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Forord

Denne oppgaven er en masteroppgave skrevet i forbindelse med et 5 årig studium
i kybernetikk og robotikk ved Norges Teknisk-Naturvitenskaplige Universitet
(NTNU). Oppgaven er skrevet v̊aren 2019 og danner det avsluttende arbeidet
i studiet, og innenfor spesialiseringa autonome systemer.

Oppgaven er skrevet i samarbeid med Scout Drone Inspection, et oppstartsfirma
fra NTNU, som spesialiserer seg innen autonome droner for innendørs inspeksjon
av industrianlegg. Arbeidet gjort i denne oppgaven er ikke direkte knyttet til det
Scout DI jobber med, men de har av interesse å se mulighetene Time of flight
kamera kan ha for innendørs navigering og kartlegging. Til tross for dette s̊a
har det i stor grad vært selvstendig arbeid uavhengig av Scout DI. Det Scout DI
og NTNU bidratt med er de nødvendige sensorene brukt i denne oppgaven og i
prosjektoppgaven høsten 2018. Dr. Kristian Klausen (CTO ved Scout DI) har
ogs̊a vært tilgjenglig som r̊adgiver, og har gitt generelle r̊ad om hvilken retning
oppgaven burde ta, og hvordan jeg burde g̊a frem.

Denne oppgaven har gitt meg mulighet til å ta et enda dypere dykk inn i data-
synverdenen, ett av fagomr̊adene innenfor kybernetikken som jeg finner svært
spennende. Jeg har ogs̊a blitt bedre kjent med ROS som verktøy i arbeidet med
å utvikle programvare til autonome systemer.

Jeg vil takke hovedveilederen min Tor Arne Johansen, samt koveileder Kristan
Klausen for å være t̊almodige og støttende n̊ar det dukket opp utfordringer un-
derveis. Jeg vil ogs̊a takke Ascend NTNU og alle de ressursene som jeg hadde
tilgjengelig der.

I



Abstract

This master thesis examines the use of time of flight(ToF) camera as a visual
sensor for problems such as localization, mapping, collision avoidance and other
relevant computer vision tasks. The thesis starts by introducing the concept of
time of flight, and aims to provide a good understanding of the behavior of the
camera. Then we shed some light on traditional computer vision and SLAM with
the use of ToF. The thesis mainly looks at the use of indirect SLAM, and is tested
with ORB SLAM.

A mobile robot is designed for testing a holistic system. The electronic compo-
nents and sensors are discussed as well as their role for the robot and the system
as a whole. Furthermore, a simple simulated model is also made in the gazebo,
where both robot and camera are simulated and tested.

The system as a whole is discussed, and we discuss how the various modules in
the software work and how they work together. The main focus has been on the
use of ORB SLAM with ToF camera, but we also look at collision avoidance and
tracking of a predefined pattern in the image. Finally a set of tests is carried out
on the various systems implemented, and a discussion of these.

The conclusion is that the time of flight camera is a worthy sensor for the use
of navigation and collision avoidance, given some prerequisites. The camera has
some limitations in terms of range and performance, and it is influenced by the
environment and the features in it. If certain requirements are met it seems that
time of flight cameras are a good alternative as an active visual sensor.

II



Sammendrag

Denne masteroppgaven ser p̊a bruken av time of flight(ToF) kamera som en visuell
sensor til problematikk som lokalisering, kartlegging, kollisjonsunng̊aelse og andre
aktulle datasynsoppgaver. Den starter med en introduksjon til konseptet time of
flight, og har som m̊al å gi en god forst̊aelse av virkem̊aten til kameraet. Videre
s̊a settes dette i lys av tradisjonell datasyn og SLAM. Oppgaven ser i hovedsak
p̊a bruken av indirekte SLAM, og er testet med ORB SLAM.

En mobil robot blir konstruert for testing av et helverdig system. De elektroniske
komponentene og sensorene blir diskutert, og hvilken rolle de har for roboten og
systemet som helhet. Videre blir det ogs̊a laget en enkel simulert model i gazebo,
hvor b̊ade robot og kamera blir simulert og testet.

Systemet som helhet blir diskutert, og vi ser p̊a hvordan de ulike modulene i
programvaren fungerer og hvordan de virker sammen. Hovedfokuset har vært p̊a
bruken av ORB SLAM og ToF kamera, men vi ser ogs̊a p̊a kollisjonsunng̊aelse og
sporing i bildet. Til slutt s̊a ser vi p̊a testene gjennomført p̊a de ulike systemene
som er blitt implementert, samt diskuterer disse.

Konklusjonen er at time of flight kamera er en verdig sensor til bruk av navigering
og kollisjonsunng̊aelse, gitt noen forutsetninger. Kameraet har noen begrensinger
med tanke p̊a rekkevidde og ytelsen er preget av hvordan miljøet rundt er opp-
bygget. Dersom visse krav er oppylt s̊a virker det som time of flight er et godt
alternativ som en aktiv visuell sensors.
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Chapter 1

Introduction

1.1 Problem formulation

The purpose of this thesis is to examine whether time of flight cameras is an
ideal alternative as a visual depth sensor by constructing a mobile robot, use the
visual data from the camera as the primary source for localization of the robot,
mapping of the environment and obstacle detection. The scope of this text can
be summarized in the following keypoints:

• Describe the principles of the depth camera, and the specification of the
chosen sensor

• Build a simulated environment for a ground robot and test SLAM in this
environment

• Design and construct a moving ground robot for experimental trails

• Demonstrate navigation in an unknown environment with the sensor

• Develop a system for obstacle avoidance and tracking.

1.2 Motivation

Even though time of flight cameras isn’t a new invention, smaller more lightweight
low power cameras has become available in the recent years, which could be ideal
for mobile robots where weight and space is an issue that has to be considered.
Given that this kind of sensors are able to decently localize and map the envi-
ronment it could be a good alternative sensor.

Time of flight cameras are active sensors which make them able to work inde-
pendently of ambient light, and they should have an advantage over standard
cameras in enclosed and poorly lit environments.
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This thesis is a continuation of the author’s fall project where the goal was to
argue whether ToF cameras could be used as a visual sensor for localization and
mapping by comparing the performance with the performance of a active IR
projecting stereo camera, and is discussed in some more detail in section 2.2.
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1.3 Structure of thesis

Chapter 1

Chapter 1 forms the basis for the thesis by introducing the goal and motivation
behind the project.

Chapter 2

In this chapter the reader is brought up to speed on the basic theory making
the foundation of this thesis. Primarily it about the working principle of time of
flight (ToF) cameras, computer vision in general and how it all fit together.

Chapter 3

This chapter contain an overview of the hardware used to construct the robot used
in this project, along with some specifications and how the different components
are connected and working together.

Chapter 4

A short introduction of the simulation environment gazebo is given, as well as
the configuration of gazebo to simulate a robot in a simple environment with a
depth camera.

Chapter 5

In chapter 5 the different software implementation on the robot is presented, the
working principles and the communication flow between the different nodes in
the software. The different parts of the software can be divided into motor and
sensor control, motor controller, SLAM, obstacle detection and avoidance and
target tracking.

Chapter 6

In this chapter the results of the implementations in simulator and on the robot
is presented. This include ORB SLAM, obstacle avoidance and tracking.

Chapter 7

In the final chapter the results of the testing is discussed. Then further work is
discussed based upon the results and possible improvements. The chapter ends
with a short final conclusion.

3



Chapter 2

Background theory

In the following sections the background theory making the grounds for this thesis
will be presented, with focus on the Time of flight sensor, and how it fits into the
overall theory and thesis. In section 2.1 the working principle of time of flight
cameras is presented. Section 2.3 presents some basic computer vision principles
used in this project, and finally in section 2.4 VSLAM is discussed.

2.1 Time of flight principle

Time of flight (ToF) cameras are active sensors, that is, it uses light in the
infrared spectrum to illuminate the environment, making it independent of the
amount of ambient light in the environment. The main principle is to project
the infrared light onto the scene and calculate the time it takes for the light to
return, hence the name ”time of flight”. Time of flight systems use primarily
two kinds of systems, either pulse modulation or continuous wave modulation.
In this project continuous wave modulation is used, but a short introduction to
pulse modulation will also be included.[1].

Figure 2.1: Basic principle of ToF cameras, [1]
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2.1.1 ToF pulse modulation

Pulse modulation ToF systems solves the problem of finding the time of flight
with the most obvious solution, i.e. send out a single pulse of IR-light and
measure the time it takes to return. There are in general two methods to achieve
this; one could start use a fast counter which is stopped when the first returning
light is measured or by integrating photoelectric energy from the reflected light.
Since the speed of light is ≈ 0.3 meters per nanosecond, the former case is highly
dependent on really fast hardware if a high resolution depth is to be estimated.
Thus the arrival time has to be detected very precisely, where just a small offset
will have a major impact on the depth measurement. These kind of components
are usually very expensive so the cheaper method is usually used, by integrating
the photoelectric charge from the reflected light. [1][2].

Figure 2.2: Pulse modulation, [1]

The method of integrating the photoelectric charge is as following. A single pulse
of IR-light is sent out into the environment with a duration of ∆t. The returning
light is sampled in every pixel of the camera in parallel, by the use of two out of
phase windows C1 and C2 as seen in fig. 2.2. Both of the windows has a time
duration of ∆t. The depth in every pixel is then calculated by eq. 2.1 where Q1

and Q2 is the accumulated photoelectric charge in each of the respective windows.

d =
1

2
c∆t

Q2

Q1 +Q2
(2.1)

2.1.2 Continuous wave (CW) modulation

As with the pulse modulation in the previous subsection continuous wave modu-
lation make the use of the accumulated photoelectric change in different windows.
In continuous wave modulation the method to find the depth in the environment
is by measuring the phase shift of a modulated infrared signal. This signal is
typically a sinusoid or a square wave. The infrared light is modulated accord-
ing to eq 2.2, where AE is the maximal amplitude of the signal and fmod is the
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modulation frequency. The signal strength is between [0, AE ][2].

SE(t) = AE(1 + sin(2πfmodt)) (2.2)

The reflected signal is given by eq 2.3a where ∆φ is the phase shift and the
signal BR is the interference from the ambient light in the infrared spectrum. By
setting B = BR +AR and A = AR we get the simplified eq. 2.3b. A is called the
amplitude of the signal and B is the offset.

SR(t) = AR(1 + sin(2πfmodt+ ∆φ)) +BR (2.3a)

SR(t) = Asin(2πfmodt+ ∆φ)) +B (2.3b)

The next step is to to estimated the variables A, B and ∆φ from equation 2.3b.
This is done by sampling the signal of the reflected modulated in four windows.
Each of the windows is out of phase by 90 degrees as shown in the table below.

Time Samples of SR
t = 0 Q0 = S0

R(t)
t = 1

4fmod
Q1 = S1

R(t)

t = 2
4fmod

Q2 = S2
R(t)

t = 3
4fmod

Q3 = S3
R(t)

Figure 2.3: Wave modulation measurement principle, describing the windows and
the integration time, [1]

The estimated variables Â, B̂, ∆̂φ are then found by minimizing the square error
between the measured charge in each window, and the value of SNR , N ∈ [0, 3] for
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each of the different windows given by eq. 2.4.

(Â, B̂, ∆̂φ) = argminA,B,∆φ

3∑
n=0

(Qn −Asin(
π

2
n+ ∆φ) +B)2 (2.4)

The solution is then given by the following three equations [2]:

Â =

√
(Q0 −Q2)2 + (Q1 −Q3)2

2
(2.5a)

B̂ =
Q0 +Q1 +Q2 +Q3

4
(2.5b)

∆̂φ = arctan2(Q0 −Q2, Q1 −Q3) (2.5c)

Now that the estimated variables Â, B̂, ∆̂φ is written as a function of the accu-
mulated photoelectric charges Q0, Q1, Q2 and Q3, the distance can in each pixel
can be found by equation 2.6, where c is the speed of light.

d̂ =
c

4π fmod
∆̂φ (2.6)

The output of the ToF camera is two or three pictures, where the pixel values
is based upon the estimated variables Â, B̂, d̂. In most cases only the intensity
image and depth image are used, based upon Â and d̂ respectively.

(a) Depth image (b) IR intensity image

Figure 2.4: Example of the depth and IR image from the Pico Flexx

According to [1] the depth measurement variance can be approximated by the
Gaussian 2.7 where cd is the modulation contrast which describe the sensors
ability to collect and separate the photoelectric charges.

σ =
c

4
√

2π fmod

√
A+B

cdA
(2.7)

As seen above in this and the previous subsection the continuous wave modulation
and pulse modulation work by the same principle by measuring the accumulated

7



photoelectric charge from the incoming IR-light, then why use the more complex
continuous wave modulation? The answer is quite clear when we look at the
equations of the two. The pulse modulation will be directly effected by a constant
effect from ambient light, while the CW modulation is immune to this effect. This
is made clear by equations where a constant qc photoelectic effect from ambient
light is added.

d =
1

2
c∆t

Q2 + qc
2qc +Q1 +Q2

6= 1

2
c∆t

Q2

Q1 +Q2
(2.8)

∆φ = arctan2((Q0 + qc)− (Q2 + qc), (Q1 + qc)− (Q3 + qc)) (2.9a)

= arctan2(Q0 −Q2, Q1 −Q3) (2.9b)

As seen in equation 2.8 the distance estimate is affected by the constant qc while
the CW modulation sum out to zero in equation 2.9, where the phase is calculated.
Since the distance estimate is the product of constants and the phase, eq. 2.6,
ambient light have a reduced effect on the CW modulation depth estimate.

While the ambient light don’t have an effect on the phase estimate, it has an
effect on the repeatability of the measurement, as seen in equation 2.7, which is
a function of A and B. A is unaffected by qc but B is not, and an increase in the
ambient light will increase the variance of the depth measurement.

It is in our interest to minimize the variance of the depth measurement. The
variables that has a direct effect on this is A, B, cd and fmod. The key takeaway
is a small value of B, minimize ambient light, large values of A, cd and fmod. A
is saturated by the light source of the ToF camera, a stronger light source could
increase A.Cd is limited by the hardware and fmod is limited by aliasing. Since
the phase wraps around every 2π, i.e sin(t) = sin(t+ 2π), the distance will have
an aliasing distance, called the ambiguity distance. This ambiguity distance is
given by eq. 2.10. This is also the maximum distance the ToF cameras are able
to measure. If the maximal measurement is to be increased, the modulation fre-
quency has to be decreased, which will increase the variance of the measurements
[1].

damb =
c

2fmod
(2.10)

To improve the depth estimate and reduce noise a common technique is to av-
erage the photoelectric charge in each window over several periods, called the
integration time, and use these averages to calculate Â, B̂, ∆̂φ. While this reduce
the amount of noise in the measurements, it has some side effects that must be
considered. First of all, since the photoelectric charge is averaged over a given
interval, usually between ¡1,100¿ milliseconds, the camera may move during the
integration time. This may result in motion blur. Another side effect is the
case of saturation, which happens when received quantity of IR-light exceeds the
maximum capability of the hardware. The effect of saturation is mostly visible in

8



the case of high external infrared illumination, like from the sun, or from highly
reflective surfaces. [2].

2.2 Earlier work

In an earlier project, fall of 2018 [3], a comparison between time of flight camera
and active stereo camera was conducted. The purpose of the project was to argue
whether time of flight cameras were an ideal sensor to the use of SLAM and
obstacle avoidance, the scope if this paper. A series of small test was conducted
to test the performance of the Pico Flexx ToF camera against the Intel D435
stereo camera.

The general findings were that the performance was somewhat similar between
the two cameras, where the Intel D434 stereo camera had some longer range, while
the accuracy was within 1%-2% of the distance to the object for both cameras,
i.e. at distance of 2 meters the measurement would be within ± 2 - 4 centimeters
of the actual distance.

Another finding was the range of the time of flight camera was highly dependent
on the background and how reflective that and of the objects in the pictures
were. As seen in the table below the maximal range is more than halved if the
background is dark and little reflective. The different modes will be discussed
further in section 3.3.2. However it is not a surprise that the range is reduced
when less IR-light return to the sensor, but it is important to keep in mind during
the test scenarios.

Mode Max range, reflective background Max range, dark background

1 6.9 meters 2.9 meters

2 5.5 meters 2.2 meters

3 4.5 meters 1.75 meters

4 3.5 meters 1.5 meters

5 2.4 meters 1.2 meters

6 2.3 meters 1.0 meters

As seen in fig 2.13b the amount of salt and pepper noise increase as the distance
from the object reaches the maximal distance of the sensor. The reason for this is
the amount of the returning light in the pixel is below a threshold to give reliable
depth estimates.

9



(a) Minimal salt and pepper noise
(b) High level of salt and pepper noise
in the background.

Figure 2.5: Significant increase in invalid measurements when the camera is close
to its maximum range[3]

2.3 Basis of computer vision

The following subsection introduce the various computer vision algorithms and
principles used in this project. The primary focus will be on camera model,
intrinsic and extrinsic camera parameters, calibration of camera, key point and
feature detection and last but not least, VSLAM.

2.3.1 Camera model

A camera model is a description of the mapping between the world (3D) to the
image (2D). There are many different camera models and which one to choose
depend a lot on the camera in question. For many purposes and for the uses in
this thesis the pinhole camera model should be sufficient.

Figure 2.6: Illustration of the pin hole model, [4]

As seen in fig. 2.6 the pinhole model is based on that the light from the motive
out in the world only passes through a tiny little hole in the camera. In this case
a point in the world will only project to a single point in the image plane, which
is a feature we want.

A common method is to set a virtual image in front of the pinhole instead of

10



using the image in the image plane, which is upside down. Given the use of the
virtual image, we can use a simple mathematical mapping between this image an
the world described by eq. 2.11, where Xw is the point in the world frame, and
Xi is the point in the image.

xi = KTcwXw (2.11)

2.3.2 Intrinsic and extrinsic camera parameters

Figure 2.7: The connection between the intrinsic and extrinsic camera parameters
and the different frames, [4]

In eq. 2.11, K is called the intrinsic matrix and Tcw is the extrinsic matrix.
Together they represent the transform from the world frame into the image plane.
As seen in the fig. 2.7 above the Tcw is the transform from the world frame to the
camera frame. K is the transform from the 3D camera frame into the 2D image
plane.

In the equation below, eq. 2.12, the equation is written in full form. The vectors
xi and XW are homogeneous vectors, making the transformation between world
and image frame easier with simple matrix multiplications. As seen in the equa-
tion, Tcw is a simple homogeneous transformation between the world frame and
the camera frame, i.e it describes the rotation and translation between the two.
In this case [tx, ty, tz] is the vector from the camera frame to the world frame.

The K matrix in the same equation consist of five parameters. fu and fv is the
focal length given in pixels along the u and v axis. The parameters cu and cv is
the principal point given in the u-v-plane. The final parameters s is the skew of
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the image, and is most cases equal to zero.

xi =

uivi
wi


fu s cu

0 fv cv
0 0 1


r1,1 r1,2 r1,3 tx
r2,1 r2,2 r2,3 ty
r3,1 r3,2 r3,3 tz



Xw

Yw
Zw
Ww

 (2.12)

2.3.3 Camera calibration

Camera calibration is the process of finding the unknown parameters given in the
previous section, i.e.fu, fv, s, cu and cv, as well as some lens distortion parameters.
Most cameras have one or more lenses and in one way or another it will effect
the picture. However the pinhole camera model do not consider the effect of the
lenses since there are none in the model.

Two types of lens distortion that are typical to model are radial distortion and
tangential distortion. Radial distortion is due to fact that the light is bend more
at the edges of the lens, than at the optical point. The distortion can be modelled
as in eq. 2.13, where xdis, ydis is the distorted points, x and y is the undistorted
pixel locations, r = x2 + y2 and k1, k2 and k3 is the radial distortion coefficients
of the lens.

Figure 2.8: The different effects radial distortion has on the picture, [5]

xdis = x(1 + k1r
2 + k2r

4 + k3r
6) (2.13a)

ydis = y(1 + k1 ∗ r2 + k2r
4 + k3r

6) (2.13b)

Tangential distortion happens when the lens and image plane is not parallel. To
model this effect we use eq. 2.14, where p1 and p2 is the tangential distortion
coefficients of the lens.
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Figure 2.9: Example of tangential distortion,[5]

xdis = x+ (2p1xy + p2(r2 + 2x2)) (2.14a)

ydis = y + (2p2xy + p1(r2 + 2y2)) (2.14b)

Thus the process of calibrating a camera is finding the parameters fu, fv, s, cu, cv,
k1, k2, k3p1 and p2. There a many open source camera calibrations programs out
there, openCV, ROS and matlab to mention some. The program generally works
by taking a series of pictures of a checkerboard pattern from different angles and
distances. The calibration parameters of the pico flexx camera was found by the
use of the openCV camera calibrator and are presented in the table below.

fu fv cu cv k1 k2 k3 p1 p2

208.02 208.02 111.29 87.18 0.8685 -7.175 12.12 ≈0 ≈0

2.3.4 Segmentation and thresholding

Segmentation is the process of the process of partitioning a digital image into
multiple segments, usually based on the intensity of the pixels. If a set of pixels
are close to each other and have have similar intensity, it is probably an area of
interest. In the case of obstacle detection and avoidance the use of segmentation
could be ideal to detect obstacles.

The simplest method of segmentation is by thresholding, however it has some
major drawbacks. The process is as following; given the intensity in an image,
set a threshold t and change the intensity of each pixel x in the image given by
eq. 2.15. This will separate the picture into two regions, making them easier
to work with. However some of the drawback are; what value to choose for the
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threshold, separating into more than two regions require several thresholds, and
increase the complexity of the problem.

Inew(x) =

{
1 : I(x) ≥ t

0 : I(x) < t
(2.15)

Another method for segmentation is region growing. As seen in fig 2.10 a set of
seeds is placed in the image. These seeds spread to nearby pixels with similar
properties, usually based on the intensity of the neighboring pixels. While this
method efficiency is based on where the seeds are put, it solves many of the
problems with thresholding when segmenting into several regions.

Figure 2.10: Process of segmentation by region growing, [6]

2.3.5 ORB

Oriented FAST and rotated BRIEF (ORB) is feature matching method, which
consist of the FAST keypoint detector and BRIEF descriptor, to find correspond-
ing points in different images,

Feature detection is the process of finding interesting points or key points in an
image. This is usually done by looking at a pixel and the surrounding pixels to
evaluate if this area is distinct enough to be labeled a feature in the picture. In
general areas with large change pixel value in either direction is of interest, i.e
edges and corners.

Features from accelerated segment test, better known as ”FAST”, is a high speed
low computational corner keypoint detector. The algorithm can be summarized
in the following points:

• Select a pixel p in the image. The intensity of that pixel is Ip

• Select a intensity threshold t
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• Make a circle of radius 3 pixels and consider the 16 pixels in this circle, as
seen in fig 2.11.

• The pixel p is a corner if n contiguous pixels (typically n = 12) are brighter
than Ip + t or darker than Ip − t.

• Repeat for each pixel

Figure 2.11: Illustration of how FAST corners work, [7]

To improve the speed the of the FAST algorithm one first should compare the
intensity of pixel 1, 5, 9, 13 in the circle. If less than 3 of these don’t satisfy the
threshold criterion the point can be discarded as a corner. Otherwise continue
with the rest of the points in the circle.

Once a corner has been found a descriptor is needed to separate one corner from
another and such that feature matching is possible. ORB do this by using Binary
robust independent elementary feature (BRIEF).

Brief make use of all of the keypoint found by FAST, and describe it and its
neighborhood with a binary feature vector. The feature vector, also know as
binary feature descriptor, contains only ones and zeroes. The length of the vector
varies, but are usually a 128-512 bit string.

To make the binary feature descriptor BRIEF start by smoothing the image with
a Gaussian kernal to make the descriptor more robust high frequency noise in
the image. Then it select a random pair of pixels in the neighborhood around
the keypoint. This neighborhood is called a patch, at a predefined size. The
first pixel is drawn from a Gaussian distribution around the feature point. The
second pixel is then drawn from a Gaussian distribution around the first pixel.
The binary value is found by eq. 2.16 where p(x) and p(y) is the pixel intensities
for the two pixels. This test is run 128-512 times filling up the binary feature
vector. Feature correspondence is then found by comparing the binary feature
vectors using Hamming distance. [8][9]

τ(p, x, y) =

{
1 : p(x) < p(y)

0 : p(x) ≥ p(y)
(2.16)
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2.4 Visual simultaneous localization and mapping

Visual simultaneous localization and mapping (vSLAM) is a method/set with
algorithms that are able to build a map of a unknown environment while per-
forming localization by the use of visual sensor, i.e. mono and stereo cameras.
This problem is often the most important problem to be solved when working
with autonomous vehicles.

vSLAM algorithms are divided into two main categories, direct and indirect meth-
ods. These two can be divided into dense and sparse SLAM algorithms, which is
strictly correlated to the amount of pixels used in the mapping (dense use more,
sparse use less). The most typical is direct dense/sparse and indirect spare. The
major difference between direct and indirect SLAM is whether the picture is pre-
processed or not. Direct SLAM use the image directly, hence the name, while
the indirect method make use of feature extraction first,like the type discussed
in the previous subsection, 2.3.5. Based on the movement of these point in one
image to another it is possible to find the transformation between these frames.

Indirect SLAM preprocesses the image by using a detector/descriptor like ORB
and extract these features in each image. The problem can be defined as a mini-
mization problem, described in eq. 2.17. Here the geometric error (reprojection
error) is given by the term ui − π(TcwX

W
i ) and π() is projection of a point from

camera frame to image frame like in subsection 2.3.2. The variables to be found
is the transform between world and camera, Tcw and X∗

i which is the set of fea-
ture points given in world coordinates. The problem of finding both Tcw and X∗

i

is called full bundle adjustment. By linearizing the the measurement prediction
function with a local Taylor expansion the problem can be formulated as a least
square problem which has a known solution.

T ∗
cw, x

∗
i = argminTcw,x∗i

∑
i

∥∥∥ui − π(TcwX
W
i )
∥∥∥ (2.17)

Direct SLAM algorithms make use of all or many pixels in the image along with
their intensity. The transformation Tcw is found by minimizing the photometric
error, as given in eq. 2.18. The photometric error is given as the difference in
the pixel intensities in the two different pictures. This is done by transforming
one of the pictures by Tcw and minimizing the error between the different pixel
intensities.

T ∗
cw = argminTcw

∑
i

∥∥∥(Ii − Ic(π(TcwX
W
i )))

∥∥∥2
(2.18)

2.4.1 ORB-SLAM

ORB-SLAM is a indirect sparse SLAM algorithm. There are a several different
indirect and direct SLAM algorithm to choose from, but in this project ORB-
SLAM will be the primary focus. There are several reason for this fact. Today
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ORB-SLAM is one of the best performing vSLAM algorithms including both
direct and indirect algorithms [10]. Another reason is that it uses ORB-features
which are fast and less computationally heavy, ideal for embedded systems. Last
but not least, ORB-SLAM is open source and is implemented as a package in
ROS, which simplify the use and integration into the rest of the system [11].

Figure 2.12: Overview of the ORB SLAM system, and the main events in each
module, [10]

In fig 2.12 an overview of the ORB-SLAM system is presented. The sub modules
tracking, local mapping and loop closing will be discussed under with focus on
the important key points in each module.

Initialization

Before the ORB-SLAM algorithm starts it need to initialize the map by com-
puting the relative pose between two frames. This is used to triangulate a set
of initial map points. In parallel the system compute two geometrical models,
a homography for planer scenes and one for non-planar scenes, a fundamental
matrix. Based on a robust heuristic a model is chosen and when model is found
a full bundle adjustment is performed.
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(a) Keyframes (blue), current frame
(green), local map point (red) and map
points (red & black)

(b) The covisibility graph (green) which
connect all the keyframes with common
map points in a graph structure

Figure 2.13: Keyframes, map points and the covisiblity graph in ORB-SLAM,[10]

Tracking

The features are extracted with ORB as described in subsection 2.3.5. In ORB-
SLAM the corners are extracted with a scale factor 1.2 at eight different scale
levels. Depending on the resolution of the image a number between 500 - 2000
corners are extracted.

If tracking from the previous frame was a success, it uses a constant motion model
to predict the next frame, and use a guided search for the map points observed
in the previous frame. The pose is then optimized with a motion only bundle
adjustment with the found corresponding map points.

Once an estimation of the camera pose is found and a set of feature matches, the
points in the map is projected onto the current frame and a search for more map
point correspondences is performed. Only the local map is projected because of
the complexity in larger maps. The local map consist of two sets with keyframes,
K1 that share map points with the current frame and K2 that are neighbors to
the keyframes K1 in the covisibility graph. In the set K1 a Kref keyframe exist,
which is the frame that share the most map points with the current frame.

The last step is to decide whether the current frame is going to become a keyframe
or not. In the local mapping thread there is a mechanism that culls redundant
keyframes, which allows to keyframes to be inserted fast. To become a keyframe
a set of conditions must be satisfied:

• More than 20 frames must have passed since the last global relocalization

• The local mapping is idle, or more than 20 frames have passed since the
last keyframe insertion global relocalization

• At least 50 points is tracked in the current frame

• The current frame tracks less than 90% points from Kref .
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Local Mapping

When a frame is converted to a keyframe the covisibility graph is updated by by
adding a new node for the new keyframe Ki, and then updating the edges to the
keyframes in the map with shared map points. Also update the spanning tree
which link Ki to the keyframe with the most common points. Then a bags of
words representation of the keyframe is computed.

As well as keyframes, the map points is also culled. If the map point is to be
retained in the map it must pass a test during the first three keyframes after cre-
ation, to ensure that they are trackable. A map point must fulfull two conditions:

• The tracking must find the point in more than the 25% of the frames in
which it is predicted to be visible.

• If more than one keyframe has passed from map point creation, it must be
observed from at least three keyframes.

New map points are created by triangulating ORB-features from the connected
keyframes, Kc in the covisibility graph. ORB-feature pairs are triangulated,
and are accepted when positive depth, scale consistency, reprojection error and
parallax are checked.

Local bundle adjustment optimizes over the current keyframe Ki, all of the
keyframes Kc that is connected to it in the covisibilty graph, and all of the
common map points. All of the keyframes that see the same map points, but are
6∈ Kc is included but kept fixed in the optimization.

To keep the map as compact as possible the local mapping tries to detect re-
dundant keyframes and delete them. This effect reduces the load on bundle
adjustment since the complexity grow with the number of keyframes. Another
advantage is that the number of keyframes won’t grow unbounded, unless the
move into new visual content.

Loop closing

The last thread is the loop closing thread. It takes the Ki from local mapping,
the last keyframe processed by the local mapping, and tries to detect and close
the loop.

First the similarity between bag of words vector of Ki and its neighbors in the
covisiblity graph is computed, and the lowest score Smin is then used as a thresh-
old and discard all keyframes in the database that has a lower score than Smin.
Additionally all the keyframe directly connected to Ki is discarded. A loop can-
didate is accepted if at least three loop candidates is connected in the covisibility
graph.

To close the loop a similarity transform from the current keyframe Ki to the loop
keyframe Kl has to be computed, which informs about the error accumulated in
the loop. With 3D to 3D correspondence for each candidate, RANSAC is used to
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find a similarity transform. If a similarity transform with enough inliers is found
the transform is optimized and a guided search for more correspondences between
the frames Ki and Kl are performed. The loop is accepted if the optimization
has enough inliers after the guided search.

The first step after a loop detection is to fuse the duplicated map points and
new edges are inserted into the covisibility graph. The pose Tiw of the current
keyframe Ki is corrected by the similarity transform, along with all of the neigh-
bors of Ki. The common map points are projected into Ki and all matches found
in a small area around the projection are fused. All the edges of the keyframes
involved in the fusion will then be updated in the covisibility graph, and then
closing the loop.
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Chapter 3

Hardware specification

3.1 Wall-E 2.0

Figure 3.1: A picture of Wall-E 2.0.

Wall-E 2.0 is a three degree of freedom robot, able to move in the xy-plane and
around its own axis. It has two wheels and a tail to keep the body stable. The
robot consist of three wooden plates on top of each other. At the bottom the
hardware responsible for motor control and odometry is found. In the middle the
battery is placed along with a battery elimination circuit for voltage regulation
down to 5V. At the top the primary computer is placed, the Jetson Nano, along
with the Time of flight camera in the front. The following section will present
the reader to the hardware used.
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3.2 Onboard computers

Wall-E 2.0 has two computers, one meant for real time control of the robot,
Arduino Uno, and the Jetson Nano for more computationally heavy operations
like image processing and SLAM.

3.2.1 Arduino uno

Figure 3.2: Arduino uno, with the different input and outputs , [12]

The Arduino Uno is a small 8-bit, 5V microcontroller board, based upon the
ATmega328P, and it is quite suitable for simple control, and sensor readings.
The micro controller board has 14 digital I/O pins which 6 of them can provide
PWM output. In addition it has 6 analog input pins, and capability to use a
set of popular protocols like SPI, I2C and UART. The CPU runs at 16 MHz
which is more than sufficient for simple task like sensor reading and less complex
computations.

In this project the computer is used as a slave of the Jetson Nano via the serial
port. The Arduino is responsible for communication and with the MPU6050 via
the I2C protocol, PWM control of the motors, and estimate motor speed based
upon encoder readings. The implementation of these systems are discussed in
section 5.2.

22



3.2.2 NVIDIA Jetson Nano

Figure 3.3: Picture of the Jetson Nano Dev board, [13]

The Jetson Nano is the most recent embedded platform from NVIDIA and is the
low cost embedded computer version in the NVIDIA Jetson series. The computer
comes with the development board and has a series of connections as specified in
the table below [14].

Specifications Techonlogy

GPU 128 NVIDIA CUDA cores

CPU Quad-core ARM A57 @ 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Connectivity Gigabit Ethernet, M.2 Key E

Display HDMI 2.0 and eDP 1.4

USB 4x USB 3.0, USB 2.0 Micro-B

I/O GPIO, I2C, I2S, SPI, UART

Size 100 mm x 80 mm x 29 mm

The Jetson Nano runs a complete desktop Linux environment based upon the
Ubuntu 18.04 LTS. This makes the module easy to work with, and enable the
use of frameworks like ROS. In this project the Jetson Nano will be used as the
primary module running ROS, SLAM, user interface and high level control of the
robot, more on this in Chapter 5. A WiFi dongle is connected to one of the USB
ports used for SSH and remote control of the robot.
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3.3 Sensors

In the following subsections the sensors used on the robot will be presented.

3.3.1 MPU6050 IMU

Figure 3.4: The MPU6050 6DOF IMU, [15]

The MPU6050 is a lowcost 16-bit 6 degree of freedom IMU, i.e. accelerometer
and gyroscope. The MPU-6050 version uses the I2C protocol at 400 Khz, where
other version like the MPU-6000 also has an SPI interface at 1 Mhz. The inter-
rupt pin can be programmed to The sensor has a series of different modes, and
configurations of the sensitivity of the sensors, as given in the table below [16].

Mode Gyroscope sensitivity Accelerometer sensitivity

0 ±250 ◦/s ±2 g

1 ±500 ◦/s ±4 g

2 ±1000 ◦/s ±8 g

3 ±2000 ◦/s ±16 g

The IMU also has a integrated digital low pass filter for gyroscope and the ac-
celerometer ideal for filtering out high frequency noise in real time. The low pass
filter has a series of different modes, described in the table below, where the band-
width (bw) ranges from 5 Hz to 260 Hz. The drawback is that the measurements
will be delayed dependent on the chosen bandwidth of the filter.

Mode Acc. bw [Hz] Delay [ms] Gyro bw [Hz] Delay [ms]

0 260 0 g 256 0.98 g

1 184 2.0 g 288 1.9 g

2 94 3.0 g 98 2.8 g

3 44 4.9 g 42 4.8 g

4 21 8.5 g 20 8.3 g

5 10 13.8 g 10 13.4 g

6 5 19.0 g 5 18.6 g
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3.3.2 Pico flexx

Figure 3.5: Picture of the PMD Pico flexx camera, [17]

Parameter Camera Properties

Dimensions 68 mm x 17 mm x 7.35 mm

Weight 8g

Camera Resolution 224 x 171

Viewing angle (H x V) 62◦ x 45◦

Measurement range 0.1 - 4 m

Frame rate 5 - 45 fps

Illumination 850 nm IR

Depth resolution 1%− 2% of distance

Output Depth map and grayscale intensity

The PMD Pico flexx is a time of flight camera. The working principle is as
described in theory, 2.1. The output from the camera is a depth map, point
cloud and intensity map, see figures 2.4 and 5.6. The pico flexx has a series
of different modes where the frame rate varies from 5 fps to 45 fps, and the
corresponding maximum range from 4 meters to 1 meter.
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Figure 3.6: The different modes of the Pico flexx camera

3.3.3 Encoder and motors

The motors are a simple bidirectional 12 V DC motors. The encoder is attached
to the end of the motor. The encoder used is a rotational incremental encoder,
which output is two phase shifted square waves. The phase is shifted by +/- 90
degrees depending on the direction of the circular motion, as seen in fig 3.8a.
The encoder will send a given number of pulses per rotation of the motor, 341.2
pulses per rotation to be exact. The number of pulses can be measured by the
Arduino micro controller, and the rate of rotation can be estimated. To get the
rate and the direction of the rotation both of the phases, A and B, has to be
measured. However if only the rate is of interest, it is sufficient to measure only
the pulses from one of the signals A or B.

(a) Phases of the encoder, [18] (b) Pinout of the encoder, [19]

Figure 3.7
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3.4 Other components

3.4.1 L298N Dual H Bridge

(a) L298N Dual H Bridge, [20] (b) Working principle of H-bridge, [21]

The L298N Dual H Bridge is the motor controller of the robot. The controller
can drive DC motors from 5 to 35 V. It also has a on board voltage regulator,
down to 5 V, which can be used if the input voltage is 12 V or less. This is
necessary for the integrated circuit to work properly, and it also have a 5 Volt
output which can be used to power other modules, like the Arduino Uno.

The board has a set of input pins, EA, IN1, IN2, IN3, IN4 and EB.EA, IN1, IN2

are used to control motor A, while the rest is used to control motor B. The set
of combinations of signals are presented below. To enable speed control PWM-
signal is sent to ENA and ENB, turning the voltage over the motors on and off,
lowering the rate of the rotation of the motor.

Description ENA/ENB IN1/IN3 IN2/IN4

Motor is off 0 x x

Break and stop 1 0 0

Forward motion 1 0 1

Backward motion 1 1 0

Break and stop 1 1 1

3.4.2 Universal Battery eliminator circuit (UBEC)

The battery used in this project is a 3 cells LiPo battery with a voltage around 12
V. Both the Arduino Uno and the Jetson Nano have a input voltage of 5 V and
the Jetson Nano also have a quite large current draw which makes it necessary
to have battery eliminator circuit. While the L298N has a voltage regulator on
board it has a max current of 2 ampere, which isn’t enough to drive the Arduino,
MPU6050, encoders, Jetson Nano and the Pico flexx camera. That is why the
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UBEC is set to powering the Jetson Nano, and the connected Pico Flexx, while
the L298N powers the Arduino Uno and all of the connected sensors.

3.5 Connection and power

In fig 3.9 a diagram of the connections on the robot is presented. The key idea is
to show the reader how the different modules are connected and how they work
together.

Figure 3.9: Connection schematics
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Chapter 4

Simulation

4.1 Robotic operating system (ROS)

ROS is a popular open source framework for robot software development. It is not
an operating system, as the name might make you believe, but rather a collection
of libraries, tools and drivers making the development of robotic software easier.
ROS is compatible with the most recent versions of Ubuntu, and in the latest
release Melodic, it has also become available for Windows 10.

ROS is the software skeleton in project that binds the different parts of software
together primarily via communication and information sharing. Thus it is seen
fit to introduce some of the important concepts in ROS and terminology.

ROS Graph

The ROS framework can be viewed as a network of programs sharing data, in a
graph like structure. A ROS system is a set of smaller programs that communicate
via defined messages. In the ROS Graph these programs become the nodes,
while the communication between them becomes the edges. The communication
is based on publishing and subscribing. One node may publish a message on a
topic and any number of nodes may subscribe on this topic. A simple real life
example would be a radio broadcast, and anyone who would like to could tune
in on that channel.
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Figure 4.1: A simple example of a ROS graph. Node 2 and 3 subscribe on topic
1 published by node 1 and node 3 also subscribe on topic 2 published by node 2.

ROS master

The ROS master is the core in the ROS graph network. Before any node my run,
an instance of roscore must be launched first. The ROS master is responsible for
setting up the communication between the nodes.

Figure 4.2: Connections of the ROS network, [22]

ROS messages

30



ROS messages are the data that is sent between nodes in the ROS network.
When two nodes communicate they have to agree on the structure of the data.
ROS has a many predefined message data structures, like std msgs/Bool or
geometry msgs/Pose. ROS has messages for almost every need in robotics,
but if needed it is possible to generate custom messages.

Tools

In ROS there are a series of tools making the world of developing robotic software
a little easier:

• RVIZ: Visualization in 3D, combined robot model, sensor data, obstacles
in a combined view.

• ROS bag: Save messages published on one or several topics, able to replay
the data

• rqt plot: Plot scalar data published on ROS topics

Figure 4.3: Structure of the pose message, [23]
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4.2 The simulation environment Gazebo

Gazebo is a real-time simulator with a robust physics engine, quality graphics
and interfaces linked to ROS. It is possible to build a robot model, and use a
wide variety of sensors like accelerometer, gyroscope, LIDAR, camera and so on.

In gazebo it is possible to construct a world of your choosing. The software has
a series of predefined static objects that one may place in the world using the
graphical user interface. It is also possible to construct the world and the objects
in it by using world-files to define the world and Unified Robot Description Format
(URDF), to describe the models in the world. In both files the syntax is XML.

Since the gazebo-simulator can communicate with ROS over the local network,
using TCP/IP, it is an ideal simulator to test software developed in ROS, as well
to simulate a time of flight camera, and use the simulated data as input into the
ORB-SLAM algorithm in ROS. The purpose of following sections is to discuss
how the implementation of the robot, world and time of flight camera was done in
gazebo, as well as shed some light on the communication and interfaces between
gazebo and ROS.
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4.3 Simulated robot

4.3.1 Building the robot model

Figure 4.4: The robot model is Gazebo

We use URDF to define and describe the different parts of the robot. The idea
is to keep the model simple since the purpose of the simulation is testing ToF-
camera and ORB-SLAM, and not simulating an advanced robot. The robot
consist of five parts; the chassis, two wheels, a tail and the camera.

The parts are defined as links in the URDF file, and are connected by joints.
These joints can continuous which allows the links to move in a defined direction,
or it could be fixed, holding two objects together in place. A small example of
how to define links using URDF is found in fig 4.5a. As seen in the figure the
chassis consist of a mass, and two defined boxes, where the visual box is what we
see in the simulation while the collision box is the volume used in the collision
engine in Gazebo.
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(a) Example of how to define a link in Gazebo. Here
it is the chassis used in the simulation.

(b) XML code to define the ToF sensor in Gazebo.

Figure 4.5

4.3.2 Simulated sensor

To add a sensor to the robot, first a sensor-link has to be created. This is
necessary for the simulator to know where the sensor is place, in what direction
it is facing and so one. Once the link is created it can be defined as a sensor. This
is done by defining the specifications of the sensor, whether it is a IMU, LIDAR
or a camera. The sensor must also be linked to a plugin, which is the code that
simulate the sensor based on data from the simulation environment.

As seen in fig 4.5b we include the specifications of the camera, like the pixel width
and height, update rate, and the field of view. The parameters used is based of
the Pico Flexx. It is also possible to include the calibration parameters found
for the Pico Flexx and add it to the plugin for a more realistic simulation of the
camera.

In the figures below, 4.6a and 4.6b we see the simulated intensity and depth
image, which both is grey scale images. In the case of the depth image, the
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darker the pixel, the closer the object is to the camera. Note that if no depth
information is available the value will be set to zero, as seen in the background
of the depth image.

(a) IR image generated in gazebo

(b) Depth Image generated in gazebo

Figure 4.6

4.3.3 Controlling the robot

The robot is now able to view the world around it, but it still need a way to
move around. We solve this by using another plugin which we can link directly
to the continuous joints between the chassis and the wheels. This plugin is called
differential drive controller one of the standard plugins in the gazebo library.
This plugin allows for the control of the robot via ROS. The robot is controlled
by sending a Twist message, a data structure containing two 3D vectors, linear
and angular. This message is sent on the topic cmd vel, where linear.x is the
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body frame velocity forward in the positive direction, and angular.z is the rate
of rotation around the z axis. To make the user interface easier a ROS-node is
developed to take input from the keyboard. The arrow keys is used to increase or
decrease linear velocity and angular velocity, while the space bar is used to stop
the robot.

Figure 4.7: Keyboard inputs, [24]

4.3.4 Path following control

Given the implementation in the previous subsection it is now possible to control
the robot using input from the keyboard. However it would be practical if the
robot could be able to follow and track a set of predefined points.

To solve this we use a vector field that converges to the point of interest, see fig
4.8. The details of this implementation is given in section 5.6 where we combine
different kinds of vector fields for obstacle avoidance.
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Figure 4.8: Dipol vector field, centered at the target,[25]

4.4 Simulated world

The gazebo world would be empty unless some objects are put into it. To test
ORB-SLAM in the simulator, a simple environment is created. It consist of a
closed space with some walls forming a hallway in a square shape. The idea is
having the robot follow a predefined path through this environment.

Since ORB-SLAM is feature based it is important that the objects in this envi-
ronment has features. For that reason brick walls are used, which contains a lot
of edges and corners that are detectable by the algorithm. A set of objects are
also put into the environment, as seen in fig 4.9. The detail of the test itself is
specified in section 6.1.
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Figure 4.9: Overview of the test world environment
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Chapter 5

System implementation

5.1 System overview

The following sections will present the different modules in the system, and will
discuss in some detail how they where implemented. A system overview of the
ROS network is presented in the figure below. ROS in the core of the implemen-
tation and binds the different modules together.

Figure 5.1: Overview over all the software systems and how they are connected

5.2 Drivers

The following three subsections will discuss the implementation of drivers on the
arduino Uno, i.e. the software to communicate with the sensors MPU6050 and
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the encoder as well generating a pwm signal to the L298N for motor control. By
using the Arduino IDE and the associated libraries, we can avoid developing code
for the most low level hardware of the micro controller.

5.2.1 MPU6050

The MPU6050 communicate with the Arduino via the I2C protocol. By using the
Arduino I2C driver communication between the sensor and the micro controller
is set up with some simple function calls.

Initialization

The process of the initialization is setting the proper registers on the MPU6050.
This involves enabling the the sensor, chose configuration for low pass filtering,
and decide scale of the measurements.

Figure 5.2: Initialization code for MPU6050

Reading the data

The accelerometer and gyroscope data is read out from 12 eight bits registers,
two for each measurement, addresses 0x3B-0x40 and 0x43-0x48 respectively. The
code runs in loop, and the data is read whenever the data is available. To convert
the data to the right format the bits from the first register must be shifted 8 bits,
since they are the 8 most significant bits of the data, and then scaled depending
on the scale chosen in the initialization, as seen in fig. 5.3.
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Figure 5.3: Example of how to read the x-axis accelerometer data. The format
is similar for the other axis, and the gyro readings

5.2.2 PWM motor

The control of motor is one of the simplest parts of the code on the robot. As
discussed in chapter 3. the motor is controlled by the L298N, which have 6 inputs,
which 4 of them are digital. For pins on the Arduino Uno is set as output pins and
are connected as described in subsection 3.5. Using the table in subsection 3.4.1
forward motion is enabled by setting IN1/IN3 = 0 and IN2/IN4 = 1 and sending
a PWM signal to ENA and ENB. For backward motion the digital signal are
inverted. The PWM signal is generated by the Arduino analogWrite(pin, value)
function where the value ranges from 0 to 255 as seen in fig. 5.4. In terms of the
motor speed a value of 0 would mean no motion, and a value of 255 would mean
full speed.

Figure 5.4: Pwm signal for different values, [26]
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5.2.3 Encoder

As described in Chapter 3 the encoder send out two pulses out of phase by ±90o.
The direction of rotation can be determined by the order of the pulses. If the A
pulses before B it turns forward, in the other case it turns backwards. While it
would be ideal to use both of the phases, the Arduino Uno has only two interrupt
pins, and it is necessary to use interrupts to avoid polling and stalling in the
software, and pulses might be lost if the input pin isn’t check regularly. However
with some assumptions the direction of the motor can be determined by the input
signal to the L298N. One would expect the motor to in that direction it is told
to. It is only in the case where the robot goes in one direction and suddenly is
command to go the other direction, where there is an ambiguity. This problem is
solved all together by avoiding these cases with sudden changes in the direction
of velocity.

Since the Arduino only has two interrupt pins only the pulse A of each motor
is measured and counter. It is programmed such that each time the pulse goes
from low to high a counter is incremented by the interrupt service routine (ISR).
Every 100 ms the counter value is saved and passed on in the program, and the
counter is reset to zero. The velocity of the wheel can then be determined by
eq.5.1, where 341.2 is the number of pulses per rotation, ∆t = 100ms and Dwheel

is diameter of the wheel.

vwheel =
counter

341.2∆t
Dwheelπ (5.1)

5.3 Control system

The control system consist of two parts. A controller to control the speed of each
of the motors, and a simple state estimator fusing the measurements.

5.3.1 Model

To make a mathematical model a few parameters and variables needs to be de-
fined. The velocity and rate of rotation is a function of several variables, as given
in eq. 5.2. The ẋb, ẏb, Θ̇b are the state variables, which is a function of; the length
from a wheel to the center of the robot l, the diameter of the wheels d, and the
rotational rate of the right and left motors φ̇r and φ̇l [rad/s].

 ẋbẏb
Θ̇b

 = f(l, d, φ̇r, φ̇l) (5.2)

The states of the robot can be model by the function f(l, d, φ̇r, φ̇l) which needs
to be found.

42



The driving force of the robot is the two motors turning the wheels. Given a
point P at the center of the robot and assume the local reference frames origin is
in this point, as in fig 5.5.

Figure 5.5: Illustration of the coordinate systems

The translations velocity of the point P is given by eq. 5.3. This comes from the
effect that the wheel rotation speed also contribute to the rotation of the robot,
like in the case where φ̇r = −φ̇r when the robot spin around it own axis and the
translational velocity is zero.

ẋb =
1

2
dφ̇r +

1

2
dφ̇l (5.3)

The rate of rotation is given by eq. 5.4.

Θ̇b =
dφ̇r
2l
− dφ̇l

2l
(5.4)

Since it is impossible for the robot to move in the yb-direction, the system is
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modelled as in eq. 5.5.

 ẋbẏb
Θ̇b

 =

1
2dφ̇r + 1

2dφ̇l
0

dφ̇r
2l −

dφ̇l
2l

 =

 d
2

d
2

0 0
d
2l −

d
2l

[φ̇r
φ̇l

]
(5.5)

5.3.2 State estimator

The states to be estimated is xb and Θb, based upon the measurement from the
IMU, encoders, and the pose from ORB SLAM. To solve this a weighted sum of
the different measurements is used, eq, where a+ b+ c = 1.

ˆ̇xb = ax

∫
ẍaccdt+ bx(

1

2
dφ̇r +

1

2
dφ̇l) + cxẋSLAM (5.6a)

ˆ̇Θb = aθθ̇gyro + bθ
dφ̇r
2l
− dφ̇l

2l
+ cθθ̇SLAM (5.6b)

5.3.3 Controller

The setpoints sent to the controller is of the type Ẋref and Θ̇ref , i.e. body frame
velocity and rotation rate. Using the eq. 5.5, the state variables are a function
of the rotational velocity of the wheels. By inverting the matrix and removing
ẏb, the equation can be transformed to eq. 5.7.

[
φ̇r
φ̇l

]
=

[
1
d

l
d

1
d − l

d

][
ẋb
Θ̇b

]
(5.7)

This equation can then be used to convert ẋref and Θ̇ref to rotational velocity
setpoints of the motors. What remains is to control the rotation of the of the
motors, which is done by a standard PI controller, eq. 5.8.

u = Kp( ˙φref − φ̇) +Ki

∫
( ˙φref − φ̇)dt (5.8)

5.4 ORB SLAM

5.4.1 ORB-SLAM-2

The ORB-SLAM software is developed and built upon the work done in [10]. The
ROS package used in this project is called orb slam 2 ros, [11]. The orb slam 2
software is an expansion of the algorithm discussed in the background theory,
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subsection 2.4.1. While the ORB SLAM algorithm is designed to use monocular
cameras, the orb slam 2 software has been expanded to use stereo cameras and
other depth cameras like the time of flight camera. The major difference is the
position and depth of the map points is estimated based on both the image and
the depth image.

The advantage of using this ROS package is that it is fully compatible with ROS
and all of the input and output go via ROS topics, which is ideal since the rest
of the software is implemented in ROS. The data on the topics are as follows:

Published

• Live image containing the currently found key points and a status message

• A PointCloud2 (ROS datatype) which contain all the key points in the map

• A tf from pointcloud frame to the camera frame, i.e the pose of the camera.

Subscribed

• Topic /camera/rgb/image raw for the intensity image

• Topic /camera/depth registred/image raw for the depth image

In addition to feeding the correct data into the program, a configuration file
for the camera and an appropriate ROS launch file has to be generated. The
configuration file contain some important parameters like the number of features
that should be extracted, the scale factor and some threshold values, as well as
the calibration parameters of the camera. The launch file is just a file to start up
the program, point to the correct configuration file, and set up the correct topics.
More info on this in Appendix A

5.4.2 Pico Flexx software

To make use of the Pico Flexx camera, and be able to communicate with it,
we make use of ”royale SDK” which is the code and software included with the
camera. However this software isn’t compatible with ROS in any way, so we make
use of a ROS wrapper to connect the data stream to the ROS network [27]. The
data and topics used in the ROS wrapper are as follows:

• Depth image, topic: /pico flexx/image depth, is a 32-bit float image where
the distance is along the optical axis

• IR image, topic: /pico flexx/image mono16 is a 16 Bit intensity image

• Noise image, topic: pico flexx/image noise, is a 32 float image, standard
deviation of each of the depth pixels

• Point cloud, topic: /pico flexx/points, generated by the sensor
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Along with the data published on the topics the ROS-wrapper also have some
services that can be used during runtime:

• Change use cases, subsection 3.3.2

• Set exposure mode, Automatic or Manual

• Set exposure time in manual mode

• Noise filtering by setting max noise

Figure 5.6: Pointcloud in ROS, visualized in RVIZ

5.5 Obstacle detection

There are many was to process the visual data to get information about potential
obstacles in the field. One could use the point cloud output directly from the
camera, or from the SLAM algorithm or it is possible to process the depth image,
the latter is done here.

As seen in fig 4.6b obstacles are relatively easy to spot visually in the depth
image, and thus visual processing will be used to find possible obstacles. The
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implementation is inspired by segmentation with region growing, discussed back
in subsection 2.3.4.

Obstacle detection algorithm

Data: Depth image
Result: Segments of obstacles
set segment threshold;
set maximal range;
while there are unprocessed pixels do

if pixel within max range then
create new segment;
while there are pixels in segment with unchecked neighbours do

for Each unprocessed neighboring pixel do
if within max range then

if pixel value within segment threshold then
add pixel to segment;

end

else
mark pixel as processed;
continue;

end

end
mark neighbors of pixel as checked;

end

else
mark pixel as processed;
continue;

end

end
Algorithm 1: Finding segments in depth picture

The algorithm works by setting some parameters first. The maximal range is
a threshold for which distances it should be created segments. From a obstacle
avoidance view the primary focus should be on the objects that are close to the
robot, and skip processing pixels which has a distance value above the maximal
distance threshold.

The segment threshold is used to decide which pixels that are going to get included
in the segment. The threshold is used as an upper and lower limit around the
first pixel value added to that segment, i.e. if a pixel value is larger or smaller
than this value, it won’t be added to the segment.

After all the pixels are processed there are found N segments, which represent
obstacles in the depth image. The segment object has a set of variables that
describe the object it is representing, and these are the position of the leftmost
and rightmost pixels, the position of the center in the segment as well as the
depth. From a obstacle avoidance perspective the only necessary information
needed is the position of the obstacle and the size of the obstacle, which these
four variables describes. The position of the obstacle relative to the robot is
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found by using the inverse of the intrinsic matrix, described in 2.3.2, where now
the known values are the pixel positions u and v, as well as the depth Zc relative
to the camera.

5.6 Obstacle avoidance

The obstacle avoidance system is based upon the work done in [25]. The idea
is to use a vector field to guide the robot to the target, as well as around any
obstacles.

The vector field is defined in eq. 5.9. Where r is the position of the robot in a
coordinate system where the origin is at the target. The vector p is the direction
of the field as described in fig. 5.7

Figure 5.7: The field F for different values of λ, [25]

F (r) = λ(pTr)r − p(rTr) (5.9)

The idea is to combine different vector fields, and in which area they have effect
on the robot. There is one global field that pull the robot in the direction of
the position the robot is wanted to go to, and this field is dominant everywhere.
Then there is smaller local fields around the obstacles, similar to that of in fig
5.8. The local field around obstacles is divided into two. The bottom part, where
Λ = 1 and the top part where Λ = 0. The bottom part is meant to push the
robot around the obstacle, while the top part pushes the robot in the direction
of position target.
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Figure 5.8: Example of the vector field around an object, [25]

All of the different vector fields are summed together and scaled by σi which
depend on the position of the robot. If the robot is within the field of obstacle i,
σi = 1, otherwise zero. The summation is described in eq. 5.10, where N is the
number of obstacles, Fg is the global field and Fi is the field around obstacle i.

F ∗ =

N∏
i=1

σiFg +

N∑
i=1

(1− σi)Fi (5.10)

The vector F ∗ is updated whenever there is a change in position of the robot,
obstacle or if there is a new destination. This vector is the input to the controller
defined in eq. 5.11, where u is the forward velocity input, ω is the rate of rotation,
Θ is the heading and ϕ := arctan(F ∗

y , F
∗
x ), the components in the vector field.

u = Kutanh(x2 + y2) (5.11a)

ω = −Kω(Θ− ϕ) + ϕ̇ (5.11b)

5.7 Tracking

To help the tracking of a object we make use of a predefined simple pattern,
fig 5.9 and search for this pattern in the image. To speed up the process the
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segments found in the obstacle detection algorithm is used, which reduces the
search space.

Figure 5.9: Trackable pattern

To find the pattern as sliding window method is used over the search area. The
window is on the form given in eq. 5.12. Each of these entries in the matrix are
multiplied with the corresponding pixel value and summed up. To reduce compu-
tation a only the diagonals in the matrix are used in the actual implementation.
If the window is right above the pattern in fig 5.9 the sum will be a large value.
A match is found when the sum is above a given threshold. In the case of several
matches found, the one with highest value will be chosen.


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 (5.12)

The size of the window is dependent on the scale. Since the pattern is a fixed
size in the real world, it would be large in the image if it is close, and small if
it is far away. To avoid searching all the image with different scales, the depth
information is used to set the size of the window.

When the pattern first has been found it is possible to reduce the search area
even further. By the assumption that the pattern will not move much in between
each picture, means that the search area can be reduced by searching for the
pattern around the area where the pattern was found recently.
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Chapter 6

System testing

6.1 ORB-SLAM

6.1.1 Simulator

To test ORB SLAM with the simulated camera in gazebo the environment de-
scribed in subsection 4.4 is used. The robot follows a set of predefined points in
the environment, using the vector field discussed in 5.6. Since the ROS plugin is
used with the simulator the actual position of the robot is published on the ROS
network. The pose estimate from the ORB SLAM package is also published on
the network, which are then plotted together in fig. 6.1.

Figure 6.1: The red line is the ORB estimate while the blue line is the ground
truth position of the robot

As seen in the figure the estimate and the ground truth is quite close in the
beginning, and start to diverge a bit after the first turn, and significantly after
the second turn, but stays somewhat constant with a slight decrease in error along
the straight paths. At the end a loop closure is detected, and the two converge
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back together at the end of the path.

6.1.2 Robot

Like in the case with the simulator we would like to have a ground truth to
compare the estimate of the ORB SLAM algorithm. To do this we make use of
”OptiTrack” which is a motion capture system [28]. With millimeter precision it
serves well a credible source of the actual position an orientation of the robot.

The robot is programmed to follow a simple square path, similar to that used in
the simulator. The configurations are the same and the pico flexx camera is put
into mode 2, which is intended for indoor navigation, described in 3.3.2.

Before the ORB SLAM start in need to calibrate, however the algorithm had some
issues finding enough feature points in the picture. By increasing the threshold
value of the ORB extraction it would finally initialize. Another setting that
improved the feature detection was increasing the integration time. The intensity
pictures are really dark sometimes and increasing this value helps the images
become brighter.

The error of the estimates plotted in fig 6.3, where the total position error is
defined as

√
(xorb − xtrue)2 +

√
(yorb − ytrue)2 and the heading error is defined as√

(Θorb −Θtrue)2.

Figure 6.2: ORB SLAM estimate and ground truth

(a) Error of the heading Θ (b) Error of the position

Figure 6.3
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The error seem to be increasing linearly with the distance, but as seen in fig. 6.3a
the heading estimate is off whenever the robot is making a turn. This results in
an increased error of the position since the path is rotated by the error in the
heading. At the end of the loop ORB SLAM closes the loop which pulls the
errors downward to zero.

6.2 Obstacle avoidance test

To test the obstacle avoidance implementation a set of obstacles are set in a
straight hallway. The robot has a predefined destination, marked as x, behind
the obstacles, and the only task is to avoid the obstacles and get to the target.

Figure 6.4: Description of the obstacles, the fields around them, and the path
taken.

The picture above show a figure of the test environment, and path of the robot
through this environment. The blue circles around the obstacles are to represent
the area which the local field comes into effect. The black lines describe the
direction of the obstacle field, all pointing in the direction of the target position.
The robot is able to detect all the obstacles and successfully avoid all of the on
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the path to the target.

6.3 Tracking

To test the tracking system, one simple test were conducted. The pattern was
printed out on a paper, and the detection of the pattern was tested at different
ranges. The robot was able to find and track a person holding the paper, walking
in front of the robot. The range was somewhat limited, and at the border of the
maximal range of the sensor, 3.3.2, it had a hard time detecting the pattern at
all.

Figure 6.5: The pattern is clearly visible in the picture up to a distance of 3-4
meters
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Chapter 7

Discussion

7.1 Discussion on tests

7.1.1 ToF and SLAM

The time of flight camera seems to work quite well under certain conditions. The
error of the pose increase with time, but it is the orientation estimate that has
the most influence on the error. As the error in heading increases, so will the
error of the position of the robot. This problem is seen often in SLAM, especially
the problem of orientation as it also will effect the position estimate.

In the simulation the problem with error in the heading occur, but in a much
smaller degree than in the real life test. The effect is seen in the upper right corner
of fig. 6.1, where there is a error during the turn, but after the turn the error in
heading seem to be small since the error in position doesn’t increase. There may
be several reason for this, SLAM algorithm are a bit sensitive to rotations.

During the test of robot there were some issues getting ORB SLAM initialized,
a process that needs feature points to decide which model to use, discussed in
2.4.1. The general experience is that ORB SLAM has a bit more trouble finding
features in the IR-image of the Pico flexx camera compared to the image in the
simulation. This might effect the performance of the algorithm and could explain
the difference in the plots of the simulation and the actual real world.

The Pico flexx works quite well for navigation and as shown in the obstacle
avoidance test the robot are able to navigate around obstacles and find its way to
the target. However it is dependant on features in the image, and because of the
relative short range, these has to be close to the camera. It also require that the
environment is reflective so that enough IR light is returned to the camera. If the
environment is black (not dark), is would have trouble finding any features at all
because of the low amount of returned IR light. This problem could be reduced
by using ToF cameras with a stronger light source, but usually these cameras are
considerably larger and heavier than the camera used in this project.
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7.1.2 Obstacle avoidance and detection

The segmentation algorithm seems to be working quite well. The robot was
successful in detecting and avoiding all of the obstacles during the test.

Some of the drawbacks with the implementation is that it is hard to separate an
object in the path and for example a wall along the path. Since segmentation
is used, where thresholding is the metric to separate the different segments, a
wall in the seen in the image will turn out to be a set of several segments placed
in a row. This isn’t a problem for the obstacle avoidance system implemented,
it doesn’t care what the the obstacles are, but it do generate a lot of segments
that are unnecessary. Because of this, when a wall is observed in the image, a
lot of obstacles are generated in the obstacle avoidance system. This increases
computation time, and should be avoided one an embedded system by finding
another solution to process walls.

7.1.3 Tracking

The tracking seems to work well within the range of the camera, however when
the distance reaches the maximal range of the camera, the intensity of the picture
reduces as well as salt and pepper noise start to show up. A possible solution
to handle the reduced intensity is to lower the threshold of the summation over
the window, but that might also increase the amount of false positives in the
area close to the camera where the intensity is still strong. The algorithm do
however work well within the range of the camera, and because of the use of the
segmented areas found in obstacle avoidance processing time is reduced, which
is practical on embedded system where computational power isn’t an abundant
resource.

7.2 Further work

7.2.1 Improve pose estimation

The robot has a series of sensors, but this data is just weighted by constants based
upon the credibility of the sensor information. A better approach would be to
implement a model based Kalman filter, model the sensors, as well as the noise. A
common solution when using SLAM in robotics is to fuse the pose estimate from
the SLAM algorithm in a Kalman filter with the other measurements. Another
approach would be to fuse the measurements in the SLAM algorithm itself, which
overall could improve the performance of the mapping and localization. It exist
SLAM algorithms that make use of IMU-data, but a step up would be to include
all the data available.
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7.2.2 Other SLAM algorithms

The scope of this thesis was limited to only one SLAM algorithm, an indirect
one. However it could be of interest to test ToF camera with different kinds of
SLAM algorithm, especially testing with a direct SLAM algorithm and compare
the performance. Since features are harder to find at some range, it might happen
that direct SLAM algorithms perform better.

7.2.3 Adapt SLAM to ToF

In the project the ToF camera has been used as any other depth camera in
ORB SLAM, where the IR image replaces the standard camera image. However
as discussed in the background theory about ToF, 2.1, the camera has some
interesting properties with the IR image. The Gaussian of the measurement
could be estimated based upon the intensity of the pixels in the IR image. In
other words, a low value on the IR pixel mean a corresponding uncertain depth
estimate. This information could be useful in SLAM algorithms to improve the
performance and filter out feature points where the depth is uncertain.

7.2.4 Preprocess the ToF IR image

During the testing ORB SLAM had some struggles finding enough feature points
in the IR-image to work properly, which was solved by tweaking some of the
hyper parameters of the algorithm. A solution could be to preprocess the image
to make the edges in image clearer for the ORB extractor, for example increasing
the contrast in the image or use a filter to sharpen the the picture.

7.3 Conclusion

The time of flight camera is a capable sensor in the question of navigation and
obstacle detection. It does however have some limitations in regards to range,
and is quite dependable upon the amount of features and how reflective the
environment is to work properly. Within its range and preferred environment the
sensor seems to be a good alternative active visual sensor in regards til its size
and light weight.

57



Bibliography

[1] L. Li, “Time-of-flight camera–an introduction,” Technical white paper, no.
SLOA190B, 2014.

[2] C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo. (2013) Time-
of-flight cameras and microsoft kinecttm. [Online]. Available: http:
//lttm.dei.unipd.it/nuovo/Papers/ToF-Kinect-book.pdf

[3] C. A. Brombach, “Time-of-flight (tof) depth camera for navigationand map-
ping,” 2018.

[4] O. authors. Pinhole camera model. [Online]. Avail-
able: https://openmvg.readthedocs.io/en/latest/openMVG/cameras/
cameras/#pinhole-camera-model

[5] Mathworks. What is camera calibration. [Online]. Available: https:
//se.mathworks.com/help/vision/ug/camera-calibration.html

[6] Segmentation. [Online]. Available: https://slideplayer.com/slide/9306887/

[7] E. Rosten. Fast corner detection. [Online]. Available: https://www.
edwardrosten.com/work/fast.html

[8] D. Tyagi. Introduction to orb. [Online].
Available: https://medium.com/software-incubator/
introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf

[9] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust inde-
pendent elementary features,” in European conference on computer vision.
Springer, 2010, pp. 778–792.

[10] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and
accurate monocular slam system,” IEEE Transactions on Robotics, vol. 31,
no. 5, pp. 1147–1163, 2015.

[11] L. Haller. Orb slam 2. [Online]. Available: http://wiki.ros.org/orb slam2 ros

[12] A. Aqeel. Introduction to arduino uno. [Online]. Available: https://www.
theengineeringprojects.com/2018/06/introduction-to-arduino-uno.html

[13] NVIDIA. Jetson nano developer kit. [Online]. Available: https://developer.
nvidia.com/embedded/jetson-nano-developer-kit

[14] Jetson nano. [Online]. Available: https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-nano/

58

http://lttm.dei.unipd.it/nuovo/Papers/ToF-Kinect-book.pdf
http://lttm.dei.unipd.it/nuovo/Papers/ToF-Kinect-book.pdf
https://openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/#pinhole-camera-model
https://openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/#pinhole-camera-model
https://se.mathworks.com/help/vision/ug/camera-calibration.html
https://se.mathworks.com/help/vision/ug/camera-calibration.html
https://slideplayer.com/slide/9306887/
https://www.edwardrosten.com/work/fast.html
https://www.edwardrosten.com/work/fast.html
https://medium.com/software-incubator/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf
https://medium.com/software-incubator/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf
http://wiki.ros.org/orb_slam2_ros
https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-uno.html
https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-uno.html
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/


[15] Mpu-6050 accelerometer + gyro. [Online]. Available: https://playground.
arduino.cc/Main/MPU-6050/

[16] Mpu-6000 and mpu-6050 product specification. [Online]. Avail-
able: https://store.invensense.com/datasheets/invensense/MPU-6050
DataSheet V3%204.pdf

[17] pmdtechnologies. Pico flexx. [Online]. Available: https://pmdtec.com/
picofamily/flexx/

[18] Rotary encoder. [Online]. Available: https://en.wikipedia.org/wiki/Rotary
encoder

[19] Dc motor + encoder. [Online]. Available: https://www.banggood.com/
6V-210RPM-Encoder-Motor-DC-Gear-Motor-with-Mounting-Bracket-and-Wheel-p-1044064.
html?utm design=41&utm source=emarsys&utm medium=
Shipoutinform171129&utm campaign=trigger-emarsys&utm content=
Winna&sc src=email 2671705&sc eh=c6bb30944d7c76f41&sc llid=
7298077&sc lid=104858042&sc uid=sVgRKuosig&cur warehouse=CN

[20] Dejan. Arduino dc motor control tutorial – l298n — pwm — h-bridge.
[Online]. Available: https://howtomechatronics.com/tutorials/arduino/
arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/

[21] L292. [Online]. Available: https://www.banggood.com/no/
10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.
html?gmcCountry=NO&currency=NOK&createTmp=1&utm source=
googleshopping&utm medium=cpc union&utm content=2zou&
utm campaign=ssc-no-euw-all-july&ad id=359014888303&gclid=
Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw
wcB&cur warehouse=UK

[22] Ros 101: Intro to the robot operating system. [Online]. Available:
https://robohub.org/ros-101-intro-to-the-robot-operating-system//

[23] geometry msgs. [Online]. Available: http://wiki.ros.org/geometry msgs

[24] [Online]. Available: https://www.vectorstock.com/royalty-free-vector/
arrows-buttons-keyboard-vector-2729970

[25] D. Panagou, “Motion planning and collision avoidance using navigation vec-
tor fields,” in 2014 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2014, pp. 2513–2518.

[26] Pwm. [Online]. Available: https://www.arduino.cc/en/tutorial/PWM

[27] T. Wiedemeyer. Pmd camboard pico flexx driver. [Online]. Available:
https://github.com/code-iai/pico flexx driver

[28] Optitrack. [Online]. Available: https://optitrack.com/

59

https://playground.arduino.cc/Main/MPU-6050/
https://playground.arduino.cc/Main/MPU-6050/
https://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
https://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
https://pmdtec.com/picofamily/flexx/
https://pmdtec.com/picofamily/flexx/
https://en.wikipedia.org/wiki/Rotary_encoder
https://en.wikipedia.org/wiki/Rotary_encoder
https://www.banggood.com/6V-210RPM-Encoder-Motor-DC-Gear-Motor-with-Mounting-Bracket-and-Wheel-p-1044064.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171129&utm_campaign=trigger-emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh=c6bb30944d7c76f41&sc_llid=7298077&sc_lid=104858042&sc_uid=sVgRKuosig&cur_warehouse=CN
https://www.banggood.com/6V-210RPM-Encoder-Motor-DC-Gear-Motor-with-Mounting-Bracket-and-Wheel-p-1044064.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171129&utm_campaign=trigger-emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh=c6bb30944d7c76f41&sc_llid=7298077&sc_lid=104858042&sc_uid=sVgRKuosig&cur_warehouse=CN
https://www.banggood.com/6V-210RPM-Encoder-Motor-DC-Gear-Motor-with-Mounting-Bracket-and-Wheel-p-1044064.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171129&utm_campaign=trigger-emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh=c6bb30944d7c76f41&sc_llid=7298077&sc_lid=104858042&sc_uid=sVgRKuosig&cur_warehouse=CN
https://www.banggood.com/6V-210RPM-Encoder-Motor-DC-Gear-Motor-with-Mounting-Bracket-and-Wheel-p-1044064.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171129&utm_campaign=trigger-emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh=c6bb30944d7c76f41&sc_llid=7298077&sc_lid=104858042&sc_uid=sVgRKuosig&cur_warehouse=CN
https://www.banggood.com/6V-210RPM-Encoder-Motor-DC-Gear-Motor-with-Mounting-Bracket-and-Wheel-p-1044064.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171129&utm_campaign=trigger-emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh=c6bb30944d7c76f41&sc_llid=7298077&sc_lid=104858042&sc_uid=sVgRKuosig&cur_warehouse=CN
https://www.banggood.com/6V-210RPM-Encoder-Motor-DC-Gear-Motor-with-Mounting-Bracket-and-Wheel-p-1044064.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171129&utm_campaign=trigger-emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh=c6bb30944d7c76f41&sc_llid=7298077&sc_lid=104858042&sc_uid=sVgRKuosig&cur_warehouse=CN
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://www.banggood.com/no/10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.html?gmcCountry=NO&currency=NOK&createTmp=1&utm_source=googleshopping&utm_medium=cpc_union&utm_content=2zou&utm_campaign=ssc-no-euw-all-july&ad_id=359014888303&gclid=Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw_wcB&cur_warehouse=UK
https://www.banggood.com/no/10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.html?gmcCountry=NO&currency=NOK&createTmp=1&utm_source=googleshopping&utm_medium=cpc_union&utm_content=2zou&utm_campaign=ssc-no-euw-all-july&ad_id=359014888303&gclid=Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw_wcB&cur_warehouse=UK
https://www.banggood.com/no/10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.html?gmcCountry=NO&currency=NOK&createTmp=1&utm_source=googleshopping&utm_medium=cpc_union&utm_content=2zou&utm_campaign=ssc-no-euw-all-july&ad_id=359014888303&gclid=Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw_wcB&cur_warehouse=UK
https://www.banggood.com/no/10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.html?gmcCountry=NO&currency=NOK&createTmp=1&utm_source=googleshopping&utm_medium=cpc_union&utm_content=2zou&utm_campaign=ssc-no-euw-all-july&ad_id=359014888303&gclid=Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw_wcB&cur_warehouse=UK
https://www.banggood.com/no/10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.html?gmcCountry=NO&currency=NOK&createTmp=1&utm_source=googleshopping&utm_medium=cpc_union&utm_content=2zou&utm_campaign=ssc-no-euw-all-july&ad_id=359014888303&gclid=Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw_wcB&cur_warehouse=UK
https://www.banggood.com/no/10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.html?gmcCountry=NO&currency=NOK&createTmp=1&utm_source=googleshopping&utm_medium=cpc_union&utm_content=2zou&utm_campaign=ssc-no-euw-all-july&ad_id=359014888303&gclid=Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw_wcB&cur_warehouse=UK
https://www.banggood.com/no/10-Pcs-L298N-Dual-H-Bridge-Stepper-Motor-Driver-Board-For-Arduino-p-1054211.html?gmcCountry=NO&currency=NOK&createTmp=1&utm_source=googleshopping&utm_medium=cpc_union&utm_content=2zou&utm_campaign=ssc-no-euw-all-july&ad_id=359014888303&gclid=Cj0KCQjwjrvpBRC0ARIsAFrFuV8cjTinAqG3tR3lLZ9xyn5B32ob8PJxeVvLMXseQEgHCRjprxphwcMaAtg3EALw_wcB&cur_warehouse=UK
https://robohub.org/ros-101-intro-to-the-robot-operating-system//
http://wiki.ros.org/geometry_msgs
https://www.vectorstock.com/royalty-free-vector/arrows-buttons-keyboard-vector-2729970
https://www.vectorstock.com/royalty-free-vector/arrows-buttons-keyboard-vector-2729970
https://www.arduino.cc/en/tutorial/PWM
https://github.com/code-iai/pico_flexx_driver
https://optitrack.com/


Appendices

60



Appendix A

Setting up ORB SLAM

Figure A.1: launch file to start orb slam 2
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Figure A.2: Pico flexx config file
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