
of ratio w ∈ {1, 3/4, 1/2, 1/3, 1/4}. This choice is probably not the best solution to
the optimization problem, but it seems to work well in practice.

To implement the starting randomization of the walks we use a method proposed
by Stolbunov [107, §6.1]. We briefly describe the method. Since the class group
structure computation is much faster [11] than Algorithm A, one first computes the
class group structure. For an imaginary quadratic order O of discriminant ∆, the
class group CL(O) is generated (assuming GRH) by the set L of prime ideals of split
norms less than or equal to `max = c1 log2|∆|, for an effectively computable constant
c1 [95, Corollary 6.2]. Note that the set L used for the random sampling can be
larger than the supporting set H. Knowing the class group generators and their
orders, one obtains a random group element in a smooth form by raising generators
to random exponents, each chosen between zero and the corresponding order. To
shorten the representation one reduces it modulo the lattice of relations among the
elements of L. Indeed, it is possible to write any element of CL(O) as an O(log|∆|)-
term product of elements in L. Jao, Miller and Venkatesan have shown (assuming
GRH) that the ideal class graph (CL(O),L) is an expander graph [62, Theorem 1.5].
Since the diameter of an expander graph is less than or equal to 2 log(h)/ log(1 + c)
for the expansion coefficient c and the number of vertices h [47, Theorem 9.9], the
diameter of the ideal class graph (CL(O),L) is O(log(h)), where h ≈ |∆|1/2.

4.4 Theoretical Analysis of the Algorithm

4.4.1 Previous Results

A tremendous amount of research on the running time analysis of the Pollard rho
algorithm has been carried out by various authors. We give a brief overview of some
of the results relevant to our work.

First we consider random mappings on a set X of n elements. Rapoport [88, §II]
and Harris [54, §3] obtained an approximation for the expected value of the number
ρ of distinct elements in a random walk on X:

E(ρ) ≈
√
πn

2
.

For a more precise statement see Knuth [66, Exercise 3.1.12]. These results were
subsequently used to approximate the expected length of the rho-shaped walk in the
Pollard’s algorithm [83].

Van Oorschot and Wiener [115, §4.1] proposed a parallel version of the Pollard’s
rho algorithm. When more than one walk is run in parallel, several collisions can
occur, and only some of them may be useful (we call these collisions good). Let

4.4. Theoretical Analysis of the Algorithm 77

p be the probability that a random collision is good. They obtained the following
approximation for the expected value of the number λ of distinct visited nodes, when
the number of collisions is small:

E(λ) ≈
√
πn

2p
. (4.2)

The iteration function proposed by Pollard [84] for the DLP involved three par-
titions of approximately equal size: two corresponding to multiplication and one
to squaring hops. Teske proposed a different type of iteration function which she
called an adding walk [111]. Adding walks allowed more partitions, but it was
still preferable to have equally-sized partitions because the costs of iterations were
approximately equal. Brent and Pollard [17] and Blackburn and Murphy [14] pro-
vided a heuristic argument where they assumed that the restrictions of the iterating
function to r equally-sized partitions were random mappings:

E(ρ) ≈
√

πrn

2(r − 1)
. (4.3)

More recently, Bailey et al. [3, Appendix B] employed an uneven partitioning
with probabilities pi, 1 ≤ i ≤ r, for the Pollard rho method. Again under the
assumption about the randomness of the restrictions of the iterating function, they
provided the following heuristic result:

E(ρ) ≈
√

πn

2(1−
∑r

i=1 p
2
i)
, (4.4)

which agrees with (4.3) when all pi are equal. Combining equations (4.2) and (4.4),
since the probability that a collision is good is p = 1/2, would lead to a conjectured
expected value of α of

√
πn/(1−

∑r
i=1 p

2
i). Theorem 4.1 proves this result.

4.4.2 Issues Caused by Uneven Partitioning

When some partitions are used more often than others, walks become less likely
to collide. Indeed, a collision involves two edges coming from two different parti-
tions into the same node. Since every node has exactly one outgoing edge, uneven
partitioning implies uneven distribution of edges among their types, and hence it
becomes less likely to pick two edges of different types. This aspect is studied in the
theoretical analysis below.

Another issue caused by uneven partitioning is that walks lose their mixing prop-
erty, namely they behave less like random mappings than with even partitioning.
This aspect is not accounted by our theoretical model, but it is discussed in Sec-
tion 4.5.1.

78 Improved Algorithm for the Isogeny Problem

4.4.3 Theoretical Model of the Algorithm

We now define an algorithm Aπ that closely resembles A. The only differences
between Aπ and A are that the walk is implemented using random permutations,
and that there is no loop detection (to simplify the proof in the next section we
assume that walks never loop before they hit a distinguished node). Walks for Aπ
are defined as follows. Let h1, . . . , hr be random permutations on X such that
hi(z) 6= z and hi(z) 6= hj(z) for all z ∈ X and i 6= j. Walks are now defined using
the map

ψπ : X → X

z 7→ hv(z)(z).

Algorithm Aπ is obtained from A by replacing line 4 of the client Algorithm 4.2 with
z ← hi(z) and deleting lines 7–10. Because of the nature of the walks, Algorithm Aπ
does not solve the GAIP.

4.4.4 Running Time of the Theoretical Model

We now state the expected running time of Algorithm Aπ. This is essentially the
same result as given in Appendix B of Bailey et al. [3], although their work is for
the Pollard rho discrete logarithm problem, whereas we are considering a slightly
different situation. We also give a Heuristic 4.2, for the standard deviation of the
running time.

Theorem 4.1. Let n be the cardinality of the set X, θ the probability of a node
being distinguished and p1, . . . , pr the probabilities of choosing among r random
permutations on X. Then the number απ of nodes visited, with repetition, before
Algorithm Aπ terminates, has the following expected value:

E(απ) =

√
πn

d
+

2

θ
+O

(
ln4(n)

)
,

where d is the expected in-degree of a visited node excluding the edge used to arrive
at this node5:

d = 1− (1− θ)
r∑
i=1

p2
i . (4.5)

Proof. We sketch an outline of the proof and refer to Stolbunov [108] for the details.
The proof uses the approach of Blackburn and Murphy [14]. The main task is to
determine the expected number of elements sampled before the first good collision.

5The term in-degree refers to a graph with the set of vertices X and the edges (z, ψπ(z)). For a
visited vertex, the number of used incoming edges equals zero if it is a randomized starting vertex,
or one otherwise.

4.4. Theoretical Analysis of the Algorithm 79

It is then standard that 1/θ further steps are required to detect a collision. Note
that two collisions are expected in total.

Let Λ ⊂ X denote the set of elements already visited at some stage during the
execution of Algorithm Aπ. For each element z ∈ Λ (except for the starting point)
let z0 ∈ Λ be the previous element in the walk, and suppose z0 lies in partition
i, so that z = hi(z0). Let j ∈ {1, . . . , r} \ {i}. There is an incoming edge to z
corresponding to partition j if and only if h−1

j (z) lies in partition j. Under the
assumption that the partitions are random, this occurs with probability pj. Hence,
the expected number of edges into z coming from partition j is pj. Now, since all
the permutations are random and independent, the expected number of incoming
edges to z is the sum of the expectations for each individual permutation:

r∑
j=1
j 6=i

pj.

Now, summing over all possible choices for i (given that each arises with probability
pi) gives

r∑
i=1

pi

r∑
j=1
j 6=i

pj =
∑

1≤i,j≤r
i6=j

pipj = 1−
r∑
i=1

p2
i .

This is the expected number of external incoming hops, for a random non-initial
element of Λ. Since the proportion of initial elements equals θ, hence equation (4.5).

The expected number of elements sampled to get a collision is
√
πn/(2d) by

the same arguments as used by Brent-Pollard and Blackburn-Murphy. However,
a collision is only a good collision with probability 1/2 so, using the logic behind
equation (4.2), one gets the formula

√
πn/d.

Note that the value d in Theorem 4.1 can easily be computed for small r and
known pi. When all pi = 1/r and θ tends to zero, then d tends to

1− r 1

r2
=
r − 1

r
.

Hence, Theorem 4.1 agrees with previous results on the Pollard rho algorithm when
using r partitions all of the same size, cf. (4.3).

Heuristic 4.2. Let απ, n, θ and d be as in Theorem 4.1. Then the variance of the
random variable απ approximates as:

Var(απ) ≈ (4− π)n

d
+

4− 2θ

θ2
+

1

θ

√
πn

d
. (4.6)

80 Improved Algorithm for the Isogeny Problem

We provide a brief argument for Heuristic 4.2 below and refer to Stolbunov [108]
for the details.

The total number of visited nodes απ is the sum of the number of unique visited
nodes λπ and the number δπ of nodes visited twice or more. Hence

Var(απ) = Var(λπ) + Var(δπ) + 2 Cov(λπ, δπ),

where the summands correspond to the ones in (4.6). The probability distribution
of λπ can be approximated by the (continuous) Rayleigh distribution [109] with the
following probability density function and variance:

fλπ(x) ≈ xd

2n
e−

x2d
4n , Var(λπ) ≈ (4− π)n

d
.

When it comes to the duplicate visited nodes, chasing the good-collision distin-
guished node can be described as a sequence of Bernoulli trials with success prob-
ability θ/2, because only half of the collisions are good. The number of trials δπ
needed to get one success conforms to the geometric distribution [102, §6.1.2]. Hence
the probability mass function and the variance of δπ are

fδπ(x) =
θ

2

(
1− θ

2

)x−1

, Var(δπ) =
4− 2θ

θ2
.

The covariance of λπ and δπ is computed using the formula (see [108])

Cov(λπ, δπ) = E(λπδπ)− E(λπ) E(δπ).

4.4.5 Running Time Calculations

Let the partitioning probabilities p1, . . . , pr be chosen from a geometric progression
with common ratio w (cf. Section 4.3.4). Table 4.1 lists the values d, the expected
values and the standard deviations of Lπ for n = 280 and θ = n−1/4. Mantissas are
rounded to four decimal digits.

The values of d in the first column of Table 4.1 agree with (r− 1)/r as expected.
Note also that the values of E(Lπ) in the first column converge to the expected
asymptotic value of

√
π ≈ 1.7724. The values in the w = 1/4 column do not change

significantly when r is large; this is because the higher primes are used with such
extremely low probability that they have no effect on the algorithm. The values in
Table 4.1 will be used later to give an estimate of the running time of our improved
variant of the algorithm.

4.5 Comparing Theory and Practice

There are many reasons why we do not expect the practical Algorithm A to behave
as well as the theoretical Algorithm Aπ. The aim of this section is to briefly mention
one of these issues, and to develop a plausible set of heuristics for the running time
of Algorithm A.

4.5. Comparing Theory and Practice 81

w = 1 w = 1/2 w = 1/4

r d E(Lπ) Stdev d E(Lπ) Stdev d E(Lπ) Stdev

3 0.6667 2.1708 1.1347 0.5714 2.3447 1.2256 0.3810 2.8717 1.5011
4 0.7500 2.0467 1.0698 0.6222 2.2470 1.1746 0.3953 2.8191 1.4736
5 0.8000 1.9817 1.0359 0.6452 2.2067 1.1535 0.3988 2.8066 1.4671
6 0.8333 1.9416 1.0149 0.6561 2.1882 1.1438 0.3997 2.8035 1.4655
10 0.9000 1.8683 0.9766 0.6660 2.1719 1.1353 0.4000 2.8025 1.4649
16 0.9375 1.8306 0.9569 0.6667 2.1708 1.1347 0.4000 2.8025 1.4649

Table 4.1: The values d, E(Lπ) and Stdev(Lπ), when r partitions are used and
partitioning probabilities decrease with ratio w. n = 280 and θ = 2−20.

4.5.1 Mixing of Adding Walks

As is standard, the theoretical analysis assumes truly random walks. However,
we are using adding walks in a group, and such walks are not close to uniformly
distributed if they are short. The mixing time is a measure of how long a walk runs
before its values start to appear uniformly distributed. It is beyond the scope of this
paper to analyse such issues in detail. We mention that Dai and Hildebrand [33]
have studied the mixing time of adding walks. They show that adding walks on r
partitions need a slack of O(n(2/(r−1))+ε) hops before they converge to the uniform
distribution.

However, it is worth noting that Algorithm A does not necessarily need walks to
be uniformly distributed after a certain number of hops. Instead it needs walks to
collide. Just because walks have not yet reached uniform sampling does not prevent
collisions from occurring.

4.5.2 Experiments

To get a better idea of how the algorithm works in practice, we have performed a suite
of experiments. We report one of them in this paper and refer to Stolbunov [108]
for more details.

Our numerical experiments are for X = G (i.e., G acting on itself) being an
abstract group of the form Zn1 ⊕ · · · ⊕ Zns , where ni+1 | ni and ni ≥ 2 for all i.
The integer s is the rank of G. The supporting set is randomly chosen, though it is
checked that it generates the group.

For calculations we use a Linux cluster of 32 quad-core Intel X5550 processors
clocked at 2.67 GHz. The code is written in C++. We use a single-threaded imple-
mentation of AlgorithmA, such that one thread alternates between x0- and x1-walks.
The same experiment is run on all CPU cores in parallel but with different random
generator seeds.

Group elements are represented by arrays of 64-bit integers. We make use of a

82 Improved Algorithm for the Isogeny Problem

hash function H : G → {0, 1}32 implemented using the 64 to 32 bit hash function
of Wang [116]. The partitioning function v(z) is computed by reducing H(z) mod-
ulo a sufficiently large integer whose residues can be partitioned with the correct
proportions. Wang’s hash function uses bit shifts, negations, additions and XOR
operations. This helps to make sure that v(z) and v(ψ(z)) look like independent
random variables, which is important because correlations between the functions
ψ(z) and v(z) can result in undesirable loops in the walk.

Let θ be the desired distinguished point probability. We declare an element z to
be distinguished iff H(z) ≡ 0 mod b1/θe, where b·e is the rounding to the nearest
integer. Although Algorithm A has polynomial memory requirements, we find it
practical to use an O(n1/4) amount of storage6, namely to choose

θ = n−
1
4 .

This is compatible with the work of Schulte-Geers [97]. The database of distin-
guished nodes is implemented as a binary tree.

For the starting randomization of walks we use the 64-bit Mersenne twister
pseudorandom generator [76]. A pseudorandom element gr ∈ G acts on the initial
node to create the starting point of the new walk.

4.5.3 Choosing the Number of Experiments

Let k be the number of experiments and Lk the average value of L over k ex-
periments. According to the central limit theorem [102, §7.2.1], the probability
distribution of the random variable Lk approaches the normal distribution with the
mean E(L) and the variance Var(L)/k as k approaches infinity. For the normal dis-
tribution, over 99.7 % of the values lie within three standard deviations away from
the mean. Thus, assuming k is big enough, we have that

Pr

[
Lk − 3

Stdev(L)√
k

≤ E(L) ≤ Lk + 3
Stdev(L)√

k

]
> 0.997.

When measuring E(L), we use two levels of accuracy: the result lies within ±0.1 %
of the true value for the experiments satisfying log(n) ≤ 44, and within ±0.5 % of
the true value otherwise. Thus we can use the inequalities

k1 ≥
(

3 Stdev(L)

0.001 E(L)

)2

, k2 ≥
(

3 Stdev(L)

0.005 E(L)

)2

(4.7)

6Let us justify the suitability of this choice by an example. Suppose one tries to solve a CL-
GAIP over a 244-bit field, a problem size proposed for isogeny-based cryptosystems [107]. Since
the group size (i.e., class number) n ≈ 2122, the database of distinguished nodes should store Lθ

√
n

nodes, which is less than 233 on average. Since the class number is approximately 122 bits long,
one entry of the database (binary tree) of distinguished nodes would occupy 48 bytes, of which 16
bytes are used by a hashed j-invariant, 16 bytes by a compressed class group element and 16 bytes
by two pointers. The whole database would occupy not more than 384 gigabytes of disk space,
which we find to be quite moderate.

4.5. Comparing Theory and Practice 83

to find the sufficient number of experiments for the two accuracy levels. For a
preliminary estimation of the number of experiments we use the formulae for E(L)
and Stdev(L) obtained in Section 4.4.4. This gives us the values

k1 = 2459137, k2 = 98368 ,

computed as maximums over all possible parameters in Experiment 4.1.
Our experiments have shown that, in most cases, both the sample mean and the

sample standard deviation differ from the results of Theorem 4.1 by approximately
the same factor, which cancels out in (4.7). This means that the obtained numbers
k1 and k2 fit for the probability distributions under observation.

4.5.4 Experimental Measurement of L

In this section we measure E(L) by means of experimentation and assemble results
in a table so that they can be used for arbitrary GAIP instances in the future.

Experiment 4.1 (Measuring L in Arbitrary Groups). For each of the values7

dlog(n)e ∈ {28, 32, 36, . . . , 56}, r ∈ {3, 4, . . . , 16} and w ∈ {1, 3/4, 1/2, 1/3, 1/4}
conduct a set of k1 (k2 for n > 244) experiments. In each experiment choose a ran-
dom8 group G and a random subset of r elements that generates G. Use θ = n−1/4

and the partitioning probabilities decreasing with ratio w.

A subset of results is listed in Table 4.2, where mantissas are rounded to four
decimal digits. Full data for 3 ≤ r ≤ 16 and w ∈ {1, 3/4, 1/2, 1/3, 1/4} are available
in [108]. The entire experiment took 51 days of parallel processing on 128 cores.

When w = 1 and r = 16 one sees good agreement between Table 4.2 and
Table 4.1, which suggests that our implementation is working well. In other cases
we see that L is significantly larger than Lπ, which shows that the theoretical analysis
is over-optimistic about the behaviour of these pseudorandom walks. The results
also confirm that r = 3 is not a good choice in practice.

Figure 4.2 graphs some values of the practice-to-theory ratio

σ =
E(L)

E(Lπ)
.

Round dots depict our experimental results, and lines are their approximating func-
tions (solid lines are w = 1, short-dashed lines are w = 1/2 and long-dashed lines
are w = 1/4). For a fixed w, values of σ for 5 < r < 16 lie between r = 5 and
r = 16. One can observe an increased roughness of experimental results for n > 244

7We use n > 227 because otherwise L is highly affected by looped walks: every loop increases
the number of visited nodes by 30n1/4.

8For each m ∈ {28, 32, 36, . . . , 56} we sample uniformly from the set of isomorphism classes of
abelian groups of order n and rank at most r, where 2m−1 + 1 ≤ n ≤ 2m.

dlog(n)e

w r 28 32 36 40 44 48 52 56

1

3 2.8547 2.9982 3.1380 3.2735 3.4079 3.5355 3.6681 3.7812
4 2.2923 2.3101 2.3247 2.3371 2.3484 2.3518 2.3661 2.3661
5 2.1039 2.0975 2.0968 2.0984 2.0978 2.1007 2.1009 2.1004
6 2.0178 2.0099 2.0052 2.0032 2.0026 2.0038 2.0022 2.0023
10 1.9021 1.8932 1.8862 1.8849 1.8831 1.8816 1.8769 1.8879
16 1.8575 1.8455 1.8407 1.8384 1.8361 1.8302 1.8369 1.8357

1
2

3 3.1089 3.2761 3.4406 3.5985 3.7500 3.9086 4.0331 4.1785
4 2.6071 2.6436 2.6723 2.6938 2.7101 2.7307 2.7315 2.7406
5 2.4586 2.4665 2.4723 2.4782 2.4802 2.4875 2.4821 2.4776
6 2.4000 2.4022 2.4063 2.4068 2.4086 2.4079 2.4069 2.4128
10 2.3529 2.3536 2.3527 2.3553 2.3563 2.3486 2.3533 2.3557
16 2.3516 2.3523 2.3519 2.3519 2.3536 2.3524 2.3465 2.3576

1
4

3 3.8596 4.1194 4.3652 4.5978 4.8213 5.0395 5.2484 5.4338
4 3.5425 3.6694 3.7582 3.8280 3.8771 3.9015 3.9372 3.9517
5 3.4753 3.5732 3.6423 3.6830 3.7103 3.7322 3.7295 3.7407
6 3.4608 3.5566 3.6145 3.6526 3.6743 3.6985 3.6845 3.6845
10 3.4578 3.5486 3.6064 3.6454 3.6658 3.6672 3.6853 3.6833
16 3.4607 3.5498 3.6070 3.6427 3.6639 3.6747 3.6808 3.6880

Table 4.2: Expected values of L obtained experimentally for certain choices of r
and w.

4.5. Comparing Theory and Practice 85

n

E(L)

E(Lπ)

230 240 250 260 270 280

1

1.1

1.2

1.3

1.4

r = 4, w = 1

r = 4, w = 1/2

r = 4, w = 1/4

r = 5, w = 1

r = 5, w = 1/2

r = 5, w = 1/4

r = 16, w = 1

r = 16, w = 1/2

r = 16, w = 1/4

Figure 4.2: Values of σ = E(L)/E(Lπ) obtained experimentally and their approxi-
mations extended to n = 280.

due to the increased confidence interval. The graphs suggest that, for r > 3, the
difference between E(L) and E(Lπ) is fairly stable as n grows. Hence, when r > 3
we feel confident extrapolating actual values for E(L) from our formulae for E(Lπ)
and the experimentally determined correction factors σ.

Remark 4.1. Recently Montenegro proposed a heuristic for estimating the number
of hops in birthday attacks [80]. His idea is to estimate the probability of short
cycles, i.e. if two walks (with independent partitioning functions) are started from
the same position, then what is the probability that they intersect soon? The lower
this probability is, the sooner the algorithm will terminate. Applied to adding walks
in an abelian group, this means that if two walks include short subsequences of edges
which are equivalent up to the order of edges, these subsequences do not change
the relative position of these walks. Although Montenegro only gives examples
for Pollard’s and Teske’s walks, his heuristic also applies to walks with uneven
partitioning. The probability P1 that two independent walks started from x0 = y0

have a collision after one hop equals

P1 = Pr [x1 = y1] =
r∑
i=1

p2
i .

86 Improved Algorithm for the Isogeny Problem

If we only consider collisions after one hop, then Montenegro’s heuristic gives an
approximation similar to what we obtained in Theorem 4.1:

E(λ) ≈
√

πn

1− P1

.

The probability P2 that a collision occurs on the second hop is

P2 = Pr [(x1 6= y1) ∧ (x2 = y2)] = (1− P1)P 2
1 ,

and Montenegro’s heuristic gives

E(λ) ≈
√

πn

1− (P1 + P2)
=

√
πn

1− P1 − P 2
1 + P 3

1

. (4.8)

The calculation can be continued to more hops, but since probabilities of collisions
become much smaller than P2, this will result in very small numerical changes.

We have calculated the expected values of L using (4.8) and found that for r ≥ 6
the heuristic agrees pretty well with our practical results, giving only up to 3.4 %
error for w = 1/2 and up to 5.6 % error for w = 1/4.

4.6 The Algorithm in Practice

We now discuss how the isogeny algorithm performs in practice. We focus on the
case of ideal class groups of maximal orders in CM fields coming from End(E) where
E is a randomly chosen elliptic curve over Fp and p is a randomly chosen 160-bit
prime. We also speculate on how the algorithm will perform for larger fields at the
end of this section.

We have already obtained a good theoretical and experimental understanding of
the algorithm for the group action problem. It is necessary now to include the cost
of computing isogenies. The next section gives some estimates for the running time
of computing isogenies of prime degree.

4.6.1 Cost of Computing Isogenies

Consider the cost of computing the action by a prime ideal in the isogeny graph. One
has an elliptic curve and an ideal of norm `. One must factor the modular polynomial
to determine the possible j-invariants of `-isogenous curves, one must perform Elkies’
algorithm to determine the kernel polynomials for these isogenies, and then one must
use the technique from [45] to determine which is the correct kernel and hence which
is the correct isogeny9. It is not necessary to apply Vélu’s formulae at this stage.

9If two or more consecutive hops are made by the same split isogeny degree `, and there are
no vertical `-isogenies, then it is sufficient to choose the correct isogeny only at the first hop.
On each subsequent hop one simply checks that the j-invariant does not match the previous one.
This provides extra saving, especially when the partitioning is uneven. This extra saving is not
accounted in Table 4.3.

4.6. The Algorithm in Practice 87

` Time, s

3 0.002870
5 0.004799
7 0.006898
11 0.012113
13 0.015261
17 0.022376
19 0.026499
23 0.036209
29 0.052346
31 0.058230
37 0.084434
41 0.092049
43 0.106742
47 0.116152
53 0.143732
59 0.150925

` Time, s

61 0.168179
67 0.225253
71 0.225503
73 0.249365
79 0.270537
83 0.284242
89 0.305786
97 0.341988
101 0.353268
103 0.362195
107 0.375111
109 0.384550
113 0.403007
127 0.467993
131 0.579427
137 0.624039 `

Time, s

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.3: Average running time of one `-isogeny (i.e., action by a prime ideal of
norm `) for elliptic curves over 160-bit prime fields.

We assume the modular polynomials have been precomputed and reduced to the
finite field Fq. Since the modular polynomial has O(`2) coefficients one performs
O(`2) field operations to evaluate the modular polynomial at the target j-invariant.
An expected O(` log(`) log(q)) field operations are performed to find the roots of the
polynomial, employing fast polynomial arithmetic. Finally, O(`2) field operations
are used by Elkies’ algorithm. Hence one expects the time of one `-hop to grow like

O
(
`2 + ` log(`) log(q)

)
(4.9)

field operations.

We computed average timings using the ClassEll package by Stolbunov [104].
The package implements the ideal class group action on sets of ordinary elliptic
curves. The experiment was run on Intel X5550 processors clocked at 2.67 GHz,
the code executed at approximately 6799 millions instructions per second (MIPS).
The data was gathered by repeatedly (20000 times) generating a random 160-bit
prime p and a random ordinary elliptic curve over Fp with a fundamental Frobenius
discriminant. The time spent on one action by a prime ideal, for prime ideals of
all split norms less than or equal to 137, was recorded. To increase the accuracy,
we performed more hops for smaller primes. Results are given in Fig. 4.3. We can
observe bumps when ` moves over degrees of two which is typical for the polynomial
multiplication by number-theoretic transform.

88 Improved Algorithm for the Isogeny Problem

4.6.2 Ideal Class Groups

In Experiment 4.1 we used the uniform distribution of finite abelian groups. How-
ever, the structure of ideal class groups is not that random; the following observa-
tions are known as Cohen-Lenstra heuristics [27]: the odd part of the class group
of an imaginary quadratic field is quite rarely non-cyclic; if p is a small odd prime,
the proportion of imaginary quadratic fields whose class number is divisible by p
is close to 1/p + 1/p2. The distribution of group structures in the isogeny problem
is further affected by the fact that the imaginary quadratic orders are chosen as
endomorphism rings of random elliptic curves. Nevertheless, our experiments show
that the difference between values E(L) for random isogeny problem instances10 and
for random GAIP instances lies within the margin of error 0.2 %. The same holds
for the standard deviation of L.

Due to the numerical results of Jacobson, Ramachandran and Williams [59] we
know that the average maximum norm of the prime ideals required to generate
the class group of Q(

√
∆) for −1011 < ∆ < 0 approximately equals 0.60191 ln|∆|,

and the number of prime ideals required to generate these class groups averages at
approximately 3.3136. We assume that these results apply to our problem size as
well. Hence for a random ideal class group of a 162-bit discriminant, it is very likely
that a generating set of four prime ideals with the maximum norm 67 can be found.
This observation is used in the next section where we model the choice of primes.

We make an assumption that walks with a supporting set that consists of ideals
of small prime norm behave similar to walks when the supporting set consists of
random group elements.

4.6.3 Predicted Results

In this section we estimate the time needed for solving a random instance of the
isogeny problem over a 160-bit finite field using various numbers of partitions r and
partitioning probabilities ~p. The expected serial running time is computed using
equation (4.1), which can be written as

σ E(Lπ)
√
n ~p~t.

The values E(Lπ) are computed using Theorem 4.1 and approximations for σ are
based on our experimental data (partially displayed in Fig. 4.2). We take n = 280.
What remains is to compute the average running time ~p~t of one hop.

For the isogeny problem, the supporting set H should be chosen to consist of
prime ideals above the smallest integer primes which split in O. If necessary, one
or more prime ideals of larger norm are included in H to ensure that H generates
CL(O). To compute the average product ~p~t for given r and w, we enumerate all
subsets H of r primes larger or equal to 3 with the r− 4 smallest primes in H being

10Parameters: dlog(p)e = 90, 4 ≤ r ≤ 16; w, θ, cmax and k1 are as in Experiment 4.1.

4.6. The Algorithm in Practice 89

r\w 1 3/4 1/2 1/3 1/4

4 8708 6940 5429 4727 4690
5 6455 4495 2758 1925 1652
6 5514 3396 1755 1130 988
7 5068 2827 1334 904 858
8 4891 2530 1154 847 848
9 4930 2415 1093 842 856
10 5549 2548 1110 858 870
11 6391 2723 1132 874 885
12 7409 2915 1157 891 903
13 8485 3095 1180 906 919
14 9519 3255 1205 923 932
15 10636 3396 1225 937 944
16 12200 3541 1242 949 955

Table 4.3: Expected serial time (years) needed to solve a random CL-GAIP over a
160-bit field.

less than or equal to11 prime2r−7, and the largest prime in H lying between 67 and
max(67, prime2r+1). For every set H, a timing vector ~t is constructed using the data
in Fig. 4.3. Hence we compute the average ~p~t over all H.

In Table 4.3 we give estimated times for solving a random instance of the isogeny
problem over a 160-bit finite field (equivalently, the CL-GAIP problem in CL(O)
where O = End(E) for an elliptic curve over a 160-bit finite field). The time is
provided in years of serial execution on one Intel X5550 2.67 GHz CPU core. On a
cluster with hundreds of thousands of cores the problem can be solved in a matter
of hours.

We see from Table 4.3 that the best combination r = 9 and w = 1/3 is approx-
imately 14 times faster than 16 equally-sized partitions (both timings are in bold).
In fact all values within 7 ≤ r ≤ 16, w ∈ {1/3, 1/4} provide good speeds.

For the rest of the section we briefly consider the question of how much faster our
algorithm is than the GHS algorithm as q →∞. Both algorithms require Õ(

√
n) bit

operations, but it is not immediately clear that the ratio of running times is bounded
as q → ∞. Let us compare r = 16, w = 1 with r = 9, w = 1/3. First we make a
simplifying assumption: for any problem instance, a supporting set H consisting of
the r−1 smallest split primes and one prime close to ln(q), generates the class group.
Using the prime number theorem we approximate primes in H by `i ≈ 2i ln(2i), for
1 ≤ i ≤ r − 1. We also approximate `r ≈ ln(q). Since `i < log(q) for sufficiently
large q, the complexity (4.9) of one `-hop is O(` ln(`) ln(q)) field operations, which
we further approximate by c ` ln(q) for some constant c. The improvement ratio

11Because approximately half of primes are split.

90 Improved Algorithm for the Isogeny Problem

(i.e., speedup) is(
E(L) ~p~t

)
|r=16
w=1(

E(L) ~p~t
)
|r=9
w=1/3

≈ 1.836

3.023

1
16

∑15
i=1 2i ln(2i) ln(q) + 1

16
ln2(q)

6561
9841

∑8
i=1

(
1
3

)i−1
2i ln(2i) ln(q) + 1

9841
ln2(q)

≈

0.607
44.046 + 1

16
ln(q)

3.682 + 1
9841

ln(q)
→ 0.607

9841

16
≈ 373 as q →∞.

Hence the improvement ratio slowly grows with q and stabilizes at few hundreds for
a very large q (at ln(q) > 225 in the example above). Sure, problems of that size are
not feasible, and 9 primes are probably not sufficient to generate a class group that
big. The growth of the improvement ratio is hard to predict, but we see no reasons
for it to overcome O(1) as q →∞.

4.7 Conclusion

In this paper we have improved the GHS algorithm for constructing isogenies be-
tween ordinary elliptic curves. Our improvement is by an O(1) factor, which was
estimated to be approximately 14 for random 160-bit elliptic curves with compara-
ble conductors. This is a significant acceleration. Nevertheless, the asymptotic
complexity of the Fq-isogeny problem for curves with comparable conductors is
O(q1/4+o(1) log2(q) log(log(q))) field operations, as before.

Acknowledgements

The paper was created through a collaboration of two authors whose names are
listed alphabetically. The work was initiated during a two-month research visit of
Anton Stolbunov to Steven Galbraith. Stolbunov would like to thank Department
of Telematics, Norwegian University of Science and Technology, for the financial
support of his research and that visit. We thank Gaetan Bisson and Edlyn Teske
for their valuable comments on this paper.

4.A Proof of Theorem 4.1

4.A.1 Random Variables α, λ and δ

Let us introduce the following notation for a completed run of the algorithm Aπ.
We avoid using indices π inside the proof, keeping in mind that all results apply to
the algorithm Aπ:

α is the number of visited nodes, counted with repetition;

4.A. Proof of Theorem 4.1 91

λ is the number of distinct visited nodes minus one12;

δ is the number of nodes visited more than once, such that a node visited twice is
counted once, a node visited three times is counted twice, and so on.

All distinct nodes visited by the algorithm, except for the problem instance nodes
x0 and x1, are counted in the variable λ. After every collision the thread continues
its walk unless it hits a distinguished node. Since the walk is deterministic, the
sequence of nodes starting from the collision node coincides with some previous
walk. These nodes are counted in the variable δ.

We have that

α = λ+ δ + 1, (4.10)

E(α) = E(λ) + E(δ) + 1,

which is a standard result in statistics [102, §4.4]. To complete the proof we will
calculate the summands in the latter equation.

4.A.2 Expected Number of Duplicate Visited Nodes δ

Chasing the good-collision distinguished node can be described as a sequence of
Bernoulli trials (random experiments with two possible outcomes: success or failure)
with success probability qθ, where q = 1

2
is the probability that a randomly chosen

collision is good13. The number of trials δ needed to get one success is described by
the geometric distribution [102, §6.1.2]. Hence the probability mass function (PMF)
of δ is

fδ(x) =
θ

2

(
1− θ

2

)x−1

, where x ≥ 1, (4.11)

and the expected value is

E(δ) =
2

θ
.

4.A.3 Expected Number of Distinct Visited Nodes λ

We consider a graph with the set of vertices X and the edges (z, ψπ(z)).

Lemma 4.3. For a node visited by the algorithm Aπ, the expected in-degree minus
the number of used incoming edges equals

d = 1− (1− θ)
r∑
i=1

p2
i .

12This simplifies formulae in Lemma 4.4.
13In the algorithm Aπ the number of walks that start from x0 equals the number of walks that

start from x1. Hence half of the collisions are good, namely q = 1
2 .

92 Improved Algorithm for the Isogeny Problem

Proof. We consider two types of nodes: randomized walk-starting nodes and nodes
obtained by one or more hops. First we compute the expected in-degree of the
starting nodes.

Let z be a random node on the graph. We show that the expected in-degree of z
equals one. Indeed, every node has exactly one outgoing edge, therefore the graph
has n edges. Hence

E
(

indeg z | z R←− X
)

=
1

n

n∑
i=1

indeg zi = 1.

The probability that a visited node is a walk-starting node equals θ.
Now we compute the expected in-degree of nodes obtained by one or more hops.

Let z0 be a random node such that v(z0) = i for some partition number i. By
making a hop from z0 we obtain a node z1. The expected number of edges coming
into z1 from X \ {z0} equals

E
(

indeg z1 − 1 | z1 = ψπ(z0), z0
R←− X, v(z0) = i

)
=
∑

1≤j≤r
j 6=i

pj.

When v(z0) is not given, the expected number of edges coming into z1 from X \{z0}
equals

E
(

indeg z1 − 1 | z1 = ψπ(z0), z0
R←− X

)
=

r∑
i=1

pi
∑

1≤j≤r
j 6=i

pj =
∑

1≤i,j≤r
i6=j

pipj = 1−
r∑
i=1

p2
i .

Finally, by assembling results for the two types of nodes, we compute

d = θ + (1− θ)

(
1−

r∑
i=1

p2
i

)
= 1− (1− θ)

r∑
i=1

p2
i .

Example values of d are given in Table 4.1. In the rest of our proof we will use
the facts that d = O(1) and 1

d
= O(1).

Recall that λ is the number of distinct visited nodes minus one. After a number
of walks have been made without collisions, all nodes visited by these walks are
counted in λ. When a new walk hits a collision, the part of this walk before the
collision node is counted in λ, and the part after the collision node is counted in δ.

Lemma 4.4. The PMF of λ equals

fλ(x) =

(
xqd

n
+
x2q2d(d+ 2)

2n2
− x4q3d2(d+ 2)

6n3

)
e−

x2qd
2n +O

(
ln7/2 n

n3/2

)
, (4.12)

where 0 ≤ x = O(
√
n lnn).

4.A. Proof of Theorem 4.1 93

Proof. We note that when the walk is a random mapping on the set X and all
collisions are good, an approximation for fλ(x) has been obtained by Harris [54].
For a random mapping with the proportion of good collisions q, an approximation
for fλ(x) has been obtained by van Oorschot and Wiener [115].

Denote by Ei the event that a good collision occurs when λ = i. We want to
compute the probability that no good collisions occur while 1 ≤ λ < x, and a good
collision occurs at λ = x, thus we can write

fλ(x) = Pr
[
Ex ∧ Ex−1 ∧ · · · ∧ E1

]
=

Pr
[
Ex | Ex−1 ∧ · · · ∧ E1

]
· Pr

[
Ex−1 ∧ · · · ∧ E1

]
=

Pr
[
Ex | Ex−1 ∧ · · · ∧ E1

]
· Pr

[
Ex−1 | Ex−2 ∧ · · · ∧ E1

]
· Pr

[
Ex−2 ∧ · · · ∧ E1

]
=

· · · = Pr
[
Ex | Ex−1 ∧ · · · ∧ E1

]
· Pr

[
E1

]
·
x−1∏
i=2

Pr
[
Ei | Ei−1 ∧ · · · ∧ E1

]
.

Although several walks run in parallel, at any moment there is a certain set Λ
of visited nodes and a particular walk which makes the next hop. Denote by K
the subset of nodes in X \ Λ out-edges from which lead into Λ producing a good
collision. We are interested in the probability that the walk lands in K, because
the next hop of this walk is a good collision. Given the events Ei−1 ∧ · · · ∧ E1,
we know that all incoming good-collision edges originate outside of Λ, hence the
expected size of K equals qd#Λ. Given Ei−1 ∧ · · · ∧ E1, we also know that the
previous hop of the walk does not yield a good collision, i.e. the walk does not land
in a part of Λ of the expected size qi. Hence14 Pr[Ei | Ei−1 ∧ · · · ∧ E1] = iqd

n−qi . For

2 ≤ i < x = O(
√
n lnn) we have that

Pr
[
Ei | Ei−1 ∧ · · · ∧ E1

]
= 1− iqd

n− qi
=

(
1− iqd

n

)
− i2q2d

n2
− i3q3d

n2(n− qi)
=(

e−
iqd
n − (−iqd)2

2!n2
− (−iqd)3

3!n3
− . . .

)
− i2q2d

n2
+O

(
ln3/2 n

n3/2

)
=

e−
iqd
n − i2q2d(d+ 2)

2n2
+O

(
ln3/2 n

n3/2

)
.

Computing the product

x−1∏
i=2

Pr
[
Ei | Ei−1 ∧ · · · ∧ E1

]
=

x−1∏
i=2

[
e−

iqd
n − i2q2d(d+ 2)

2n2
+O

(
ln3/2 n

n3/2

)]
(4.13)

14The node in K is not counted in λ = i, because λ is the number of distinct visited nodes minus
one. After the walk has landed in K, hops made by all other walks are not counted, in order to
simplify the proof.

94 Improved Algorithm for the Isogeny Problem

Number of factors of the form

e−
iqd
n

i2q2d(d+2)
2n2 O

(
ln3/2 n
n3/2

)
Number of
summands

Sum

x− 2− a− b a b
(
x−2
a+b

)
O

((
ln3a+4b n
na+2b

)1/2
)

x− 2 0 0 1
(

1 + xqd
2n

)
e−

x2qd
2n +O

(
lnn
n

)
x− 3 1 0 x− 2 −x3q2d(d+2)

6n2 e−
x2qd
2n +O

(
ln2 n
n

)
x− 3 0 1 x− 2 O

(
ln2 n
n

)
x− 4 2 0

(
x−2

2

)
O
(

ln3 n
n

)
x− 4 1 1

(
x−2

2

)
O
(

ln7/2 n
n3/2

)
x− 5 3 0

(
x−2

3

)
O
(

ln9/2 n
n3/2

)
x− 4 0 2

(
x−2

2

)
O
(

ln4 n
n2

)
x− 5 2 1

(
x−2

3

)
O
(

ln5 n
n2

)
x− 6 4 0

(
x−2

4

)
O
(

ln6 n
n2

)
each of the other categories O

(
ln15/2 n
n5/2

)
Table 4.4: Categories of summands in (4.13).

will require some bookkeeping. Each factor has three summands, and hence the
result is a sum of 3x−2 terms, each term being a product of x − 2 factors. We will

separate the summands depending on the number of factors of the form i2q2d(d+2)
2n2 and

of the form O
(

ln3/2 n
n3/2

)
they contain. Table 4.4 categorises the summands according

to this property.
The row (x− 2− a− b, a, b) in Table 4.4 shows a general formula for the growth

rate of the sum of a particular category. The sum contains
(
x−2
a+b

)
= O(xa+b) terms,

and hence it is

O

(
xa+b

(x
n

)2a
(

lnn

n

) 3b
2

)
= O

((
ln3a+4b n

na+2b

)1/2
)
,

because i2q2d(d+2)
2n2 = O(lnn

n
) and 0 < ea ≤ 1 for any a ≤ 0. Observe that the growth

rate exceeds O
(

1
n2

)
only for those categories where a+2b ≤ 4. These nine categories

are listed in the table.

4.A. Proof of Theorem 4.1 95

In the row (x− 2, 0, 0) of Table 4.4 the product is computed as

x−1∏
i=2

e−
iqd
n = e−

∑x−1
i=2

iqd
n = e−

(x−2)(x+1)qd
2n = e−

(x2−x)qd
2n

(
1 +O

(
1

n

))
=

e−
(x2−x)qd

2n +O

(
1

n

)
= e−

x2qd
2n

(
1 +

xqd

2n
+O

(
x2

n2

))
+O

(
1

n

)
=(

1 +
xqd

2n

)
e−

x2qd
2n +O

(
lnn

n

)
.

In the row (x− 3, 1, 0) of Table 4.4 the sum is computed as

x−1∑
i=2

i2q2d(d+ 2)

2n2

∏
j∈{2,...,x−1}\{i}

e−
jqd
n

 =
q2d(d+ 2)

2n2

x−1∑
i=2

(
i2e

iqd
n

x−1∏
j=2

e−
jqd
n

)
=

q2d(d+ 2)

2n2
e−

(x−2)(x+1)qd
2n

x−1∑
i=2

(
i2
(

1 +O

(
i

n

)))
=

q2d(d+ 2)

2n2
e−

(x2−x−2)qd
2n

(
1 +O

(x
n

)) x−1∑
i=2

i2 =

x(x− 1)(2x− 1)q2d(d+ 2)

12n2
e−

(x2−x−2)qd
2n +O

(
ln2 n

n

)
=

x3q2d(d+ 2)

6n2
e−

(x2−x−2)qd
2n +O

(
ln2 n

n

)
=

x3q2d(d+ 2)

6n2
e−

x2qd
2n

(
1 +O

(x
n

))
+O

(
ln2 n

n

)
=

x3q2d(d+ 2)

6n2
e−

x2qd
2n +O

(
ln2 n

n

)
.

For the sum of squares we have used the formula
∑a

i=1 i
2 = 1

6
a(a + 1)(2a + 1) [87,

Eq. 4.1.1.8].

There are
∑x−2

i=0 (i + 1) = 1
2
x(x − 1) = O(x2) categories of summands in the

product (4.13). Hence the categories contained in the last row of Table 4.4 sum

altogether to O
(
x2 ln15/2 n

n5/2

)
= O

(
ln17/2 n
n3/2

)
. We have shown that

x−1∏
i=2

Pr
[
Ei | Ei−1 ∧ · · · ∧ E1

]
=

(
1 +

xqd

2n
− x3q2d(d+ 2)

6n2

)
e−

x2qd
2n +O

(
ln3 n

n

)
.

Multiplying this value by Pr[E1] = 1 +O
(

1
n

)
does not change the formula.

96 Improved Algorithm for the Isogeny Problem

Thus the conditional probability of Ex is

Pr
[
Ex | Ex−1 ∧ · · · ∧ E1

]
=

xqd

n− qx
=
xqd

n
+
x2q2d

n2
+

x3q3d

n2(n− qx)
=

xqd

n
+
x2q2d

n2
+O

(
ln3/2 n

n3/2

)
.

Now we have all the factors to compute the PMF fλ(x):[
xqd

n
+
x2q2d

n2
+O

(
ln3/2 n

n3/2

)][(
1 +

xqd

2n
− x3q2d(d+ 2)

6n2

)
e−

x2qd
2n +O

(
ln3 n

n

)]
=

(
xqd

n
+
x2q2d(d+ 2)

2n2
− x4q3d2(d+ 2)

6n3

)
e−

x2qd
2n +O

(
ln7/2 n

n3/2

)
.

We choose the value x0 =
√

2n lnn
qd

to be a border after which (i.e. on the interval

[x0, n]) the PMF of λ will be regarded as unknown. The expected value of λ is then

the sum of an “essential part”
∑dx0e−1

x=0 xfλ(x) and an “error part”
∑n

x=dx0e xfλ(x).
We first calculate the essential part of the expected value of λ.

Lemma 4.5. For x0 =
√

2n lnn
qd

the following is true:

dx0e−1∑
x=0

xfλ(x) =

√
πn

2qd
− 1

3
− 2

3d
+O

(
ln9/2 n

n1/2

)
.

Proof. Since x0 = O(
√
n lnn), we use Lemma 4.4 to calculate the sum

dx0e−1∑
x=0

xfλ(x) =

dx0e−1∑
x=0

(
x2qd

n
+
x3q2d(d+ 2)

2n2
− x5q3d2(d+ 2)

6n3

)
e−

x2qd
2n +

+

dx0e−1∑
x=0

xO

(
ln7/2 n

n3/2

)
=
qd

n

∫ x0

0

x2e−
x2qd
2n ∂x+

q2d(d+ 2)

2n2

∫ x0

0

x3e−
x2qd
2n ∂x−

− q3d2(d+ 2)

6n3

∫ x0

0

x5e−
x2qd
2n ∂x+O

(
lnn

n

)
+
dx0e(dx0e − 1)

2
O

(
ln7/2 n

n3/2

)
. (4.14)

When computing sums by integration we have used the Euler-Maclaurin summation

4.A. Proof of Theorem 4.1 97

formula [1, §3.6.28], which implies that

dx0e−1∑
x=0

xbe−
x2qd
2n =

∫ x0

0

xbe−
x2qd
2n ∂x+

∫ dx0e
x0

xbe−
x2qd
2n ∂x+

+O

max

 ∂i

∂x
xbe−

x2qd
2n

∣∣∣∣i≥0
x∈{0,dx0e}

 =

∫ x0

0

xbe−
x2qd
2n ∂x+O(n

b−2
2 ln

b
2 n) +O(1),

(4.15)

where b ∈ N and x0 is defined above. Observe also that e−
x20qd

2n = 1
n
.

Let us compute the exponential integrals in (4.14) separately. To the first integral

we apply the formula
∫
x2e−a

2x2∂x = − x
2a2
e−a

2x2 +
√
π

4a3
erf(ax) [87, Eq. 1.3.3.8], where

erf() is known as the error function: erf(z) = 2√
π

∫ z
0
e−t

2
∂t = 1 − 2√

π

∫∞
z
e−t

2
∂t [1,

Eq. 7.1.2]. Note that erf(0) = 0.

qd

n

∫ x0

0

x2e−
x2qd
2n ∂x =

qd

n

[
−nx0

qd
e−

x20qd

2n +

√
π

2

n3/2

q3/2d3/2
erf(

√
qd

2n
x0)

]
=

−

√
2 lnn

nqd
+

√
πn

2qd
erf(
√

lnn) =

√
πn

2qd
−
√

2n

qd

∫ ∞
√

lnn

e−t
2

∂t+O

(√
lnn

n

)
=

√
πn

2qd
+O

(√
lnn

n

)
.

We have bounded the infinite integral using the inequality ez
2 ∫∞

z
e−t

2
∂t < 1

z
for

z ≥ 0 [1, Eq. 7.1.13].

To the second and third integrals in (4.14) we apply the formula
∫
x2b+1e−ax

2
∂x =

−x2b

2a
e−ax

2∑b
k=0

b!
(b−k)! akx2k

[87, §1.3.3]:

q2d(d+ 2)

2n2

∫
x3e−

x2qd
2n ∂x = −q

2d(d+ 2)

2n2

x2n

qd
e−

x2qd
2n

(
1 +

2n

x2qd

)
=

−
(
x2q(d+ 2)

2n
+
d+ 2

d

)
e−

x2qd
2n ,

− q3d2(d+ 2)

6n3

∫
x5e−

x2qd
2n =

q3d2(d+ 2)

6n3

x4n

qd
e−

x2qd
2n

(
1 +

4n

x2qd
+

8n2

x4q2d2

)
=(

x4q2d(d+ 2)

6n2
+

2x2q(d+ 2)

3n
+

4(d+ 2)

3d

)
e−

x2qd
2n .

98 Improved Algorithm for the Isogeny Problem

The corresponding definite integrals sum to

q2d(d+ 2)

2n2

∫ x0

0

x3e−
x2qd
2n ∂x− q3d2(d+ 2)

6n3

∫ x0

0

x5e−
x2qd
2n =(

x4
0q

2d(d+ 2)

6n2
+
x2

0q(d+ 2)

6n
+
d+ 2

3d

)
e−

x20qd

2n − d+ 2

3d
= −1

3
− 2

3d
+O

(
ln2 n

n

)
.

Assembling the calculated summands of (4.14) completes the proof.

We now calculate an upper bound on the error part of E(λ).

Lemma 4.6. For x0 =
√

2n lnn
qd

the following is true:

n∑
x=dx0e

xfλ(x) = O(ln4 n).

Proof. Using Lemma 4.4 and the facts that x0 = O(
√
n lnn) and e−

x20qd

2n = 1
n

we
calculate the sum

dx0e−1∑
x=0

fλ(x) =

dx0e−1∑
x=0

(
xqd

n
+
x2q2d(d+ 2)

2n2
− x4q3d2(d+ 2)

6n3

)
e−

x2qd
2n +

+

dx0e−1∑
x=0

O

(
ln7/2 n

n3/2

)
=
qd

n

∫ x0

0

xe−
x2qd
2n ∂x+

q2d(d+ 2)

2n2

∫ x0

0

x2e−
x2qd
2n ∂x−

− q3d2(d+ 2)

6n3

∫ x0

0

x4e−
x2qd
2n ∂x+O

(
ln4 n

n

)
=

qd

n

∫ x0

0

xe−
x2qd
2n ∂x+

q2d(d+ 2)

2n2
x3

0e
−x

2
0qd

2n +O

(
ln4 n

n

)
=

1− e−
x20qd

2n +O

(
ln4 n

n

)
= 1 +O

(
ln4 n

n

)
. (4.16)

When computing sums by integration we have used (4.15). For the exponen-

tial integrals in (4.16) we have applied the formulae
∫
xbe−ax

2
∂x = −xb−1

2a
e−ax

2
+

b−1
2a

∫
xb−2e−ax

2
∂x and

∫
xe−ax

2
∂x = − 1

2a
e−ax

2
[87, §1.3.3].

Equation (4.16) implies that

n∑
x=dx0e

fλ(x) = 1−
dx0e−1∑
x=0

fλ(x) = O

(
ln4 n

n

)
. (4.17)

4.B. Argument for Heuristic 4.2 99

Since fλ(x) ≥ 0 for any x ≥ 0, the value (4.17) is the maximum among all possible
subsums of the sequence (fλ(x0), fλ(x0 + 1), . . . , fλ(n)). Hence, by Abel’s inequal-
ity [121, §II.2.301], the following is true:

n∑
x=dx0e

xfλ(x) ≤ nO

(
ln4 n

n

)
= O(ln4 n).

Lemmas 4.5 and 4.6 let us calculate the expected value of λ:

E(λ) =
n∑
x=0

xfλ(x) =

√
πn

2qd
+O(ln4 n). (4.18)

4.A.4 Expected Number of Visited Nodes α

Substituting q = 1
2

in (4.18), we find that the expected value of α equals

E(α) = E(λ) + E(δ) + 1 =

√
πn

d
+

2

θ
+O(ln4 n).

This completes the proof of Theorem 4.1.

4.B Argument for Heuristic 4.2

We keep the notation from Section 4.A. Recall from (4.10) that α is a sum of two
random variables. Hence [102, §4.4]

Var(α) ≈ Var(λ) + Var(δ) + 2 Cov(λ, δ).

Using (4.12) and (4.18) with q = 1
2
, the variance of λ can be approximated as

Var(λ) =

∫ ∞
0

fλ(x) (x− E(x))2 ∂x ≈ d

2n

∫ ∞
0

x

(
x−

√
πn

d

)2

e−
x2d
4n ∂x =

(4− π)n

d
.

We have applied (4.21) and the formula
∫∞

0
x2b+1e−ax

2
∂x = b!

2ab+1 for a > 0 [51,
Eq. 3.461.3].

The random variable δ is described by the geometric distribution (4.11), hence
its variance is

Var(δ) =
4− 2θ

θ2
.

What remains is to find the covariance of λ and δ. Note that both λ and δ tend
to increase with the number of collisions, therefore λ and δ are not independent.
Their covariance can be computed as [102, §4.3.1]

Cov(λ, δ) = E(λδ)− E(λ) E(δ).

100 Improved Algorithm for the Isogeny Problem

Denote by M the number of collisions up to and including the first good collision.
Using the fact that for a fixed M , the random variables λ and δ are independent,
the term E(λδ) will be computed as

E(λδ) =
∞∑
m=1

fM(m) E(λδ |M = m) =
∞∑
m=1

fM(m) E(λ |M = m) E(δ |M = m).

The process of trying collisions until a good one is found is described by the
geometric distribution with the PMF

fM(m) = (1− q)m−1q =
1

2m
, where m ≥ 1.

Given M = m, the number of duplicate visited nodes δ represents the number
of Bernoulli trials with success probability θ necessary for the m-th success to oc-
cur. This is known as the negative binomial distribution [102, §6.1.3]. Hence the
conditional PMF and the conditional expected value of δ are

fδ(x |M = m) =

(
x− 1

m− 1

)
(1− θ)x−mθm, where m ≥ 1 and x ≥ 1.

E(δ |M = m) =
m

θ
.

Lemma 4.7. The PMF of λ given that M = m is

fλ(x |M = m) =
x2m−1dm

(m− 1)! 2m−1 nm
e−

x2d
2n +O

(
1

n

)
, (4.19)

where 0 ≤ x = O(
√
n).

Proof. We use the induction on M . Lemma 4.4 shows that the result is valid for
M = 1, which is easy to see by substituting q = 1 in (4.12).

Assume the result is valid for M = m− 1 for some m ≥ 2, and consider the case
when M = m. Let us express λ as the sum

λ = y + λ′,

where y is the number of distinct nodes visited before the (m−1)-th collision minus
one and λ′ is the number of distinct nodes visited between the (m− 1)-th and m-th
collisions. The PMF of λ′ can be obtained analogously to Lemma 4.4:

fλ′(z) =
(y + z)d

n− (y + z)

(
1− y + 1

n

) y+z−1∏
i=y+2

(
1− id

n− i

)
=

(y + z)d

n
e−

(2y+z)zd
2n +O

(
1

n

)
.

4.B. Argument for Heuristic 4.2 101

Thus the conditional PMF of λ is the discrete convolution

fλ(x |M = m) =
x∑
y=0

fλ(y |M = m− 1) fλ′(x− y) =

x∑
y=0

(
y2m−3dm−1

(m− 2)! 2m−2 nm−1
e−

y2d
2n +O

(
1

n

))(
xd

n
e−

(x+y)(x−y)d
2n +O

(
1

n

))
=

xdm

(m− 2)! 2m−2 nm
e−

x2d
2n

x∑
y=0

y2m−3 +O

(
1

n

)
=

xdm

(m− 2)! 2m−2 nm
e−

x2d
2n

(
x2m−2

2(m− 1)
+O(x2m−3)

)
+O

(
1

n

)
=

x2m−1dm

(m− 1)! 2m−1 nm
e−

x2d
2n +O

(
1

n

)
.

For computing the sum
∑x

y=0 y
2m−3 we have used the Euler-Maclaurin summation

formula [1, §3.6.28], which implies that

x∑
y=0

ya =

∫ x

0

ya ∂y +O

(
max

(
∂i

∂y
ya
∣∣∣∣
i≥0
y=x

))
=

xa+1

a+ 1
+O(xa).

We approximate the conditional PMF of λ at the interval 0 ≤ x = O(
√
n) by

fλ(x |M = m) ≈ x2m−1dm

(m− 1)! 2m−1 nm
e−

x2d
2n .

Note that for such chosen approximation, for any m ≥ 1 we have that
∫∞

0
fλ(x |

M = m) = 1. It is also possible to show that for any 0 < ε < 1 there exists a

constant cm,ε such that 1 −
∫ cm,ε√n

0
fλ(x | M = m) ≤ ε. Hence an approximation

for the conditional expected value of λ can be computed as

E(λ |M = m) ≈
∫ ∞

0

xfλ(x |M = m)∂x =
dm

(m− 1)! 2m−1 nm

∫ ∞
0

x2me−
x2d
2n ∂x =

dm

(m− 1)! 2m−1 nm
(2m)!nm

m! 2m+1 dm

√
2πn

d
=

(2m)!

22mm! (m− 1)!

√
2πn

d
. (4.20)

For computing the integral we have used the formula∫ ∞
0

x2be−ax
2

∂x =
(2b− 1)!!

2b+1ab

√
π

a
, (4.21)

where a > 0 and b ∈ N [51, Eq. 3.461.2]. The double factorial equals (2b−1)!! = (2b)!
b! 2b

.

102 Improved Algorithm for the Isogeny Problem

An interesting observation is that in order to obtain exactly two collisions one
should expect the algorithm to visit E(λ | M = 2) distinct nodes. But E(λ|M=2)

E(λ)
=

3
√

2/4 ≈ 1.06, which means that, by our approximated formula (4.20), on average
the algorithm terminates earlier than it is expected to find two collisions.

We now compute

E(λδ) =
∞∑
m=1

fM(m) E(λ |M = m) E(δ |M = m) ≈

1

θ

√
2πn

d

∞∑
m=1

(2m)!

23m (m− 1)! (m− 1)!
=

1

8θ

√
2πn

d

∞∑
k=0

(2k + 2)!

(k!)2 8k
=

5

2θ

√
πn

d
.

For the series we have used the formulae
∑∞

k=0
(2k+3)!
k! (k+1)!

ak = 6(1 − 4a)−5/2 and∑∞
k=0

(2k+1)!
(k!)2

ak = (1− 4a)−3/2 when |a| < 1
4

[87, §5.2.13].
Finally we assemble the summands to find that

Cov(λ, δ) ≈ 5

2θ

√
πn

d
− 2

θ

√
πn

d
=

1

2θ

√
πn

d
,

Var(α) ≈ (4− π)n

d
+

4− 2θ

θ2
+

1

θ

√
πn

d
.

4.C Numerical Experiments

In this section we provide more details about Experiment 4.1 (measurement of L in
arbitrary groups) and list its full set of results. We report about other experiments
with adding walks as well.

4.C.1 Details and Results of Experiment 4.1

When choosing the supporting set H, we have to check that it generates the group G.
Let G ∼= Zn1⊕· · ·⊕Zns . We write elements of G in the vector form ~g = (g1, . . . , gs) ∈
Zn1⊕· · ·⊕Zns . Denote also by ~ei the vector with 1 in position i and zeros elsewhere.

The subset {~e1, . . . , ~es} generates G. Let now a subset H = { ~h1, . . . , ~ht} ⊂ G be
chosen, where t ≥ s. The subset H generates G if and only if each of the elements
~ei, 1 ≤ i ≤ s, can be expressed as a linear combination of the elements of H. This
is equivalent to saying that there exists a t× s integer matrix X such that

h1,1 h1,2 · · · h1,t

h2,1 h2,2 · · · h2,t
...

...
. . .

...
hs,1 hs,2 · · · hs,t

x1,1 x1,2 · · · x1,s

x2,1 x2,2 · · · x2,s
...

...
. . .

...
xt,1 xt,2 · · · xt,s

 ≡ E mod

n1

n2
...
ns

 ,

4.C. Numerical Experiments 103

where E is the s× s identity matrix. In the matrix multiplication above all compu-
tations involving hi,j are done modulo ni. Thus the fact that H generates G can be
verified by solving the system of linear modular equations.

For constructing a random group G of a given cardinality limit dlog #Ge = m we
use the following algorithm. For a fixed n, denote by cn the number of isomorphism
classes of abelian groups of order n. Denote by cmax the maximal value of cn achieved
on the interval n ∈ {2m−1 + 1, . . . , 2m}. The value cmax is achieved for n = 2m and
can be found as the number of partitions of m. Consider Algorithm 4.3.

Alg. 4.3 Random sampling of a group

Input: m ∈ N
1: cmax ← # partitions(m)
2: repeat

3: n
R←− {2m−1 + 1, . . . , 2m}

4: cn ← #{isomorphism classes of groups of cardinality n}
5: r

R←− {0, . . . , cmax − 1}
6: until r < cn
7: G

R←− {isomorphism classes of groups of cardinality n}
Output: G

Lemma 4.8. Algorithm 4.3 outputs a group sampled uniformly at random from the
finite abelian groups of cardinalities n ∈ {2m−1 + 1, . . . , 2m}.

Proof. On any individually taken repeat-until round, the probability to choose n
equals

Pr[choose n in a round] =
cn

2m−1cmax

,

and the probability to proceed to the next round (call this event E) can be found
as

Pr[E] =
2m∑

n=2m−1+1

1

2m−1

(
1− cn

cmax

)
.

Now we can find the probability that the algorithm outputs a group of cardinality n:

Pr[#G = n | G← Algorithm 4.3] =
cn

2m−1cmax

∞∑
i=1

Pr[E]i−1 = c cn,

where the constant c is independent from n.
The total number of possible isomorphism classes on the interval n ∈ {2m−1 +

1, . . . , 2m} equals N =
∑2m

n=2m−1+1 cn. The probability that a group chosen uniformly
at random has cardinality n is

Pr[#G = n | G R←− {groups of cardinalities n, dlog ne = m}] =
cn
N
.

104 Improved Algorithm for the Isogeny Problem

Now the equality

1

N

2m∑
n=2m−1+1

cn = c
2m∑

n=2m−1+1

cn = 1

implies that c = 1
N

.

In Table 4.5 we present the expected values of L and in Table 4.6 the standard
deviations of L obtained in Experiment 4.1. In both tables, the average is taken
over random choices of abelian groups of orders n satisfying dlog ne = m for a fixed
m, random choices of supporting sets and random choices of problem instances.
Mantissas are rounded to four decimal digits.

We can observe that the expected value of L increases as the group order n grows.
However, for r ≥ 4, the slope of L(n) decreases as n gets bigger. The same holds for
the standard deviations of L. We also see a few inconsistent values of Stdev(L) for
n < 240 (in the three leftmost columns of Table 4.6). Most likely, these are caused
by walk loops.

We also computed the values σ = E(L)/E(Lπ) and approximated them by func-
tions of the form

σ(n) = c0 −
c1

nc2
. (4.22)

The formula for σ(n) is hypothetical, but with carefully chosen constants c0, c1 and
c2 we get a very close approximation of the experimental results, cf. Fig. 4.2. The
constants are listed in Table 4.7 for completeness. Using Theorem 4.1, (4.22) and
Table 4.7 one may easily compute the expected value of L for any group order.

4.C.2 How Aperiodicity of the Supporting Set Affects L

A set {g1, . . . , gr} ⊂ Z+
n is called aperiodic if gcd(g2 − g1, . . . , gr − g1, n) = 1 and

g1, . . . , gr are all distinct. Dai and Hildebrand, studying the mixing property of
adding walks, note that the aperiodicity of the supporting set is a necessary condition
for the adding walk to look like a random mapping [33]. Indeed, a subset H =
{g1, . . . , gr} is aperiodic if and only if the subset {g2− g1, . . . , gr− g1} generates Z+

n .
When the additive walk is started from 0, its state after m hops can be expressed
as

zm =
r∑
i=1

migi = mg1 +
r∑
i=2

(migi −mig1).

The rightmost sum is an element of the subgroup 〈g2 − g1, . . . , gr − g1〉, and so
in order for zm to be a random element of Z+

n , the subset H has to be aperiodic.
Consider the following example where the subset H = {1, 3} generates the group
Z+

2n, but H is not aperiodic in Z+
2n since gcd(3− 1, 2n) = 2. For the walk supported

by H, we have that zm is even when m is even, and zm is odd when m is odd. Such
a walk is certainly not random-looking.

dlogne

w r 28 32 36 40 44 48 52 56

1

3 2.8547 2.9982 3.1380 3.2735 3.4079 3.5355 3.6681 3.7812
4 2.2923 2.3101 2.3247 2.3371 2.3484 2.3518 2.3661 2.3661
5 2.1039 2.0975 2.0968 2.0984 2.0978 2.1007 2.1009 2.1004
6 2.0178 2.0099 2.0052 2.0032 2.0026 2.0038 2.0022 2.0023
7 1.9696 1.9612 1.9543 1.9519 1.9519 1.9531 1.9508 1.9543
8 1.9400 1.9289 1.9242 1.9206 1.9210 1.9177 1.9202 1.9146
9 1.9203 1.9083 1.9035 1.8995 1.8989 1.8933 1.8988 1.8984
10 1.9021 1.8932 1.8862 1.8849 1.8831 1.8816 1.8769 1.8879
11 1.8916 1.8801 1.8757 1.8730 1.8715 1.8644 1.8714 1.8700
12 1.8827 1.8709 1.8659 1.8627 1.8617 1.8531 1.8607 1.8613
13 1.8744 1.8621 1.8575 1.8552 1.8530 1.8531 1.8524 1.8503
14 1.8684 1.8566 1.8508 1.8480 1.8465 1.8474 1.8443 1.8497
15 1.8620 1.8507 1.8442 1.8416 1.8398 1.8424 1.8369 1.8432
16 1.8575 1.8455 1.8407 1.8384 1.8361 1.8302 1.8369 1.8357

3
4

3 2.8980 3.0437 3.1893 3.3280 3.4667 3.6046 3.7199 3.8457
4 2.3461 2.3667 2.3848 2.3986 2.4087 2.4129 2.4188 2.4243
5 2.1635 2.1608 2.1598 2.1621 2.1634 2.1677 2.1619 2.1631
6 2.0840 2.0756 2.0734 2.0717 2.0713 2.0764 2.0620 2.0694
7 2.0410 2.0321 2.0272 2.0261 2.0260 2.0209 2.0250 2.0248
8 2.0154 2.0055 2.0021 1.9990 1.9981 1.9987 2.0012 1.9968
9 1.9995 1.9900 1.9849 1.9833 1.9819 1.9831 1.9846 1.9839
10 1.9883 1.9775 1.9733 1.9710 1.9706 1.9638 1.9721 1.9654
11 1.9805 1.9699 1.9649 1.9648 1.9611 1.9611 1.9616 1.9629
12 1.9755 1.9644 1.9604 1.9580 1.9568 1.9566 1.9565 1.9606
13 1.9728 1.9628 1.9568 1.9547 1.9544 1.9541 1.9513 1.9499
14 1.9738 1.9627 1.9581 1.9556 1.9533 1.9532 1.9537 1.9472
15 1.9700 1.9592 1.9549 1.9520 1.9520 1.9485 1.9489 1.9501
16 1.9679 1.9565 1.9506 1.9500 1.9484 1.9502 1.9445 1.9481

1
2

3 3.1089 3.2761 3.4406 3.5985 3.7500 3.9086 4.0331 4.1785
4 2.6071 2.6436 2.6723 2.6938 2.7101 2.7307 2.7315 2.7406
5 2.4586 2.4665 2.4723 2.4782 2.4802 2.4875 2.4821 2.4776
6 2.4000 2.4022 2.4063 2.4068 2.4086 2.4079 2.4069 2.4128
7 2.3738 2.3771 2.3773 2.3774 2.3793 2.3800 2.3835 2.3889
8 2.3616 2.3621 2.3631 2.3654 2.3662 2.3643 2.3636 2.3723
9 2.3567 2.3557 2.3593 2.3574 2.3590 2.3553 2.3578 2.3533
10 2.3529 2.3536 2.3527 2.3553 2.3563 2.3486 2.3533 2.3557
11 2.3526 2.3529 2.3524 2.3534 2.3538 2.3577 2.3538 2.3541
12 2.3513 2.3522 2.3526 2.3539 2.3535 2.3538 2.3553 2.3567
13 2.3513 2.3519 2.3517 2.3519 2.3533 2.3538 2.3484 2.3492
14 2.3520 2.3503 2.3507 2.3522 2.3523 2.3577 2.3488 2.3540
15 2.3528 2.3512 2.3520 2.3511 2.3514 2.3506 2.3530 2.3524
16 2.3516 2.3523 2.3519 2.3519 2.3536 2.3524 2.3465 2.3576

1
3

3 3.4906 3.6994 3.9037 4.1006 4.2821 4.4686 4.6310 4.7936
4 3.0835 3.1559 3.2119 3.2526 3.2813 3.3060 3.2997 3.3238
5 2.9829 3.0273 3.0590 3.0748 3.0873 3.0924 3.1058 3.0993
6 2.9493 2.9903 3.0159 3.0304 3.0379 3.0467 3.0491 3.0478
7 2.9418 2.9784 3.0033 3.0148 3.0236 3.0325 3.0234 3.0255
8 2.9402 2.9759 2.9982 3.0113 3.0177 3.0115 3.0251 3.0170
9 2.9405 2.9740 2.9978 3.0083 3.0154 3.0142 3.0255 3.0175
10 2.9397 2.9762 2.9973 3.0088 3.0143 3.0153 3.0173 3.0266
11 2.9419 2.9743 2.9953 3.0090 3.0139 3.0180 3.0207 3.0234
12 2.9406 2.9750 2.9964 3.0074 3.0139 3.0153 3.0292 3.0249
13 2.9422 2.9760 2.9947 3.0078 3.0134 3.0127 3.0201 3.0172
14 2.9395 2.9739 2.9954 3.0076 3.0157 3.0184 3.0187 3.0238
15 2.9425 2.9751 2.9978 3.0082 3.0154 3.0245 3.0176 3.0243
16 2.9436 2.9810 2.9987 3.0119 3.0179 3.0323 3.0151 3.0258

1
4

3 3.8596 4.1194 4.3652 4.5978 4.8213 5.0395 5.2484 5.4338
4 3.5425 3.6694 3.7582 3.8280 3.8771 3.9015 3.9372 3.9517
5 3.4753 3.5732 3.6423 3.6830 3.7103 3.7322 3.7295 3.7407
6 3.4608 3.5566 3.6145 3.6526 3.6743 3.6985 3.6845 3.6845
7 3.4594 3.5495 3.6107 3.6450 3.6665 3.6689 3.6818 3.6885
8 3.4569 3.5488 3.6094 3.6456 3.6649 3.6782 3.6831 3.6854
9 3.4585 3.5493 3.6087 3.6437 3.6630 3.6826 3.6891 3.6876
10 3.4578 3.5486 3.6064 3.6454 3.6658 3.6672 3.6853 3.6833
11 3.4590 3.5467 3.6068 3.6423 3.6638 3.6833 3.6668 3.6797
12 3.4647 3.5467 3.6066 3.6452 3.6630 3.6755 3.6951 3.6914
13 3.4620 3.5485 3.6074 3.6457 3.6656 3.6825 3.6795 3.6924
14 3.4630 3.5490 3.6091 3.6471 3.6645 3.6733 3.6848 3.6865
15 3.4608 3.5477 3.6071 3.6433 3.6624 3.6753 3.6749 3.6923
16 3.4607 3.5498 3.6070 3.6427 3.6639 3.6747 3.6808 3.6880

Table 4.5: Expected values of L obtained experimentally.

dlogne

w r 28 32 36 40 44 48 52 56

1

3 1.6119 1.5704 1.6389 1.7109 1.7827 1.8459 1.9133 1.9738
4 1.2709 1.2075 1.2151 1.2210 1.2273 1.2310 1.2417 1.2395
5 1.1583 1.1011 1.0950 1.0964 1.0968 1.0980 1.1020 1.1028
6 1.0547 1.0485 1.0471 1.0459 1.0472 1.0428 1.0459 1.0455
7 1.0866 1.0238 1.0203 1.0200 1.0203 1.0176 1.0189 1.0225
8 1.0164 1.0068 1.0046 1.0041 1.0042 1.0045 1.0050 1.0024
9 1.0128 1.0077 0.9937 0.9929 0.9923 0.9943 0.9912 0.9925
10 0.9980 0.9880 0.9857 0.9852 0.9844 0.9838 0.9847 0.9840
11 0.9871 0.9811 0.9789 0.9788 0.9781 0.9757 0.9776 0.9790
12 0.9885 0.9765 0.9744 0.9730 0.9725 0.9701 0.9755 0.9717
13 0.9792 0.9721 0.9706 0.9690 0.9691 0.9666 0.9679 0.9682
14 0.9749 0.9694 0.9663 0.9661 0.9650 0.9631 0.9623 0.9694
15 0.9724 0.9663 0.9636 0.9619 0.9622 0.9638 0.9607 0.9662
16 0.9705 0.9637 0.9622 0.9606 0.9601 0.9588 0.9605 0.9575

3
4

3 1.7501 1.5911 1.6671 1.7401 1.8111 1.8816 1.9396 2.0115
4 1.2529 1.2408 1.2455 1.2521 1.2583 1.2666 1.2634 1.2688
5 1.4546 1.1281 1.1293 1.1298 1.1308 1.1286 1.1318 1.1278
6 1.0913 1.0834 1.0832 1.0825 1.0823 1.0831 1.0820 1.0803
7 1.0660 1.0609 1.0594 1.0590 1.0590 1.0555 1.0594 1.0583
8 1.0536 1.0478 1.0452 1.0457 1.0448 1.0447 1.0470 1.0429
9 1.0507 1.0387 1.0360 1.0362 1.0357 1.0387 1.0425 1.0324
10 1.0555 1.0333 1.0312 1.0311 1.0295 1.0271 1.0312 1.0260
11 1.0412 1.0416 1.0271 1.0266 1.0256 1.0263 1.0283 1.0206
12 1.0323 1.0257 1.0243 1.0227 1.0221 1.0231 1.0221 1.0243
13 1.0312 1.0243 1.0218 1.0216 1.0209 1.0142 1.0183 1.0196
14 1.0949 1.0242 1.0225 1.0222 1.0206 1.0205 1.0180 1.0175
15 1.0332 1.0227 1.0206 1.0199 1.0200 1.0182 1.0184 1.0192
16 1.1664 1.0333 1.0191 1.0189 1.0175 1.0163 1.0194 1.0201

1
2

3 1.6342 1.7247 1.7982 1.8805 1.9621 2.0379 2.1049 2.1894
4 1.5050 1.3880 1.3960 1.4081 1.4169 1.4189 1.4333 1.4281
5 1.5815 1.3030 1.2924 1.2945 1.2965 1.2997 1.3009 1.2946
6 1.3156 1.2559 1.2570 1.2579 1.2591 1.2617 1.2573 1.2589
7 1.2517 1.2616 1.2419 1.2419 1.2436 1.2474 1.2437 1.2472
8 1.2637 1.2407 1.2347 1.2360 1.2365 1.2387 1.2370 1.2414
9 1.2609 1.2306 2.4437 1.2321 1.2324 1.2354 1.2347 1.2287
10 1.2490 1.2331 1.2300 1.2313 1.2309 1.2277 1.2314 1.2296
11 2.1772 1.2957 1.2291 1.2310 1.2304 1.2293 1.2279 1.2300
12 1.2504 1.2274 1.2289 1.2305 1.2300 1.2314 1.2313 1.2310
13 1.2700 1.2395 1.2289 1.2290 1.2299 1.2318 1.2268 1.2279
14 1.2878 1.2289 1.2471 1.2293 1.2285 1.2301 1.2267 1.2321
15 1.5222 1.2547 1.2455 1.2285 1.2285 1.2313 1.2316 1.2332
16 1.4334 1.2279 1.2339 1.2290 1.2304 1.2257 1.2209 1.2349

1
3

3 1.8637 1.9686 2.0390 2.1425 2.2398 2.3367 2.4248 2.5050
4 1.6339 1.6496 1.6789 1.6994 1.7148 1.7271 1.7314 1.7390
5 1.7092 1.5832 1.5986 1.6080 1.6130 1.6182 1.6190 1.6174
6 1.5760 1.5632 1.5805 1.5840 1.5873 1.5927 1.5954 1.5952
7 1.6433 1.5602 1.5685 1.5750 1.5804 1.5834 1.5794 1.5831
8 1.6090 1.5694 1.5665 1.5738 1.5760 1.5734 1.5854 1.5787
9 2.0606 1.5568 1.5664 1.5712 1.5758 1.5739 1.5823 1.5775
10 2.2107 1.5768 1.5658 1.5724 1.5762 1.5786 1.5760 1.5889
11 4.2293 1.6783 1.5649 1.5723 1.5760 1.5769 1.5784 1.5834
12 2.5554 1.9046 1.5652 1.5724 1.5756 1.5809 1.5765 1.5808
13 2.3661 1.5711 1.5642 1.5727 1.5753 1.5686 1.5804 1.5756
14 1.9056 1.5662 1.5658 1.5712 1.5754 1.5784 1.5794 1.5773
15 1.8106 1.5994 1.5672 1.5725 1.5751 1.5789 1.5788 1.5742
16 1.7797 6.3869 1.5689 1.5742 1.5770 1.5827 1.5783 1.5859

1
4

3 2.4416 2.1520 2.2821 2.4048 2.5200 2.6389 2.7395 2.8478
4 1.8971 1.9198 1.9632 2.0001 2.0279 2.0439 2.0516 2.0760
5 2.5911 1.8910 1.9018 1.9248 1.9383 1.9461 1.9521 1.9605
6 2.2320 2.0988 1.8906 1.9094 1.9192 1.9230 1.9251 1.9331
7 2.8160 1.8566 1.8870 1.9046 1.9170 1.9145 1.9236 1.9341
8 1.9505 1.8729 1.8847 1.9054 1.9172 1.9196 1.9269 1.9314
9 2.6773 1.8568 1.8841 1.9058 1.9152 1.9262 1.9324 1.9154
10 2.1574 2.0621 1.8860 1.9047 1.9153 1.9196 1.9282 1.9281
11 2.4498 1.8807 1.8879 1.9048 1.9143 1.9226 1.9214 1.9316
12 4.6256 1.9160 1.8942 1.9038 1.9145 1.9193 1.9359 1.9319
13 4.2067 1.8591 1.8853 1.9060 1.9153 1.9216 1.9149 1.9325
14 3.2386 1.9366 1.8853 1.9064 1.9159 1.9168 1.9219 1.9273
15 2.5811 1.8688 1.8900 1.9048 1.9159 1.9244 1.9171 1.9251
16 3.6983 1.8879 1.8844 1.9022 1.9153 1.9151 1.9254 1.9310

Table 4.6: Standard deviations of L obtained experimentally.

w r c0 c1 c2

1

4 1.165 0.309 0.093
5 1.060 0.106 0.143
6 1.031 0.100 1.000
7 1.020 0.100 1.000
8 1.013 0.100 1.000
9 1.010 0.100 1.000
10 1.008 0.100 1.000
11 1.006 0.100 1.000
12 1.005 0.100 1.000
13 1.005 0.100 1.000
14 1.004 0.100 1.000
15 1.003 0.100 1.000
16 1.003 0.100 1.000

3
4

4 1.169 0.503 0.121
5 1.071 0.124 0.138
6 1.041 1.037 0.444
7 1.030 0.100 1.000
8 1.024 0.100 1.000
9 1.021 0.100 1.000
10 1.018 0.100 1.000
11 1.017 0.100 1.000
12 1.017 0.100 1.000
13 1.016 0.100 1.000
14 1.017 0.100 1.000
15 1.017 0.100 1.000
16 1.016 0.100 1.000

1
2

4 1.229 0.590 0.108
5 1.125 0.960 0.211
6 1.102 0.236 0.160
7 1.096 0.100 0.108
8 1.089 0.156 0.148
9 1.084 1.952 0.308
10 1.084 0.462 0.222
11 1.085 0.210 0.174
12 1.085 0.257 0.182
13 1.083 1.403 0.286
14 1.084 0.316 0.200
15 1.084 0.116 0.154
16 1.084 0.302 0.200

w r c0 c1 c2

1
3

4 1.317 1.249 0.129
5 1.235 1.283 0.167
6 1.216 1.681 0.190
7 1.209 1.777 0.200
8 1.206 2.000 0.211
9 1.206 1.640 0.200
10 1.206 2.000 0.211
11 1.207 1.395 0.190
12 1.208 1.222 0.182
13 1.205 1.920 0.211
14 1.207 1.421 0.190
15 1.207 1.669 0.200
16 1.208 1.664 0.200

1
4

4 1.418 1.527 0.118
5 1.339 1.888 0.154
6 1.324 1.862 0.160
7 1.319 2.000 0.167
8 1.322 1.854 0.160
9 1.322 1.845 0.160
10 1.319 2.000 0.167
11 1.318 1.988 0.167
12 1.322 1.828 0.160
13 1.322 1.832 0.160
14 1.320 2.000 0.167
15 1.319 2.000 0.167
16 1.319 2.000 0.167

Table 4.7: Coefficients for approximating E(L)/E(Lπ) by formula (4.22).

108 Improved Algorithm for the Isogeny Problem

w r periodic aperiodic

1

4 2.3473 (1.2267) 2.3474 (1.2264)
6 2.0024 (1.0466) 2.0012 (1.0463)
10 1.8826 (0.9839) 1.8837 (0.9848)
16 1.8358 (0.9591) 1.8361 (0.9592)

1
2

4 2.7090 (1.4153) 2.7081 (1.4155)
6 2.4086 (1.2583) 2.4093 (1.2582)
10 2.3558 (1.2321) 2.3550 (1.2324)
16 2.3518 (1.2294) 2.3527 (1.2291)

1
4

4 3.8771 (2.0266) 3.8722 (2.0238)
6 3.6750 (1.9207) 3.6731 (1.9202)
10 3.6638 (1.9150) 3.6625 (1.9144)
16 3.6655 (1.9158) 3.6629 (1.9136)

Table 4.8: Values E(L) (Stdev(L)) for periodic and aperiodic supporting sets.

However important the aperiodicity is for the mixing of adding walks, we show
that it is not necessary for achieving collisions. In other words, the aperiodicity of
supporting set does not affect the performance of Algorithm A.

We will call a set periodic if gcd(g2 − g1, . . . , gr − g1, n) > 1 and g1, . . . , gr are
all distinct. The following experimental evidence shows that the expected value
and the standard deviation of L do not depend on the aperiodicity property of the
supporting set, when a cyclic group and a supporting set are sampled uniformly at
random.

Experiment 4.2 (Comparison of L for Periodic and Aperiodic Supporting Sets).
Let G = Z+

n , where n can take values satisfying dlog ne = 44. For each of the values
r ∈ {4, 6, 10, 16} and w ∈ {1, 1

2
, 1

4
} conduct k1 experiments. In each experiment,

randomly choose a composite integer n. Then choose a random periodic supporting
set that generates G and a random aperiodic supporting set. Choose a problem
instance at random and run algorithm A. Results are given in Table 4.8.

The differences between the values in Table 4.8 are within the confidence in-
tervals. Thus it is sufficient to choose a random supporting set in Algorithm A,
irrespective of the aperiodicity. However, it is crucial to check that the supporting
set generates G.

4.C.3 How Group Cyclicity Affects L

Experiment 4.3 (Comparison of L in Finite Groups of Different Ranks). Let
dlog ne = 44. For each of the values s ∈ {1, 2, 4, 6}, r ∈ {4, 6, 10, 16} and w ∈
{1, 1

2
, 1

4
} conduct k1 experiments. In every experiment choose a random group G of

4.C. Numerical Experiments 109

w r rankG = 1 rankG = 2 rankG = 4 rankG = 6

1

4 2.3474 (1.2273) 2.3474 (1.2273) 2.3466 (1.2268) −
6 2.0018 (1.0465) 2.0017 (1.0455) 2.0009 (1.0456) 2.0031 (1.0471)
10 1.8835 (0.9835) 1.8843 (0.9844) 1.8832 (0.9841) 1.8827 (0.9843)
16 1.8367 (0.9598) 1.8361 (0.9595) 1.8371 (0.9593) 1.8363 (0.9591)

1
2

4 2.7085 (1.4151) 2.7085 (1.4153) 2.7100 (1.4174) −
6 2.4095 (1.2602) 2.4096 (1.2590) 2.4096 (1.2597) 2.4090 (1.2585)
10 2.3554 (1.2315) 2.3548 (1.2316) 2.3569 (1.2328) 2.3566 (1.2303)
16 2.3525 (1.2300) 2.3525 (1.2296) 2.3530 (1.2299) 2.3513 (1.2281)

1
4

4 3.8766 (2.0250) 3.8737 (2.0265) 3.8755 (2.0224) −
6 3.6764 (1.9214) 3.6737 (1.9217) 3.6729 (1.9207) 3.6752 (1.9214)
10 3.6637 (1.9168) 3.6622 (1.9157) 3.6654 (1.9159) 3.6637 (1.9138)
16 3.6634 (1.9138) 3.6640 (1.9149) 3.6643 (1.9152) 3.6654 (1.9148)

Table 4.9: Values E(L) (Stdev(L)) in groups of rank 1, 2, 4 and 6.

rank s and a random subset of r elements that generates G. Use θ = n−1/4 and the
partitioning probabilities decreasing with ratio w. The results are listed in Table 4.9.
Mantissas are rounded to four decimal digits.

For constructing a random group G = Zn1 ⊕ · · · ⊕ Zns of a given rank s and
a given cardinality limit dlog #Ge = l we use a modified version of Algorithm 4.3,
namely the algorithm is restricted to groups of a fixed rank s. The value cn is
replaced by cn,s, the number of isomorphism classes of abelian groups of order n and
rank s. The value cmax is now computed as the number of partitions of l of length s.
The rest of the algorithm remains unchanged.

We see that the differences between the values in Table 4.9 for groups of various
ranks do not exceed the size of the confidence interval. This allows us to hypothesize
that the expected value and the standard deviation of L is independent of the rank,
when a group of a fixed small rank is sampled uniformly at random.

4.C.4 Values of L in Ideal Class Groups of Elliptic Curve
CM Fields

In this section we show that the values E(L) and Stdev(L) for the CL-GAIP are the
same as for random abelian groups, and hence the results of Experiment 4.1 also
apply to random instances of CL-GAIP.

Experiment 4.4 (Measuring L in Ideal Class Groups of Elliptic Curve CM Fields).
In every experiment, choose a random 90-bit prime p and a random elliptic curve
E/Fp with a fundamental Frobenius discriminant ∆E. Run the algorithm A in
the additive group of integers isomorphic to the class group CL(∆E), choosing

110 Improved Algorithm for the Isogeny Problem

E(L) Stdev(L)

w r Exp. 4.1 Exp. 4.4 diff. % Exp. 4.1 Exp. 4.4 diff. %

1

4 2.3476 2.3473 −0.01 1.2279 1.2282 0.03
6 2.0028 2.0027 −0.00 1.0458 1.0467 0.09
10 1.8843 1.8827 −0.08 0.9847 0.9835 −0.12
16 1.8371 1.8364 −0.04 0.9602 0.9606 0.04

1
2

4 2.7123 2.7098 −0.09 1.4168 1.4162 −0.04
6 2.4082 2.4097 0.06 1.2588 1.2590 0.01
10 2.3539 2.3553 0.06 1.2298 1.2308 0.08
16 2.3524 2.3531 0.03 1.2293 1.2302 0.07

1
4

4 3.8756 3.8706 −0.13 2.0255 2.0238 −0.08
6 3.6709 3.6753 0.12 1.9179 1.9210 0.16
10 3.6605 3.6629 0.07 1.9152 1.9161 0.05
16 3.6605 3.6640 0.09 1.9126 1.9153 0.14

Table 4.10: Values E(L) and Stdev(L) in ideal class groups of elliptic curve CM
fields and in random finite abelian groups.

the supporting set at random. Run k1 experiments for every combination of r ∈
{4, 6, 10, 16} and w ∈ {1, 1/2, 1/4}.

Results are given in Table 4.10. The average class number in Experiment 4.4
was approximately 243.715.

We see that the difference between values E(L) in class groups and in random
finite groups does not exceed 0.2 %. Since we are comparing results from two ex-
periments with ±0.1 % confidence intervals, and expecting results from the two
experiments to be the same, we conclude that the experiment confirms our hypoth-
esis, with the obtained difference being within the margin of error. The same holds
for Stdev(L).

Bibliography

[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of mathematical func-
tions with formulas, graphs, and mathematical tables. Dover Publications Inc., New
York, 1992. ISBN 0-486-61272-4. Reprint of the 1972 edition. (Cited on pages 97
and 101.)

[2] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Com-
binatorica, 6(1):1–13, 1986. ISSN 0209-9683. URL http://dx.doi.org/10.1007/

BF02579403. (Cited on page 36.)

[3] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos,
Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo de Meule-
naer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Gneysu, Frank Gurkaynak,
Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben Niederhagen, Christof Paar,
Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege and
Bo-Yin Yang. Breaking ECC2K-130. Cryptology ePrint Archive, Report 2009/541,
2009. URL http://eprint.iacr.org/2009/541. (Cited on pages 77 and 78.)

[4] Stephane Beauregard. Circuit for Shor’s algorithm using 2n+ 3 qubits, 2003. URL
http://arxiv.org/abs/quant-ph/0205095v3. (Cited on page 2.)

[5] Karim Belabas, Francisco Diaz y Diaz and Eduardo Friedman. Small generators
of the ideal class group. Math. Comp., 77(262):1185–1197, 2008. ISSN 0025-5718.
URL http://dx.doi.org/10.1090/S0025-5718-07-02003-0. (Cited on page 32.)

[6] Juliana Belding, Reinier Bröker, Andreas Enge and Kristin Lauter. Computing
Hilbert class polynomials. In Algorithmic number theory, volume 5011 of Lecture
Notes in Comput. Sci., pages 282–295. Springer, Berlin, 2008. URL http://dx.

doi.org/10.1007/978-3-540-79456-1_19. (Cited on page 3.)

[7] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’ 93, volume 773 of
Lecture Notes in Comput. Sci., pages 232–249. Springer-Verlag, Berlin, 1994. (Cited
on pages 9 and 52.)

[8] Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances in Cryptology—CRYPTO 1998, volume 1462 of Lecture Notes in
Comput. Sci., pages 26–46. Springer, Berlin, 1998. (Cited on pages 27 and 59.)

111

http://dx.doi.org/10.1007/BF02579403
http://dx.doi.org/10.1007/BF02579403
http://eprint.iacr.org/2009/541
http://arxiv.org/abs/quant-ph/0205095v3
http://dx.doi.org/10.1090/S0025-5718-07-02003-0
http://dx.doi.org/10.1007/978-3-540-79456-1_19
http://dx.doi.org/10.1007/978-3-540-79456-1_19

112 Bibliography

[9] Daniel Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor, Post-
Quantum Cryptography, volume 6061 of Lecture Notes in Comput. Sci., pages
73–80. Springer Berlin / Heidelberg, 2010. URL http://dx.doi.org/10.1007/

978-3-642-12929-2_6. (Cited on page 2.)

[10] Daniel J. Bernstein, Johannes Buchmann and Erik Dahmen, editors. Post-quantum
cryptography. Springer-Verlag, Berlin, 2009. ISBN 978-3-540-88701-0. URL http:

//dx.doi.org/10.1007/978-3-540-88702-7. (Cited on pages 1 and 2.)

[11] Jean-François Biasse. Improvements in the computation of ideal class groups of
imaginary quadratic number fields. Adv. Math. Commun., 4(2):141–154, 2010.
ISSN 1930-5346. URL http://dx.doi.org/10.3934/amc.2010.4.141. (Cited on
pages 36 and 76.)

[12] Dario Bini and Victor Y. Pan. Polynomial and Matrix Computations. Vol. 1.
Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston, MA,
1994. ISBN 0-8176-3786-9. (Cited on pages 34 and 41.)

[13] Gaetan Bisson and Andrew V. Sutherland. Computing the endomorphism ring of an
ordinary elliptic curve over a finite field. Journal of Number Theory, 131(5):815–831,
2011. ISSN 0022-314X. URL http://www.sciencedirect.com/science/article/

pii/S0022314X09002789. Elliptic Curve Cryptography. (Cited on page 68.)

[14] Simon R. Blackburn and Sean Murphy. The number of partitions in Pollard rho,
May 1998. Preprint. (Cited on pages 77 and 78.)

[15] Simon Blake-Wilson, Don Johnson and Alfred Menezes. Key agreement proto-
cols and their security analysis (extended abstract). In Cryptography and coding
(Cirencester, 1997), volume 1355 of Lecture Notes in Comput. Sci., pages 30–45.
Springer, Berlin, 1997. URL http://dx.doi.org/10.1007/BFb0024447. (Cited on
page 8.)

[16] Wieb Bosma, John Cannon and Catherine Playoust. The Magma algebra system. I.
The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. ISSN 0747-7171.
URL http://dx.doi.org/10.1006/jsco.1996.0125. (Cited on page 13.)

[17] Richard P. Brent and John M. Pollard. Factorization of the eighth Fermat number.
Math. Comp., 36(154):627–630, 1981. ISSN 0025-5718. URL http://dx.doi.org/

10.2307/2007666. (Cited on page 77.)

[18] Reinier Broker, Kristin Lauter and Andrew V. Sutherland. Modular polynomials
via isogeny volcanoes. Math. Comp., 2011. URL http://dx.doi.org/10.1090/

S0025-5718-2011-02508-1. To appear. (Cited on pages 3 and 22.)

[19] Christian Cachin and Ueli Maurer. Smoothing probability distributions and smooth
entropy (extended abstract). Institute for Theoretical Computer Science, ETH
Zürich, 1996. (Cited on page 27.)

http://dx.doi.org/10.1007/978-3-642-12929-2_6
http://dx.doi.org/10.1007/978-3-642-12929-2_6
http://dx.doi.org/10.1007/978-3-540-88702-7
http://dx.doi.org/10.1007/978-3-540-88702-7
http://dx.doi.org/10.3934/amc.2010.4.141
http://www.sciencedirect.com/science/article/pii/S0022314X09002789
http://www.sciencedirect.com/science/article/pii/S0022314X09002789
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.2307/2007666
http://dx.doi.org/10.2307/2007666
http://dx.doi.org/10.1090/S0025-5718-2011-02508-1
http://dx.doi.org/10.1090/S0025-5718-2011-02508-1

Bibliography 113

[20] Christian Cachin and Ueli Maurer. Smoothing probability distributions and smooth
entropy. In IEEE International Symposium on Information Theory (ISIT 1997),
page 91, 1997. (Cited on pages 27 and 60.)

[21] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. Cryptology ePrint Archive, report 2001/040, 2001.
URL http://eprint.iacr.org/2001/040. (Cited on pages 26, 52, 57 and 58.)

[22] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In Advances in Cryptology—EUROCRYPT 2001
(Innsbruck), volume 2045 of Lecture Notes in Comput. Sci., pages 453–474. Springer,
Berlin, 2001. URL http://dx.doi.org/10.1007/3-540-44987-6_28. (Cited on
pages 26 and 52.)

[23] Denis Charles and Kristin Lauter. Computing modular polynomials. LMS J. Com-
put. Math., 8:195–204 (electronic), 2005. ISSN 1461-1570. (Cited on pages 3 and 22.)

[24] Denis X. Charles, Kristin E. Lauter and Eyal Z. Goren. Cryptographic hash func-
tions from expander graphs. J. Cryptology, 22(1):93–113, 2009. ISSN 0933-2790.
URL http://dx.doi.org/10.1007/s00145-007-9002-x. (Cited on pages 7, 22
and 28.)

[25] David Chaum, Jan-Hendrik Evertse and Jeroen van de Graaf. An improved protocol
for demonstrating possession of discrete logarithms and some generalizations. In
David Chaum and Wyn Price, editors, Advances in Cryptology EUROCRYPT 87,
volume 304 of Lecture Notes in Comput. Sci., pages 127–141. Springer Berlin /
Heidelberg, 1988. URL http://dx.doi.org/10.1007/3-540-39118-5_13. (Cited
on page 7.)

[26] Andrew M. Childs, David Jao and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time, 2010. URL http://arxiv.org/abs/

1012.4019v1. (Cited on pages 2, 5 and 71.)

[27] H. Cohen and H. W. Lenstra, Jr. Heuristics on class groups of number fields.
In Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of
Lecture Notes in Math., pages 33–62. Springer, Berlin, 1984. URL http://dx.doi.

org/10.1007/BFb0099440. (Cited on page 88.)

[28] Henri Cohen. A course in computational algebraic number theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993. ISBN 3-540-55640-
0. (Cited on pages 10, 11, 12, 13, 15 and 34.)

[29] J.-M. Couveignes, L. Dewaghe and F. Morain. Isogeny cycles and the Schoof-Elkies-
Atkin algorithm. research report LIX/RR/96/03, Laboratoire d’Informatique de
l’Ecole Polytechnique, 1996. (Cited on page 33.)

[30] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Re-
port 2006/291, 2006. URL http://eprint.iacr.org/2006/291. (Cited on pages 7,
8, 22 and 68.)

http://eprint.iacr.org/2001/040
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/s00145-007-9002-x
http://dx.doi.org/10.1007/3-540-39118-5_13
http://arxiv.org/abs/1012.4019v1
http://arxiv.org/abs/1012.4019v1
http://dx.doi.org/10.1007/BFb0099440
http://dx.doi.org/10.1007/BFb0099440
http://eprint.iacr.org/2006/291

114 Bibliography

[31] David A. Cox. Primes of the Form x2 +ny2. A Wiley-Interscience Publication. John
Wiley & Sons Inc., New York, 1989. ISBN 0-471-50654-0; 0-471-19079-9. (Cited on
pages 10, 13, 14, 15 and 28.)

[32] Cas J. F. Cremers. Feasibility of multi-protocol attacks. In ARES, pages 287–294.
IEEE Computer Society, 2006. URL http://doi.ieeecomputersociety.org/10.

1109/ARES.2006.63. (Cited on page 63.)

[33] Jack J. Dai and Martin V. Hildebrand. Random random walks on the integers
mod n. Statist. Probab. Lett., 35(4):371–379, 1997. ISSN 0167-7152. URL http:

//dx.doi.org/10.1016/S0167-7152(97)00035-7. (Cited on pages 81 and 104.)

[34] He Debiao, Chen Jianhua and Hu Jin. A random number generator based on
isogenies operations. Cryptology ePrint Archive, Report 2010/094, 2010. URL
http://eprint.iacr.org/2010/094. (Cited on page 9.)

[35] He Debiao, Chen Jianhua and Hu Jin. An authenticated key agreement protocol
using isogenies between elliptic curves. International Journal of Computers Com-
munications & Control, 6:258–265, 2011. ISSN 1841-9836. (Cited on pages 9, 10
and 68.)

[36] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976. (Cited on page 54.)

[37] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983. (Cited on page 52.)

[38] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, third edition,
2004. (Cited on pages 53 and 55.)

[39] M. I. Dyakonov. Is fault-tolerant quantum computation really possible?, 2006. URL
http://arxiv.org/abs/quant-ph/0610117v1. (Cited on page 6.)

[40] ECRYPT2. Yearly report on algorithms and keysizes. Technical Report D.SPA.7,
European Network of Excellence in Cryptology II, July 2009. (Cited on page 38.)

[41] ECRYPT2. Yearly report on algorithms and keysizes. Technical report, European
Network of Excellence in Cryptology II, March 2010. (Cited on pages 1 and 2.)

[42] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identi-
fication and signature problems. In Advances in cryptology—CRYPTO ’86 (Santa
Barbara, Calif., 1986), volume 263 of Lecture Notes in Comput. Sci., pages 186–194.
Springer, Berlin, 1987. (Cited on page 43.)

[43] Steven Galbraith and Anton Stolbunov. Improved algorithm for the isogeny prob-
lem for ordinary elliptic curves, 2011. URL http://arxiv.org/abs/1105.6331v1.
(Cited on page 5.)

http://doi.ieeecomputersociety.org/10.1109/ARES.2006.63
http://doi.ieeecomputersociety.org/10.1109/ARES.2006.63
http://dx.doi.org/10.1016/S0167-7152(97)00035-7
http://dx.doi.org/10.1016/S0167-7152(97)00035-7
http://eprint.iacr.org/2010/094
http://arxiv.org/abs/quant-ph/0610117v1
http://arxiv.org/abs/1105.6331v1

Bibliography 115

[44] Steven D. Galbraith. Constructing isogenies between elliptic curves over finite fields.
LMS J. Comput. Math., 2:118–138 (electronic), 1999. ISSN 1461-1570. (Cited on
pages 4, 22, 37, 68, 69 and 71.)

[45] Steven D. Galbraith, Florian Hess and Nigel P. Smart. Extending the GHS Weil de-
scent attack. In Advances in cryptology—EUROCRYPT 2002 (Amsterdam), volume
2332 of Lecture Notes in Comput. Sci., pages 29–44. Springer, Berlin, 2002. URL
http://dx.doi.org/10.1007/3-540-46035-7_3. (Cited on pages 3, 4, 22, 36, 38,
68, 70, 71, 72, 74, 75 and 86.)

[46] Oded Goldreich. Foundations of Cryptography. Cambridge University Press,
Cambridge, 2001. ISBN 0-521-79172-3. URL http://dx.doi.org/10.1017/

CBO9780511546891. Basic tools. (Cited on pages 27 and 52.)

[47] Oded Goldreich. Lecture notes: Randomized methods in computation, 2001. http:
//www.wisdom.weizmann.ac.il/~oded/rnd.html. (Cited on page 76.)

[48] Oded Goldreich, Silvio Micali and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract).
In IEEE Symposium on Foundations of Computer Science, pages 174–187, 1986.
(Cited on page 7.)

[49] Oded Goldreich, Silvio Micali and Avi Wigderson. Proofs that yield nothing but
their validity, or All languages in NP have zero-knowledge proof systems. J. Assoc.
Comput. Mach., 38(3):691–729, 1991. ISSN 0004-5411. URL http://dx.doi.org/

10.1145/116825.116852. (Cited on page 7.)

[50] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. System
Sci., 28(2):270–299, 1984. ISSN 0022-0000. URL http://dx.doi.org/10.1016/

0022-0000(84)90070-9. (Cited on pages 27, 52 and 59.)

[51] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Else-
vier/Academic Press, Amsterdam, seventh edition, 2007. ISBN 978-0-12-373637-6;
0-12-373637-4. Translated from the Russian. (Cited on pages 99 and 101.)

[52] James L. Hafner and Kevin S. McCurley. A rigorous subexponential algorithm for
computation of class groups. J. Amer. Math. Soc., 2(4):837–850, 1989. ISSN 0894-
0347. URL http://dx.doi.org/10.2307/1990896. (Cited on page 32.)

[53] Sean Hallgren. Fast quantum algorithms for computing the unit group and class
group of a number field. In STOC’05: Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, pages 468–474. ACM, New York, 2005. URL
http://dx.doi.org/10.1145/1060590.1060660. (Cited on page 38.)

[54] Bernard Harris. Probability distributions related to random mappings. Ann. Math.
Statist., 31:1045–1062, 1960. ISSN 0003-4851. (Cited on pages 76 and 93.)

http://dx.doi.org/10.1007/3-540-46035-7_3
http://dx.doi.org/10.1017/CBO9780511546891
http://dx.doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/~oded/rnd.html
http://www.wisdom.weizmann.ac.il/~oded/rnd.html
http://dx.doi.org/10.1145/116825.116852
http://dx.doi.org/10.1145/116825.116852
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.2307/1990896
http://dx.doi.org/10.1145/1060590.1060660

116 Bibliography

[55] Huseyin Hisil, Kenneth K.-H. Wong, Gary Carter and Ed Dawson. Faster group
operations on elliptic curves. In Ljiljana Brankovic and Willy Susilo, editors, Aus-
tralasian Information Security Conference (AISC 2009), volume 98 of CRPIT, pages
7–19, Wellington, New Zealand, 2009. ACS. URL http://crpit.com/confpapers/

CRPITV98Hisil.pdf. (Cited on page 42.)

[56] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman and
Wiliam Whyte. Hybrid lattice reduction and meet in the middle resistant parameter
selection for NTRUEncrypt. IEEE P1363.1: Public-Key Cryptographic Techniques
Based on Hard Problems over Lattices. URL http://grouper.ieee.org/groups/

1363/lattPK/submissions/ChoosingNewParameters.pdf. (Cited on page 2.)

[57] Michael J. Jacobson, Jr. Applying sieving to the computation of quadratic class
groups. Math. Comp., 68(226):859–867, 1999. ISSN 0025-5718. URL http://dx.

doi.org/10.1090/S0025-5718-99-01003-0. (Cited on pages 35 and 38.)

[58] Michael J. Jacobson, Jr. Computing discrete logarithms in quadratic orders. J.
Cryptology, 13(4):473–492, 2000. ISSN 0933-2790. URL http://dx.doi.org/10.

1007/s001450010013. (Cited on page 38.)

[59] Michael J. Jacobson, Jr., Shantha Ramachandran and Hugh C. Williams. Numerical
results on class groups of imaginary quadratic fields. In Algorithmic number theory,
volume 4076 of Lecture Notes in Comput. Sci., pages 87–101. Springer, Berlin, 2006.
URL http://dx.doi.org/10.1007/11792086_7. (Cited on page 88.)

[60] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryp-
tography, volume 7071 of Lecture Notes in Computer Science, pages 19–34. Springer
Berlin / Heidelberg, 2011. ISBN 978-3-642-25404-8. URL http://dx.doi.org/10.

1007/978-3-642-25405-5_2. (Cited on page 8.)

[61] David Jao, Stephen D. Miller and Ramarathnam Venkatesan. Do all elliptic curves of
the same order have the same difficulty of discrete log? In Advances in cryptology—
ASIACRYPT 2005, volume 3788 of Lecture Notes in Comput. Sci., pages 21–40.
Springer, Berlin, 2005. URL http://dx.doi.org/10.1007/11593447_2. (Cited on
pages 3, 22, 37 and 68.)

[62] David Jao, Stephen D. Miller and Ramarathnam Venkatesan. Expander graphs
based on GRH with an application to elliptic curve cryptography. J. Number Theory,
129(6):1491–1504, 2009. ISSN 0022-314X. URL http://dx.doi.org/10.1016/j.

jnt.2008.11.006. (Cited on page 76.)

[63] David Y. Jao and Ramarathnam Venkatesan. Use of isogenies for design of cryptosys-
tems. US patent 7499544, March 2009. URL http://www.freepatentsonline.com/

7499544.html. (Cited on page 9.)

http://crpit.com/confpapers/CRPITV98Hisil.pdf
http://crpit.com/confpapers/CRPITV98Hisil.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/ChoosingNewParameters.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/ChoosingNewParameters.pdf
http://dx.doi.org/10.1090/S0025-5718-99-01003-0
http://dx.doi.org/10.1090/S0025-5718-99-01003-0
http://dx.doi.org/10.1007/s001450010013
http://dx.doi.org/10.1007/s001450010013
http://dx.doi.org/10.1007/11792086_7
http://dx.doi.org/10.1007/978-3-642-25405-5_2
http://dx.doi.org/10.1007/978-3-642-25405-5_2
http://dx.doi.org/10.1007/11593447_2
http://dx.doi.org/10.1016/j.jnt.2008.11.006
http://dx.doi.org/10.1016/j.jnt.2008.11.006
http://www.freepatentsonline.com/7499544.html
http://www.freepatentsonline.com/7499544.html

Bibliography 117

[64] David Y. Jao and Ramarathnam Venkatesan. Use of isogenies for design of
cryptosystems. European patent EP1528705, April 2009. URL http://www.

freepatentsonline.com/EP1528705B1.html. (Cited on page 9.)

[65] David Y. Jao, Peter L. Montgomery, Ramarathnam Venkatesan and Victor Boyko.
Systems and methods for generation and validation of isogeny-based signatures.
US patent 7617397, November 2009. URL http://www.freepatentsonline.com/

7617397.html. (Cited on page 9.)

[66] Donald E. Knuth. The Art of Computer Programming. Vol. 2. Seminumerical Al-
gorithms. Third Edition. Addison-Wesley, 1997. ISBN 0-201-89684-2. (Cited on
page 76.)

[67] K. Ko, S. Lee, J. Cheon, J. Han, J.S. Kang and C. Park. New public-key cryptosys-
tem using braid groups. In Advances in Cryptology—CRYPTO 2000, pages 166–183.
Springer, 2000. (Cited on page 51.)

[68] Ann Hibner Koblitz, Neal Koblitz and Alfred Menezes. Elliptic curve cryptography:
the serpentine course of a paradigm shift. J. Number Theory, 131(5):781–814, 2011.
ISSN 0022-314X. URL http://dx.doi.org/10.1016/j.jnt.2009.01.006. (Cited
on page 68.)

[69] Neal Koblitz and Alfred Menezes. Another look at ”provable security”. II. In Rana
Barua and Tanja Lange, editors, INDOCRYPT, volume 4329 of Lecture Notes in
Comput. Sci., pages 148–175. Springer, 2006. ISBN 3-540-49767-6. URL http:

//dx.doi.org/10.1007/11941378_12. (Cited on pages 52 and 63.)

[70] Neal Koblitz and Alfred Menezes. Another look at ”provable security”. J. Cryptol-
ogy, 20(1):3–37, 2007. (Cited on page 52.)

[71] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California at Berkeley, 1996. (Cited on pages 3, 22, 29, 31, 32 and 69.)

[72] Caroline Kudla and Kenneth G. Paterson. Modular security proofs for key agreement
protocols. In ASIACRYPT: Advances in Cryptology – ASIACRYPT: International
Conference on the Theory and Application of Cryptology. LNCS, Springer-Verlag,
2005. (Cited on page 52.)

[73] Serge Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1987. ISBN 0-387-96508-4. With an
appendix by J. Tate. (Cited on page 10.)

[74] James L. Massey. An introduction to contemporary cryptology. Proceedings of the
IEEE, 76(5):533–549, 1988. (Cited on page 46.)

[75] James L. Massey and Jimmy K. Omura. Method and apparatus for maintaining
the privacy of digital messages conveyed by public transmission. US patent 4567600,
January 1986. URL http://www.freepatentsonline.com/4567600.html. (Cited
on page 46.)

http://www.freepatentsonline.com/EP1528705B1.html
http://www.freepatentsonline.com/EP1528705B1.html
http://www.freepatentsonline.com/7617397.html
http://www.freepatentsonline.com/7617397.html
http://dx.doi.org/10.1016/j.jnt.2009.01.006
http://dx.doi.org/10.1007/11941378_12
http://dx.doi.org/10.1007/11941378_12
http://www.freepatentsonline.com/4567600.html

118 Bibliography

[76] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul., 8(1):3–30, 1998. (Cited on page 82.)

[77] Gérard Maze, Chris Monico and Joachim Rosenthal. Public key cryptography based
on semigroup actions. Adv. Math. Commun., 1(4):489–507, 2007. ISSN 1930-5346.
URL http://dx.doi.org/10.3934/amc.2007.1.489. (Cited on pages 26 and 51.)

[78] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press Series on Discrete Mathematics and its Applications. CRC
Press, Boca Raton, FL, 1997. ISBN 0-8493-8523-7. With a foreword by Ronald L.
Rivest. (Cited on pages 24 and 46.)

[79] Christopher J. Monico. Semirings and semigroup actions in public-key cryptography.
PhD thesis, The Graduate School of the University of Notre Dame, Indiana, 2002.
(Cited on pages 23, 25, 51 and 54.)

[80] Ravi Montenegro. A simple heuristic for complexity of birthday attacks. Unpublished
preprint, 2011. (Cited on page 85.)

[81] NIST. Recommendation for pair-wise key establishment schemes using discrete log-
arithm cryptography (revisited). NIST special publication 800-56A, National Insti-
tute for Standards and Technology, March 2007. (Cited on page 40.)

[82] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Trans. Information
Theory, IT-24(1):106–110, 1978. ISSN 0018-9448. (Cited on page 46.)

[83] J. M. Pollard. A Monte Carlo method for factorization. Nordisk Tidskr. Informa-
tionsbehandling (BIT), 15(3):331–334, 1975. (Cited on page 76.)

[84] J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32(143):918–924, 1978. ISSN 0025-5718. (Cited on pages 38 and 77.)

[85] C. Popescu. A secure authenticated key agreement protocol. In Electrotechnical
Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean,
volume 2, pages 783–786. IEEE, 2004. (Cited on pages 8 and 9.)

[86] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves, 2003. URL http://arxiv.org/abs/quant-ph/0301141v2. (Cited
on page 2.)

[87] Anatoly P. Prudnikov, Yuriy A. Brychkov and Oleg I. Marichev. Integrals and
Series. Vol. 1. Elementary Functions. Second Edition. Fizmatlit., Moscow, 2002.
ISBN 5-9221-0323-7. (Cited on pages 95, 97, 98 and 102.)

[88] Anatol Rapoport. Cycle distributions in random nets. Bulletin of Mathematical
Biology, 10:145–157, 1948. ISSN 0092-8240. (Cited on page 76.)

http://dx.doi.org/10.3934/amc.2007.1.489
http://arxiv.org/abs/quant-ph/0301141v2

Bibliography 119

[89] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies. Cryptology ePrint Archive, report 2006/145, April 2006. URL http:

//eprint.iacr.org/2006/145. (Cited on pages 6, 7, 8, 22, 51, 56 and 68.)

[90] Alexander Rostovtsev, Elena Makhovenko and Olga Shemyakina. Elliptic curve
ordered digital signature. Saint-Petersburg State Polytechnical University, April
2004. URL http://www.ssl.stu.neva.ru/ssl/archieve/ordered_digital_

signature.pdf. Preprint. (Cited on pages 6 and 22.)

[91] Martin Rötteler. Quantum algorithms for highly non-linear boolean functions, 2008.
URL http://arxiv.org/pdf/0811.3208. (Cited on page 39.)

[92] Reinhard Schertz. Complex multiplication, volume 15 of New Mathematical Mono-
graphs. Cambridge University Press, Cambridge, 2010. ISBN 978-0-521-76668-5.
URL http://dx.doi.org/10.1017/CBO9780511776892. (Cited on page 10.)

[93] Arthur Schmidt. Quantum algorithm for solving the discrete logarithm problem in
the class group of an imaginary quadratic field and security comparison of current
cryptosystems at the beginning of quantum computer age. In Günter Müller, edi-
tor, Emerging Trends in Information and Communication Security (ETRICS 2006),
volume 3995 of Lecture Notes in Comput. Sci., pages 481–493. Springer, 2006. ISBN
3-540-34640-6. (Cited on page 38.)

[94] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4:161–174, 1991. ISSN 0933-2790. URL http://dx.doi.org/10.1007/BF00196725.
(Cited on page 43.)

[95] René Schoof. Quadratic fields and factorization. In Computational methods in
number theory, Part II, volume 155 of Math. Centre Tracts, pages 235–286. Math.
Centrum, Amsterdam, 1982. (Cited on page 76.)

[96] René Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux, 7(1):219–254, 1995. ISSN 1246-7405. URL http://jtnb.cedram.org/

item?id=JTNB_1995__7_1_219_0. (Cited on pages 3, 21 and 33.)

[97] E. Schulte-Geers. Collision search in a random mapping: some asymptotic results.
Presentation at ECC 2000 (Essen, Germany), 2000. (Cited on page 82.)

[98] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.
ISSN 0097-5397. URL http://dx.doi.org/10.1137/S0097539795293172. (Cited
on pages 21 and 39.)

[99] V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, report 2004/332, 2004. URL http://eprint.iacr.

org/2004/332. (Cited on page 60.)

http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
http://www.ssl.stu.neva.ru/ssl/archieve/ordered_digital_signature.pdf
http://www.ssl.stu.neva.ru/ssl/archieve/ordered_digital_signature.pdf
http://arxiv.org/pdf/0811.3208
http://dx.doi.org/10.1017/CBO9780511776892
http://dx.doi.org/10.1007/BF00196725
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://dx.doi.org/10.1137/S0097539795293172
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

120 Bibliography

[100] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1986. ISBN 0-387-96203-4. (Cited
on pages 8 and 30.)

[101] Joseph H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume
151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. ISBN
0-387-94328-5. (Cited on pages 28 and 29.)

[102] T. T. Soong. Fundamentals of Probability and Statistics for Engineers. John Wiley
& Sons Inc., Hoboken, NJ, 2004. ISBN 0-470-86814-7. (Cited on pages 80, 82, 91,
99 and 100.)

[103] Anitha Srinivasan. Computations of class numbers of real quadratic fields. Math.
Comp., 67(223):1285–1308, 1998. ISSN 0025-5718. URL http://dx.doi.org/10.

1090/S0025-5718-98-00965-X. (Cited on page 36.)

[104] Anton Stolbunov. ClassEll package, ver. 0.1. http://www.item.ntnu.no/people/

personalpages/phd/anton/software, last visited 07/04/2011. (Cited on pages 4
and 87.)

[105] Anton Stolbunov. Public-key encryption based on cycles of isogenous elliptic curves,
2004. MSc thesis at Saint-Petersburg State Polytechnical University, in Russian.
(Cited on page 6.)

[106] Anton Stolbunov. Reductionist security arguments for public-key cryptographic
schemes based on group action. In Stig F. Mjølsnes, editor, Norwegian Information
Security Conference (NISK 2009), pages 97–109, Trondheim, Norway, 2009. Tapir
Akademisk Forlag. (Cited on page 25.)

[107] Anton Stolbunov. Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves. Adv. Math. Commun., 4(2):215–
235, 2010. ISSN 1930-5346. URL http://dx.doi.org/10.3934/amc.2010.4.215.
(Cited on pages 68, 72, 76 and 82.)

[108] Anton Stolbunov. Cryptographic Schemes Based on Isogenies. PhD thesis, Norwe-
gian University of Science and Technology (NTNU), 2012. This document. (Cited
on pages 78, 80, 81 and 83.)

[109] John William Strutt [Lord Rayleigh]. On the resultant of a large number of vibra-
tions of the same pitch and of arbitrary phase. Philos. Mag., 10(60):73–78, 1880.
(Cited on page 80.)

[110] John Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:
134–144, 1966. ISSN 0020-9910. (Cited on pages 29 and 67.)

[111] Edlyn Teske. On random walks for Pollard’s rho method. Math. Comp.,
70(234):809–825, 2001. ISSN 0025-5718. URL http://dx.doi.org/10.1090/

S0025-5718-00-01213-8. (Cited on pages 72 and 77.)

http://dx.doi.org/10.1090/S0025-5718-98-00965-X
http://dx.doi.org/10.1090/S0025-5718-98-00965-X
http://www.item.ntnu.no/people/personalpages/phd/anton/software
http://www.item.ntnu.no/people/personalpages/phd/anton/software
http://dx.doi.org/10.3934/amc.2010.4.215
http://dx.doi.org/10.1090/S0025-5718-00-01213-8
http://dx.doi.org/10.1090/S0025-5718-00-01213-8

Bibliography 121

[112] Edlyn Teske. An elliptic curve trapdoor system. Cryptology ePrint Archive, Report
2003/058, 2003. URL http://eprint.iacr.org/2003/058. (Cited on page 6.)

[113] Edlyn Teske. An elliptic curve trapdoor system. J. Cryptology, 19(1):115–133, 2006.
ISSN 0933-2790. URL http://dx.doi.org/10.1007/s00145-004-0328-3. (Cited
on pages 6, 22, 37, 68 and 74.)

[114] Wim van Dam, Sean Hallgren and Lawrence Ip. Quantum algorithms for some hid-
den shift problems. SIAM J. Comput., 36(3):763–778 (electronic), 2006. ISSN 0097-
5397. URL http://dx.doi.org/10.1137/S009753970343141X. (Cited on page 39.)

[115] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-
analytic applications. J. Cryptology, 12(1):1–28, 1999. ISSN 0933-2790. URL
http://dx.doi.org/10.1007/PL00003816. (Cited on pages 72, 74, 76 and 93.)

[116] Thomas Wang. Integer hash function. http://www.concentric.net/~Ttwang/

tech/inthash.htm, last visited 08/06/2010. (Cited on page 82.)

[117] Xiang Wang, WanSu Bao and XiangQun Fu. A quantum algorithm for search-
ing a target solution of fixed weight. Chinese Science Bulletin, 56:484–489,
2011. ISSN 1001-6538. URL http://dx.doi.org/10.1007/s11434-010-4113-4.
10.1007/s11434-010-4113-4. (Cited on page 2.)

[118] Lawrence C. Washington. Elliptic curves. Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2003. ISBN 1-58488-365-0.
(Cited on page 10.)

[119] William C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. École Norm.
Sup. (4), 2:521–560, 1969. ISSN 0012-9593. (Cited on pages 29 and 70.)

[120] Han Weiwei and He Debiao. An authenticated key agreement protocol using isogenies
between elliptic curves. In Education Technology and Computer Science (ETCS),
2010 Second International Workshop on, volume 1, pages 366 –369, march 2010.
(Cited on pages 8 and 9.)

[121] E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge
Mathematical Library. Cambridge University Press, Cambridge, 1996. ISBN 0-521-
58807-3. Reprint of the fourth (1927) edition. (Cited on page 99.)

http://eprint.iacr.org/2003/058
http://dx.doi.org/10.1007/s00145-004-0328-3
http://dx.doi.org/10.1137/S009753970343141X
http://dx.doi.org/10.1007/PL00003816
http://www.concentric.net/~Ttwang/tech/inthash.htm
http://www.concentric.net/~Ttwang/tech/inthash.htm
http://dx.doi.org/10.1007/s11434-010-4113-4

