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Abstract

Historically, one would handle surge in compressor systems by operating far from
the surge line, and by doing so, simply avoiding the risk of surge. This will ensure
both the mechanical integrity and the safety of the machines, but it will also limit
the range of mass flow for which the compressor can be used. As surge can cause
a reduction in performance, or even damage the compressor, it is of major interest
to be able to predict unstable operation of the compressor in order to expand the
range of mass flow and thus expand the operating range of the compressor.

In this thesis, an anti-surge controller is proposed using a close-coupled valve(CCV)
and a state-of-the-art neural network(NN) Lyapunov function candidate for the
Moore-Greitzer compressor. A CCV in combination with the Moore-Greitzer com-
pressor can stabilize the system by modifying the characteristics of the compressor.
Lyapunov control theory has shown useful in order to determine and construct a safe
region for closed-loop dynamical systems. The objective of this thesis has been to
gain an overview of the state-of-the-art regarding stability and robustness in nonlin-
ear dynamical systems in order to maximize the safe level set that can be used as a
safety certificate for a given nonlinear, closed-loop dynamical compressor system. To
the best of the authors’ knowledge, an anti-surge controller for the Moore-Greitzer
compressor has never been implemented with the combination of Lyapunov control
theory and NNs before.

Two control laws for the Moore-Greitzer compressor in series with a CCV is created
using a NN Lyapunov function. The first control law resulted in a global asymp-
totically stable equilibrium beyond the original surge line. The second control law
focused on minimization of the pressure drop across the CCV, and the equilibrium
point was shown to be locally asymptotically stable. A training algorithm that iter-
atively ”grows” an estimate of the largest safe region in the state space was used to
show how well the different Lyapunov functions scored. The NN Lyapunov function
covered approximately 81% of the estimated region of attraction. These results were
compared to a traditional Lyapunov function candidate.

Keywords: Lyapunov control theory, neural networks, region of attraction,
Moore-Greitzer compressor, anti-surge controller, global asymptotic stability.
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Sammendrag

Tradisjonelt ville man h̊andtert surge i kompressorsystemer ved å operere langt fra
”the surge line”. Ved å gjøre dette vil systemet være stabilt i åpen sløyfe og man
unng̊ar dermed at surge oppst̊ar. Selv om dette vil sikre integriteten til systemet,
vil det ogs̊a begrense operasjonsomr̊adet til kompressoren. Hvis surge skulle oppst̊a
vil det redusere ytelsen til kompressoren, eller i verste fall resultere i at den blir
ødelagt.

Målet for denne mastergradsoppgaven har vært å utvikle en anti-surge kontroller
for Moore-Greitzer kompressoren kombinert med en CCV, med hensikt å utvide
operasjonsomr̊adet. Anti-surge kontrolleren baserer seg p̊a en kombinasjon av Lya-
punov kontroll teori og neurale nettverk. Lyapunov kontroll teori har vist seg å være
nyttig for b̊ade å finne og lage stabile attraksjonsomr̊ader for dynamiske systemer i
lukket sløyfe, mens neurale nettverk er gode til å lære seg ulineære systemer.

I denne avhandlingen har to kontroll-lover for Moore-Greitzer kompressoren, som
baserer seg p̊a en neural nettverk Lyapunov funksjon, blitt utviklet. Den første
kontroll-loven resulterte i et globalt asymptotisk stabilt likevektspunkt. Den andre
kontroll-loven har fokus p̊a minimering av trykktapet over CCVen og resulterte i et
lokalt asymptotisk stabilt likevektspunkt. En treningsalgoritme som iterativt bygger
et estimat av det faktiske attraksjonsomrdet er benyttet for å visualisere prestasjonen
til Lyapunov funksjonen. Lyapunov funksjonen basert p̊a neurale nettverk dekket
tilnærmet 81% av det estimerte attraksjonsomr̊adet. Resultatet ble sammenlignet
med en tradisjonell Lyapunov funksjon.
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Chapter 1

Introduction

1.1 Motivation

Compressor surge represents undesired oscillations in mass flow and pressure, and
can cause a reduction in performance or even damage the compressor. It occurs if
the flow is throttled beyond the surge line; therefore, the cautious way to handle
surge is to ensure that the system is stable in open-loop. As this will limit the range
of mass flow for which the compressor can be used, it is preferred to implement
an anti-surge controller in order to stabilize the equilibrium beyond the original
surge line. As for any safety-critical application, it is unacceptable for a safe level
set to contain anything but safe states, as this can damage the application or its
surroundings. It is therefore critical that the range of mass flow is never expanded
at the expense of safety.

1.2 Problem formulation

The main objective of this master thesis is to design a state-of-the-art anti-surge
controller for the Moore-Greitzer compressor in combination with a close-coupled
valve. The focus will be maximization of the safe level set V in order to expand the
operating range for the compressor system. The CCV can stabilize the equilibrium
by modifying the characteristics of the compressor but at the expense of a pressure
drop over the valve. The Lyapunov direct method will be used to determine the sta-
bility of the equilibrium for the given compressor parameters. However, there is no
general way to find a Lyapunov function candidate, and it is even more challenging
to find a Lyapunov function candidate that can ensure the maximization of the safe
level set. Therefore, in this thesis, a neural network Lyapunov function candidate is
proposed in order to create the anti-surge controller with a focus on maximization of

1



Vθ. Dynamical systems can be complicated to model accurately because of all of the
parameters involved, such as the mechanics of the system and its surroundings (Gale
et al., 2013). While traditional Lyapunov function candidates have restrictions on
the dynamics, which can lead to a mismatch between the proposed safe level set and
the largest safe level set, NNs have shown to be great nonlinear learners, and can
be used to adapt the Lyapunov function candidate to the shape of the largest safe
region in the state space.

Along with the main objective, an evaluation of the performance of the code required
to solve the NN Lyapunov function (Richards et al., 2018) will be given. The work
will be implemented with Python and the toolbox SOSTOOLS in MATLAB.

1.3 Objective and Research Questions

This work will have two primary objectives, respectively:

Objective 1: Construction of Safe Level Sets

To gain an overview over state-of-the-art regarding the construction of safe
level sets for closed-loop dynamical systems in general and design an anti-
surge controller based on NNs for the Moore-Greitzer compressor with focus
on maximization of its safe level set in particular.

Objective 2: Evaluation

Evaluate the performance of the code required to create a Neural Network
Lyapunov function (Richards et al., 2018) for a nonlinear system more com-
plicated than the inverted pendulum system in the original code.

Along with the two objectives of this thesis, two research questions regarding sta-
bility analysis and safe level set maximization will be investigated:

Research Question 1: Lyapunov Function Candidate

Is it possible to find a suitable Lyapunov function candidate for the Moore-
Greitzer compressor system?

Research Question 2: Safe Level Set Maximization

Is it possible to maximize the region of the state-space where a known pol-
icy can be applied without necessarily knowing the true region of attraction
beforehand?

2



1.4 Outline

The thesis is organized as follows. The reader interested in an extensive literature
study regarding nonlinear, closed-loop dynamical systems in general and compressor
surge control in particular, as well as relevant theory, can read Chapters 2 and
3, respectively. Chapter 4 thoroughly describes the implementation procedure of
the NN Lyapunov function candidate, along with the Greitzer-Moore compressor
system. The results of the NN Lyapunov function candidate for the Greitzer-Moore
compressor system are presented in Chapter 5, in addition to a traditional Lyapunov
function candidate for comparison. Chapter 6 contains the discussion regarding all
results and the restrictions of the algorithm. Chapter 7 and 8 describes suggestions
for future work and concluding remarks, respectively. Finally, an appendix with
relevant contents regarding Lyapunov control theory and the implementation of
anti-surge controllers can be found in the end part of this thesis.

3
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Chapter 2

Related Work

In this Chapter, a literature study regarding both feedback control and artificial in-
telligence in closed loop, in addition to compressor surge control, will be given. This
Chapter is organized as follows: Section 2.1 focuses on approaches to estimate and
maximize the region of attraction for nonlinear dynamical systems. In Section 2.2,
the implementation of different anti-surge controllers is addressed, with a particular
focus on compressors in series with a CCV.

2.1 Feedback control and AI in closed loop

Fontaine et al. (2004) propose a nonlinear control law for an axial flow compressor
with a bleed ring. The objective of the article is to stabilize the equilibrium point
and maximize the region of attraction. It is achieved with a combination of Lya-
punov control theory, LgV controller, and the Linear Quadratic Regulator method.
Barkhordari et al. (2008) propose a method of enlarging the region of attraction of
nonlinear systems by applying an input-output liberalization approach to the sys-
tem. A generalized eigenvalue problem is created which results in a controller that
stabilizes the system and, at the same time, maximizes the ROA.

Henrion and Korda (2013) present a method for computing the region of attraction as
a convex infinite-dimensional linear programming(LP) formulation, where the LP is
solved with a hierarchy of convex finite-dimensional linear matrix inequalities(LMIs).
The authors argue that the method is easy to apply as no additional data is required
except the problem description. Another strength of the approach is that LMIs
convergence can be theoretically guaranteed. The method is computed on four
different systems, to show the flexibility of the method as an alternative approach
to Lyapunov control theory.

5



Berkenkamp et al. (2016) consider an approach that learns the region of attraction
from experiments on real systems, with a high probability that the safe region only
contains safe states, an essential criterion in safety-critical applications. This ap-
proach addresses the problem of errors introduced by the model. The ROA can be
very different for a model of the system and the real system due to model errors.
Additionally, they implement an algorithm based on Lyapunov control theory with
the focus of expanding the region of attraction. Their approach consists of using
safe Bayesian optimization to learn from experiments where the ROA has been es-
timated. By doing so, one can learn about the real dynamics and at the same time,
ensure that the safety requirements are not violated. The region of attraction is
estimated given a known control policy which is based on experiments on the real
system. In order to achieve their goal, some assumptions have been made, which
will limit the practical use of the algorithm. However, it is an essential theoreti-
cal foundation for estimating the true region of attraction for non-linear dynamical
systems.

Richards et al. (2018) present a neural network Lyapunov function and a training
algorithm for learning accurate safety certificates for nonlinear, closed-loop dynam-
ical systems. Lyapunov control theory is used to provide a safety certificate for
identifying safe level sets by proving that the system is stable. The authors combine
Lyapunov control theory with NNs, in order to find not just fulfill the criteria of a
Lyapunov function, but to maximize the region of the state-space where it is possible
to apply a known policy without necessarily knowing the true region of attraction
beforehand. With this combination, the authors construct a NN Lyapunov candi-
date that always inherently yields a provable safety certificate. The algorithm’s goal
is to, given a known policy, find the largest safe region by adopting the candidate
to the shape of the dynamical system’s trajectories via classification of states as
safe or unsafe. A Sum-of-Squares Lyapunov function candidate is used as a starting
point to construct a NN Lyapunov candidate. Finally, the NN Lyapunov function
is tested on an inverted pendulum system and the result is compared to more tra-
ditional Lyapunov functions. For the inverted pendulum system, the NN Lyapunov
function performs much better than the alternative Lyapunov functions.

2.2 Compressor Surge Control

Simon and Valavani (1991) present the theoretical background for creating an anti-
surge controller based on Lyapunov control theory, which directly addresses the
nonlinear nature of the compressor characteristics. Gravdahl and Egeland (1997)
develop an anti-surge controller for a close-coupled valve in series with a compressor
in order to prevent the Moore-Greizer model from going into an unstable mode of
operation. The compressor surge happens if the compression system is operated
below the surge line, and this can cause a reduction in performance or even damage
the compressor. The proposed anti-surge controller is implemented by using back-
stepping, which uses feedback from the mass flow, to derive the control law for the
CCV and as a result, ensuring global uniform asymptotic stability(GUAS) beyond
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the original surge line. It is developed two controllers with different areas of ap-
plication. The first one is developed for situations where there are no disturbances
or only pressure disturbances. The controller only requires an upper bound on the
slope of the compressor characteristics. The second controller has its application
for cases of both pressure- and mass flow disturbances. As the second controller is
more complicated than the first one, it requires the B-parameter to be known, along
with the requirements from the first controller. As a result, the model is stabilized
beyond the original surge line.

Liaw et al. (2002) investigate surge control in compression systems with uncertain
characteristics. System robustness is ensured with Lyapunov control theory, and
asymptotically stability of the equilibrium point is proven. Furthermore, the authors
argue that since the approach strongly relies on the knowledge of the operating
point, a washout filter feedback controller is implemented in order to postpone and
restrain the occurrence of Hopf bifurcation. The controller does not require explicit
knowledge of the system equilibrium points.

Nieuwenhuizen et al. (2009) addresses the correspondence between the Van Der Pol
Equation and the Greitzer Model. As the authors’ state, the identification of model
parameters can be difficult with the Greitzer model, and often a priori knowledge
is combined with a tuning process. With the Van Der Pol equation more general
analytically approximations can be applied. In order to have a fair comparison, a
coordinate transformation was performed on the Greitzer model so that the position
and scaling of the limit cycles would be similar for the two models. The research
showed a linear dependency between the stability parameter and the period time for
large values of the parameter indicating the non-linearity and strength of damping.
It is concluded that it is a promising first step to map the similarity between the two
models as the presented systems almost have the same structure, but that further
investigation is needed.

Backi et al. (2013) develop an anti-surge controller based on Lyapunov control the-
ory, and provides a full state observer with local stability result for the Greitzer
compressor model. Backi et al. (2016) propose an anti-surge controller based on
feedback linearization for a close-coupled valve in a compression system. In order to
stabilize surge in a compression system, the feedback linearization methodology is
implemented by showing that the system is feedback linearizable, and then ensuring
absolute stability by using circle criterion analysis. With their method, the authors
can show with robustness analysis that the system can be stabilized and surge can
be avoided. It is important to note that the controller implemented is not able
to stabilize the system for significant feedback gains or constrained input signals.
Moreover, it is assumed that the Greitzer stability parameter B and the throttle
gain γ are known, which limits the robustness analysis.
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Chapter 3

Background Theory

In this Chapter, a basic introduction to compressor surge control and the technologies
needed in order to implement a NN Lyapunov function candidate for compressor
surge control will be given. This Chapter is organized as follows: In Section 3.1, an
introduction to compressor surge control is given. A basic introduction to nonlinear
systems with a focus on Lyapunov control theory is presented in Section 3.2. Section
3.3 focuses on artificial intelligence in general and NNs in particular. In Section 3.4
and 3.5, a basic introduction to the sum-of-squares approach and linear quadratic
regulators is given, respectively. Finally, in section 3.6 the further usage of the
technologies presented in the above sections is presented.

3.1 Compressor Surge Control

A compressor is a mechanical device that increases the pressure of a compressible
medium. Ferguson (1963) defines the function of a compressor as:

It is the function of a compressor to raise the pressure of a specified mass
flow of gas by a prescribed amount using the minimum power input.

The performance of a compressor depends on the relationship between the mass
flow through the compressor and the pressure rise over the compressor. This rela-
tionship is illustrated in Figure 3.1, where the surge line is where the system goes
into an unstable mode of operation, the stonewall line denotes the limitation of
the capacity of the compressor, and the load line is the pressure requirements of
the system. The compressor characteristics denote the steady-state pressure rise
achieved as a function of the mass flow and, finally, the intersection point between
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the compressor characteristics and the load line is the steady-state operating point
of the compressor (Nieuwenhuizen et al., 2009; Nieuwenhuizen, 2008).

Figure 3.1: Schematic representation of a compressor map, adopted from Nieuwen-
huizen et al. (2009); Nieuwenhuizen (2008). The surge line is where the system
goes into an unstable mode of operation, the stonewall line denotes the limitation
of the capacity of the compressor, and the load line is the pressure requirements
of the system. The compressor characteristics denote the steady-state pressure rise
achieved as a function of the mass flow and, finally, the intersection point between
the compressor characteristics and the load line is the steady-state operating point
of the compressor.

Compressor surge is a sort of aerodynamic instability which represents undesired
oscillations in mass flow and pressure, and it is characterized by a limit cycle in
the compressor characteristics. The phenomenon occurs if a compressor system is
operated beyond the surge line, where the system goes into an unstable mode of
operation. If that happens, it will cause a reduction in performance, but it can also
damage the compressor due to high vibrational loads; therefore, it is essential to
understand how to avoid surge and address the compressors. Surge can be divided
into mild/classic surge and deep surge. Mild/classic surge is characterized by oscil-
lations in both pressure and flow in the compressor system, and in deep surge, the
amplitude of the mass flow oscillations is so comprehensive that flow reversal occurs
in the compression system (Gravdahl and Egeland, 2012).
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Figure 3.2: Compressor characteristics, adopted from Gravdahl and Egeland (1997).
If the compressor operates at point A, and the mass flow is decreased, the pressure
will rise and the mass flow will increase. In this case, the system is stable. If the
system operates at point B and the mass flow decreases, so will the pressure, resulting
in the mass flow decreasing even more and the operating point moving further to the
left. When the pressure upstream of the throttle falls below the compressor delivery
pressure in point C, the mass flow will begin to increase up to point B, where the
cycle repeats itself.

In order to understand how surge works, consider Figure 3.2. If the compressor
operates at point A, and the mass flow for some reason decreased, then the pressure
will rise, forcing the mass flow to increase again; thus, if the compressor operates
at point A, the system is self-compensating, and surge will be avoided. However,
consider a system that operates at point B. In this case, if the mass flow decreases, so
will the pressure, resulting in the mass flow decreasing even more and the operating
point moving further to the left. When the pressure upstream of the throttle falls
below the compressor delivery pressure in point C, the mass flow will begin to
increase up to point B, where the cycle repeats itself. As a result of this observation,
in order to stabilize the system, it is crucial that the operating point is in a decreasing
slope, and not an increasing slope.

If surge occurred, the noise level would increase, and the piping around the com-
pressor could begin to vibrate. Moreover, it would influence the chemical process
connected to the compression system as both the mechanical and thermal load cor-
related with the surge could damage the system. An example of a system that is
first in a stable state, and then goes beyond the surge line and becomes unstable
can be seen in Figure 3.3. As can be seen, the oscillations can grow large. One
of the problems with surge avoidance is that it limits the range of mass flow for
which the compressor can be used, which is why there has been much research on
the design of anti-surge controllers. The model that has shown the be most pop-
ular is the Greitzer model. The Greitzer model simplifies the compressor system
to a plenum volume with an inlet duct from the compressor and an outlet duct to

11



the throttle valve. For more information about the work related to the design of
anti-surge controllers, the reader is referred to Chapter 2.

Figure 3.3: Example of pressure oscillations in surge, adopted from Nieuwenhuizen
et al. (2009); Nieuwenhuizen (2008). An example of a system that is first in a stable
state, and then goes beyond the surge line and becomes unstable.

The cautious way of dealing with surge, is to simply avoid it, which is achieved
by operating far from the line where the system goes into an unstable mode of
operation. Considering Figure 3.2, this is operating point A. It will ensure both
the mechanical integrity of the machines and the safety, but it also limits the range
of mass flow for which the compressor can be used. An alternative method is to
implement active surge control, which will stabilize an extended region of operation
for the compressor so that the productivity will be higher and the operation will
be safer (Yoon et al., 2012). In this case, feedback is used to stabilize the unstable
region left of the surge line.

One way to avoid surge is to add a close-coupled valve (CCV) in combination with
the Greitzer compressor, as it can stabilize the system by modifying the character-
istics of the compressor. The CCV can stabilize the equilibrium beyond the original
surge line, at the expense of a pressure drop over the valve. As the term close-
coupled implies, there is no significant mass storage between the compressor outlet
and the valve as the distance between them is too small (Simon and Valavani, 1991).
A figure of the schematic representation of the system is shown in Figure 3.4.
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Figure 3.4: Schematic representation of a compressor in combination with a close-
coupled valve, adopted from Gravdahl and Egeland (1997). Ψc(Φ) and Ψv(Φ) are
the compressor pressure rise and valve pressure drop, respectively, and Φ is the
axial mass flow coefficient. The pressure rise over the compressor is the sum of the
pressure rise over the compressor and the pressure drop over the valve. There is no
significant mass storage between the compressor outlet and the CCV.
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3.2 Nonlinear Systems

This section is inspired by Khalil (2015).

Control theory is divided into two branches: systems that satisfy the superposition
principle, and those that defy it. The superposition principle can be defined by two
properties: additivity and homogeneity (Khalil, 2015). Additivity can be defined
with the following mathematical equation

Definition: Additivity

F (x1 + x2) = F (x1) + F (x2)

and homogeneity says that the output is always directly proportional to the input
and is defined as follows

Definition: Homogeneity

F (ax) = aF (x)

for a scalar a. Linear algebra is an active field with many applications in engineering
physics, and a system is linear if it satisfies the superposition principle. The linear
state-space model takes the form

ẋ = A(t)x +B(t)u

y = C(t)x +D(t)u
(3.1)

where

x is the state vector, x ∈ Rn;
y is the output vector, y ∈ Rq;
u is the input/control vector, u ∈ Rp;
A(t) is the state matrix, dim[A(t)] = n× n
B(t) is the input matrix, dim[B(t)] = n× p
C(t) is the output matrix, dim[C(t)] = q × n
D(t) is the feedforward matrix, dim[A(t)] = q × p

In this case, the matrices are time-variant, but they can also be time-invariant.

Nonlinear systems are systems that defy the superposition principle. In order to
mathematically describe and solve these systems, more advanced mathematics has
to be performed. There is no doubt that linear systems are much easier to solve
and that there are powerful tools for solving linear mathematics. If possible, it is
beneficial first to linearize a nonlinear system about some operating point in order
to learn as much as possible from the linearization concerning the behavior of the
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system. However, there are two limitations of linearization. First, linearization
cannot predict the global behavior of the state-space system. The reason for this
is that the linearization is an approximation in the neighborhood of an operating
point, and it can only predict the behavior near that point, and not the behavior far
from it. Secondly, the dynamics of nonlinear systems are much more complex than
the dynamics of linear systems. Consequently, linearization does not fully capture
the behavior of a nonlinear system.

A nonlinear system can be described by

ẋ = f(t, x, u)

y = h(t, x, u)
(3.2)

Nonlinear control theory applies to real-world systems. As mentioned earlier, lin-
ear systems are much easier to solve, and several methods have been developed in
order to solve them. Some examples for solving linear time-invariant systems are
Laplace Transform, Fourier transform, Z transform, Bode plot, and Nyquist sta-
bility criterion. These are mathematical techniques of high generality. However,
the mathematical techniques developed to handle nonlinear systems are much less
general and only apply to specific categories of systems. One of these mathematical
techniques is called Lyapunov stability.

3.2.1 Lyapunov Stability

3.2.1.1 Lyapunov Indirect Method

Let x = 0 be an equilibrium point for

ẋ = f(x) f : D⇒ Rn is C1

The first step of Lyapunov indirect method is to linearize the system about x = 0,
ẋ = Ax. A is the state matrix and is defined as

A =
∂f

∂x
|x=0 =


∂f1
∂x1

... ∂f1
∂xn

...
. . .

...
∂fn
∂x1

... ∂fn
∂xn


|x=0

(3.3)

The next step is to find the eigenvalues, λ1(A), ..., λn(A), of the system. In order to
say if the system is locally asymptotically stable, unstable or if there is no conclusion,
the eigenvalues have to be evaluated. If
∀i Re(λi) < 0 ⇒ x = 0 is locally asymptotically stable.
However, if
∃i Re(λi) > 0 ⇒ x = 0 is unstable.
One can not say whether the system is stable or unstable if
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∀i Re(λi) ≤ 0
∃i Re(λi) = 0
Lyapunov indirect method is easy to use, and can in many cases be very helpful in
order to determine if a equilibrium point is locally stable or not. The linearization
can only predict the behavior near the equilibrium point, and cannot predict the
global behavior of the state-space system.

3.2.1.2 Lyapunov Direct Method

While Lyapunov indirect method only contains information about whether the equi-
librium point is locally stable or not, the Lyapunov direct method can determine
global stability. The Lyapunov function candidate V: D ⇒ R is a continuously
differentiable function. It is used to consider the energy of the trajectories, think-
ing that the trajectories have energy associated with them. The idea is that as
the trajectories are approaching the equilibrium point, the trajectories are getting
weaker, and they, therefore, have less energy. If all the trajectories associated with
the equilibrium point is decreasing towards zero, they must all be heading towards
the equilibrium point. Hence, the Lyapunov function is called the energy function
because the function shows how the energy changes as one move along the trajectory.
The energy function will be zero at the equilibrium point(xe), V (xe) = V (0) = 0.

Generally speaking, a function V is positive definite if the function is always greater
than zero. Formally,

V (x) > 0 (positive definite) (3.4)

The function is negative definite if it is always less than zero

V (x) < 0 (negative definite) (3.5)

It is positive semi-definite if it is greater than or equal to zero

V (x) ≥ 0 (positive semi-definite) (3.6)

Finally, it is negative semi-definite if it is less than or equal to zero

V (x) ≤ 0 (negative semi-definite) (3.7)

With this in mind, a formal definition of the Lyapunov function is given below.
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Definition: Lyapunov function

V is a Lyapunov function for x = 0 iff
i) V is C1 (continuously differentiable)
ii) V (0) = 0
V (x) > 0 in D\{0}

iii) V̇ (0) = 0

V̇ (x) ≤ 0 in D\{0}
If, morover,

V̇ (x) < 0 in D\{0}
then V is a strict Lyapunov function for x = 0.

How to apply the method:

1. When using Lyapunov direct method, the first thing to do is to choose a
Lyapunov function candidate V(x).

2. The next step is to determine if V(x) is a Lyapunov function or a strict Lya-
punov function for the equilibrium point. This is done by proving the criteria
for the definition of the Lyapunov function. The function is a Lyapunov func-
tion(and not a Lyapunov function candidate) only if V(x) meets these criteria.

3. If the answer is yes then the equilibrium point is stable or asymptotically
stable. However, if the answer is no, the process starts at the beginning again,
and a new Lyapunov function candidate is chosen.

As shown, if the Lyapunov function candidate is not a Lyapunov function, the
process will start over. Usually, one cannot tell if the equilibrium point is unstable
or not, only that with the chosen Lyapunov function candidate, it is not possible to
tell if the equilibrium point is stable. However, if the Lyapunov function candidate
shows that the derivative is positive definite, the system is in fact, unstable. It does
not matter how many candidates are tested: the system tends to go to infinity.

The Lyapunov direct method can determine if an equilibrium point is globally stable
or not. For an equilibrium point to be globally asymptotically stable, there must:

1. ∃ strict Lyapunov function V : Rn ⇒ R for x = 0.

2. V is radially unbounded.

If these two conditions are met, x = 0 is globally asymptotically stable.

Definition: Radially unbounded

V(x) is radially unbounded iff
‖x‖ → ∞⇒ V (x)→∞
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With this method, it is also possible to prove if an equilibrium point is exponentially
and globally exponentially stable. For the point to be exponentially stable, there
must exist constants a, k1, k2, k3 > 0 such that

1. V is C1.

2. k1‖x‖a ≤ V (x) ≤ k2‖x‖a ∀x ∈ D.

3. V̇ (x) ≤ k3‖x‖a ∀x ∈ D

If these conditions are satisfied, x = 0 is exponentially stable. Moreover, if the con-
ditions above is satisfied with D = Rn, the equilibrium point is globally exponentially
stable.

Lyapunov direct method is great in many ways, it gives global results, and the
method is general. The downside of the Lyapunov direct method is that there is no
general way to find V(x), and this can be a very tricky and time-consuming process.
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3.3 Artificial Intelligence

Artificial intelligence (AI) is a branch of computer science that addresses problems
requiring human-like reasoning and intelligence, and AI techniques have proven to
be very useful as alternative approaches to traditional techniques (Shteimberg et al.,
2012).

Definition: Artificial Intelligence

The study of how to make computers do things at which, at the moment,
people do better.
(Rich and Knight, 1991)

Artificial intelligence is the overall definition, and it contains several subfields. In
this section, machine learning and deep learning will be discussed in general, and
neural networks in particular.

3.3.1 Machine Learning

Definition: Machine Learning

A computer program is said to learn from experience E with respect to some
task T and some performance P, if its performance on T, as measured by P,
improves with experience E.
(Mitchell, 1997)

Machine Learning (ML) is about learning to do better in the future based on what
was experienced in the past. The characteristic of ML is its ability to learn from
data rather than being programmed to follow a predefined set of rules. The control
approaches presented later in this thesis will be based on machine learning. ML is
usually categorized into four main approaches: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning. The approaches are
different, and they intend to solve different problems.

In supervised learning, given a training set of N input-output pairs
(x1, y1), (x2, y2),...,(xN , yN), where each yi was generated by an unknown function
y = f(x). Here xi is the feature vector of the i-th example and yi is its label.
The task of supervised learning is to find a function h that approximates the true
function f (Russell and Norvig, 2016).

In unsupervised learning, patterns are learned from the input even though no
explicit feedback is supplied. The training data is unlabeled, and the system has to
learn by it self (Russell and Norvig, 2016).
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With semi-supervised learning, the training data is partly labeled just as the
input-output pairs in supervised learning, but a significant amount is also unlabeled.
The combination of the unlabeled data and the labeled data in a training set can be
viewed as a more realistic scenario than supervised learning and has an improvement
in learning accuracy over unsupervised learning (Russell and Norvig, 2016).

In reinforcement learning the agent learns from rewards and punishments. The
goal is to maximize its reward, given the current state of the environment. It is
up to the agent to decide which action that lead to the reinforcement (Russell and
Norvig, 2016).

3.3.2 Deep Learning

Deep learning (DL) is a specific kind of machine learning that scores high on prob-
lems with high-dimensional data and high-dimensional spaces (Goodfellow et al.,
2016). With DL methods, the computer learns complicated concepts by building
them out of simpler ones. Human engineers do not design these layers of features,
but they are learned from data by using a learning procedure (LeCun et al., 2015).

Artificial Neural Networks(ANNs)

The human brain can be seen as a highly complex, nonlinear, and parallel computer:
an information-processing system. The brain uses neurons to organize its structural
components and can perform numerous tasks extremely fast (Haykin, 1994). ANNs
had its motivation from how the brain works, and in its general form, a NN is a
machine designed to model the way the brain performs a particular task or function
of interest.

Definition: Neural Network

A neural network is a massively parallel distributed processor made up of
simple processing units that has a natural propensity for storing experiential
knowledge and making it available for use. It resembles the brain in two
respects:

1. Knowledge is acquired by the network from its environment through a
learning process.

2. Interneuron connection strengths, known as synaptic weights, are used
to store the acquired knowledge.

(Haykin et al. (2009))

The learning algorithm performs the learning process, and the function is designed to
modify the synaptic weights of the network in order to achieve the desired objective.
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Figure 3.5: Neuron model, adopted from Haykin (1994). The input signal xj of
synapse j, which is connected to a neuron k, is multiplied by the synaptic weight
ωkj. The product of this multiplication uk = xj · ωkj is then entering the summing
junction where it is added with a bias bk. The bias bk can increase or decrease the
net input of the activation function: determined by whether it is positive or negative.
This sum vk is the input to the activation function ϕ(·), a function which limits the
amplitude of the output yk of a neuron. The given output is used as an input to the
next neuron, and so on.

A neuron is an information processing unit, and it is the basic building block of a
NN. It is build up by several elements: the synaptic weights, the summing junction,
and the activation function (Haykin, 1994). The process can be described as follows:
the input signal xj of synapse j, which is connected to a neuron k, is multiplied by
the synaptic weight ωkj. The product of this multiplication uk = xj · ωkj is then
entering the summing junction where it is added with a bias bk. The bias bk can
increase or decrease the net input of the activation function: determined by whether
it is positive or negative. This sum vk is the input to the activation function ϕ(·), a
function which limits the amplitude of the output yk of a neuron. Finally, the given
output is used as an input to the next neuron, and so on. An illustration of the
process can be seen in Figure 3.5. The process can be described with the following
mathematical equations:

uk =
m∑
j=1

ωkjxj (3.8)

vk = uk + bk (3.9)
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yk = ϕ(uk + bk) = ϕ(vk) (3.10)

3.3.2.1 Types of activation functions

The Threshold function can be defined as:

ϕ(v) =

{
1 if v ≥ 0
0 if v < 0

(3.11)

It is a boolean function, and can only take the values 1(if it is activated) or 0(not
activated).
A Sigmoid function is often defined by the formula

ϕ(v) =
1

1 + exp(−av)
(3.12)

where a is a slope parameter, which differ the slope. The function is bounded,
differentiable, it is defined for all real input values and its derivative is positive
semi-definite.
The Hyperbloic tangent function(Tanh function) is defined as:

ϕ(v) = tanh(v) =
2

1 + exp(−2v)
− 1 = 2 · sigmoid(2v)− 1 (3.13)

The tanh(·) function is a scaled sigmoid function, whereas the gradient is stronger
for tanh(·) than sigmoid.
The ReLU(rectified linear unit) activation function can be defined as

ϕ(v) = max(0, v) (3.14)

The ReLU activation function gives the output v if it is positive, and 0 other-
wise. Since ReLu(·) does not activate input signal below zero, fewer neurons are
activated, which improves the efficiency of the network; however, this introduces a
problem known as the dying ReLU problem. For negative input v the ReLU will give
a horizontal line equal zero, where the gradient can go towards 0. The problem is
that the neurons that enter that state will stop to respond to variations in input,
which will result in parts of the network becoming passive. One way of solving the
dying ReLU problem is to use Leaky ReLU instead (Bhimra et al., 2019).

ϕ(v) =

{
v if v > 0
0.01v otherwise

(3.15)

Instead of the function being zero when x < 0, a leaky ReLU will instead have a
small negative slope.
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Which activation function to use, depends on the characteristics of the system. For
example, if the characteristics of the function are known, it could be wise to choose
an activation function that will approximate the function faster as this leads to a
faster training process. However, if the nature of the function is unknown, ReLU
might be the right choice, as it is a general approximator.

3.3.2.2 Feedforward Neural Network

Figure 3.6: (a) Single-layer feedforward (b) Multilayer feedforward, adopted
from Haykin (1994). A single-layer feedforwad NN only has input layers and output
layers. A multilayer feedforward NN has layers of hidden neurons, in addition to the
input and output layers. The number of layers in the input layers equals the number
of input variables to the system, and the number of neurons in the output layers is
the number of outputs associated with each input. Hidden layers are used to solve
nonlinear functions. There is no feedback in either of the layers.

The characteristics of a feedforward NN are that the data travels in one direction.
More precisely, this means that the connection between the neurons does not form
a cycle; therefore, there is no feedback in the system. The feedforward NN may
or may not have hidden layers and can be classified as a single-layer feedforward
neural network or a multilayer feedforward neural network. A single-layer feedforwad
NN only has input layers and output layers. The number of source nodes in the
input layers equals the number of input variables to the system, and the number of

23



neurons in the output layers is the number of outputs associated with each input. A
multilayer feedforward NN has layers of hidden neurons, in addition to the input and
output layers. Hidden layers are used to solve nonlinear functions. An illustration
can be seen in Figure 3.6.

3.3.2.3 Back-Propagation

By introducing hidden layers to the network nonlinear functions can be solved.
However, this introduces a new problem. With hidden layers, the training data
cannot decide what values are assigned to the hidden neurons (Haykin, 1994). This
can result in an error at the output. In order to solve this, it is possible to back-
propagate the error from the output layer to the hidden layers. The concept is that
a hidden layer j is responsible for some fraction of the error at the outputs which
it connects. So the fraction of error is divided, depended on the strength of its
connection between the hidden node and the output node, and propagated back the
error.
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3.4 Sum-of-Squares approach

Given a multivariate polynomial p(x), the Sum-of-Squares (SoS) approach requires
the existence of polynomials f1(x), ..., fm(x) such that

p(x) =
m∑
i=1

f 2
1 (x) (3.16)

where f(x) ≥ 0 for all x ∈ Rn (Prajna et al., 2002). This means that there must
exist a positive semi-definite matrix Q with monomials Z(x), such that

p(x) = ZT (x)QZ(x). (3.17)

SOS programs are solved by reformulating them as semi-definite programs (SDP).
The toolbox SOSTOOLS (Prajna et al., 2002) in MATLAB first automates the
conversion from SoS programs to SDPs, it then calls the SDP solver, and finally,
converts the solution from the SDPs back to SOS programs. There are several SDP
solvers, but in this thesis, the SeDuMi (Self Dual Minimization) solver in MATLAB
is used.

SOSTOOLS has been frequently used to solve robustness related issues. The reason
for this is that the toolbox combines dynamical system theory, real algebraic geom-
etry, and semi-definite programming in order to provide a promising framework to
handle the related issues. The method is based on Lyapunov control theory in order
to ensure stability.
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3.5 Linear Quadratic Regulators

Consider the following linear, time-invariant system

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0 (3.18)

where x is the state space vector, u(t) is the control input, A is the state matrix, B
is the input matrix and x0 is the initial condition of the states at time t0 (Jin and
Lin, 2012). Linear quadratic regulators (LQR) is used in optimal-control theory as a
method for finding the state-feedback control input u(t) defined within [t0, T ], such
that the quadratic cost function JLQR is minimized, thus, the undesired deviations
are minimized.

JLQR =

∫ T

t0

(xT qx + uTRu)dt (3.19)

The quadratic cost function is defined in Equation 3.19, where the positive semi-
definite matrix Q is the weight on the system states, and the positive definite matrix
R is the weight on the control input. Given the control input

u(t) = −R−1BTPx(t) = −Kx(t), (3.20)

which optimizes the quadratic cost function, the algebraic Riccati equation can be
written as

ATP + PA− PBR−1BTP = −Q (3.21)

where, P is the unique positive definite solution to the Riccati equation and the
LQR gain K = R−1BTP .
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3.6 Anti-Surge Controller for the Moore-Greitzer

Compressor

In section 3.1 a general introduction to compressor surge was given, mostly to pro-
vide the reader with a basic understanding of what surge is and why it should
be avoided. In Chapter 4, the implementation of an anti-surge controller for the
Moore-Greitzer compressor will be presented. Lyapunov control theory, presented
in Section 3.2, is used to ensure stability of the equilibrium point. The Lyapunov
candidate is implemented with NNs in order to create an anti-surge controller with
focus on maximization of the region of attraction for the Moore-Greitzer compres-
sor. Therefore, a very general introduction to AI and NNs was given in Section
3.3. The SoS approach, presented in section 3.4, is used as a starting point for the
construction of the NN Lyapunov candidate. The results will be presented in Chap-
ter 5 and discussed in Chapter 6. Furthermore, the results of the NN Lyapunov
function will be compared with a LQR Lyapunov function. A basic introduction to
linear quadratic regulators is given in Section 3.5. This comparison is presented to
show how a Lyapunov candidate based on NNs can expand its region of attraction
compared to traditional candidates.
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Chapter 4

Implementation

In this Chapter, the closed-loop dynamics of the Moore-Greitzer compressor system
is derived and a NN Lyapunov function is implemented. This Chapter is organized
as follows: in Section 4.1 the closed-loop dynamical model is derived and in Section
4.2 the implementation of the Lyapunov function is presented. Finally, information
regarding the implementation of the NN Lyapunov Function for the Moore-Greitzer
compressor system in Python can be found in Section 4.3.

4.1 The Moore-Greitzer compressor model

Consider the Moore-Greitzer compressor model in combination with a CCV given
by the following equations:

ψ̇ =
1

B

(
φ− Φ(ψ)

)
(4.1)

φ̇ = B
(

Ψc(φ)− ψ
)

(4.2)

where φ is the mass flow coefficient(annulus averaged, axial velocity divided by wheel
speed (Moore and Greitzer, 1986)), ψ is the plenum pressure coefficient (pressure
divided by density and the square of wheel speed (Moore and Greitzer, 1986)), Φ(ψ)
is the throttle characteristics and the constant B > 0 is the Greitzer’s B-parameter
defined as

B =
U

2as

√
Vp
AcLc

(4.3)

Here, U is the compressor blade tip speed, as is the speed of sound, Ac is the flow
area, Vp is the plenum volume and Lc is the length of ducts and compressor. The
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characteristics of the compressor can be modeled as

Ψc(φ) = ψc0 +H

[
1 +

3

2

( φ
W
− 1
)
− 1

2

( φ
W
− 1
)3

]
(4.4)

Here, the parameters H > 0 is the semi-height of cubic axisymmetric characteristics,
W > 0 is the semi-width of cubic characteristics and ψc0 > 0 is the shut-off value of
axisymmetric characteristic (Moore and Greitzer, 1986).

Φ(ψ) = γ
√
ψ (4.5)

Ψv(Φ) =
1

γ2
Φ2 (4.6)

Equation 4.5 states the throttle characteristics and Equation 4.6 is the CCV charac-
teristics, where γ is the throttle gain and γ > 0 is proportional to the valve opening.
Without loss of generality, the system is transformed such that the equilibrium point
is at the origin, where

φ̂ = φ− φ0

ψ̂ = ψ − ψ0

Ψ̂e(φ̂) = Ψe(φ̂+ φ0)−Ψe(φ0)

Ψ̂c(φ̂) = Ψc(φ̂+ φ0)−Ψc(φ0)

u = Ψ̂v(φ̂) = Ψv(φ̂+ φ0)−Ψv(φ0)

Φ̂(ψ̂) = Φ(ψ̂ + ψ0)− Φ(ψ0)

(4.7)

The compressor is in equilibrium when φ̇ = ψ̇ = 0. The system can now be seen as

˙̂
ψ =

1

B

(
φ̂− Φ̂(ψ̂)

)
(4.8)

˙̂
φ = B

(
Ψ̂c(φ̂)− ψ̂ − u

)
(4.9)

where

Φ̂(ψ̂) = γ

√
ψ̂ + ψ0 − γ

√
ψ0 (4.10)

Ψ̂c(φ̂) = −k3φ̂
3 − k2φ̂

2 − k1φ̂ (4.11)

Equation 4.11 gives the compressor characteristics where k1 = 3Hφ0
2W 2 (φ0

W
− 2), k2 =

3H
2W 2 (φ0

W
− 1) and k3 = H

2W 3 . u is the control variable, and represents the pressure
drop over the CCV. The steady-state values of mass flow and plenum pressure are
φ0 and ψ0, respectively. The state equations in this new local coordinate system will
be used in the remainder of this thesis. A figure of the schematic representation of
the system is shown in Figure 3.4. The CCV modifies the compressor characteristics
by making the throttle line cross Ψe(φ̂) where the slope is negative, instead of where
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it earlier was a positive slope, this can be seen in Figure 4.1.

Figure 4.1: Compressor and throttle characteristics, adopted from Gravdahl and Ege-
land (1997). Ψc(Φ) and Ψv(Φ) are the compressor pressure rise and valve pressure
drop, respectively. Ψe(Φ) is the equivalent compressor characteristic and ΨT

−1(Φ)
is the without the CCV. Since this study only concerns with pure surge control, stall
in the system is not considered, and the stall characteristic Ψes(Φ) and Ψs(Φ) is not
relevant. Without the CCV, the equilibrium of the system is at the intersection be-
tween the compressor characteristic Ψc(Φ) and the throttle characteristic ΨT

−1(Φ),
and the intersection is at a point of positive slope. In this case, the equilibrium is
unstable. By introducing the CCV, the throttle line Ψv(Φ) crosses the equivalent
characteristic in an area of negative slope. This new equilibrium is stable.

By defining ψ̂ = x1, φ̂ = x2 and ψ0 = x10 , the system given by Equation 4.8 and
Equation 4.9 can be written as:

ẋ1 =
1

B
[x2 − γ

(√
x1 + x10 −

√
x10

)
]

ẋ2 = B
(
− k3x

3
2 − k2x

2
2 − k1x2 − x1 − u

) (4.12)

where f(x) = ẋ represents the dynamical system. The linear control law is defined
as

u = −Kx (4.13)

where u is the pressure drop across the CCV and K is fixed to the LQR solution of
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the dynamics. The dynamics of the system is discretized with time step ∆t = 0.01.

The system in Equation 4.12 can be written on state-space form as

ẋ = Ax +Bu (4.14)

where

A =

[
− γ

2B
√
x10

1
B

−B −k1B

]
and B =

[
0
−B

]
(4.15)

4.2 Neural Network Lyapunov Function Candi-

date

The following section describes the implementation of the code required to solve the
Neural Network Lyapunov function and the algorithm used to iteratively grow an
estimate of the true ROA, and is mainly created by Richards et al. (2018). However,
significant understanding and modification were required to tailor the APIs to fit this
thesis problem.

Consider the discrete-time, time-invariant, deterministic dynamical system of the
form

xt+1 = f(xt,ut) (4.16)

where
t is the time step index, t ∈ N;
xt is the state input at time step t, xt ∈ χ ⊂ Rd

ut is the control input at time step t, ut ∈ U ⊂ Rp

π is the feedback policy, π : χ→ U
xt+1 = fπ(xt) is the resulting closed-loop dynamical system, fπ(x) = f(x, π(x))

It is assumed that the policy π is given and that it is safe to use within a subset
Sπ of the state-space χ, where Sπ is defined as the region of attraction for fπ. In
this particular case, this means that every trajectory of fπ that begins at some
x ∈ Sπ remains in Sπ and will converge to the equilibrium point xe ∈ Sπ, where
fπ(xe) = xe, as time approaches infinity. Without loss of generality, it is assumed
that the equilibrium point is at the origin, xe = 0. From now on, Sπ stands for the
true largest ROA in χ under the policy π. The control policy π determines, given
the current state, the appropriate control action that drives the system to some goal
state, which in this case is the equilibrium point.

4.2.1 Construct safe level sets for a general fπ(xt)

In safety-critical applications, it is unacceptable for a safe region Sπ to contain
anything but safe states. The consequences could, in the worst case, be dramatic,
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which makes it critical to learn accurate safety certificates for nonlinear, closed-
loop dynamical systems. In order to ensure safe learning, a safety certificate for a
state must be verified before it is explored (Richards et al., 2018). As long as the
trajectory lies within the region of attraction, the system can collect data during
learning and always recover to a known safe point (Khalil, 2015).

One method to determine and construct a safe region Sπ for the closed-loop dynam-
ical system xt+1 = fπ(xt) is the Lyapunov Direct Method. The Lyapunov direct
method can, in this particular case determine if an equilibrium point is not only
stable but also globally asymptotically stable.

Theorem 4.1 (Lyapunov’s stability theorem (Richards et al., 2018)) Sup-
pose fπ is locally Lipschitz continuous and has an equilibrium point at xe = 0. Let
V : χ → R be locally Lipschitz continuous on χ. If there exists a set DV ⊆ χ
containing 0 on which V is positive-definite and ∆V (x) := V (fπ(x)) − V (x) < 0,
∀x ∈ DV \ {0}, then xe = 0 is an asymptotically stable equilibrium point. In this
case, V is known as a Lyapunov function for the closed-loop dynamics fπ and DV
is the Lyapunov decrease region for V.

If the Lyapunov function candidate V (x) fulfills the criteria of a strict Lyapunov
function, then the equilibrium point xe = 0 is asymptotically stable. One of the
criteria for a strict Lyapunov function is that the derivative of V (x) is negative def-
inite, except at 0 where V̇ (x) = 0. This can be difficult to certify throughout entire
trajectories; therefore, it is easier to instead verify the one-step decrease condition
∆V (x) = V (fπ(x))− V (x) < 0 for every state x in the a level set of the Lyapunov
function candidate V.

Corollary 4.1.1 (Safe level sets (Richards et al., 2018)): Every level set
V(c) := {x | V (x) ≤ c}, c ∈ R>0 contained within the decrease region DV is
invariant under fπ. That is, fπ(x) ∈ V(c), ∀x ∈ V(c). Furthermore, limt→∞xt = 0
for every xt in these level sets, so each one is a ROA for fπ and xe = 0.

If trajectories start in a level set V(c) contained in the decrease region DV , they will
remain in V(c) and converge to xe = 0. It can be very difficult to verify that V̇ (x)
is less than zero throughout the entire continuous subset DV ⊆ χ. With that said,
a Lyapunov function candidate is a Lyapunov function V (x) if it is continuously
differentiable, V (xe) = 0, V (x) is positive definite, V̇ (x) = 0 and V̇ (x) is negative
semi-definite. This means that the Lyapunov function V (x) decreases monotonically
along trajectories, implying that once a trajectory enters a level set, say given by
V(x) = c, it can never leave the set V(c) := {x ∈ Rn | V (x) ≤ c}. This is known
as LaSalle’s invariance principle (Khalil, 2015). If there exists a Lyapunov function
whose derivative along the trajectories of the system is negative semi-definite, and
it is possible to establish that no trajectory can stay identically at points where the
derivative of the Lyapunov function is 0, except at the origin, then the origin is
asymptotically stable.
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4.2.2 Suitable Lyapunov function candidates

The downside with the Lyapunov direct method is that there is no general way to
find a Lyapunov function V (x), and it can, therefore, be very tricky. In control
theory, there is a couple of common candidates such as Quadratic form and Sum-
of-Squares(SoS).

The problem with both the Quadratic form and the SoS Lyapunov function is that
their geometry might not fit the safe region Sπ, so the region of attraction could be
much more extensive than what is included.

SoS Lyapunov functions
The Sum-of-Squares approach enforces V (x) to be a polynomial of the form V (x) =
m(x)TQm(x). Here, m(x) is a vector of a priori fixed monomial features in element
of x and Q is an unknown positive semi-definite matrix (Richards et al., 2018). As
a result, the Lyapunov function candidate is a quadratic function on a monomial
feature space, which accordingly allows Lyapunov functions to have shapes beyond
simple ellipsoids. The problem with the SoS Lyapunov approach is that it requires
polynomial dynamics, which can lead to a shape mismatch between the level set
V(c) and the true largest region of attraction Sπ. As the objective is to find the
true ROA Sπ and not just a part of it, this method comes up short. This is why it
is very desirable to find a method that can do better for a more general closed-loop
dynamical system fπ(xt).

4.2.3 Neural Network Lyapunov Function

There are several ways to choose a Lyapunov function candidate, and many may
fulfill the criteria of a Lyapunov function for the dynamical system fπ(xt), and even
though that is very good, it is not the entire objective. The objective is to maximize
the region of the state-space χ where it is possible to apply the policy π without
necessarily knowing the true ROA beforehand.

While the SoS Lyapunov function candidate does not ensure maximization of the
safe level set, it can be used as a starting point to create a NN Lyapunov func-
tion candidate. The SoS Lyapunov function candidate V (x) = m(x)TQm(x) is
a Euclidean inner product on the transformed space Y = {φ(x),∀x ∈ χ} with
φ(x) := Q1/2m(x) (Richards et al., 2018). However, as it has been proven difficult
to determine the best choice of m(x), and since, additionally, the Lyapunov can-
didate performance depends on the choice of m(x), it is proposed a NN Lyapunov
function candidate Vθ(x) = φθ(x)Tφθ(x) to learn the essential features instead of
choosing them manually. Here, φθ : Rd → RD is a feed-forward NN with parameter
vector θ.

In order to construct safe sets, the assumptions of the Lyapunov theory, Theorem
4.1, must be satisfied. It is also important to ensure that the NN Lyapunov function
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candidate is positive definite and satisfies the Lipschitz continuity requirements in
Theorem 4.1. This is achieved with Theorem 4.2.

Theorem 4.2 (Lyapunov neural network (Richards et al., 2018)): Con-
sider Vθ(x) = φθ(x)Tφθ(x) as a Lyapunov function candidate, where φθ is a feed-
forward NN. Suppose, for each layer ` in φθ, the activation function ϕ` and weight
matrix W` ∈ Rd`×d`−1 each have a trivial nullspace. Then φθ has a trivial nullspace,
and Vθ is positive-definite with Vθ(0) = 0 and Vθ(x) > 0, ∀x ∈ χ\{0}. Furthermore,
if ϕ` is Lipschitz continuous for each layer `, then Vθ is locally Lipschitz continuous.

Richards et al. (2018) provided a formal proof of Theorem 4.2, which states that if
the NN φθ is Lipschitz continuous, then the NN Lyapunov function candidate Vθ is
locally Lipschitz continuous, because of it being quadratic and differentiable with
respect to the NN φθ. In order to show that the NN φθ is Lipschitz continuous, the
activation function ϕ` must be Lipschitz continuous for each layer ` in φθ. Further-
more, it is ensured that the weight matrix W` has a trivial nullspace by defining it
as:

W` =

[
GT
`1G`1 + εId`−1

G`2

]
(4.17)

where G`1 ∈ Rq`×d`−1 for some q` ∈ N≥1, G`2 ∈ R(d`−d`−1)×d`−1 , Id`−1
∈ Rd`−1×d`−1 is

the identity matrix and ε ∈ R>0 is a constant. As long as the constant ε is greater
than zero, the weight matrix W` has full rank and a trivial nullspace. q` is set to be
the minimum integer required, in order to minimize the number of free parameters
required by the NN Lyapunov function candidate Vθ. This means that each entry
in GT

`1G`1 ∈ Rd`−1×d`−1 is independent from the other entries. Given this definition
of the weight matrix W`, the NN φθ contains the parameters θ := {G`1, G`2}`.

By making sure of zero bias terms, and with a particular choice of weight matrix and
activation function, the NN Lyapunov function candidate Vθ(·) is positive definite.
Also, if Vθ(·) is always positive definite, this implies that Vθ(c) is a safe level set if
4Vθ(x) < 0 holds throughout.

4.2.4 Learning via Classificaiton

Theorem 4.1 states the requirements for the Lyapunov function candidate to be
a Lyapunov function V for the closed-loop dynamical system fπ, where DV is the
Lyapunov decrease region for V. Theorem 4.2 ensures that a NN Lyapunov function
candidate is positive definite and satisfies the Lipschitz continuity requirements in
Theorem 4.1. It can be very difficult to verify that V̇θ(x) is less than zero throughout
the entire continuous subset DVθ ⊆ χ, but with the one-step decrease condition
∆Vθ(x) = Vθ(fπ(x)) − Vθ(x) < 0 it is possible to identify safe level sets which are
subsets of the true largest region of attraction Sπ in χ under the policy π.

The last thing required in order for the NN Lyapunov function candidate Vθ to
be a Lyapunov function for the closed-loop dynamical system fπ, is to implement
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a training algorithm. The training algorithm will adapt the parameters θ, so Vθ
satisfies the one-step decrease condition for the largest region of attraction of DVθ

as possible.

For the time being, in order to simplify the problem, it is assumed that the true
largest ROA Sπ is known. The next step will then be to optimize over the parameters
data θ to maximize the volume V ol(·) of the safe level set Vθ(c) of Vθ such that the
one-step decrease condition is satisfied throughout the entire true ROA Sπ; that is,
for each state x ∈ Sπ. Mathematically, this problem can be written as:

max
θ,c

V ol(Vθ(c) ∩ Sπ), s.t. ∆Vθ(x), ∀x ∈ Vθ(c) (4.18)

Without loss of generality, it is fixed that c = cs where cs ∈ R>0 as it is always
possible to scale a Lyapunov function by a constant.

Furthermore, if, instead of looking at this as a level set, it is viewed as a decision
boundary between safe and unsafe states, it becomes a classification problem. It is
achieved by defining that y = +1 if it is a safe state, meaning that x is contained
within Sπ, and otherwise if the state is unsafe, it is defined as y = −1. It is crucial
that the estimated safe set V(cs) satisfies all the conditions of Theorem 4.1, and this
is achieved by defining one rule and one constraint, respectively:

ŷθ(x) = sign(cs − Vθ(x)) (4.19)

y = +1 ⇒ ∆Vθ(x) < 0 (4.20)

Equation 4.19 classifies the ground-truth label y as +1 or −1, and equation 4.20
ensures that the ground-truth label y is set to +1 only if the one-step decrease
condition is fulfilled. The next step is to choose the NN parameters θ so that the
rule of equation 4.19 and the constraint of equation 4.20 are upheld, and by doing
so the decision boundary Vθ(x) = cs will delineate the boundary of Sπ.

Consider the classification loss function `(y,x; θ) which penalizes misclassification
of the ground-truth label y at state x under rule 4.19 associated with θ. The loss
function is chosen to be the perceptron loss function, an algorithm for supervised
learning of binary classifiers. It is linear, and the penalty is higher far from the
decision boundary Vθ(x) = cs. In this particular case, with the signed distance
cs \ Vθ(x) from Vθ(x) = cs, which sepatates Sπ from the remaining state-space
χ \ Sπ, the loss function is defined as `(y,x; θ) = max(0,−y · (cs Vθ(x))). The point
of a loss function is for the algorithm to learn and reduce the error in the prediction,
so given a misclassification, the classifier loss has a magnitude of | cs − Vθ(x) |, and
zero otherwise.

In order to make the problem manageable, it is added a Lagrange relaxation term
and gradient methods to update the parameters θ. More specific, gradient-based
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optimization is used together with mini-batches. Then states χb = {xi}i are sampled
from the state-space χ at random and then ground-truth labels {yi}i are selected to
them. Given the states in the state-space χb, the optimization objective is defined
as

min
θ

Σ
x∈χb

`(y,x; θ), s.t. y = +1⇒ ∆Vθ(x) < 0 (4.21)

The state-space χb is re-sampled after every gradient step. The Lagrangian relax-
ation is defined as

min
θ

Σ
x∈χb

`(y,x; θ), +λ(
y + 1

2
) max(0,∆Vθ(x)) (4.22)

where λ ∈ R>0 and the second term of equation 4.22 penalizes violations of the
constraint defined is equation 4.20 and is called the Lyapunov decrease loss.

However, the problem was simplified by assuming that the true largest ROA Sπ was
known, so the question is how to get ground truth labels when the true region of
attraction is unknown. Secondly, Equation 4.22 does not constrain θ to enforce the
one-step decrease condition; it only penalizes violations of it. Therefore, it is vital
to verify that the one-step decrease condition holds over a level set Vθ(c) when θ is
updated.

Algorithm 1 ROA Classifier Training (Richards et al., 2018)

1: Input: closed-loop dynamics fπ; initialized parametric Lyapunov function can-
didate Vθ : χ → R≤0; Lagrange multiplier λ ∈ R>0; level set ”expansion multi-
plier α ∈ R>1; forward-simulation horizon T ∈ N≥1.

2: c0 ← maxx∈χV (x), s.t. Vθ(c0) ⊆ Dvθ � compute the initial safe level set.
3: repeat
4: Sample a finite batch χb ⊂ Vθ(αck).
5: Sb ← {x ∈ χb | f (T )

π (x) ∈ Vθ(ck)}. � forward-simulate the batch with fπ
6: over T steps.
7: Update θ with (4.22) via batch SGD on χb and labels {yi}i for points in Sb.
8: ck+1 ← maxx∈χVθ(x), s.t. Vθ(ck+1) ⊆ DVθ .
9: until convergence

First, Lyapunov stability theory is used in order to verify that a level set Vθ(c) is
safe, and this is done by checking the tightened certificate ∆Vθ(x) < −L∆Vθτ at a
finite set of states that cover DV ⊆ χ. The Lipschitz constant L∆V ∈ R>0 of ∆V
and τ ∈ R>0 is a measure of the density of the states that cover DV . After a level
set Vθ(c) is established as safe, the next step is to use Vθ(c) to estimate labels y from
Sπ. As long as the dynamical system fπ is known, the iterative Algorithm 1, which
will iteratively ”grow” an estimate of Sπ, can be implemented. The first step is to
choose some initialization of the parameters data θ and use the one-step decrease
condition, as it is positive definite, to verify the current safe level set Vθ(c). In
particular, Lyapunov stability theory is used in order to ensure that a level set Vθ(c)
is safe, and this is done by checking the tightened certificate ∆Vθ(x) < −L∆Vθτ at
a finite set of states that cover DV ⊆ χ. The Lipschitz constant L∆V ∈ R>0 of ∆V
and τ ∈ R>0 is a measure of the density of the states that cover DV . After a level set
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Vθ(c) is verified as safe, Vθ(c) is used to estimate labels y from Sπ. Vθ is initialized,
and used to find the largest safe level set Vθ(c0) by the one-step decrease condition,
and then Vθ(c0) is used to create an estimate of Sπ. The next step is to sample
states inside this set and slightly around it, and with the dynamical model, it is
possible to forward-simulate the samples with some horizon. That is, at iteration
k ∈ N≥0, there will be a safe level set Vθ(ck) and an expanded level set Vθ(αck) for
some α ∈ R>1. The states Vθ(αck) \ Vθ(ck) are forward simulated with the system
dynamics fπ for T ∈ N≥1 time steps. Any states that are already inside the safe
level set Sπ or have mapped inside must lie within the true ROA, and those outside
do not. The estimates of the true ROA Sπ is used to find the labels y, and then
these labels are used with the loss function 4.22 combined with stochastic gradient
descent(SGD), in order to update the parameter data θ. These steps are repeated,
and the safe level set Sπ grows until some stopping criterion is satisfied.

To summarize, the method of iteratively adapting a Lyapunov candidate consists of
four steps:

1. Verify a current safe level set Vθ(ck)

2. Sample from the expanded level set Vθ(αck)

3. Forward-simulate the samples Vθ(αck) \ Vθ(ck) with the system dynamics fπ

4. Use the estimates of the true ROA Sπ to identify labels y and update θ

4.3 Implementation of the NN Lyapunov Func-

tion for the Moore-Greitzer compressor sys-

tem in Python

The implementation of the NN Lyapunov function for the Moore-Greitzer com-
pressor system in Python is comprehensive. However, the implementation of the
compressor surge class along with the implementation of a Lyapunov function for
compressor surge can be studied in Appendix B. It should be noted that many of
the classes used in the presented code are not shown in Appendix B, and the reader
interested is referred to the code included along with this thesis.

38



Chapter 5

Experiments & Results

In this Chapter, the results from the neural network Lyapunov algorithm for the
Moore-Greitzer compressor model will be given. This Chapter is organized as follows:
Section 5.1 presents the stability analysis for the system. The result providing a GAS
equilibrium beyond the original surge line is given in Section 5.2. Finally, the result
given a minimization of the pressure drop across the CCV is presented in Section
5.3.

5.1 Stability Analysis of the Moore-Greitzer com-

pressor model

The system was implemented using simulation parameters from Backi et al. (2016),
which can be seen in Table 5.1.

Ac flow area 0.01m2

B B-Parameter 0.8319
H coefficient 0.18
Lc length of ducts and compressor 3m
U compressor blade tip speed 80ms−1

Vp plenum volume 1.5m3

W coefficient 0.25
as speed of sound 340ms−1

ψ0, x10 operating point for ψ, respective x1 0.611, 0.533
φ0, x20 operating point for φ, respective x2 0.6, 0.3
γ throttle gain 0.768, 0.411

Table 5.1: Simulation Parameters for the Moore-Greitzer compressor system in com-
bination with a close-coupled valve, adopted from Backi et al. (2016).
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In the paper it is assumed that the parameters B and γ is known exactly, which
introduce some uncertainty to the parameters ki. The analysis of the compressor
system can be divided into two cases: open-loop and closed-loop control.

5.1.1 Open-loop Control

In an open-loop control system there is no feedback, and the control action is in-
dependent from the output of the system. In Table 5.1, the operating point for
pressure ψ and mass flow φ has two given values, same with the throttle gain γ.
For the first value of each parameter, the equilibrium point is asymptotically stable
since:

Aγ=0.768 =

[
−0.5905 1.2019
−0.8320 −0.8626

]
(5.1)

and the real part of the system’s eigenvalues are located in the left half-plane.The
eigenvalues are γ1,2 = −0.7265 ± 0.9907i for the stable system. In comparison, if
considering the second value of each parameter, then the system is unstable as:

Aγ=0.411 =

[
−0.3383 1.2019
−0.8320 0.8626

]
(5.2)

the real part of the eigenvalues,γ1,2 = 0.262± 0.7996i, are located in the right half-
plane. In an open-loop control system, the equilibrium point will be stable for a
throttle gain γ greater than a critical value γc, and unstable for a throttle gain γ
less than the same critical value.

5.1.2 Closed-loop Control

In a closed-loop control system, the feedback between the outputs and inputs of
the system can be used to stabilize an unstable system. The equilibrium point will
be stable for a throttle gain γ greater than a critical value, and in such case, there
would be no need to create an anti-surge controller. However, without feedback,
the equilibrium point is unstable for a throttle gain γ less than the same critical
value γc, and an anti-surge controller can be implemented in order to stabilize the
equilibrium.
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5.2 Globally Asymptotically Stable Equilibrium

Point

For the GAS control law, the saturation constraints for the state variables and
control input are defined as follows:

ψ̂max = 0.3

φ̂max = 0.6

umax = 0.3

(5.3)

where ψ̂ is the plenum pressure coefficient, φ̂ is the mass flow coefficient and the
control input u is the pressure drop across the valve. Furthermore, the size of the
grid is defined as:

Grid = 63001 (5.4)

The result can be seen in Figure 5.1 and Figure 5.2. With a high-pressure drop
across the CCV, achieved with a high maximum value of the control input u, the
equilibrium point is globally asymptotically stable.

Figure 5.1: (a) GAS equilibrium point (b) Training behaviour of the NN candidate.
Maximum state variables and control input defined in Equation 5.3. All trajectories
converge towards the equilibrium point and the region of attraction Sπ covers the
entire grid. (Mass flow coefficient: annulus averaged, axial velocity divided by wheel
speed, Plenum pressure coefficient: pressure divided by density and the square of
wheel speed. The system is transformed such that the equilibrium point is at the
origin.)

As one can see in Figure 5.1(a), the region of attraction Sπ for the closed-loop system
fπ given the fixed policy π covers the entire grid, and, as can be seen from 5.2(a) so
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does the NN Lyapunov candidate. It can also be seen that all trajectories converge
towards the equilibrium point. In Figure 5.2(b), the NN fraction of Sπ (the safe set
size), is 100% of the ROA. It can be seen that the safe set size is already 100% at
the first iteration, and stays that way for all of the 20 iterations.

Figure 5.2: (a) Safe NN Lyapunov candidate level sets (b) Training behaviour of
the NN candidate. Maximum state variables and control input defined in Equation
5.3. The NN Lyapunov candidate covers the entire grid. The training behaviour
of the neural network stays constant since the safe set size is already 100% at the
first iteration. (Mass flow coefficient: annulus averaged, axial velocity divided by
wheel speed, Plenum pressure coefficient: pressure divided by density and the square
of wheel speed. The system is transformed such that the equilibrium point is at the
origin.)

Figure 5.3 shows that the safe set size is 63001 in the initial state, and hence, covers
the entire grid, defined in Equation 5.4, and that the NN Lyapunov function covers
100.00% of Sπ. The current safe level ck is only 0.1569 initially, and, as can be seen
in Figure 5.2(b), ck remains constant for all of the iterations and does not converge
to the fixed boundary cS = 1.
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Figure 5.3: Initial safe level and safe set size for the GAS equilibrium. Maximum
state variables and control input defined in Equation 5.3. The safe set size was
63001 in the initial state and covered the entire grid, defined in Equation 5.4. The
current safe level ck does not converge to the fixed boundary cS = 1.

5.3 Locally Asymptotically Stable Equilibrium

Point

With a low-pressure drop across the CCV, achieved with a low maximum value of
u, the equilibrium point is locally asymptotically stable. For the AS control law,
the saturation constraints for the state variables and control input are defined as
follows:

ψ̂max = 0.46

φ̂max = 0.5

umax = 0.05

(5.5)

The result can be seen in Figure 5.4, where, in (a), the true ROA Sπ is represented
with the green color, the NN Lyapunov function with orange and the LQR Lyapunov
function with blue. The NN Lyapunov function Vθ performs much better than the
traditional Lyapunov approach and covers approximately 81% of the true ROA at
its best iteration. However, Figure 5.4(b) shows that the current safe level ck of Vθ
grows non-monotonically (where k is the iteration k ∈ N≥0) and does not converge
to the fixed boundary cS = 1. The safe level set Vθ(ck) also grows non-monotonically
to cover a significant part of Sπ. For this example, the safe set size is only 2.46% of
the grid defined in Eq. 5.4, while in Figure 5.1, the safe set size is 100% of the grid
for the GAS equilibrium point.
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Figure 5.4: (a) Safe Lyapunov candidate level sets. (b) Training behaviour of the
NN candidate. Maximum state variables and control input defined in Equation 5.5.
The control law resulted in an asymptotically stable equilibrium. The true ROA
Sπ is represented with the green color, the NN Lyapunov function with orange and
the LQR Lyapunov function with blue. Both the current safe level ck and the safe
level set Vθ(ck) grow non-monotonically. (Mass flow coefficient: annulus averaged,
axial velocity divided by wheel speed, Plenum pressure coefficient: pressure divided
by density and the square of wheel speed. The system is transformed such that the
equilibrium point is at the origin.)

In Figure 5.5 it is shown that the NN Lyapunov function covers 26.16% of Sπ before
the first iteration, and that the safe set size is only 0.79% of the grid defined in Eq.
5.4. The results from the twentieth iteration is shown in Figure 5.6, where the the
safe set size is 2.46% of the grid and the NN Lyapunov function covers 81.77% of
Sπ.

Figure 5.5: Initial safe level and safe set size for AS equilibrium with maximum state
variables and control input defined in Equation 5.5. The initial safe set size was 495
and only covered 0.79% of the entire grid, defined in Equation 5.4. The safe level ck
was initially significantly small compared to the fixed boundary cs = 1.
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Figure 5.6: Safe level and safe set size for AS equilibrium with maximum state
variables and control input defined in Equation 5.5. At the twentieth iteration, the
safe set size was 2.46% of the grid defined in Equation 5.4. The current safe level
has increased to ck = 0.2689, but has not converged to the fixed boundary cs = 1.

In Figure 5.7, 40 more iterations have been run, and by comparing Figure 5.4(b)
and Figure 5.7(b), several observations can be made. First of all, the safe level
ck continues to grow, non-monotonically, towards the fixed boundary cS = 1 and
at iteration 60, ck = 0.876. Secondly, Vθ(ck) continues to grow non-monotonically,
but does not improve much during the 40 new iterations, except that the difference
between low and large values decreases.

Figure 5.7: (a) Safe Lyapunov candidate level sets. (b) Training behaviour of
the NN candidate. This is the identical control law as in Figure 5.4, only that 40
more iterations have been run. As can be seen, as more iterations are performed,
the safe level ck continues to grow, non-monotonically, towards the fixed boundary
cS = 1. (Mass flow coefficient: annulus averaged, axial velocity divided by wheel
speed, Plenum pressure coefficient: pressure divided by density and the square of
wheel speed. The system is transformed such that the equilibrium point is at the
origin.)
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5.3.1 Alternative Control Input for the Asymptotically Sta-
ble Equilibrium

Further analysis shows that the system is asymptotically stable for an even lower
maximum value of the control input. For the control law, the saturation constraints
for the state variables and control input are defined as follows:

ψ̂max = 0.46

φ̂max = 0.5

umax = 0.03

(5.6)

The results can be seen in Figure 5.8(a), where the NN Lyapunov function Vθ per-
forms poorly by covering approximately 58% of the true ROA. Figure 5.8(b) shows
that the safe level ck of Vθ declines non-monotonically towards zero. The safe level
set Vθ(ck) barely grows from its initial starting point and the fraction of the Sπ stays
close to constant. Figure 5.10 shows that at iteration 20, ck is only 2.36× 10−5, and
that the safe set size is only 0.79% of the grid defined in Equation 5.4.

Figure 5.8: (a) Safe NN Lyapunov candidate level sets (b) Training behaviour of
the NN candidate. Maximum state variables and control input defined in Equation
5.6. The control law resulted in an asymptotically stable equilibrium. The true
ROA Sπ is represented with the green color and the NN Lyapunov function with
orange. The safe level ck of Vθ declines non-monotonically towards zero and the safe
level set Vθ(ck) stays close to constant. (Mass flow coefficient: annulus averaged,
axial velocity divided by wheel speed, Plenum pressure coefficient: pressure divided
by density and the square of wheel speed. The system is transformed such that the
equilibrium point is at the origin.)

The NN Lyapunov function and the LQR Lyapunov function are shown in two
separate figures, because they perform equally, and therefore cover each other. The
result of the LQR Lyapunov function can be seen in Figure 5.9.
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Figure 5.9: (a) Safe LQR Lyapunov candidate level sets (b) Training behaviour of
the NN candidate. Maximum state variables and control input defined in Equation
5.6. The control law resulted in an asymptotically stable equilibrium. The true
ROA Sπ is represented with the green color and the LQR Lyapunov function with
blue. (Mass flow coefficient: annulus averaged, axial velocity divided by wheel speed,
Plenum pressure coefficient: pressure divided by density and the square of wheel
speed. The system is transformed such that the equilibrium point is at the origin.)

Figure 5.10: Safe level and safe set size for AS equilibrium with maximum state
variables and control input defined in Equation 5.6. At the twentieth iteration, the
safe set size was 0.78% of the grid defined in Equation 5.4. The current safe level
ck is significantly small compared to the fixed boundary cs = 1.

5.3.2 Unstable Equilibrium Point

If the saturation constraint for the control input is set to be even lower, it can be
seen in Figure 5.11(a) that Vθ goes beyond Sπ and with the proposed Lyapunov
candidate the equilibrium is unstable. The same can be observed for the LQR
Lyapunov function in Figure 5.12(a). In the given case, the saturation constraints
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for the state variables and control input are defined as follows:

ψ̂max = 0.46

φ̂max = 0.5

umax = 0.01

(5.7)

Figure 5.11(b) shows that the safe level ck of Vθ declines non-monotonically towards
zero. In Figure 5.13 it can be seen that the NN Lyapunov function initially covered
254.69% of Sπ, and from Figure 5.14 it can be seen that at iteration 20, Vθ covers
the same percentage of the ROA. By comparing the two figures, it shows that the
safe set size stays the same and only covers 0.78% of the grid defined in Equation
5.4. In Figure 5.11(b) the training behavior of the NN candidate does not show
because it is beyond the limits of Sπ.

Figure 5.11: (a) Lyapunov candidate level sets (b) Training behaviour of the NN
candidate. Maximum state variables and control input defined in Equation 5.7. The
control law resulted in an unstable equilibrium. The true ROA Sπ is represented
with the green color and the NN Lyapunov function with orange. The NN Lyapunov
candidate goes beyond Sπ. The safe level ck of Vθ declines non-monotonically towards
zero. (Mass flow coefficient: annulus averaged, axial velocity divided by wheel speed,
Plenum pressure coefficient: pressure divided by density and the square of wheel
speed. The system is transformed such that the equilibrium point is at the origin.)
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Figure 5.12: (a) LQR candidate level sets (b) Training behaviour of the NN
candidate. Maximum state variables and control input defined in Equation 5.7. The
control law resulted in an unstable equilibrium. The true ROA Sπ is represented
with the green color and the LQR Lyapunov function with blue. The LQR Lyapunov
candidate goes beyond Sπ. (Mass flow coefficient: annulus averaged, axial velocity
divided by wheel speed, Plenum pressure coefficient: pressure divided by density and
the square of wheel speed. The system is transformed such that the equilibrium point
is at the origin.)

Figure 5.13: Initial safe level and safe set size for the equilibrium with maximum
state variables and control input defined in Equation 5.7. The initial safe set size
is 0.78% of the grid defined in Equation 5.4; however, it initially covers 259.69% of
the ROA. The equilibrium is thus unstable for the initial value of the NN Lyapunov
function candidate.
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Figure 5.14: Safe level and safe set size for the equilibrium with maximum state
variables and control input defined in Equation 5.7. At iteration 20, the safe set size
has not improved, and is still 254.69% of the ROA. The equilibrium is unstable.
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Chapter 6

Discussion

The following chapter presents a discussion of the objectives and the research ques-
tions given in the introduction of this thesis. Moreover, it attempts to explain the
results from the preceding chapter that are not self-evident.

The objective of this thesis has been to gain an overview over state-of-the-art regard-
ing stability and robustness in nonlinear dynamical systems in order to maximize
the safe level set that can be used as a safety certificate for a given nonlinear, closed-
loop dynamical compressor system. The focus in this thesis can be divided into four
parts:

1. Present an extensive literature study consisting of scientific papers regarding
AI and ML methods introduced into the control loop, in addition to previous
research related to compressor surge control.

2. Provide background theory regarding compressor surge control and the most
relevant technologies used in order to construct safe level sets for general
closed-loop dynamical systems.

3. Design an anti-surge controller for the Moore-Greitzer compressor with a focus
on maximization of its safe level set using a neural network Lyapunov function
candidate and comment on the results.

4. Present an evaluation of the NN Lyapunov function presented by Richards
et al. (2018), and discuss future work.

In the introduction of this thesis, two research questions were formulated. Con-
cerning the first question, research has shown that it is possible to find a suitable
Lyapunov function candidate for the Moore-Greitzer compressor system. In addi-
tion to the NN Lyapunov function implemented in this thesis, Simon and Valavani
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(1991) presented the theoretical background for the creation of an anti-surge con-
troller based on Lyapunov control theory, and Backi et al. (2013); Liaw et al. (2002)
implemented an anti-surge controller based on Lyapunov control theory. In order
to answer the second research question, the results of the NN anti-surge controllers
have to be analyzed.

6.1 Stability Analysis of the Compressor Surge

System

Compressor surge represents undesired oscillations in mass flow and pressure, and
it can cause a reduction in performance or even damage the compressor. Surge
avoidance can be handled with two different approaches. The cautious way is to
ensure that the equilibrium point is stable in open-loop. Considering the simulation
parameters in Table 5.1, this means that the system is operated with the throttle gain
γ = 0.768. In this case, if Figure 3.2 is considered, the system is operated at point
A where the system is self-compensating and surge is avoided. This method ensures
that the equilibrium is stable, but it will limit the range of mass flow for which the
compressor can be used. The throttle gain γ is proportional to the throttle opening.
If the throttle gain is decreased, the equilibrium point moves along the compressor
characteristics towards lower values of mass flow. The second approach is to operate
the system with a throttle gain of γ = 0.411. In an open-loop, the equilibrium point
would be unstable with both eigenvalues located in the right half-plane. The system
is in the given case operated at point B in Figure 3.2, and without an anti-surge
controller, surge will occur. However, in closed-loop, an anti-surge controller can be
implemented to stabilize the equilibrium point for γ = 0.411. In this thesis, different
control inputs for the compressor surge system were considered.

6.1.1 Globally Asymptotically Stable Equilibrium Point

The first control law for the CCV resulted in a GAS equilibrium beyond the original
surge line. This can be seen from Figure 5.1, where the region of attraction Sπ for
the closed-loop system fπ, given the fixed policy π, covers the entire grid. In Figure
5.2(a) it can be seen the result of the NN Lyapunov function covers the entire grid,
and in (b) the NN fraction of Sπ, is 100% of the ROA. It can also be seen that
the safe set size is already 100% at the first iteration. Since the policy is fixed to
the LQR solution, and, with the given policy, the system is globally asymptotically
stable, the NN Lyapunov candidate and the LQR Lyapunov candidate provides the
same result, and there is no need for the NN to explore safe states. This confirms
previous finding in the literature, where in Gravdahl and Egeland (1997), a control
law was derived for the CCV that resulted in a global uniform asymptotic stable
equilibrium point.
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In the code that accompanies the NN Lyapunov function, the maximum value of
state and action have to be chosen. Given these saturation constraints, the policy
is fixed to the LQR solution for the linearized, discretized system. For the GAS
control law, the maximum state variables and control input is defined in Equation
5.3. These values were chosen given intersection point of the compressor and throttle
characteristics in Figure 4.1. With the chosen state and action values, the throttle
line crosses Ψe(φ̂) where the slope is negative, and the equilibrium is stable.

GAS is very desirable as every trajectory converges to the equilibrium point and the
objective was to create an anti-surge controller with a focus on the maximization
of the safe level set for the given compressor system. Since the equilibrium point
is GAS for the given control law, the entire level set is safe, and there is no need
for Algorithm 1 to iteratively grow an estimate of the true ROA Sπ. Despite the
fact that the code required to solve Vθ (Richards et al., 2018) does show that the
equilibrium point is GAS, the potential of the algorithm is not fulfilled. In order to
evaluate how well the algorithm scores for a complex nonlinear system, it must thus
be suggested a second control law for the CCV.

6.1.2 Locally Asymptotically Stable Equilibrium Point

Since the control variable represents the pressure drop over the valve, it is considered
as a loss of energy in the compressor system, and it is therefore beneficial to keep
the control variable as low as possible. Since the control input u is constrained
to be a particular value u = [−u, u], it is possible to minimize the pressure drop
across the CCV, but as a consequence, the system will only be locally asymptotically
stable. In Backi et al. (2013) it is argued that the range of mass flow should be as
wide as possible, and, as a result, the stability results will be more powerful. Global
asymptotic stability is more powerful than locally asymptotic stability; however, the
equilibrium does not necessarily need to be GAS as long as the area for which the
system is most likely operated within is covered. With this approach, the control
input can be minimized for a locally asymptotic stable equilibrium, and thus, the
loss in the system will be reduced. Specifically, in that case, since the equilibrium
point would be locally asymptotically stable, Algorithm 1 can be used to iteratively
grow an estimate of the true ROA, in order to find the largest safe level set Vθ.

The result of the second control law can be seen in Figure 5.4. For the locally
asymptotically stable control law, the maximum state variables and control input is
defined in Equation 5.5. These values were chosen with the trial and error method,
where the objective was to see how low the control input could be and still provide
a stable equilibrium. Further discussion of choice of saturation constraint for the
control input is given in the following subsection. With a low pressure drop across
the CCV, the equilibrium point is locally asymptotically stable. The NN Lyapunov
function Vθ performs much better than the traditional Lyapunov approaches, and
covers approximately 81% of the true ROA. However, Figure 5.4 (b) shows that
the safe level ck of Vθ grows non-monotonically, and does not converge to the fixed
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boundary cS = 1. The safe level set Vθ(ck) also grows non-monotonically to cover a
significant part of Sπ.

6.1.3 Evaluation of the Neural Network Lyapunov Function

There are several factors with the code created by Richards et al. (2018) that have
to be taken into consideration. First, it is not guaranteed that the safe level set
Vθ(c) will monotonically grow in volume, nor is the convergence of Vθ(c) to Sπ. In
Figure 5.7 it can be seen that the safe level set Vθ(c) oscillates considerably for the
compressor system, but also that the fraction of the true ROA Sπ does improve.
However, in Figure 5.8 Vθ(c) does not oscillate, but the fraction of Sπ stays close
to constant. Furthermore, the safe level ck is not guaranteed to go to the safe level
cS. In Figure 5.7(b), it can be seen that ck continues to grow, non-monotonically,
towards cS as the number of iterations increases, and at iteration 60, ck = 0.876.
In comparison, Figure 5.2(b) shows that ck remains constant for all iterations. The
reason for this can be that since the GAS control law initially covers the entire grid,
there is no need for the Algorithm 1 to iteratively adapt safe level sets to the shape
of Sπ. Finally, Richards et al. (2018) do conclude that the NN Lyapunov candidate
Vθ can, without identifying unsafe states as safe, find a subset of the true ROA.

In the code that accompanies the NN Lyapunov function, the maximum values of
states and action have to be chosen. This choice will affect the remaining calculations
in the system, such as the LQR K matrix and the estimated region of attraction
Sπ and it is thus important to choose sufficient values. A sufficient choice requires
information regarding inputs and outputs of the system; otherwise, the code will
not provide an adequate result. If the values are chosen too high, with the motive of
ensuring that the area for which the system is most likely operated within is covered,
the code provides an inadequate result. On the contrary, if the saturation constraint
for the control input is chosen too low, the code also provides an inadequate result,
as can be seen in Figure 5.11. In Figure 5.11(a) it can be seen that the NN Lyapunov
function candidate goes beyond the limits of Sπ, and Figure 5.13 shows that the safe
set size is initially 254.69% of the ROA. The reason for this can be that while the
algorithm grows an estimate of Sπ, the given NN Lyapunov function candidate ini-
tially gives an unstable result and thus, does not decrease during training. Without
feedback the equilibrium point is unstable for the throttle gain γ = 0.411; therefore,
it is reasonable that the NN Lyapunov function candidate provides an inadequate
result with a control input close to zero. This can be seen from the arrows in Figure
5.13: outside of Sπ the arrows point outwards and the trajectories do not converge
to the equilibrium point. For comparison, in Figure 5.1, it can be seen that all
trajectories converges to the equilibrium point as the entire grid is covered by Sπ.

In order to understand the robustness of the NN Lyapunov function, the original
system for the inverted pendulum system by Richards et al. (2018) was considered.
For the inverted pendulum, it is easy to choose the maximum state and action values.
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The first state is the angle from the upright equilibrium point xe = 0, and the second
state is the angular velocity. The maximum state values are set to be 180 degrees and
360 degrees per second, respectively. The maximum action input is chosen such that
if the pendulum falls over a certain angle, the pendulum will fall down and it can
not recover. The Greitzer-Moore compressor system is a significantly more complex
system than the inverted pendulum and, accordingly, the choice of maximum state
and action values are less intuitive and more comprehensive. Hence, the code that
accompanies the NN Lyapunov function requires considerable information about the
system to be investigated, as only a small change of values can change how well the
algorithm performs. Notwithstanding the above, two control laws for the CCV have
been presented in this thesis, ensuring both global and local asymptotic stability,
and verifying that the code works well under ideal circumstances.

The code required to solve the NN Lyapunov function created by Richards et al.
(2018) is comprehensive but easily understood. Although the performance was not
ideal, the code that accompanies the NN Lyapunov function is nevertheless a great
step towards using NNs to estimate the region of attraction for nonlinear systems.
In addition, the visualization of the different Lyapunov candidates and the true
ROA is impressive. Despite the limitations of this method, and consequently, the
poor results in Figure 5.9 and Figure 5.11, two control laws for the CCV have been
presented in this thesis, showing that the code works well under ideal circumstances.
Choice of inputs and outputs of the dynamics affect the performance of the NN
Lyapunov function, which is a reasonable demand. Consequently, the evidence from
this study suggests that this approach has potential, but that the code could be more
robust. Numerical parameters may affect the system, but there may also be inherent
errors in the code which was not detected by the author. However, only knowledge
of inputs and outputs of the dynamics is required, and the system does not need
to have a specific model structure. With the saturation constraints based on the
compressor and throttle characteristics in Figure 4.1, the NN Lyapunov function
provided a GAS control law.
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Chapter 7

Future Work

The following chapter discusses several possible future improvements to this thesis’
contributions in order to expand the robustness of the code and thus the robustness
of the anti-surge controllers.

The design and development of the control laws for the Moore-Greitzer compressor
system can be further investigated in order to make the control laws more robust for
the industry. It is recommended that further research regarding the Moore-Greitzer
compressor should be undertaken in the following areas:

• In the presented thesis, the output of the system in (4.12) is defined as

y = h(x) =
[
x1 x2

]
(7.1)

For further investigation, since it is cheaper and more practical to only measure
pressure (Gravdahl and Egeland, 2012), the output of the system in (4.12)
should thus be defined as

y = h(x) = x1 (7.2)

• For future work the impact of time delay(s) in the Moore-Greitzer compressor
system should be explored.

As previously mentioned, the experiments presented in this thesis suggest that the
code required to solve the NN Lyapunov function created by Richards et al. (2018)
should be further investigated. The code depends on the choice of maximum state
and action values, which have proved difficult to choose for this particular nonlinear
system. It is recommended that further research regarding the stability analysis and
robustness of the code should be undertaken in the following area:
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• For the Moore-Greitzer compressor system, it made sense to choose the satura-
tion constraints based on the compressor and throttle characteristics in Figure
4.1 and a GAS control law was proposed. The saturation constraints for the
locally asymptotically stable control law were chosen by lowering the control
input as much as possible and still provide a stable equilibrium. Therefore, it
is recommended that further research evaluate how well the code performs on
a nonlinear system less complex than the Moore-Greitzer compressor system.
It is the author’s understanding that the code will perform well on a system
with definite boundaries.
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Chapter 8

Conclusion

The first objective of this thesis has been to gain an overview over state-of-the-art
regarding the construction of safe level sets for closed-loop dynamical systems in
general and design an anti-surge controller for the Moore-Greitzer compressor with
focus on maximization of its safe level set in particular. The second objective has
been to evaluate the performance of the code required to create a Neural Network
Lyapunov function (Richards et al., 2018) for a nonlinear system more complicated
than in the original code.

The presented thesis has developed two anti-surge controllers for a Moore-Greitzer
compression system in combination with a close-coupled valve. The design tools
used are Lyapunov control theory in combination with NNs. One of the control
laws ensures global asymptotic stability for the equilibrium. The second control
law only ensures locally asymptotic stability and focuses on the minimization of the
pressure drop across the valve.

The code required to create a NN Lyapunov function created by Richards et al.
(2018) is comprehensive, but easily understood. The most important limitation lies
in the knowledge required regarding inputs and outputs of the system. Although the
performance was not ideal, the code that accompanies the NN Lyapunov function
is nevertheless a great step towards using NNs to estimate the region of attrac-
tion for nonlinear systems. This study has gone some way towards enhancing the
understanding of the code, but further analysis should be conducted.
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Appendix A

Tools of Lyapunov Stability

Theory

This section is inspired by Khalil (2015) and provides the basic definitions for Lya-

punov control theory.

An equilibrium point is defined as a point in the state space where if the state of

the system starts at that point, it will remain in that point for all future time.

Furthermore, an equilibrium point is defined as stable if all solutions starting at

nearby points stay nearby if not, it is unstable.

Consider the time-invariant system

ẋ = f(x) (A.1)

where f : D⇒ Rn is locally Lipschitz and x = 0 ∈ D is an equilibrium point of the

system. Locally Lipschitz means that the system has a solution and the solution is

unique.

(In the following definitions the equilibrium point is assumed to be at the origin,
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x = 0. However, if the equilibrium point is not at the origin it is possible to move it

to the origin by a transformation x̃) without loss of generality.

Definition: Stability (Lyapunov Stability)

x = 0 is stable if and only if(iff)

∀ ε > 0 ∃ δ(ε) > 0 s.t.
∥∥x(0)

∥∥ < δ ⇒
∥∥x(t)

∥∥ < ε ∀t ≥ 0

For an equilibrium point to be asymptotically stable all solutions starting at nearby

points have to converge to the equilibrium point as time approaches infinity.

Definition: Asymptotically Stability

The equilibrium point x = 0 is (locally) asymptotically stable iff

i) it is stable

ii) ∃ r > 0 s.t.
∥∥x(0)

∥∥ < r ⇒ limt→∞ x(t) = 0 (Convergence)

Once it is known that an equilibrium point is asymptotically stable, it is interesting

to know how far from that point it is possible for the trajectory to be and still

converge to the equilibrium point as time approaches infinity. This region is defined

as the region of attraction.

Definition: Region of Attraction

Br = {r ∈ Rn : ‖x‖ < r }

Furthermore, global stability is very desirable and an equilibrium point is globally

asymptotically stable if every trajectory converges to the equilibrium point. This

implies that the equilibrium point is the unique equilibrium point.
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Definition: Global Asymptotic Stability

The equilibrium point x = 0 is globally asymptotically stable iff

i) it is stable

ii) ∀x(0) limt→∞ x(t) = 0

This implies that x = 0 is the only equilibrium point.

Asymptotically stability does not say anything about the rate of convergence; how

long time it takes for the trajectory to go to the equilibrium point.

Definition: Convergence∥∥x(0)
∥∥ < r ⇒ limt→∞ x(t) = 0

First of all, all exponentially stable systems are also asymptotically stable. How-

ever, exponential stability is a stronger form of stability, because it demands an

exponential rate of convergence.

Definition: Exponential Stability

The equilibrium point x = 0 is (locally) exponentially stable iff ∃ r, k, λ > 0

such that∥∥x(0)
∥∥ < r ⇒

∥∥x(t)
∥∥ ≤ k

∥∥x(0)
∥∥ e−λt ∀t ≤ 0

Whenever possible, one should always strive to prove global exponential stability; it

ensures that every trajectory converges to the equilibrium point with an exponential

rate of convergence.

Definition: Globally Exponential Stability

The equilibrium point x = 0 is globally exponentially stable iff ∃ k, λ > 0 such

that

∀x(0)
∥∥x(t)

∥∥ ≤ k
∥∥x(0)

∥∥ e−λt ∀t ≤ 0

67



68



Appendix B

Implementation of Anti-Surge

Controllers

Listing B.1 is the class created for compressor surge and Listing B.2 shows the

implementation of the NN Lyapunov function and the LQR Lyapunov function given

the compressor surge class. In Listing B.2 there are several classes imported which

are not shown in this Appendix. However, the necessary code in order to understand

the basics of the implementation of the NN Lyapunov function for the Moore-Greitzer

compressor is included in Appendix B.

1 c l a s s CompressorSurge ( Dete rmin i s t i cFunct ion ) :

2 ”””CompressorSurge .

3

4 Parameters

5 −−−−−−−−−−

6 gamma : f l o a t

7 B c : f l o a t

8 k 1 : f l o a t

9 k 2 : f l o a t

10 k 3 : f l o a t

11 x c : f l o a t
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12 dt : f l o a t , op t i ona l

13 The sampling time .

14 norma l i za t i on : tuple , op t i ona l

15 A tup l e (Tx , Tu) o f a r rays used to normal ize the s t a t e and

ac t i on s . I t

16 i s so that diag (Tx) ∗x norm = x and diag (Tu) ∗ u norm = u .

17

18 ”””

19

20 de f i n i t ( s e l f , gamma, B c , k 1 , k 2 , k 3 , x c , dt=1/80 ,

21 norma l i za t i on=None ) :

22 ””” I n i t i a l i z a t i o n ; s ee ‘ CompressorSurge ‘ . ”””

23 super ( CompressorSurge , s e l f ) . i n i t (name=’ CompressorSurge ’ )

24 s e l f . gamma = gamma

25 s e l f . B c = B c

26 s e l f . k 1 = k 1

27 s e l f . k 2 = k 2

28 s e l f . k 3 = k 3

29 s e l f . x c = x c

30

31 s e l f . dt = dt

32

33 s e l f . no rma l i za t i on = normal i za t i on

34 i f norma l i za t i on i s not None :

35 s e l f . no rma l i za t i on = [ np . array (norm , dtype=con f i g . np dtype )

36 f o r norm in norma l i za t i on ]

37 s e l f . inv norm = [ norm ∗∗ −1 f o r norm in s e l f . norma l i za t i on ]

38

39

40 de f normal ize ( s e l f , s ta te , a c t i on ) :

41 ”””Normalize s t a t e s and ac t i on s . ”””

42 i f s e l f . norma l i za t i on i s None :

43 re turn s tate , a c t i on

44
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45 Tx inv , Tu inv = map(np . diag , s e l f . inv norm )

46 s t a t e = t f . matmul ( s ta te , Tx inv )

47

48 i f a c t i on i s not None :

49 ac t i on = t f . matmul ( act ion , Tu inv )

50

51 re turn s tate , a c t i on

52

53 de f denormal ize ( s e l f , s ta te , a c t i on ) :

54 ”””De−normal ize s t a t e s and ac t i on s . ”””

55 i f s e l f . norma l i za t i on i s None :

56 re turn s tate , a c t i on

57

58 Tx , Tu = map(np . diag , s e l f . norma l i za t i on )

59

60 s t a t e = t f . matmul ( s ta te , Tx)

61 i f a c t i on i s not None :

62 ac t i on = t f . matmul ( act ion , Tu)

63

64 re turn s tate , a c t i on

65

66 de f l i n e a r i z e ( s e l f ) :

67 ”””Return the l i n e a r i z e d system .

68

69 Returns

70 −−−−−−−

71 a : ndarray

72 The s t a t e matrix .

73 b : ndarray

74 The ac t i on matrix .

75

76 ”””

77 gamma = s e l f . gamma

78 B c = s e l f . B c
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79 x c = s e l f . x c

80 k 1 = s e l f . k 1

81

82

83 A = np . array ( [ [− gamma/(2∗B c∗math . s q r t ( x c ) ) , 1/B c ] ,

84 [−B c , −k 1 ∗B c ] ] ,

85 dtype=con f i g . np dtype )

86

87 B = np . array ( [ [ 0 ] ,

88 [−B c ] ] ,

89 dtype=con f i g . np dtype )

90

91 i f s e l f . norma l i za t i on i s not None :

92 Tx , Tu = map(np . diag , s e l f . norma l i za t i on )

93 Tx inv , Tu inv = map(np . diag , s e l f . inv norm )

94

95 A = np . l i n a l g . mul t i dot ( ( Tx inv , A, Tx) )

96 B = np . l i n a l g . mul t i dot ( ( Tx inv , B, Tu) )

97

98 sys = s i g n a l . StateSpace (A, B, np . eye (2 ) , np . z e r o s ( ( 2 , 1) ) )

99 sysd = sys . t o d i s c r e t e ( s e l f . dt )

100 re turn sysd .A, sysd .B

101

102 @concatenate inputs ( s t a r t =1)

103 de f bu i l d e va l u a t i on ( s e l f , s t a t e a c t i o n ) :

104 ””” Evaluate the dynamics . ”””

105 # Denormalize

106 s ta te , a c t i on = t f . s p l i t ( s t a t e a c t i on , [ 2 , 1 ] , ax i s=1)

107 s ta te , a c t i on = s e l f . denormal ize ( s ta te , a c t i on )

108

109 n inne r = 10

110 dt = s e l f . dt / n inne r

111 f o r i in range ( n inne r ) :

112 s t a t e d e r i v a t i v e = s e l f . ode ( s ta te , a c t i on )
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113 s t a t e = s t a t e + dt ∗ s t a t e d e r i v a t i v e

114

115 re turn s e l f . normal ize ( s ta te , None ) [ 0 ]

116

117 de f ode ( s e l f , s ta te , a c t i on ) :

118 ”””Compute the s t a t e time−d e r i v a t i v e .

119

120 Parameters

121 −−−−−−−−−−

122 s t a t e s : ndarray or Tensor

123 Unnormalized s t a t e s .

124 a c t i on s : ndarray or Tensor

125 Unnormalized a c t i on s .

126

127 Returns

128 −−−−−−−

129 x dot : Tensor

130 The normal ized d e r i v a t i v e o f the dynamics

131

132 ”””

133 # Phys i ca l dynamics

134 gamma = s e l f . gamma

135 B c = s e l f . B c

136 x c = s e l f . x c

137 k 1 = s e l f . k 1

138 k 2 = s e l f . k 2

139 k 3 = s e l f . k 3

140

141 pressure , mass f low = t f . s p l i t ( s ta te , 2 , ax i s=1)

142

143

144

145 x1 dot = (1/B c ) ∗mass f low − (1/B c ) ∗gamma∗ t f . s q r t ( p r e s su r e

+ x c ) + (1/B c ) ∗gamma∗math . s q r t ( x c )
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146 x2 dot = B c∗(−k 3 ∗ t f . pow( mass f low , 3)−

k 2 ∗ t f . pow( mass f low , 2) −k 1 ∗mass f low − pre s su r e − ac t i on )

147 s t a t e d e r i v a t i v e = t f . concat ( ( x1 dot , x2 dot ) , ax i s=1)

148

149 # Normalize

150 re turn s t a t e d e r i v a t i v e

Listing B.1: class CompressorSurge

1 ##Learning a Lyapunov Function f o r Compressor Surge

2 #Construct and t r a i n a parameter ized Lyapunov func t i on f o r Compressor

Surge .

3

4 from f u t u r e import d i v i s i on , p r i n t f u n c t i o n

5

6 import numpy as np

7 import t en so r f l ow as t f

8 import s a f e l e a r n i n g

9 import matp lo t l i b . pyplot as p l t

10 import time

11 import os

12

13 from u t i l i t i e s import ( LyapunovNetwork , CompressorSurge ,

14 ba l anc ed c l a s s we i gh t s , binary cmap , compute roa

, monomials , der ivat ive monomia l s )

15

16 # Nice p rog r e s s bars

17 t ry :

18 from tqdm import tqdm

19 except ImportError :

20 tqdm = lambda x : x

21

22 #User Options

23 c l a s s Options ( ob j e c t ) :

24 de f i n i t ( s e l f , ∗∗kwargs ) :
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25 super ( Options , s e l f ) . i n i t ( )

26 s e l f . d i c t . update ( kwargs )

27

28 OPTIONS = Options ( np dtype = s a f e l e a r n i n g . c on f i g . np dtype

,

29 t f d type = s a f e l e a r n i n g . c on f i g . dtype ,

30 eps = 1e−8,

# numerica l t o l e r an c e

31 s a tu ra t e = True ,

# apply s a tu ra t i on c on s t r a i n t s to the con t r o l input

32 u s e z e r o t h r e s h o l d = True ,

# assume the d i s c r e t i z a t i o n i s i n f i n i t e l y f i n e ( i . e . , tau = 0)

33 p r e t r a i n = True ,

# pre−t r a i n the neura l network to match a given candidate in a

supe rv i s ed approach

34 dpi = 150 ,

35 num cores = 4 ,

36 num sockets = 1 ,

37 t f ch e ckpo in t pa th = ” . / tmp/

lyapunov func t i on l e a rn ing . ckpt ” )

38

39 #TensorFlow Ses s i on

40 #Customize the TensorFlow s e s s i o n f o r the cur rent dev i ce .

41

42 os . env i ron [ ”KMPBLOCKTIME” ] = s t r (0 )

43 os . env i ron [ ”KMP SETTINGS” ] = s t r (1 )

44 os . env i ron [ ”KMP AFFINITY” ] = ’ g r anu l a r i t y=f in e , noverbose , compact

, 1 , 0 ’

45 os . env i ron [ ”OMPNUMTHREADS” ] = s t r (OPTIONS. num cores )

46

47 c on f i g = t f . Conf igProto ( i n t r a o p p a r a l l e l i sm t h r e a d s = OPTIONS.

num cores ,

48 i n t e r o p p a r a l l e l i sm t h r e a d s = OPTIONS.

num sockets ,

75



49 a l l ow so f t p l a c emen t = False ,

50 dev i c e count = { ’CPU’ : OPTIONS

. num cores })

51

52 t ry :

53 s e s s i o n . c l o s e ( )

54 except NameError :

55 pass

56 s e s s i o n = t f . I n t e r a c t i v e S e s s i o n ( c on f i g=con f i g )

57

58 # Set random seed to reproduce r e s u l t s

59 seed = 1

60 t f . set random seed ( seed )

61 np . random . seed ( seed )

62

63

64 ## Dynamics

65

66 Def ine the non l in ea r and l i n e a r i z e d forms o f the compressor surge

dynamics .

67 # Constants

68 dt = 0.01 # sampling time

69

70 #Compressor system parameters

71 B c = 0.832 #B−parameter

72 x c = 0.533 #operat ing po int f o r p r e s su r e f low , r e s p e c t i v e to x 1

73 x d = 0 .3 #operat ing po int f o r mass f low , r e s p e c t i v e to x 2

74 gamma = 0.411 #t h r o t t l e ga in

75 H = 0.18 #c o e f f i c i e n t

76 W = 0.25 #c o e f f i c i e n t

77 k 1 = −1.0368 #c o e f f i c i e n t

78 k 2 = 0.864 #c o e f f i c i e n t

79 k 3 = 5.76 #c o e f f i c i e n t

80
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81

82 # State and ac t i on norma l i z e r s

83 pressure max = 0 .3 # pre s su r e

84 massflow max = 0 .6 # mass f low

85 u max = 0 .3 # pre s su r e drop over CCV

86

87 state norm = ( pressure max , massflow max )

88 act ion norm = (u max , )

89

90 # Dimensions and domains

91 s ta te d im = 2

92 act ion dim = 1

93 s t a t e l i m i t s = np . array ( [ [ −1 . , 1 . ] ] ∗ s ta te d im )

94 a c t i o n l im i t s = np . array ( [ [ −1 . , 1 . ] ] ∗ act ion dim )

95

96 # I n i t i a l i z e system c l a s s and i t s l i n e a r i z a t i o n

97 pendulum = CompressorSurge (gamma, B c , k 1 , k 2 , k 3 , x c , dt , [

state norm , act ion norm ] )

98 A, B = pendulum . l i n e a r i z e ( )

99 dynamics = pendulum . c a l l

100

101 #State D i s c r e t i z a t i o n and I n i t i a l Sa fe Set

102 #Def ine a uniform d i s c r e t i z a t i o n , and an i n i t i a l known s a f e s e t as #a

subset o f t h i s d i s c r e t i z a t i o n .

103

104 # Number o f s t a t e s a long each dimension

105 num states = 251

106

107 # State g r id

108 g r i d l im i t s = np . array ( [ [ −1 . , 1 . ] , ] ∗ s ta te d im )

109 s t a t e d i s c r e t i z a t i o n = s a f e l e a r n i n g . GridWorld ( g r i d l im i t s , num states )

110

111 # Di s c r e t i z a t i o n constant

112 i f OPTIONS. u s e z e r o t h r e s h o l d :
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113 tau = 0 .0

114 e l s e :

115 tau = np . sum( s t a t e d i s c r e t i z a t i o n . unit maxes ) / 2

116

117 pr in t ( ’ Grid s i z e : {} ’ . format ( s t a t e d i s c r e t i z a t i o n . nindex ) )

118 pr in t ( ’ D i s c r e t i z a t i o n constant ( tau ) : {} ’ . format ( tau ) )

119

120 # Set i n i t i a l s a f e s e t as a b a l l around the o r i g i n ( in normal ized

coo rd ina t e s )

121 c u t o f f r a d i u s = 0 .1

122 i n i t i a l s a f e s e t = np . l i n a l g . norm( s t a t e d i s c r e t i z a t i o n . a l l p o i n t s , ord

=2, ax i s=1) <= cu t o f f r a d i u s

123

124 #Fixed Po l i cy

125 #Fix the po l i c y to the LQR so l u t i o n f o r the l i n e a r i z e d , d i s c r e t i z e d #

system , po s s i b l y with s a tu ra t i on c on s t r a i n t s .

126

127 Q = np . i d e n t i t y ( s tate d im ) . astype (OPTIONS. np dtype ) # s t a t e co s t

matrix

128 R = np . i d e n t i t y ( act ion dim ) . astype (OPTIONS. np dtype ) # act i on co s t

matrix

129 K, P lqr = s a f e l e a r n i n g . u t i l i t i e s . d lq r (A, B, Q, R)

130

131

132 po l i c y = s a f e l e a r n i n g . LinearSystem(− K, name=’ po l i c y ’ )

133 i f OPTIONS. sa tu ra t e :

134 po l i c y = s a f e l e a r n i n g . Saturat ion ( po l i cy , −1, 1)

135 Q = np . i d e n t i t y ( s tate d im ) . astype (OPTIONS. np dtype ) # s t a t e co s t

matrix

136 R = np . i d e n t i t y ( act ion dim ) . astype (OPTIONS. np dtype ) # act i on co s t

matrix

137 K, P lqr = s a f e l e a r n i n g . u t i l i t i e s . d lq r (A, B, Q, R)

138

139
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140 po l i c y = s a f e l e a r n i n g . LinearSystem(− K, name=’ po l i c y ’ )

141 i f OPTIONS. sa tu ra t e :

142 po l i c y = s a f e l e a r n i n g . Saturat ion ( po l i cy , −1, 1)

143

144

145

146 #Closed−Loop Dynamics L ip s ch i t z Constant

147 # # Pol i cy ( l i n e a r )

148 L pol = lambda x : np . l i n a l g . norm(−K, 1)

149

150 # # Dynamics ( l i n e a r approximation )

151 L dyn = lambda x : np . l i n a l g . norm(A, 1) + np . l i n a l g . norm(B, 1) ∗ L pol ( x

)

152

153 #LQR Lyapunov Candidate

154 #Def ine a Lyapunov candidate func t i on corre spond ing to the LQR so l u t i o n

f o r the l i n e a r i z e d system .

155

156 # Def ine the Lyapunov func t i on corre spond ing to the LQR po l i c y

157 l yapunov funct ion = s a f e l e a r n i n g . QuadraticFunction ( P lqr )

158 # Approximate l o c a l L i p s ch i t z cons tant s with g rad i en t s

159 grad lyapunov funct ion = s a f e l e a r n i n g . LinearSystem ((2 ∗ P lqr , ) )

160 L v = lambda x : t f . norm( grad lyapunov funct ion (x ) , ord=1, ax i s =1,

keepdims=True )

161

162 # I n i t i a l i z e Lyapunov c l a s s

163 l yapunov lqr = s a f e l e a r n i n g . Lyapunov ( s t a t e d i s c r e t i z a t i o n ,

lyapunov funct ion , dynamics , L dyn , L v , tau , po l i cy ,

i n i t i a l s a f e s e t )

164 l yapunov lqr . update va lues ( )

165 l yapunov lqr . upda t e s a f e s e t ( )

166

167

168 #Neural Network Lyapunov Candidate

79



169 #Def ine a parameter ized Lyapunov candidate func t i on with a neura l

network .

170

171 l aye r d ims = [64 , 64 , 64 ]

172 a c t i v a t i o n s = [ t f . tanh , t f . tanh , t f . tanh ]

173 l yapunov funct ion = LyapunovNetwork ( state dim , layer d ims , a c t i v a t i on s ,

OPTIONS. eps )

174

175 # Approximate l o c a l L i p s ch i t z cons tant s with g rad i en t s

176 grad lyapunov funct ion = lambda x : t f . g r ad i en t s ( lyapunov funct ion (x ) , x

) [ 0 ]

177 L v = lambda x : t f . norm( grad lyapunov funct ion (x ) , ord=1, ax i s =1,

keepdims=True )

178

179 # I n i t i a l i z e parameters ; need to use the template be f o r e parameter

v a r i a b l e s e x i s t in the TensorFlow graph

180 temp = t f . p l a c eho lde r (OPTIONS. t f dtype , shape=[None , s ta te d im ] , name=’

s t a t e s ’ )

181 temp = lyapunov funct ion ( temp)

182 s e s s i o n . run ( t f . v a r i a b l e s i n i t i a l i z e r ( lyapunov funct ion . parameters ) )

183

184 # I n i t i a l i z e Lyapunov c l a s s

185 lyapunov nn = s a f e l e a r n i n g . Lyapunov ( s t a t e d i s c r e t i z a t i o n ,

lyapunov funct ion , dynamics , L dyn , L v , tau , po l i cy ,

i n i t i a l s a f e s e t )

186 lyapunov nn . update va lues ( )

187 lyapunov nn . upda t e s a f e s e t ( )

188

189

190

191 #TensorFlow Graph

192

193 # Dynamics

194 t f s t a t e s = t f . p l a c eho ld e r (OPTIONS. t f dtype , shape=[None ,
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s ta te d im ] , name=’ s t a t e s ’ )

195 t f a c t i o n s = po l i c y ( t f s t a t e s )

196 t f f u t u r e s t a t e s = dynamics ( t f s t a t e s , t f a c t i o n s )

197

198 # Neural network

199 t f v a l u e s nn = lyapunov nn . lyapunov funct ion ( t f s t a t e s )

200 t f f u t u r e v a l u e s n n = lyapunov nn . lyapunov funct ion ( t f f u t u r e s t a t e s )

201 t f dv nn = t f f u t u r e v a l u e s n n − t f v a l u e s nn

202 t f t h r e s h o l d = lyapunov nn . th r e sho ld ( t f s t a t e s , lyapunov nn . tau )

203 t f n e g a t i v e = t f . squeeze ( t f . l e s s ( t f dv nn , t f t h r e s h o l d ) , ax i s

=1)

204

205

206 # LQR

207 t f v a l u e s l q r = lyapunov lqr . lyapunov funct ion ( t f s t a t e s )

208 t f f u t u r e v a l u e s l q r = lyapunov lqr . lyapunov funct ion ( t f f u t u r e s t a t e s )

209 t f d v l q r = t f f u t u r e v a l u e s l q r − t f v a l u e s l q r

210

211 #True Region o f Att rac t i on

212 #Compute the t rue l a r g e s t r eg i on o f a t t r a c t i o n (ROA) by forward−

s imu la t ing the c losed−loop dynamics .

213

214 c l o s ed loop dynamic s = lambda x : t f f u t u r e s t a t e s . eva l ({ t f s t a t e s : x})

215 hor izon = 500

216 t o l = 0 .1

217 roa , t r a j e c t o r i e s = compute roa ( lyapunov nn . d i s c r e t i z a t i o n ,

c lo sed loop dynamics , hor izon , to l , n o t r a j=False )

218

219 #Neural Network Pre−Training

220 #Pre−t r a i n on a s ph e r i c a l Lyapunov func t i on to make sure an i n i t i a l

s a f e s e t e x i s t s .

221

222 i f OPTIONS. p r e t r a i n :

223 obj = [ ]
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224 l e v e l s t a t e s = s t a t e d i s c r e t i z a t i o n . a l l p o i n t s [ i n i t i a l s a f e s e t ]

225

226 # Sphe r i c a l candidate

227 P = 0.1 ∗ np . eye ( s ta te d im )

228 l yapunov funct ion = s a f e l e a r n i n g . QuadraticFunction (P)

229 grad lyapunov funct ion = s a f e l e a r n i n g . LinearSystem ((2 ∗ P, ) )

230 L v = lambda x : t f . norm( grad lyapunov funct ion (x

) , ord=1, ax i s =1, keepdims=True )

231

232 # I n i t i a l i z e c l a s s

233 lyapunov pre = s a f e l e a r n i n g . Lyapunov ( s t a t e d i s c r e t i z a t i o n ,

lyapunov funct ion , dynamics , L dyn , L v , tau , po l i cy ,

i n i t i a l s a f e s e t )

234 lyapunov pre . update va lues ( )

235 lyapunov pre . upda t e s a f e s e t ( )

236

237 # TensorFlow graph elements

238 t f v a l u e s p r e = lyapunov pre . lyapunov funct ion ( t f s t a t e s )

239 t f f u t u r e v a l u e s p r e = lyapunov pre . lyapunov funct ion (

t f f u t u r e s t a t e s )

240 t f d v p r e = t f f u t u r e v a l u e s p r e − t f v a l u e s p r e

241

242 with t f . name scope ( ’ l yapunov pr e t r a in ing ’ ) :

243 t f l o s s e s = t f . abs ( t f v a l u e s nn − t f v a l u e s p r e ) # / t f .

s t op g r ad i en t ( t f v a l u e s p r e + OPTIONS. eps )

244 t f o b j e c t i v e = t f . reduce mean ( t f l o s s e s , name=’ ob j e c t i v e ’ )

245 t f l e a r n i n g r a t e = t f . p l a c eho ld e r (OPTIONS. t f dtype , shape =[ ] ,

name=’ l e a r n i n g r a t e ’ )

246 opt imize r = t f . t r a i n . GradientDescentOptimizer (

t f l e a r n i n g r a t e )

247 lyapunov update = opt imize r . minimize ( t f o b j e c t i v e , v a r l i s t=

lyapunov nn . lyapunov funct ion . parameters )

248

249 t f b a t c h s i z e = t f . p l a c eho lde r ( t f . int32 , [ ] , ’ b a t ch s i z e ’ )
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250 t f b a t ch = t f . random uniform ( [ t f b a t c h s i z e , ] , 0 ,

l e v e l s t a t e s . shape [ 0 ] , dtype=t f . int32 , name=’ batch sample ’ )

251

252 i f OPTIONS. p r e t r a i n :

253 # Test s e t

254 t e s t s i z e = in t (1 e3 )

255 idx = t f ba t ch . eva l ({ t f b a t c h s i z e : i n t (1 e3 ) })

256 t e s t s e t = l e v e l s t a t e s [ idx , : ]

257

258 f e e d d i c t = {

259 t f s t a t e s : l e v e l s t a t e s ,

260 t f l e a r n i n g r a t e : 1e−1,

261 t f b a t c h s i z e : i n t (1 e3 ) ,

262 }

263 max i te r s = 300

264

265 f o r i in tqdm( range ( max i t e r s ) ) :

266 idx = t f ba t ch . eva l ( f e e d d i c t )

267 f e e d d i c t [ t f s t a t e s ] = l e v e l s t a t e s [ idx , : ]

268 s e s s i o n . run ( lyapunov update , f e e d d i c t )

269

270 f e e d d i c t [ t f s t a t e s ] = t e s t s e t

271 obj . append ( t f o b j e c t i v e . eva l ( f e e d d i c t ) )

272

273 lyapunov nn . update va lues ( )

274 lyapunov nn . upda t e s a f e s e t ( )

275

276 i f OPTIONS. p r e t r a i n :

277 f i g , ax = p l t . subp lo t s (1 , 1 , f i g s i z e =(3 , 2) , dpi=OPTIONS. dpi )

278 ax . s e t x l a b e l ( r ’ i t e r a t i o n ’ )

279 ax . s e t y l a b e l ( r ’ pre−t r a i n i n g ob j e c t i v e ’ )

280 ax . p l o t ( obj , ’ .− r ’ )

281 p l t . show ( )

282
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283 #Neural Network Train ing

284 #Train the parameter ic Lyapunov candidate in order to expand the

v e r i f i a b l e s a f e s e t towards .

285

286 # Save TensorFlow checkpo int f o r the neura l network parameters

287 saver = t f . t r a i n . Saver ( v a r l i s t=lyapunov nn . lyapunov funct ion .

parameters )

288 ckpt path = saver . save ( s e s s i on , OPTIONS. t f ch e ckpo in t pa th )

289

290 with t f . name scope ( ’ r o a c l a s s i f i c a t i o n ’ ) :

291 # Target the s a f e l e v e l s e t to extend out towards

292 s a f e l e v e l = t f . p l a c eho ld e r (OPTIONS. t f dtype , shape =[ ] , name=’ c max

’ )

293 l e v e l m u l t i p l i e r = t f . p l a c eho lde r (OPTIONS. t f dtype , shape =[ ] , name=

’ l e v e l m u l t i p l i e r ’ )

294

295 # True c l a s s l ab e l s , converted from Boolean ROA l a b e l s {0 , 1} to

{−1, 1}

296 r o a l a b e l s = t f . p l a c eho lde r (OPTIONS. t f dtype , shape=[None , 1 ] , name

=’ l a b e l s ’ )

297 c l a s s l a b e l s = 2 ∗ r o a l a b e l s − 1

298

299 # Signed , po s s i b l y normal ized d i s t anc e from the d e c i s i o n boundary

300 d e c i s i o n d i s t a n c e = s a f e l e v e l − t f v a l u e s nn

301

302 # Perceptron l o s s with c l a s s weights

303 c l a s s w e i g h t s = t f . p l a c eho ld e r (OPTIONS. t f dtype , shape=[None , 1 ] ,

name=’ c l a s s w e i g h t s ’ )

304 c l a s s i f i e r l o s s = c l a s s w e i g h t s ∗ t f .maximum(− c l a s s l a b e l s ∗

de c i s i o n d i s t an c e , 0 , name=’ c l a s s i f i e r l o s s ’ )

305

306 # Enforce dec r ea s e c on s t r a i n t with Lagrangian r e l a x a t i o n

307 l a g r a n g e mu l t i p l i e r = t f . p l a c eho ld e r (OPTIONS. t f dtype , shape =[ ] ,

name=’ l a g r a n g e mu l t i p l i e r ’ )
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308 d e c r e a s e l o s s = r o a l a b e l s ∗ t f .maximum( t f dv nn , 0) / t f .

s t op g r ad i en t ( t f v a l u e s nn + OPTIONS. eps )

309

310 # Construct ob j e c t i v e and opt imize r

311 ob j e c t i v e = t f . reduce mean ( c l a s s i f i e r l o s s + l a g r a n g e mu l t i p l i e r ∗

de c r e a s e l o s s , name=’ ob j e c t i v e ’ )

312 l e a r n i n g r a t e = t f . p l a c eho lde r (OPTIONS. t f dtype , shape =[ ] , name=’

l e a r n i n g r a t e ’ )

313 opt imize r = t f . t r a i n . GradientDescentOptimizer ( l e a r n i n g r a t e )

314 t r a in ing upda t e = opt imize r . minimize ( ob j e c t i v e , v a r l i s t=

lyapunov nn . lyapunov funct ion . parameters )

315

316 with t f . name scope ( ’ sampling ’ ) :

317 ba t ch s i z e = t f . p l a c eho ld e r ( t f . int32 , [ ] , ’ b a t c h s i z e ’ )

318 i dx range = t f . p l a c eho ld e r ( t f . int32 , shape =[ ] , name=’

i nd i c e s t o s amp l e ’ )

319 idx batch = t f . random uniform ( [ ba t ch s i z e , ] , 0 , idx range , dtype=

t f . int32 , name=’ batch sample ’ )

320

321 #I n i t i a l i z a t i o n

322 #Use t h i s c e l l to r e s t o r e parameter checkpo int s and try t r a i n i n g again .

323

324 saver . r e s t o r e ( s e s s i on , ckpt path )

325 lyapunov nn . update va lues ( )

326 lyapunov nn . upda t e s a f e s e t ( )

327

328 t e s t c l a s s i f i e r l o s s = [ ]

329 t e s t d e c r e a s e l o s s = [ ]

330 r oa e s t imate = np . copy ( lyapunov nn . s a f e s e t )

331

332 g r id = lyapunov nn . d i s c r e t i z a t i o n

333 c max = [ lyapunov nn . f e e d d i c t [ lyapunov nn . c max ] , ]

334 s a f e s e t f r a c t i o n = [ lyapunov nn . s a f e s e t . sum( ) / g r id . nindex , ]

335
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336 Training

337 # Training hyperparameters

338 o u t e r i t e r s = 20

339 i n n e r i t e r s = 10

340 hor izon = 100

341 t e s t s i z e = in t (1 e4 )

342

343 f e e d d i c t = {

344 t f s t a t e s : np . z e r o s ( ( 1 , g r id . ndim) ) , # p la c eho ld e r

345 s a f e l e v e l : 1 . ,

346 l a g r a n g e mu l t i p l i e r : 1000 ,

347 #

348 l e v e l m u l t i p l i e r : 1 . 3 ,

349 l e a r n i n g r a t e : 5e−3,

350 ba t ch s i z e : i n t (1 e3 ) ,

351 }

352

353 pr in t ( ’ Current metr i c s . . . ’ )

354 c = lyapunov nn . f e e d d i c t [ lyapunov nn . c max ]

355 num safe = lyapunov nn . s a f e s e t . sum( )

356 pr in t ( ’ Sa fe l e v e l ( c k ) : {} ’ . format ( c ) )

357 pr in t ( ’ Sa fe s e t s i z e : {} ( { : . 2 f}% of gr id , { : . 2 f}% of ROA) \n ’ . format (

i n t ( num safe ) , 100 ∗ num safe / g r id . nindex , 100 ∗ num safe / roa .

sum( ) ) )

358 pr in t ( ’ ’ )

359 time . s l e e p ( 0 . 5 )

360

361 f o r in range ( o u t e r i t e r s ) :

362 pr in t ( ’ I t e r a t i o n (k ) : {} ’ . format ( l en ( c max ) ) )

363 time . s l e e p ( 0 . 5 )

364

365 # Iden t i f y the ”gap” s ta t e s , i . e . , those between V( c k ) and V( a ∗

c k ) f o r a > 1

366 c = lyapunov nn . f e e d d i c t [ lyapunov nn . c max ]
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367 i dx sma l l = lyapunov nn . va lue s . r av e l ( ) <= c

368 i d x b i g = lyapunov nn . va lue s . r av e l ( ) <= f e e d d i c t [ l e v e l m u l t i p l i e r ]

∗ c

369 idx gap = np . l o g i c a l a nd ( idx b ig , ˜ i dx sma l l )

370

371 # Forward−s imulate ”gap” s t a t e s to determine which ones we can add

to our ROA est imate

372 gap s t a t e s = gr id . a l l p o i n t s [ idx gap ]

373 f o r in range ( hor i zon ) :

374 gap s t a t e s = t f f u t u r e s t a t e s . eva l ({ t f s t a t e s : g ap s t a t e s })

375 gap fu tu r e va l u e s = t f v a l u e s nn . eva l ({ t f s t a t e s : g ap s t a t e s })

376 r oa e s t imat e [ idx gap ] |= ( gap fu tu r e va l u e s <= c ) . r av e l ( )

377

378 # Iden t i f y the c l a s s l a b e l s f o r our cur rent ROA est imate and the

expanded l e v e l s e t

379 t a r g e t i d x = np . l o g i c a l o r ( idx b ig , r oa e s t imat e )

380 t a r g e t s e t = gr id . a l l p o i n t s [ t a r g e t i d x ]

381 t a r g e t l a b e l s = roa e s t imat e [ t a r g e t i d x ] . astype (OPTIONS. np dtype ) .

reshape ([−1 , 1 ] )

382 f e e d d i c t [ idx range ] = t a r g e t s e t . shape [ 0 ]

383

384 # Test s e t

385 i d x t e s t = idx batch . eva l ({ ba t ch s i z e : t e s t s i z e , idx range :

t a r g e t s e t . shape [ 0 ] } )

386 t e s t s e t = t a r g e t s e t [ i d x t e s t ]

387 t e s t l a b e l s = t a r g e t l a b e l s [ i d x t e s t ]

388

389 # SGD fo r c l a s s i f i c a t i o n

390 f o r in tqdm( range ( i n n e r i t e r s ) ) :

391 # Training step

392 i dx ba t ch eva l = idx batch . eva l ( f e e d d i c t )

393 f e e d d i c t [ t f s t a t e s ] = t a r g e t s e t [ i dx ba t ch eva l ]

394 f e e d d i c t [ r o a l a b e l s ] = t a r g e t l a b e l s [ i dx ba t ch eva l ]

395 f e e d d i c t [ c l a s s w e i g h t s ] , c l a s s c o un t s = ba l an c ed c l a s s we i gh t s
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( f e e d d i c t [ r o a l a b e l s ] . astype ( bool ) )

396 s e s s i o n . run ( t ra in ing update , f e e d d i c t=f e e d d i c t )

397

398 # Record l o s s e s on t e s t s e t

399 f e e d d i c t [ t f s t a t e s ] = t e s t s e t

400 f e e d d i c t [ r o a l a b e l s ] = t e s t l a b e l s

401 f e e d d i c t [ c l a s s w e i g h t s ] , c l a s s c o un t s = ba l an c ed c l a s s we i gh t s

( f e e d d i c t [ r o a l a b e l s ] . astype ( bool ) )

402 r e s u l t s = s e s s i o n . run ( [ c l a s s i f i e r l o s s , d e c r e a s e l o s s ] ,

f e e d d i c t )

403 t e s t c l a s s i f i e r l o s s . append ( r e s u l t s [ 0 ] . mean ( ) )

404 t e s t d e c r e a s e l o s s . append ( r e s u l t s [ 1 ] . mean ( ) )

405

406 # Update Lyapunov va lue s and ROA est imate , based on new parameter

va lue s

407 lyapunov nn . update va lues ( )

408 lyapunov nn . upda t e s a f e s e t ( )

409 r oa e s t imat e |= lyapunov nn . s a f e s e t

410

411 c max . append ( lyapunov nn . f e e d d i c t [ lyapunov nn . c max ] )

412 s a f e s e t f r a c t i o n . append ( lyapunov nn . s a f e s e t . sum( ) / g r id . nindex )

413 pr in t ( ’ Current s a f e l e v e l ( c k ) : {} ’ . format ( c max [−1]) )

414 pr in t ( ’ Sa fe s e t s i z e : {} ( { : . 2 f}% of gr id , { : . 2 f}% of ROA) \n ’ .

format ( i n t ( lyapunov nn . s a f e s e t . sum( ) ) ,

415

100 ∗ s a f e s e t f r a c t i o n [−1] ,

416

100 ∗ s a f e s e t f r a c t i o n [−1] ∗ roa . s i z e / roa . sum( ) ) )

417

418 #Resu l t s

419 #

420 f i g = p l t . f i g u r e ( f i g s i z e =(8 , 3) , dpi=OPTIONS. dpi , frameon=False )

421 f i g . s ubp l o t s ad j u s t ( wspace=0.35)

422 p l o t l i m i t s = np . column stack ((− ( [ pressure max , massflow max ] ) , ( [
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pressure max , omega max ] ) ) )

423

424 ax = p l t . subp lot (121)

425 alpha = 1

426 c o l o r s = [ None ] ∗ 3

427 c o l o r s [ 0 ] = (0 , 158/255 , 115/255) # ROA − blu i sh−green

428 c o l o r s [ 1 ] = (230/255 , 159/255 , 0) # NN − orange

429 c o l o r s [ 2 ] = (0 , 114/255 , 178/255) # LQR − blue

430

431

432 # True ROA

433 z = roa . reshape ( g r id . num points )

434 ax . contour ( z .T, o r i g i n=’ lower ’ , extent=p l o t l i m i t s . r av e l ( ) , c o l o r s=(

c o l o r s [ 0 ] , ) , l i n ew id th s=1)

435 ax . imshow( z .T, o r i g i n=’ lower ’ , extent=p l o t l i m i t s . r av e l ( ) , cmap=

binary cmap ( c o l o r s [ 0 ] ) , alpha=alpha )

436

437 # # Neural network

438 z = lyapunov nn . s a f e s e t . reshape ( g r id . num points )

439 ax . contour ( z .T, o r i g i n=’ lower ’ , extent=p l o t l i m i t s . r av e l ( ) , c o l o r s=(

c o l o r s [ 1 ] , ) , l i n ew id th s=1)

440 ax . imshow( z .T, o r i g i n=’ lower ’ , extent=p l o t l i m i t s . r av e l ( ) , cmap=

binary cmap ( c o l o r s [ 1 ] ) , alpha=alpha )

441

442 # # LQR

443 z = lyapunov lqr . s a f e s e t . reshape ( g r id . num points )

444 ax . contour ( z .T, o r i g i n=’ lower ’ , extent=p l o t l i m i t s . r av e l ( ) , c o l o r s=(

c o l o r s [ 2 ] , ) , l i n ew id th s=1)

445 ax . imshow( z .T, o r i g i n=’ lower ’ , extent=p l o t l i m i t s . r av e l ( ) , cmap=

binary cmap ( c o l o r s [ 2 ] ) , alpha=alpha )

446

447 # Plot some t r a j e c t o r i e s

448 N tra j = 20

449 sk ip = in t ( g r id . num points [ 0 ] / N tra j )
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450 sub idx = np . arange ( g r id . nindex ) . reshape ( g r id . num points )

451 sub idx = sub idx [ : : sk ip , : : sk ip ] . r av e l ( )

452 s u b t r a j e c t o r i e s = t r a j e c t o r i e s [ sub idx , : , : ]

453 s ub s t a t e s = gr id . a l l p o i n t s [ sub idx ]

454 f o r n in range ( s u b t r a j e c t o r i e s . shape [ 0 ] ) :

455 x = s u b t r a j e c t o r i e s [ n , 0 , : ] ∗ ( pressure max )

456 y = s u b t r a j e c t o r i e s [ n , 1 , : ] ∗ ( massflow max )

457 ax . p l o t (x , y , ’ k−− ’ , l i n ew id th =0.25)

458 s ub s t a t e s = gr id . a l l p o i n t s [ sub idx ]

459 dx dt = ( t f f u t u r e s t a t e s . eva l ({ t f s t a t e s : s ub s t a t e s }) − s ub s t a t e s ) /

dt

460 dx dt = dx dt / np . l i n a l g . norm( dx dt , ord=2, ax i s =1, keepdims=True )

461 ax . qu iver ( s ub s t a t e s [ : , 0 ] ∗ ( pressure max ) , s ub s t a t e s [ : , 1 ] ∗ (

massflow max ) , dx dt [ : , 0 ] , dx dt [ : , 1 ] ,

462 s c a l e=None , p ivot=’mid ’ , headwidth=3, headlength=6, c o l o r=’k ’

)

463

464 ax . s e t a s p e c t ( pressure max / massflow max / 1 . 2 )

465 ax . s e t x l im ( p l o t l i m i t s [ 0 ] )

466 ax . s e t y l im ( p l o t l i m i t s [ 1 ] )

467 ax . s e t x l a b e l ( r ’ plenum pre s su r e c o e f f i c i e n t ’ )

468 ax . s e t y l a b e l ( r ’mass f low c o e f f i c i e n t ’ )

469

470

471 proxy = [ p l t . Rectangle ( ( 0 , 0 ) , 1 , 1 , f c=c ) f o r c in c o l o r s ]

472 l egend = ax . legend ( proxy , [ r ’ $\mathcal{S} \pi$ ’ , r ’NN’ , r ’LQR’ ] , l o c=’

upper r i g h t ’ )

473 l egend . get f rame ( ) . s e t a l pha ( 1 . )

474

475

476 # Plot s a f e growth over the i t e r a t i o n s

477 ax = p l t . subp lot (222)

478 ax . p l o t ( c max , ’ .− ’ , c o l o r=c o l o r s [ 1 ] )

479 ax . s e t y l a b e l ( r ’ s a f e l e v e l $c k$ ’ )

90



480 ax . s e t y l im ( [ 0 , None ] )

481 p l t . s e tp ( ax . g e t x t i c k l a b e l s ( ) , v i s i b l e=False )

482 r o a f r a c t i o n = roa . sum( ) / roa . s i z e

483 ax = p l t . subp lot (224)

484 ax . p l o t (np . array ( s a f e s e t f r a c t i o n ) / r o a f r a c t i o n , ’ .− ’ , c o l o r=c o l o r s

[ 1 ] )

485 ax . s e t y l a b e l ( r ’ f r a c t i o n o f $S \pi$ ’ )

486 ax . s e t y l im ( [ 0 , 1 ] )

487 ax . s e t x l a b e l ( r ’ s a f e l e v e l s e t update i t e r a t i o n $k$ ’ )

488 p l t . show ( )

Listing B.2: Learning a Lyapunov Function for Compressor Surge
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