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Abstract

There is an increasing demand for low-power Internet-connected sensor systems. Technological ad-
vances have enabled new wireless communication technologies used to realize such systems. In this
project, we survey some of these technologies, focusing on the recent developments of Bluetooth. In
order to facilitate further experimentation with these technologies, we have developed a C imple-
mentation of a synchronization algorithm that can be used to estimate, with tight upper and lower
bounds, the state of a timer on another connected device. We present simulated synchronization
error measurements using this implementation with latencies inspired by those in a large Bluetooth
Mesh network. The results suggest that millisecond-level synchronization can be achieved across
such a network without tight integration with the radio hardware.
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1 Introduction

1.1 Background and motivation

In our modern world, there are many use cases for Internet-connected distributed embedded sys-
tems (popularly called Internet of Things (IoT)). As an example, remotely monitored and controlled
thermostats have been used by cottage owners to enable a warmer welcome for themselves for
decades. More recently, networked power meters are being installed in homes across Norway and
other countries to enable finer – not to mention automatic – monitoring of power use. There have
also been experiments with using consumer water heaters for distributed energy storage, in order
to smooth power consumption.

In the cases mentioned so far, there is usually an abundant power source available, for the
purposes of computation and communication; if an embedded computer is switching a water heater
of 2000 W, it does not matter much if the computer itself uses 5 mW or 500 mW. However, there
are still reasons to minimize power consumption in IoT devices. There are use cases where an
abundant source is not available. A remote solar powered cottage or rest area, for example, may
have a severely limited power budget. In a battery-powered system, it is almost always desirable to
further minimize power consumption, as it will either extend the usable time, or allow for a smaller
battery.

With the above in mind, a number of technologies have been developed to address the need
for low-power wireless communication. For the long range cellular communication required to
keep a device connected to the Internet, some popular technologies are Narrowband IoT (NB-
IoT), Long-Term Evolution Machine Type Communication (LTE-M) and LoRa. For the shorter range
communication within a site, some popular technologies are Thread, Zigbee, Bluetooth Low Energy
(BLE) and BT Mesh. One goal for this project is to acquire a bird’s eye view of these technologies.
They will be further distinguished, detailed, and discussed in Chapter 2. We will focus specifically
on BT Mesh.

When using IoT devices to collect data, the time dimension is often important. One example
where exact time-stamping is important is indoor location systems. Another would be monitoring
the synchronization in an electric grid. This project has a goal of finding, implementing and testing
some method of acquiring a common time reference across a BT Mesh sensor network.

1
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1.2 Limitations

As a consequence of the difference between the envisioned scope of the project and available time,
the algorithm implemented in Chapter 4 was tested in a simulated environment, rather than over
a BT Mesh network on the Nordic nRF52840 System on Chip, as originally planned. As such, the
testing done in this project can be used as a demonstration of the implementation’s qualitative
properties and an indicator of the possible performance, but not as a precise evaluation of the
performance.

1.3 Main contribution

The contribution of this project is twofold. First, the literature search provides an overview of
different low-power wireless technologies from an IoT perspective, focusing on the advantages and
limitations of BT Mesh. This overview can be a useful resource when faced with the choice of which
technology to use in a project.

Secondly, the implementation part provides a usable C implementation of the tiny-sync algo-
rithm proposed by [1]. This implementation can be used to estimate – with tight upper and lower
bounds – the state of a timer on another connected device.

1.4 Structure of this report

The rest of this report is structured as follows: It starts with the literature search in Chapter 2, pro-
viding background on the different wireless technologies discussed. The literature search continues
with details on BT Mesh, and on time synchronization.

After the literature search, the rest of the report pertains to the tiny-sync implementation. Chap-
ter 3 explains the details of the algorithm that are critical to understanding the implementation,
and then goes on to specify the algorithm as pseudo-code. Chapter 4 covers the C implementation
itself, and discusses implementation-specific properties like data types.

Chapter 5 presents the method used for testing the implementation, and presents the results
from various test runs. Chapter 6 discusses these results, focusing on the different properties of the
algorithm. Finally, Chapter 7 wraps up the report.

2
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2 Literature Search

The literature search part of this project has several goals:

• Acquire a bird’s eye view of current low-power wireless technologies from an IoT perspective
• Focusing on the properties of BT Mesh in terms of scalability, range, power efficiency and

bandwidth
• Finding some method of acquiring a common time reference across a wireless sensor network

The rest of this chapter covers these areas in order, and ends with a short summary of the
findings.

2.1 Overview of different wireless technologies

2.1.1 3GPP cellular technologies

NB-IoT and LTE-M (including the "enhanced" eMTC) are standards released by the 3rd Generation
Partnership Project for communication with a terrestrial cellular network. [2] Both are designed
to provide a low power service for IoT applications. The most notable differences are presented in
Table 1. In short, NB-IoT is designed to provide better coverage and uses up less of the RF spectrum,
but provides an order of magnitude slower maximum data rates.

NB-IoT and LTE-M are both cellular technologies operating in restricted radio bands. This con-
fers the limitation that infrastructure is controlled by approved cellular operators, and it is not
possible to run one’s own network. On the other side, if the infrastructure is already in place, the
only cost is the device itself, and the cost of cellular service. Since they operate in the LTE band,
much of the existing infrastructure hardware is usable. At the time of writing, networks have been
deployed in several European countries, the United States, Japan, China and others [3].

2.1.2 LoRa and LoRaWAN

LoRa is a modulation technique based on chirp spread spectrum radio technology. [4] LoRaWAN
defines the upper layers designed to provide a low power, long range communication network
based on that modulation. It operates in the open Industrial Scientific Medical (ISM) frequencies

LTE-M NB-IoT
Peak data rate (up/down) 1 Mbps 50 kbps
Bandwidth 1.08 MHz 180 KHz
Coverage 155.7 dB 164 dB

Table 1: Simplified summary of the differences between LTE-M and NB-IoT, from [2]. Coverage is specified in
terms of Maximum Coupling Loss target (higher is better).

3
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under 1 GHz, enabling private entities to set up their own networks without a license. Data rates
and power consumption is advertised as even lower than NB-IoT. Semtech is the only company
producing the radio hardware that use this modulation.

2.1.3 2.4 GHz local networks

There are multiple technologies for establishing low-power networks local to a site for IoT appli-
cations in the 2.4 GHz ISM band. The most commonly cited use case is a "smart home". Zigbee
[5] and Thread [6] build on the IEEE 802.15.4 [7] radio standard, while BT Mesh builds on the
Bluetooth (specifically BLE) standard. [8] All of these are mesh networks, meaning that nodes can
communicate without a direct link, as long as there is a chain of relaying nodes between them.

Comparing Zigbee and Thread, several differences have been pointed to. [9] While Thread
builds on the Internet Protocol version 6 protocol, and therefore integrates naturally with other
IP networks, Zigbee has its own network layer and addressing system. Further, Zigbee has a wider
scope, defining all layers of the system, including the application layer. This makes Zigbee appli-
cations somewhat less flexible in behaviour, but yields greater interoperability of similar products
from different vendors.

BT Mesh is another mesh network which, like Zigbee, defines all layers up to the application, aid-
ing interoperability. [8] The fact that it is built on top of BLE also means that it can be implemented
on any hardware that supports BLE. It also means that smartphones or personal computers (where
the operating systems typically include a Bluetooth protocol stack) can connect to the network.

Zigbee and Thread inherit their maximum data rate from the IEEE 802.11.4 standard, which is
250 kbps. The data rate for the physical layer of BLE is 1 Mbps. However, the practical data rates
typically used and tested in the mesh networks are far lower. A series of tests performed by Silicon
Labs achieves data rates on the order of single-digit kbps in all the mesh networks. [10]

2.2 Details of BT Mesh

2.2.1 Working principles

BLE is normally a connection-based protocol, where a link is established between two nodes before
they communicate in an agreed-upon set of channels in the 2.4 GHz band. ([11], volume 6) BT
Mesh, however, does not use the connection concept. Rather, there are only messages being passed
from one node to the another through the network. To achieve this, the advertisement feature of
BLE is used. [8] A node sending a message transmits it on the 3 dedicated advertisement channels.
When not transmitting, the nodes listen on the advertisement bands (scanning state) as much of the
time as possible. Transmitting the message on all 3 channels gives some resistance to disturbance;
if one of the channels is jammed by another transmission, devices listening on either of the other 2
will receive the message.

To understand the function of the BT Mesh network, two fields in the message are critical:
the destination address and the Time To Live (TTL). Each message contains a destination address,
which can be unicast or multicast. The behaviour of the network layer of BT Mesh is as follows, in
simplified terms (from [8], p. 47): If the packet has a TTL > 1 and the source address is not this

4
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node’s unicast address, resend the packet with a decremented TTL. In other words, the message
propagates through the network, traversing a maximum of TTL hops.

Security is implemented on both the network and application layer. All messages within a net-
work are encrypted with a common cryptographic network key, and application keys can be used
to keep each application secure. ([8], p. 108) For example, if a common mesh network is used for
lighting control and door control, a compromised light switch can not compromise the door control
system. Furthermore, a separate key, unique to each device, is used for configuration.

2.2.2 Power efficiency

BLE is designed for devices that operate for several years on a coin cell battery. However, this
is dependent on the radio not transmitting nor receiving for most of the time. As described in
Section 2.2.1, when not transmitting, the BT Mesh nodes listen as much of the time as possible.
This is currently not reconcilable with ultra low power consumption.

To avoid using power, sensor nodes in a BT Mesh network can turn off its radio most of the time.
Another node within radio range can act as a receive buffer. The BT Mesh specification calls this
functionality friendship. ([8], pp. 74-88) In this case, the low power node can send messages when
needed, and poll the friend node as often as is appropriate for the application.

2.2.3 Latency and real-time properties

The BT Mesh specification does not specify hard timing requirements for the propagation of the
messages. The protocol can guarantee delivery by using acknowledgements, but not maximum
latency.

The approach described in Section 2.2.1 has the advantage of making sure that in practice, small
messages reach their target reliably and very fast, compared to routing protocols like Zigbee, but
large messages (segmented across multiple transmissions) and large networks with hundreds of
relays can cause congestion and delays. Both of these effects are noted in [10].

Simulated results have shown that the increased latencies in a large and dense network (such
as an office building with hundreds of nodes) can be drastically improved by letting only a subset
of the nodes act as relays. [12]

2.3 Acquiring a common time reference

The tiny-sync algorithm, proposed in [1], can be used to estimate – with tight upper and lower
bounds – the state of a timer on another connected device over a network with variable and un-
known latency. This is achieved by sending a probe to a time master and receiving a response. The
transmission and reception events are time-stamped using a local clock, and the remote time master
time-stamps its reception of the probe and transmission of the response. With multiple sets of these
time-stamps, upper and lower bounds for the clock offset and drift are calculated. The algorithm is
based on the recognition of the fact that these events happen in a certain chronological order, and
on the assumption that the clock drift is linear for much of the time.

Rather than keeping all the data and calculating an optimal solution, tiny-sync uses only a few

5
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(2, 3 or 4) of the time-stamp sets in the calculations. In practice, this was shown to be very close to
the optimal solution from all data. The metrics by which to select the "best" data to keep is presented
in [1], but the process of choosing the points to keep is not presented. Therefore, Chapter 4 in this
project covers a C implementation of an algorithm that selects the best data points, and simulated
results derived from this implementation are presented in Chapter 5.

2.4 Litterature search summary

In this chapter, we have briefly covered some popular current low-power wireless technologies,
placing BT Mesh among other low-power wireless mesh technologies like Zigbee, noting BT Mesh’s
main distinguishing feature as being compatible with other Bluetooth hardware like smartphones.
Focusing on the properties of BT Mesh in particular, we pointed to the advantages and limitations of
BT Mesh’s way of distributing messages across the network. Finally, the tiny-sync algorithm, which
is the main focus of the rest of this report, is presented.

It is worth noting that quantitative sources on the performance of the different mesh networks
are sparse, and independent research even more so. The main resource used for discussing perfor-
mance of the mesh networks in this chapter is a series of tests performed by Silicon Labs [10] using
their own implementation of the different networks.

6
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3 The Tiny-sync Time Synchronization Scheme

3.1 Background

The details of the tiny-sync algorithm is presented in [1]. In this section, we summarize the prin-
ciples and nomenclature necessary to understand the proposed constraint selection algorithm and
why it works.

Let us assume that a device, node 1, shall use a clock on another device, node 2 as a time
reference for data collection. In other words, node 1 will collect some sensor data, time-stamp the
collection using its own clock (t1). It shall then estimate what state of node 2’s clock (t2) that
corresponds to. It is assumed that for considerable periods of time, the relationship between the
clocks is linear ([1], Equation 2):

t1(t) = a12t2(t) + b12 (3.1)

The tiny-sync algorithm is concerned with estimating a12 and b12 as precisely as possible, while
minimizing resource usage. To achieve this, a series of probes are sent from node 1 to node 2.
Node 2 responds to the probe, The transmission (to) and reception (tr) events are time-stamped
using a local clock, and the remote device time-stamps its reception of the probe (tb), and transmits
that time-stamp back to node 1. This transaction results in the data point (to, tr, tb). Since these
time-stamps must have been recorded in chronological order, the inequalities

to < a12tb + b12 < tr (3.2)

must hold. ([1], Equations 3, 4) This constrains the possible values of the unknowns a12 and b12.
This can be interpreted graphically as upper and lower bounds on the line in the (t2, t1) space
defined by Equation (3.1) (this representation is used in multiple figures in [1]). The process is
repeated to generate multiple such data points. In this project, we will refer to the upper constraint
defined by values of tr and tb as Bi, where i is some index, and the lower constraint defined by
values of to and tb as Ai, where i is some index. This is in keeping with the nomenclature used in
[1].

All of the constraints could be kept in memory, and the maximum and minimum values for a12
and b12 could be computed using linear programming. However, tiny-sync only keeps and uses two
upper and two lower constraints, to minimize memory and processor usage. In practice, this was
shown to perform very close to the optimal solution. Each time a new data point is received, the
best two upper and best two lower are kept. The metrics by which to select the "best" constraints
is defined in [1] as those that will result in the tightest bounds on a12 and b12. In Section 3.2, a
practical algorithm to select the best constraints is presented.

7



Bluetooth Mesh and low-power data acquisition in real time

3.2 Algorithm for constraint selection

When receiving the first two data points, there is no selection to be done. They are simply stored.
When receiving a new data point, two new constrains are added. We are then left with 6 constraints.
We name them as shown in Table 2. We will refer to the lines through constraints Xi and Yj as XiYj .

The oldest The previously newest The brand new
upper constraint B1 B2 B3

lower constraint A1 A2 A3

Table 2: Names used for the different constraints used in the algorithm.

Consider the constraints shown in Figure 1. Before the new constraints are known, the line A1B2

represents the maximum value of a12 and the minimum value of b12, as its slope and intersect,
respectively. Given that both clocks have advanced from the previous probe, B3 can be in one of the
four colored regions:

• If B3 is above the line A1B2, then the line A1B3 has a both higher slope than A1B2 and a
lower intersect. 1In other words, using B3 instead of B2 does not provides a tighter estimate,
and B3 should be discarded.

• If B3 is below the line A1B2, then the line A1B3 has a both lower slope than A1B2 and a
higher intersect. In other words, using B3 instead of B2 provides a tighter estimate, and B3

should replace B2.
• If B3 is also below the line A1A2, then the line A2B3 has a both lower slope than A1B3 and a

higher intersect. In other words B3 should replace B2 AND A2 should replace A1.
• Finally, if B3 is below the line B1A2, then there exists no line that can pass within all con-

straints. This means that the linearity assumption does not hold. A1 and B1 should be dis-
carded, and the algorithm should restart.

The same arguments can be used based on the placement of A3, swapping As with Bs, "above"
with "below" and "higher" with "lower".

1In all these comparisons, two lines compared pass through a common point. Therefore, a lower slope is equivalent to a
higher intersect and vice versa. This means that we do not have to choose between a better bound on a12 and b12. We get
both.
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Figure 1: The possible values for a new upper constraint B3, and the significance of the placement. In the
example shown here, B3 should replace B2.
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4 An Implementation of the Tiny-Sync Constraint Selection
Algorithm in C

In this chapter, a C implementation of the tiny-sync algorithm is presented in the form of a single-
function library. First, the needed data structures are defined. Then, the details of the initialization
is covered. Finally, the implementation of the actual constraint selection is presented.

Code listings are used in this chapter to highlight the critical pieces of code. The complete code
for both the tiny-sync implementation and the testing framework is available in Appendix A, and is
attached.

4.1 Data structures and state

First, we define data structures for the basic concepts from Chapter 3: the data point consisting
of to, tb and tr, as well as the constraint, consisting of one value for each time dimension t1 and
t2. We also need a way to store a line, by its slope a and intercept b. The definitions are listed in
Listing 4.1. Note that we use 64-bit data types everywhere in this implementation, to minimize
integer overflows or rounding errors. When running on a 32-bit system like Nordic’s nRF52840,
these can be changed to 32-bit types for halved storage requirement and faster calculations.

� �
1 typedef struct tinysync_datapoint_t{
2 uint64_t t_o; // t_1 when probe was sent
3 uint64_t t_b; // t_2 when response was sent
4 uint64_t t_r; // t_1 when response was received
5 } tinysync_datapoint_t;
6

7 typedef struct tinysync_constraint_t{
8 uint64_t t_1; // prober clock time
9 uint64_t t_2; // responder clock time

10 } tinysync_constraint_t;
11

12 // Line t_1 = a(t_2) + b
13 typedef struct tinysync_line_t{
14 double a; // slope of line
15 double b; // offset of line
16 } tinysync_line_t;� �

Listing 4.1: Definition of the basic data structures used in tiny-sync

10
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More data structures are defined for state stored from iteration to iteration. The state consists
of:

• A set of 4 constraints (two upper, two lower)
• A set of 4 lines (those used in the algorithm). As mentioned in Section 3.2, two of these lines

(A1B2 and B1A2) define the maximum and minimum a12 and b12.
• A counter used for initialization

The definitions of these structures are listed in Listing 4.2. Note that the lines do not actually
have to be stored in the state; exactly the same information is contained in the constraints. By
not storing them, the storage requirement is halved. However, because the lines both define the
maximum and minimum a12 and b12 (being the main output) and are used in the next iteration, it
is useful to just keep them. In other words, it is a trade-off between storage and computation.� �

1 // Stored set of constraints
2 typedef struct tinysync_constraints_t{
3 tinysync_constraint_t b_1; // Constraint B_1
4 tinysync_constraint_t b_2; // Constraint B_1
5 tinysync_constraint_t a_1; // Constraint A_1
6 tinysync_constraint_t a_2; // Constraint A_1
7 } tinysync_constraints_t;
8

9 // Stored set of 4 lines between 4 constraints
10 typedef struct tinysync_lineset_t{
11 tinysync_line_t ba; // Line B_1 A_2
12 tinysync_line_t ab; // Line A_1 B_2
13 tinysync_line_t aa; // Line A_1 A_2
14 tinysync_line_t bb; // Line B_1 B_2
15 } tinysync_lineset_t;
16

17 typedef struct tinysync_est_state_t{
18 tinysync_constraints_t constraints;
19 tinysync_lineset_t lineset;
20 uint8_t init_counter;
21 } tinysync_est_state_t;� �

Listing 4.2: Definition of the data structures held as state between iterations

4.2 Initializing the algorithm

The first two times the algorithm is run, its behaviour is special, as shown in Listing 4.3. The first
time, only one data point is available. In other words, no estimate of the clock drift or offset can be
made. The first constraints are added to the state, and the algorithm is cancelled.

The second time, the new constraints are added. With 4 constraints, the first estimate can now
be made. The constraint selection part is skipped, and the 4 lines are calculated.� �

1 switch(state->init_counter){
2 case 0: // First run: 1 data point, cannot estimate: directly to state and early return
3 state->constraints.b_1 = b_3;
4 state->constraints.a_1 = a_3;
5 state->init_counter ++;
6 return TINYSYNC_EST_FIRST; // Skip rest of algorithm
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7 break;
8 case 1: // Second run: 2 data points, can estimate
9 b_2 = b_3;

10 a_2 = a_3;
11 state->init_counter ++;
12 ret = TINYSYNC_EST_SECOND;
13 break; // Skip constraint selection
14 default: // Algorithm initialized, normal behaviour� �

Listing 4.3: Initialization of the algorithm, affecting the first two iterations

4.3 Constraint selection

The constraint selection proceeds with the same conditions that are presented in Section 3.2, once
for each of the two new constraints. The same nomenclature for the constraints is also used (Ta-
ble 2). For easy comparison, Listing 4.4 lists the part that deals with the new upper constraint (B3).
The same algorithm is repeated for handling A3, with all as swapped with bs and vice versa, and
reversed inequality signs.

The state is not updated directly here, but rather through temporary variables that are trans-
ferred to the state at the end of the function. This is to ensure that no constraints are discarded
before the algorithm is complete.

At the end of the function, the stored constraints are updated from the temporary variables,
and the lines are computed. This allows the minimum and maximum estimates to be read from the
state structure, and it prepares the lines for the next iteration. For brevity, The state update and
computation of the lines are not shown in the listing. It can be seen in Appendix A.� �

1 // Handle new upper constraint (b_3)
2 if (b_3.t_1 > state->lineset.ab.b
3 + state->lineset.ab.a * (double)(b_3.t_2)){
4 // Upper constraint too high to be useful: do nothing
5 } else if (b_3.t_1 < state->lineset.ba.b
6 + state->lineset.ba.a * (double)(b_3.t_2)){
7 // Upper constraint too low to be linear: remove old constraints and add new
8 b_1 = state->constraints.b_2;
9 a_1 = state->constraints.a_2;

10 b_2 = b_3;
11 a_2 = a_3;
12 ret = TINYSYNC_EST_NONLINEAR;
13 break;
14 } else {
15 // Upper constraint useful: update b_2
16 b_2 = b_3;
17 if ( (!tinysync_constraint_t_compare(state->constraints.a_1,
18 state->constraints.a_2)) &&
19 (b_3.t_1 < state->lineset.aa.b
20 + state->lineset.aa.a * (double)(b_3.t_2))){
21 // a_2 is better than a_1 for this upper constraint: update a_1
22 a_1 = state->constraints.a_2;
23 }
24 }� �

Listing 4.4: Constraint selection algorithm responsible for setting A1 and B2
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5 Testing the Implemented Algorithm

5.1 Simulation framework

In order to test the tiny-sync implementation, a basic simulation framework was created. The frame-
work simulates the process of node 1 probing node 2. The two clocks advance at different rates, and
an initial offset. The framework also introduces configurable random delays between all relevant
events, to simulate variations due to scheduling, radio contention, and similar random conditions.

A "non-linearity event" is configured to happen at a certain time. After the non-linearity event,
the clock skew a12 changes abruptly to a different value. This is used to simulate an event like
sudden temperature change.

First, a series of test settings are defined by preprocessor directives. An example is shown in
Listing 5.1. In this case, the constants used for testing detection of non-linearity are used. For the
purposes of testing, we will assume that the clock on node 2 is a perfect timer, incrementing each
microsecond of wall time. In other words, t2 is interchangeable with the time dimension in the
settings and the result graphs.� �

1 #define S 1000000L // Factor for seconds
2 #define MS 1000L // Factor for milliseconds
3 #define TEST_N 10000L // number of iterations to run test
4 #define TEST_A12 1.4 // Clock skew
5 #define TEST_B12 5L*S // Clock offset
6 #define TEST_INTERVAL 1*S // Test interval, t_2 units
7 #define TEST_INTERVAL_RAND 100*MS // error magnitude of same
8 #define TEST_DELAY_B 50*MS // delay from t_o to t_b
9 #define TEST_DELAY_B_RAND 15*MS // error magnitude of same

10 #define TEST_DELAY_R 50*MS // delay from t_b to t_r
11 #define TEST_DELAY_R_RAND 15*MS // error magnitude of same
12 #define TEST_NONLINEAR_T_2_START 500*S // Time of non-linearity event
13 #define TEST_NONLINEAR_A12 1.6 // new A12 after non-linearity� �

Listing 5.1: Test configuration constants

A data structure is defined as shown in Listing 5.2 for storing the simulated state of each clock
during the simulation.� �

1 // Stored clocks of t_1 and t_2, for testing
2 typedef struct test_moment_t{
3 uint64_t t_1; // Current state of node 1’s timer
4 uint64_t t_2; // Current state of node 2’s timer, and true wall time
5 } test_moment_t;� �

Listing 5.2: Data structure for storing clock states

A function is then defined for the probe simulation, shown in Listing 5.3. Between each event,
t2 is advanced with a time defined by the settings, with a random component. t1 is advanced
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the same amount, multiplied by a12. The random_error function returns a uniformly distributed
random number with a maximum magnitude of the argument. a12 is either set to TEST_A12 or to
TEST_NONLINEAR_A12, based on whether the non-linearity event has happened.� �

1 void test_advance_timestamp(tinysync_datapoint_t* d, test_moment_t* now){
2 double test_a12 = (now->t_2 < TEST_NONLINEAR_T_2_START) ? TEST_A12 :
3 TEST_NONLINEAR_A12;
4

5 int64_t error = random_error(TEST_INTERVAL_RAND);
6 now->t_1 += (TEST_INTERVAL + error) * test_a12;
7 now->t_2 += (TEST_INTERVAL + error);
8 d->t_o = now->t_1;
9

10 error = random_error(TEST_DELAY_B_RAND);
11 now->t_1 += (TEST_DELAY_B + error) * test_a12;
12 now->t_2 += (TEST_DELAY_B + error);
13 d->t_b = now->t_2;
14

15 error = random_error(TEST_DELAY_R_RAND);
16 now->t_1 += (TEST_DELAY_R + error) * test_a12;
17 now->t_2 += (TEST_DELAY_R + error);
18 d->t_r = now->t_1;
19 }� �

Listing 5.3: Function for generating new data points

In the test program, listed in Listing 5.4, the test_advance_time-stamp function is run many
times. the resulting maximum and minimum time estimates are computed, and various statistics
are printed for each iteration. The output was used to generate the graphs in Section 5.2.

5.2 Simulation results

The test program was run 3 times with different parameters, to evaluate different properties of
the algorithm. One simulation focuses on the ability to attain a close estimate, one focuses on the
consequences of asymmetrical network delays, and one focuses on the consequences of a the clocks
not being linearly related.

The settings for the delays in the simulations were inspired by latencies measured for short
packets on embedded mesh networks, including BT Mesh, on the order of 10-100 ms ([10], Figures
2.6 and 2.8). The error of the estimated t2, as well as the error of the minimum and maximum
estimates are plotted over time for each of the runs, and is shown in Figure 2 (run 1), Figure 3 (run
2) and Figure 4 (run 3). The settings used for each simulation is summarized in table Table 3.
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� �
1 int main(){
2 tinysync_est_state_t state;
3 tinysync_est_state_t_initialize(&state); // Set initialization counter to zero
4

5 test_moment_t now = {.t_1 = TEST_B12, // Start off the clocks with an offset
6 .t_2 = 0};
7 tinysync_datapoint_t d1;
8

9 for(uint64_t i=0; i<TEST_N; i++){
10 test_advance_timestamp(&d1, &now);
11 tinysync_est_ret_t ret = tinysync_est_etimate(&state, &d1);
12 double b_12_exp = (state.lineset.ba.a + state.lineset.ab.a) / 2.0;
13 double a_12_exp = (state.lineset.ba.b + state.lineset.ab.b) / 2.0;
14 uint64_t estimated_t_2 = (uint64_t)( (((double)now.t_1) - a_12_exp) / b_12_exp );
15 uint64_t max_t_2 = (uint64_t)( (((double)now.t_1) - state.lineset.ba.b) /
16 state.lineset.ba.a );
17 uint64_t min_t_2 = (uint64_t)( (((double)now.t_1) - state.lineset.ab.b) /
18 state.lineset.ab.a );
19 printf("test %u %.9g %.9g %.9g %.9g %u %.9g %.9g %.9g %.9g %u %d %f %d %d %d\n",
20 ret, // Return code
21 state.lineset.ba.a, // drift lower limit
22 state.lineset.ab.a, // drift upper limit
23 state.lineset.ba.b, // offset upper limit
24 state.lineset.ab.b, // offset lower limit
25 now.t_2,
26 b_12_exp, // Expected offset
27 fabs(b_12_exp - TEST_B12), // B12 absolute error
28 a_12_exp, // Expected skew
29 fabs(a_12_exp - TEST_A12), // A12 absolute error
30 estimated_t_2,
31 estimated_t_2 - now.t_2, // Error of t_2 estimate
32 fabs((int64_t)estimated_t_2 - (int64_t)now.t_2), // Absolute same
33 max_t_2 - now.t_2, //Error of max; always positive
34 min_t_2 - now.t_2, //Error of min; always negative
35 (max_t_2 - min_t_2) / 2 //Maximum possible absolute error
36 );
37 }
38 return 0;
39 }� �

Listing 5.4: Main program used to test the implementation

Setting Description
Value, run 1
(basic test)

Value, run 2
(asymmetrical

delays)

Value, run 3
(non-linear

clocks)
TEST_A12 simulated a12 1.4
TEST_B12 simulated b12 5 000 000 cycles of t1
TEST_INTERVAL Test interval 1 s
TEST_INTERVAL_RAND variation magnitude of the above 100 ms
TEST_DELAY_B delay from to to tb 50 ms 35 ms 50 ms
TEST_DELAY_B_RAND variation magnitude of the above 15 ms 10 ms 15 ms
TEST_DELAY_R delay from tb to tr 50 ms 10 ms 50 ms
TEST_DELAY_R_RAND variation magnitude of the above 15 ms 5 ms 15 ms
TEST_NONLINEAR_T_2_START Time of non-linearity event (outside of captured data) 500 s
TEST_NONLINEAR_A12 new a12 after non-linearity (irrelevant) 1.6

Table 3: Settings used for each simulation.
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Figure 2: Simulated synchronization errors of tiny-sync when using the algorithm implemented in Chapter 4,
in run 1. Errors of the minimum and maximum estimate is shown, as well as the average estimate.
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Figure 3: Simulated synchronization errors of tiny-sync when using the algorithm implemented in Chapter 4,
in run 2. Errors of the minimum and maximum estimate is shown, as well as the average estimate. Note the
constant error of the average estimate due to the difference in probe and reply delay.
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Figure 4: Simulated synchronization errors of tiny-sync when using the algorithm implemented in Chapter 4,
in run 3. Errors of the minimum and maximum estimate is shown, as well as the average estimate. Note the
sudden jump after the non-linearity event at 500 seconds.
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6 Discussion

6.1 Precision of the estimate

We can see from Figure 2 that when the clocks are linear, and the delays are symmetric, our
tiny-sync implementation generates an estimate that grows increasingly accurate and more con-
sistent over time. With the particular settings used in this case, stable millisecond-level precision is
achieved after a few hundred seconds. This suggests that if this implementation is used to synchro-
nize nodes in even a fairly large BT Mesh network in the most naive way – that is, each nodes using
the network to synchronize with some time master at the software level – this level of precision can
be reached. This assumes that the minimum delays in communication is symmetric.

6.2 Constant error given asymmetric delays

If the minimum delays are asymmetric, the estimate has a constant component in its error. This
is seen in Figure 3. This asymmetry could have many reasons. For example, the network stack
may have different delays for incoming and outgoing packets. A modification to the data point,
to account for an extra delay between node 2’s reception of the probe and its transmission of the
response, is presented in ([1] section 3.1.1). In essence, the known delay is added to the first time-
stamp. In principle, the same idea could be used to account for any minimum known delay between
the 3 time-stamps.

6.3 Guaranteed upper and lower bounds

Regardless of whether the minimum delays are asymmetric, two things remains true in all the re-
sults: the error of the maximum estimate is always positive, and the error of the minimum estimate
is always negative. In other words, node 1 has a guarantee that the t2 lies between the maxi-
mum and minimum estimate, and can know the uncertainty of its synchronization. Knowing this
uncertainty could be useful in a number of ways. One example would be location systems using
time difference of arrival, where the range of possible times for reception of a signal could yield a
shape within which the target is located with certainty, rather than just an estimate. A more topical
example would be synchronization in a BT Mesh network with low power nodes, where the syn-
chronization exchange could take place only as often as is necessary to maintain a certain accuracy.
Since radio usage time is a very important factor for power draw in low-power systems, this could
make a substantial difference, compared to just synchronizing at a fixed period.
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6.4 Extending the synchronization from a pair to a network

To synchronize an entire BT Mesh network with this algorithm could be done in several ways. The
very simplest would be to send the probes to a time master and receive the responses as messages
across the network. This would, however, result in sub-optimal accuracy if the probe and response
pass through multiple nodes and are forwarded. With hardware-level time-stamping of the radio
transmissions and receptions, the delays between two nodes could be measured on the order of
nanoseconds, while a transmission through multiple nodes takes milliseconds. The network could
be synchronized using pairwise synchronization, which is mentioned in [1]. However, this would
require the nodes to build a tree, manage pairwise relations with each other, and exchange more
information. What approach to implement will depend on the accuracy required for the use case.

6.5 Response to non-linearity

Looking at Figure 4, we can see a sharp increase in the uncertainty at the 500 second mark. This
is the point at which a12 suddenly changes from 1.4 to 1.6. As the old constraints can no longer
be used to form estimates, they are discarded at this point. The path of the estimates after that
looks much like it does right at the beginning. This makes sense, as the algorithm has in effect been
restarted after detecting the non-linearity.

19



Bluetooth Mesh and low-power data acquisition in real time

7 Conclusion

In Chapter 2, we surveyed different low-power wireless technologies, and placed BT Mesh among
other the other low-power mesh technologies. We also investigated the particular details of BT
Mesh. Of particular note is BT Mesh’s ability to include smartphones and other Bluetooth-enabled
devices to the network, which could be useful if a user wishes to interact with the network. Also
of note is that a BT Mesh network can be configured heterogeneously: to improve performance of
large networks, only some nodes can be configured as relays. To improve power consumption, some
nodes can be configured as low-power nodes. The nature of the BT Mesh network prevents it from
giving guarantees for latencies, but in practice, latencies have been achieved on the order of tens
of milliseconds in large networks with 8-byte messages.

The tiny-sync algorithm was implemented in C as a method of synchronizing timers distributed
across a low-power wireless network. This algorithm has many desirable properties, most notably
that it generates bounds on its accuracy. The implementation was tested in a simulation framework.
The simulated results yielded some insights into how this this might be used. First, it may be possible
to achieve millisecond-level accuracy over a BT Mesh network (or any other network with similar
latencies), even with an application-level implementation that does not care about the underlying
network. If the underlying network is considered, and known delays are accounted for, much higher
accuracy is possible. What approach to take will depend on the accuracy required for the use case.

20



Bluetooth Mesh and low-power data acquisition in real time

7.1 Future work

Quantitative sources on the performance of the different mesh networks are sparse, and indepen-
dent research even more so. Reproducing the results of [10] using various hardware and software
would go a long way to providing a larger data set for evaluating the properties of the different net-
works. Accurately measuring the power consumption of these networks during these tests would
also be valuable, as that would provide insights into the trade-offs and compromises made in each
technology.

For the purposes of connecting multiple devices at a site, a more holistic comparison of BLE
and/or BT Mesh with cellular solutions like NB-IoT, considering power efficiency, scalability, band-
width and cost would be valuable.

The tiny-sync implementation presented could probably be optimized in various ways. For ex-
ample, the effect of the data types (fixed point/floating point/integer) of the different values on the
precision could be investigated. Further, the current implementation stores redundant data, in the
form of the lineset structure.

Testing of the tiny-sync algorithm over BLE and BT Mesh on embedded hardware like the Nordic
nRF52840 System on Chip is an obvious next step. Investigating the effects of integrating more
tightly with the network stack – like using time-stamps from the radio hardware itself – would be
valuable.
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A Tiny-sync Implementation Source Files

A.1 Interface: estimator.h� �
1 #ifndef __TINYSYNC_ESTIMATOR_H__
2 #define __TINYSYNC_ESTIMATOR_H__
3

4 #include <stdint.h>
5

6 typedef enum tinysync_est_ret_t{
7 TINYSYNC_EST_OK = 0,
8 TINYSYNC_EST_FIRST = 1,
9 TINYSYNC_EST_SECOND = 2,

10 TINYSYNC_EST_NONLINEAR = 3,
11 TINYSYNC_EST_INVALID = 4 // Should never occur
12 } tinysync_est_ret_t;
13

14 typedef struct tinysync_datapoint_t{
15 uint64_t t_o; // t_1 when probe was sent (+ minimum known delay until response transmission)
16 uint64_t t_b; // t_2 when response was sent
17 uint64_t t_r; // t_1 when response was received
18 } tinysync_datapoint_t;
19

20 typedef struct tinysync_constraint_t{
21 uint64_t t_1; // prober clock time
22 uint64_t t_2; // responder clock time
23 } tinysync_constraint_t;
24

25 // Line t_1 = a(t_2) + b
26 typedef struct tinysync_line_t{
27 double a; // slope of line
28 double b; // offset of line
29 } tinysync_line_t;
30

31 // Stored set of constraints
32 typedef struct tinysync_constraints_t{
33 tinysync_constraint_t b_1; // Constraint B_1
34 tinysync_constraint_t b_2; // Constraint B_1
35 tinysync_constraint_t a_1; // Constraint A_1
36 tinysync_constraint_t a_2; // Constraint A_1
37 } tinysync_constraints_t;
38

39 // Stored set of 4 lines between 4 constraints
40 typedef struct tinysync_lineset_t{
41 tinysync_line_t ba; // Line B_1 A_2
42 tinysync_line_t ab; // Line A_1 B_2
43 tinysync_line_t aa; // Line A_1 A_2
44 tinysync_line_t bb; // Line B_1 B_2
45 } tinysync_lineset_t;
46

47 typedef struct tinysync_est_state_t{
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48 tinysync_constraints_t constraints;
49 tinysync_lineset_t lineset;
50 uint8_t init_counter;
51 } tinysync_est_state_t;
52

53 void tinysync_est_state_t_initialize(tinysync_est_state_t* state);
54 tinysync_est_ret_t tinysync_est_etimate(tinysync_est_state_t* state,
55 const tinysync_datapoint_t* new_datapoint);
56

57 #endif //__TINYSYNC_ESTIMATOR_H__� �
Listing A.1: Tiny-sync implementation interface
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A.2 Implementation: estimator.c� �
1 #include "estimator.h"
2

3 uint8_t tinysync_constraint_t_compare(tinysync_constraint_t p_1, tinysync_constraint_t p_2){
4 return (p_1.t_1 == p_2.t_1 &&
5 p_1.t_2 == p_2.t_2) ? 1 : 0;
6 }
7

8 void tinysync_est_state_t_initialize(tinysync_est_state_t * state){
9 state->init_counter = 0;

10 }
11

12 void calculate_line(tinysync_constraint_t p_1, tinysync_constraint_t p_2, tinysync_line_t * line){
13 line->a = (double)(p_2.t_1 - p_1.t_1) / (double)(p_2.t_2 - p_1.t_2);
14 line->b = (double)(p_1.t_1) - line->a * (double)(p_1.t_2);
15 }
16

17 //estimator of linear clock drift and offset
18 tinysync_est_ret_t tinysync_est_etimate(tinysync_est_state_t * state, const tinysync_datapoint_t *

new_datapoint){
19 tinysync_est_ret_t ret = TINYSYNC_EST_OK;
20

21 // default to keeping old points.
22 // These new variables should only be written, not read, until after constraint selection
23 tinysync_constraint_t b_1 = state->constraints.b_1;
24 tinysync_constraint_t a_1 = state->constraints.a_1;
25 tinysync_constraint_t b_2 = state->constraints.b_2;
26 tinysync_constraint_t a_2 = state->constraints.a_2;
27

28 // Convert probing datapoint to 2 points in the t_1-t_2 plane.
29 tinysync_constraint_t b_3;
30 tinysync_constraint_t a_3;
31 b_3.t_1 = new_datapoint->t_r;
32 b_3.t_2 = new_datapoint->t_b;
33 a_3.t_1 = new_datapoint->t_o;
34 a_3.t_2 = new_datapoint->t_b;
35

36 // Handle constraint selection
37 switch(state->init_counter){
38 case 0: // First run: 1 data point, cannot estimate: directly to state and early return
39 state->constraints.b_1 = b_3;
40 state->constraints.a_1 = a_3;
41 state->init_counter ++;
42 return TINYSYNC_EST_FIRST;
43 break;
44 case 1: // Second run: 2 data points, can estimate
45 b_2 = b_3;
46 a_2 = a_3;
47 state->init_counter ++;
48 ret = TINYSYNC_EST_SECOND;
49 break;
50 default: // Algorithm initialized, normal behaviour
51

52 // Handle new lower constraint (a_3)
53 if (a_3.t_1 < state->lineset.ba.b + state->lineset.ba.a * (double)(a_3.t_2)){
54 // Lower constraint too low to be useful: do nothing
55 } else if (a_3.t_1 > state->lineset.ab.b + state->lineset.ab.a * (double)(a_3.t_2)){
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56 // Lower constraint too high to maintain linear model: remove old constraints, add new
57 b_1 = state->constraints.b_2;
58 a_1 = state->constraints.a_2;
59 b_2 = b_3;
60 a_2 = a_3;
61 ret = TINYSYNC_EST_NONLINEAR;
62 break;
63 } else {
64 // Lower constraint useful: update a_2
65 a_2 = a_3;
66 if ( (!tinysync_constraint_t_compare(state->constraints.b_1,state->constraints.b_2)) && (

a_3.t_1 > state->lineset.bb.b + state->lineset.bb.a * (double)(a_3.t_2)) ){
67 // b_2 is better than b_1 for this lower constraint: update b_1
68 b_1 = state->constraints.b_2;
69 }
70 }
71

72 // Handle new upper constraint (b_3)
73 if (b_3.t_1 > state->lineset.ab.b + state->lineset.ab.a * (double)(b_3.t_2)){
74 // Upper constraint too high to be useful: do nothing
75 } else if (b_3.t_1 < state->lineset.ba.b + state->lineset.ba.a * (double)(b_3.t_2)){
76 // Upper constraint too low to maintain linear model: remove old constraints, add new
77 b_1 = state->constraints.b_2;
78 a_1 = state->constraints.a_2;
79 b_2 = b_3;
80 a_2 = a_3;
81 ret = TINYSYNC_EST_NONLINEAR;
82 break;
83 } else {
84 // Upper constraint useful: update b_2
85 b_2 = b_3;
86 if ( (!tinysync_constraint_t_compare(state->constraints.a_1,state->constraints.a_2)) && (

b_3.t_1 < state->lineset.aa.b + state->lineset.aa.a * (double)(b_3.t_2)) ){
87 // a_2 is better than a_1 for this upper constraint: update a_1
88 a_1 = state->constraints.a_2;
89 }
90 }
91 }
92

93 // Update stored points
94 state->constraints.b_1 = b_1;
95 state->constraints.a_1 = a_1;
96 state->constraints.b_2 = b_2;
97 state->constraints.a_2 = a_2;
98

99 // Update lines
100 calculate_line(b_1, b_2, &(state->lineset.bb));
101 calculate_line(b_1, a_2, &(state->lineset.ba));
102 calculate_line(a_1, b_2, &(state->lineset.ab));
103 calculate_line(a_1, a_2, &(state->lineset.aa));
104

105 return ret;
106 };� �

Listing A.2: Tiny-sync implementation
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A.3 Test framework: main.c� �
1 // main.c for testing library
2 #include <stdint.h>
3 #include "estimator.h"
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <math.h>
7

8 #define S 1000000L
9 #define MS 1000L

10

11 #define TEST_N 10000L // number of iterations to run test
12 #define TEST_A12 1.4 // Clock skew
13 #define TEST_B12 5L*S // Clock offset
14 #define TEST_INTERVAL 1*S // Test interval, t_2 units
15 #define TEST_INTERVAL_RAND 100*MS // error magnitude of same
16 #define TEST_DELAY_B 50*MS // delay from t_o to t_b
17 #define TEST_DELAY_B_RAND 15*MS // error magnitude of same
18 #define TEST_DELAY_R 50*MS // delay from t_b to t_r
19 #define TEST_DELAY_R_RAND 15*MS // error magnitude of same
20 #define TEST_NONLINEAR_T_2_START 500*S // Time of nonlinearity event
21 #define TEST_NONLINEAR_A12 1.6 // new A12 after nonlinearity
22

23 // Generate a random (uniform) number with a maximum magnitude of ’range’
24 int64_t random_error(uint64_t range){
25 if(range == 0){
26 return 0;
27 }else{
28 uint64_t magnitude = rand() % range;
29 int8_t sign = (rand() % 2 ? 1 : -1);
30 return sign * magnitude;
31 }
32 }
33

34 // Stored clocks of t_1 and t_2, for testing
35 typedef struct test_moment_t{
36 uint64_t t_1; // Current state of node 1’s timer
37 uint64_t t_2; // Current state of node 2’s timer, and true wall time
38 } test_moment_t;
39

40 void test_advance_timestamp(tinysync_datapoint_t* d, test_moment_t* now){
41 double test_a12 = (now->t_2 < TEST_NONLINEAR_T_2_START) ? TEST_A12 :
42 TEST_NONLINEAR_A12;
43

44 int64_t error = random_error(TEST_INTERVAL_RAND);
45 now->t_1 += (TEST_INTERVAL + error) * test_a12;
46 now->t_2 += (TEST_INTERVAL + error);
47 d->t_o = now->t_1;
48

49 error = random_error(TEST_DELAY_B_RAND);
50 now->t_1 += (TEST_DELAY_B + error) * test_a12;
51 now->t_2 += (TEST_DELAY_B + error);
52 d->t_b = now->t_2;
53

54 error = random_error(TEST_DELAY_R_RAND);
55 now->t_1 += (TEST_DELAY_R + error) * test_a12;
56 now->t_2 += (TEST_DELAY_R + error);
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57 d->t_r = now->t_1;
58 }
59

60 int main(){
61 tinysync_est_state_t state;
62 tinysync_est_state_t_initialize(&state); // Set initialization counter to zero
63 test_moment_t now = {.t_1 = TEST_B12, // Start off the clocks with an offset
64 .t_2 = 0};
65 tinysync_datapoint_t d1;
66

67 for(uint64_t i=0; i<TEST_N; i++){
68 test_advance_timestamp(&d1, &now);
69 tinysync_est_ret_t ret = tinysync_est_etimate(&state, &d1);
70 double b_12_exp = (state.lineset.ba.a + state.lineset.ab.a) / 2.0;
71 double a_12_exp = (state.lineset.ba.b + state.lineset.ab.b) / 2.0;
72 uint64_t estimated_t_2 = (uint64_t)((((double)now.t_1) - a_12_exp) / b_12_exp);
73 uint64_t max_t_2 = (uint64_t)((((double)now.t_1) - state.lineset.ba.b) / state.lineset.ba.a);
74 uint64_t min_t_2 = (uint64_t)((((double)now.t_1) - state.lineset.ab.b) / state.lineset.ab.a);
75 printf("test %u %.9g %.9g %.9g %.9g %u %.9g %.9g %.9g %.9g %u %d %f %d %d %d\n",
76 ret, // Return code
77 state.lineset.ba.a, // drift lower limit
78 state.lineset.ab.a, // drift upper limit
79 state.lineset.ba.b, // offset upper limit
80 state.lineset.ab.b, // offset lower limit
81 now.t_2,
82 b_12_exp, // Expected offset
83 fabs(b_12_exp - TEST_B12), // B12 absolute error
84 a_12_exp, // Expected skew
85 fabs(a_12_exp - TEST_A12), // A12 absolute error
86 estimated_t_2,
87 estimated_t_2 - now.t_2, // Error of t_2 estimate
88 fabs((int64_t)estimated_t_2 - (int64_t)now.t_2), // Absolute same
89 max_t_2 - now.t_2, //Error of max; always positive if done right
90 min_t_2 - now.t_2, //Error of min; always negative if done right
91 (max_t_2 - min_t_2) / 2 //Maximum possible absolute error
92 );
93 }
94 return 0;
95 }� �

Listing A.3: Tiny-sync implementation test framework
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