
Set-Based Task Priority Control for
Articulated Intervention AUVs

Erlend Andreas Basso

Supervisor: Professor Kristin Ytterstad Pettersen
Co-supervisor: Dr. Anna Kohl

February 1, 2019

Abstract

The Articulated Intervention Autonomous Underwater Vehicle (AIAUV) has
emerged from the Underwater Snake Robot (USR) by equipping it with longitu-
dinal and tunnel thrusters. The AIAUV is an overactuated and highly redundant
underwater floating base manipulator, where its entire articulated body serves
as a floating manipulator arm, while its slender shape allows it to access narrow
and confined spaces.

This thesis examines different schemes for redundancy resolution, which allow
a robotic system to perform multiple task arranged in priority simultaneously.
Redundancy resolution is investigated at the velocity, acceleration and torque
level by resorting to kinematic and operational space control. Most existing
frameworks can only handle equality tasks, where the goal is to bring a control
objective towards a desired value. However, there has been an extensive research
effort in recent years in order to extend these frameworks to handle set-based
tasks, where the control objective should be kept within some interval.

In this thesis the set-based singularity-robust multiple task priority (SRMTP)
framework is extended to support multidimensional set-based tasks and formal-
ized for acceleration level redundancy resolution. Moreover, the same technique
for activation and deactivation of set-based tasks is used in connection with a op-
erational space task priority control frameworks, enabling set-based operational
space control.

ii

Contents

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Literature review . 3

1.3.1 Task priority inverse kinematic control of redundant robotic
systems . 3

1.3.2 Inclusion of set-based tasks in a task priority inverse kine-
matic framework . 4

1.3.3 Operational space task priority control 6
1.4 Background and Contributions 7
1.5 Outline . 8

2 Kinematic Control 9
2.1 Introduction . 9
2.2 The Inverse Kinematics Problem 9
2.3 Redundant Robotic Systems . 11
2.4 Task-Priority Schemes . 12
2.5 SRMTP Inverse Kinematics Framework 13

2.5.1 Redundancy resolution at the velocity level 13

iii

2.5.2 Redundancy resolution at the acceleration level 16

3 Set-Based Kinematic Control 19
3.1 Introduction . 19
3.2 Set-Based SRMTP Framework 20

3.2.1 Extension to acceleration level redundancy resolution . . 22
3.3 Extension to Multidimensional Set-Based Tasks 22

3.3.1 Introducing the activation matrix 22
3.3.2 Example: High-priority set-based tasks 24
3.3.3 Implementation aspects 24

3.4 iCAT Framework . 25
3.4.1 Activation functions . 25
3.4.2 Set-based and equality tasks 26
3.4.3 Kinematic control law . 27

4 Operational Space Control 29
4.1 Introduction . 29
4.2 Operational Space Dynamics . 30
4.3 Generalized Null Space Operator 31
4.4 Consistency of Null Space Operators 32
4.5 Extension to n Tasks . 34

4.5.1 Null space operator within the task inertia matrix 34
4.5.2 Omitting the null space operator within the task specific

inertia . 37
4.6 Set-Based Operational Space Control 38

5 Modeling of AIAUVs 41
5.1 Reference Frames for Navigation 41
5.2 Kinematic Modeling of AIAUVs 42

5.2.1 Differential kinematics . 43
5.2.2 Quaternions and Euler angles 44
5.2.3 Forward kinematics . 45

iv

5.2.4 Jacobians . 48
5.3 Equations of Motion . 51

6 Set-Based Control of AIAUVs 55
6.1 Introduction . 55
6.2 AIAUV Model . 56
6.3 Control Allocation . 57
6.4 Set-Based and Equality Tasks for AIAUV Control 60

6.4.1 End-effector collision avoidance 60
6.4.2 Joint Limit Avoidance . 62
6.4.3 Actuator singularity avoidance 62
6.4.4 End-effector configuration control 64
6.4.5 Base position control . 66
6.4.6 Null space velocity . 66
6.4.7 Priority levels . 67

6.5 Set-Based Velocity Control . 68
6.5.1 Set-based SRMTP framework 69
6.5.2 iCAT framework . 72

6.6 Set-Based Acceleration Control 72
6.6.1 Smoothing the acceleration references 73

6.7 Set-Based Operational Space Control 74
6.7.1 Method 1: Dynamically decoupled tasks 75
6.7.2 Method 2: Omitting compensation terms in the accelera-

tion references . 76
6.7.3 Method 3: Omitting the null space operator from the task

specific inertia matrix . 77
6.7.4 Smoothing the control torques 77

7 Simulations 79
7.1 Control Objectives . 79

7.1.1 Equality tasks . 79
7.1.2 Set-based tasks . 80

v

7.2 Implementation Specifics . 80
7.2.1 The mode definition . 81
7.2.2 Smoothing function . 81
7.2.3 Control allocation . 82

7.3 Kinematic Control . 82
7.3.1 Set-based velocity control 82
7.3.2 Set-based acceleration control 95

7.4 Operational Space Control . 104
7.4.1 Control parameters . 104
7.4.2 Method 1: Fully linearized task dynamics 105
7.4.3 Method 2: No compensation of higher priority tasks . . . 113
7.4.4 Method 3: Omitting the null space operator within the

task specific inertia matrix 121
7.4.5 Uncertainty in the dynamic parameters 129

8 Discussion 143
8.1 Kinematic Control . 143

8.1.1 Velocity level redundancy resolution 143
8.1.2 Acceleration level redundancy resolution 147

8.2 Operational Space Control . 147
8.2.1 Uncertainty in the dynamic parameters 149

8.3 Kinematic Control vs Operational Space Control 152
8.3.1 Challenges related to set-based acceleration and opera-

tional space control . 154

9 Conclusions and Future Work 157
9.1 Future work . 159

A Proofs 161

References 167

vi

List of Tables

7.1 The valid domains for the set-based tasks. 80
7.2 Dynamic control parameters for velocity-based control. 82
7.3 SRMTP task space gains. 83
7.4 Smoothened SRMTP task space gains Λ and activation thresholds

β. 87
7.5 iCAT control parameters for the set-based tasks. 91
7.6 Activation thresholds for set-based tasks. 100
7.7 Proportional and derivative gains for the augmented set-based task.100
7.8 Activation thresholds for set-based tasks. 105
7.9 Control parameters for the set-based operational space controllers.105
7.10 Proportional and derivative gains for the augmented set-based task.109
7.11 Control parameters for the set-based operational space controllers.113
7.12 Proportional and derivative gains for the augmented set-based task.117
7.13 Control parameters for the set-based operational space controllers.121
7.14 Proportional and derivative gains for the augmented set-based task.125
7.15 Control parameters for a set-based operational space controller. . 138

vii

List of Figures

6.1 General task control framework for an AIAUV application, the
desired operational space goal is fed to a controller which computes
the required joint torques. 56

6.2 Overall control architecture for an AIAUV application when em-
ploying a kinematic control scheme. The kinematic controller
transforms a goal specified through an operational space task into
desired system velocities accomplishing the goal. 68

7.1 Simulation results for kinematic velocity control within the set-
based SRMTP framework. 86

7.2 Simulation results for the smoothened version of the set-based
SRMTP kinematic control framework. 90

7.3 Simulation results for the iCAT framework. 94
7.4 Excessive activation and deactivation of tasks, represented by

what mode that is currently active. 95
7.5 Simulation results for acceleration-level set-based SRMTP kine-

matic control. 99
7.6 Simulation results for acceleration-level set-based SRMTP kine-

matic control with acceleration reference smoothing. 103
7.7 Simulation results for the set-based operational space controller

from Section 6.7.1 . 108

viii

7.8 Simulation results for the set-based operational space controller
from Section 6.7.1 with control torque smoothing. 112

7.9 Simulation results for the set-based operational space controller
from Section 6.7.2. 116

7.10 Simulation results for the set-based operational space controller
from Section 6.7.2 with control torque smoothing. 120

7.11 Simulation results for the set-based operational space controller
from Section 6.7.3. 124

7.12 Simulation results for the set-based operational space controller
from Section 6.7.3 with control torque smoothing. 128

7.13 The 2-norm of the rigid body inertia matrix, the added mass
matrix and the inertia matrix. The 2-norm of a matrix is equal
to the largest singular value of the matrix. 129

7.14 Simulation results for the set-based operational space controller
from Section 6.7.1 where all added mass terms have been omitted
from the inertia matrix. 133

7.15 Simulation results for the set-based operational space controller
from Section 6.7.2 where all added mass terms have been omitted
from the inertia matrix. 137

7.16 Simulation results for the set-based operational space controller
from Section 6.7.3 where all added mass terms have been omitted
from the inertia matrix. 141

8.1 Velocity and integral error for the SRMTP framework without
smoothing. 145

ix

x

Chapter 1

Introduction

1.1 Motivation

As the number of subsea oil and gas installations continue to grow while ageing
subsea infrastructure requires more preventive maintenance, the need for subsea
inspection, maintenance and repair (IMR) solutions is increasing [1]. Historically,
the remotely operated vehicle (ROV) has been the go-to solution for all subsea
IMR operations. ROVs are operated by a human operator via a tethered
telecommunications link from a submarine or surface ship, ROV operations are
therefore both costly and time consuming. Increasing the autonomy of subsea
IMR operations has the potential to significantly improve the safety and cost-
effectiveness of operations [2]. While AUVs and smaller inspection class ROVs
have gradually taken over subsea inspection operations, manipulation tasks and
operations within narrow and confined areas still requires the flexibility of a
robotic arm.

Articulated intervention autonomous underwater vehicles (AIAUVs) have
emerged from underwater snake robots (USRs) by adding longitudinal and tunnel
thrusters along the body. AIAUVs are a special class of underwater vehicle
manipulator systems (UVMSs), where the system is both vehicle and manipulator

1

2 CHAPTER 1. INTRODUCTION

at the same time [3]. The small size of the AIAUV and its articulated body
enable it to better access narrow and confined spaces compared to UVMSs with
a large floating base. Moreover, because of its flexible shape, the AIAUV can
assume a torpedo shape similar to a conventional AUV for transportation, while
serving as a floating base manipulator for intervention tasks. These modes of
operation are referred to as transport and work mode, respectively.

AIAUVs are highly redundant and overactuated robotic systems. Both
of these properties lead to some kind of optimization problem to be solved
by the control system. This thesis investigates task priority frameworks for
redundancy resolution, wherein control objectives are prioritized according to
their respective importance. Safety related tasks such as collision avoidance and
joint limit avoidance are inherently set-based tasks, which do not fit naturally
into the original formulations of most of these frameworks. Therefore, methods
for inclusion of set-based tasks within these frameworks are also investigated.
To this end, different control frameworks for set-based task-priority control of
AIAUVs are developed, these frameworks exploit the redundancy of the AIAUV
in order to satisfy several equality control tasks arranged in priority, while
satisfying high priority safety related set-based objectives at all times.

1.2 Problem Description

AIAUVs are redundant with respect to standard tasks like end-effector config-
uration control since they possess more DOFs than those strictly required to
execute the task. This presents the possibility of achieving additional tasks
simultaneously by utilizing the redundant DOFs of the system. To this end,
task priority frameworks enable multiple tasks to be defined and prioritized
with respect to their relative importance. Safety related tasks such as collision
avoidance and joint limit avoidance are inherently described by inequalities
representing the sets in which they are satisfied. These types of tasks are referred
to as set-based tasks, and a large research effort has been put into extending
task priority frameworks to handle these tasks in recent years.

1.3. LITERATURE REVIEW 3

The motivation for this thesis has been to investigate redundancy resolution
methods for AIAUVs, with a focus on task priority frameworks and the inclusion
of set-based tasks within these frameworks.

• Literature review: Compare the methods proposed in [4] and [5] for exten-
sion of the task priority inverse kinematic control approach to set-based
tasks.

• Extend the set-based SRMTP framework from [4] to handle multidimen-
sional set-based tasks.

• Investigate set-based task priority control at the acceleration and force/torque
level.

• Implement and validate the proposed set-based task priority schemes for
AIAUV control in simulations.

1.3 Literature review

1.3.1 Task priority inverse kinematic control of redundant
robotic systems

The task priority strategy for kinematic control was first introduced in [6], and
later developed in [7]. Within this framework, tasks are described in operational
space and ordered according to their priority. The relationship between the task
variables in operational space and those describing the robotic system in joint
space are resolved at the velocity level, generating desired velocity references
for some dynamic controller to follow. The idea is that lower priority tasks are
realized by utilizing the redundancy not employed through satisfying the higher
priority tasks, which is to say that the lower priority tasks are only satisfied
in the null space of the higher priority tasks. This ensures that tasks of lower
priority have no effect on the satisfaction of higher priority tasks.

4 CHAPTER 1. INTRODUCTION

This approach was further generalized to an arbitrary number of tasks
through a recursive implementation in [8], which also simplifies the problem from
a high-level programming point of view. This algorithm is known as the multiple-
task priority (MTP) inverse kinematics framework. This method ensures the
optimal execution of lower priority tasks as long as they are compatible with the
higher priority tasks. However, whenever tasks are incompatible, algorithmic
singularities arise.

In [9] a new task-priority redundancy resolution technique for two tasks is
introduced which overcomes the effects of algorithmic singularities. This work
was extended to an arbitrary number of tasks in [10], [11] and [12], which employ
closed-loop inverse kinematics (CLIK) [13] versions of the algorithm to prevent
drift of the desired joint angles. The framework presented in [12] is known as
the singularity-robust multiple task-priority inverse kinematics framework.

1.3.2 Inclusion of set-based tasks in a task priority inverse
kinematic framework

Tasks such as joint limit avoidance, collision avoidance or avoidance of kinematic
singularities are inherently set-based tasks, also known as unilateral or inequality
tasks in the literature. These types of tasks do not fit within the original task
priority frameworks since they only account for equality tasks, i.e. tasks assigning
an exact value to a controlled task. The collision avoidance problem for mobile
robots was addressed in [14], by defining the concept of artificial potential fields
which attempt to push the robot away from an obstacle. However, four distinct
drawbacks are identified in [15], such as the possibility of undesirable oscillating
system behavior in the presence of certain obstacles, and the fact that it is not
possible to set a minimum distance between the obstacle and robot.

Within task priority frameworks, set-based tasks have often been included
by transforming them into equality tasks, by assigning an arbitrary target
value for the controlled variable within the valid set of the task [16]. This
presents significant challenges since safety-related set-based tasks should be

1.3. LITERATURE REVIEW 5

classified as high-priority tasks, but doing so is infeasible in classical task-
priority frameworks such as SRMTP, since it consumes too many degrees of
freedom (DOF). Consequently, set-based tasks have historically ended up with a
lower priority than mission related tasks such as end-effector position control,
which meant that the satisfaction of safety-related set-based tasks could not be
guaranteed, which is highly undesirable from a safety point of view.

In [4] the SRMTP framework was extended to scalar set-based tasks by
introducing the concept of tangent cones. In this scheme set-based tasks are
ignored and considered inactive when they are inside their valid set, and accounted
for in the inverse kinematics whenever they reach the boundary of their valid
set and the task derivative simultaneously points out of the valid set. This is
accomplished by switching between different joint velocity reference solutions
corresponding to which set-based tasks are active or inactive. This method
respects the strict priority of all tasks and ensures that high-priority set-based
tasks remain in their valid set at all times. However, a disadvantage of this
method is that the system velocity references are inherently discontinuous due
to the switching of modes without any kind of smoothing. The discontinuities
arising from mode switching is discussed in [17], where a solution for smoothing
the system reference velocities while switching between modes is proposed. An
immediate drawback of the smoothing approach is that the strict priority of tasks
is lost while switching between modes, which suggests that there is an inherent
trade-off between strict priority and smoothness of system velocity references
when employing this set-based inverse kinematics scheme.

A scheme which integrates activation and deactivation of tasks as well as
set-based tasks within task-priority inverse kinematic control is presented in
[5]. This method has the benefit of activating and deactivating set-based tasks
without incurring discontinuities in the joint velocity references. As opposed
to the set-based SRMTP framework, this method relies on defining activation
thresholds around the boundaries of the valid set of set-based tasks. Another
difference is that set-based tasks are controlled toward some arbitrary value
within the valid set instead of freezing them at the boundary. Furthermore,

6 CHAPTER 1. INTRODUCTION

strict priority between tasks is lost whenever tasks are in transition, which
occurs whenever tasks reach the activation threshold and ends when the task
either reaches the boundary and is fully active, or is pushed inside the subset
of the valid set defined by the activation threshold. The authors argue that
the loss of strict priority is in fact a positive characteristic since DOFs are not
fully consumed by the active set-based task while it is still contained inside
its valid set and not on the boundary and fully active. However, in [18] the
author argues that the loss of strict priority may lead to undesirable behaviors.
Another approach to handle set-based and equality based tasks while respecting
their priorities consists of transforming the inverse kinematics problem into a
quadratic programming (QP) problem [19], [20]. This is an iterative procedure
which is often computationally expensive.

1.3.3 Operational space task priority control

Prior to the operational space framework, a lot of research was based on joint
space dynamic models for dynamic control of robotic manipulators. The opera-
tional space formulation was introduced in the seminal work of Khatib [21] as
a unified approach to motion and force control. It was intended as a tool for
analysis and control of robotic manipulators with respect to the dynamic behav-
ior of their end-effectors. For redundant robotic systems, an operational space
task can be defined and controlled, while a dynamically consistent null-space
describes the additional motion of the redundant DOFs. Several tasks can be
stacked into a single task vector and simultaneously controlled, however, there
is no prioritization among tasks and conflicts between tasks lead to a tracking
error affecting all of the conflicting tasks.

In [22], [23] and [24] the operational space formulation was extended to an
arbitrary number of tasks by generalizing the dynamically consistent null-space
operator defined in [21] to any number of priority levels, ensuring a prioritized
hierarchy among tasks. In this work, redundancy resolution is performed in
a way that dynamically decouples all tasks whenever they are compatible. In

1.4. BACKGROUND AND CONTRIBUTIONS 7

[25], static and dynamic consistency of null-space operators is discussed, and a
selection of null-space operators are compared. Since dynamic model parameters
are involved in the computation of the null-space operators in the operational
space framework, null-space operators may lose consistency properties whenever
the model parameters are uncertain. This is investigated in [26], where the
conclusion is that the dynamically consistent null-space operator from [21] is
statically consistent even if the inertia matrix contains modeling errors. Finally,
the operational space framework was also extended to include set-based tasks in
[27], however, this approach does not scale well for systems with a high amount
of DOFs.

1.4 Background and Contributions

The Matlab simulator used in the simulations was provided by PhD candidate
Henrik Schmidt-Didlaukies, the simulator has been ported to Simulink in order to
support fixed-step ODE solvers. Matlab functions for computation of a symbolic
actuator configuration matrix as well as the partial and cross partial derivatives
of the actuator configuration matrix has been provided by MSc student Arnt-Erik
Stene.

The main contributions of this thesis are

• Extending the set-based SRMTP framework to support multidimensional
set-based tasks.

• Formalizing the set-based SRMTP framework for acceleration level redun-
dancy resolution.

• Introducing a scheme for inclusion of set-based tasks in an operational
space framework.

• Evaluating different set-based task priority control schemes for an AIAUV
application.

8 CHAPTER 1. INTRODUCTION

1.5 Outline

This thesis can be divided into two parts, Chapter 2-4 is concerned with task
priority control frameworks for general robotic systems, while Chapter 5-9
considers these task priority control frameworks for an AIAUV application.

The rest of thesis is organized as follows. Chapter 2 presents background
theory on kinematic task priority control of robotic systems. In Chapter 3,
kinematic control frameworks for set-based kinematic control are presented.
Moreover, a method for extending the set-based SRMTP framework to handle
multidimensional tasks is formalized. Chapter 4 discusses operational space
control in a task priority control setting, where a method for set-based operational
space control is formalized.

Chapter 5 presents dynamic and kinematic models of an AIAUV for control
and simulation purposes. In Chapter 6 the general control structure for AIAUV
control and the set-based and equality tasks to be controlled in simulations are
also presented. Moreover, the proposed task priority frameworks from Chapter
2-4 are described for AIAUV control. Simulation results of all schemes can be
found in Chapter 7, while the results are discussed in Chapter 8. Finally, the
conclusion and suggestions for future work can be found in Chapter 9.

Appendix A presents a few novel proofs of the generalized null space operator
employed in the operational space controllers.

Chapter 2

Kinematic Control

2.1 Introduction

Robotic systems are often required to perform tasks specified in a suitably defined
operational space, also known as task space, while the robotic system is naturally
described and actuated in the joint space. Hence, in order to accomplish control
tasks, it is necessary to exploit mathematical relations enabling the computation
of reference joint-space variables corresponding to the assigned task variables.
This is the objective of the inverse kinematics problem, which can be solved at
the position, velocity or acceleration level. The reference joint-space variables
are the input to a dynamic controller, which computes generalized forces and
torques to be applied to the robotic system.

2.2 The Inverse Kinematics Problem

The system configuration of an n degree of freedom robotic system can be
expressed by the joint variables q = [q1, q2, . . . , qn]T. A task is defined as a
generic m-dimensional control objective, specified as a function of the system
configuration, σ(q) ∈ Rm. The classical definition of the inverse kinematics

9

10 CHAPTER 2. KINEMATIC CONTROL

problem consists of finding the joint variables qd corresponding to a given end-
effector position and orientation. However, since this thesis focuses on redundant
manipulators, tasks are not restricted to the end-effector configuration task.
Hence, the inverse kinematics problem will herein consist of finding the system
configuration vector qd that brings a generic task vector σ(q) to its desired
trajectory σd. The relation between the task variable and the joint variables are
generally given by

σ(t) = f(q(t)), (2.1)

which must be inverted and solved for q. However, since (2.1) is nonlinear in
general, it is difficult to obtain a trajectory qd, resulting in the desired task
trajectory σd. By differentiating (2.1) with respect to time, the first-order
differential kinematics are obtained, viz.

σ̇(t) = ∂f(q(t))
∂q

q̇(t) = J(q(t))q̇(t), (2.2)

where J(q(t)) ∈ Rm×n is the configuration-dependent task Jacobian matrix and
q̇(t) ∈ Rn is the system velocity. Differentiation with respect to time yields the
second-order differential kinematics

σ̈(t) = J(q(t))q̈(t) + J̇(q(t))q̇(t). (2.3)

Note that the relation between the joint velocity q̇ and task velocity σ̇ is linear,
which is also true for the relation between the joint acceleration q̈ and task
acceleration σ̈. This is why most inverse kinematics algorithms operate on the
velocity or acceleration level.

For instance, an end-effector task for a 6-DOF robotic system results in a
square task Jacobian. Omitting dependencies for readability, the solution to the
first- and second-order differential kinematics equations can therefore be written

2.3. REDUNDANT ROBOTIC SYSTEMS 11

as

q̇ = J−1σ̇, (2.4)

and

q̈ = J−1
(

σ̈ − J̇ q̇
)
. (2.5)

2.3 Redundant Robotic Systems

A robotic system is kinematically redundant when it has more DOFs than those
strictly required to execute a given task [28]. A direct implication is that no
robotic system is inherently redundant, but that there exists task which the
system is redundant with respect to. Since a general end-effector configuration
task requires six degrees of freedom, robotic systems with seven or more degrees
of freedom are usually considered redundant systems.

Consider the case where the number of DOFs are greater than the task
dimension. The task Jacobian matrix is no longer square, and the relations in
(2.4) and (2.5) cannot be directly inverted to obtain q̇(t). However, the right
Moore-Penrose pseudoinverse can be employed to find a solution minimizing the
norm of the joint velocities whenever the task Jacobian has full rank, viz.

q̇ = J†σ̇, (2.6)

q̈ = J†
(

σ̈ − J̇ q̇
)
, (2.7)

where the matrix J† = JT (JJT)−1 is the right pseudoinverse of J . The common
denominator of all task-priority schemes relies on the observation that the solution
q̇(t) of (2.6) lies in the row space of the task Jacobian. Hence, it is possible to
exploit the orthogonal complement of the row space, i.e. the null space of the
task Jacobians to potentially satisfy lower priority tasks if the system exhibits

12 CHAPTER 2. KINEMATIC CONTROL

enough redundancy. A more general solution to (2.6) is then given by [29]

q̇ = J†σ̇ + Nq̇0, (2.8)

where q̇0 ∈ Rn is an arbitrary system velocity vector, projected through the
null-space operator given by

N = I − J†J . (2.9)

Since JN = 0, the system velocity q̇0 only generates motions in the null-space
of the primary task Jacobian matrix, which does not affect the primary task.

2.4 Task-Priority Schemes

The most prominent task priority schemes for kinematic control are the multiple
task priority (MTP) inverse kinematics framework [8] and the singularity-robust
multiple task priority (SRMTP) inverse kinematics framework [9]. The MTP
framework generally results in more accurate tracking behavior of lower priority
tasks, but it is subject to algorithmic singularities. The SRMTP framework is
robust against algorithmic singularities1, but suffers from worse tracking accuracy
of lower priority tasks. Algorithmic singularities denote all singularities that
do not come from kinematic singularities, i.e. when a task Jacobian suffers a
loss of rank. These types of singularities may occur in the MTP framework
because of the pseudoinversion of JiN

A
i , while the only pseudoinversions in the

SRMTP framework are task Jacobians and augmented task Jacobians. However,
for the general case of k tasks, the augmented task Jacobians may have linearly
dependent rows even though none of the Jacobians are close to a kinematic
singularity. To better understand how this may occur, consider the general
case of k tasks, if two or more tasks are in conflict on priority level 1, . . . , k − 1,
the augmented Jacobian of the first k − 1 tasks will have linearly dependent

1In its original definition for two tasks.

2.5. SRMTP INVERSE KINEMATICS FRAMEWORK 13

rows. Hence, for particular tasks, the SRMTP framework may also exhibit
algorithmic singularities. This can be prevented by observing that the row space
of the augmented Jacobian remains the same even if linearly dependent rows are
removed, which entails that the null space, or orthogonal complement of the row
space, remains the same when linearly dependent rows are removed.

2.5 Singularity-Robust Multiple Task-Priority In-
verse Kinematics Framework

The singularity-robust multiple task priority inverse kinematics framework is a
popular method for kinematic control of general robotic systems. The framework
enables an arbitrary number of equality tasks, i.e. tasks with a specified desired
value, to be defined, prioritized and achieved simultaneously. The SRMTP
framework is a Jacobian-based method, originally proposed in [9] for velocity
level redundancy resolution with two tasks. The framework was extended to
an arbitrary number of tasks in [30, 10] as null space-based behavioral control.
The SRMTP name was reintroduced when the approach was further extended
to handle set-based tasks in [4]. In this thesis, the SRMTP name will be used.

The SRMTP framework can also be proposed for acceleration level redun-
dancy resolution as shown in Section 2.5.2. The inverse kinematics problem is
solved on the velocity or acceleration level by generating reference joint velocities
or accelerations to be tracked by a dynamic controller, and if tracked successfully,
fulfills multiple tasks in a prioritized order.

2.5.1 Redundancy resolution at the velocity level

For redundant robotic systems with n > m, the task Jacobian matrix is not
square and (2.2) cannot be inverted directly to obtain the system velocity
references q̇d(t). However, the Moore-Penrose pseudoinverse can be employed to

14 CHAPTER 2. KINEMATIC CONTROL

find a solution that minimizes the norm of the joint velocities [31], viz.

q̇d = J†σ̇ = JT
(
JJT

)−1
σ̇, (2.10)

where the matrix J† is the right pseudoinverse of J . Since (2.10) is prone to
drifting when integrated to obtain qd, a closed-loop inverse kinematics (CLIK)
scheme is usually employed [13]. To derive such a scheme, let the task error be
defined by

σ̃ = σd − σ = σd − f(q). (2.11)

The goal is to construct a suitable feedback control law which drives σ̃ to zero.
The derivative with respect to time is given by

˙̃σ = σ̇d − σ̇ (2.12)

= σ̇d − Jq̇. (2.13)

In order for this equation to lead to a closed-loop inverse kinematics algorithm,
the joint velocity vector q̇ should be related to the task error σ̃ such that (2.13)
represents a differential equation describing the error evolution over time [31].
By computing the desired system velocities from

q̇d = J†(σ̇d + Λσ̃), (2.14)

and inserting this relationship into (2.13) under the assumption that q̇ = q̇d

leads to

˙̃σ = σ̇d − Jq̇ (2.15)

= σ̇d − JJ†(σ̇d + Λσ̃) (2.16)

= −Λσ̃, (2.17)

2.5. SRMTP INVERSE KINEMATICS FRAMEWORK 15

where it has been assumed that J has linearly independent rows such that
JJ† = I. This is a linear system with a globally exponentially stable equilibrium
point at σ̃ = 0 when Λ is positive definite [32].

A common approach in closed-loop inverse kinematic algorithms is to feed
back the desired configurations, qd, instead of the measured configuration q.
This keeps the kinematic control loop separate from the dynamic control loop
and is equivalent to assuming q̇ = q̇d [12].

In the case of system redundancy, where n > m, (2.14) can be written

q̇d = J†(σ̇d + Λσ̃) + (I − J†J)q̇0, (2.18)

where q̇0 ∈ Rn is an arbitrary system velocity vector. These velocities are
projected through the null-space operator (I − JJ†), which means that they can
only generate velocities in the null space of the task Jacobian matrix. Therefore,
these velocities do not affect that of the primary task [4].

From here on let σ̇r = σ̇d + Λσ̃. A generalization of this framework to k
equality tasks arranged by priority leads to [12]

q̇d = J†
1 σ̇1,r︸ ︷︷ ︸
q̇1,d

+N1 J†
2 σ̇2,r︸ ︷︷ ︸
q̇2,d

+ . . .+ NA
12..(k−1) J†

kσ̇k,r︸ ︷︷ ︸
q̇k,d

, (2.19)

where NA
12..(k−1) is the null space operator of the augmented Jacobian obtained

by stacking the k − 1 higher priority tasks, viz.

JA
12..(k−1) =


J1

J2
...

Jk−1


, (2.20)

NA
12..(k−1) =

(
I −

(
JA

k−1

)†
JA

k−1

)
. (2.21)

16 CHAPTER 2. KINEMATIC CONTROL

Since JA†

12..(k−1) is a Moore-Penrose pseudoinverse the following holds

JiN
A
12..(k−1) = 0, (2.22)

for i = 1, . . . , k − 1, which ensures that lower priority tasks do not generate
velocities affecting higher priority tasks. As mentioned in Section 2.3, it is
evident from (2.20) that if two or more of the task Jacobians in the augmented
Jacobian are conflicting, the augmented Jacobian will have linearly dependent
rows. Hence, it suffers a loss of rank and JA

k−1

(
JA

k−1

)T

is not invertible, which
is to say that the pseudoinverse cannot be computed from the formula

J† = JT
(
JJT

)−1
. (2.23)

However, linearly dependent rows may be removed from the augmented Jacobian
without affecting the row space. Therefore, the null-space defined by I − J†J

remains the same.

2.5.2 Redundancy resolution at the acceleration level

A drawback of velocity level redundancy resolution is that joint space acceleration
references have to computed by numeric differentiation of the desired joint velocity.
Moreover, task space acceleration references cannot be included, which limits
tracking performance. For second order systems such as a robotic manipulator,
acceleration-based control is a more natural approach since it computes desired
acceleration references directly, which enables the use of more advanced control
schemes [33]. By utilizing the Moore-Penrose pseudoinverse, (2.3) can be solved
for q̈, viz.

q̈ = J†
(

σ̈ − J̇ q̇
)
. (2.24)

2.5. SRMTP INVERSE KINEMATICS FRAMEWORK 17

Employing a closed-loop inverse kinematics scheme yields

q̈d = J†
(

σ̈d + Kd
˙̃σ + Kpσ̃ − J̇ q̇

)
, (2.25)

where σ̃ = σd − σ denotes the task error. For redundant systems the SRMTP
framework can be proposed for the acceleration level as follows [33]

q̈d = J†
1

(
σ̈1,r − J̇1q̇

)
+ N1J†

2

(
σ̈2,r − J̇2q̇

)
+ . . .

+ NA
12..(k−1)J

†
k

(
σ̈k,r − J̇kq̇

)
,

(2.26)

where NA
12..(k−1) is given by (2.21) and the task space acceleration reference is

given by

σ̈r = σ̈d + Kd
˙̃σ + Kpσ̃. (2.27)

The obtained acceleration references may for instance be used in combination
with a feedback linearizing control law ensuring that q̈ = q̈d. Note that for
acceleration-based control the problem of internal instability of the joint angles
may occur if not all the DOFs of the robotic system are accounted for in (2.26).
Therefore, care must be taken when specifying the operational space tasks. To
ensure internal stability, a task at the lowest priority level with a trivial Jacobian
can be defined which regulates q̇ to zero.

18 CHAPTER 2. KINEMATIC CONTROL

Chapter 3

Set-Based Kinematic
Control

3.1 Introduction

Only equality tasks have been considered so far, where the goal is to ensure that
the task variable converges to a desired value. Set-based tasks, however, are
satisfied whenever the task variable σ ∈ R is contained inside of its valid set, i.e.
σ ∈ D = [σmin, σmax]. Typical examples of set-based tasks for a robotic system
are mechanical joint limit avoidance, obstacle avoidance and manipulability
index tasks. These types of tasks can only be introduced as low priority tasks
when transformed into equality tasks in the MTP and SRMTP frameworks.
Transforming set-based tasks into high-priority equality tasks is not feasible as
it would consume too many DOFs, effectively overconstraining the system. This
implies that safety related set-based tasks have to be introduced as low-priority
tasks, which is highly undesirable since the satisfaction of low-priority tasks
cannot be guaranteed.

In this section two different frameworks for set-based kinematic control is

19

20 CHAPTER 3. SET-BASED KINEMATIC CONTROL

presented. The first approach is an extension of the SRMTP framework which
results in inherently discontinuous velocity references, while the second approach
exploits regularization methods to obtain continuous velocity references at all
times. Moreover, the set-based SRMTP framework is extended to multidimen-
sional tasks as well as to acceleration level redundancy resolution.

3.2 Set-Based SRMTP Framework

In [4] the SRMTP framework is extended to handle scalar set-based tasks within
a velocity level redundancy resolution scheme as follows. Whenever the set-based
task variable σ is contained within its valid set, the set-based task is considered
inactive and ignored by the inverse kinematics algorithm. If σ reaches the
boundary of its valid set and the time derivative σ̇ points outside of the valid
set, the task is activated and introduced in the task priority framework as an
additional equality task to ensure that the task stays on the boundary of its
valid set. Whenever other tasks maintain σ in its valid set, the set-based task is
deactivated. The activation and deactivation of set-based tasks is determined by
the extended tangent cone function defined by

TR,D(σ) =


[0,∞) , σ ≤ σmin

R, σ ∈ (σmin, σmax)

(−∞, 0] , σ ≥ σmax

(3.1)

Since σ ∈ D at t = t0 and σ̇ ∈ TR,D for all t ≥ t0 implies that σ ∈ D for all
t ≥ t0, the desired behavior of the set-based task is obtained by maintaining
σ̇ ∈ TR,D. If this set-based task is introduced into the SRMTP framework as
a high priority task it will be satisfied for all time, while all compatible lower
priority tasks will converge to their desired values. However, the satisfaction
of lower priority set-based tasks cannot be guaranteed due to the presence of
potentially conflicting higher priority equality tasks.

3.2. SET-BASED SRMTP FRAMEWORK 21

For a system with j set-based tasks there are 2j different combinations of set-
based tasks being active or inactive. These combinations are referred to as modes
of the system, and the result is an algorithm which dynamically switches between
joint velocity reference solutions, resulting in inherently discontinuous velocity
references. However, the system is stable through the switching process, and
the equality task errors are proven to converge to zero for compatible regulation
tasks where the gains are chosen appropriately [4]. The algorithm that checks
whether a given set-based task is in the extended tangent cone is presented in
Algorithm 1.

Algorithm 1 A Boolean function that checks if σ̇ ∈ TR,D(σ)
Input: σ̇, σ, σmin, σmax

1: if σmin < σ < σmax then
2: return True
3: else if σ ≤ σmin and σ̇ ≥ 0 then
4: return True
5: else if σ ≥ σmax and σ̇ ≤ 0 then
6: return True
7: else
8: return False
9: end if

Note that the input σ̇ in Algorithm 1 is not a fed back quantity from the last
time step, one instead checks if a less restrictive velocity reference solution will
cause the derivative of the set-based task to leave the extended tangent cone.
To illustrate this consider a case with one high-priority set-based task and an
arbitrary number of equality based tasks. The idea is to compute the velocity
references corresponding to mode 1, f1, where the set-based task is inactive, and
then using σ̇ = Jf1 as an input to the algorithm. This observes the effect in
σ by keeping the set-based task inactive, if the calculated velocity references
corresponding to mode 1 implies that σ̇ /∈ TR,D(σ), then mode 2 is activated.

22 CHAPTER 3. SET-BASED KINEMATIC CONTROL

3.2.1 Extension to acceleration level redundancy resolu-
tion

While not explicitly mentioned in [4], redundancy resolution may also be per-
formed at the acceleration level in the set-based SRMTP framework. Algorithm
1 remains unchanged, but the predicted task velocity is now obtained from

σ̇ = Jq̇d, (3.2)

where q̇d represents the numerical integration of a less restrictive acceleration
reference q̈d where the set-based tasks in question is inactive, viz.

q̇d(tk) = q̇(tk−1) + ∆tq̈d(tk−1). (3.3)

Furthermore, since set-based tasks are frozen at the boundary, the task space
acceleration reference given by (2.27) reduces to

σ̈r = −Kdσ̇, (3.4)

for set-based tasks.

3.3 Extension to Multidimensional Set-Based Tasks

3.3.1 Introducing the activation matrix

The approach in Section 3.2 is extended to vector tasks σ(t) ∈ Rm by constructing
an activation matrix A ∈ Rp×m, where p ≤ m is the number of active set-based
scalar tasks in σ. Consider a single multidimensional set-based task, σ ∈ Rm,
described by the differential relationship

σ̇ = Jq̇, (3.5)

3.3. EXTENSION TO MULTIDIMENSIONAL SET-BASED TASKS 23

where J ∈ Rm×n and q̇ ∈ Rn. The Jacobian matrix with respect to the
multidimensional set-based task can be expressed as follows

J =


J1

J2
...

Jm


, (3.6)

where Ji ∈ R1×n for i = 1, . . . ,m. Define the activation matrix

A =


nT

1

nT
2
...

nT
p


∈ Rp×m, (3.7)

where nj is a unit vector extracting a specific row of the Jacobian. The activation
matrix extracts the p rows of the Jacobian corresponding to scalar components in
σ with σ̇i /∈ TR,D(σi). Hence, the Jacobian of the active set-based task becomes
J̄ = AJ . The activation matrix is constructed from an m×m identity matrix
by removing row i if σ̇i ∈ TR,D(σi) according to Algorithm 1. Removing all rows
corresponds to zero active set-based tasks at this priority level. In other words,
the activation matrix extracts the rows of the Jacobian matrix corresponding
to the scalar components in σ that would leave the extended tangent cone in
the following time step if not actively accounted for. This scheme enables the
stacking of several scalar set-based tasks on the same priority level, which was
not possible in the framework proposed in [4].

24 CHAPTER 3. SET-BASED KINEMATIC CONTROL

3.3.2 Example: High-priority set-based tasks

Consider a system with one high priority set-based task, σa ∈ Rm1 , and k lower
priority equality task σ1 ∈ Rm2 ,σ2 ∈ Rm3 , . . . ,σk ∈ Rmk+1 ,. When none of
the set-based tasks are active, the corresponding joint velocity references are
computed from

q̇d = J†
1 (σ̇1,d + Λ1σ̃1) + N1J†

2 (σ̇2,d + Λ2σ̃2) (3.8)

+ . . .+ NA
1..(k−1)J

†
k(σ̇k,d + Λkσ̃k). (3.9)

If one or more scalar set-based tasks in σa are active, the joint velocity references
are computed from

q̇d = NaJ†
1 (σ̇1,d + Λ1σ̃1) + NA

a1J†
2 (σ̇2,d + Λ2σ̃2) (3.10)

+ . . .+ NA
a1..(k−1)J

†
k(σ̇k,d + Λkσ̃k), (3.11)

where the null-space projector of the active set-based tasks is given by

Na =
(

I − J̄†
aJ̄a

)
(3.12)

=
(

I − (AaJa)†
AaJa

)
, (3.13)

while the augmented null-space operators for the lower priority tasks are obtained
by stacking the Jacobians of all the higher priority tasks as shown in (2.20) and
(2.21).

3.3.3 Implementation aspects

Algorithm 1 is modified to handle multidimensional inputs as shown in Algorithm
2. Note that Algorithm 2 returns the activation matrix defined in Section 3.3.1
instead of a Boolean variable representing if the scalar set-based task has its
derivative in the extended tangent cone.

3.4. ICAT FRAMEWORK 25

Algorithm 2 Computing the activation matrix A

Input: σ̇, σ, σmin, σmax
Output: A

1: m = size(σ, 1)
2: A = Im×m

3: for i = 1 to m do
4: if σmin,i < σi < σmax,i then
5: Remove row i from A
6: else if σi ≤ σmin,i and σ̇i ≥ 0 then
7: Remove row i from A
8: else if σi ≥ σmax,i and σ̇i ≤ 0 then
9: Remove row i from A

10: end if
11: end for
12: return A ∈ Rp×m

3.4 Inequality Control Objectives, Activations
and Transitions (iCAT) Framework

The iCAT framework was formalized in [5] as a way of of integrating set-based
tasks within a task-priority framework, without incurring practical discontinuities
through the activation and deactivation of tasks. The framework is a kinematic
controller which resolves redundancy at the velocity level. Hence, the output of
the controller is the system reference velocities to be tracked by the dynamic
controller. In order to obtain continuous reference velocities at all times, a novel
regularization technique is combined with a singular value oriented regularization
and a final minimization of the reference velocities which ensures that the
reference velocities are continuous while set-based tasks are being activated and
deactivated.

3.4.1 Activation functions

As opposed to the set-based SRMTP framework, the iCAT framework employs
continuous sigmoidal activation functions to activate and deactivate set-based

26 CHAPTER 3. SET-BASED KINEMATIC CONTROL

tasks. An activation function a(σ) ∈ [0, 1], constructed for a set-based task
σ ∈ R defined by σ ≤ σmax is given by

a(σ) =


1, σ > σmax

s(σ), σmax − β ≤ σ ≤ σmax

0, σi < σmax − β

(3.14)

where s(σ) is any sigmoid function with a continuous behavior from 0 to 1 when
σmax − β ≤ σ ≤ σmax. The value of β creates a transition zone in which the
set-based task is satisfied, but where the activation value is greater than zero.
Hence, set-based tasks are actively accounted for in the kinematic controller
before it reaches the boundary of its valid set. The transition zone is necessary
to prevent chattering around the boundary of the valid set. Note that a similar
activation function can be defined for set-based tasks defined by σ ≥ σmin.
Moreover, for a set-based task defined by σmin ≤ σ ≤ σmax, the sum of the
activation functions for the tasks σmin ≤ σ and σ ≤ σmax can be used as an
activation function if the minimum and maximum value are sufficiently spaced,
i.e. σmin + β < σmax − β. In case of a multidimensional task, the activation
matrix A is defined as a diagonal matrix of activation functions corresponding
to each scalar component in the multidimensional task. As a final remark, the
activation functions for equality tasks are clearly a ≡ 1.

3.4.2 Set-based and equality tasks

A feedback reference rate is assigned to each scalar control objective, viz.

˙̄σ = γ (σ∗ − σ) , (3.15)

representing a control law driving the task variable σ(q) toward a point σ∗. In
case of a set-based task, σ∗ represents an arbitrary point within the subset of the
valid set not contained in the transition zone, otherwise σ∗ represents the desired
value of the equality task. Furthermore, γ > 0 is a positive gain proportional

3.4. ICAT FRAMEWORK 27

to the desired convergence rate for the task variable. Whenever the activation
value of the corresponding task is non-zero, the task is actively accounted for in
the kinematic controller. For set-based tasks, the reference point σ∗ cannot be
inside the transition zone as claimed by the authors in [5], as this would lead to
overconstraining the system since the task would never become inactive, i.e. the
activation function would never obtain a value of zero.

3.4.3 Kinematic control law

The kinematic control law combines singular value oriented regularization with a
novel regularization called task oriented regularization and a final minimization
of the control vector in order to remove any discontinuities. The drawback is
that the projection matrix is no longer orthogonal whenever some activation
values are different from zero or one. For a combination of k set-based and
equality tasks the control law is given by [34]

ρ0 = 0, (3.16)

Q0 = I, (3.17)

then for i = 1, . . . , k

Wi = JiQi−1 (JiQi−1)#,Ai,Qi−1 , (3.18)

Qi = Qi−1

(
I − (JiQi−1)#,Ai,I

JiQi−1

)
, (3.19)

ρi = ρi−1 + Qi−1 (JiQi−1)#,Ai,I
Wi

(˙̄σi − Jiρi−1
)
, (3.20)

where the operator X#,A,Q is defined by

X#,A,Q =
(
XTAX + η (I − Q)T (I − Q) + V TP V

)†
XTAA, (3.21)

28 CHAPTER 3. SET-BASED KINEMATIC CONTROL

with η > 0 and where V is the right orthonormal matrix of the singular value
decomposition of

XTAX + η (I − Q)T (I − Q) . (3.22)

Furthermore, P is a diagonal singular value oriented regularization matrix,
where each diagonal element is a bell-shaped, finite support function of the
corresponding singular value, or zero if the corresponding singular value does
not exist. In this thesis, the diagonal elements are normally distributed with
zero mean and a tunable standard deviation parameter. After the final iteration,
the system velocity reference is given by

q̇d = ρk. (3.23)

Chapter 4

Operational Space Control

4.1 Introduction

Operational space control [21] presents an alternative to controlling a robotic
system in joint space by transforming the dynamic equations of motion into
operational space, where forces and torques are computed directly instead of
relying on a kinematic controller in combination with a dynamic controller.
Redundancy is resolved at the torque level by defining null-space operators
which ensure that torques generated by lower priority tasks do not generate
accelerations or forces affecting the task dynamics of higher priority tasks. This
approach enables the use of any kind of force control scheme and is thus highly
suitable for robotic systems interacting with the environment.

29

30 CHAPTER 4. OPERATIONAL SPACE CONTROL

4.2 Operational Space Dynamics

For a generic task σ1(q) ∈ Rm1 the following relationships hold

σ1 = f1(q), (4.1)

σ̇1 = J1(q)q̇, (4.2)

σ̈1 = J1(q)q̈ + J̇1(q, q̇)q̇. (4.3)

The dynamic equations of motion for a robotic manipulator are given by [35]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (4.4)

=⇒ q̈ = M−1 (τ − C(q, q̇)q̇ − g(q)
)
. (4.5)

Mapping the generalized torque vector into a generalized force vector through
the relation

τ = JTF , (4.6)

inserting (4.5) into (4.3) and omitting dependencies for readability yields

σ̈1 = J1M−1 (JT
1 F1 − Cq̇ − g

)
+ J̇1q̇. (4.7)

Furthermore, by defining the inertia matrix associated with task 1 by

M1 =
(

J1M−1JT
1

)−1
∈ Rm1×m1 , (4.8)

and multiplying both sides of (4.7) by M1, the operational space dynamics are
obtained as

M1σ̈1 + M1

(
J1M−1Cq̇ − J̇1q̇

)
+ M1J1M−1g = F1 (4.9)

M1σ̈1 + c1 + g1 = F1. (4.10)

4.3. GENERALIZED NULL SPACE OPERATOR 31

In case of system redundancy, the generalized torque vector may be decomposed
into a torque corresponding to the primary task and another torque acting in
the null space of the primary task as follows

τ = JT
1 F1 + N2τ0, (4.11)

where τ0 is an arbitrary torque and the null space operator is given by

N2 = I − JT
1 J̄1

T
, (4.12)

with

J̄1 = M−1JT
1 M1 (4.13)

= M−1JT
1

(
J1M−1JT

1

)−1
∈ Rn×m1 . (4.14)

J̄1 is known as the dynamically consistent pseudoinverse of J1, which is a
weighted pseudoinverse of J where the weight is the inverse of the inertia matrix
[21].

4.3 Generalized Null Space Operator

In order to control an arbitrary number of tasks arranged in priority, the null
space operator in (4.12) needs to be extended to an arbitrary number of priority
levels. In [22] a null space operator for the n− 1 previous tasks is defined by

N T
k = I −

k−1∑
i=1

M−1NiJ
T
i

(
JiN

T
i M−1NiJ

T
i

)−1
JiN

T
i (4.15)

Nk = I −
k−1∑
i=1

NiJ
T
i

(
JiN

T
i M−1NiJ

T
i

)−1
JiN

T
i M−1. (4.16)

32 CHAPTER 4. OPERATIONAL SPACE CONTROL

Since the null space operator satisfies the idempotent property N2 = N as well
as N TM−1 = M−1N , (4.16) can be reformulated recursively as

N1 = I, (4.17)

Nk+1 = Nk

(
I − JT

k

(
JkM−1NkJT

k

)−1
JkM−1Nk

)
, (4.18)

Nk+1 =
(

I − NkJT
k

(
JkM−1NkJT

k

)−1
JkM−1

)
Nk. (4.19)

The proof is provided in Appendix A. Moreover, by defining

Mi =
(

JiM
−1NP (i)J

T
i

)−1
, (4.20)

J i = M−1JT
i Mi, (4.21)

the null-space projection equations may be rewritten

N1 = I, (4.22)

Nk+1 = Nk

(
I − JT

k J̄T
k Nk

)
, (4.23)

Nk+1 =
(

I − NkJT
k J̄T

k

)
Nk. (4.24)

This null space operator is dynamically consistent, satisfying JiM
−1Nj = 0, for

all i < j. Moreover, it also satisfies NjJT
i = 0 for all i < j. The proofs of these

properties are shown in Appendix A. These are the same null space operator
properties that were used in [26] in order to show that the priority among tasks
holds in steady state, even if there are modeling errors in the inertia matrix used
to compute the null space operators.

4.4 Consistency of Null Space Operators

The operational space dynamics for a specific task can be obtained by pre-
multiplying (4.4) by the dynamically consistent pseudoinverse of the Jacobian

4.4. CONSISTENCY OF NULL SPACE OPERATORS 33

corresponding to the task in question. Therefore, a sufficient condition to ensure
that forces generated by lower priority tasks have no effect on higher priority
tasks in any static equilibrium [25]

J̄T
i Nj = 0, (4.25)

for i < j in any steady state with q̇ = q̈ = 0. A null-space operator satisfying
this property is known as a statically consistent null-space operator.

A stronger condition is that of dynamic consistency, which entails that lower
priority tasks cannot generate acceleration effects in the operational spaces of
higher priority tasks. A null space operator is said to be dynamically consistent
if it satisfies

JiM
−1Nj = 0, (4.26)

for all i < j. For the null space operator defined in (4.12) this property is easily
verified

J1M−1N2 = J1M−1
(

I − JT
1 J̄T

1

)
(4.27)

= J1M−1 − J1M−1JT
1 M1J1M−1 (4.28)

= J1M−1 − J1M−1JT
1

(
J1M−1JT

1

)−1
J1M−1 (4.29)

= 0. (4.30)

Another desirable property of this particular null space operator is that

N2JT
1 = (I − JT

1 J̄T
1)JT

1 (4.31)

= JT
1 − JT

1

(
J1M−1JT

1

)−1
J1M−1JT

1 (4.32)

= 0, (4.33)

holds for any values used to compute inertia matrix, as long as it is positive

34 CHAPTER 4. OPERATIONAL SPACE CONTROL

definite. This property can be utilized in order to prove static consistency of
the null space operator even if the inertia matrix used to compute it contains
modeling errors [26]. This entails that tasks at different priority levels are not
coupled in steady-state, since the lower priority task does not generate interfering
forces in the operational space of the higher priority task. Moreover, all steady
state task errors of the higher priority task are therefore to be attributed to
modeling errors in the gravitational term.

As remarked in Section 4.3, the generalized null space operator satisfies the
same properties as (4.12). Therefore, it is conjectured that the results in [26]
should also hold for tasks at any priority level in a control scheme with an
arbitrary number of tasks employing the generalized null space operator from
Section 4.3.

4.5 Extension to n Tasks

There are different approaches in the literature in order to extend the control
law defined in (4.11) to the general case of n tasks arranged in priority. In this
section different control approaches are considered, mainly differing in how the
inertia matrix Mi associated with each task is defined. How the inertia matrix
is defined has implications for the task dynamics of task k, and by a clever
choice of Mi the resulting task dynamics is linear in task k. Hence, if tasks are
compatible, interference from higher priority tasks can compensated for by lower
priority tasks.

4.5.1 Null space operator within the task inertia matrix

By using the dynamically consistent null space operator defined above, a gener-
alization of the operational space framework to n tasks was proposed in [22]. A
similar approach is presented here, where the main difference is that Coriolis,
centrifugal and gravitational terms are compensated in joint space and not in
task space. This is a more intuitive approach which reduces the dependability

4.5. EXTENSION TO N TASKS 35

on the inertia matrix. Let the control input be given by

τ = τ1 + N2τ2 + . . .+ Nnτn + Cq̇ + g, (4.34)

where the task specific torques are given by

τi = JT
i fi (4.35)

= JT
i Miai, (4.36)

and the inertia matrix associated with task i is given by

Mi =
(

JiM
−1NiJ

T
i

)−1
. (4.37)

The equations of motion then reduces to

Mq̈ =
n∑

i=1
Niτi. (4.38)

In order to obtain the task dynamics of task k the equations of motion in joint
space are pre-multiplied by JkM−1, viz.

JkM−1Mq̈ = JkM−1
n∑

i=1
Niτi (4.39)

σ̈k − J̇kq̇ = JkM−1τ1 + . . .+ JkM−1Nkτk (4.40)

σ̈k − J̇kq̇ = JkM−1JT
1 M1a1 + . . .+ JkM−1NkJT

k Mk︸ ︷︷ ︸
I

ak (4.41)

σ̈k − J̇kq̇ = JkM−1 (JT
1 M1a1 + . . .+ Nk−1JT

k−1Mk−1ak−1
)

+ ak, (4.42)

where the property JkM−1Nj = 0 for k < j has been employed in the first
step.

36 CHAPTER 4. OPERATIONAL SPACE CONTROL

4.5.1.1 Compensating for coupling effects from higher priority tasks

In [22] the task acceleration reference is embedded with compensation terms for
higher priority tasks in order to fully linearize the task dynamics of every task,
viz.

ai = σ̈d,i + Kd,i
˙̃σn + Kp,iσ̃i − J̇iq̇ − JiM

−1
i−1∑
j=1

NjJT
j Mjaj , (4.43)

where σ̃ = σd − σ represents the task error and Kd,i,Kp,i are derivative and
proportional task gains, respectively. Inserting (4.43) into (4.42) yields the linear
closed loop dynamics

¨̃σk + Kd,k
˙̃σk + Kp,kσ̃k = 0, (4.44)

which holds assuming Mi has full rank for all i = 1, . . . , k. Hence, if all tasks are
compatible and kinematic singularities are avoided, the task dynamics of every
task is GES. However, independent sets of task parameters do not necessarily
represent a set of generalized coordinates for the robotic system. Therefore, the
dynamic behavior of the entire robotic system may not be fully represented by
the dynamic models in task coordinates, which occurs whenever the combination
of all tasks does not consume every DOF in the system. This may lead to the
problem of internal instability as discussed in [36], however, a final task at the
lowest priority level regulating the joint velocities to zero can be defined. The
addition of this task to the hierarchy ensures that the entire system is stable
since all DOFs of the robotic system are accounted for in the control law.

4.5.1.2 Omitting compensation terms

The task acceleration reference is now given by

ai = σ̈d,i + Kd,i
˙̃σn + Kp,iσ̃i − J̇iq̇, (4.45)

4.5. EXTENSION TO N TASKS 37

inserted into (4.42) yields the task dynamics

¨̃σk + Kd,k
˙̃σk + Kp,kσ̃k = JkM−1 (JT

1 M1a1+

. . .+ Nk−1JT
k−1Mk−1ak−1

)
,

(4.46)

which contains the interference terms from higher priority tasks on the right side
of the equation.

4.5.1.3 Controllability of lower priority objectives

If M−1
i defined by (4.37) suffers a loss of rank, the task at priority level i is only

partially controllable. The inertia matrix associated with objective i has the
following singular value decomposition [37]

M−1
i = JiM

−1NP (i)J
T =

[
U1 U2

]Σ

0

V T
1

V T
2

 , (4.47)

where Σ corresponds to the non-zero singular values of M−1
i and the columns of

U1 and V1 contain the left and right singular vectors of M−1
i corresponding to

non-zero singular values. Therefore, the inverse, i.e. Mi may be computed from

Mi = V1Σ−1U T
1 . (4.48)

4.5.2 Omitting the null space operator within the task
specific inertia

Define the inertia matrix associated with task i by

Mi =
(

JiM
−1JT

i

)−1
. (4.49)

Furthermore, let the control input be given by (4.34) where

τi = JT
i Miai, (4.50)

38 CHAPTER 4. OPERATIONAL SPACE CONTROL

the task space dynamics of task k is then given by

σ̈k − J̇k = JkM−1JT
1 M1a1 + . . .+ JkM−1NkJT

k Mkak. (4.51)

Since JkM−1NkJT
k Mk ̸= I for k ̸= 1 when the null space operator of the

k − 1 previous tasks is not included within the task specific inertia matrix of
task k, it is not possible to obtain sufficiently linearized dynamics allowing for
compensation of interfering accelerations from higher priority tasks. Hence, of
the two task acceleration references considered in Section 4.5.1 only (4.45) is
feasible. The task dynamics of the highest priority task is then given by

¨̃σ1 + Kd,1 ˙̃σ1 + Kp,1σ̃1 = 0, (4.52)

since N1 = I and J1M−1JT
1 M1 = I.

4.6 Set-Based Operational Space Control

The control laws presented in Section 4.5 are essentially operational space inverse
dynamics control laws, where torques are projected through the null space of the
Jacobians of higher priority tasks. Task velocities can be obtained by computing
the joint accelerations according to

q̈ = M−1 (τ − Cq̇ − g) , (4.53)

followed by integration of q̈ and pre-multiplication by the task Jacobian in
question as shown in Section 3.2.1. Algorithm 2 can then be employed in order
to determine when to activate and deactivate set-based tasks.

It is apparent that the set-based operational space approach relies on accurate
knowledge of the dynamic parameters in order to predict joint accelerations that
are subsequently integrated in order to predict task velocities. This is different
to set-based acceleration level kinematic control, where acceleration references
are generated without any consideration of the dynamics and assumed to be

4.6. SET-BASED OPERATIONAL SPACE CONTROL 39

tracked perfectly. If there are uncertainties in the dynamic controller whose goal
is to satisfy q̈d = q̈, there are no ways of incorporating this information into the
kinematic controller. On the other hand, the dynamic model is used to predict
task velocities for the operational space approach, which permits estimates of
dynamic parameters to be used. Hence, set-based operational space control
appears more robust to modeling inaccuracies resulting in imperfect control.

40 CHAPTER 4. OPERATIONAL SPACE CONTROL

Chapter 5

Modeling of AIAUVs

This chapter describes the dynamic and kinematic modeling of AIAUVs presented
in [38]. The notation has so far been consistent with that of a general robotic
system since no particular robotic application has been considered. However,
the rest of this thesis concerns AIAUV control and some notation will therefore
be slightly different.

5.1 Reference Frames for Navigation

Since AIAUVs in work mode operate in local areas, approximately constant
longitude and latitude can be assumed. Moreover, the Earth’s rotation is
neglected and a local Earth-fixed North-East-Down tangent frame denoted {n}
is used for navigation. This frame is assumed to be inertial such that Newton’s
laws still apply. The origin of the NED frame is fixed, the x-axis points North,
the y-axis points East while the z-axis points downwards normal to the Earth’s
surface. Note that in the navigation literature this frame is often referred to as
NED assumed to be inertial or a non-rotating tangent frame [39].

The body-fixed reference frame {b} is rigidly attached to the AIAUV and
located at the base, the x-axis points forward, z-axis points upwards and the

41

42 CHAPTER 5. MODELING OF AIAUVS

y-axis points sideways to complete the right-handed coordinate system. The
reference frame of the end-effector {e} is rigidly attached to the front of the
AIAUV, where the x-axis points forward, z-axis points upwards and the y-axis
points sideways to complete the right-handed coordinate system.

5.2 Kinematic Modeling of AIAUVs

For an AIAUV the system configuration is defined as ξ = [ηT,θT]T ∈ R6+n,
where θ ∈ Rn represents the joint angles and

η =

pn
nb

Θnb

 ∈ R6, (5.1)

with pn
nb = [N,E,D]T ∈ R3 representing the position of the base frame in

the aforementioned NED frame, while the orientation between {n} and {b} is
represented by the Euler angles Θb

nb = [ϕb, θb, ψb]T ∈ R3. The components of
Θnb are denoted roll, pitch and yaw, respectively. Alternatively, the orientation
can be represented by unit quaternions q = [η, ϵT]T ∈ R4, ∥q∥ = 1, where η ∈ R
is the real part of the quaternion, while ϵ ∈ R3 corresponds to the vector part.
By using a unit quaternion representation, the system configuration is defined
as ξ =

[
ηT

q ,θ
T
]T

∈ R7+n where

ηq =


pn

nb

η

ϵ

 ∈ R7. (5.2)

5.2. KINEMATIC MODELING OF AIAUVS 43

5.2.1 Differential kinematics

The body-fixed velocity of the AIAUV is given by

ζ =

V b
nb

θ̇

 ∈ R6+n, V b
nb =

vb
nb

ωb
nb

 ∈ R6, (5.3)

where vb
nb = [u, v, w]T ∈ R3 and ωb

nb = [p, q, r]T ∈ R3 are the linear and angular
velocities of the body-fixed frame, respectively. θ̇ ∈ Rn represents the joint
velocities.

The relation between the body-fixed velocities and the NED-frame velocities
can be expressed by

ξ̇ = Jξ(Θnb)ζ, (5.4)

where

Jξ(Θnb) =


Rnb(Θnb) 03×3 03×n

03×3 Tnb(Θnb) 03×n

0n×3 0n×3 In

 . (5.5)

The rotation matrix Rnb(Θnb) = Rz(ψb)Ry(θb)Rx(ϕb) transforms the linear
velocity from the body-frame to the NED-frame and is computed according
to the zyx convention, which is common practice in guidance, navigation and
control applications [40]. The angular velocity transformation matrix mapping
the body-fixed angular velocities to the Euler angle derivatives is given by

T (Θ) =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sin ϕ
cos θ

cos ϕ
cos θ

 . (5.6)

44 CHAPTER 5. MODELING OF AIAUVS

5.2.2 Quaternions and Euler angles

The Euler angle attitude parametrization is intuitive and only requires three
parameters. However, it suffers from a singularity corresponding to θ = ±90◦

as observed from (5.6). This singularity is not a problem for surface vehicles,
but for an AIAUV it can become problematic if the AIAUV is working close to
the singularities. This is why a four-parameter unit quaternion representation is
used in all of the simulations conducted as part of this thesis.

By employing unit quaternions, the relation between the body-fixed velocities
and the NED-frame velocities can be expressed by

ξ̇ = Jξ(q)ζ, (5.7)

where

Jξ(q) =


Rnb(q) 03×3 03×n

03×3 Tq(q) 03×n

0n×3 0n×3 In

 . (5.8)

The rotation matrix is given by

Rnb(q) = I3×3 + 2ηϵ× + 2 (ϵ×)2
, (5.9)

where ϵ× ∈ so(3) represents the skew-symmetric form of ϵ. The transformation
matrix mapping the angular velocity decomposed in the base-frame to the
quaternion time derivative is given by

Tq(q) = 1
2


−ϵ1 −ϵ2 −ϵ3
η −ϵ3 ϵ2

ϵ3 η −ϵ1
−ϵ2 ϵ1 η

 . (5.10)

5.2. KINEMATIC MODELING OF AIAUVS 45

Furthermore, define the transformation matrix from angular velocity decomposed
in the base-frame to the vector part of the quaternion time derivative as

Tϵ(q) = 1
2


η −ϵ3 ϵ2

ϵ3 η −ϵ1
−ϵ2 ϵ1 η

 . (5.11)

5.2.3 Forward kinematics

An AIAUV consists of n + 1 links interconnected by n joints, the links are
labeled 1, . . . , (n + 1), where link 1 is the tail, or base link and link n + 1 is
the head. All joints are single DOF joints, and the AIAUV is assumed to only
consist of revolute joints. Joints with multiple DOFs are therefore modeled as
two consecutive joints with an additional link between them.

For each link a homogenous transformation matrix is defined

Hi =

Rni pni

01×3 1

 ∈ SE(3), (5.12)

for i = 1, . . . , n+ 1 which uniquely specifies the pose of link i in the NED frame
defined in Section 5.1 in this thesis. Furthermore, let Ai(θi) ∈ SE(3), i = 1, . . . n
represent the mapping from the coordinate frame defined by Hi to the coordinate
frame defined by Hi+1, where θi is the joint variable of joint i. Given the
transformation matrix H, describing the position pn

nb and orientation Rnb of
the base frame in the NED frame, the position and orientation of link i+ 1 is
then given by the recursive equations

H1 = H (5.13)

Hi+1 = HiAi(θi) (5.14)

= HA1(θ1)A2(θ2) · · · Ai(θi). (5.15)

46 CHAPTER 5. MODELING OF AIAUVS

The position and orientation of link n+ 1, or the head frame can then be written

Hn+1 = HA1,n(θ), (5.16)

where θ = [θ1, θ2, . . . , θn]T ∈ Rn is the vector of joint parameters and

Ai,j(θ) =

Ai(θi)Ai+1(θi+1) · · · Aj(θj), if i ≤ j

0, if i > j
. (5.17)

The instantaneous velocity of a rigid body in terms of its linear and angular
components will from now on be described by twists, which are infinitesimal
versions of a screw motion. Background material can be found in [41]. Let
ai =

[
βT

i ,λ
T
i

]T ∈ R6 represent the twist coordinates of joint i, the corresponding
twist is given by

a∧ =

β

λ

∧

=

λ× β

0 0

 ∈ R4×4, (5.18)

where the wedge operator represents the mapping ∧ : R6 → se(3) with se(3)
defined as

se(3) =
{

(β,λ×) : β ∈ R3,λ× ∈ so(3)
}
. (5.19)

The 4 × 4 matrix a∧ in (5.18) can be interpreted as a generalization of the
skew-symmetric matrix ω× ∈ so(3). The rigid motion associated with rotating
and translating along the axis of the twist can be represented by [41]

Ai(θi) = Ai(0)ea∧
i θi , (5.20)

5.2. KINEMATIC MODELING OF AIAUVS 47

where the exponential map ea∧θ : se(3) → SE(3) is given by

ea∧θi =

eλ×θ
(
I − eλ×θ

)
(λ×β) + λλTβθ

01×3 1

 , ω ̸= 0, (5.21)

eλ×θ = I + λ× sin θ + (λ×)2 (1 − cos θ) , ∥λ∥ = 1, (5.22)

where eλ×θ : so(3) → SO(3). Assuming that the AIAUV only consists of revolute
joints, the twist of each joint is given by

ai =


0

0

0

λi

 , (5.23)

where λi ∈ R3 is a unit vector defining the axis of rotation of joint i. Moreover,
under the additional assumption that the coordinate frame of link i+1 is attached
to joint i with its x-axis parallel to the link direction, (5.20) can be written

Ai(θi) = Ai(0)

e(λi)×θi 0

01×3 1

 , (5.24)

with

Ai(0) =

 I3 lie1

01×3 1

 , (5.25)

where li is the length of link i and e1 = [1, 0, 0]T.
The head frame defined by Hn+1 has its origin at head joint, which is at

the back of the head link. The transformation Ae from the head frame to the

48 CHAPTER 5. MODELING OF AIAUVS

end-effector frame is given by a pure translation in the x-direction

Ae =

 I3 ln+1e1

01×3 1

 , (5.26)

such that the position pn
e and orientation Rne of the end-effector frame relative

to the NED frame is found by the transformation

He =

Rne pn
e

01×3 1

 = Hn+1Ae. (5.27)

5.2.4 Jacobians

The body twist of the base is defined as(
V b

nb

)∧
= H−1Ḣ, (5.28)

where H is the homogenous transformation matrix from the base frame to the
NED frame. Hence, the body twist of link i is given by(

V i
ni

)∧
= H−1

i Ḣi, (5.29)

where Hi is given by (5.15), (5.17) and (5.20). Since the joint twist given by
(5.20) is constant, taking the time derivative of (5.20) yields

Ȧi(θi) = Ai(0)ea∧
i θia∧

i θ̇i, (5.30)

which yields

A−1
i Ȧi = e−a∧

i θiA−1
i (0)Ai(0)ea∧

i θia∧
i θi (5.31)

= a∧
i θi. (5.32)

5.2. KINEMATIC MODELING OF AIAUVS 49

The body twist of link i is then given by(
V i

ni

)∧
= H−1

i Ḣi

= A−1
1,i−1H−1ḢA1,i−1

+ A−1
2,i−1a∧

1 A2,i−1θ̇i + A−1
3,i−1a∧

2 A3,i−1θ̇2 + . . .

+ A−1
i−1,i−1a∧

i−2Ai−1,i−1θ̇i−2 + a∧
i−1θ̇i−1.

(5.33)

In order to proceed the adjoint operator and its inverse has to be defined. The
adjoint operator, Ad(Ai) : R6 → R6 maps a velocity twist in frame i + 1 to
frame i, representing the adjoint transformation associated with the homogenous
transformation matrix Ai and is defined by

(
Ad(H)V

)∧ = HV ∧H−1, (5.34)

and its inverse, Ad−1(H) : R6 → R6 is defined by(
Ad−1(H)V

)∧
= H−1V ∧H. (5.35)

Both operators have matrix representations given by

Ad(H) =

 R p×R

01×3 R

 ∈ R6×6, (5.36)

Ad−1(H) =

 RT −RTp×

01×3 RT

 ∈ R6×6. (5.37)

Therefore, (5.33) can be rewritten in body velocity twist coordinates as

V i
ni = Ad−1(A1,i−1)V b

nb + ai−1θ̇i−1 +
i−2∑
j=1

Ad−1(Aj+1,i)aj θ̇j . (5.38)

50 CHAPTER 5. MODELING OF AIAUVS

The body velocity twist coordinates of the base frame and the joint angle
velocities are collected in the vector ζ =

[
V b

nb, θ̇
]T

∈ R6+n. Define the Jacobian
matrices Ji ∈ R6×(6+n) by

V i
ni = Jiζ, (5.39)

which maps the velocity twist coordinates V b
nb and joint velocities θ̇ to link

velocity twist coordinates V i
ni decomposed in their own frame. From inspection

of (5.38) the Jacobians are given by

J1 =
[
I6 06×n

]
, (5.40)

Ji+1 =
[
Ad−1(A1,i) Ad−1(A2,i)a1 . . . ai 06×(n−i)

]
(5.41)

= Ad−1(Ai)Ji +
[
06×(5+i) ai 06×(n−i)

]
. (5.42)

Moreover, the time derivatives of the Jacobians are needed for acceleration and
force/torque level control and is found recursively by differentiation of (5.40)
and (5.42) as [38]

J̇1 = 06×(6+n), (5.43)

J̇i+1 = − ad(ai)Ji+1θ̇i + Ad−1(Ai)J̇i. (5.44)

Since the transformation matrix Ae from the head frame to the end-effector
frame is constant, the body manipulator Jacobian of the end-effector is therefore
given by

Je = Ad−1 (Ae) Jn+1, (5.45)

where Jn+1 is the Jacobian of the head frame. The time derivative of the
end-effector Jacobian is

J̇e = Ad−1 (Ae) J̇n+1. (5.46)

5.3. EQUATIONS OF MOTION 51

5.3 Equations of Motion

The equations of motion in the base frame are given by [38]

ξ̇ = Jξ(q)ζ (5.47)

M(θ)ζ̇ + C(θ, ζ)ζ + D(θ, ζ)ζ + g(ξ) = τ , (5.48)

where the control inputs u are mapped to commanded forces and moments τ

through the actuator configuration matrix B(θ) viz.

τ = B(θ)u, (5.49)

where u =
[
ut,uj

]T consists of the thruster inputs ut ∈ Rm and joint torque
inputs uj ∈ Rn. The actuator configuration matrix is given by

B(θ) =
[
J1(θ)TB1 J2(θ)TB2 · · · Jn(θ)TBn Bjoint

]
, (5.50)

where the link thrust configuration matrices Bi are constant and expressed as

Bi =

 βt,i,1 βt,i,2 · · · βt,i,m

rt,i,1 × βt,i,1 rt,i,2 × βt,i,2 · · · rt,i,m × βt,i,m

 , (5.51)

where βt,i,j and rt,i,j are the thrust direction and point of attack of the jth
thruster of link i expressed in the frame of link i. The matrix Bjoint is given by

Bjoint =

06×m

In

 . (5.52)

Note that the thruster inputs also generate torques affecting the joints, while
joint torque inputs only affect the joints directly.

52 CHAPTER 5. MODELING OF AIAUVS

The inertia matrix M(θ) is given by

M(θ) =
n∑

i=1
JT

i (θ)MiJi(θ), (5.53)

where Mi is the inertia matrix of link i containing the rigid body mass and
inertia matrix and the added mass matrix

Mi = MR,i + MA,i, (5.54)

where

MR,i =

 miI3 mi

(
rg,i

)T

×

mi

(
rg,i

)
× IR,i

 , (5.55)

and IR,i is the rigid body inertia matrix of link i. By assuming cylindrical links
with a common radius r and link lengths li the added mass matrix for link i is

MA,i = ρπr2liCa



αi 0 0 0 0 0

0 1 0 0 0 1
2 li

0 0 1 0 − 1
2 li 0

0 0 0 0 0 0

0 0 − 1
2 li 0 1

3 l
2
i 0

0 1
2 li 0 0 0 1

3 l
2
i


, (5.56)

where αi is a parameter that permits added mass in surge, ρ is the density of
water and Ca is the added mass coefficient.

5.3. EQUATIONS OF MOTION 53

The Coriolis and centripetal matrix C(θ, ζ) is given by

C(θ, ζ) =
n∑

i=1

(
Ji(θ)TMiJ̇i(θ, θ̇) − Ji(θ)TWi(θ, ζ)Ji(θ)

)
, (5.57)

Wi(θ, ζ) =

 03×3

({
MiV

i
ni

}
v

)
×({

MiV
i

ni

}
v

)
×

({
MiV

i
ni

}
ω

)
×

 , (5.58)

where
{

MiV
i

ni

}
v

∈ R3 and
{

MiV
i

ni

}
ω

∈ R3 are the first three and final three
entries of MiV

i
ni, respectively.

Hydrodynamic damping is modeled by D(θ, ζ), which is given by

D(θ, ζ) =
n∑

i=1
Ji(θ)TDi(θ, ζ)Ji(θ), (5.59)

where Di(θ, ζ) is the hydrodynamic damping matrix of link i, such that DiV
i

ni

yields the hydrodynamic forces and moments on link i.
The generalized hydrostatic force g(ξ) is given as

g(ξ) =
n∑

i=1
Ji(θ)Tgi(ξ), (5.60)

where gi(ξ) are the hydrostatic forces and moments on link i

gi(ξ) = GiR
T
niγ0, (5.61)

where γ0 is the constant direction of gravity in the NED frame, and Rni is
the rotation matrix from the NED frame to the frame of link i. The matrices
Gi ∈ R6×6 are constant and given as

Gi =

 (ρvig −mig) I3

ρvig
(
rb,i

)
× −mig

(
rg,i

)
×

 , (5.62)

54 CHAPTER 5. MODELING OF AIAUVS

where ρ is the density of water, vi is the effective volume of link i, g is the
gravitational acceleration constant, mi is the mass of link i and rb,i and rg,i is
the location of the center of buoyancy and center of gravity of link i expressed
in the coordinate frame of link i, respectively.

Chapter 6

Set-Based Control of
AIAUVs

This chapter begins by presenting the general control structure for an AIAUV,
followed by the AIAUV model used for simulations. Then, control allocation is
discussed, where the problem of rank deficiency in the actuator configuration
matrix is highlighted. In Section 6.4, the set-based and equality tasks to be
controlled by the task priority frameworks are defined, along with their corre-
sponding Jacobians as well as analytic expressions for the time derivatives of the
Jacobians. Finally, the task priority control frameworks described in Chapter
2-4 are presented for an AIAUV application executing the set-based and equality
tasks defined in Section 6.4.

6.1 Introduction

A general framework for control of k set-based and equality tasks is presented
in Figure 6.1. The controller takes as input k desired task values, velocities
and accelerations as well as boundary values in case of set-based tasks. The

55

56 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

controller generates commanded control forces and torques τ , which serve as the
input to the control allocation algorithm. The control allocation block solves a
model-based optimization problem in order to distribute the generalized control
forces among the actuators in terms of the control inputs u. It should be noted
that for velocity-level redundancy resolution in kinematic control schemes, task
accelerations cannot be utilized in the controller. This is an inherent drawback
and leads to lower tracking performance or the need for high task space gains
[42]. The controller block implements the different control schemes discussed in
the previous chapters, and therefore differs for each approach, while the control
allocation block remains the same in every control scheme.

Controller Control
Allocation AIAUV

τ u
σd1

...
σdk

ξ, ζ

Figure 6.1: General task control framework for an AIAUV application, the
desired operational space goal is fed to a controller which computes the required
joint torques.

6.2 AIAUV Model

The AIAUV simulation model is identical to the one in [43]. The AIAUV consists
of 5 links with 4 cardan joints connecting them, which are joints that can rotate
about the y and z-axis they are attached to. The cardan joints are modeled as
consecutive 1-DOF joints, thereby introducing short links separating two joints
actuated about different axes, creating four new links. The total number of
joints and links are therefore 8 and 9, respectively. Odd-numbered joints rotate
about the z-axis, and even-numbered joints rotate about the y-axis.

The AIAUV has 7 thrusters in total, two of which are positioned on the third
link, pointing in the z and y directions of the coordinate frame of link 3. Three

6.3. CONTROL ALLOCATION 57

thrusters are positioned on the fifth link, pointing in the x, y and z directions in
the coordinate frame of link 5. The last two thrusters are located at the seventh
link, pointing in the y and z directions in the coordinate frame of link 7.

6.3 Control Allocation

Control allocation is the problem of distributing the commanded control forces
and torques τ ∈ Rn computed by the controller block in Figure 6.1 to the
actuators in terms of control inputs u ∈ Rp [40]. The design of a control
allocation algorithm is based on the relationship between τ and u defined in
(5.49) as

τ = B(θ)u, (6.1)

where B(θ) is known as the actuator configuration matrix which depends on
the joint configuration of the AIAUV. AIAUVs are overactuated since they are
endowed with more actuators than DOFs. Specifically, for the AIAUV model
used in the simulations in this thesis τ ∈ R14 and u ∈ R15. Therefore, the
relationship in (6.1) cannot be directly inverted in order to obtain the control
inputs u. Moreover, the problem now admits infinite solutions, which entails
that some kind of priority should be involved such that the computation of
the control inputs u can be represented as an optimization problem [44]. By
neglecting any saturation or rate constraints on u, the control allocation problem
can be represented by the minimization problem

min
u∈Rp

1
2
(
u − up

)T
W
(
u − up

)
(6.2)

subject to: τ = B(θ)u, (6.3)

where W ∈ Rp×p is a positive definite weight matrix, while up is the preferred
value of u. When B has full row rank, the problem has an explicit solution

58 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

given by

u =
(

I − B†
W B

)
up + B†

W τc, (6.4)

with

B†
W = W −1BT

(
BW −1BT

)−1
, (6.5)

which is a generalized weighted least squares inverse of B. In the case of up = 0
and W = I the solution reduces to the right Moore-Penrose pseudoinverse viz.

u = B†τ = BT
(
BBT

)−1
τ . (6.6)

The problem of rank deficiency of B(θ) was pointed out in [1], and implies that
no force or moment can be generated in certain directions in the vector space
Rm belonging to τ . Regularization methods can be employed to overcome this
problem, and a method known as the damped least-squares pseudoinverse was
suggested in [1]

B†
W ,λ = W −1BT

(
BW −1BT + λI

)−1
, (6.7)

where λ > 0 is a small regularization parameter ensuring that the matrix to be
inverted always has full rank. However, the introduction of the regularization
parameter inevitably leads to a loss of performance and an increased tracking
error [45]. The tracking error can be improved by varying λ dynamically, for
instance by only adding the damping parameter to the smallest singular values
[9]. This approach introduces the problem of tuning the damping coefficient,
while still not eliminating the problem of tracking errors entirely. Alternatively,
a singular value decomposition of the matrix

BW −1BT = UΣV T, (6.8)

6.3. CONTROL ALLOCATION 59

can be employed, where Σ is a rectangular diagonal matrix containing the
singular values σi. The SVD characterizes the directions where no generalized
force can be produced [37]. This leads to the following approximate inverse

B†
W ,SVD = W −1BTV Σ∗

δU T, (6.9)

where Σ∗
δ is formed by replacing every singular value on the diagonal satisfying

σi ≥ δ by its reciprocal, setting the remaining singular values to zero and
transposing the resulting matrix.

Within the aforementioned approach to unconstrained control allocation no
effort has been made to satisfy any constraints on the inputs u. A naïve and
straightforward solution is to saturate the obtained control inputs u. However,
this implies that the allocated control force is different from the commanded
force whenever any of the inputs in u are in saturation. Hence, the allocated
force cannot be guaranteed to equal the required force even if exact allocation is
feasible under the constraints. Moreover, no attempt is made to minimize the
error between allocated and commanded force whenever exact allocation is not
possible. Instead, more advanced constrained control allocation methods such as
solving linear programs [44] could be employed in order to guarantee that the
constraints on the inputs u are satisfied, and that the error between allocated
and commanded force is minimized in some sense whenever exact allocation is
not possible.

The drawback of singularity avoidance within a control allocation algorithm
is that no effort is made to prevent the robotic system from obtaining singular
configurations in the first place. As an alternative approach, singularity avoidance
may be introduced as a high priority set-based task in a kinematic or operational
space controller, thereby preventing singular configurations while other control
objectives may be simultaneously accomplished by exploiting the redundancy of
the system.

60 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

6.4 Set-Based and Equality Tasks for AIAUV
Control

Several different tasks are of interest for an AIAUV operating in inspection mode.
The proposed control schemes are tested with three set-based tasks and three
equality tasks.

6.4.1 End-effector collision avoidance

To avoid a collision between the end-effector and some obstacle, the scalar
distance measure between them is used as a set-based task

σa1 =
√(

pn
obs − pn

ne

)T (
pn

obs − pn
ne

)
∈ R, (6.10)

σ̇a1 = Ja1ζ, (6.11)

σ̈a1 = Ja1 ζ̇ + J̇a1ζ, (6.12)

where the task Jacobian Ja1 ∈ R1×(6+n) is given by

Ja1 =
−
(
pn

obs − pn
ne

)T

σa1

[
Rne(q) 03×3

]
Jeζ, (6.13)

where the end-effector Jacobian Je ∈ R6×(6+n) is given by the recursive equations
(5.40), (5.42) and (5.45). To derive the time derivative of the task Jacobian
consider the term

x = −(po − p)
σa1

, (6.14)

6.4. SET-BASED AND EQUALITY TASKS FOR AIAUV CONTROL 61

the time derivative is given by

dx

dt = ∂x

∂p
ṗ (6.15)

=
Iσa1 + (po − p) ∂σa1

∂p

σ2
a1

v (6.16)

=
(

I

σa1

− (po − p) (po − p)T

σ3
a1

)
v, (6.17)

transposing both sides yields

dxT

dt = vT

(
I

σa1

− (po − p) (po − p)T

σ3
a1

)T

(6.18)

= vT

(
I

σa1

− (po − p) (po − p)T

σ3
a1

)
. (6.19)

Hence, the time derivative of the task Jacobian is given by

J̇a1 = (vn
ne)T

(
I

σa1

−
(
pn

obs − pn
ne

) (
pn

obs − pn
ne

)T

σ3
a1

)[
Rne 03×3

]
Je (6.20)

+
−
(
pn

obs − pn
ne

)T

σa1

([
Rne (ωe

ne)× 03×3

]
Je +

[
Rne 03×3

]
J̇e

)
, (6.21)

where the time derivative of the end-effector Jacobian J̇e (θ) ∈ R6×14 is given
by the recursive equations (5.43), (5.44) and (5.46).

62 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

6.4.2 Joint Limit Avoidance

To avoid exceeding mechanical joint limits a set-based joint limit avoidance task
is defined by

σa2 = θ, (6.22)

σ̇a2 = Ja2ζ, (6.23)

σ̈a2 = Ja2 ζ̇, (6.24)

where the task Jacobian is constant and given by

Ja2 =
[
08×n In×n

]
. (6.25)

6.4.3 Actuator singularity avoidance

As discussed in Section 6.3, it is desirable to avoid configurations where the
actuator configuration matrix is singular. Inspired by the manipulability index
[35], the actuation index task is defined by

σa3 = det
(
B(θ)B(θ)T

)
, (6.26)

σ̇a3 = Ja3ζ, (6.27)

σ̈a3 = Ja3 ζ̇ + J̇a3ζ, (6.28)

where B(θ) is the actuator configuration matrix and the task Jacobian is given
by

Ja3 =
[
01×6

∂σa

∂θ1
∂σa

∂θ2
∂σa

∂θ3
· · · ∂σa

∂θn

]
, (6.29)

and the actuation index derivative is given by [46]

∂σ

∂θi
= 2σTr

(
∂B

∂θi
B†
)
, (6.30)

6.4. SET-BASED AND EQUALITY TASKS FOR AIAUV CONTROL 63

where B† is the right Moore-Penrose pseudoinverse of B. Furthermore, the task
Jacobian derivative is given by [46]

J̇a3 =
[

∂
∂θ (01×6) θ̇ ∂

∂θ

(
∂σ
∂θ1

)
θ̇ ∂

∂θ

(
∂σ
∂θ2

)
θ̇ · · · ∂

∂θ

(
∂σ
∂θn

)
θ̇

]
(6.31a)

=



06×1

∂2σ
∂θ2

1
θ̇1 + ∂2σ

∂θ1∂θ2
θ̇2 + ∂2σ

∂θ1∂θ3
θ̇3 + · · · + ∂2σ

∂θ1∂θn
θ̇n

∂2σ
∂θ2∂θ1

θ̇1 + ∂2σ
∂θ2

2
θ̇2 + ∂2σ

∂θ2∂θ3
θ̇3 + · · · + ∂2σ

∂θ2∂θn
θ̇n

∂2σ
∂θ3∂θ1

θ̇1 + ∂2σ
∂θ3∂θ2

θ̇2 + ∂2σ
∂θ2

3
θ̇3 + · · · + ∂2σ

∂θ3∂θn
θ̇n

...
∂2σ

∂θn∂θ1
θ̇1 + ∂2σ

∂θn∂θ2
θ̇2 + ∂2σ

∂θn∂θ3
θ̇3 + · · · + ∂2σ

∂θ2
n
θ̇n



T

(6.31b)

=



06×1

θ̇1

θ̇2

θ̇3
...

θ̇n



T



06×n

∂2σ
∂θ2

1

∂2σ
∂θ2∂θ1

∂2σ
∂θ3∂θ1

· · · ∂2σ
∂θn∂θ1

∂2σ
∂θ1∂θ2

∂2σ
∂θ2

2

∂2σ
∂θ3∂θ2

· · · ∂2σ
∂θn∂θ2

∂2σ
∂θ1∂θ3

∂2σ
∂θ2∂θ3

∂2σ
∂θ2

3
· · · ∂2σ

∂θn∂θ3
...

...
...

. . .
...

∂2σ
∂θ1∂θn

∂2σ
∂θ2∂θn

∂2σ
∂θ3∂θn

· · · ∂2σ
∂θ2

n



, (6.31c)

where the cross partials are given by

∂2σ

∂θi∂θj
= 2 ∂σ

∂θj
Tr
(
∂B

∂θi
B+
)

+ 2σTr

 ∂2B

∂θj∂θi
B+ + ∂B

∂θi


(
∂B

∂θj

)T

(6.32)

−B+

∂B

∂θj
BT + B

(
∂B

∂θj

)T
(BBT

)−1

 .

64 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

When implemented, the actuator configuration matrix B(θ) is computed sym-
bolically in order to find the partial and cross partial derivatives ∂B

∂θi
and ∂

∂θj

∂B
∂θi

.
The computations are performed offline and with respect to a specific AIAUV
configuration due to the computational complexity.

6.4.4 End-effector configuration control

The pose of the end-effector relative to the NED frame is given by the forward
kinematics described in Section 5.2.3. A unit quaternion representation is
employed, where the end-effector quaternion q = [η, ϵT]T can be obtained from
the rotation matrix Rne given by the forward kinematics. From a quaternion
qd =

[
ηd, ϵ

T
d

]T describing the desired attitude, a corresponding desired rotation
matrix Rnd can be calculated. The rotation matrix representing the attitude
error between the desired end-effector attitude and the end-effector attitude
given by the forward kinematics is [19]

R̃ = Rnd (Rne)T
. (6.33)

The quaternion associated with R̃ can be computed from the quaternion product
q̃ = qd ⊗ q∗ given by

η̃ = ηdη + ϵT
dϵ, (6.34)

ϵ̃ = ηϵd − ηdϵ + ϵ×ϵd, (6.35)

where q∗ = [η,−ϵT]T is the conjugate of the end-effector quaternion. Now,
since the rotation matrix representing two aligned frames is given by R̃ = I,
which corresponds to the quaternion q̃ = [1,0T]T, it is sufficient to represent the
attitude error as the three-dimensional imaginary part ϵ̃ of the quaternion error

6.4. SET-BASED AND EQUALITY TASKS FOR AIAUV CONTROL 65

vector q̃. The end-effector configuration task is then defined by

σ1 =

pn
ne

ϵ

 ∈ R6, (6.36)

σ̇1 = J1ζ, (6.37)

σ̈1 = J1ζ̇ + J̇1ζ, (6.38)

where the Jacobian and its time derivative is given by

J1 =

Rne(q) 03×3

03×3 Tϵne
(q)

Je(θ) ∈ R6×(6+n) (6.39)

J̇1 =

Rne(q) (ωe
ne)× 03×3

03×3 Ṫϵne
(q)

Je(θ) +

Rne(q) 03×3

03×3 Tϵne
(q)

 J̇e(θ), (6.40)

where the end-effector Jacobian Je ∈ R6×(6+n) is given by the recursive equations
(5.40), (5.42) and (5.45), and its time derivative J̇e (θ) ∈ R6×(6+n) is given by
(5.43), (5.44) and (5.46). Moreover, the time derivative of the transformation
matrix mapping angular velocities into the time derivative of the vector part of
the quaternion is given by [47]

Ṫϵ(q) = ∂T

∂q
(I3 ⊗ q̇) , (6.41)

where the partial derivative of the transformation matrix with respect to the
quaternion vector is

∂Tϵ

∂q
= 1

2


1 0 0 0 0 0 0 −1 0 0 1 0

0 0 0 1 1 0 0 0 0 −1 0 0

0 0 −1 0 0 1 0 0 1 0 0 0

 ∈ R3×12, (6.42)

(6.43)

66 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

and ⊗ denotes the Kronecker product which is given by

(I3 ⊗ q̇) =


q̇ 04×1 04×1

04×1 q̇ 04×1

04×1 04×1 q̇

 ∈ R12×3. (6.44)

6.4.5 Base position control

For intervention or inspection tasks within the workspace of the robotic manip-
ulator, it is desirable to keep the base in a fixed position while attempting to
utilize the joints instead of the thrusters for reconfiguration of the end-effector.
The position of the base in the NED frame is given by pn

nb ∈ R3, the base
position task is defined by

σ2 = pn
nb ∈ R3, (6.45)

σ̇2 = J2ζ, (6.46)

σ̈2 = J2ζ̇ + J̇2ζ, (6.47)

where the Jacobian J2 ∈ R3×(6+n) and its time derivative is given by

J2 =
[
Rnb(q) 03×(3+n)

]
, (6.48)

J̇2 =
[
Rnb(q)

(
ωb

nb

)
× 03×(3+n)

]
. (6.49)

(6.50)

6.4.6 Null space velocity

Since the end-effector configuration and base positioning tasks only consume 9
DOFs, the problem of internal instability may arise for acceleration-based and
operational space controllers applied to highly redundant AIAUVs. In order
to prevent this, a task at the lowest priority is defined which tries to regulate
the angular velocity of the base and the joint velocities to zero, consuming any

6.4. SET-BASED AND EQUALITY TASKS FOR AIAUV CONTROL 67

residual DOFs in the system. The task is defined by

σ̇3 = J3ζ, (6.51)

where the Jacobian J3 ∈ R(3+n)×(6+n) is given by

J3 =
[
0(3+n)×3 I3+n

]
. (6.52)

Note that the base linear velocity is omitted from this task, since it is always
dealt with by the base positioning task. In the robotics literature, it is common
to add a term penalizing deviations from some preferred pose to the final null
space task in addition to the velocity term [42].

6.4.7 Priority levels

In every implementation the highest priority task is the stacked joint limit
avoidance, collision avoidance and actuation index set-based tasks1 σa =[
σa1 ,σ

T
a2
, σa3

]T. The second priority level contains the 6 DOF end-effector
configuration task σ1, while the third priority level contains the base positioning
task σ2. Moreover, the velocity task σ3 is included in the acceleration-based
and operational space controllers to ensure internal stability. Letters are used
in task subscripts to denote set-based tasks and numbers are used to denote
equality-based tasks. By using this convention, tasks are labelled such that task
a has strictly higher priority than task b, task 1 has strictly higher priority than
task 2 and so on. Furthermore, only high-priority set-based tasks are considered,
which implies that every set-based task always has higher priority than any
equality-based task.

1Except for the iCAT framework, where there is strict priority among set-based tasks.

68 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

6.5 Set-Based Velocity Control

When solving redundancy at the velocity level, the controller block from Figure
6.1 is decomposed into a kinematic controller and a dynamic controller as
depicted in Figure 6.2. A feedback linearizing dynamic controller is employed in

Kinematic
Control

Dynamic
Control

Control
Allocation AIAUV

ζd τ uσd ξ, ζ

Figure 6.2: Overall control architecture for an AIAUV application when em-
ploying a kinematic control scheme. The kinematic controller transforms a
goal specified through an operational space task into desired system velocities
accomplishing the goal.

all velocity control schemes, the control law is given by

τ = M(θ)ab + C(θ, ζ)ζ + D(θ, ζ)ζ + g(ξ), (6.53)

where the commanded acceleration vector is given by

ab = ζ̇d + Kpζ̃ + Ki

∫ t

0
ζ̃(τ) dτ, (6.54)

where ζ̃ = ζd − ζ denotes the velocity error and ζd is the output from the
kinematic controller. The desired system acceleration is computed by numeric
differentiation viz.

ζ̇d ≃ ζd(t) − ζd(t− ∆t)
∆t , (6.55)

6.5. SET-BASED VELOCITY CONTROL 69

where ∆t is the sampling period. By inserting this control law into (5.48) the
equations of motion reduce to

˙̃ζ + Kpζ̃ + Ki

∫ t

0
ζ(τ) dτ = 0, (6.56)

which has a globally exponentially stable equilibrium point corresponding to[
ζ̃T, ˙̃ζT

]T

= 0 when the gains are chosen according to

Ki = diag
{
ω2

1 , . . . ω
2
n

}
(6.57)

Kp = diag {2ω1, . . . , 2ωn} . (6.58)

Moreover, this choice of gains yield a globally decoupled closed loop system,
where the response of each component in ζ is equal to the response of a critically
damped linear second order system with natural frequency ωi, determining the
rate of decay of the tracking error.

6.5.1 Set-based SRMTP framework

Within the set-based SRMTP framework presented in [4], the desired system
velocities are discontinuous when activating and deactivating set-based tasks.
Consequently, the desired accelerations computed by (6.55) can become ex-
cessively large during activation or deactivation of tasks. To prevent this,
acceleration feedforward is removed from the commanded acceleration vector
given by (6.54), resulting in worse tracking performance and the need for higher
gains in the dynamic controller in order to satisfy ζd = ζ.

The highest priority task is a stacked set-based task σa consisting of the joint
limit avoidance task, the collision avoidance task and the actuation index tasks
all described in Section 6.4. The second priority level consists of the end-effector
configuration task σ1, while the base positioning task σ2 is on the third and
lowest priority level. When no set-based tasks are active, the desired system

70 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

velocities are given by

ζd = J†
1 σ̇1,r + N1J†

2 σ̇2,r, (6.59)

where σ̇i,r = σ̇i + Λiσ̃i. When one or more scalar component in σa is active
according to Algorithm 2, the desired system velocities are computed according
to

ζd = NaJ†
1 σ̇1,r + NA

a1J†
2 σ̇2,r, (6.60)

where the null space operator Na of the active set-based tasks is computed from
(3.13) and the null space operator NA

a1 of the augmented Jacobian is computed
according to (2.20) and (2.21).

The assumption ζ = ζd can be satisfied by feeding back the desired states
ζd, ξd instead of the actual states. This keeps the kinematic control loop separate
from the dynamic control loop and the stability of the kinematic controller can
be considered independently of the dynamic controller. As discussed in [12], this
is a good assumption for industrial robotics, where fast and accurate dynamic
control can be obtained with relative ease. For an AIAUV however, small
inaccuracies in the dynamic control leads to error accumulation in the desired
states. This can lead to set-based tasks such as collision avoidance not being
activated because of errors in the estimated end-effector position. Therefore,
the actual states are used for feedback as shown in Figure 6.2. In this case, the
assumption requires the outer loop kinematic controller to be much slower than
the inner loop dynamic controller.

6.5.1.1 Smoothing of the system velocity references

Activation and deactivation of tasks cause the system reference velocity ζd to
change abruptly, which often requires large accelerations. A possible solution is
to smooth the reference between the previous and new reference by employing

6.5. SET-BASED VELOCITY CONTROL 71

the sigmoid smoothing function

α(t, ts) = 1
π

arctan
(
a (t− ts − b)

)
+ 1

2 , (6.61)

where ts is the time of the last switch between velocity references. The parameters
a and b determine the sharpness of the smoothing function and time delay before
the transition takes place, respectively. Since activation and deactivation of
tasks no longer occurs instantaneously, an activation threshold similar to that
of the iCAT framework is defined. Note that strict priority among tasks is lost
while transitioning between velocity reference solutions. Whenever the activation
threshold is reached, the idea is to slowly control the set-based task variables
toward their maximum values as long as every less restrictive velocity reference
solution does not maintain the set-based variable within its extended tangent
cone. Hence, (6.60) is modified with a gain for the high priority set-based task
viz.

ζd = (AJa)†
AΛaATAσ̃a + NaJ†

1 σ̇1,r + NA
a1J†

2 σ̇2,r, (6.62)

where A is the p×ma activation matrix of the multidimensional set-based task
σa ∈ Rma and Λa is a diagonal ma ×ma gain matrix. Pre-multiplication of the
gain matrix by A and post multiplication by AT ensures that the resulting gain
matrix has the appropriate dimension. By storing the time a switch between
velocity references ts occurs and the velocity reference before the switch ζr(ts),
the desired system velocities at time t can be calculated from

ζd(t) =
(
1 − α(t, ts)

)
ζr(ts) + α(t, ts)ζr(t), (6.63)

where ζr is calculated from (6.59) or (6.62) depending on whether set-based
tasks are active or not.

72 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

6.5.2 iCAT framework

In the implementation of the iCAT framework, the collision avoidance task σa has
the highest priority, followed by the actuation index task σb, joint limit avoidance
task σc, end-effector configuration task σ1, and finally the base positioning task
σ2. The recursive implementation allows effortless addition and removal of tasks,
which is why the set-based tasks have been placed on their own priority levels.
In the set-based SRMTP framework this requires more effort and the complexity
of the implementation increases significantly whenever additional set-based tasks
are considered on their own priority levels. Therefore, since tasks are generally
not in conflict, they are often augmented into a single set-based task in set-based
SRMTP implementations. Note that the subscripts on the set-based tasks differ
in this approach because of the strict priority among them.

The following activation function has been employed in the simulations

al(σ) =


1, σ ≤ σmin

1
2

(
cos
(

(σ−σmin)π
β

)
+ 1
)
, σmin ≤ σ ≤ σmin + β

0, σ > σmin + β

. (6.64)

for lower-bounded set-based tasks. For tasks with an upper bound the activation
function au(σ) = 1 − al(σ) is used.

6.6 Set-Based Acceleration Control

When the inverse kinematics problem is resolved at the acceleration level, the
control architecture is similar to Figure 6.2, except that the output of the
kinematic control block is now desired system accelerations ζ̇d instead of desired
system velocities. By employing the feedback linearizing control law given by
(6.53) with commanded acceleration ab = ζ̇d the dynamics reduces to

ζ̇ = ζ̇d. (6.65)

6.6. SET-BASED ACCELERATION CONTROL 73

The desired system accelerations ζ̇d are obtained from the set-based SRMTP
framework at the acceleration level as described in Chapter 3. Note that end-
effector configuration and base position control only consumes 9 DOFs, while
an AIAUV in general has 6 + n DOFs. Specifically, the AIAUV model used in
the simulations has n = 8 joints, resulting in a 14 DOF system. Hence, the null
space velocity task from Section 6.4.6 is added at the lowest priority level for
stability reasons.

When the set-based tasks are inactive, the desired acceleration reference is
given by

ζ̇d = J†
1 (σ̈d1 + Kd1

˙̃σ1 + Kp1σ̃1 − J̇1ζ)

+ N1J†
2 (σ̈d2 + Kd2

˙̃σ2 + Kp2σ̃1 − J̇2ζ)

− NA
12J†

3Kd3ζ.

(6.66)

When one or more scalar set-based tasks are active, the desired acceleration
reference is given by

ζ̇d = (AJa)†
(

−AKda
ATAσ̇a + AKpa

ATAσ̃a − AJ̇aζ
)

+ NaJ†
1 (σ̈d1 + Kd1

˙̃σ1 + Kp1σ̃1 − J̇1ζ)

+ NA
a1J†

2 (σ̈d2 + Kd2
˙̃σ2 − Kp2σ̃1 − J̇2ζ)

− NA
a12J†

3Kd3ζ,

(6.67)

where A is the activation matrix returned by Algorithm 2.

6.6.1 Smoothing the acceleration references

The acceleration reference can smoothened by utilizing the sigmoid smoothing
function in (6.61). The time ts when the acceleration reference changes because
of the activation/deactivation of a set-based task, as well as the acceleration
reference ζ̇r(t−s) just before the activation or deactivation is stored in memory
at simulation run-time. Then, the smoothened acceleration reference can be

74 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

calculated from

ζ̇d =
(
1 − α(t, ts)

)
ζ̇r(t−s) + α(t, ts)ζ̇r(t), (6.68)

where ζ̇r is calculated from (6.66) or (6.67) according to which tasks where active
at time t−s and time t.

6.7 Set-Based Operational Space Control

In operational space control, the overall control architecture is shown in Figure
6.1. For any of the control laws outlined in Section 4.5 the control torques only
differ in how the acceleration term is defined. Therefore, the control torque for
any of the operational space controllers whenever no set-based tasks are active
is given by

τ = JT
1 M1a1 + N2JT

2 M2a2 + N3JT
3 M3a3 + Cζ + Dζ + g. (6.69)

To determine whether one or more scalar set-based tasks within σa should be
activated or deactivated, Algorithm 2 is employed. The predicted unconstrained
task velocity σ̇a is found by integrating the body-fixed accelerations

ζ̇ = M−1 (τ − Cζ − Dζ − g) , (6.70)

where τ is given by (6.69). The unconstrained task velocities are then computed
according to

σ̇a = Jaζ. (6.71)

If one or more set-based tasks are active, the control torque is given by

τ = (AJa)T
Maaa + N1JT

1 M1a1 + N2JT
2 M2a2 + N3JT

3 M3a3

+ Cζ + Dζ + g,
(6.72)

6.7. SET-BASED OPERATIONAL SPACE CONTROL 75

where A is the activation matrix returned by Algorithm 2, the task specific
inertia matrix Mi is given by (4.37) or (4.49) and the acceleration reference ai

is given by (4.43) or (4.45). If the acceleration reference is given by (4.43), then
every acceleration reference changes whenever set-based tasks are activated or
deactivated. The task specific inertia matrix for the active set-based tasks is
computed according to

Ma =
(

AJaM−1 (AJa)T
)−1

(6.73)

=
(

AJaM−1JT
a AT

)−1
, (6.74)

while the null-space operators are computed according to (4.17) and (4.18) with
Na = I when set-based tasks are active, and N1 = I when no set-based tasks
are active. Finally, note that there are only three combinations of acceleration
reference and task inertia matrix, since (4.43) should not be used with (4.49).

6.7.1 Method 1: Dynamically decoupled tasks

In this approach, the task specific inertia matrix Mi is given by (4.37) while
the acceleration references ai are given by (4.43) resulting in the linear task
dynamics (4.44), whenever all tasks are compatible. The control torque when
no set-based tasks are active given by (6.66) becomes

τ = JT
1 M1

(
Kp,1σ̃1 − Kd,1σ̇1 − J̇1ζ

)
+ N2JT

2 M2

(
Kp,2σ̃2 − Kd,2σ̇2 − J̇2ζ − J3M−1JT

1 M1a1

)
+ N3JT

3 M3

(
−Kd,3ζ − J3M−1 (JT

1 M1a1 + N2JT
2 M2a2

))
+ Dζ + Cζ + g.

(6.75)

However, since the lowest priority task is only present for stability reasons, there
is no point in complicating the control law by compensating for higher priority
tasks at the lowest priority level. Moreover, when compensating for the task

76 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

dynamics of higher priority tasks, the acceleration reference changes whenever
set-based tasks are activated/deactivated, which may incur larger discontinuities
in the control torque. The control torque when no set-based tasks are active is
therefore modified as

τ = JT
1 M1

(
Kp,1σ̃1 − Kd,1σ̇1 − J̇1ζ

)
+ N2JT

2 M2

(
Kp,2σ̃2 − Kd,2σ̇2 − J̇2ζ − J2M−1JT

1 M1a1

)
− N3JT

3 M3Kd,3ζ

+ Dζ + Cζ + g,

(6.76)

where a1 can be inferred by comparing (6.76) with (6.69). When one or more
scalar set-based tasks within σa are active the control torque is given by

τ = (AJa)T
Ma

(
AKp,aATAσ̃a − AKd,aATAσ̇a − AJ̇aζ

)
+ N1JT

1 M1

(
Kp,1σ̃1 − Kd,1σ̇1 − J̇1ζ − J1M−1(AJa)TMaaa

)
+ N2JT

2 M2

(
Kp,2σ̃2 − Kd,2σ̇2 − J̇2ζ

−J2M−1 ((AJa)T
Maaa + N1JT

1 M1a1
))

− N3JT
3 M3Kd,3ζ

+ Dζ + Cζ + g,

(6.77)

where aa and a1 can be inferred by comparing (6.77) and (6.72), and A is the
activation matrix returned by Algorithm 2.

6.7.2 Method 2: Omitting compensation terms in the ac-
celeration references

By computing the task specific inertia matrix Mi from (4.37) and the acceleration
reference ai from (4.45), the control torque from (6.69) with no active set-based

6.7. SET-BASED OPERATIONAL SPACE CONTROL 77

tasks becomes

τ = JT
1 M1

(
Kp,1σ̃1 − Kd,1σ̇1 − J̇1ζ

)
+ N2JT

2 M2

(
Kp,2σ̃2 − Kd,2σ̇2 − J̇2ζ

)
− N3JT

3 M3Kd,3σ̇3 + Cζ + Dζ + g.

(6.78)

When one or more scalar set-based tasks within σa are active, the control torques
are computed according to

τ = (AJa)T
Ma

(
AKp,aATAσ̃a − AKd,aATAσ̇a − AJ̇aζ

)
+ N1JT

1 M1

(
Kp,1σ̃1 − Kd,1σ̇1 − J̇1ζ

)
+ N2JT

2 M2

(
Kp,2σ̃2 − Kd,2σ̇2 − J̇2ζ

)
− N3JT

3 M3Kd,3σ̇3 + Cζ + Dζ + g,

(6.79)

where A is the activation matrix obtained from Algorithm 2. The task specific
inertia matrix Ma for the set-based task is computed at every iteration according
to (6.74).

6.7.3 Method 3: Omitting the null space operator from
the task specific inertia matrix

When the task specific inertia matrix is computed from (4.49), the control torque
is given by (6.78) when no set-based tasks are active, and from (6.79) when
set-based tasks are active.

6.7.4 Smoothing the control torques

The control torques in Section 6.7 exhibit discontinuities whenever a set-based
task is activated or deactivated. Continuity of the control torques can be obtained
by employing the sigmoid smoothing function in (6.61) in order to obtain a
continuous transition from the previous control torque to the current one. By

78 CHAPTER 6. SET-BASED CONTROL OF AIAUVS

storing the switching time ts when the control torque changes because of the
activation/deactivation of one or more set-based tasks and the control torque
τ (t−s) just before the switch, the smoothened control torque can be computed
according to

τ (t) =
(
1 − α(t, ts)

)
τ (t−s) + α(t, ts)τ (t), (6.80)

where the control torques τ are calculated from (6.69) or (6.72) depending on
which tasks were active at time t−s and time t.

Chapter 7

Simulations

In this chapter simulation results of the control frameworks from Chapter 6
are presented. For the kinematic controllers, perfect knowledge of the dynamic
parameters in the dynamic controller is always assumed. For the operational
space controllers, simulations are presented when perfect parameter knowledge
is assumed, and when the added mass terms are omitted from the inertia matrix.
This is motivated by the observation that the inertia matrix is used in the null
space operators for operational space control, which may lead to imperfect null
space projections and interference from lower priority tasks in the dynamics of
higher priority tasks.

7.1 Control Objectives

7.1.1 Equality tasks

Only set-point regulation is considered in the simulations, where the end-
effector configuration task consists of a series of constant steps occurring at
t = [0, 50, 100, 150, 200, 250, 300, 350]T. The base positioning task is constant
and does not change, with the goal of minimizing movement of the base while

79

80 CHAPTER 7. SIMULATIONS

reconfiguring the end-effector. Note that after t = 350 s, the end-effector position
and base position are no longer compatible, this is intended to serve as a test of
incompatible tasks, where it is expected that the end-effector task will be exe-
cuted perfectly, while steady state errors will be observed in the base positioning
task.

Unfortunately, since no reference model is employed to smooth out the steps in
the desired end-effector configuration, discontinuities will be present in the control
inputs whenever the set-points change suddenly. Hence, acceleration feedforward
by numeric differentiation is also infeasible for the iCAT framework. Moreover, it
becomes harder to spot the discontinuities incurred by the activation/deactivation
of set-based tasks.

7.1.2 Set-based tasks

The obstacle to be avoided by the collision avoidance task is a sphere with radius
robs = 0.3 m centered at pobs = [2.5 m, 0.5 m,−10 m]T, where the coordinates
are given in a North-West-Up coordinate frame. In order to make sure that
the AIAUV avoids the obstacle at all times, a safety threshold is defined such
that the minimum distance to the obstacle becomes slightly larger. The valid
domains for all set-based tasks are shown in Table 7.1.

Table 7.1: The valid domains for the set-based tasks.

σa1 σa2,i σa3

σmin robs + 0.05 m −60◦ 0.1
σmax ∞ 60◦ ∞

7.2 Implementation Specifics

Note that the Matlab simulator employs a local North-West-Up coordinate frame
as opposed to the local North-East-Down coordinate frame defined in Section

7.2. IMPLEMENTATION SPECIFICS 81

5.1. The coordinate frames of the base, links and end-effector remain the same
as in Chapter 5.

7.2.1 The mode definition

Since every simulation except for the iCAT framework employ the extended
set-based SRMTP framework from Section 3.3 to activate and deactivate tasks,
the mode concept defined in [4] has to be redefined slightly. The modes in the
simulations are defined according to:

• Mode 1: No set-based tasks are active.

• Mode 2-9: 1-8 active joint limit tasks, collision avoidance and actuation
index tasks inactive.

• Mode 10: Collision avoidance task active, everything else inactive.

• Mode 11-18: 1-8 active joint limit tasks, collision avoidance task active,
actuation index task inactive.

• Mode 20: Actuation index task active, everything else inactive.

• Mode 21-28: 1-8 active joint limit tasks, collision avoidance task inactive,
actuation index task active.

• Mode 30-37: 1-8 active joint limit tasks, collision avoidance and actuation
index tasks active.

7.2.2 Smoothing function

The smoothing function from (6.61) is used with the parameters a = 110 and
b = 0.05 for all smoothing simulations.

82 CHAPTER 7. SIMULATIONS

7.2.3 Control allocation

Since actuator configuration matrix singularities are avoided by the introduction
of the actuation index task, the simple unconstrained control allocation scheme
from Section 6.3 is employed within every control framework. The control input
u ∈ R15 containing the allocated thrust and joint torques are obtained from the
commanded forces and torques τ ∈ R14 through

u = B†τ = BT
(
BBT

)−1
τ . (7.1)

The control parameters are tuned such that the resulting control inputs have
sufficiently small values instead of saturating the control inputs u after allocation.

7.3 Kinematic Control

7.3.1 Set-based velocity control

For set-based velocity control, the dynamic control law is given by (6.53) and
(6.54) where

Kp =

Kp,V 06×8

08×6 Kp,θ

 , Ki =

Ki,V 06×8

08×6 Ki,θ

 . (7.2)

The numerical values of the control parameters are shown in Table 7.2

Table 7.2: Dynamic control parameters for velocity-based control.

V θ

λ 0.6 0.7
Kp 2λV I6×6 2λθI8×8

Ki λ2
V I6×6 λ2

θI8×8

7.3. KINEMATIC CONTROL 83

7.3.1.1 Set-based SRMTP framework

For set-point regulation, the task space references σ̇i,r in the desired system
velocity references given by (6.59) and (6.60) reduce to

σ̇i,r = Λiσ̃i. (7.3)

The task space gains in Table 7.3 resulted in acceptable behavior for a wide
variety of set-point regulation tasks. Simulation results are shown in Figure 7.1.

Table 7.3: SRMTP task space gains.

σ1 σ2

Λ 0.2I6 0.2I3

84 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

7.3. KINEMATIC CONTROL 85

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base positions.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

86 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-0.2

-0.1

0

0 50 100 150 200 250 300 350 400

-0.05

0

0.05

0 50 100 150 200 250 300 350 400

-0.2

-0.1

0

(h) Velocity references generated by the kinematic controller.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

15

20

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-4

-3

-2

-1

0

1

2

3

4

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.1: Simulation results for kinematic velocity control within the set-based
SRMTP framework.

7.3. KINEMATIC CONTROL 87

Smoothing the velocity references The velocity references generated by
the kinematic controller can be smoothened as discussed in Section 6.5.1.1. The
control parameters and the activation thresholds for the set-based tasks are
shown in Table 7.4. The set based gain matrix Λa is a diagonal 10 × 10 matrix

Table 7.4: Smoothened SRMTP task space gains Λ and activation thresholds β.

σa1 σa2 σa3 σ1 σ2

Λ 0 0.05 0.05I8 0.2I6 0.2I3

β 0.1 m 0.05 5◦

where the first diagonal element corresponds to the collision avoidance task, the
following eight correspond to the joint limit avoidance task, and the final tenth
element corresponds to the actuation index task. Simulation results are shown
in Figure 7.2.

88 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

7.3. KINEMATIC CONTROL 89

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

90 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400
-0.2

-0.1

0

0 50 100 150 200 250 300 350 400

-0.05

0

0.05

0 50 100 150 200 250 300 350 400
-0.2

-0.1

0

(h) Velocity references generated by the kinematic controller.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

15

20

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-4

-3

-2

-1

0

1

2

3

4

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.2: Simulation results for the smoothened version of the set-based
SRMTP kinematic control framework.

7.3. KINEMATIC CONTROL 91

7.3.1.2 iCAT framework

The assigned feedback reference rates given by (3.15) and the activation thresh-
olds β are computed according to Table 7.5 for the set-based tasks, where σa is
the collision avoidance task, σb is the actuation index task and σc is the joint
limit avoidance task. The i-subscript on the joint limit avoidance task indicates
that every joint has the same gain γ and reference σ∗. The highest priority

Table 7.5: iCAT control parameters for the set-based tasks.

σa σb σci

σ∗ robs + 0.1 σbmin + 0.05 0
γ 0.15 0.25 0.1
β 0.1 m 0.05 5◦

equality task is the end-effector configuration task σ1 with gain

Γ1 =

0.1I3×3 03×3

03×3 0.1I3×3

 , (7.4)

followed by the base positioning task σ2 with gain

Γ2 = 0.1I3×3. (7.5)

Moreover, the standard deviation of the diagonal elements in P used in (3.21) is
set to s = 40.

92 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

21.5

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Activation functions

(e) The sigmoid activation functions repre-
senting how actively controlled set-based
tasks are.

7.3. KINEMATIC CONTROL 93

0 50 100 150 200 250 300 350 400

0

2

4

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

94 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-0.02

-0.01

0

0.01

0 50 100 150 200 250 300 350 400

-0.1

0

0.1

0 50 100 150 200 250 300 350 400

-0.1

-0.05

0

0.05

(h) Velocity references generated by the kinematic controller.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

15

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-3

-2

-1

0

1

2

3

4

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.3: Simulation results for the iCAT framework.

7.3. KINEMATIC CONTROL 95

7.3.2 Set-based acceleration control

From the initial simulations it was evident that a non-zero proportional gain for
the set-based tasks resulting in excessive activation and deactivation of tasks
as depicted in Figure 7.4. Therefore, all proportional gains for the augmented

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

Figure 7.4: Excessive activation and deactivation of tasks, represented by what
mode that is currently active.

set-based task are set to zero. The derivative gains are given by

Kda
= diag {ka1 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka3} , (7.6)

96 CHAPTER 7. SIMULATIONS

where the collision avoidance, joint limit and actuation index task gains are
ka1 = 4.5, ka2 = 2.5 and ka3 = 4, respectively. The equality task gains are

Kp1 =

λ2
1I3 03×3

03×3 λ2
attI3

 , Kp2 = λ2
2I3, (7.7)

Kd1 =

2λ1I3 03×3

03×3 2λattI3

 , Kd2 = 2λ2I3, Kd3 = kζI14, (7.8)

where λ1 = 0.15, λatt = 0.3, λ2 = 0.1 and kζ = 0.6. Simulation results with
these parameters are shown in Figure 7.5.

7.3. KINEMATIC CONTROL 97

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

98 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

7.3. KINEMATIC CONTROL 99

0 50 100 150 200 250 300 350 400

-0.06

-0.04

-0.02

0

0.02

0 50 100 150 200 250 300 350 400

-0.05

0

0.05

(h) Acceleration references generated by the kinematic controller.

0 50 100 150 200 250 300 350 400

-25

-20

-15

-10

-5

0

5

10

15

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-2

-1

0

1

2

3

4

5

6

7

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.5: Simulation results for acceleration-level set-based SRMTP kinematic
control.

100 CHAPTER 7. SIMULATIONS

7.3.2.1 Smoothing the acceleration references

The acceleration references can be smoothened as discussed in Section 6.6.1.
The equality task gains are given by (7.7) and (7.8) with λ1 = 0.2, λatt = 0.35,
λ2 = 0.1 and kζ = 0.6. The activation thresholds β for the set-based tasks are
set according to Table 7.6. Whenever the activation thresholds are reached,

Table 7.6: Activation thresholds for set-based tasks.

σa1 σa2 σa3

β 0.05 m 5◦ 0.03

the set-based tasks are slowly controlled toward the boundary of their valid
sets. This is achieved by having a small proportional gain for the set-based
task, combined with a significantly larger derivative gain. The proportional and
derivative gain matrices are given by

Kpa
= diag {γa1 , γa2 , γa2 , γa2 , γa2 , γa2 , γa2 , γa2 , γa2 , γa3} , (7.9)

Kda
= diag {ka1 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka3} , (7.10)

where the task specific gains are shown in Table 7.7. Simulation results are

Table 7.7: Proportional and derivative gains for the augmented set-based task.

σa1 σa2 σa3

γ 0 0.1 0.1
k 1.2 1 1

shown in Figure 7.6.

7.3. KINEMATIC CONTROL 101

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

102 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

7.3. KINEMATIC CONTROL 103

0 50 100 150 200 250 300 350 400

-0.1

-0.05

0

0 50 100 150 200 250 300 350 400

-0.1

-0.05

0

(h) Acceleration references generated by the kinematic controller.

0 50 100 150 200 250 300 350 400

-20

-15

-10

-5

0

5

10

15

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-2

-1

0

1

2

3

4

5

6

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.6: Simulation results for acceleration-level set-based SRMTP kinematic
control with acceleration reference smoothing.

104 CHAPTER 7. SIMULATIONS

7.4 Operational Space Control

Since the inertia matrix is included in the computation of the null space operators,
uncertainties in the inertia matrix may distort the null space projections such
that interference from lower priority tasks affect higher priority tasks. The null
space operator is statically consistent for any values of the inertia matrix, as
long as it is positive definite. However, it is not dynamically consistent whenever
the inertia matrix is not fully known. It is therefore of interest to investigate
how the various operational space control schemes from Section 6.7 perform in
simulations when the inertia matrix is not perfectly known. This is done by
assuming perfect knowledge of the rigid-body inertia matrix, while the added
mass matrix is unknown.

7.4.1 Control parameters

The gain matrices from (6.76), (6.77), (6.78) and (6.79) are diagonal matrices
given by

Kp,a = 010×10 (7.11)

Kd,a = diag {ka1 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka3} , (7.12)

Kp1 =

λ2
1I3 03×3

03×3 λ2
attI3

 , Kp2 = λ2
2I3, (7.13)

Kd1 =

2λ1I3 03×3

03×3 2λattI3

 , Kd2 = 2λ2I3, (7.14)

Kd3 = kζI11. (7.15)

Note that the proportional gains for all set-based tasks are set to zero to avoid
rapid activation/deactivation of tasks around the boundaries of their active sets
as discussed in 7.3.2.

7.4. OPERATIONAL SPACE CONTROL 105

7.4.1.1 Smoothing

When smoothing is employed, activation thresholds for the set-based tasks
have to be defined. Moreover, non-zero proportional gains no longer result in
excessive chattering in the activation and deactivation of tasks. Therefore, small
proportional gains for the set-based tasks are defined such that the set-based
tasks are slowly controlled toward the boundary of their valid sets after the
activation thresholds are reached. The activation thresholds β for the set-based
tasks are set according to Table 7.8, while the proportional and derivative gain
matrices are given by

Kp,a = diag {γa1 , γa2 , γa2 , γa2 , γa2 , γa2 , γa2 , γa2 , γa2 , γa3} , (7.16)

Kd,a = diag {ka1 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka2 , ka3} . (7.17)

Table 7.8: Activation thresholds for set-based tasks.

σa1 σa2 σa3

β 0.07 m 5◦ 0.03

7.4.2 Method 1: Fully linearized task dynamics

The control parameters for this approach are given in Table 7.9.

Table 7.9: Control parameters for the set-based operational space controllers.

ka1 ka2 ka3 λ1 λatt λ2 kζ

1.5 5 12 0.2 0.45 0.1 0.9

Simulation results are presented in Figure 7.7.

106 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

7.4. OPERATIONAL SPACE CONTROL 107

0 50 100 150 200 250 300 350 400

0

2

4

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

108 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-4

-2

0

2

0 50 100 150 200 250 300 350 400

-5

0

5

10

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-30

-25

-20

-15

-10

-5

0

5

10

15

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-2

0

2

4

6

8

10

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.7: Simulation results for the set-based operational space controller from
Section 6.7.1

7.4. OPERATIONAL SPACE CONTROL 109

7.4.2.1 Smoothing the control torques

The equality task gains, λ1, λatt, λ2 and kζ remain the same as in the non-
smoothed case, given by Table 7.9. The control parameters for the set-based
tasks are modified, and a small proportional gain is added. The set-based control
parameters are shown in Table 7.12.

Table 7.10: Proportional and derivative gains for the augmented set-based task.

σa1 σa2 σa3

γ 0.0 0.05 0.1
k 1.4 1 1

Simulation results are shown in Figure 7.8.

110 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

7.4. OPERATIONAL SPACE CONTROL 111

0 50 100 150 200 250 300 350 400

0

2

4

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

112 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-4

-2

0

2

0 50 100 150 200 250 300 350 400

-5

0

5

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-20

-15

-10

-5

0

5

10

15

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-2

-1

0

1

2

3

4

5

6

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.8: Simulation results for the set-based operational space controller from
Section 6.7.1 with control torque smoothing.

7.4. OPERATIONAL SPACE CONTROL 113

7.4.3 Method 2: No compensation of higher priority tasks

The control parameters for this approach are given in Table 7.11. Simulation
results are presented in Figure 7.9.

Table 7.11: Control parameters for the set-based operational space controllers.

ka1 ka2 ka3 λ1 λatt λ2 kζ

1.5 5 12 0.2 0.45 0.1 0.9

114 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

7.4. OPERATIONAL SPACE CONTROL 115

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

116 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-4

-2

0

2

0 50 100 150 200 250 300 350 400

-5

0

5

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-25

-20

-15

-10

-5

0

5

10

15

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-2

-1

0

1

2

3

4

5

6

7

8

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.9: Simulation results for the set-based operational space controller from
Section 6.7.2.

7.4. OPERATIONAL SPACE CONTROL 117

7.4.3.1 Smoothing the control torques

The equality task gains, λ1, λatt, λ2 and kζ remain the same as in the non-
smoothed case, given by Table 7.9. The control parameters for the set-based
tasks are modified, and a small proportional gain is added. The set-based control
parameters are shown in Table 7.12. Simulation results are presented in Figure
7.10.

Table 7.12: Proportional and derivative gains for the augmented set-based task.

σa1 σa2 σa3

γ 0.0 0.05 0.1
k 1.4 1 1

118 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

7.4. OPERATIONAL SPACE CONTROL 119

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

120 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-4

-2

0

2

0 50 100 150 200 250 300 350 400

-5

0

5

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-20

-15

-10

-5

0

5

10

15

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-2

-1

0

1

2

3

4

5

6

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.10: Simulation results for the set-based operational space controller
from Section 6.7.2 with control torque smoothing.

7.4. OPERATIONAL SPACE CONTROL 121

7.4.4 Method 3: Omitting the null space operator within
the task specific inertia matrix

The control parameters for this approach are given in Table 7.11. Simulation
results are presented in Figure 7.9.

Table 7.13: Control parameters for the set-based operational space controllers.

ka1 ka2 ka3 λ1 λatt λ2 kζ

1.5 5 12 0.2 0.5 0.15 0.9

122 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

5

10

15

20

25

30

35

(e) The mode represents which set-based
tasks are active at any given time.

7.4. OPERATIONAL SPACE CONTROL 123

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

124 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-5

0

5

0 50 100 150 200 250 300 350 400

-10

-5

0

5

10

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-40

-30

-20

-10

0

10

20

30

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

15

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.11: Simulation results for the set-based operational space controller
from Section 6.7.3.

7.4. OPERATIONAL SPACE CONTROL 125

7.4.4.1 Smoothing the control torques

The equality task gains, λ1, λatt, λ2 and kζ remain the same as in the non-
smoothed case, given by Table 7.13. The control parameters for the set-based
tasks are modified, and a small proportional gain is added. The set-based control
parameters are shown in Table 7.14. Simulation results are presented in Figure
7.12.

Table 7.14: Proportional and derivative gains for the augmented set-based task.

σa1 σa2 σa3

γ 0.0 0.05 0.05
k 2.5 2.5 2.5

126 CHAPTER 7. SIMULATIONS

-10.2

-10

2.5

-9.8

3
2

1.5 2

1
1

0.5

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

5

10

15

20

25

30

35

(e) The mode represents which set-based
tasks are active at any given time.

7.4. OPERATIONAL SPACE CONTROL 127

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

128 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

-4

-2

0

2

0 50 100 150 200 250 300 350 400

-10

-5

0

5

10

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-30

-20

-10

0

10

20

30

40

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-20

-15

-10

-5

0

5

10

15

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.12: Simulation results for the set-based operational space controller
from Section 6.7.3 with control torque smoothing.

7.4. OPERATIONAL SPACE CONTROL 129

7.4.5 Uncertainty in the dynamic parameters

As discussed in Section 5.3, the inertia matrix consists of the rigid-body inertia
matrix and the added mass matrix, viz.

M = MRB + MA. (7.18)

To investigate the effects of large uncertainties in the inertia matrix, only the rigid
body inertia matrix is used in the following simulations. In order to illustrate
how significant the added mass inertia is with respect to the total inertia matrix,
the 2-norm of the inertia matrix, added mass matrix and rigid body inertia
matrix is shown in Figure 7.13. The figure is obtained from the simulation in

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

1200

1400

Figure 7.13: The 2-norm of the rigid body inertia matrix, the added mass matrix
and the inertia matrix. The 2-norm of a matrix is equal to the largest singular
value of the matrix.

130 CHAPTER 7. SIMULATIONS

Section 7.4.2. From this distance measure, it is clear that the added mass inertia
represents a considerable part of the total inertia.

7.4.5.1 Method 1

The control parameters are given by Table 7.11, with the exception of the
derivative gain for the collision avoidance and joint limit avoidance tasks, which
are changed to ka1 = 2 and ka2 = 7, respectively. Simulation results are presented
in Figure 7.14.

7.4. OPERATIONAL SPACE CONTROL 131

-10.2

-10

-9.8

3
2

2

1
1

0 0

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

132 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

7.4. OPERATIONAL SPACE CONTROL 133

0 50 100 150 200 250 300 350 400

-5

0

5

10

0 50 100 150 200 250 300 350 400

-10

-5

0

5

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-30

-20

-10

0

10

20

30

40

50

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.14: Simulation results for the set-based operational space controller
from Section 6.7.1 where all added mass terms have been omitted from the
inertia matrix.

134 CHAPTER 7. SIMULATIONS

7.4.5.2 Method 2

The control parameters are given by Table 7.11, with the exception of the
derivative gain for the collision avoidance and joint limit avoidance tasks, which
are changed to ka1 = 2 and ka2 = 7, respectively. Simulation results are presented
in Figure 7.15.

7.4. OPERATIONAL SPACE CONTROL 135

-10.2

-10

-9.8

3
2

2

1
1

00

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

18

20

(e) The mode represents which set-based
tasks are active at any given time.

136 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

7.4. OPERATIONAL SPACE CONTROL 137

0 50 100 150 200 250 300 350 400

-2

-1

0

1

2

0 50 100 150 200 250 300 350 400

-5

0

5

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400

-40

-30

-20

-10

0

10

20

30

40

50

60

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.15: Simulation results for the set-based operational space controller
from Section 6.7.2 where all added mass terms have been omitted from the
inertia matrix.

138 CHAPTER 7. SIMULATIONS

7.4.5.3 Method 3

The control parameters are given by Table 7.15. The equality task gains had to
be slightly increased in order to reach the desired end-effector positions within
50 seconds. Simulations results are presented in Figure 7.16

Table 7.15: Control parameters for a set-based operational space controller.

ka1 ka2 ka3 λ1 λatt λ2 kζ

1.5 5 12 0.25 0.5 0.15 1

7.4. OPERATIONAL SPACE CONTROL 139

-10.2

-10

-9.8

3
2

2

1 1

00

(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.

0 50 100 150 200 250 300 350 400 450

0.05

0.1

0.15

0.2

0.25

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400 450

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400 450

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400 450

0

5

10

15

20

25

30

35

(e) The mode represents which set-based
tasks are active at any given time.

140 CHAPTER 7. SIMULATIONS

0 50 100 150 200 250 300 350 400 450

0

1

2

3

0 50 100 150 200 250 300 350 400 450

0

1

2

0 50 100 150 200 250 300 350 400 450

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400 450

-20

0

20

40

60

80

100

120

(g) End-effector orientation.

7.4. OPERATIONAL SPACE CONTROL 141

0 50 100 150 200 250 300 350 400 450

-4

-2

0

2

0 50 100 150 200 250 300 350 400 450

-10

-5

0

5

(h) Commanded forces and torques.

0 50 100 150 200 250 300 350 400 450

-60

-40

-20

0

20

40

60

80

100

(i) Thruster input generated by the control
allocation algorithm.

0 50 100 150 200 250 300 350 400 450

-25

-20

-15

-10

-5

0

5

10

(j) Joint torque inputs generated by the
control allocation algorithm

Figure 7.16: Simulation results for the set-based operational space controller
from Section 6.7.3 where all added mass terms have been omitted from the
inertia matrix.

142 CHAPTER 7. SIMULATIONS

Chapter 8

Discussion

8.1 Kinematic Control

8.1.1 Velocity level redundancy resolution

Since the end-effector configuration set-points change every 50 seconds, the
control inputs and velocity references have somewhat large jumps whenever this
happens, see Figure 7.1, 7.2 and 7.3. This can be improved by employing a
second order reference model which takes as input the end-effector configuration
reference, and provides desired end-effector position, attitude and linear and
angular velocities as outputs to be used by the kinematic controller.

8.1.1.1 Equality tasks

From Figure 7.1 and 7.2 it is apparent that the lower priority base position
task is not executed optimally in the SRMTP framework. Transient errors
are observed at multiple times even though the tasks are perfectly compatible.
This is a known drawback with the SRMTP framework and the price to pay
for avoiding algorithmic singularities. In this case, the MTP framework would
obtain an optimal velocity reference with respect to the lower priority base

143

144 CHAPTER 8. DISCUSSION

positioning task as long as they are compatible. This is not a problem for the
iCAT framework because it computes the null space operators in a different
way, ensuring singularity robustness while lower priority tasks are executed
more optimally. This is easily seen by comparing Figure 7.1a and Figure 7.3a
with respect to the base movement, which is reduced significantly in the iCAT
approach.

After t = 350 s, the end-effector desired position is no longer compatible with
the desired base position. It is evident that the strict priority among the equality
tasks hold since the end-effector task is executed perfectly, despite the actuation
index task being active, while the base positioning task assumes a steady state
error.

An important drawback with velocity level redundancy resolution is the fact
that operational space acceleration references cannot be specified. This fact
inevitably leads to worse tracking performance, however, this cannot really be
observed from the simulations in this thesis since only set-point regulation has
been considered.

8.1.1.2 Set-based tasks

Since safety related set-based tasks should be introduced as high-priority tasks,
the highest priority equality task will suffer from worse transient behavior when
set-based tasks are activated within the set-based SRMTP framework. Even
though no differences in transient behavior due to the activation of set-based
tasks are seen in Figure 7.1 and Figure 7.3, the iCAT framework should execute
the highest priority equality task better when set-based tasks are activated.

From the figures it is seen that all set-based tasks are always satisfied for
the iCAT framework. For the non-smoothed and smoothed SRMTP approach,
the collision avoidance task is not fully satisfied at all times as seen in Fig-
ure 7.1d. This is a result of inaccuracies in the dynamic control, which are
bound to occur without acceleration feedforward whenever the velocity refer-
ences change significantly due to a change in end-effector configuration or the
activation/deactivation of tasks. Hence, the assumption ζ = ζd does not hold

8.1. KINEMATIC CONTROL 145

straight after the end-effector configuration set point changes, which means that
the integral error becomes non-zero before the set-based collision avoidance task
is activated as seen in Figure 8.1. This can be significantly improved by employ-
ing numeric acceleration feedforward, however, since the velocity references are
not continuous when the set-points change and whenever tasks are activated
and deactivated, a numeric acceleration scheme will result in excessively large
control inputs. Moreover, for real-life implementations, numeric differentiation
is sensitive to sensor noise.

0 50 100 150 200 250 300 350 400

0

0.05

0.1

0.15

0.2

0.25

Figure 8.1: Velocity and integral error for the SRMTP framework without
smoothing.

The iCAT framework has a high number of parameters, which means that
the tuning procedure can be very time consuming [34]. In contrast, the set-based
SRMTP framework without smoothing requires very little parameters, which

146 CHAPTER 8. DISCUSSION

makes the tuning procedure significantly easier. However, the recursive control
law formulation of the iCAT framework in Section 3.4.3 enables an arbitrary
number of set-based priority levels to be effortlessly defined. For the set-based
SRMTP framework however, the implementation complexity increases drastically
whenever individual set-based tasks are added to their own priority levels.

In [18], it is stated that the loss of strict priority between tasks in the
iCAT framework when set-based tasks are in transition can lead to undesirable
behavior. However, the authors in [5] argue that the loss of strict priority during
transitions is a good thing, since the set-based task in transition can share DOFs
with lower priority equality task whenever the set-based task is not fully active.
The author is inclined to agree with the latter since fully activating set-based
tasks before they reach their boundaries would result in slightly overconstraining
the system. The only possible undesirable behavior that comes to mind, could
be some strange coupling effects between the set-based tasks and the equality
tasks. This is not observed in the simulations however.

As noted in Section 3.4, an arbitrary point that is within the valid set, but
not in the transition zone is defined for every set-based task. Whenever the
set-based task enters the transition zone, it is immediately pushed back inside
toward the reference point, however, lower priority tasks may continue to push
it toward its boundary while in transition. How close the set-based task is to
the boundary of its valid set determines how aggressively it is controlled, and
strict priority between the set-based task and lower priority tasks will only hold
when the set-based task has reached the boundary. In contrast, the smoothed
set-based SRMTP framework attempts to slowly control the set-based task
toward its boundary after the transition zone is reached. Strict priority is only
lost during the transition from one velocity reference to another, which can be
made arbitrarily short by the choice of smoothing function and its parameters.
This effectively enables the entire valid set of the set-based task to be utilized,
which cannot be said for the iCAT framework.

8.2. OPERATIONAL SPACE CONTROL 147

8.1.2 Acceleration level redundancy resolution

The only acceleration-based kinematic control approach is the proposed extension
of the SRMTP framework to acceleration level redundancy. In this approach,
the dynamic controller reduces to a feedback linearizing controller, where the
acceleration reference is given by the kinematic controller. From Figure 7.5, it
is observed that the activation/deactivation of set-based tasks results in large
spikes in the joint torque and thruster inputs. This is a result of the need for
relatively large derivative gains for the set-based tasks, and the resulting control
inputs are obviously not feasible for AIAUVs where thruster dynamics play
a key role. However, introducing activation thresholds and smoothing of the
acceleration references, the control inputs are more feasible in the sense that the
largest spikes are gone, as depicted in Figure 7.6.

The acceleration level SRMTP framework also suffers from non-optimal
transient behavior of lower priority tasks. This is expected since the only
difference between (6.66) and (6.59), is the velocity or acceleration references.
When the desired end-effector position changes, transient errors occur in the lower
priority base positioning task, even though the tasks are perfectly compatible.
The MTP framework can also be formulated for the acceleration level [48],
employing this scheme would result in optimal execution of lower priority tasks, at
the expense of introducing algorithmic singularities when tasks are not compatible.
Since the simulations have been designed to have conflicting tasks, some kind of
singularity handling would have to incorporated.

The set-based tasks are always contained within their valid sets, however,
achieving this required a large derivative gain for the collision avoidance task for
the non-smoothed approach.

8.2 Operational Space Control

Method 1, which fully linearizes the task dynamics for every task whenever
they are compatible achieves slightly better transient behavior with respect

148 CHAPTER 8. DISCUSSION

to the lower priority equality tasks. This can be observed by comparing the
end-effector attitude and the end-effector and base position plots in Figure 7.7,
7.9 and 7.11, while paying special attention to what the activation of higher
priority set-based tasks imply for the equality tasks. However, the difference in
equality task performance is essentially negligible in the two first approaches.
Method 3, which results in more complicated and nonlinear task space dynamics,
is subject to clear performance losses in the end-effector orientation whenever
higher priority set-based tasks are activated as seen from Figure 7.11e and 7.11g.
This can be explained by the task dynamics given by (4.51), where only the
highest priority task has linear task dynamics. The performance losses in lower
priority tasks are expected to be even more significant for trajectory tracking.

Method 1 and 2 attains the best performance with respect to the satisfaction
of set-based tasks. All non-smoothed approaches struggle with the collision
avoidance task, where the minimum distance to the obstacle is not satisfied for
any of the approaches. Since operational space control are dynamic approaches
operating at the torque level, instantaneously reducing some non-zero velocity
toward an obstacle to zero proves difficult. This can be improved by increasing
the derivative gain of the collision avoidance task, at the expense of requiring
larger rates of change for the control inputs at the time of activation. For
set-based tasks such as these, activation thresholds, physical thresholds and
safety thresholds should be defined as in [18]. Activation and safety thresholds
are in fact defined in every smoothing approach in this thesis, as well as for the
collision avoidance task.

When the smoothing approach is employed, the set-based tasks are satisfied
for all time in every approach. Once again, the first method yields the best
performance with respect to the equality tasks, managing to keep the base in
its desired position at all times whenever possible. Moreover, this is the only
method where the effects of activating/deactivating set-based tasks cannot be
seen in the end-effector orientation. These effects are most noticeable in the
third method.

It is interesting to observe the differences in the commanded forces and

8.2. OPERATIONAL SPACE CONTROL 149

torques τ when set-based tasks are activated and deactivated without smoothing.
By inspecting Figures 7.7h, 7.9h and 7.11h, it is seen that method 1 exhibits
the largest discontinuities due to the activation/deactivation of set-based tasks,
followed by method 2 which performs slightly better, while method 3 performs
significantly better. This observation makes sense given that every acceleration
reference changes whenever set-based tasks are activated/deactivated within the
first approach. Additionally, method 1 and 2 employ the null-space operator of
all the higher priority tasks within the task specific inertia matrix, which means
that the task specific inertia matrix changes for all tasks every time set-based
tasks are activated/deactivated. In contrast, the expression for the task specific
inertia matrix does not change depending on which tasks are active for method
3. Moreover, the acceleration references are constant for all time, which means
that the discontinuities in the commanded forces and torques are only to be
attributed to the change in null space operators and in the highest priority
control torque.

By smoothing the commanded forces and torques, they can be made arbitrar-
ily smooth by choice of smoothing function parameters. However, since strict
priority among tasks is not satisfied whenever the control torque is transitioning
from one mode to another the transition time should be minimized. Therefore,
there is an inherent trade-off between strict priority and smoothness of the
commanded forces and torques within this approach. The activation thresholds
can be increased if longer transition times for smoother references are needed,
which comes at the expense of slightly overconstraining the system since it
becomes harder to deactivate set-based tasks when they are still being slowly
controlled toward their boundaries as explained in Section 8.3.1.

8.2.1 Uncertainty in the dynamic parameters

Uncertainties in the inertia matrix used to calculate the null space operators
imply that the null space operators are no longer dynamically consistent, which
further implies that there is interference among tasks since lower priority tasks

150 CHAPTER 8. DISCUSSION

may generate accelerations affecting higher priority tasks. This makes it harder
to ensure the satisfaction of high priority set-based tasks. However, given that
the results in [26] hold, such that (4.12) is statically consistent even when the
inertia matrix contains modeling errors, static consistency should also hold for
the generalized null space operator defined by (4.17) and (4.18). This is justified
by the fact that the generalized null space operator reduces to (4.12) for the
case of two tasks, as well as satisfying the same properties that was utilized in
the proof of static consistency in [26].

From inspection of Figure 7.14, Figure 7.15 and Figure 7.16, it is clear that
even though the transient behavior is significantly worse, the equality tasks still
reach their desired values at steady-state whenever possible according to their
priority. Even though the equality tasks are no longer compatible at t = 350 s,
priority among the equality tasks is still satisfied in steady-state, since the end-
effector configuration reaches its desired values while the base position suffers a
constant error at the end of the simulation. Because of the excessive chattering in
the activation and deactivation of the actuation index task, the base positioning
task is not strictly on priority level 3 in the time interval t ∈ [350, 400]. This
makes it harder to verify from simulations that tasks on priority level 3 or lower
does not interfere with higher priority tasks in steady state conditions.

It is interesting to observe the difference in the thruster and joint torque
inputs when the inertia matrix is fully known and when its not. In Figure 7.7, the
control inputs decrease instantaneously when the equality tasks are incompatible
at t = 350 s and the inertia matrix is perfectly known. In Figure 7.14 the control
inputs rapidly increase straight after the equality tasks are no longer compatible.
The same conclusions can be drawn from comparing the control input plots for
method 2 and method 3 with and without uncertainties. This can be explained
by the fact that the null space operators are no longer dynamically consistent
when there are uncertainties in the inertia matrix, which means that lower
priority tasks can generate accelerations affecting higher priority tasks. Hence,
the acceleration effects generated by lower priority tasks are not fully removed
by the null space operators. Consequently, increasing the control gains of a lower

8.2. OPERATIONAL SPACE CONTROL 151

priority task will lead to larger transient errors in the higher priority task and
larger control inputs when the tasks are not compatible. For instance, method 3
could have performed significantly better with respect to the base positioning
task by increasing the control gains of the base positioning task, however, this
results in very large control inputs when the tasks are no longer compatible at
t = 350 s.

Method 1 still outperforms method 2 with respect to the transient behavior of
the lower priority base positioning task and the end-effector orientation whenever
set-based tasks are active. However, activation and deactivation of tasks leads
to more abrupt changes in the commanded forces and torques for method 1
compared to method 2, which is also seen in the thruster and joint torque inputs.
This was observed and discussed in the simulations with perfect knowledge of
the inertia matrix as well, but it is seen more clearly here.

Method 3 performs a lot worse than both method 1 and 2 with respect to the
satisfaction of set-based tasks and the transient behavior of lower priority tasks
as seen in Figure 7.16. Activation and deactivation of set-based tasks may lead
to smaller instantaneous changes in the commanded forces and torques. However,
the thruster and joint torque inputs generally have a much larger magnitude for
this method. Moreover, the exclusion of the null space operator of the higher
priority tasks seem to make method 3 more sensitive to interference from lower
priority tasks, making it harder to satisfy set-based control objectives while
increasing the magnitude of the control inputs.

Finally, chattering in the activation and deactivation of tasks seems to be
highly problematic when the inertia matrix is uncertain. A possible improvement
could be to not deactivate set-based tasks until they have been active for a
certain period of time. Alternatively, the dynamic model could be employed in
order to predict the task velocities for several time steps into the future, only
deactivating the task if the task velocity has the correct and same sign at every
iteration. A completely different and more practical approach could be to to
filter the output commanded forces and torques [49].

152 CHAPTER 8. DISCUSSION

8.3 Kinematic Control vs Operational Space Con-
trol

The weakness of the SRMTP framework with respect to the optimal execution
of lower priority tasks is evident from both the velocity level and acceleration
level redundancy resolution schemes, the base position exhibits transient errors
essentially every time the desired end-effector configuration changes. For ac-
celeration level redundancy resolution, transient errors can clearly be seen in
the end-effector task when set-based tasks are activated, even though the tasks
are compatible. These effects are not observed at all in the operational space
controller that dynamically decouples the tasks from Section 6.7.1, they are
barely noticeable in the non-compensation approach from Section 6.7.2 while
transient errors in the end-effector orientation as a result of the activation of
set-based collision avoidance and actuation index tasks are clearly seen in the last
operational space controller from Section 6.7.3. However, the transient errors in
the base positioning task are considerably smaller for all operational space ap-
proaches compared to the acceleration level SRMTP framework. Poor execution
of lower priority tasks is a bigger drawback when high-priority set-based tasks
are considered, since the equality task of highest importance always suffers from
poor transient behavior whenever set-based tasks are activated.

Kinematic control decomposes the control problem into a kinematic and
dynamic controller. The set-based kinematic controllers only utilize kinematic
relations in order to predict task velocities. However, they inherently rely
on the assumption ζ = ζd for velocity level kinematic control or ζ̇ = ζ̇d for
acceleration level kinematic control, but otherwise pay very little attention to
how this is achieved by a dynamic controller. This is often a good assumption
for industrial robot manipulators with fast tracking properties where the model
parameters are much easier to obtain. However, for an AIAUV, thruster dynamics
and hydrodynamic effects have a significant impact on the dynamics of the
system. The AIAUV equations of motion are derived under several simplifying
assumptions on the fluid flow [38], but the determination of the resulting model

8.3. KINEMATIC CONTROL VS OPERATIONAL SPACE CONTROL 153

parameters is still very challenging due to their time-varying nature. Moreover,
drag forces have a much larger effect on the AIAUV base compared to a heavier
UVMS base, since AIAUV base is attached to any of the links, which does not
have significant inertia with respect to the rest of the system. Finally, inspection
and intervention tasks are performed at low-speed, where thruster dynamics
becomes essential to the control problem [50]. Consequently, designing dynamic
controllers satisfying the kinematic control assumptions for AIAUVs is difficult
and not straightforward. Furthermore, by employing a kinematic control scheme
for an AIAUV in work mode, the contact forces with the environment can only
be handled by indirect force control, which is an important drawback compared
to operational space control.

When the dynamic controllers no longer accurately track the output of the
kinematic controller fast and accurately enough, the overall control performance
degrades significantly. This is especially true for the set-based acceleration
control approach, which explicitly relies on this assumption to predict task
velocities which determine the activation and deactivation of tasks. Priority
among tasks can no longer be guaranteed when there are errors in the dynamic
control.

One significantly challenge related to operational space control of an AIAUV
is that it relies on inverse dynamic control, which requires accurate knowledge of
the dynamic model. Identifying the model parameters for underwater vehicles is
very difficult in general [19]. The set-based operational space approach outlined
in this thesis is even more vulnerable to modeling inaccuracies since the predicted
task velocities are estimated from the dynamic model as observed from (6.70) and
(6.71). However, since modeling errors do not distort the operational space null-
space projections in steady-state, tasks at different priority levels are not coupled
in steady-state, even though the dynamic consistency property is lost and tasks
are coupled during the transient phase. This legitimizes task priority schemes for
operational space control even if the model parameters are not exactly known.
The same cannot be said for velocity or acceleration level kinematic control,
where tasks are coupled whenever the assumptions on the dynamic controller

154 CHAPTER 8. DISCUSSION

does not hold. Modeling errors can be mitigated by utilizing sliding mode or
adaptive control within an operational space task priority scheme. An adaptive
control approach would increase the feasibility of the proposed approach for
operational space set-based control, since the obtained estimates would improve
the predicted task velocities σ̇ employed in Algorithm 2.

8.3.1 Challenges related to set-based acceleration and op-
erational space control

When resolving redundancy at the velocity level, the set-based tasks are activated
when the boundary of the valid set is reached and the sign of the task derivative
entails that the task will leave its valid set if not accounted for. At this point,
the set-based task error is zero, and since lower priority tasks cannot generate
velocities that interfere with the high priority set-based task, the set-based task
velocity becomes zero when lower priority tasks are projected through the null
space of the Jacobian of the set-based task, without any other need for control of
the set-based task. However, when set-based tasks are introduced as high priority
tasks in an acceleration level or torque level redundancy resolution scheme, lower
priority tasks cannot generate accelerations affecting higher priority set-based
task. Since the set-based task must have a non-zero task velocity pushing it
outside of its valid set when it was activated, projecting the lower priority tasks
through the null space of the higher priority task only results in the acceleration
of the set-based task being zero, while some constant velocity still continues to
push the task outside of its valid set. Hence, the acceleration reference of the
set-based task has to be considered, which in its general form is given by (2.27).

In order to ensure stability, the derivative gain Kd has to be non-zero. A
proportional term controlling the task towards the boundary should in theory
help by pushing the task variable back toward its valid set in case of overshoots.
However, this leads to excessive chattering in the activation/deactivation of
tasks. This can be explained by noticing that after a small overshoot above
or below the boundary of the valid set, the proportional term tries to push it

8.3. KINEMATIC CONTROL VS OPERATIONAL SPACE CONTROL 155

back towards the boundary, creating a set-based task velocity that pushes the
task toward its valid set. When the set-based task velocity of a less restrictive
acceleration or torque reference is evaluated in the next time step according to

σ̇(tk) = J
(

ζ(tk−1) + ∆tζ̇d(tk−1)
)
, (8.1)

for acceleration based control or (6.70) and (6.71) for torque level control, this
acceleration or torque reference may not change the task velocity of the set-based
task enough in order to change its sign. The set-based task is subsequently
deactivated, only to be activated a few time steps later when the less restrictive
reference has managed to change the sign of the task velocity.

The magnitude of the derivative gain of the set-based task plays a significant
role in regards to the dynamics of the set-based task after it is activated. If
lower priority tasks have created large set-based task velocities before the time
of activation, the derivative gain of the set-based task needs to be large in order
to freeze the task within a reasonable amount of time. The conclusion is that
the non-smoothed approach for set-based acceleration or torque control does not
perform satisfactory. Overshoots above or below the boundary of the valid set
will occur every time a set based task is activated, which requires the need for
large derivative gains in order to mitigate the overshoot. Moreover, proportional
terms cannot be used due to excessive chattering, which means that set-based
tasks are frozen slightly outside their valid sets at best.

The smoothing approach where activation thresholds are defined around the
boundaries of the valid sets of the set-based tasks performs better. This approach
yields continuous acceleration or torque references, while set-based tasks are
less likely to violate their valid sets. However, by including proportional terms
and controlling the set-based tasks toward their boundaries, the task obtains a
positive or negative task velocity, depending on whether it is controlled toward
an upper or lower bound, respectively. Moreover, set-based operational space
control is a dynamic approach at the force/torque level, where the task velocity
for a less restrictive torque reference is predicted by integrating (6.70) and pre-

156 CHAPTER 8. DISCUSSION

multiplying the result with the task Jacobian in question. Therefore, for a task
to be deactivated when it is already active and slowly being controlled toward
its limit, a less restrictive torque reference needs to change the sign of the task
velocity over the integration time interval. This time interval is one time step
of the fixed-step ODE solver in the simulations, which is set to 0.1 s, making
it very hard to deactivate tasks that have not yet reached their boundaries.
In conclusion, introducing activation thresholds and proportional terms such
that the set-based tasks are activated earlier and slowly controlled toward their
boundaries makes it easier to satisfy the constraints on the set-based tasks,
while it simultaneously becomes harder for lower priority tasks to deactivate the
set-based tasks when they are still controlled toward their boundaries.

Chapter 9

Conclusions and Future
Work

In this thesis, several approaches to redundancy resolution of robotic systems
have been investigated, where all approaches are in the form of task priority
control frameworks. A special focus has been given to set-based tasks. The
set-based SRMTP framework has been extended to handle multidimensional
set-based tasks and an extension to acceleration control has also been presented.
The same methodology for handling set-based tasks has been utilized in order
to formalize a scheme for set-based operational space control. Within this
framework, the null space operator from [22] has been proven to be dynamically
consistent when the inertia matrix used to compute it is fully known. Moreover,
whenever the inertia matrix is uncertain, static consistency has been proven,
which entails that tasks at different priority levels are not coupled at steady
state conditions.

All of the schemes for set-based task priority control have been formulated
and simulated for an AIAUV in set-point regulation scenarios. Simulations have
shown decent performance for all of the frameworks, when perfect knowledge of

157

158 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

dynamic parameters are assumed, and thruster dynamics are neglected. These
frameworks for set-based control all rely on activation and deactivation of set-
based tasks, which may induce somewhat large and sudden changes in the
control inputs. While this may work for industrial or humanoid robots with
sufficiently fast actuator dynamics, the author conjectures that it is a bigger
challenge for AIAUVs with significant thruster dynamics. To mitigate large and
sudden changes in the references, activation thresholds can be defined in addition
to the boundaries of the set-based tasks. This permits smaller control gains
for set-based acceleration and operational space control, since the activation
thresholds serve as a soft activation where the set-based task is slowly controlled
toward its boundary as long as other tasks cannot guarantee the satisfaction of
the set-based task. Control reference smoothing has been used in connection
with the activation threshold approach in order to remove any discontinuities
arising from activation and deactivation of tasks.

In velocity level kinematic control, operational space acceleration references
cannot be accounted for, which inevitably leads to worse tracking behavior.
Acceleration level kinematic control does not suffer from this drawback, but
satisfying the assumption of perfect tracking of the acceleration references may
be harder in practice. Furthermore, all kinematic control schemes reduce the
handling of contact forces with the environment to indirect force control, which
is a drawback with respect to AIAUVs in work mode.

The operational space formalism is a very promising approach for AIAUVs
operating in intervention mode, where contact forces with the environment need
to be considered. It permits any kind of force control scheme to be employed,
while static consistency of the null space operators can always be ensured, which
implies that tasks at different priority levels are not coupled in steady state,
even though the operational space controllers contain modeling errors.

9.1. FUTURE WORK 159

9.1 Future work

Simulations for a trajectory tracking scenario should be conducted. This would
better highlight the difference between velocity control and acceleration/torque
control, where task space accelerations can be utilized. Thruster dynamics
should be taken into consideration as they are essential to the control problem
at low speed regimes. More realistic behavior without modeling the full thruster
dynamics could be also obtained by limiting the rate of change of the commanded
thrust. Such constraints could be integrated into the control allocation problem,
resulting in a constrained control allocation algorithm.

The method for activation and deactivation of set-based tasks within ac-
celeration based kinematic control and operational space control needs some
refinement. As discussed in Section 8.3.1, adding proportional control terms for
set-based tasks within these approaches is not straightforward, as it often leads
to chattering in the activation/deactivation of tasks. Moreover, by employing
activation thresholds as done in the smoothing approaches, the set-based tasks
become harder to deactivate once activated. Future work should investigate
methods that does not rely on the extended tangent cone, for instance by looking
at the possibility of extending the activation/deactivation scheme from [5] to
operational space control.

There is a lot of future work to be done with respect to task priority opera-
tional space control. Sliding mode or adaptive controllers should be investigated
within this framework, and force control schemes for interaction with the envi-
ronment should be investigated for AIAUVs in intervention mode.

Robust or adaptive dynamic controllers for use in connection with kinematic
control has not been investigated. Hence, the kinematic control simulations
have essentially just showed the feasibility of set-based kinematic control given
a perfect dynamic controller as done in [49]. Therefore, it would be of interest
to consider kinematic control with a robust dynamic controller to observe the
effect that would have on the kinematic controller.

Finally, a formal and rigorous stability analysis of acceleration level kinematic

160 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

control and task priority operational space control would improve the theoretical
foundation of the frameworks.

Appendix A

Proofs

In [22] a null space operator for the n− 1 higher priority tasks is defined by

N T
P (n) = I −

n−1∑
i=1

M−1NP (i)J
T
i

(
JiN

T
P (i)M

−1NP (i)J
T
i

)−1
JiN

T
P (i) (A.1)

NP (n) = I −
n−1∑
i=1

NP (i)J
T
i

(
JiN

T
P (i)M

−1NP (i)J
T
i

)−1
JiN

T
P (i)M

−1, (A.2)

where P (n) = {1, 2, . . . , n− 1} represents the set of all higher priority tasks.
The null space operator can be formulated recursively as

NP (1) = I, (A.3)

NP (n+1) = NP (n)

(
I − JT

n

(
JnN T

P (n)M
−1NP (n)J

T
n

)−1
JnN T

P (n)M
−1
)
.

(A.4)

Two interesting properties of the null-space projection matrix are now proven.
Firstly, the null-space projector satisfies the following property

N T
P (n)M

−1 = M−1NP (n) (A.5)

161

162 APPENDIX A. PROOFS

Proof. Pre-multiplication of (A.2) by M−1 yields

M−1NP (n) = M−1 −
n−1∑
i=1

M−1NP (i)J
T
i

(
JiN

T
P (i)M

−1NP (i)J
T
i

)−1
JiN

T
P (i)M

−1

(A.6)

=

I −
n−1∑
i=1

M−1NP (i)J
T
i

(
JiN

T
P (i)M

−1NP (i)J
T
i

)−1
JiN

T
P (i)

M−1

(A.7)

= N T
P (n)M

−1 (A.8)

Furthermore, the null-space projector obeys the idempotent property N2
P (n) =

NP (n).

Proof. For n = 2 equation (A.4) yields

N2
P (2) =

(
I − JT

2

(
J2M−1JT

2

)−1
J2M−1

)2

= I − 2JT
2

(
J2M−1JT

2

)−1
J2M−1

+ JT
2

(
J2M−1JT

2

)T

J2M−1JT
2

(
J2M−1JT

2

)T

J2M−1

= I − JT
2

(
J2M−1JT

2

)T

J2M−1

= NP (2)

(A.9)

163

Assume that N2
P (n) = NP (n) holds for any n. Consider the case with n+ 1

N2
P (n+1) = N2

P (n)

(
I − JT

n

(
JnN T

P (n)M
−1NP (n)J

T
n

)−1
JnN T

P (n)M
−1
)2

= NP (n)

(
I − JT

n

(
JnM−1N2

P (n)J
T
n

)−1
JnM−1NP (n)

)2

= NP (n)

(
I − JT

n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)

)2

= NP (n)

(
I − 2JT

n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)

+ JT
n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)J

T
n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)

)
= NP (n)

(
I − JT

n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)

)
= NP (n+1)

(A.10)

Combining these properties the recursive null-space projection matrix equa-
tions may be rewritten

NP (1) = I (A.11)

NP (n+1) = NP (n)

(
I − JT

n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)

)
(A.12)

NP (n+1) =
(

I − NP (n)J
T
n

(
JnM−1NP (n)J

T
n

)−1
JnM−1

)
NP (n) (A.13)

By defining

Mi =
(

JiM
−1NP (i)J

T
i

)−1
(A.14)

J i = M−1JT
i Mi (A.15)

164 APPENDIX A. PROOFS

the null-space projection equations may be rewritten

NP (1) = I (A.16)

NP (n+1) = NP (n)

(
I − JT

n JT
nNP (n)

)
(A.17)

NP (n+1) =
(

I − NP (n)J
T
n JT

n

)
NP (n) (A.18)

Note that for n = 2, (A.1) reduces to

N T
P (2) = I − M−1NP (1)J

T
1

(
J1N T

P (1)M
−1NP (1)J

T
1

)−1
J1NP (1) (A.19)

= I − M−1IJT
1

(
J1IM−1IJT

1

)−1
J1I (A.20)

= I − M−1JT
1 M1J1 (A.21)

= I − J1J1 (A.22)

which is the same solution as (4.12) since(
N T

P (2)

)T

= NP (2) = I − JT
1 J1

T (A.23)

The purpose of the null-space operator defined in (A.1) is to ensure that
lower-priority tasks have no acceleration effects in all preceding objectives, which
is to say that the null space operator is dynamically consistent. A null space
operator is dynamically consistent if it satisfies the following property [51]

JiM
−1NP (n) = 0, ∀ i ∈ P (n) (A.24)

Proof. Consider the case with P (n + 1) and i = n, pre-multiplying (A.12) by

165

JnM−1 yields

JnM−1NP (n+1) = JnM−1NP (n)

(
I − JT

n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)

)
=
(

Jn − JnM−1NP (n)J
T
n

(
JnM−1NP (n)J

T
n

)−1
Jn

)
M−1NP (n)

= (Jn − Jn) M−1NP (n)

= 0
(A.25)

Let i ∈ P (n+1) and define Xn =
(

I − JT
n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)

)

JiM
−1NP (n+1) = JiM

−1NP (n)Xn (A.26)

= JiM
−1NP (n−1)Xn−1Xn (A.27)

= JiM
−1NP (i+1)︸ ︷︷ ︸

=0

Xi+1 · · · Xn−1Xn (A.28)

= 0 (A.29)

The following also holds for the generalized null space operator

NP (n)J
T
i = 0, ∀ i ∈ P (n) (A.30)

166 APPENDIX A. PROOFS

Proof. Consider the case with P (n+ 1) and i = n, equation (A.13) yields

NP (n+1)J
T
n =

(
I − NP (n)J

T
n

(
JnM−1NP (n)J

T
n

)−1
JnM−1

)
NP (n)J

T
n

= NP (n)J
T
n − NP (n)J

T
n

(
JnM−1NP (n)J

T
n

)−1
JnM−1NP (n)J

T
n

= NP (n)J
T
n − NP (n)J

T
n

= 0
(A.31)

Let i ∈ P (n+1) and define Yn =
(

I − NP (n)J
T
n

(
JnM−1NP (n)J

T
n

)−1
JnM−1

)
,

equation (A.13) yields

NP (n+1)J
T
i = YnNP (n)J

T
i

= YnYn−1NP (n−1)J
T
i

= YnYn−1 · · · Yi+1 NP (i+1)J
T
i︸ ︷︷ ︸

=0

= 0.

(A.32)

Note that the result above holds for all values of the inertia matrix used to
compute the null space operator, as long as the inertia matrix is positive definite.

References

[1] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl,
“The underwater swimming manipulator—a bioinspired solution for subsea
operations,” IEEE Journal of Oceanic Engineering, vol. 43, no. 2, pp.
402–417, April 2018.

[2] E. I. Grøtli, J. Tjønnås, J. Azpiazu, A. A. Transeth, and M. Ludvigsen,
“Towards more autonomous rov operations: Scalable and modular local-
ization with experiment data,” IFAC-PapersOnLine, vol. 49, no. 23, pp.
173 – 180, 2016, 10th IFAC Conference on Control Applications in Marine
SystemsCAMS 2016.

[3] A. Kohl, “Redundancy resolution methods for articulated intervention-auvs,”
NTNU, Tech. Rep., 2018.

[4] S. Moe, G. Antonelli, A. R. Teel, K. Y. Pettersen, and J. Schrimpf, “Set-
based tasks within the singularity-robust multiple task-priority inverse
kinematics framework: General formulation, stability analysis, and experi-
mental results,” Frontiers in Robotics and AI, vol. 3, p. 16, 2016.

[5] E. Simetti and G. Casalino, “A novel practical technique to integrate
inequality control objectives and task transitions in priority based control,”
Journal of Intelligent & Robotic Systems, vol. 84, no. 1, pp. 877–902, Dec
2016.

167

168 REFERENCES

[6] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and control
of articulated robot arms with redundancy,” IFAC Proceedings Volumes,
vol. 14, no. 2, pp. 1927 – 1932, 1981, 8th IFAC World Congress on Control
Science and Technology for the Progress of Society, Kyoto, Japan, 24-28
August 1981.

[7] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based re-
dundancy control of robot manipulators,” The International Journal of
Robotics Research, vol. 6, no. 2, pp. 3–15, 1987.

[8] B. Siciliano and J. J. Slotine, “A general framework for managing multiple
tasks in highly redundant robotic systems,” Fifth International Conference
on Advanced Robotics ’Robots in Unstructured Environments, pp. 1211–1216
vol.2, 1991.

[9] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators,” Robotics and Automa-
tion, IEEE Transactions on Robotics and Automation, vol. 13, pp. 398 –
410, 07 1997.

[10] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The nsb control: a behavior-
based approach for multi-robot systems,” Paladyn, vol. 1, no. 1, pp. 48–56,
Mar 2010.

[11] ——, “Stability analysis for the null-space-based behavioral control for
multi-robot systems,” pp. 2463–2468, Dec 2008.

[12] G. Antonelli, “Stability analysis for prioritized closed-loop inverse kinematic
algorithms for redundant robotic systems,” IEEE Transactions on Robotics,
vol. 25, no. 5, pp. 985–994, Oct 2009.

[13] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-loop
inverse kinematics schemes for constrained redundant manipulators with
task space augmentation and task priority strategy,” Int. J. Rob. Res.,
vol. 10, no. 4, pp. 410–425, Jul. 1991.

REFERENCES 169

[14] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on Robotics
and Automation, vol. 2, March 1985, pp. 500–505.

[15] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proceedings. 1991 IEEE Inter-
national Conference on Robotics and Automation, April 1991, pp. 1398–1404
vol.2.

[16] O. Kanoun, F. Lamiraux, and P. Wieber, “Kinematic control of redundant
manipulators: Generalizing the task-priority framework to inequality task,”
IEEE Transactions on Robotics, vol. 27, no. 4, pp. 785–792, Aug 2011.

[17] S. Moe, J. T. Gravdahl, and K. Y. Pettersen, “Set-based control for au-
tonomous spray painting,” IEEE Transactions on Automation Science and
Engineering, vol. 15, no. 4, pp. 1785–1796, Oct 2018.

[18] P. D. Lillo, F. Arrichiello, G. Antonelli, and S. Chiaverini, “Safety-related
tasks within the set-based task-priority inverse kinematics framework,” pp.
6130–6135, Oct 2018.

[19] G. Antonelli, Underwater Robots, ser. Springer Tracts in Advanced Robotics.
Springer International Publishing, 2018.

[20] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic program-
ming: Fast online humanoid-robot motion generation,” The International
Journal of Robotics Research, vol. 33, no. 7, pp. 1006–1028, 2014.

[21] O. Khatib, “A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation,” IEEE Journal on Robotics
and Automation, vol. 3, no. 1, pp. 43–53, February 1987.

[22] L. Sentis and O. Khatib, “Prioritized multi-objective dynamics and control
of robots in human environments,” vol. 2, pp. 764–780 Vol. 2, Nov 2004.

170 REFERENCES

[23] ——, “A whole-body control framework for humanoids operating in human
environments,” pp. 2641–2648, May 2006.

[24] L. Sentis, “Synthesis and control of whole-body behaviors in humanoid
systems,” Ph.D. dissertation, Standford University, Stanford, CA, USA,
2007, aAI3281945.

[25] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space
projections for redundant, torque-controlled robots,” The International
Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.

[26] G. Antonelli, P. Di Lillo, and C. Natale, “Modeling errors analysis in
inverse dynamics approaches within a task-priority framework,” 08 2018,
pp. 553–558.

[27] N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to integrate
unilateral constraints in the stack of tasks,” IEEE Transactions on Robotics,
vol. 25, no. 3, pp. 670–685, June 2009.

[28] B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2nd ed. Springer
Publishing Company, Incorporated, 2016.

[29] A. Liegeois, “Liegeois, a.: Automatic supervisory control of the configuration
and behavior of multibody mechanisms. ieee trans. syst. man cybern. 7(12),
868-871,” vol. 7, pp. 868–871, 12 1977.

[30] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The null-space-based behav-
ioral control for autonomous robotic systems,” Intelligent Service Robotics,
vol. 1, no. 1, pp. 27–39, Jan 2008.

[31] L. Sciavicco, B. Siciliano, and B. Sciavicco, Modelling and Control of Robot
Manipulators, 2nd ed. Berlin, Heidelberg: Springer-Verlag, 2000.

[32] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice Hall, 2002.

REFERENCES 171

[33] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Multi-priority
control in redundant robotic systems,” pp. 3752–3757, Sept 2011.

[34] E. Simetti, G. Casalino, F. Wanderlingh, and M. Aicardi, “Task priority
control of underwater intervention systems: Theory and applications,” Ocean
Engineering, vol. 164, pp. 40 – 54, 2018.

[35] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control.
Wiley, 2005.

[36] P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of redundant manipula-
tors,” in 1988 American Control Conference, June 1988, pp. 2135–2139.

[37] G. Golub and C. Van Loan, Matrix Computations, ser. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
2013.

[38] H. Schmidt-Didlaukies, “Modeling of articulated underwater robots for
simulation and control,” NTNU, Tech. Rep., 2018.

[39] J. Farrell, Aided Navigation: GPS with High Rate Sensors, 1st ed. New
York, NY, USA: McGraw-Hill, Inc., 2008.

[40] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, Ltd, 2011.

[41] R. Murray, Z. Li, S. Sastry, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Taylor & Francis, 1994.

[42] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: A theoretical and empirical comparison,” The International
Journal of Robotics Research, vol. 27, no. 6, pp. 737–757, 2008.

[43] M. Wrzos-Kaminska, “Path following control for underwater swimming
manipulators moving in 3d,” Master’s thesis, NTNU, June 2018.

172 REFERENCES

[44] T. A. Johansen and T. I. Fossen, “Control allocation - a survey,” Automatica,
vol. 49, pp. 1087–1103, 2013.

[45] G. Marani, J. Kim, J. Yuh, and W. K. Chung, “A real-time approach for
singularity avoidance in resolved motion rate control of robotic manipulators,”
in ICRA, 2002.

[46] A. E. Stene, “Operational space singularity avoidance for articulated inter-
vention auv,” NTNU, Tech. Rep., 2018.

[47] V. K. Nguyen, “Partial derivative of matrix functions with respect to a
vector variable,” Vietnam Journal of Mechanics, vol. 30, 07 2012.

[48] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Dynamic multi-
priority control in redundant robotic systems,” Robotica, vol. 31, no. 7, p.
1155–1167, 2013.

[49] J. Sverdrup-Thygeson, S. Moe, K. Y. Pettersen, and J. T. Gravdahl, “Kine-
matic singularity avoidance for robot manipulators using set-based manipu-
lability tasks,” pp. 142–149, Aug 2017.

[50] D. R. Yoerger, J. G. Cooke, and J. . E. Slotine, “The influence of thruster
dynamics on underwater vehicle behavior and their incorporation into
control system design,” IEEE Journal of Oceanic Engineering, vol. 15, no. 3,
pp. 167–178, July 1990.

[51] A. Dietrich, C. Ott, and J. Park, “The hierarchical operational space
formulation: Stability analysis for the regulation case,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 1120–1127, April 2018.

[52] S. Moe, “Guidance and control of robot manipulators and autonomous
marine robots,” Ph.D. dissertation, NTNU, 2016.

[53] T. D. Barfoot, State Estimation for Robotics. Cambridge University Press,
2017.

	Abstract
	Introduction
	Motivation
	Problem Description
	Literature review
	Task priority inverse kinematic control of redundant robotic systems
	Inclusion of set-based tasks in a task priority inverse kinematic framework
	Operational space task priority control

	Background and Contributions
	Outline

	Kinematic Control
	Introduction
	The Inverse Kinematics Problem
	Redundant Robotic Systems
	Task-Priority Schemes
	SRMTP Inverse Kinematics Framework
	Redundancy resolution at the velocity level
	Redundancy resolution at the acceleration level

	Set-Based Kinematic Control
	Introduction
	Set-Based SRMTP Framework
	Extension to acceleration level redundancy resolution

	Extension to Multidimensional Set-Based Tasks
	Introducing the activation matrix
	Example: High-priority set-based tasks
	Implementation aspects

	iCAT Framework
	Activation functions
	Set-based and equality tasks
	Kinematic control law

	Operational Space Control
	Introduction
	Operational Space Dynamics
	Generalized Null Space Operator
	Consistency of Null Space Operators
	Extension to n Tasks
	Null space operator within the task inertia matrix
	Compensating for coupling effects from higher priority tasks
	Omitting compensation terms
	Controllability of lower priority objectives

	Omitting the null space operator within the task specific inertia

	Set-Based Operational Space Control

	Modeling of AIAUVs
	Reference Frames for Navigation
	Kinematic Modeling of AIAUVs
	Differential kinematics
	Quaternions and Euler angles
	Forward kinematics
	Jacobians

	Equations of Motion

	Set-Based Control of AIAUVs
	Introduction
	AIAUV Model
	Control Allocation
	Set-Based and Equality Tasks for AIAUV Control
	End-effector collision avoidance
	Joint Limit Avoidance
	Actuator singularity avoidance
	End-effector configuration control
	Base position control
	Null space velocity
	Priority levels

	Set-Based Velocity Control
	Set-based SRMTP framework
	Smoothing of the system velocity references

	iCAT framework

	Set-Based Acceleration Control
	Smoothing the acceleration references

	Set-Based Operational Space Control
	Method 1: Dynamically decoupled tasks
	Method 2: Omitting compensation terms in the acceleration references
	Method 3: Omitting the null space operator from the task specific inertia matrix
	Smoothing the control torques

	Simulations
	Control Objectives
	Equality tasks
	Set-based tasks

	Implementation Specifics
	The mode definition
	Smoothing function
	Control allocation

	Kinematic Control
	Set-based velocity control
	Set-based SRMTP framework
	Smoothing the velocity references

	iCAT framework

	Set-based acceleration control
	Smoothing the acceleration references

	Operational Space Control
	Control parameters
	Smoothing

	Method 1: Fully linearized task dynamics
	Smoothing the control torques

	Method 2: No compensation of higher priority tasks
	Smoothing the control torques

	Method 3: Omitting the null space operator within the task specific inertia matrix
	Smoothing the control torques

	Uncertainty in the dynamic parameters
	Method 1
	Method 2
	Method 3

	Discussion
	Kinematic Control
	Velocity level redundancy resolution
	Equality tasks
	Set-based tasks

	Acceleration level redundancy resolution

	Operational Space Control
	Uncertainty in the dynamic parameters

	Kinematic Control vs Operational Space Control
	Challenges related to set-based acceleration and operational space control

	Conclusions and Future Work
	Future work

	Proofs
	References

