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Preface

The thesis supervisor contributed with:

• Developing the Fractional Electromagnetic Theory (FET) and formalizing its appli-
cation to magnetic damping

• Advice and assistance regarding its implementation

• Guidance and discussion along the way

• Proof reading of the final report

The candidate contributed with:

• Realizing the FET numerically

• Case study of its application to Eddy Current Brakes (ECBs)

• Validation and verification of the numerical solution

• Evaluation of the numerical method

• Analysis of the dynamical ECB model

• Presentation and discussion of findings and their physical implications

• Implementation of state of the art control algorithms

• Considerations on the applicability of the model and numerical method to engineer-
ing applications
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Summary

This thesis investigates the formulation of the eddy current phenomenon in thin geometries
as a set of two-dimensional fractional diffusion equations in the plane, and how they de-
scribe an eddy current braking system. Involved in this is a comprehensive study of the
previous work done on analytical modelling of eddy current induction and resulting forces
in thin conductive sheets of infinite extent. Furthermore, the spectral method of solving
differential equations, extended to the two-dimensional problem in question was success-
fully implemented to yield a surprisingly accurate numerical realization of an eddy current
braking system. The resulting dynamical model for the ECB forces is a novel result, and is
examined in detail.
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Sammendrag

Denne avhandlingen undersøker de to-dimensjonale fractional diffusion likningene som
kan brukes til å beskrive dynamikken til induserte virvelstrømmer i et tynt, strømledende
flak som strekker seg uendelig langt ut i planet, og hvordan disse beskriver et virvel-
strømbremsesystem. Dette inkluderer et omfattende literaturstudie av eksisterende frem-
gangsmåter for matematisk modellering av virvelstrømmer og resulterende bremsekraft.
Den numeriske løsningsmetoden som ble brukt tilsvarer en to-dimensjonal fouriertransfor-
masjon, og ga et overraskende nøyaktig resultat. Den resulterende dynamiske modellen for
en virvelstrømbrems er et nytt resultat, og blir undersøkt i detalj.
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Chapter 1

Introduction

Eddy current induction, given its name for the fluid-like circulating return paths that are
formed, has historically been associated with energy losses in the magnetic cores of volt-
age transformers due to a relative movement between the inductor and core. While often
unwanted in electrical systems, there are ways to exploit the energy dissipation of this
process for kinetic electro-mechanical systems. Its most common application is magnetic
braking, in which the relative movement of a conductive body and a magnetic field lead to
a dissipation of the kinetic energy.

Contactless magnetic braking systems, or Eddy Current Brakes (ECBs), are commonly
used in vehicular braking as a supplement to hydraulic brakes for their superior perfor-
mance in high speed applications. ECBs themselves have no holding force, and are there-
fore not suitable as the only braking mechanism, but provide excellent resistance for bodies
in motion. Applications for ECB technology are not limited to vehicles, however. A major
area of use is in resistive torque generation for rotating conductors, which has applications
within exercise equipment, hoisting of heavy loads, to name a few.

The impressive railway systems of magnetically levitating trains, currently operational in
a number of Asian countries, are largely based on this technology. Alignment, levitation,
braking and propulsion of the vessel are all achieved through the use of eddy current in-
duction. Complex engineering applications of the eddy current phenomenon such as this
require state of the art mathematical modeling and control algorithms. Currently, these
disciplines are very much split. Accurate mathematical models of the process generally
require time consuming numerical solutions, making them suited for analysis and not real-
time applications. Conversely, the absence of sufficiently accurate models that can be im-
plemented in real-time forces the use of approximate models and robust control methods.

1
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1.1 Research Approach

Main Topics

The most significant research topics of this thesis is given by the following set of questions
to answer:

1. What is the FET, and how is the dynamical ECB model derived?

2. Can the numerical realization be validated and/or verified? What are its limitations?

• Does the numerical solution agree with established results on ECBs?

• Which factors are significant for its accuracy?

3. If the implementation is valid, what are its merits?

• What can it tell us about the ECB process that approximate models cannot?

• How does it compare to other numerical solutions?

• What are its practical uses?

Assumptions

Simplifications made in the derivation of the dynamical ECB model boil down to a few key
assumptions about the thin, conductive sheet:

• Low Magnetic Reynolds Number: Corresponding to assumptions on the sheet thick-
ness, a low magnetic Reynolds number means that skin effects of the currents induced
in the sheet of thickness d are not present. This is true when the skin depth is larger
than the total thickness: δs > d. This is a fair assumption if the relative velocity
between the conductive sheet and a magnetic field is not too large. δs < d implies
that the induced currents are confined to a section of the sheet thickness, instead of
being evenly distributed.

• Uniform Conductivity: The sheet conductivity σ is assumed constant and uniform
over the entire sheet volume. In reality the electrical conductance depends on the
temperature of the conductor, and kinetic energy is dissipated as heat in the moving
conductor for ECB applications.

2
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1.2 Thesis Outline

An outline of the chapters contained in this thesis:

Chapter 1 - Introduction

This chapter presents the real world implications of the topic, aiming to justify the succeed-
ing research. The purpose, goal and structure of the thesis are clearly presented. Significant
variables, parameters and conventions used in the following chapters are described.

Chapter 2 - Background

Some fundamental laws of classical electromagnetism are presented, and used to explain
the source and result of the eddy current phenomenon. The special case of a thin, conduc-
tive sheet extending infinitely in the plane is introduced - which is the geometry for which
the succeeding model derivation is based. Finally, a literature study of a few established
analytical, approximate and experimental results that are relevant to the research conducted
in the following chapters is presented.

Chapter 3 - A Dynamical Model for The Eddy Current Brake

The thin geometry described in chapter 2 is formalized, and the necessary spatial coordinate
frames are introduced. The fundamental electromagnetic theory in chapter 2 is applied to
the special case of a thin conductive sheet. The FET is described in broad terms, and used
in conjunction with the 2D Fourier Transform, Sturm-Liouville Theory and Plancherel’s
Theorem to derive a dynamical model for the ECB.

Chapter 4 - Spectral Numerical Method

The spectral method for numerical approximation of differential equations is presented,
along with arguments for its compatibility with our approach to modeling the ECB in
chapter 3. The process and consequences of the spatial discretization needed for its im-
plementation are discussed at length.

3
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Chapter 5 - ECB Model Analysis and Simulation

Analysis of the analytical solution derived in chapter 3 is conducted, where possible. Next,
the spectral numerical method described in chapter 4 is implemented, and its accuracy
evaluated in detail. After establishing the appropriate design parameters of the method, the
fully discretized dynamical model is realized and evaluated.

Chapter 6 - Engineering Applications

Two engineering applications are implemented using the numerical solution: State of the
art, robust control algorithms and optimization of the ECB configuration. The merit of the
method for each application is discussed.

Chapter 7 - Conclusion

The results of the preceding research are finalized in a brief conclusion. Some topics of
further research are outlined.

4
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1.3 Nomenclature

Time-, and space varying scalars and vectors:

Symbol SI Unit Description
ξξξ m Position in space
x m Position in the plane
z m Vertical Position
k m−1 Spatial frequency
t s Time
ω rad s−1 Temporal (radial) frequency
X m Discrete position in the plane
K m−1 Discrete spatial frequency
T s Discrete time
B Wb Net magnetic field
B′ Wb Induced magnetic field
C Wb Controlled magnetic field
ΓΓΓ Wb In-plane controlled magnetic field
q Wb or A m−1 Controlled field strength
P 1 Spatial distribution function
J A m−2 Current density
ψ A m−3 Current stream function
D N Magnetic damping force
Pdiss W Electrical power dissipation
r m Sheet translation
v m s−1 Sheet translation velocity
vr 1 Relative velocity

Table 1.1: Commonly used variables.

5
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Physical parameters, assumed constant:

Symbol SI Unit Description
µ Wb(A m)−1 Magnetic permeability
ε F m−1 Permittivity
σ S m−1 Electrical conductivity
ν m s−1 Characteristic recession speed
d m Sheet thickness (d = 2b)
b m Vertical displacement of sheet surfaces (z = ±b)
c 1 Compensation factor
h m Vertical displacement of the controlled field
r m Radius of pole projection area
V m3 Sheet volume of integration

Table 1.2: Commonly used physical parameters.

Subscripts, superscripts and other modifiers:

Modifier Description
( · )1,2,z Planar and vertical vector field components
ˆ( · ) Spatial Fourier transform

( · )(ω) Temporal Fourier transform
¯( · ) Stationary value/equilibrium point

( · )l In lab-frame coordinates
( · )m In material-frame coordinates
( · )∗ Conjugate transpose

Table 1.3: Commonly used modifiers.

Transformations, compositions and other operators:

Operator Description
Fx(·) Spatial Fourier transformation
Ft(·) Temporal Fourier transformation
| · | Euclidian norm (‖ · ‖2)
L(·) Sturm-Liouville operator
(·) ◦ ϕ Planar coordinate transformation

Table 1.4: Commonly used operators.

6



Chapter 2

Background

Relevant fundamental electromagnetic theory is presented and loosely applied
to a simplified case of the ECB for illustration purposes. Established results in
the literature on modeling of ECBs are presented as an extended introduction
into the eddy current phenomenon, and for validation and/or verification of the
later results.

2.1 Electro-/magnetodynamics

This section will provide a brief description of the fundamental theory of electromagnetism
required to model the eddy-current braking phenomenon. The classical theory of electro-
dynamics provides a mathematical foundation on which our understanding of the forces
acting between electrically charged particles is built. A natural starting point is (James
Clark) Maxwell’s Equations of Electromagnetism, a set of Partial Differential Equations
(PDEs) describing the dynamics of electric and magnetic fields E and B in Euclidean three-

7



TTK4900 - Master’s Thesis 2.1. ELECTRO-/MAGNETODYNAMICS

dimensional space. Matrix vector notation:

A(x, t) = [Ax Ay Az]
ᵀ (Arbitrary vector field A)

∇ =

[
∂

∂x

∂

∂y

∂

∂z

]ᵀ
(Gradient Operator)

∇TA =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(Divergence of A)

S(∇)A =

[(
∂Az
∂y
− ∂Ay

∂z

) (
∂Ax
∂z
− ∂Az

∂x

) (
∂Ay
∂x
− ∂Ax

∂y

)]ᵀ
(Curl of A)

S(x) =

 0 −z y
z 0 −x
−y x 0

 (Cross-product operator)

The PDEs, found throughout Maxwell’s publications (ex. [1]) and reduced to 4 equations
via vector notation, read:

∇ᵀD = ρ (Gauss’ Law) (2.1)
∇ᵀB = 0 (Gauss’ Law for Magnetism) (2.2)

S(∇)E = −∂B
∂t

(Faraday’s Law of Induction) (2.3)

S(∇)H = J +
∂D
∂t

(Ampére’s Circuital Law) (2.4)

These equations can be given the following physical interpretations:

Given an arbitrary closed surface S, Gauss’ Law (2.1) and Gauss’ Law for Electromag-
netism (2.2) state that the divergence of (i) the electric field and (ii) the magnetic field are
required to, (i) be proportional to the charge density ρ inside the volume bounded by S and
(ii) be equal to zero. Key consequences of these laws are that (i) the electric field diverges
from positive charge, and converges at negative charge and (ii) magnetic field lines form
loops in space (Figure 2.1).

Faraday’s Law (2.3) and Ampére’s Law (2.4) describe the phenomenon of magnetic in-
duction due to a change in either B or E. A magnetic field that changes in time will cause
an opposite proportional circulation the electric field. In a conductor, this corresponds to
a an induced voltage (and current). Similarly, the currents moving through a conductor or
a changing electric field cause a circulation in the surrounding magnetic field. Noting the
negative sign in (2.3), we can see that a current J induced by a change in B will be circu-
lated by an induced magnetic field that opposes the change in B. This agrees with Lenz’s
Law, which states that the orientation of an induced current in a conductor due to a varying

8
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Magnetic Monopoles

Source

Magnetic Dipoles

Sink

Figure 2.1: Magnetic point charges (left) acting as source/sink of the magnetic field lines
always come in pairs (right) in nature.

magnetic field, will always be such that the generated magnetic field will counteract the
original change.

In (2.1-2.4), note that the vector fields E and B represent the actual physical fields affecting
charged particles. E and B are related to the Electric Displacement Field D, Polarization
P, Magnetic Auxillary Field H and Magnetization M by:

D = ε0E + P (2.5)
B = µ0(H + M) (2.6)

Where the parameters ε0 and µ0 describe the vacuum Permittivity and Permeability, re-
spectively. For a linear medium, i.e the pairs E, P and H, M are linearly related, (2.5-2.6)

9
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simplify to:

D = εE
B = µH

Where ε and µ are the absolute permittivity and permeability of the given medium. The
vector formulation of Ohm’s Law relates the electric field E to the current density J in a
medium of Conductivity σ:

J = σE (2.7)

Finally, the force acting on a volume element with charge q due to the fields E and B is
called the Lorentz Force and is given by:

f = qE + qS(v)B = qE + S(J)B (2.8)

Where v is the average velocity of the volume elements relative to the magnetic field B.
The total magnetic force acting on a volume is found by integrating (2.8) over the total
volume V :

F =

∫
V

fdV (2.9)

2.2 Eddy Current Braking

Before proceeding to reformulating and solving Maxwell’s equations for thin, conductive
sheets - this section will attempt to explain the not so obvious eddy-current braking phe-
nomenon. It is well documented that a conductor moving with a velocity v relative to an
external magnetic field B, will experience damping forces due to the resulting magnetic
field generated by the induced currents. Furthermore, With the help of (2.1-2.4) and (2.8),
we can gain an intuitive understanding of how and why this phenomenon occurs.

We will consider the case of a conductor that extends infinitely in the plane, and has a
small and uniform thickness. Let a constant and uniform external magnetic field B exist in
a finite region of the plane, and let the vertical component (perpendicular to the plane/sheet
surface) of this field be nonzero. Finally, let the sheet translate in the plane with velocity
v. This corresponds to the setup of a conductive sheet moving through the air-gap of a
magnetic dipole, where the area projected by the poles onto the sheet is much smaller than
the full sheet size. Existing literature on eddy current braking use this configuration almost
exclusively, as the results can be accurately applied to ex. the linear braking of trains on
conductive rails and braking torque of sufficiently large disks.

10
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vBmag B
+

eddy

B
−

eddy

ieddy

Figure 2.2: Planar cross-section of a conductive sheet moving linearly through a circu-
lar pole projection area. Blue, green and red vectors denote the sheet velocity, induced
magnetic fields and eddy current return paths, respectively. Figure source: [2].

For simplicity, let us only consider a constant and uniform vertical component of B, and
the velocity along one axis in the plane (Figure 2.2). At any given time t, volume elements
(locked to the sheet material) will flow at equal rates into the magnetic field in one end (i),
and out of the magnetic field at the other end (ii) of the pole projection area. The resulting
rate of change ∂

∂t
B onto these volume elements will be directed: (i) with B and (ii) opposite

to B. From Faraday’s Law (2.3), it is clear that the changing vertical component of B is
accompanied by rotating electric fields E and currents J = σE in the plane which have
opposite direction for (i, ii) - these circulating currents in the plane are the Eddy Currents.

We know from Ampére’s Law (2.4) and Lenz’s Law that the induced currents J in turn
generate magnetic fields in the conductor, and that these fields will be directed such that
they oppose the original change ∂

∂t
B: The generated fields will (i) oppose and (ii) assist the

external field B. The resulting drag force opposing v is readily seen by the magnetic forces
of attraction and repulsion of the parallel fields: The volume elements of the sheet will be
(i) repelled by and (ii) attracted to the fixed external field B. The sum of these magnetic
forces clearly opposes the relative velocity v.

In practice, the magnetic field in the air-gap will have non-zero in-plane components due
to fringing of magnetic field lines in space. These planar components give rise to a vertical
damping force, or lift, in addition to the drag generated by the vertical component. This
magnetic lift force is the enabling physical process for magnetic levitation. It is readily
seen that magnetic braking and magnetic levitation are essentially two sides of the coin,
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and can be given the collective term magnetic damping. While the following research top-
ics are focused towards magnetic braking, there is an implicit applicability of the presented
theory and methods to magnetic levitation.

2.3 Previous Work

Existing literature on the analytical modelling of eddy-currents and/or the resulting damp-
ing forces in conductive sheets may serve as a source of insight as well as verification.
Some key results will be presented here. Numerous publications on modelling the drag
force exerted by the induced eddy-currents in a conductive material affected by a varying
magnetic field already exist. The earliest of these publications [3–5] predate the widespread
use of Maxwell’s equations (2.1-2.4), the discovery of the electron and modern computing
tools. As a consequence the methods described in these publications are somewhat obscure
and unfamiliar to the modern reader, but nevertheless provide a few key interpretations of
the eddy-current phenomenon that have maintained relevancy.

2.3.1 Receding Image Construction

t = t1t = t2

ν

v

ννν

t = 0

Magnet

Image
6 ννν

Figure 2.3: The receding image construction.
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Maxwell was one of the first to investigate the induction of eddy currents in infinite, thin,
conductive sheets [3]. One of his key contributions was the Receding Image Construction
(Figure 2.3), which is an elegant and intuitive interpretation of the source and decay of
induced currents and magnetic fields:
Consider a thin conductive sheet moving with velocity v in the plane relative to a magnet/-
electromagnet suspended above the sheet. At time instant t = 0, imagine a positive image
of the electromagnet appearing on the opposite side of the sheet. This imagined magnet
represents the induced magnetic field according to Lenz’ Law. At the next time-instant
t = t1, the positive image will translate horizontally with the sheet away from the real
magnet while simultaneously translating vertically away from the sheet. Again, according
to Lenz’ Law, a negative image is formed and is of equal strength and opposite polarity of
the first image. For the succeeding time-instances, the dipole formed by the pair of images
continues translating away from the sheet and the magnet which induced them. Maxwell
defines the vertical velocity with which the images Recede from the sheet as a constant
velocity ν called the Characteristic Recession Velocity. Maxwell did not quantify this ve-
locity in [3], but it appears explicitly in [4, 6, 7] for instance, where it is characterized by
the sheet thickness d, sheet conductivity σ and vacuum permeability µ0:

ν =
2

µ0σd
(2.10)

An interesting quantity to consider is the angle formed by the velocity vector of the images

ννν =

[
v
ν

]
with the horizontal line:

tan
(
∠ννν
)

=
ν

v
(2.11)

The trail of receding images produced by the magnet describe the continuous decay of the
magnetic field generated by the eddy-currents, when the step size between each time instant
approaches zero.

2.3.2 Solution Methods

Some publications on eddy current braking have used Maxwell’s Equations in order to
uncover the induced magnetic field B′ of the eddy-currents due to an external field C, which
can be integrated over a volume to directly yield the resulting forces. In these publications,
Maxwell’s Equations are typically reduced to the following first order PDEs for the vertical
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component above and below the sheet surface, which is of greatest interest in braking
applications:

∂(B′z + Cz)

∂t
= ±ν ∂B

′
z

∂z
(2.12)

(2.12) is obtained by assuming axial symmetry about both planar axes for the induced
magnetic fields, in which case differentiation of the integral form of Ampére’s Law yields
(on the top surface):

µ0Jx = −2B′y, µ0Jy = 2B′x (2.13)

Combining (2.13) with Ohm’s Law (2.7) and Faraday’s Law (2.3), yields the first order
PDEs (2.12). This first order PDE formulation is nearly ubiquitous in the literature on
analytical modelling of eddy currents in braking applications (see [7–11], for instance).
Publications vary greatly in their solution methods and boundary condition formulations,
however. A few results considered in this paper are presented in some detail in the following
subsections.

Approximate Solutions

Smythe [8] and Scheiber [9] solved (2.12) for disk shaped conductive sheets rotating with
angular velocity Ω through a uniform vertical magnet air-gap, assuming that the magnitude
of the induced field B′z is small enough to were it does not interfere significantly with the
total magnetic field in the air-gap. This implies that the resulting model is confined to low
angular speeds, where the induced fields are negligible compared to the external field.

Smythe’s drag force/torque model is a linear damper, and was found by Wouterse [12]
to agree with the approximate model obtained by assuming a disk shaped PPA surrounded
by an imagined ring of infinite conductivity. The PPA contains a vertical, uniform magnetic
field B0 perpendicular to the velocity of the sheet v. With this idealized configuration, the
eddy current return paths are confined to the cylindrical volume

V = πr2d

of the sheet under the PPA. The dissipation due to the induced currents is given by the
volume integral of the electrical power density 1/σJ2, where J = σE = −σvB0 from
Ohm’s Law and Lorentz Force balance:

Pdiss =

∫
V

1

σ
J2dV = πσr2dB2

0v
2 (2.14)
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Assuming that the kinetic energy dissipation due to the magnetic braking is entirely in the
form of heat produced by the eddy currents, and introducing the compensation factor

c =
1

2

(
1− 1

4

1

(1 + r
Rdisk

)2(Rdisk−Rarm
2r

)2

)
(2.15)

the braking force is given by:

FD =
Pdiss

v
= πσr2dB2

0vc (2.16)

Where r is the radius of the PPA, Rarm is the distance from the disk center to the PPA
center, and Rdisk is the disk radius. Due to its simplicity, this approximate model is often is
in engineering applications of ECBs, despite being inaccurate for high speeds.

Analytical Solutions

Reitz [6] used Maxwell’s receding image construction to derive an analytical result for the
stationary drag and lift forces experienced by a magnetic monopole translating parallel to
a conductive sheet surface. Differential equations are bypassed by evaluating the torque
given by the magnetic dipole moment, which for a monopole corresponds to a force:

FL = qB′z =
µ0q

2

16πh2

(
1− ν√

v2 + ν2

)
(2.17a)

FD =
ν

v
FL =

µ0q
2

16πh2

ν

v

(
1− ν√

v2 + ν2

)
(2.17b)

Where the monopole has strength (magnetic moment per unit length) q, is suspended a
constant height h above the sheet, and is moving with velocity v relative to the sheet. B′z is
the total vertical magnetic field generated by the trail of receding images.

2.3.3 Demagnetization

Smythe [8] noted that for higher sheet velocities, the magnitude of induced magnetic fields
is great enough that they will weaken the external field that created them - resulting in a
loss of braking force. In [12], theoretical results of the asymptotic behaviour of the braking
force as a function of sheet speed were presented. Most notably, the vertical component
of the total magnetic field in a magnet air-gap was shown to approach zero as the speed

15



TTK4900 - Master’s Thesis 2.3. PREVIOUS WORK

Figure 2.4: Left: The total magnetic induction in the cross section of a round PPA tan-
gential to the disk rotation (drehrichtung; rotational direction) for a range of speeds n.
Source: [13, pp.151]. Right: Rüdenbergs results [5] (gerechnet; expected) compared with
experimental results (gemessen; measured). The plot [13, pp.144] shows braking force as
a function of disk velocity.

approaches infinity. As a consequence, the magnetic braking force will decay for large v
as well. The asymptotic braking force behaviour for v ∈ [0,∞) is characterized by

FD ∝

{
v, v < vcr

v−1, v > vcr
(2.18)

based on analytic results in the low speed region [8, 9], and on experimental results for the
high speed region [13] (Figure 2.4). Observe Reitz’ drag force model (2.17) satisfies this
asymptotic behaviour [2]:

lim
v→0

[
ν

v

(
1− ν

(v2 + ν2)1/2

)]
= lim

v→0

(
ν(v2 + ν2)1/2 − ν2

v(v2 + ν2)1/2

)
~

[
0

0

]
(L’Hôpital’s rule)→ = lim

v→0

(
νv

2 · 2v2 + 2ν2

)
= lim

v→0

v

2ν

lim
v→∞

[
ν

v

(
1− ν

(v2 + ν2)1/2

)]
= lim

v→∞

ν

v
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The critical speed vcr for which the braking force reaches its maximum, was predicted by
Wouterse to be given by:

vcr = ν

√
1

ξc

√
lg
2r

(2.19)

Where lg is the vertical air-gap length, and ξ is a proportionality factor, assumed equal to
unity. (2.19) is supported by an experimental result in [13] noting a ’slower than propor-
tional ascent’ of the critical velocity as a function of the air-gap. of According to (2.19), a
critical recession angle (2.11) can be predicted by:

∠νννcr =
ν

vcr
=

√
2
ξcr

lg
(2.20)
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Chapter 3

A Dynamical Model for the Eddy
Current Brake

This chapter presents the geometrical and kinematic framework used to de-
scribe the thin sheet geometry. The FET, loosely described during the course
of the solution strategy, is employed to yield two-dimensional fractional dif-
fusion equations for the dynamics of the magnetic fields and currents in the
sheet. These are integrated over the spectral plane by Plancherel’s theorem to
yield the magnetic damping force vector.

3.1 Problem Formulation

The laws of electromagnetism will be applied to the thin sheet configuration described in
(Section 2.2), aiming to compute the total magnetic field density B = B′ + C - the sum
of the induced magnetic field B′ and an external (controlled) magnetic field C. First, some
necessary preliminaries on the sheet and pole geometries in space as well as coordinate
schemes and reference frames are presented.

3.1.1 Sheet Geometry and Coordinate Frames

Due to the thin geometry being considered, and for later transformations during the solution
strategy, it will be useful to separate the space R3 into planar and vertical components
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Figure 3.1: S and P centered at z = 0 in their respective material-/lab-frames.

x ∈ R2 and z ∈ R. The position vector ξξξ ∈ R3 is written as:

ξξξ =

[
x
z

]
, x =

[
x1

x2

]
We let the conductive sheet inhabit a volume given by the subspace V ⊂ R3:

V = {ξξξ : x ∈ S, |z| ≤ b} (3.1)

Where S is a planar surface that extends indefinitely in R2, but is bounded by some closed
curve C (Figure 3.1). Another planar surface P represents the projection onto S of the field
excited by a magnetic pole suspended some height above the sheet.

The free bodies (sheet, magnet) represented by their 2D projections S and P each have
their own reference frame: The material frame m and the laboratory (lab) frame l, locked
to the sheet and pole projection centroids respectively. The time-varying, planar transfor-
mation between these frames is specified by the operator:

ϕ : xl → xm (3.2)

xm = Rz,θ(t)xl + rl(t) = ϕ(xl, θ, rl)
xl = Rz,−θ(t)xm − rm(t) = ϕ−1(xm, θ, rm)
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z

d = 2b

C

σ(z) = σ

σ(z) = 0

σ(z) = 0

Figure 3.2: Vertical cross-section of the conductive sheet and possible distribution of the
external field C.

Simply put, a translation r = [r1 r2]ᵀ in the plane and a counter-clockwise rotation θ about
the shared vertical axis z:

Rz,θ =

[
cos θ − sin θ
sin θ cos θ

]

3.1.2 Magnetic Field PDEs

For the following derivation of PDEs for the total magnetic field B, we will use the short-
hand ξξξ = ξξξm such that all vectors are given in the material frame unless otherwise stated.
Consider a sheet of thickness 2b and let the conductivity in space be a function of z, such
that

σ(ξξξ) = σ(z) =

{
σ |z| ≤ b

0 |z| > b

In other words, the conductive sheet is surrounded (above and below) by an entirely non-
conductive medium such that induced currents are contained in the sheet. We also assume,
for simplicity, that µ(ξξξ) = µ0 - where the constant µ0 is the vacuum permeability. This is
a good approximation as long as the sheet material is relatively non-magnetic (µs ≈ µ0),
which is the case for many conductive metals such as aluminium - for instance. Further-
more, we assume linear electric and magnetic fields in and around the sheet. Maxwell’s
equations for the linear medium, assuming the electric field is in equilibrium

(
∂E
∂t

= 0
)
,
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can be written as:

∇ᵀE =
ρ

ε
(3.3)

∇ᵀB = 0 (3.4)

S(∇)E =
∂B
∂t

(3.5)

S(∇)B = µ0J (3.6)

Equations (3.3-3.6) describe spatial and temporal dynamics of the magnetic field density
B(ξξξ, t) and electric field E(ξξξ, t). We proceed by reducing these equations to a set of 3-
Dimensional PDEs for B only. Inserting Ohm’s Law (2.7) into the modified Ampére’s Law
(3.6) yields:

S(∇)B = µ0σ(z)E

⇒E =
1

µ0σ(z)
S(∇)B

Which, inserted into Faraday’s Law (3.5), yields:

S(∇)(S(∇)B) = S(∇)2B = µ0σS(∇)E = −µ0σ
∂B
∂t

Using the vector identity,

S(∇)2ξξξ = (−∇ᵀ∇I +∇∇ᵀ)ξξξ = (−∆I +∇∇ᵀ)ξξξ

where ∆ = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂z2
is the operator known as the Laplacian, we end up with the

following set of PDEs:

µ0σ(z)
∂B
∂t

= ∆B−∇ (∇ᵀB) = ∆B (3.7)

Where∇ᵀB = 0 due to Gauss’ Law for Magnetism (3.4). Let us express the total magnetic
flux density B as the sum of the external (controlled) magnetic field C and the resulting
magnetic field B′ induced by the eddy-currents in the sheet interior: B = B′ + C. We
may separate the problem into two cases: (i) The sheet interior (|z| ≤ b) and (ii) the sheet
exterior (|z| > b). Using the superposition principle, we may assume that the controlled
external field C is entirely a consequence of some external process - e.g an electromagnetic
circuit. Likewise, the induced magnetic field B′ is entirely a consequence of the current
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density J confined to the sheet interior.

(i), |z| ≤ b:

∇ᵀB = ∇ᵀB′ +∇ᵀC = 0

S(∇)B = µ0σE = µ0J = S(∇)B′

∆B = −S(∇)2B = ∆B′

∆C = 0

∆B′ = −µ0σS(∇)E = µ0σ
∂B
∂t

(ii), |z| > b:

∇ᵀB = ∇ᵀB +∇ᵀC = 0

S(∇)B = µ0 · 0 · E = 0

∆B = ∆B′ = µ0 · 0 ·
∂B
∂t

= 0

Thus, the set of PDEs simplify to the time-dependent and time-independent diffusion equa-
tions:

µ0σ

(
∂B′

∂t
+
∂C
∂t

)
= ∆B′ (i) (3.8a)

0 = ∆B′ (ii) (3.8b)

In particular, the problem is equivalent to the 3-dimensional heat and Laplace equations in
the sheet interior/exterior, respectively. If we consider only the z-component Bz, which is
the component of B responsible for the drag force during horizontal movement of the sheet,
we get the following second order PDEs:

∂B′z
∂t

+
∂Cz
∂t

=
1

µ0σ

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂z2

)
B′z (i) (3.9a)

0 =

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂z2

)
B′z (ii) (3.9b)

If we successfully solve equations (3.8), the current density J follows directly from (3.6).
Finally, net forces F can be integrated from (2.8):

F =

∫
V

qEdV +

∫
V

S(J)(B′ + C)dV =

∫
V

S(J)(B′ + C)dV (3.10)

Where the first integral term disappears, since the net electric field in a conductor such as
our sheet is always zero.
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f(x) f̂(k) Description
f(x− x0) e−ik

Tx0 f̂(k) Shifting Theorem
f(Rzx) f̂(Rzk) Rotation Theorem

f(x) ∗ g(x) f̂(k)ĝ(k) Convolution Theorem
f(x)g(x) f(k) ∗ g(k) Inverse Convolution Theorem

Table 3.1: Some relevant properties of the 2D Fourier Transform used throughout this
thesis (see [15]).

3.2 Solution Strategy

The interior problem currently requires the solution of a three-dimensional, time-varying
set of PDEs (3.8). This section details how, through the use of a two-dimensional Fourier
Transform (FT) as well as an evaluation of the resulting eigenvalue problem through Sturm-
Liouville (SL) theory, the interior problem can be regarded as a set of linear dynamic equa-
tions evaluated over the sheet spectrum without significant loss of accuracy. The 3D PDEs
(3.8) are effectively reduced to a 2D problem by exploiting the harmonic behaviour of the
magnetic fields in the exterior. The following description of the solution strategy is a less
rigorous than, but agrees with the method presented in an upcoming publication [14].

3.2.1 2D Fourier Transform

Each component of the diffusion equations (3.8) for the magnetic field B can be reduced
further by Fourier Transformation (FT) in the plane. For this purpose we define the 2-
Dimensional FT of an integrable function f as the operator:

Fx : f(x)→ f̂(k)

f ∈ R, f̂ ∈ C, (x,k) ∈ R2

The forward and inverse transforms are given by:

Fx
(
f(x)

)
=

∫
R2

f(x)e−ik
Txdx = f̂(k) (3.11a)

F−1
x

(
f̂(k)

)
=

1

(2π)2

∫
R2

f̂(k)eik
Txdk = f(x) (3.11b)

The variable transformation x→ k in (3.11) corresponds to a transformation from whichever

23



TTK4900 - Master’s Thesis 3.2. SOLUTION STRATEGY

domain x belongs to (time, space, or other) to the inverse domain (temporal frequency, spa-
tial frequency, ...). In our case, we will refer to the transformation pair x→ k as the spatial
and spectral plane variables, respectively. The FT of B(x1, x2, z, t) for each fixed (z, t) is
then given by the spectra:

B̂(k1, k2, z, t) =

∫ ∞
−∞

∫ ∞
−∞

B(x1, x2, z, t)e
−i(k1x1+k2x2)dx1dx2 (3.12)

A property of the FT that is instrumental in the reduction of differential equations, is the
equivalence of differentiation in the original domain and multiplication in the inverse do-
main:

Fx
(

∂

∂x1,2

f(x)

)
=

∫
R2

∂

∂x1,2

f(x)e−ik
Txdx = ik1,2

∫
R2

f(x)e−ik
Txdx = ik1,2f̂(k)

Which can be shown easily by integration by parts. This allows for the transformation
of the differential variables (x1, x2) into algebraic variables (k1, k2), and makes for a less
complex set of equations. Thus, by applying the FT to both sides of (3.8), we get the
following set of equations:

∂B̂
′

∂t
+
∂Ĉ
∂t

=
1

µ0σ

(
−k2

1 − k2
2 +

∂2

∂z2

)
B̂
′

(i) (3.13a)

0 =

(
−k2

1 − k2
2 +

∂2

∂z2

)
B̂
′

(ii) (3.13b)

We rewrite (3.13) by introducing the change of variables:

|k|2 = k2
1 + k2

2

ν =
2

µ0σ · 2b
=

1

µ0σb

ζ =
z

b
(3.14)

κκκ = kb (3.15)

τ = t
ν

b
(3.16)

Where ν is the characteristic velocity and ζ , κκκ, τ are the dimensionless vertical coordinate,
spectral coordinates and time, respectively. Such that:

∂B̂
′

∂τ
+
∂Ĉ
∂τ

=

(
−|κκκ|2 +

∂2

∂ζ2

)
B̂
′

(i) (3.17a)

0 =

(
−|k|2 +

∂2

∂z2

)
B̂
′

(ii) (3.17b)
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3.2.2 Boundary Conditions

As with all PDEs, the interior problem of (3.17) has an infinite number of solutions. In
order to identify unique, non-trivial solutions for the magnetic field density spectra B̂

′
we

must identify boundary conditions for the remaining differential variable z. For instance,
Dirichlet boundary conditions for the interior system are specified by B̂

′
(k,±b, t) = f .

The magnetic field density induced by eddy currents has no obvious direct function value
at the sheet boundaries, however. The only obvious property of the variation of B̂

′
along the

vertical axis, is that it will decay towards zero as we move away from the sheet - since the
exterior problem is a stationary diffusion equation along the z-axis for all values of (k1, k2):

lim
|z|→∞

B̂
′
= 0

From this point onward, we investigate the vertical and planar spectra
(
B̂′z, B̂

′
1,2

)
sepa-

rately. A Boundary Value Problem (BVP) will be derived for each component.

Vertical BVP

The vertical component of the spectral exterior problem (3.17) reads:

∂2

∂z2
B̂′z(k, z, t) = |k|2B̂′z(k, z, t), |z| > b (3.18)

Thanks to the elimination of spatial differential variables in the plane, (3.18) has been
reduced to a second order ODE for each fixed (k, t). If we say that the equation evaluated
for |z| > b has some unique, unknown initial values for each (k, t):

B̂′z(k, b, t) = B̂′b

B̂′z(k,−b, t) = B̂′−b

The unique solutions of (3.18) on either side of the sheet exterior are:

B̂′z =

{
e−|k|(z−b)B̂′b, z ≥ b

e|k|(z+b)B̂′−b, z ≤ −b
(3.19)

The initial values B̂′±b correspond to Dirichlet boundary conditions for the sheet interior
PDE evaluated for z ∈ [−b, b], but are yet unknown. Robin-type boundary conditions can
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however be determined by taking the z-derivative of (3.19):

∂

∂z
B̂′z = −sgn(z)|k|B̂′z

∂

∂z
B̂′z ± |k|B̂′z = 0, z = ±b (3.20)

The resulting BVP for B̂′z, using dimensionless variables, is given by:

∂

∂τ
B̂′z + |κκκ2|B̂′z −

∂2

∂ζ2
B̂′z = − ∂

∂τ
Ĉz, |ζ| ≤ 1 (3.21a)

∂

∂ζ
B̂′z ± |κκκ|B̂′z = 0, ζ = ±1 (3.21b)

Planar BVP

Equivalent Robin-type boundary conditions can be derived for each of the in-plane mag-
netic field components B̂′1,2 by repeating the process for the vertical BVP. We instead con-
sider the exterior magnetic field a product of a harmonic potential Φ̂, meaning it solves the
Laplace equation and is twice continuously differentiable:

∆Φ̂ =

(
−|k|2 +

∂2

∂z2

)
Φ̂ = 0, Φ̂ ∈ C(2)

Let such a potential decay to zero as |z| → ∞, and let it satisfy:

∇Φ̂ =

[
∂Φ̂

∂x1

∂Φ̂

∂x2

∂Φ̂

∂z

]ᵀ
= B̂

′

∂Φ̂

∂z
= B̂′z, ik1Φ̂ = B̂′1, ik2Φ̂ = B̂′2

Recall from the previous section the derivative equation for solutions of the Laplace equa-
tion:

∂Φ̂

∂z
= B̂′z = −sgn(z)|k|Φ̂

ik1,2

(
B̂′z + sgn(z)|k|Φ̂

)
= 0

⇒ik1,2B̂
′
z + sgn(z)|k|B̂′1,2 = 0 (3.23)
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The Dirichlet-type boundary conditions for the in-plane fields can be inferred from the
vertical boundary value B̂′z|z=±b:

ik1,2B̂
′
z ± |k|B̂′1,2 = 0, z = ±b

BVPs for the in-plane fields with dimensionless variables inserted are thus given by:

∂

∂τ
B̂′1,2 + |κκκ|2B̂′1,2 −

∂2

∂ζ2
B̂′1,2 = − ∂

∂τ
Ĉ1,2, |ζ| < 1 (3.24a)

iκ1,2B̂
′
z ± |κκκ|B̂′1,2 = 0, ζ = ±1 (3.24b)

3.2.3 Sturm-Liouville Theory

Solving the BVPs for the sheet interior can be viewed as an eigenvalue problem through
Sturm-Liouville (SL) theory. SL theory (see for example [16, ch. 8]) defines the real, linear,
second-order differential operator:

L(x) = p0(x)
d2

dx2
+ p1(x)

d

dx
+ p2(x) (3.25)

Where the parameters satisfy pi ∈ C(1) for a free variable x. The SL eigenvalue problem is
an alternative formulation of ODEs, and takes the form:

Lφ(x) = λφ(x) (3.26)

If L is Self-adjoint and the functions φ on which it operates satisfy some boundary condi-
tions, it is a Hermitian operator. Hermitian operators have some key properties motivating
the eigenvalue problem formulation, such as:

1. L has only real valued eigenvalues λ0 < λ1 < ... < λn < ...→∞.

2. Corresponding eigenfunctions φi are all unique solutions of the ODE.

3. Unique eigenfunctions are all orthogonal and normalized:
〈
φi, φj

〉
= 0, ∀i 6= j and〈

φi, φi
〉

= 1.

The unweighted complex inner product for continuous functions bounded by the sheet is
defined as: 〈

f, g
〉

=

∫ 1

−1

f ∗(ζ)g(ζ)dζ (3.27)
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For (3.27), a self-adjoint operator L must satisfy:〈
f,Lg

〉
=
〈
L∗f, g

〉
=
〈
Lf, g

〉
It can be shown that (3.25) is self-adjoint if d

dx
p0(x) = p1(x).

In both our BVPs (3.21, 3.24), we recognize the operator

L(ζ) = |κκκ|2 − ∂2

∂ζ2
(3.28)

with p0 = |κκκ|2, p1 = 0, p2 = 1. Clearly, ∂
∂ζ
p0 = p1 = 0, hence (3.28) is self-adjoint. The

vertical BVP can be written as:

∂

∂τ
B̂′z + LB̂′z = − ∂

∂τ
Ĉz, |ζ| ≤ 1 (3.29a)

∂

∂ζ
B̂′z ± |κκκ|B̂′z = 0, ζ = ±1 (3.29b)

If we let φn denote the nth solution of (3.29), the PDE reduces to the first order dynamic
equation with boundary conditions:

∂

∂τ
φn + λnφn = − ∂

∂τ
Ĉz, |ζ| ≤ 1 (3.30a)

∂

∂ζ
φn ± |κκκ|φn = 0, ζ = ±1 (3.30b)

The eigenvalue problem of identifying the eigen-value/-function pairs is then given by:(
|κκκ|2 − ∂2

∂ζ2

)
φ = λφ, |ζ| ≤ 1 (3.31a)

∂

∂ζ
φ± |κκκ|φ = 0, ζ = ±1 (3.31b)

Since λ ∈ R, we can separate (3.31) into three cases:

1. λ < |κκκ|2

2. λ = |κκκ|2

3. λ > |κκκ|2

Solving (3.31) for φ yields only the trivial solution φ = 0 for the first two cases, while the
third case yields:

φ = A cos
(
ζ
√
λ− |κκκ|2

)
+B sin

(
ζ
√
λ− |κκκ|2

)
(3.32)
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Inserting (3.32) into the boundary condition equation, yields:

−

(
A|κκκ|+B

√
λ− |κκκ|2

B|κκκ| − A
√
λ− |κκκ|2

)
= tan

(√
λ− |κκκ|2

)
, ζ = 1

−

(
−A|κκκ|+B

√
λ− |κκκ|2

B|κκκ|+ A
√
λ− |κκκ|2

)
= tan

(√
λ− |κκκ|2

)
, ζ = −1

And the equality

A|κκκ|+B
√
λ− |κκκ|2

−B|κκκ|+ A
√
λ− |κκκ|2

=
A|κκκ| −B

√
λ− |κκκ|2

B|κκκ|+ A
√
λ− |κκκ|2

, |ζ| = 1

has non-trivial solutions only for (A = 0, B 6= 0) || (A 6= 0, B = 0) as the roots of:√
λ− |κκκ|2 sin

(√
λ− |κκκ|2

)
− |κκκ| cos

(√
λ− |κκκ|2

)
= 0, b = 0 (3.33a)√

λ− |κκκ|2 cos
(√

λ− |κκκ|2
)

+ |κκκ| sin
(√

λ− |κκκ|2
)

= 0, a = 0 (3.33b)

Solving (3.33) for λ leads to periodically spaced eigenvalues
|κκκ|2 < λ0(|κκκ|) < λ1(|κκκ|) < ... < λn(|κκκ|) < ...→∞.

The thin geometry in question allows us to treat the norm of the dimensionless spectral
variable as small

|κκκ| << 1

such that the periodic eigenvalues can be approximated by

λn ≈
πn

2
, n > 0

λ0 ' |κκκ|+ |κκκ|2 ≈ |κκκ|

It follows that the zero’th order eigenfunction can be approximated by the first order Taylor
expansion

φ0 = cos
(
ζ
√
|κκκ|
)
' 1− ζ2

2!
|κκκ|

Eigenfunction Expansion

Eigenfunction expansion of the vertical magnetic field spectra

B̂′z = φn
〈
φn, B̂

′
z

〉
Ĉz = φn

〈
φn, Ĉz

〉
29



TTK4900 - Master’s Thesis 3.2. SOLUTION STRATEGY

inserted into (3.29), yields the model:

∂

∂τ
φn
〈
φn, B̂

′
z

〉
+ Lφn

〈
φn, B̂

′
z

〉
= − ∂

∂τ
φn
〈
φn, Ĉz

〉
⇒ ∂

∂τ

〈
φn, B̂

′
z

〉
+ λn

〈
φn, B̂

′
z

〉
= − ∂

∂τ

〈
φn, Ĉz

〉
Again, for a thin sheet it is reasonable to assume that the controlled field C does not vary
much over the vertical axis. We may only consider the perturbations in the system caused
by the zero’th order eigenfunction to closely approximate the system behaviour. We let
λ0 ≈ |κκκ|:

∂

∂τ

〈
φ0, B̂

′
z

〉
+ |κκκ|

〈
φ0, B̂

′
z

〉
= − ∂

∂τ

〈
φ0, Ĉz

〉
Which can be averaged over the sheet thickness ζ ∈ [−1, 1] with little loss of accuracy, to
yield the set of decoupled equations for the dynamical model:

∂

∂τ
B̂′zav + |κκκ|B̂′zav = − ∂

∂τ
Ĉz (3.34)

Replacing the dimensionless variables (3.14-3.16), (3.35) becomes:

b

ν

∂

∂t
B̂′zav + b|k|B̂′zav = − b

ν

∂

∂t
Ĉ ′z

⇒ ∂

∂t
B̂′zav + ν|k|B̂′zav = − ∂

∂t
Ĉz (3.35)

3.2.4 In-Plane Fields and Currents

We are less concerned with modeling the in-plane fields, as they do not contribute signifi-
cantly to the magnetic braking forces. We let the in-plane fields in the interior be given by
the continuous extension of the boundary values (3.23) to the sheet interior:

B̂′1,2 = −sat
(z
b

) ik1,2

|k|
B̂′z = −ik1,2

|k|
B̂′z ×

{
sgn(z), |z| > b
z
b
, |z| ≤ b

(3.36)

The harmonic differentiation equation of B̂′z at the boundaries (3.20) also has the continu-
ous extension:

∂

∂z
B̂′z = −z

b
B̂′z, |z| ≤ b

30



TTK4900 - Master’s Thesis 3.2. SOLUTION STRATEGY

As previously stated, the thin geometry permits the statement

B̂′z(k, z) ' B̂′zav(k), |z| ≤ b

⇒ ∂

∂z
B̂′z ' 0, |z| ≤ b

Which yields the following, for Gauss’ law for magnetism (2.2) in the interior:

∇ᵀB̂
′
= ik1B̂

′
1 + ik2B̂

′
2 +

∂

∂z
B̂′z = ik1B̂

′
1 + ik2B̂

′
2 = 0

Eddy Currents

The eddy current spectra may now be expressed in terms of B̂′z by Ampere’s Law (3.6):

µ0J = S(∇)B′

µ0J1 =
∂

∂x2

B′z −
∂

∂z
B′2

µ0J2 =
∂

∂z
B′1 −

∂

∂x1

B′z

µ0Jz =
∂

∂x1

B′2 −
∂

∂x2

B′1

We get:

µ0Ĵ1 = −ik2
∂

∂z

(
− z

b

1

|k|
B̂′z

)
+ ik2B̂

′
z

= −ik2

(
z

b

1

|k|
z

b
|k|B̂′z −

1

b

1

|k|
B̂′z − B̂′z

)
= −ik2

(
z2

b2
− 1

b|k|
− 1

)
B̂′z (3.37a)

µ0Ĵ2 = ik1
∂

∂z

(
− z

b

1

|k|
B̂′z

)
− ik1B̂

′
z = ik1

(
z2

b2
− 1

b|k|
− 1

)
B̂′z (3.37b)

µ0Ĵz = ik1B̂
′
2 − ik2B̂1 =

(
z

b

k1k2

|k|
− z

b

k1k2

|k|

)
B̂′z = 0 (3.37c)

3.2.5 Vertical Line Averaging

Following the line of thought that the vertical field spectra are close to uniform much the
vertical axis, we will "flatten" the sheet such that the fields and currents evaluated at z = 0
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are interpreted as their average values for the upper and lower boundaries z = ±b. We get
that:

µ0Ĵ1av = −ik2

(
b2

b2
− 1

b|k|
− 1

)
B̂′z = ik2

1

b|k|
B̂′z

µ0Ĵ2av = −ik1
1

b|k|
B̂′z

µ0Ĵzav = 0

We define:
ψ̂ =

1

bµ0|k|
B̂′z (3.38)

Which clearly describes a stream-function for the in-plane eddy current averages:

Ĵ1av = ik2ψ̂, J1av =
∂

∂x2

ψ

Ĵ2av = −ik1ψ̂, J2av = − ∂

∂x1

ψ

For the magnetic field density spectrum, the in-plane components disappear due to their
asymmetric boundary conditions about z = 0. (3.23):

B̂′1av =

(
− b

2b

ik1

|k|
+

b

2b

ik1

|k|

)
B̂′z = 0

B̂′2av =

(
− b

2b

ik2

|k|
+

b

2b

ik2

|k|

)
B̂′z = 0

B̂′zav ' B̂′z

For the controlled field, we define the vector:

Ĉav =

Ĉ1av

Ĉ2av

Ĉz

 =

[
Γ̂ΓΓ

Ĉz

]
(3.39)

3.2.6 Fractional Laplacian

The sheet flattening described in (Section 3.2.5) results in fields evaluated on the plane
z = 0. Let g(ξξξ) denote a 3D, harmonic field in the sheet interior:

∆g(ξξξ) = 0, ξξξ ∈ V
lim
|ξξξ|→∞

g(ξξξ) = 0
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It follows that g is also harmonic evaluated at any fixed plane z0 ∈ [−b, b], or in our case:
g(x, z0 = 0) is harmonic. It is shown in [17] that the normal derivative of such a field g is
given by the principal value integral

∂

∂z
g(ξξξ) = P.V

∫
R2

g(x, z0)− g(x′, z0)

2π|x− x′|3
dx′ (3.40)

which corresponds to the Fractional Laplacian operator of order 2s = 1, as identified by
Bucur and Valdinoci [18]:

(−∆x)
s = (−∆x)

1/2 (3.41)

Where ∆x is the planar Laplacian operator:

∆x =
∂2

∂x2
1

+
∂2

∂x2
2

This shows that the normal derivative of a function g, harmonic on any fixed plane z = z0,
is given by:

∂

∂z
g(ξξξ) = (−∆x)

1/2g(x, z0) (3.42)

The fractional Laplacian (3.41) can be expressed neatly in the spatial fourier domain by:

Fx

(
(−∆x)

1/2g(x, z0)
)

= |k|ĝ(k, z0) (3.43)

The spectral fractional Laplacian operator |k| appears in many places during the preceding
solution strategy.

Since all magnetic 3D field components of B, B′ and C are harmonic functions in the sheet
interior, the derived dynamical equation (3.35) can be classified as a fractional diffusion
equation [18]. Inverse Fourier transformation of the fractional dynamics yields:

∂

∂t
B̂′z + ν|k|B̂′z = − ∂

∂t
Ĉz

F−1
x (·) ⇓

∂

∂t
(B′z + Cz) = ±ν ∂

∂z
B′z, z = ±0 (3.44)

Observe that the spatial form of the dynamical equation agrees with the common PDE
(2.12) in ECB literature evaluated at fixed planes. Finally, the gradient for harmonic func-
tions evaluated in thin geometries is given by

∇ =

[
∇x

(−∆x)
1/2

]
⇒
[
ik
|k|

]
(3.45)

Fx(·)
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3.3 The Dynamical ECB Model

The finalized dynamical system describing the ECB will be presented in this section, and
transformed to a suitable coordinate frame to consider the relative movement of the sheet
and

3.3.1 Force Integration

We are now ready to express the force generated by the ECB. Using the vertical averages
found in (Section 3.2.5), the Lorentz force (2.8) in space can be expressed as:

f = S(Jav)(B′av + Cav) =

 − ∂
∂x1
ψ(B′z + Cz)

− ∂
∂x2
ψ(B′z + Cz)

∂
∂x2
ψC2av + ∂

∂x1
ψC1av


=

[
−(B′z + Cz)∇x

ΓΓΓᵀ∇x

]
ψ (3.46)

Where∇x denotes the planar gradient:

∇x =

[ ∂
∂x1
∂
∂x2

]
Integrating over the sheet volume V (3.1) and reversing the sign yields the damping forces
D(t) = [D1(t) D2(t) Dz(t)]

T:

D(t) = −
∫
V

fdV =

∫
V

[
(B′z + Cz)∇x

−ΓΓΓᵀ∇x

]
ψ = 2b

∫
S

[
(B′z + Cz)∇x

−ΓΓΓᵀ∇x

]
ψdx

= 2b

∫
R2

ψ

[
−∇x(B

′
z + Cz)
∇ᵀ
xΓΓΓ

]
dx (3.47)

The last equality can be shown by integration by parts. We may compute (3.47) from
the spectral fields and stream-functions integrated over the spectral plane by Plancherel’s
theorem, for the 2D FT (3.11):∫

R2

f(x)g∗(x)dx =
1

(2π)2

∫
R2

f̂(k)ĝ∗(k)dk (3.48)

Letting g = ψ and noting that the stream-function is real valued in space ψ∗ = ψ, the
damping forces are ultimately given by the integral:

D(t) =
2b

(2π)2

∫
R2

ψ̂∗
[
−ik(B̂′z + Ĉz)

ikᵀΓ̂ΓΓ

]
dk (3.49)
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3.3.2 Dynamical Model and Kinematics

C
Ĉz

Fx(·)
ν|k| B̂z∫ t

−
−B̂′z

−1
bµ0|k|

ψ̂
(·)∗

ψ̂∗

−ik ∫
R2

Γ̂

ikT

2b
(2π)2

D

Figure 3.3: Block diagram for the dynamical ECB model.

In the preceding sections we have derived a dynamical model for the force output of an ECB
(Figure 3.3). The force dynamics are governed by the dynamical model for the magnetic
field (3.35), uniquely defined for each point in the spectral plane, k ∈ R2. The underlying
magnetic dynamics are given by:

∂

∂t
B̂′z + ν|k|B̂′z = − ∂

∂t
Ĉz (3.50)

If we instead consider the dynamics of the net magnetic field spectrum B̂z = B̂′z + Ĉz, a
linear state space structure is acquired:

∂

∂t
B̂z = −ν|k|B̂z + ν|k|Ĉz (3.51)

Recall that the fields in (3.50) are given in the material-frame, locked to the sheet. It is
often times desirable to express the dynamics viewed from the lab-frame. Consider the
compositions with the frame transformation ϕ (3.2):

Bm
z = Bl

z ◦ ϕ−1

Cm
z = C l

z ◦ ϕ−1

In our case, the coordinate transformation ϕ is well defined for the Fourier transform due to
the shifting and 2D rotation theorems (Table 3.1). This permits the composition of ϕ with
the spectral fields in (3.52). We let ϕ describe only a translation r between the two frames:

ϕ(xl, r) = xl + r
ϕ(xm, r) = xm − r
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Inserting into (3.51), we get:

∂

∂t
(B̂l

z ◦ ϕ−1) + ν|k|B̂l
z ◦ ϕ−1 − ν|k|Ĉ l

z ◦ ϕ−1 = 0(
∂

∂t
B̂l
z ◦ ϕ−1 +

∂

∂xl
B̂l
z ◦ ϕ−1∂ϕ

−1

∂t

)
+ ν|k|(B̂l

z − Ĉ l
z) ◦ ϕ−1 = 0(

∂

∂t
B̂l
z +

∂

∂xl
B̂l
z

∂ϕ−1

∂t
◦ ϕ+ ν|k|(B̂l

z − Ĉ l
z)

)
◦ ϕ−1 = 0

Taking the composition ◦ ϕ with both sides of the equation, and using

∂

∂xl
B̂l
z = ∇T

xB̂
l
z = ikTB̂l

z

∂ϕ−1

∂t
◦ ϕ =

(
− ṙ(t)

)
◦ ϕ = −ṙ(t)

yields the linear dynamic equation for the net magnetic field in the lab-frame:

∂

∂t
B̂l
z =

(
ikTṙ− ν|k|

)
B̂l
z + ν|k|Ĉz (3.52)

The stationary response of (3.52) will be used to verify the model with existing stationary
models, and is clearly given by:

¯̂
Bl
z =

−ν|k|
i|k|Tṙ− ν|k|

Ĉ l
z (3.53)

3.3.3 A Stationary Example

We will now consider the case of a magnetic monopole standing still at fixed height h above
the conductive sheet at z = 0, which is moving at a constant translational velocity

v =

[
v1

0

]
(3.54)

along the x1-axis. This is equivalent to the framework used in [6] for the analytical, sta-
tionary nonlinear damping force model (2.17). First, we express the controlled field as a
monopole. The analytical expression of a monopole magnetic field distribution is given by
the limit of infinitely long and thin solenoids [6], which corresponds to the potential:

C(ξξξ) = ∇
(
−qm
|ξξξ − ξξξm|

)
(3.55)
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Where ξξξ and ξξξm are the positions of the sheet centroid and monopole, respectively:

ξξξ =

x1

x2

0

 , ξξξm =

0
0
h


Hence, (3.55) becomes.

C(x) = −qm∇

(
1

4π
√
x2

1 + x2
2 + h2

)
Letting∇ denote the fractional gradient operator (3.45) for the harmonic field evaluated at
z = 0, the 2D FT is given by:

Ĉ(k) = −qm
[

ik
sgn(h)|k|

]
Fx
(

1

4π
√
x2

1 + x2
2 + h2

)
[

Γ̂ΓΓ(k)

Ĉz(k)

]
= −qm

[
ik

sgn(h)|k|

]
e−|k||h|

2|k|
(3.56)

The stationary responses, seen from the magnet (3.53), is given by letting ṙ = [−v1 0]T:

¯̂
Bz =

ν|k|
ik1v1 + ν|k|

Ĉz

¯̂
B′z = B̂z − Ĉz =

ik1v1

ik1v1 + ν|k|

(
qmsgn(h)

e−|k||h|

2

)
¯̂
ψ =

1

bµ0|k|
B̂′z =

sgn(h)qm
2bµ0

ik1v1e
−|k||h|

|k|(ik1v1 + ν|k|)

Where we have used the shorthand (̂·)
l

= (̂·). Inserting the stationary spectral field and
stream-function into (3.49), yields the stationary force vector:

D̄ =
1

(2π)2

∫
R2

vrk1e
−2|k||h|q2

m

2µ0(|k|2 + v2
rk

2
1)

[
k

sgn(h)(vrk1 − i|k|)

]
dk

D̄1

D̄2

D̄z

 =
q2
m

16πh2µ0


vr

1+v2r+
√

1+v2r

0(
1− 1√

1+v2r
sgn(h)

)
 (3.57)

Where we have introduced the relative velocity

vr =
v1

ν
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This result agrees agrees with Reitz’ drag and lift force model (REF EQ) for a monopole
strength given in [Tm2]:

qm = µ0 · qReitz
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Chapter 4

Spectral Numerical Method

This chapter contains presentation and discussion of the design and analysis
of the numerical method used to implement an accurate digital simulation of
the derived ECB model. Some important considerations of the consequences
of its use are also discussed, regarding the effects of spatial discretization and
periodic boundary conditions.

4.1 Spectral Method

In this section we define the 2D spectral numerical method in accordance with [17], where
it was used for an analogous thin geometry wind flow application. The spectral method
refers to the process of expressing a set of differential equations in terms of their Fourier
transforms, and exploiting the excellent convergence properties of the Fast Fourier Trans-
form (FFT) to solve them numerically. The 2D spectral method described in this section is
posed as an alternate numerical method to the time consuming 2D Finite Element Method
(FEM), commonly used in existing publications on numerical solution of thin geometry
ECB models [19–21]. The method is primarily enabled by the Discrete Fourier Transform
(DFT) and the FFT algorithm which efficiently and accurately approximates the bounded
DFT. The general, unbounded (or, semi-discrete) 2D DFT has the definition [22, ch. 2]:

f̂(k) = h1h2

∞∑
n=−∞

∞∑
m=−∞

f [x1n , x2m ]e−i(k1x1n+k2x2m ), k1,2 ∈
[
− π

h1,2

,
π

h1,2

]
(4.1)
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Where f(x) is sampled with finite step-sizes h1,2 > 0 along each axis, over the entire plane
R2, resulting in a bounded but continuous spectrum f̂(k). Its inverse is given by:

f [x1n , x2m ] =
1

(2π)2

∫ π/h

−π/h

∫ π/h

−π/h
f̂(k)ei(k1x1n+k2x2m )dk1dk2 (4.2)

4.1.1 Motivation

As it stands, simulation of the dynamical ECB model (Figure 3.3) requires us to evaluate
the underlying dynamics (3.52) for each k ∈ R2. Likewise, the forces (3.49) are integrated
over the infinite plane. A discrete representation of the sheet plane and its spectrum in
N ∈ N finite points is required to make this computable. Considering the diagonalized
structure of the set of spectral dynamical models in the material frame (3.50),

∂

∂t

B̂z(k1, t)

B̂z(k2, t)
...

 =

−ν|k1| 0 . . .
0 −ν|k2|
... . . .


(B̂z − Ĉz)(k1, t)

(B̂z − Ĉz)(k2, t)
...

 , kn =

[
k1

k2

]
n

(4.3)

and that the drag forces can be integrated directly from the states of this spectral system by
employing Plancherel’s theorem (3.48), there’s an incentive to isolate numerical operations
to the spectral domain. It is clear that we may time-step the system (4.3) without need-
ing to perform the numerically expensive forward and inverse Fourier transformations mid
simulation. Additionally, the convolution theorem (Table 3.1) states that each multiplica-
tion f(k)g(k) in the spectral system (4.3) corresponds to a convolution in space, which is
another expensive operation

f(x) ∗ g(x) =

∫
R2

f(x′)g(x− x′)dx′

that we bypass when using the spectral method.
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4.1.2 Spatial and Spectral Discretization

P

S

f(x)

fs[X
N

L
]

x1

x2

N1

N2

L1

L2

X2

X1

Sampling

h1

h2

Figure 4.1: The continuous sheet surface sampled through a rectangular grid of finite
dimension and resolution.

The semi-discrete DFT (4.1) is bounded by sampling the surface within a finite region in
R2. We call this the Sampling Grid. An arbitrary continuous field given by the function
f(x) sampled through a rectangular grid with side lengths L1, L2 and resolution ofN1×N2

evenly spaced points, where we assume Ni = 2ni and ni ∈ N, is given by:

fs[m1,m2] = f

(
L1

N1

m1,
L2

N2

m2

)
, mi = {−Ni

2
, ... , 0, ... ,

Ni

2
− 1} (4.4)

Taking the DFT of (4.4) yields the spectrum of a function that is assumed to be periodic
on its boundaries [22, ch. 3] (Figure 4.2). Also, a periodic sampling grid of bounded
dimensions and resolution corresponds to a bounded and discrete spectral plane. Noting
that the sampling step-size is given by

h1,2 =
L1,2

N1,2

we get the following forward and inverse transform pair for the bounded DFT:

f̂s[l1, l2] =
L1L2

N1N2

N1
2
−1∑

m1=−N1
2

N2
2
−1∑

m2=−N2
2

fs[m1,m2]e
−i(m1

N1
l1+

m2
N2

l2) (4.5a)

fs[m1,m2] =
N1N2

L1L2

N1
2
−1∑

l1=−N1
2

N2
2
−1∑

l2=−N2
2

f̂ [l1, l2]e
i(

m1
N1

l1+
m2
N2

l2) (4.5b)
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2π
h1

2π
h2

K2

K1

X2

X1

F−1

fp[
L1

2 , X2] = fp[−L1

2 , X2]fp[−L1

2 , X2] = fp[
L1

2 , X2]

fp[X1,
L2

2 ] = fp[X1,−L2

2 ]

fp[X1,−L2

2 ] = fp[X1,
L2

2 ]F

Figure 4.2: L1,2-periodicity of the spatial grid forced by the bounded, discrete spectral
grid.

The spatial and spectral variables X = [X1 X2]ᵀ and K = [K1 K2]ᵀ are given by:

X1,2[m1,2] = L1,2
m1,2

N1,2

K1,2[l1,2] = 2π
l1,2
L1,2

Hence, we may express the interpolated fields by:

fp[X1, X2] = fs

[
X1

N1

L1

, X2
N2

L2

]
(4.6a)

f̂p[K1, K2] = f̂s

[
K1

L1

2π
,K2

L2

2π

]
(4.6b)
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Implementation

The discretized lab-frame dynamical model (3.52), using the shorthand (̂·)
l

z = (̂·)z, can
then be written as:

∂

∂t
B̂z[K, t] = (iKᵀṙ− ν|K|) B̂z[K, t] + ν|K|Ĉz[K, t] (4.7)

The damping forces (3.49) are given by the double sum:

D(t) =
2b

L1L2

∑
K1

∑
K2

ψ̂∗[K]

[
−iK

(
B̂′z[K] + Ĉz[K]

)
iKᵀΓ̂ΓΓ[K]

]
(4.8)

4.2 Pole Projection Area

A key criteria for designing the sampling grid for the discretized problem, is the area on the
sheet surface affected by the controlled field C - the Pole Projection Area (PPA). The inten-
sity of the field exerted, and more importantly the spatial distribution of the field produced
by the magnet, govern the spatial area and frequency of significance of the induced fields.
We proceed by investigating analytical field distributions according to the magnetic poles
used in the existing literature, and the accuracy of their implementation using the DFT.

4.2.1 Analytic Surface Distributions

Recall the surface P (Figure 3.1) representing a finite surface area of projection from the
source of the controlled magnetic field C. The following expression will define the con-
trolled field:

C(x, t) = q(t)P(x) (4.9)

The controlled variable q(t) scales the strength of the field with spatial distribution

P(x) =

P1(x)
P2(x)
Pz(x)

 (4.10)

representing the pole projection area P In (Table 4.1), we use the definitions

Θ(y) =

{
0, y < 0

1, y ≥ 0
(4.11)
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P1,2,z(x) P̂1,2,z(k) Notes

Disk:
Θ
(
r − ‖diag{a, b}(x− x0)‖2

) 2πe−ik
Tx0 rJ1(rχ)

χ

J1(·) is the 1. order
Bessel function, and
χ = ‖diag

{
1
a
, 1
b

}
k‖2.

Rectangle:
Θ
(
r − ‖ · ‖∞

) 1
ab
e−ik

Tx0sinc
(
diag

{
1

2πa
, 1

2πa

}
k
) sinc(·) is the 2D

sine cardinal function.
Gaussian:
exp

(
− π‖ · ‖2

) 1
ab
e−ik

Tx0exp
(−χ2

4π

) 2D Gaussian spectrum
is also a Gaussian.

Table 4.1: Analytical 2D surfaces in the spatial plane and their spectra. The surfaces are
centered at x0, their size is given by the scalar r > 0, and they are scaled by a > 0 and
b > 0 along each axis (see [15].)

for the Heaviside step-function, and

‖x‖p =

(∑
i

|xi|p
) 1

p

for the p-norm - where the infinity-norm is given by the max-norm:

‖x‖∞ = max
i
|xi|

A monopole distribution will be needed to reproduce the results of Davis and Reitz [6, 7,
10] numerically. Recall from (Section 3.3.3) that a monopole suspended a height h above
z = 0 and centered at x0 can be expressed analytically as:

Pmono(x) =
1

4π
(
||x− x0||22 + h2

)3/2

[
x
−h

]
(4.12)

2D FT of (4.12) yields:

P̂
mono

(k) = −e−ikT x0

[ ik
|k|

sgn(h)

]
e−|k||h|

2
(4.13)

Note that the right-hand exponential function in (4.13) corresponds to a vertical shift by h,
and can be applied to any of the presented spectral surfaces (Table 4.1). For instance, a disk
at height h above z = 0 is given in the 2D Fourier domain as:

P̂ disk
1,2,z(k) = 2πe−ik

Tx0RJ1(Rχ)

χ
e−|k||h|
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4.2.2 FFT Implementation
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Figure 4.3: Verification of the numerical disk spectrum given by the 2D DFT.
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Figure 4.4: Verification of the numerical rectangle spectrum given by the 2D DFT.
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Figure 4.5: Verification of the numerical Gaussian spectrum given by the 2D DFT.

For a sampling grid defined by,

(L1, L2) = (20, 20)

(N1, N2) = (210, 210)

we find that the error of the numerical solution using FFT is negligible along each spectral
axis (Figure 4.3-4.5) for each of the PPA shapes presented in (Table 4.1) of unit radius. It
was observed that smaller grid resolutions were sufficient for the FFT of the Gaussian dis-
tribution, while the unit rectangle and disk shapes were more computationally demanding.

Discontinuous vs. Continuous Pole Shapes

From the spatial and spectral plane pairs (Figure 4.6-4.8), it is clear that the increased res-
olution requirements on the sampling grid for the disk and rectangle shapes is partly due to
aliasing. Since these PPAs are defined by the discontinuous Heaviside step-function (4.11),
whereas the Gaussian is a continuous distribution in space, their frequency distribution ex-
tends further into the spectral plane. The step-function is known to have a Fourier transform
which magnitude has asymptotic decay rate (k1,2)−1, much slower than the exponential de-
cay rate for the Gaussian. Neither distribution is band-limited in the Fourier domain, hence
the Nyquist frequency is infinite and some degree of aliasing is unavoidable - but negligible

46



TTK4900 - Master’s Thesis 4.2. POLE PROJECTION AREA

Figure 4.6: Spatial and spectral discretizations of a disk-shaped projection with r = 1.

Figure 4.7: Spatial and spectral discretizations of a rectangular projection with r = 1.

for high resolution grids. Our inability to capture every frequency component of the PPAs
manifests itself as pixellation of the shapes in space, and is the most noticeable in the disk
shape.
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Figure 4.8: Spatial and spectral discretizations of a Gaussian projection.

The Gibbs-Wilbraham Phenomenon is another detrimental effect of FTs of discontinuous
functions (See for example [23]). The infinite series of sinusoids approximating the discon-
tinuous jump converges with a significant overshoot, leading to ringing artifacts along each
spectral axis k1,2 - apparent in the spectral cross-sections of the disk and rectangle (Figure
4.3 and 4.4).

Continuous PPA Design

The Gibbs-Wilbraham phenomenon and spatial aliasing form two arguments towards the
use of continuous pole distribution functions. A third argument is that PPAs in reality do
not (in general) mirror the shape of the face of the magnet pole, due to fringing of the
magnetic field lines. Hence, continuous approximations of the disk and rectangle shapes
may be used to emulate this. The Heaviside step-function can be expressed continuously
by the logistic approximation:

Θ(y) ≈ Θ̃(y) =
1

2
+

1

2
tanh(αy), α > 0 (4.14)
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Where the parameter α dictates the sharpness of the curve. The logistic Heaviside function
yields the following continuous approximations for the disk and rectangle PPAs:

P̃ disk
1,2,z(x) =

1

2
+

1

2
tanh

(
α
[
r − ‖diag{a, b}(x− x0)‖2

])
(4.15)

P̃ rect
1,2,z(x) =

1

2
+

1

2
tanh

(
α
[
r − ‖diag{a, b}(x− x0)‖∞

])
(4.16)

Alternatively, a convolution with a smoothing function such as the Gaussian can be used:

P̃1,2,z(x) = PGauss
1,2,z (x) ∗ P1,2,z(x)⇒ ˆ̃P1,2,z(k) = P̂Gauss

1,2,z (k)P̂1,2,z(k) (4.17)
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4.3 Inverse DFT Periodicity

S

F F−1

Figure 4.9: Periodic interference of eddy currents.

As previously stated, the DFT (4.5) imposes a periodicity on its inverse transform (IDFT).
Let us consider a disk shaped magnetic PPA in which a nonzero controlled field is affecting
the sheet. The sheet is moving with a velocity v relative to the PPA - this describes an
ECB system. A section of the sheet with the PPA fixed at its center is being sampled
through a grid parametrized by lengths L1,2 and resolutions N1,2. Periodic boundaries of
this configuration implies that the rectangular section with the centered PPA is surrounded
by infinitely repeating identical ECB systems (Figure 4.2): The IDFT of the configuration
is L1,2-periodic about its respective axes. At first glance, this periodicity does not seem
like it can be attributed to a physical process. It is also easy to see how the periodicity
can lead to unphysical results if the grid is not large enough to contain the induced eddy-
current return paths (Figure 4.9). This would lead to interference between the actual ECB
with the surrounding imagined ECBs. Specifically, eddy-currents will flow through the
sides of the rectangular section as if converging to or diverging from surrounding systems.
Thus, the periodicity is generally considered negligible at best - for a properly designed
sampling grid, and detrimental at worst. In the following subsection we will investigate
some periodic configurations where we can possibly exploit the periodicity of the IDFT.

4.3.1 Periodic ECB Configurations

By considering the grid a planar mapping of the points of a periodic surface, the periodic
boundary conditions of the IDFT are satisfied, while describing a physical system. A not so
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Ω2

Ω1

Figure 4.10: Moving sheet represented by a spheroid rotating about two of its axes.

useful example is when the real world application being represented by the FET is periodic
in both planar directions. In this case, the periodic grid could represent a spheroid (Figure
4.10). Consider instead the case where the sheet is only moving along the x1-axis, and L2

is chosen large enough such that the effect of the imposed periodicity along the x2-axis
is negligible. In this case, the resulting system will be a strip of length L1 and height L2,
L1-periodic along x1. "Connecting" the ends of the strip would yield a planar, rotating ring-
surface (Figure 4.11) with mean circumference equal to L1. With this perspective, one can
argue that the solution of the ECB system in linearly translating strips can be extended to
rotating disks under the right circumstances. The braking torque can be calculated directly
from the drag force:

M(t) = D1(t)R (4.18)

We must reconcile, however, that neither the sphere nor ring shapes are isometric to the
plane [24, ch.1]. This means that the transformation visualized in (Figure 4.11) is not
continuous, i.e. it cannot be done without stretching or tearing the strip. The planar repre-
sentations of such shapes typically have significant distortions, such as close to the poles
for the sphere, which the rectangular sampling grid cannot account for.

While the goal of this section is simply to convince the reader that the periodicity of the
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L1

L2

Ω R =
L1

2π

Periodic Strip Grid Ring Grid

v1

v1 = ΩR

Figure 4.11: Sampling grids in the form of long, periodic strips describing a ring of finite
radius on a larger rotating conductive sheet.

solution can be exploited to extend the ECB solution from the linear case to rotating disks,
a realizable case is desirable. Consider instead the case where the periodic strip is folded
inwards such that it forms a cylinder (Figure 4.12). The cylinder is isometric to the plane,
hence the points on the cylindrical surface correspond to the points on the strip. This per-
mits the interpretation of the periodic strip as the surface of a cylinder rotating about a fixed
axis. The braking torque generated about this axis can be found by (4.18).
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v1 = ΩR

R =
L1

2π

Ω

L2

Figure 4.12: Periodic strip in the form of a rotating cylinder.
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Chapter 5

ECB Model Analysis and Simulation

In this chapter, the spectral numerical method is applied to the derive ECB
model and its accuracy is examined in detail for several configurations. The
numerical solution is found to agree with existing stationary braking force
models, and frequency analysis of the dynamic behaviour yields some interest-
ing findings regarding its phase, bandwidth and the existence of accelerating
input frequencies. The latter two are validated by simulation of the penultimate
discrete model.

5.1 Implementation and Validation

Recall, the discrete ECB model seen from the magnet:

∂

∂t
B̂z[K, t] = (iKᵀṙ− ν|K|) B̂z[K, t] + ν|K|Ĉz[K, t] (5.1a)

ψ̂[K, t] =
1

bµ0|K|

(
B̂z[K, t]− Ĉz[K, t]

)
(5.1b)

D(t) =
2b

L1L2

∑
K1

∑
K2

ψ̂∗[K, t]
[
−iKB̂z[K, t]
iKᵀΓ̂ΓΓ[K, t]

]
(5.1c)

For simplicity, the succeeding solutions are based on the sheet translation of constant ve-
locity along only the x1-axis:

r =

[
r1(t)

0

]
, ṙ =

[
v1

0

]
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The numerical solutions of (4.8) presented in this chapter were implemented in MATLAB
using the functions fftn() and ifftn() - forward and inverse FFT algorithms generalized to
n-dimensional DFTs, based on the FFTW library [25]. We aim to make an assessment of
the numerical solution based on the error percentage,

e =
|Dnumeric −Danalytic|

|Danalytic|
· 100% (5.2)

to establish the optimal sampling grid parameters.

5.1.1 Stationary Solution

We begin by investigating the stationary behaviour of the numerical solution of (5.1). Note
that since the translation of the sheet seen from the magnet is only along the x1-axis, the
braking force is contained in the drag-component of the damping vector, D1. We are not
concerned with the lift force Dz. Hence, the stationary discrete model being implemented
is given by:

¯̂
Bz[K] =

ν|K|
iK1v1 − ν|K|

Ĉz[K] (5.3a)

D̄1 =
2b

L1L2

∑
K1

∑
K2

¯̂
ψ∗[K](−iK1

¯̂
Bz[K]) (5.3b)

Where the vertical controlled field is is of constant strength and centered at x0 = 0:

Ĉz[K] = qP̂z[K]

We have a wide selection of well documented analytical and empirical results on which to
base our stationary analysis (Section 2.3). We have shown that Reitz’ [6] stationary drag
force model agrees with the analytical solution of the stationary ECB monopole system
(3.57):

D̄mono
1 =

q2

16πh2µ0

(
vr

1 + v2
r +

√
1 + v2

r

)
(5.4)

Thus, we may use this analytical result as source of validation for the numerical solution
with vertical controlled field:

Ĉmono
z [K] = qP̂

mono

z [K] = −sgn(h)q
e−|K||h|

2
(5.5)

After evaluating whether the numerical solution (5.3) agrees with analytical models or not,
we proceed by investigating the physical properties of the magnetic field and eddy-currents.
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In particular, we expect to find a significant demagnetization for high values of v1, and in-
plane currents that form loops in/out of the PPA. A disk shaped PPA configuration will be
used for this purpose, which most theoretical [12], experimental [13], and numerical results
are based on. As monopoles do not exist in nature (2.1), existing literature on induced fields
and currents with the monopole configuration is limited to theoretical results [7].

Since the FT of the monopole distribution is a relatively simple expression, analytical solu-
tion of the damping force integral (3.49) is possible. The same cannot be said for the disk
pole expression:

Ĉdisk
z [K] = 2πq

RJ1(Rχ)

χ
e−|K||h| (5.6)

To the knowledge of the author, there exists no analytical stationary braking force models
for the disk shaped magnet that captures the asymptotic behaviour for low and high speeds.
However, recall that the linear model(s) derived in [8, 9, 12],

D̄linear
1 = πσr2dB2

0cv1 (5.7)

accurately predict(s) the linear behaviour of the ECB for a disk shaped PPA of radius r and
small values of v1. A naive approach is to extend (5.4) to disk shaped PPAs by fitting its 1.
order Taylor Expansion about v1 = 0 [2],

D̄mono
1 =

q2

16πh2µ0

(
vr
2

+O(2)

)
≈ q2

16πh2µ0

· vr
2

(5.8)

to the linear model (5.7) by matching parameters:

q2 = 16π2h2(2r)2cB2
0

⇒ D̄disk
1 =

4πr2c

µ0

B2
0

(
vr

1 + v2
r +

√
v2
r + 1

)
(5.9)

We will refer to (5.9) as the analytical model for the ECB with a disk shaped PPA, where
we use a controlled field with zero fringing:

Cdisk[X] = q

 0
0

P disk
z [X]

 (5.10)

A final point of validation of our solution is the critical recession angle (2.20) according to
[12]:

∠νννcr =
√

2cξ

√
r

lg
(5.11)

Where the airgap length lg is given by the sum of the sheet thickness and the suspension
height of the magnet:

lg = d+ h (5.12)
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5.1.2 Dynamic Solution

We may proceed with the dynamic analysis once the numerical method for the stationary
case is in order. We introduce the temporal forward and inverse Fourier Transforms,

Ft
(
f(t)

)
=

∫ ∞
−∞

f(t)e−iωtdt = f (ω)(ω) (5.13a)

F−1
t

(
f (ω)(ω)

)
=

1

2π

∫ ∞
−∞

f (ω)(ω)eiωtdω = f(t) (5.13b)

in order to investigate the ECB solution frequency response. Applying (5.13) to the net
magnetic field dynamics:

∂

∂t
B̂z = (ik1v1 − ν|k|)B̂z + ν|k|Ĉz

Ft(·) ⇓
iωB̂(ω)

z = (ik1v1 − ν|k|)B̂(ω)
z + ν|k|Ĉ(ω)

z

B̂(ω)
z =

ν|k|
i(ω − k1v1)− ν|k|

Ĉ(ω)
z

⇒ ψ̂(ω) =
1

bµ0|k|

(
ν|k|

i(ω − k1v1) + ν|k|
− 1

)
Ĉ(ω)
z

=
1

bµ0|k|

(
−i(ω − k1v1)

i(ω − v1k1) + ν|k|

)
Ĉ(ω)
z

Where the controlled field FT is given by:

Ĉ
(ω)

=

[
Γ̂ΓΓ

(ω)

Ĉ
(ω)
z

]
= q(ω)

P̂1

P̂2

P̂z


In existing publications on ECBs, little attention has been paid to the nature of the force
dynamics. Thus, unlike the stationary case, we do not have any analytical results on which
to base our analysis. In our case, an analytical solution to the frequency ECB response
requires solving:

D(ω) =
2b

(2π)2

∫
R2

ψ̂(ω)∗

[
−ikB̂(ω)

z

ikᵀΓ̂ΓΓ
(ω)

]
dk

=
2b

(2π)2

∫
R2

1

bµ0|k|
i(ω − k1v1)

−i(ω − k1v1) + ν|k|
Ĉ(ω)∗
z

[
−ik ν|k|

i(ω−k1v1)+ν|k|Ĉ
(ω)
z

ikᵀΓ̂ΓΓ
(ω)

]
dk
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Separated into in-plane drag-, and lift-forces:

D
(ω)
1,2 =

2b

(2π)2

∫
R2

1

bµ0|k|
(ω − k1v1)k1,2ν|k|

(ω − k1v1)2 + ν2|k|2
|Ĉ(ω)

z |2dk (5.14a)

D(ω)
z =

2b

(2π)2

∫
R2

1

bµ0|k|

−(ω − k1v1)
(
k1Ĉ

(ω)
1 + k2Ĉ

(ω)
2

)
(ω − k1v1)2 + ν2|k|2

Ĉ(ω)∗
z dk (5.14b)

Solution attempts of (5.14) both by hand and by the help of digital computing tools such
as Wolfram Mathematica were unsuccessful, even for the monopole distribution. Nev-
ertheless, the integrands holds useful information about the force vector dynamics. An
interesting property of the in-plane drag forces is that their frequency response is purely
real valued. This means that the transfer function from the controlled field (input) to the
in-plane drag forces (output) is zero-phase, and we expect the drag forces to be able to
follow a reference trajectory without lagging behind - a desirable trait. In general, the same
cannot be said for the lift force - which phase depends on the distribution of the controlled
field. For a monopole (4.13), the lift-force FT integrand is given by:

f (ω)
z =

sgn(h)

4bµ0|k|2
−i(ω − k1v1) (k2

1 + k2
2)

(ω − k1v1)2 + ν2|k|2
e−2|k||h||q(ω)|2 (5.15)

Integration over the real plane k ∈ R2 will not change the phase properties.

T-symmetry of D

T-symmetric or time-reversal invariant functions are functions that are even in time:

g(−t) = g(t)

Consider the real-valued, time-varying current density and magnetic field vectors:

J(ξξξ, t), B(ξξξ, t)

In classical physics, it is well documented that J and B are odd in time,

J(−t) = −J(t), B(−t) = −B(t)

however: Due to the cross product term of these vectors in (2.8), the Lorentz force is T-
symmetric:

f(ξξξ,−t) = S(J(−t))B(−t) = S(J(t)B(t) = f(ξξξ, t)
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Since this property is preserved for the volume integral of f uncovering D, the braking
forces are necessarily T-symmetric as well:

D(−t) = D(t) (5.16)

An approximation of the temporal FT of D is uncovered by solving the integral (5.14) nu-
merically, and can be used to verify the necessary condition on our solution of the braking
force by preservation of its T-symmetry. This is given by the symmetry property of the
Fourier transform [15]:

g(t) ∈ R⇔ g(ω)(−ω) = g(ω)(ω)∗

And likewise:

g(ω)(ω) ∈ R⇔ g(−t) = g(t)∗ (5.17)

Since D(t) is a real valued, T-symmetric vector, it satisfies (5.17). Consequently:

D(ω)(ω) ∈ R3 (5.18)

Given this consideration, the purely real frequency responses (5.14) is actually expected.
However, this does not agree with the result for the frequency response (5.14), which shows
a complex-valued lift force.
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Parameter Value Comments
µ0 4π × 10−7Wb (A m)−1 Vacuum permeability
µ ' 4π × 10−7Wb (A m)−1 Aluminium sheet permeability
σ 3.77× 10−7S m−1 Aluminium sheet conductivity
d 2.00× 10−2m

r 1.00m
PPA radius for
non-monopole configurations

a/b 1.00 Equal axial scaling of the PPA shapes
x0 [0 0]ᵀ PPAs centered at the origin

c 0.50
Compensation factor for
non-monopole PPAs centered
on infinite surface (2.15)

ξ 1.00 Unitary proportionality factor
q 1.00× 10−2Wb Constant controlled field strength
∠ννν 45o Fixed speed v1 = ν
∆t 1.00× 10−4s

Table 5.1: Mathematical constants and parameters used for the ECB system during sta-
tionary and dynamical analysis, and simulation.

5.2 Stationary Analysis

For the following numerical analysis, we let a square sampling grid be defined by,

(L1, L2) = (L,L) (5.19a)
(N1, N2) = (N,N) (5.19b)

reducing the dimension of the analysis. All parameters of the system are given by (Table
5.1), unless otherwise stated. Please note that the parameters values used are not entirely
realistic - there are few applications that warrant a magnetic PPA of radius 1m, for in-
stance. The parameters are presented strictly for transparency, and were chosen with no
real world application in mind. We are concerned with validating our solution with analyti-
cal models, and not verification with experimental results for the time being. Objectives of
the following stationary analysis is: (i) Force/speed curve validation with analytical mod-
els, (ii) establishing the limitations of the numerical method, (iii) verification of physical
properties.
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Figure 5.1: Validation of the force-speed curve of the analytical stationary monopole ECB.
The monopole is suspended at h = 0.10m and the sheet velocity is v1 = ν.

5.2.1 Numerical Analysis

The most important result of the numerical analysis is presented in (Figure 5.1), where for
a sampling grid defined by,

(L1, L2) = (20, 20) , (N1, N2) =
(
28, 28

)
the numerical drag force solution agrees with the analytical result for monopoles (5.4).
However, we observe that the same sampling grid does not in general lead to accurate solu-
tions for varying monopole heights. In order to investigate the impact of the sampling grid
parameters on the numerical accuracy according to (5.2), we let L and N be iterated over a
range of values.

Firstly, the impact of the grid step-size

H =
L

N
(5.20)

was investigated for an arbitrary set of small to large monopole heights
h ∈ {0.01m, 0.10m, 1.00m}. It is clear from (Figure 5.2) that the impact of L and N must
be investigated individually, as the same values of H lead to differing results, especially
apparent for the larger pole height. H seems to be a good predictor of the numerical accu-
racy for small heights, however.
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Figure 5.2: Numeric error scatter plot for the stationary monopole ECB system at fixed
v1 = ν and various heights, for a range of sampling grid parameters.

We find that L and N may be chosen according to color scale plots (Figure 5.3), unique to
each pole height, for instance we can see that (close to) minimal sampling grid resolution
required for an accurate numerical solution for h = 0.10m is given by:

(L,L) = (6, 6) , (N,N) =
(
26, 26

)
(5.21)

The significance of the magnetic pole elevation on the requirements on the parameters of
the numerical method could make it unsuitable for applications where this is a time-varying
parameter, such as in magnetic levitation. We find by investigating corresponding color
scale error plots for various heights, that larger h require larger spatial dimensions L while
smaller h require small step-sizes. Applications where h is time-varying therefore require
L large enough for its upper magnitude threshold, and step-sizes small enough for its lower
magnitude threshold. This potentially puts extremely high requirements on the resolution
N , resulting in slow computations which partly defeats the purpose of the spectral numer-
ical method. Interestingly, the requirements on the sampling grid are hardly affected by
the relative velocity of the sheet and magnet (Figure 5.4) - consistent for the various pole
heights.

As previously stated, the specific sampling grid

(L1, L2) = (20, 20), (N1, N2) = (28, 28)
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Figure 5.3: Color scale plot showing the numeric error of the monopole ECB system at
fixed height for a range of sampling grid parameters.

happens to yield a valid numerical solution of the brake force for monopole height h =
0.10m (Figure 5.5), but results in a poor approximation for h = 0.01m (Figure 5.6) and
h = 1.00m (Figure 5.7). An intuitive understanding of why certain sampling grid pa-
rameters lead to poor approximation (Figure 5.2) of the braking force can be gained by
investigating the underlying stationary field-, and stream-functions for these cases.

The characteristics of a well designed sampling grid for a given pole height can be seen in
(Figure 5.5). Significant return paths of the induced currents are contained in the bounded
spatial plane, and the same goes for the significant frequency components of its correspond-
ing magnetic field. We can see that L might be unnecessarily large and/or N is slightly too
small, as the solution is close to having significant aliasing. Regardless, this is not reflected
in the braking force (Figure 5.1).
Severe aliasing is present for the lowest pole elevation (Figure 5.6), however. It is clear that
the closer to the sheet surface the monopole is placed, the smaller an area it affects. As a
result, induced currents are circulating a smaller region of the sheet, with higher density.
This corresponds to large spatial frequency components, as evident in (Figure 5.6). For the
current sampling grid, the solution is aliased heavily, manifesting as pixelation and distor-
tion of the current return paths.
Finally, the opposite effect can be seen for the largest pole elevation (Figure 5.7). The in-
duced current return paths are more spread out and circulate further into the plane due to
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Figure 5.4: Numeric error scatter plot for the monopole system at fixed h = 0.01m and
various velocities, for a range of sampling grid dimensions and resolutions.

the larger area affected by the pole. The current choice of grid dimensions L is too small
to capture all significant return paths and as a consequence we observe interference due
to the periodic boundary conditions. This corresponds to a spectrum where the frequency
resolution is too small to distinguish significant frequency components.
To summarize, there exists no single sampling grid design suitable for all values of h be-
cause of the inverse relationship between the spatial and spectral planes (i.e. uncertainty
principle).

We now turn our attention to the stationary drag force solution for a disk shaped PPA.
We find that a sampling grid given by

(L1, L2) = (50, 80) , (N1, N2) =
(
28, 28

)
(5.22)

yields a solution that agrees with the analytical model (Figure 5.8) for a disk pole placed
directly onto the sheet surface. The square sampling grid was replaced with a larger, rectan-
gular grid that ensuring that significant current return paths do not diverge along the x2-axis
in our solution, which was found to worsen the numerical accuracy (Figure 5.7). The PPA
of radius r = 1.00m is larger than that of the monopole, which is why the required di-
mensions of the sampling grid have increased. Despite the concerns regarding aliasing in
(Section 4.2.2), the discontinuous disk PPA was used - with negligible consequences.

A validation attempt was made of the critical recession angle (2.20) according to the the-
oretical results in [12]. The result (Figure 5.9) shows that the critical recession angle of
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Figure 5.5: Stationary induced current return paths (left) and their induced magnetic field
spectrum (right) for h = 0.10m.

the numerical solution not only does not agree with the theoretical result, but does not vary
with either the PPA radius or the air-gap length.

5.2.2 Stationary Eddy Current Behaviour

The stationary behaviour of the in-plane eddy currents (Figure 5.10) and the magnetic field
they generate (Figure 5.11) was investigated for various sheet velocities: (i) Near standstill,
(ii) v1 = ν, and (iii) high velocity. Please note that the sheet is moving from right to left
relative to the fixed PPA.
We observe that for very low velocities (i), the eddy currents form return paths that are
symmetrical about both axes in the plane, and their induced magnetic fields are negligible
compared to the external field of the PPA. This corresponds to a dominant linear behaviour
of the drag force, which can be seen in (Figure 5.8) and which agrees with the findings
in [8, 9] where the assumption of symmetrical currents and small induced magnetic fields
lead to a linear drag force model (5.7).
As the sheet velocity increases (ii), the eddy currents form a sort tail behind the PPA -
almost as if the disk is moving through water. This is what the eddy currents look like
corresponding to the strongest region of the drag-force/speed curve - the induced fields are
large enough to create a significant damping force, but not large enough to cause significant
demagnetization in the PPA (Figure 5.12).
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Figure 5.6: Stationary induced current return paths (left) and their induced magnetic field
spectrum (right) for h = 0.01m.

The tail grows longer the larger the relative velocity (iii) between the sheet and pole, and
for a periodic surface it will eventually return to the PPA from the other side. The net
magnetic field is nearly entirely demagnetized in this case, and is spread out over most of
the sheet length. As a result the drag forces are approaching zero, as predicted by [8, 12]
and verified experimentally in [13]. See (Figure 2.4) for an experimental result with which
to compare the demagnetization observed in the numerical solution (Figure 5.12).
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Figure 5.7: Stationary induced current return paths (left) and their induced magnetic field
spectrum (right) for h = 1.00m.
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Figure 5.8: Disk pole drag force validation for h = 0.00m.
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Figure 5.9: Critical image recession angle for a range of disk PPA radii and air-gap lengths.
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Figure 5.10: Stationary eddy current return paths for various sheet velocities and a disk
PPA.
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Figure 5.11: Net magnetic fields for various sheet velocities and a disk PPA.
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Figure 5.12: Transverse cross-section of the net magnetic fields for a disk PPA.
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Figure 5.13: Real and imaginary parts of the drag force frequency response.

5.3 Dynamic Analysis Results

D
(ω)
1 seems to be entirely real-valued (Figure 5.13), as the values of the imaginary part

corresponds to the numerical error of the FFT. Hence, the frequency response of the ECB
has zero phase, and its magnitude is contained in its real part. This is expected due to the
T-symmetry of the ECB force vector (5.18), and agrees with the findings in (Section 5.1.2).
This property is found to be consistent regardless of sheet velocity, pole shape, and sam-
pling grid design.

We observe (Figure 5.14) that the bandwidth frequency ωb of our solution increases with
the sheet velocity. This means that the response time of the ECB is reduced for higher
velocities, and the range of input frequencies that result in a stationary response of the drag
force increases. Clearly, considerations on the frequency response of the ECB should in-
clude the effect of the sheet velocity. The frequency/velocity response of the drag force
was visualized in (Figure 5.15-5.16). The frequency response of the ECB can be classified
as a sort of zero-phase low-pass filter with a damped ripple effect in its stop-band.

We also find that the bandwidth frequency is higher for the monopole configuration than
for the disk and rectangle PPAs. Judging by the slightly lower bandwidth of the rectangular
PPA, which area is equal to 4r2 compared to the disk PPA with area πr2, the bandwidth
seems to be related to the size of the PPAs and not their shape.
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Figure 5.14: Drag force frequency response for various sheet velocities showcasing its
impact on the bandwidth.
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Figure 5.15: Contour plot of the frequency/velocity response of the drag force with a
monopole at h = 0.10m.

Karakoc et al[26] investigated the effect on the ECB braking torque for alternating con-
trolled magnetic fields. It was found that for low frequencies, a higher braking torque than
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Figure 5.16: Contour plot of the frequency/velocity response of the drag force with a disk
PPA of r = 1.00m.
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Figure 5.17: Contour plot of the frequency/velocity response of the drag force with a
rectangular PPA of r = 1.00m.

that of the stationary controlled field can be generated. This is not reflected in the magni-
tudes of the frequency responses presented in this section, however - as we would expect
to see some manner of resonance peak in the low region of the frequency response. We
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instead observe that for slowly varying inputs, the magnitude of the drag force response
is equivalent to the stationary response. [26] also found that for input frequencies above a
certain threshold, the resulting braking torque decays to zero. This agrees with the findings
in (Figure 5.14-5.17).

Perhaps the most interesting finding, although not particularly useful at first inspection, is
the existence of frequency and velocity combinations that yield a small accelerating "drag"
force in positive x1 direction (Figure 5.14-5.15) due to the ripple. Cross-validation with
disk, (5.16) and rectangle (5.17) shaped PPAs shows that this is consistent - although it is
weaker (relatively) for the latter configurations. This property would permit the propul-
sion of a moving (no ripple effect for zero velocity) conductive body exclusively through
the use of an external, vertical magnetic field oscillating at just the right frequency. The
highest peak in (Figure 5.15) illustrates the relationship between the propelling input fre-
quency and the sheet velocity. This phenomenon was also observed in [27], where certain
AC frequencies of the controlled fields lead to an angular acceleration of a conductive disk.
While the scope of the figure seems to show that the sheet can be accelerated indefinitely
by choosing input frequencies according to the curve of this peak, further investigation into
the high frequency/velocity range shows that as the braking force magnitude decays, so
does the magnitude of the ripples. While the accelerating force seems insignificant, it is
currently used for acceleration in linear magnetic levitation applications.
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5.4 Time Discretization and Simulation

On top of the spatial discretization for the spectral method, time-stepping by a sampling
time ∆t is necessary in order to implement the dynamical ECB model. The continuous net
magnetic field dynamics (3.52) are discretized in time as follows:

∂

∂t
B̂z(t) = AB̂z(t) +BĈz(t)

⇓
B̂z[j + 1] = FB̂z[j] +GĈz[j], j = {0, 1, 2, ...}

(5.23)

Where discrete-time system and control matrices F and G are given by:

F (k) = eA∆t = e(ik1v1−ν|k|)∆t

G(k) =

(∫ ∆t

0

Fdτ

)
B =

1

A
(F − 1)B =

(e(ik1v1−ν|k|)∆t − 1)ν|k|
ik1v1 − ν|k|

Function values at discrete time values T can be interpolated by the relation:

f̂p[T ] = f̂ [j ·∆t], T = {0,∆t, 2 ·∆t, ...}

The penultimate dynamical model, discrete in time and space, for the ECB drag force
simulations reads:

B̂z[K, T + ∆t] = F [K]B̂z[K, T ] +G[K]Ĉz[K, T ] (5.24a)

ψ̂[K, T ] =
1

bµ0|K|
B̂z[K, T ] (5.24b)

D1[T ] =
2b

L1L2

∑
K1

∑
K2

ψ̂∗[K, T ](−iK1B̂z[K, T ]) (5.24c)

Similar to the sampling grid design (Section 5.2), choosing the sampling time ∆t is a non-
trivial problem. In particular, ∆t is desired to be small enough to avoid aliasing, but large
enough to avoid unnecessarily slow simulations. The frequency response analysis (Section
5.3) gives us a good idea of the significant frequencies contained in the output D1, and
consequently the sampling time required to capture these. For a realistic range of sheet
velocities, we find according to the Nyquist sampling theorem that a sampling frequency
of

1

∆t
> 2 · 2π · 103rad s−1 (5.25)

is sufficient to include not only the drag force bandwidth, but also the significant ripple
effects in its stop-band.
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Figure 5.18: Drag force time-series for a monopole at h = 0.10m.

5.4.1 Simulation

Choosing the same system parameters as in the stationary and dynamical analyses accord-
ing to (Table 5.1), a few simulations are executed in order to validate that the time-stepped
dynamics behave as expected. In particular, we expect to see the drag force simulations
converge to stationary values agreeing with static models with time constants given by the
sheet velocity, that an accelerating output can be generated for certain combinations of
sheet velocity and input frequency (Section 5.3), and that the phase error between a refer-
ence signal and the output drag force will be zero.

The step response transient of the time-stepped drag force solution is presented in (Fig-
ure 5.18 and 5.19) for the monopole and disk pole configurations, respectively. For both
cases we find that the stationary behaviour of the discrete dynamical solution agrees with
the findings in (Section 5.2). Likewise, the sheet velocity has a clear impact on the response
time (Figure 5.19), agreeing with the dynamical analysis (Section 5.3). The reduced sta-
tionary value for higher velocities makes it seem like the velocity has a more dramatic
impact on the response time than in reality. Still, (Figure 5.14 and 5.19) show a definitive
connection between the response time and the sheet velocity.

While the drag force time-series seems like a first-order response for smaller sheet ve-
locities (Figure 5.19), we observe periodic and damped dips in the drag force magnitude
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Figure 5.19: Drag force time-series for a pair of sheet velocities, with a disk shaped PPA.
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Figure 5.20: Periodic "dips" in the drag force transient.

for high sheet velocities (Figure 5.20). This behaviour is caused by the periodicity of the
solution, as induced fields and currents return to the PPA before fully decaying - and grows
more significant for larger v1. For the latter time-series we have a sheet length ofL1 = 50m,
and a velocity of v1 = 20ν ≈ 42.22m s−1. Thus we can see that each dip coincides with
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Figure 5.21: Phase comparison between the solution and the reference signal correspond-
ing to input q(t) = 0.01 sin(t) for a monopole configuration at h = 0.10m.

the period for a volume element to move one "cycle" of length L1:

tn =
nL1

v1

≈ n · 1.18s, n = 1, 2, 3 . . . (5.26)

While it is an unphysical result for linear (non-periodic) applications, this property of our
solution could prove useful for rotating systems where this behaviour is present. Despite
this behaviour, we observe that the time-series converge to their expected values, but take
a longer time to settle.

We can see from (Figure 5.21) that the zero-phase findings in (Section 5.1.2 and 5.3) are not
supported by the time-stepped solution. The solution lags behind the reference signal cor-
responding to a slowly varying sinusoidal input with a constant phase error. Time-stepping
is known to introduce phase errors, but reducing the sampling time to values as low as
∆t = 10−5s had no impact on the phase error.

Extracting the stream-function at a few time instances during the drag-force transient (Fig-
ure 5.19) for v1 = ν, and plotting its contours (Figure 5.22), we uncover the transient
behaviour of the eddy current return paths in the plane - approaching the stationary shape
shown in (Figure 5.10).

A monopole configuration was implemented with sinusoidal field strength oscillation at
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Figure 5.22: The eddy current dynamics corresponding to the low-speed (v1 = ν) step-
response in (Figure 5.19).
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Figure 5.23: For a monopole with strength given by q(t) = 0.01 sin(80t), the drag force
output of the ECB is net positive for a fixed sheet velocity v1 = ν.

an accelerating frequency for h = 0.10m and v1 = ν according to (Figure 5.15). The result
(Figure 5.23) shows that the time-stepped solution validates the findings in (Section 5.3)
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- the solution may produce a small force of propulsion with an oscillating magnetic field
perpendicular to the movement of a conductor.
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Chapter 6

Engineering Applications

In this chapter, a few applications for which our model is well suited are
demonstrated briefly: Due to its ease of implementation, efficiency and ac-
curacy, we look into the possibility of using the model for development and
optimization of control methods and configurations for real world ECB sys-
tems.

6.1 ECB Controller Design

For the following engineering applications of the ECB model, all parameters are given by
(Table 6.1) unless otherwise stated. Key changes include the reduction of the sheet dimen-
sions and PPA size to a more realistic scale, and the exclusive use of disk shaped PPAs.

State of the art real time automatic control of the output force of ECB systems is generally
limited to the approximate, stationary drag force models presented in (Section 2.3) paired
with robust control methods. This limitation is caused by (i) FEM numerical solutions are
far too slow to be utilized in real time applications, (ii) the input/output nonlinearity

D1 ∝ |q|2 (6.1)

complicates controller design as the braking force magnitude can only be reduced passively.

We can summarize the literature study on real time control of ECBs conducted in [2] as
follows: Optimal torque control of an ECB mechanism on the wheel(s) of ground vehicles
minimizing braking distance was investigated by Lee and Park [28], followed by Anwar
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Parameter Value Comments
µ0 4π × 10−7Wb (A m)−1 Vacuum permeability
µ ' 4π × 10−7Wb (A m)−1 Aluminium sheet permeability
σ 3.77× 10−7S m−1 Aluminium sheet conductivity
d 2.00× 10−2m

r 1.00× 10−2m
PPA radius for
non-monopole configurations

a/b 1.00 Equal axial scaling of the PPA shapes
x0 [0.00m 0.00m]ᵀ Single PPA placement
x−0 [−1.25r 0.00m]ᵀ Trailing adjacent PPA placement
x+

0 [1.25r 0.00m]ᵀ Leading adjacent PPA placement
τq 1.00× 10−2s First order actuator time constant
q 1.00× 10−2Wb
h 0.00m

c 0.50
Compensation factor for
non-monopole PPAs centered
on infinite surface (2.15)

∠ννν 45o Fixed speed v1 = ν
(L1, L2) (5.00m, 8.00m) Sheet dimensions
(N1, N2) (210, 210)

∆t 1.00× 10−4s

Table 6.1: Mathematical constants and parameters used for the ECB system during demon-
stration of engineering applications.

and Zheng [29]. These publications investigate the use of ECBs in Anti-lock Braking Sys-
tems (ABS) applications. Song [30] investigates the use of ECB for control of the angular
motion of rotating disks, and proposes a hybrid hydraulic-ECB - due to the low braking
force output of the ECB at low speeds. [28–30] share a similar approach to ECB con-
trol. Variants of the linear drag force model (5.7) were used as approximate braking force
models in conjunction with a robust discontinuous control algorithm - the Sliding Mode
Controller (SMC). Good reference torque tracking is consistent for each of the three pub-
lications, as well as performance issues associated with the control algorithm.

On the other hand, E. Simeu and D. Georges [31] successfully designed and implemented
a continuous feedback linearization control algorithm based on a modification of (5.7) to
include magnetic hysteresis, which combined with state/parameter estimation yielded quite
good experimental results while bypassing the drawbacks of the discontinuous controller
used by [28–30].
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Linear motion braking force control was investigated by Hong-Je et al.[32], supplementing
the 2D finite element analysis conducted in the same publication. Near constant brake force
control was achieved experimentally using only a linear feedback controller (PI).

We proceed by showing that these state of the art control algorithms can be implemented
in the ECB simulation with ease, motivating its use as a digital test-bed for design of the
control law q(t).

6.1.1 Electromagnet Actuator

In the vast majority of the work done on real-time control of ECBs, the manipulated vari-
able is a command voltage u(t) for an electromagnet (RL)-circuit generating q(t). This
electrical actuator can be described by the following first order dynamical system:

d

dt
i(t) =

1

Le
(−Rei(t) + u(t)) (6.2)

With time-constant given by its electrical inductance Le and resistance Re:

τRL =
Le
Re

(6.3)

The controlled field strength q(t) can be calculated from the idealized electromotive force
and reluctance for an inductor that has Ne windings around a core of length lc of some
ferromagnetic material:

q(t) =
F
R

=
Nei(t)

lg
πr2 (6.4)

Where the total reluctance is given by:

R = Rcore +Rgap +Rsheet

=
lc

µcAPPA
+

lg − d
µcAPPA

+
d

µ0APPA
=

lg
µ0πr2

Where the core permeability µc is assumed much larger than µ0, and fringing effects are ne-
glected such that all cross-sectional areas are equal to the pole projection area of πr2. The
electromechanical models describing the ECB used in the relevant literature is essentially
quasi-static, due to the braking force being assumed static apart from a small, electrical
time-constant Due to the only ECB dynamics being considered in the literature is that of
the electrical circuit controlling the external magnetic field, a quasi-static electromechan-
ical model for the ECB is implied. Noting that this time-constant is significantly smaller
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than what we observe in the frequency response analysis (Section 5.3) and in simulations
(Section 5.4), and that simulation of (6.2) puts extremely high requirements on the sampling
frequency, we choose to consider the controlled field strength q(t) a static variable that we
can control directly. It is also reasonable to assume that an outer control-loop ensuring that
q(t) follows its trajectory by a robust control algorithm such as the SMC, eliminating the
effects of magnetic hysteresis and other uncertainties, will still be significantly faster than
the inner ECB loop.

Despite this simplification, we find it necessary to assign q(t) some arbitrary first order
dynamics in order to limit its rate of change and switching frequency in the case of the
SMC:

q̇(t) = − 1

τq
q(t) + qd(t) (6.5)

Where qd(t) is the desired input.
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Figure 6.1: Reference tracking comparison for P-, and PI-Controllers. Kp = 0.05.

6.1.2 Linear Feedback Control

In general, a scalar state feedback controller is given by,

u(t) = −kx(t) (6.6)

where the state x(t), if governed by a linear dynamic system, can be replaced by the refer-
ence tracking error

x̃(t) = xd(t)− x(t) (6.7)

thanks to the superposition principle. Definition of the root output feedback error,

ỹ(t) =
√
|D1d(t)| −

√
|D1(t)| (6.8)

permitted the use of linear feedback control algorithms for simulations of quasi-static ECB
models in [2], and proportional feedback control was successfully implemented. A simple
P-controller was implemented in order to validate the applicability of linear proportional
control schemes for the numerical solution. In [32] a Proportional Integral (PI) controller
was implemented and shown to perform well, we expect to see the same for the numerical
implementation. The PI control law is defined by:

qd(t) = Kpỹ(t) +Ki

∫ t

t0

ỹ(τ)dτ (6.9)
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Figure 6.2: PI reference tracking for high sheet velocity, v1 = 20ν.

The proportional feedback control performance (Figure 6.1) was unsatisfactory, with sig-
nificant stationary deviation for the given P-gain. We were able to put the numerical solu-
tion closer to the reference by increasingKp, which was accompanied by a large overshoot.
We conclude that, barring an error in our implementation, proportional output feedback
control is not suitable for the dynamical ECB model despite the success in [2] for quasi-
static models. The analytical drag force (5.9) is included to illustrate the difference of
response times. The response time of the analytical model is given by τq (6.5), which in
reality would be much smaller if given by τRL.

Unsurprisingly, we are able to eliminate the stationary deviation by adding a small inte-
gral action to our controller (Figure 6.1). The robustness of the integral action is illustrated
in (Figure 6.2), where the same values of Kp and Ki lead to good performance well into
the high speed region. The controller is able to reduce the effect of the dips in D1 due to
induced currents returning to the PPA before decaying, but is too slow to eliminate it com-
pletely. It is interesting to note that for higher velocities, the quasi-static model becomes
a better approximation of the dynamical solution. This is because the response time of
the ECB is reduced for higher sheet velocities, as noted in chapter 5, and eventually be-
comes faster than the first order dynamics of the controlled field. This result is misleading
however, as (once again) the time constant of the actuator dynamics is much lower.
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Figure 6.3: Performance of the discontinuous zeroth-order SMC. Gain M = 0.5.

6.1.3 Sliding Mode Control

Sliding mode control is well suited to electromechanical systems for its applicability to the
switching of transistors in the circuit of a given actuator. For the root output feedback error
(6.8), an n-order sliding variable is given (in accordance with [33, 34]) by:

s(t) =

(
d

dt
+ λ

)n+1

ỹ(t), λ > 0 (6.10)

A sliding surface, or sliding mode corresponds to the system behaviour when s = 0. For a
first order SMC, this corresponds to the asymptotically stable output error dynamics:

d

dt
ỹ(t) = −λỹ(t) (6.11)

For which the system slides along the line

d

dt
y1(t) = y2(t) = −λy1(t) (6.12)

in the (y1, y2)-plane. This is achieved by the controller design:

u(t) = −Msgn(s), M > 0 (6.13)

Where M is a (relatively) large, bounded gain forcing the system towards the sliding sur-
face from both sides. The first order SMC was used in [28, 29] to keep the system sliding
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Figure 6.4: Reference tracking of the zeroth-order SMC using a logistic continuous ap-
proximation of the step-function. Sharpness α = 10

along the surface corresponding to optimal slip-ratio. [29] also conducted a stability analy-
sis of the ECB with a first order SMC, showing asymptotic stability. Note that these results
are based on the quasi-static linear approximation (5.7) of the drag force. Based on exper-
imental results in these publications it is reasonable to assume that the stability results in
[29] also apply when the eddy current dynamics are introduced.

The discontinuous, switching nature of (6.13) in practice gives rise to an effect called Chat-
tering. Chattering is caused by either physical (transistor) or numerical (sampling) limi-
tations on the switching frequency, resulting in high frequency oscillations around s = 0.
There exists a multitude of chattering prevention/reduction methods, one of which is sim-
ply increasing the order of (6.10).

We let a zeroth-order On/Off -SMC be given by:

s(t) = ỹ(t) =
√
|D1d(t)| −

√
|D1(t)| (6.14a)

qd(t) = −MΘ(s) (6.14b)

Where Θ is the discontinuous Heaviside step-function (4.11). The sign function of gen-
eral SMC formulations is replaced by the unit-step function because of the inability of the
controlled field to reduce the drag force magnitude by reversing the sign of the input. The
discontinuous control law described by (6.14) was implemented in our ECB simulation
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Figure 6.5: High speed (v1 = 20ν) reference tracking of the logistic SMC.

(Figure 6.3), as well as a continuous approximation using the logistic Heaviside approxi-
mation (4.14) as done in [2] (Figure 6.4).

For the discontinuous SMC response, there is a lot of chattering present despite (6.14)
being essentially low-pass filtered through first order actuator dynamics. The system re-
mains close to the sliding surface, however. Note that the chattering observed is an artifact
of the limited sampling frequency of the numerical method, and that real world applications
expect a smaller chattering amplitude due to a potentially higher maximum switching fre-
quency of transistors - implying a system behaviour that slides closer to the sliding surface.
Regardless, chattering is generally best avoided due to its damaging effect on actuators.
Thus, we turn our attention to the results of the continuous SMC (Figure 6.4).

SMCs with continuous approximations are typically associated with a stationary error in
the form of a band of acceptance around the sliding surface, with a width depending on the
sharpness α of the approximating curve. This is why the system does not converge to the
sliding surface in (Figure 6.4). Robustness of the SMC is demonstrated by time time-series
(Figure 6.5), for unchanged gain and sharpness parameters. Unlike the integral action in
(Section 6.1.2), the SMC is not associated with a time delay. This allows it to (nearly)
eliminate the drag force reducing effect of the returning magnetic fields.
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6.2 Pole Configuration and Optimization

Due to saturation effects in electromagnets, as well as heating issues in their circuits, a
limited braking force can be generated by a single magnet. If one wants to increase the
braking force of their ECB, there is an obvious solution: Add more magnets. The best
way to arrange these magnets in space is less trivial, however. It is clear that two magnets
placed in a vicinity of each other, and acting on a moving conductor, will induce magnetic
fields that interfere with one another. We have already seen what happens to the braking
force when the induced magnetic field returns to the PPA (Section 5.4), and similar effects
are even more pronounced for numerous working controlled fields.

There is a limited body of work on the impact and optimization of electromagnet design
and placement for ECBs. Karakoc et al.[26, 27] optimized the braking torque for a 4 PPA
configuration on a rotating disk for many design parameters, including the angular distance
between each pole and the frequency of their alternating fields. The torque values were
computed using finite element analysis, and it was found that it is possible to place and
synchronize a number of PPAs such that the generated torque is stronger than the theoreti-
cal torque of the same number of independent magnets.

As previously stated, our dynamical solution does not seem to agree with the existence
of resonant input frequencies, but it is possible that this would change with the introduc-
tion of numerous poles. Due to the efficiency of the numerical method solving our ECB
model, as well as the ease of manipulating PPA placements and shapes in the plane, it
seems uniquely suited for this application - bypassing the slow FEM. The total controlled
field can be expressed as a sum of n independently placed and controlled PPAs:

C(x, t) =
n∑
i=1

qi(t)Pi (x− x0i) (6.15)

6.2.1 Motivating Example

We consider the controlled field of two disk shaped PPAs adjacently placed along the x1-
axis. Since they are placed along the axis of translation, we will refer to the one on the
right hand side of the plane as the leading PPA, and the to the other as the trailing PPA.
The uniform, vertical component of (6.15) with n = 2 is given by:

Cz(x, t) = q+(t)P disk
(
x− x+

0

)
+ q−(t)P disk

(
x− x−0

)
(6.16)

Where superscripts + and − refer to the leading and trailing PPAs, respectively. For simplic-
ity, we consider only two cases: (i) the adjacent PPA fields are of equal, constant strength
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Figure 6.6: Drag force response comparison for the two adjacent pole configurations, with
the stationary single pole response.
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Figure 6.7: Eddy currents and net magnetic fields in the plane for adjacent opposing poles.

q and of opposite polarity, and (ii) the fields are of strength q and of parallel polarity:

q+ = q = −q−, (i)
q+ = q = q−, (ii)
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Figure 6.8: Eddy currents and net magnetic fields in the plane for adjacent parallel poles.

Simulation of the cases yielded the drag force responses in (Figure 6.6), where our main
observations are: The adjacent PPAs of opposite polarity generate a braking force that
is ≈ 15% stronger than the theoretical force of two equivalent magnets placed far apart.
Conversely, adjacent PPAs of parallel polarity resulted in a braking force that is ≈ 17%
weaker than two independent magnets. This is explained by the interaction of the eddy
currents between the adjacent PPAs for the two cases (Figure 6.7 and 6.8). The volume
elements leaving the leading PPA carry eddy currents and induced magnetic fields with the
same polarity as the leading magnet, which in (i) opposes the field of the trailing magnet,
and the volume elements experience a decelerating force of repulsion. In (ii), the opposite
is true. The volume elements leaving the leading PPA are attracted to the trailing PPA,
accelerating them.
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Chapter 7

Conclusion

The objective of the research carried in the preceding chapters was, briefly put, to evaluate
the merit of the analytical dynamical ECB model based on the FET. The spectral numer-
ical realization of the fractional dynamical ECB model was shown to (mostly) agree with
established results on the stationary behaviour of ECBs. Most importantly, the stationary
behaviour is surprisingly close to that of Additionally, frequency analysis of the dynamical
model granted insight into why alternating controlled fields of different frequencies lead to
significant changes in the generated forces, which the stationary models can tell us nothing
about. A few discrepancies in the solution were noted however: (i) Its critical recession
angle in its stationary response is constant, instead of varying with the air-gap and size
of the PPA as expected. (ii) Increased braking force generation for certain frequencies of
alternating controlled fields is not supported by our findings. Nevertheless: For its ease
of implementation, excellent convergence properties, and satisfactory numerical accuracy,
one can argue that the detailed method bridges the gap between time consuming numerical
methods (Finite Element Method), and approximate methods.
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7.1 Further Work

There remains a multitude of topics to investigate for the presented ECB model and numer-
ical solution. Some of which are:

• Experimental verification of the novel findings in the model analysis are warranted.
In particular, we are interested in the accuracy of the response time of the solution,
and if it truly reduces with increased sheet velocities.

• Analysis of the simulation execution time should be conducted in order to conclude
whether or not the method is efficient enough to be used in real-time applications.
The author observed potentially fast behaviour with an un-optimized script focused
on error minimization. Optimization of the script running the simulation could allow
for real-time applications of the numerical solution.
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