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Chapter

Introduction

This chapter will introduce the problem at hand. This includes section 1.1 which will
present the problem, and steps done to solve it. Section 1.2 will give the reader a insight
into the Kaggle platform, which is a requirement to understand the problem. Section 1.3
will present the dataset which will be used for this project, and section 1.4 will give an
insight into why this is an interesting problem to solve.

1.1 The problem

In January of 2018, Equinor, together with partner C-CORE, hosted a competition on
Kaggle.com. In this competition, the international machine learning community was chal-
lenged to make the best classifier for discriminating between icebergs and ships in satellite
Synthetic Aperture Radar (SAR) imagery. Many different techniques were applied, by
the 3343 international teams who entered the competition. The focus and challenge of
this project will be the investigation and understanding of the most successful machine
learning approaches used during the Kaggle competition on this particular problem and
dataset. This will be used to build a foundation for a master thesis, where a more complete
classifying solution will be implemented.

This project will contain:

1. A background and literature review of the problem at hand, including satellite im-
agery, machine learning and the state-of-the-art techniques for classifying targets in
satellite SAR images

2. A review of the different techniques used in the Kaggle competition, particularly
those related to the dataset.

3. Animplementation of some of those techniques and a evaluation on the given dataset.

1



Chapter 1. Introduction

1.2 Kaggle

Usmani (2017) gives an introduction to Kaggle, which will be presented here. Kaggle is
a crowd-sourced platform made to attract, train and challenge data scientist to solve data
science and machine learning problems. A lot of data scientists are only theorists who
rarely get to practice their art before being employed. The Kaggle team want’s to chal-
lenge that, by providing a platform for hosting real-life data science and machine learning
competitions. The competitions can be anything from projects with only an educational
purpose, to genuine problems from real-life companies. Participation is incentivized by
rewards which can be anything from job offers to monetary rewards. The most remarkable
were Heritage Heath, who offered $3 000 000 in prize money for solving their problem.
Many of the prize pools hover around the $10 000 to $50 000 range.

The Kaggle community is big, with over one million members, having submitted over
four million models to different competitions (Usmani (2017)). Of these four million
submissions, 47 799 was submitted to the Equinor/C-CORE competition, with an average
of 514 submissions each day. This makes it the most popular image based competition of
all time, and the seventh most popular of all Kaggle competitions (C-CORE (2018)).

1.3 The dataset

The dataset selection process is described in C-CORE (2018). The dataset is a state-of-
the-art dataset that consists of Sentinel-1 imagery, mostly acquired along the east coast of
Newfoundland and Labrador in 2017. With some additional supplements from other parts
of the word, the final dataset contains 2553 icebergs and 2488 ships. The targets were
classified using expert analysts.

Ship

- -~

HH HV

Figure 1.1: An example image from the dataset, including both HH and HV polarization. The image
illustrates a ship.

Each sample is a 75 x 75 two channel image containing the HH and HV channel from
the Sentinel-1 SAR imagery. This is different from RGB images, as each pixel represents
the intensity of the reflected signal the earth surface produces when illuminated by a energy
beam. This will be discussed further in section 2.2. The images were collected using
Sentinel-1 Interferometric Wide Swath mode. There is no georeferencing information, but
it contains metadata about the incidence angle of the target chip. An example image is
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1.4 Motivation

shown in figure 1.1. The images were subject to several constraints: Each image should
contain a target in open ocean, with only one target per image and no image borders or
ambiguities. This resulted in over 5000 images like what’s shown in figure 1.1

1.4 Motivation

Satellite imagery is today widely used for ocean surveillance, where a human operator is
typically responsible for the image analysis. They use their extensive domain knowledge to
classify the objects in the images, including icebergs and ships. This is a time consuming
process, it is not perfect nor is it scalable as more satellites are placed into orbit and more
pictures are produced. If Equinor wants to move their operation towards the Barents sea
and outside Newfoundland, it gets more critical to spot potentially hazardous icebergs
early. The introduction of machine learning used for image classification in the last decade
rises the question if it could be used for a more effective surveillance of icebergs. The
motivation for this project is to explore this idea, looking at what’s been done in the field
earlier and what were done under the Kaggle competition hosted by Equinor and C-CORE
in 2018.
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Chapter

Background

This section present the background theory needed for the rest of the project, and puts the
work done in relation to earlier research. This includes section 2.1 which presents back-
ground theory related to machine learning and image classification, section 2.2 presenting
remote sensing and radars, as well as a review of current state-of-the-art techniques for
discriminating between icebergs and ships in section 2.3.

2.1 Machine learning

Alpaydin (2010) gives an introduction to machine learning. According to him, it is when
a machine learns by itself to solve a problem. This is typically used when the algorithm
needed to solve a problem is unknown. Then we make the machine design the algorithm
instead. A typical example of this is classifying e-mail as spam or not spam. The problem
is known, the input is known and the desired output is known. But the algorithm mapping
the input to the correct output is unknown. Instead a computer can be used to infer the
algorithm. In many machine learning cases it is extracted from large amounts of data.
Machine learning is normally divided into three categories: supervised learning, unsuper-
vised learning and reinforcement learning. Unsupervised learning uses lots of data, but
no ground truth to extract some sort of pattern that can be useful. Reinforcement learning
interacts with some environment to learn the optimal way of controlling it based on some
sort of reward function. Supervised learning, uses large amounts of data and a ground
truth to find a mapping from the input data to the corresponding ground truth. Supervised
learning will be the main focus of this report.

It is worth noting that Kaggle competitions are a machine learning competition, so any
machine learning algorithm can be used. For further reading into the machine learning
world, the reader is directed to Alpaydin (2010), Raschka (2015) or any other book on
the subject. By far, the most heavily used machine learning algorithm in the competition
were neural networks. Therefore, neural networks will be a focus of this report and will
be presented in the next section.




Chapter 2. Background

2.1.1 Neural networks

Neural networks are the most frequently

used algorithm in the Kaggle competition. Hidden
This is probably due to it’s historically
high performance in image classification Input

tasks. This can, at least partly, be at- /
tributed to the invention of convolutional Output
neural networks (CNN), a type of neural

network. CNN will be presented later.

According to Wu (1992), neural net- Q
works are heavily inspired by the human /
brain. The neural network is based on 54 / /
a large amount of processing units, of- // . -
ten called neurons, which are connected in <
such a way that they can learn from data Q //(
they experience. Normally, the network is \
organized in layers, where a neuron has a
connection to each of its predecessors in
the earlier layer, as can be seen in figure
2.1. The first layer is a input layer, which  Figure 2.1: A figure illustrating a typical lay-
is where the network is given its input. The out for a neural network. Figure courtesy of
last layer is the output layer, which pro- Glosser.ca (2013)
duces the output. Finally, we have the hid-
den layer, which is used to add complexity so the network is able to find complex patterns.

You can have any number of hidden layers. Each neuron produces a output signal based
on the sum of the weighted inputs from the last layer:

2

9
()

yi = FOwyix;) Q.1)
j=1

where y; is the output, wj; is the weight of the connection from neuron j in the last
layer to neuron ¢ in the current layer, x; is the output of neuron j in the previous layer and
f is a nonlinear activation function. The weights w;; are adjusted based on an algorithm
called backpropagation. A loss function (i.e. mean squared error, binary cross entropy etc)
uses the network output and the ground truth to calculate some loss value. The gradient of
this loss function is calculated and used to determine how to adjust each weight in order
to minimize the loss.

OL(y,x)
Aw;j = —n D, 2.2)
where Aw;; is the adjustment of w;;, 77 is a constant between 0 and 1 determining the
network learning rate and L(y, x) is the loss function given a ground truth y and a network
output x.
For more information about neural networks and anything related, the reader is sug-
gested reading Goodfellow et al. (2016), Wu (1992), LeCun et al. (2015) or any other
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2.2 Remote sensing

introduction litterature to neural networks.

Convolutional Neural Networks

CNN’s was a major breakthrough for neural network applications in image processing. A
problem with densely connected neural networks, is that the amount of learnable parame-
ters quickly rises to enormous amounts with increasing input size and hidden layer sizes.
A 28 x 28 pixel image results in 28 - 28 = 784 input neurons. A small 30 neuron hidden
layer would then result in 784 - 30 = 23520 learnable parameters.

To alleviate this problem the idea of CNN’s were proposed. It is based on two basic
ideas: local receptive fields and shared weights. Instead of connecting every neuron in the
last layer to every neuron in the next, a small, local receptive field of neurons (for example
5 X b neurons) are connected to a single neuron in the next layer. This local receptive
field moves with a certain stride between each step. These 5 x 5 weights are also shared,
which further cuts down on the number of parameters. This is especially well suited for
images, since the shared weights will act like a filter, looking for the same patterns over
the entire image. It exploits the spatial invariance of an image. To learn more about CNN’s
Goodfellow et al. (2016) is a good bet, but also Nielsen (2015).

CNN’s sprung into popularity for image classification purposes in 2012 when AlexNet,
a CNN architecture, (Krizhevsky et al. (2012)) and the SuperVision-team from University
of Toronto won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) with
an error of 15.4% (Russakovsky et al. (2015)). Second place had a 26.2% error rate. The
SuperVision team was the first to use CNN’s successfully in this contest, and it was the first
major proof that CNN’s worked. In the 2013 ILSVRC a majority of the contestants used
CNN’s for classification. This 2012 competition is seen as the breakthrough for CNN’s,
which has been immensely popular ever since.

2.2 Remote sensing

There exists two ways to collect spatial data. The first is called ground-based methods,
which is when one does in situ measurements and perform land surveys. Opposite to
these methods, is remote sensing methods. Remote sensing methods uses a sensor to
acquire image data, which can be derived into information and a limited representation
of the real world. This means that the information is collected by a device that’s not in
contact with the objects being measured. The remote way of collecting is sometimes the
only applicable, and is cost effective and scalable compared to the ground-based methods
(Kerle et al. (2004)). It was therefore used as the preferred sensing method for iceberg/ship
surveillance.

2.2.1 Radars

One of the primary techniques of remote sensing is radars, which is an acronym for Radio
Detection And Ranging. Radars can either have passive or active sensors. (Kerle et al.
(2004))
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The active radar has it’s own energy source. It emits a controlled beam of energy to
the surface, and measures the amount of energy that was reflected back. Since it’s not
dependent on some external source of energy, it works at all hours of the day. (Kerle et al.
(2004))

The passive radar uses natural sources of energy, which it is designed to receive and
measure. This could be emissions made by the earth or radiation from the sun. This sensor
is often referred to as a optical sensor. It is easy to interpret for a human, as the optical
sensor represents the earth the same way as the eye does. At the same time, it has the
disadvantage that it is highly dependant on uncontrollable external energy sources. An
example of this is the illumination conditions from the sun. (Kerle et al. (2004))

C()A C()a {@ 4‘@3

& & ©

Figure 2.2: A figure showcasing the two different sensor types. To the left is an active sensor, where
a radar satellite emits a signal and gets a reflection back. The middle figure is a radar that measures
emissions from the earth. And the rightmost figure is a radar measuring the reflections of the sun
from the earth. All icons courtesy of Icons8 (n.d.).

The radar equation
Lusch (1999) gives the radar equation as

G2)\2

where Pp is the power returned, Py is the power transmitted by the radar system, o is
the radar scattering coefficient, A is the area of the resolution cell of the radar system, G is
the gain of the antenna, A is the wavelength of the transmitted signal and R is the distance
from the antenna to the target. From this, it can be inferred that there is three factors that

influence the strength of the backscattered received energy (Kerle et al. (2004)):
1. The inherent radar properties, A\, G, A and Pr
2. The imaging geometry, which has an effect on ¢ and R.

3. The object being imaged, and it’s orientation

Radar geometry




2.2 Remote sensing

This section will present some radar specific geom-
etry and give name to relevant angles and directions.

Azimuth is the direction parallel to the radar
flight path. (ESA (2014)) See figure 2.3. Here one
can see the radar indicated, the flight path and the
following azimuth. In satellite images the azimuth
is the the along-track direction of the image.

The incidence angle is the angle between the the
radar beam from the radar and a normal to the inter-
cepting surface (ESA (2014)). This is illustrated in
figure 2.4. The incidence angle has an effect on the
resulting image: a larger incidence angle normally
gives a weaker reflection.

The same figure (2.4) also shows slant range,
which is the distance to a particular object of inter-
est from the radar antenna, ground range which is
the distance along the ground to the object of inter-
est from the nadir, which is the single point directly
below the radar on the surface of the earth (ESA
(2014)).

Radar

&
¢
»

Incidence
angle

/‘\

Nadir

/

a‘-‘{/\./"'
Qg™

Nadir

Figure 2.3: Figure showing the az-
imuth, including ground range, nadir,
slant range and flight path

Figure 2.4: Figure illustrating the incidence angle along with slant range, ground range and nadir.

Polarization

Radars often are active remote sensing devices, which means that they send electromag-
netic energy and wait for a reflection. Since they have an active sensor, the user has to
decide the orientation the transmitted energy. One also have to choose which backscatter
orientation should be received. The orientation can have a big effect on the resulting image
(Kerle et al. (2004)). Any angle can in principle be used, but in reality only vertical and
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Chapter 2. Background

horizontal is used (Lusch (1999)). This gives four possibilities:
e HH: Send and receive horizontally
e HV: Send horizontally and receive vertically
e VH: Send vertically and receive horizontally.
e VV: Send and receive vertically

The concept of polarization is illustrated in figure 2.5, where the blue wave has a
horizontal polarization and the red wave has a vertical polarization.

V

Figure 2.5: A figure illustrating the concept of polarization, with the horizontal and the vertical axis
marked as H and V.

Imaging mechanisms

van Zyl (2011) presents two different mechanisms by which radars produce images: real
aperture radar (RAR) and synthetic aperture radar (SAR). To understand the difference,
one needs to understand how the resolution of a radar is achieved. The resolution of a
radar is defined by the smallest separation between features which can be distinguished. If
two targets are separated by a distance of x,. in the slant range direction, the difference in
timing of the backscatter is given by

At = 22" (2.4)
C

where c is the speed of light. The radar waves are normally transmitted in pulses with
effective pulse time length of 7. Two targets can be distinguished from each other if the
reflection of the first object is fully received before the reflection of the second object has
arrived, see figure 2.6 for an example. This gives the range resolution of a radar

a
2

Therefore, one can increase the resolution of a radar by doing shorter bursts of energy.
However, this comes at the expense of making the signal-to-noise ratio worse. This is

(2.5)

Ty =

10



2.2 Remote sensing

Radar

Target A Target B

Figure 2.6: An example of how the range resolution works. The figure illustrates target A and B and
the radar. There is two different reflected electromagnetic waves, one from each of the targets. Since
the tail of the first reflection is ahead of the head of the second reflection, it is possible to recognize
two distinct scatters.

equal for both SAR and RAR imaging. Where they differ is in the way they achieve the
azimuth resolution.

According to van Zyl (2011) the resolution of a real aperture radar relies on the width
of the antenna beam. It is determined by the size of the antenna and the distance to the
target. The antenna beam width is given by the equation

0, ~ — 2.6
7 (2.6)
where 6, is the beam width, ) is the wavelength and L is the length of the antenna.
The resulting illumination in the azimuth direction from the antenna beam becomes

x, ~ RO, =~ E = AR

L Lcosf

where x, is the illumination distance in azimuth direction, & is the distance from the

radar to the nadir, and 6 is the look angle. This means that you either need to have a short

distance between the radar and the target, a very small wavelength or a massive antenna to

get fine resolution. Either of these solutions have big drawbacks. Therefore, one normally
exploits the concept of synthetic aperture.

Synthetic aperture radars increases the aperture synthetically. This is achieved by util-
ising the azimuth motion of the radar to use several backscatters of the same object to
simulate a longer antenna (Kerle et al. (2004)). van Zyl (2011) describes how two targets
at two different azimuth positions will be at different angles compared to the aircraft ve-
locity vector, giving different Doppler frequencies. This can be used to separate targets in
the azimuth direction.

Q2.7)

Sentinel-1

The dataset assembled by C-CORE comes from the Sentinel-1 satellites. Sentinel-1 is a
constillation of two sattelites, Sentinel-1A and Sentinel-1B, launched in 2014 and 2016
(Pelich et al. (2015)). Sentinel-1 is a part of Copernicus, previously known as GMES

11



Chapter 2. Background

(Global Monitoring for Environment and Security). They are designed to monitor the
entire world’s land masses, including the sea-ice and icebergs. Each radar has a 12 day
repeat cycle, with a 180° phase difference, which means they can provide images of the
same objects every six days (Pelich et al. (2015)). This makes them ideal for continuous
monitoring of land masses. The Sentinel-1 carries a single C-band synthetic aperture radar
(SAR), which can operate in four acqustition modes: Stripmap (SM), Interferometric Wide
swath (IW), Extra-Wide swath (EW) and Wave mode (WV) (ESA (n.d.a)). While EW is
the mode intended for marine use, IW was used to collect data for our set. EW has a large
swath width of 400km, but IW has higher resolution at 5 by 20 meters compared to 20 by
40 (ESA (n.d.a)).

2.3 State-of-the-art iceberg-ship classification

Separating icebergs and ships in satellite images is not a new problem, it has been exhaus-
tively researched. This section will present the state-of-the-art techniques used for this
problem today.

2.3.1 Non-machine learning

In this section some of the non-machine learning approaches for discriminating between
icebergs and ships will be presented. Most of the research presented here comes from C-
CORE. C-CORE is a research-based advisory services and technology solutions company
heavily specialised in remote sensing, and also the maker of the dataset used in the Kaggle
competition.

Howell et al. (2004) suggests two different methods for discriminating between ships
and icebergs: the HH/HV area ratio and the HV signal-to-clutter ratio. They collected
SAR images of 20 icebergs and 19 ships, and used the CFAR (Constant False Alarm Rate
(Bunch and D.Fierro (1992))) algorithm to detect the targets for both the HH and HV
channel. For the HV channel, only 4 of the 19 icebergs were detected, while 18 of the
19 ships were detected. It was also noted that the 4 icebergs that was detected in the
HV channel, all had a greater response in the HH channel. Based on these findings they
investigated both HH/HV area ratio and HV SCR. The area ratio gave a 97% accuracy,
while HV SCR had an accuracy of 92%. It is worth keeping in mind that this is with a very
small dataset, and the authors noted that the majority of the ships were big supply ships
and that more testing should be done using smaller vessels.

Howell et al. (2006) proposes to maximize the a posteori probabilities from Bayes’
rule in order to classify targets. The maximum likelihood Gaussian classifier were used to
model the probability of the target belonging to either class. SAR images for both the HH
and HV channel is used. From the images an exhaustive set of target features is extracted:
HH and HV SCR, HV/HH area ratio, HH mean amplitude, major axis, and many more.
In total 28 different features. Then three different feature selection algorithms are used
to optimize the algorithm: sequential forward selection, genetic algorithm and a limited
exhaustive search. They all achieve very close to the same result, with a classification
accuracy of 93+0.5%. Exhaustive search is the best at 93.5%, but at a larger computational
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cost. Compared to Howell et al. (2004) this test is done on a much larger dataset with ships
of all sizes, and the results might therefore be more comparable to real world performance.

English et al. (2013) presents a way to use the Space-based Automatic Identification
System (S-AIS) for collecting ground truth to improve existing discrimination algorithms,
and also to use the S-AIS data for iceberg surveillance. As seen in Howell et al. (2004)
and Howell et al. (2006) there is developed highly accurate algorithms for discriminat-
ing between ships and icebergs, but they are never 100% accurate. Therefore English
et al. (2013) proposes to use S-AlS to assist on confusing targets. They present two main
hurdles to overcome for S-AIS to be used for this purpose. Firstly, in high ship density
areas AIS messages might collide and some signals might get dropped. Still, this is not
considered a big limitation, since regions that are frequented by icebergs have small ship
densities. Another problem is synchronisation of S-AIS and SAR data, since they come
from different satellites. A dead reckoning approach is proposed and tested, where one
assumes that the ship will continue to hold it’s current heading and speed since the last
S-AIS update. This works to a satisfying degree, but is predicted to get much better as the
RADARSAT Constellation Mission gains traction, as they contain both SAR imaging and
S-AIS on the same satellite.

2.3.2 Machine learning

This section will present some of the machine learning approaches to discriminating be-
tween icebergs and ships in the literature today. There has been done a lot of research in
this field in the last few years, and this section will present some of the approaches the
author finds most promising.

According to Power et al. (2013), C-Core has since 2004 investigated a series of well
known classification methods for the task of discriminating ships and icebergs. This in-
cludes linear discriminant, quadratic discriminant (QD), neural networks, k-nearest neigh-
bour and support vector machines. They trade blows, mostly dependent on the dataset at
hand, but QD has been shown to outperform the others for normally distributed datasets.
QD was first explored by Howell et al. (2008) along with sequential forward selection for
feature selection. QD uses a training set of known targets to build a quadratic discrimi-
nant, which is then used on new samples to discriminate based on distance to discriminant.
The paper concludes with a discrimination result of 95% using the HH/HV dataset. This
is also recommended further as the channels to use for iceberg/ship classification, due to
the increased iceberg backscatter in the HH channel, and big difference in iceberg/ship
backscatter in the HV channel.

Convolutional neural networks have already been tested for classifying icebergs and
ships by Bentes et al. (2016), with very promising results. A very small CNN with only
two layers was used to classify 128 x 128 pixel images as either icebergs or ships. It did
so with a accuracy of 98%. This paper does not specify what polarization was used for
the SAR-images, as the TerraSAR-X StripMap can be in both single and dual polarization
mode. The paper uses a very limited dataset of only 345 unique targets, does not use a
validation set for validating the performance of the CNN and uses a very small test set for
final testing. In addition to this, the dataset is expanded using reflections and rotations so
it contains a total of 600 samples before it is split into 90% training and 10% testing. This
will give a artificially high test accuracy, since there will be a severe data-leakage between
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the train-set and the test-set. This is something that could be improved, in order to get a
result that is a bit closer to what can be expected in real life.

Jun et al. (2017) published a report detailing their work on the Kaggle dataset from the
competition. They used three different machine learning techniques and compared them.
This included a SVM on the histogram of gradients, a simple four layer CNN and the more
complex CNN architecture, ResNet50. The dataset is not presented explicitly, but is of the
exact same size as the Kaggle dataset, and the competition is mentioned in the paper. It
therefore seems safe to assume it’s the same. Some data preprocessing is tested, using Lee-
filtering to remove noise and doing image augmentation. When compred to Bentes et al.
(2016), this report avoids doing some of the same mistakes. The dataset is split before
doing augmentation. It is tested with a larger neural network. A larger dataset is used,
and a larger portion of the data is saved for testing. The SVM is shown to overfit heavily,
has the worst result of them all at 70%, but seems to improve from the Lee filtering.
The simple CNN as a accuracy of 88% with no statistically significant difference with or
without filtering. ResNet has the highest accuracy at 96%, but does worse when the filter
is applied, maybe due to the filter removing features. For some reason, not explained by
Jun et al. the image augmentation is not applied to the dataset used for training the small
CNN, only for ResNet. This could have improved the performance of the small CNN.

In addition to this research related to classifying SAR image targets, there has also
been done a lot of research related to target detection using machine learning (Hwang
et al. (2017), Cozzolino et al. (2017) and Wang et al. (2017)). Target detection is the first
step in the pipeline from raw image to classified targets. So even though target detection
is not strictly relevant to the problem presented in this project, it shows the usefulness of
machine learning in the field, and it might be pointing to a future with a single machine
learning algorithm from raw SAR image to fully classified targets.
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Dataset problem mitigation
techniques

This section will present some of the dataset problem mitigation techniques suggested by
the Kagglers on the Kaggle forum. Section 3.1 to 3.6 will present some of the technique
suggested, how it would affect the dataset and why it helps mitigate our problems.

3.1 Image augmentation

A typical problem when trying to use neural networks for any purpose is the data-set being
of inadequate size. You always want more data, preferrably more quality data, and you are
never satisfied. The more data you have, the better your algorithm will generalise to new,
unseen data. Creating the data-set is normally very labour intensive. Manually expanding
the data-set with more data is in the best case, expensive or, in the worst case, infeasible.
This is the reason why image augmentation is a natural choice for this problem. Collecting
and labelling large amounts of SAR images is very costly, and expanding the dataset using
image augmentation at no cost is therefore a very attractive option.

Image augmentation has roots back in 1996 (Yaeger et al. (1996)). Here two Apple
engineers, Yaeger and Lyon, alongside Webb presented a state-of-the-art ANN for classi-
fying handwritten characters on the Apple Computer’s Newton MessagePad. One of the
main innovations was what they called stroke warping. Stroke warping produced small
changes in skew, rotation, and x and y linear and quadratic scalings to the training data.

Mo T

Figure 3.1: The figure shows the first original M followed by six M’s stroke warped different ways.
Courtesy of Yaeger et al. (1996)
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The act of augmenting images have been picked up by multiple entities since 1996.
There have been proposed many different augmenting techniques, all with the single goal
to increase the machine learning algorithm performance. Researchers at Microsoft were
the first to use elastic distortions on the MNIST dataset. Elastic distortions are made to
simulate the uncontrolled oscillations of the hand muscles, dampened by inertia. This
technique along with the usage of a early version of a CNN’s, which was not all that
normal at the time, gave the highest performance on the MNIST data-set at that time.
(Simard et al. (2003))

Other techniques has also been proposed throughout the years, including but not lim-
ited to:

e Extracting smaller patches from the original image (zooming) (Krizhevsky et al.
(2012))

e Flipping the images horizontally (Krizhevsky et al. (2012))
e Adding random changes to contrast, brightness or colour (Howard (2013))

o Altering the scale of the images, using both lager and smaller images than the orig-
inal (Howard (2013), Wu et al. (2015))

e Vignetting, making the outer parts darker than the centre of the image (Wu et al.
(2015))

e Lens distortion, for example barrel or pincushion distortion (Wu et al. (2015))

It is important to adjust the augmentation techniques used, based on the dataset that
needs expanding. Elastic distortion works very well for hand drawn digits, since it imitates
hand motions. It would not perform well on the problem of classifying icebergs and ships,
since hand motions have no relation to SAR-images. However, other augmenting tech-
niques are often used by the participants in the Kaggle competition. In the next section,
the most frequently used will be presented. Later, in section 4 of the paper, there will be
done an attempt at empirically finding the effect of some of these techniques.

3.1.1 Flipping and flopping

This entails flipping around an axis, either x, y or both at the same time. It given by the
following equation:

Arows—i—1,j if flip around x
Bij = ¢ A cols—j—1 if flip around y 3.1

Arows—i—1,cols—j—1 if flip around x and y

where cols and rows are the number of columns and rows in the image, A is a matrix
representing the original image and B is the flipped image. This makes a new picture
which can be saved and appended to the training set. The result of this kind of flip can be
seen in figure 3.2.
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..

Figure 3.2: A sample image from the data-set before and after flipping verticially.

In theory, images of icebergs or ships should be invariant to flips both along the hori-
zontal and vertical axis. Whether or not it makes the classifier work better highly depends
on the type of classifier that is used. There were various reports from the Kagglers, some
reported better performance overall with both flipping and flopping. Some reported no ef-
fect by flopping but better score when flipping. Some reported better score flipping images
for the VGG16 network, but not for other network architectures. Later experimentation
will have to show.

3.1.2 Height and width shifts

Height and width shifts are to translate the image either along the x-axis or along the y-
axis. This has been used in several of the submitted solutions. An example of a height and
width shift can be seen in figure 3.3.

..

Figure 3.3: A sample image from the data-set after shifting 8 pixels along the z-axis and 8 pixels
along the y-axis.

After the shifting of the image, it still contains a object that could be either an iceberg
or a ship. The only difference is that it is no longer placed in the middle. This can give a
more robust classifier.

A interesting point is what one should do about pixels outside the boundary of the
images. When the picture is translated along the x-axis towards the right, the left part of
the image becomes undefined. This part of the image needs to be filled in with something.
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There is different strategies for this. Most of the contestants have chosen to fill in the
pixels with the whatever the nearest neighbour contains. This is fine for this dataset, since
almost everything except the centre object is considered noise, and will most likely not
help classifying the object. But, strictly speaking, this is not known for a fact. The water
reflections might contain different reflections based on whether the target is a ship or an
iceberg. If the content in the periphery of the image is very important for the classifier, one
would have to tackle this problem in a bit more sophisticated way. Examples of this could
be to mirror the edge on the left of the picture. Another approach is to make the image
“wrap” around, making whatever is moved out of the boundary on the right reappear on
the left. One might also have to reevaluate if the images should be translated at all if the
edges are that important.

3.1.3 Zooming

Zooming is also a technique often used. This technique exploits the fact that it should not
really matter if the picture is taken up close, or from far away. A zoom example is shown
in figure 3.4.

Figure 3.4: A sample image from the data-set and a version zoomed in 20% and a version zoomed
out 20%.

Again, the problem of what to do with the periphery arises, when the image is zoomed
out. One can employ the same techniques as used on the image translation problem, but
since all data is kept inside the picture, you won’t have the problem of loosing information.
When zooming in you will loose some data.

3.1.4 Rotation

Rotation exploits the invariance the images has to small rotations. Rotation is shown in
figure 3.5.
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Figure 3.5: A sample image from the data-set and a version rotated a random degree between 0 and
30 counterclockwise.

Once again you have the problem of filling in the new regions of the picture. You also
loose a bit for information from the edges, and you have to figure out how many degrees the
image can rotate to still give a benefit to the training of the classifier. Too much rotation,
and you might end up with something that does not resemble a real-life SAR-image of a
iceberg or ship.

3.1.5 Contrast, color and brightness

It were proposed by some kagglers to adjust the contrast, color and brightness of the im-
ages. This were suggested to not work as well due to the properties of the images in the
dataset. Pixel contrast and pixel brightness is the main properties of our images and an
adjustment of them might skew the data too much. Adjusting the color is not a possibility
since the images consists of reflection intensities and not color values. This is proprietary
to our dataset, and these techniques can work well in other situations with other types of
data.

3.2 Pseudo labelling

Pseudo labelling is a way of training a neural network in a semi-supervised fashion. It
works well in situations where you have a large amount of unlabelled data and labelling
is cost intensive. In a nutshell, pseudo labelling consists of two training stages. First you
train you network on the labelled data you have access to. Then this trained network is
used to classify all the unlabelled images. The network output can be interpreted as how
confident the network is that the input is or isn’t of that category. The pictures the network
is the most confident about is added to the training set, and are given the labels the network
has predicted (the pseudo labels). Then the network is retrained using the new, expanded
dataset.

According to Lee (2013), pseudo labelling has the same effect as entropy regulariza-
tion. Pseudo labelling and entropy regularization works by favouring low-density separa-
tion between classes, which is a common assumption for using semi-supervised learning.
This means that the decision boundary should lie in low-density regions, and pseudo la-
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belling will push the boundary towards these regions to increase generalization of the
network.
Lee (2013) gives the entropy of the unlabelled data as

1 LS , ,
H(ylz") — Py =1z ™) log P(y;" = 1|z ™ (3.2)
o) = —— mZ:l 2; ( [z ™) ( [z ™)

where n’ is the number of unlabelled samples, C' is the number of classes, y!" is the

unknown label of the mth sample, and z'™ is the mth sample input. Conditional log-

likelihood is plotted in figure 3.6. This shows that in order to minimize H, P(y™|z ™)

should either be close to 0 or to 1. Pseudo labelling gives the samples with the lowest

uncertainty, meaning P (y!" |2'™) is either as low or as high as possible. This finally means:
pseudo labelling minimizes the entropy.

= rlog{z)

f{x)

Figure 3.6: A plot of the function f(z) = x log(z)

The MAP (maximum a posteriori) estimate is given by (Grandvalet and Bengio (2005))

C(0,\) = L(0) — \H (y|z") (3.3)

where L = log P(y™|x™;0) is the conditional log-likelihood, H is the entropy as
defined in (3.2) and 6 is some parameter which parametrizes P(y™|z™;6). L is only
dependent on the already labelled samples, while H is given by the unlabelled samples.
By maximizing the MAP estimate, we can make sure that the model generalizes well. This
can be done either by maximizing the conditional log-likelihood or minimizing the entropy
of the unlabelled data. Given that pseudo labelling minimizes the entropy, it should also
make sure that the model trained with the unlabelled data generalizes as well as possible.

3.3 Test-time augmentation

Test-time augmentation (TTA) is closely linked to image augmentation, but is not as well
known by the machine learning community. It follows mostly the same tactic, using image
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augmentation to expand the dataset. But this time it’s not the training set that is expanded,
it’s the test-set. Combinations of predictions for multiple transformed versions of a single
test image is used to help improve performance. To understand how this could help it is
necessary to look at an image acquisition model.

According to Wang et al. (2018) the image acquisition model can be formulated as

X =Ts(Xo) +e (3.4)

where X is the true representation of the image, 73 is a transformation operator
parametrized by S and e is some noise that’s added to the image. This all results in a
transformed image X . Let’s assume that all the transformations that are applied to X is
reversible. This gives

Xo = 7;;1()( —e). (3.9

Further, Wang et al. (2018) explains how deep learning connects to this. If f(-) repre-
sents the neural network, parametrized by 6, Y should be inferred from X by

Y = f(X;90). (3.6)

X is one of many possible transformed versions of the underlying image X,. Using
X directly for inference can lead to a biased result. Therefore X is used for inference

Y = f(X060) = (T3 (X —€);0) 37
Instead of finding a prediction for X, the distribution of Y is computed
P(Y) :P(f (Tﬁ_l(X—e);G)),where,BNPﬁ,eNPe (3.8)

To obtain a final prediction, we compute the expectation of Y.

B(Y) = [ uP()dy = /ﬁ (T —ene) PE)PEdsde 39)

This is very computationally expensive, so instead E(Y") is estimated using Monte
Carlo simulations

N N
EY) ! Zyn = %Zf (’7'6;1(X — en);e) ,where 8, ~ Pg,e, ~ P. (3.10)

N
n=1 n=1

where N is the total number of simulations. As can be seen by inspecting the equation,
this is equal to TTA. We acquire an image, sample [3,, and e,,, transform our acquired
image and infer on that. As N — oo this should approach the true label Y, given that f(-)
a true mapping from Xy = Y.
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3.4 Lee filtering

Lee filtering was proposed on Kaggle multiple times, but probably most notable in Jun
etal. (2017). Lee filtering is a despeckling filter, well suited for SAR images, as they often
are contaminated by noise. Lee filtering was first proposed by Lee (1980). He suggested
that the speckle acts as a multiplicative noise, and proposed a filter that minimized the
mean squared error (Mahdavi et al. (2017)). Therefore it is also known as the MMSE
filter.

Mahdavi et al. (2017) presents the Lee filter as having the following form.

R(z,y) = W(z,y) - I(z,y) + (1= W(z,y)) - I(z,y) (3.11)

where R(x,y) is the estimated intensity of pixel (z,y), I(z,y) is the observed inten-
sity of (x,%) and I(z,y) is the average intensity of all pixels in a local window around
(z,y). W(x,y) is a weighting parameter, weighting the observed intensity vs the average
intensity, depending on how heterogeneous or homogeneous the region are. In homo-
geneous regions W is small, and therefore the estimated pixel intensity will be heavily
affected by the average intensity of the local window, while for heterogeneous regions it
will be the opposite.

Jun et al. (2017) showed that Lee filtering worsened the result for all CNN solutions.
A possible explanation proposed by the author of this project is that the SAR-images that
were collected already were processed to reduce speckle. The Sentinel-1 images that were
collected were level 1 Ground Range Detected images, as described in ESA (n.d.b). These
images are multi-looked, which is a data collection technique where one use multiple
images of the same target to average out speckle (Franceschetti and Lanari (2016)).

3.5 Discrete Fourier Transform

Some users reported an increased performance by using the discrete Fourier transform
(DFT) on the images to create two additional bands for a total of 4 channels. The Fourier
transform gives the image in the frequency domain, while the input is in the spatial domain.
The two-dimensional DFT for a square image of size N x N is given by (Gonzalez and
Woods (2006))

N—-1N-1

Flk,D) =3 37 fli,j)e 2rH+%) (3.12)

i=0 j=0

where f (i, 7) is a pixel in the original image, while F'(k,) is the fourier transformed
image.

Even tough it was reported to give a good response, it was decided not to pursue
any further in this report. This is due to that the result was only reported to improve
when the model trained using the DFT was ensambled with other models. The study of
ensambling techniques is outside the scope of this project, therefore DFT in connection
with ensambling it is left as future work.
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3.6 Autoencoders

Goodfellow et al. (2016) presents a description of the autoencoder. They say it is a neural
network, trained to copy it’s input. Internally there is a hidden layer, generating a code of
the input. One can say that the network consists of two parts: an encoder h = f(z) and a
decoder r = g(h). This is illustrated in figure 3.7.

Compressed Data

Original
mushroom

Learned
representation

Encode Decode

Figure 3.7: An illustration presenting the concept of autoencoders, encoder and decoder. Figure is
courtesy of Valkov (2017).

The learning process is described by minimizing the loss function L(x, g(f(z))). Here
L is a loss function, penalizing g(f(x)) for being dissimilar to 2. The most used autoen-
coder is called the undercomplete autoencoder. Here the hidden layer A is smaller than the
input and output, and the network is forced to extract the most salient features from the
dataset.

Erhan et al. (2010) experimented with pre-training using denoising autoencoders, which
is an autoencoder trained at denoising a corrupted version of its input. They showed that
using this autoencoder as a starting point, adds robustness to deep architectures. Compar-
ing networks seeded with an autoencoder, to a network not seeded using an autoencoder,
gave vastly different endpoint local minimas. It also seemed to have a regularizing effect,
but different to and performing better than L1/Lo regularization. In addition to this, even
though the pre-trained networks had a higher training loss for large enough layers, they
seemed to generalize better than their non-pre-trained counterparts. The pre-trained effect
is present also for very large datasets, indicating that the starting point is very important.

3.6.1 Convolutional autoencoders

There was suggested on the Kaggle forums to also experiment with convolutional autoen-
coders. They were first presented by Masci et al. (2011). Convolutional autoencoders are
similar to autoencoders, the difference lies in that the network uses convolutional layers
instead of densely connected layers. This makes the network discover localized features
that repeat themselves in the input. The reconstruction is then a linear combination of
basic image patches.
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Both autoencoders and convolutional autoencoders are something that should be ex-
plored, but will not be in this report, due to time constraints. It would also require a
different testing methodology, as the weights no longer could have been initialized as the
ImageNet weights. The reason for using ImageNet weights is discussed later in section
4.1.
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This chapter will contain tests done of the techniques presented in chapter 3 on the C-
Core/Equinor dataset. Section 4.1 will introduce the method used for testing. Section 4.2
to 4.4 contains tests of a selection of the techniques presented in chapter 3. They will be
compared to a baseline result and how they perform on other datasets.

4.1 Method

In this section the methodology for testing the different techniques will be presented. To
be able to compare the different techniques, a standard testing pipeline will be developed.
To achieve reproducibility a set of free and publicly available architectures and tools will
be used.

The deep learning framework of choice will be Keras (Chollet et al. (2015)), due to
the fact that is was used by a majority of the contestants in the Kaggle competition and
is the framework the author has the most experience with. The network architecture will
be based on VGG16, which was first presented in Simonyan and Zisserman (2014) and is
illustrated in figure 4.1. VGGI16 is a very complex network, and a simpler network might
give higher classifier performance, but it was extensively used by the top contestants and
is well known in the deep learning image recognition community. Since design of the
classifier is outside the scope of this project, it was chosen as an appropriate network
architecture. The weights are chosen to be the pre-trained weights from the ImageNet
dataset (Deng et al. (2009)), as given by Chollet et al. (2015). The top layers consists of
one 256 neuron dense layer with ReL U activation, followed by a Dropout layer with a
dropout-rate of 0.5 and finished with a single output neuron with sigmoid activation. The
top layers are kept trainable, so the network can be fine tuned using the C-CORE/Equinor
dataset.
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Figure 4.1: A figure illustrating the VGG16 architechture. Modified from Blier (2016)

During training the optimal number of epochs will be determined used 5-fold cross
validation. This will be determined individually for each technique, due to the fact that
modifications to the dataset might result in a dataset requiring more or less training time
to converge. The original dataset will be split 70-30 between training- and test-set. The
results will be evaluated using binary crossentropy, as it is defined by Chollet et al. (2015),
on the test-set. This loss function was chosen since it was also used to make the leader-
board in the Kaggle competition.

4.2 Image augmentation

For image augmentation it was decided that the Keras image preprocessing function Im-
ageDataGenerator should be used. It can be used in conjunction with the Keras fif function
to generate batches of augmented images. The generator makes batches of a specified size
where a random set of augmentations were applied to the images. What augmentations the
generator can use are specified by the programmer. The generator also allows you to spec-
ify what should happen to pixels outside the boundary of the images, as talked about in
section 3.1.2. To narrow down the amount of hyperparameters to experiment with, it was
decided to use the mode ’reflect’, but this is something that could have been experimented
with.

Further, a decision was made to test only one augment at a time, for a series of augmen-
tation ranges. From cross-validation it will be decided which augmentation range yields
the best result, and at how many epochs of training. This would then be used to predict
on the test-set to get a final measure of performance. Continuing off this, the techniques
which were deemed to have a positive impact on the prediction accuracy, will be tested
in conjunction to see if the performance gain will compound. Further, to be able to say
something about which properties of the dataset makes the image augmentation techniques
work as they do, the techniques will also be tested on another dataset, namely CIFAR-10
(Krizhevsky (2012)).

A choice had to be made with regards to what types of augments that should be tested.
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Due to the specific properties of the dataset, it was decided to explore rotation, width and
height shifts, zooming, flipping and flopping the images. The results those experiments is
presented in the following section.

4.2.1 Results

Firstly, to be able to put the following results into context, a baseline result for the VGG16
architecture was made. This was done using the technique presented in 4.1, without ap-
plying any special technique to the dataset.

Continuing, rotation, as talked about in section 3.1.4, were tested for different rotation
degrees. This included 5, 10, 15 and 20 degrees. The cross validation gave the best results
for rotation = 10°.

Width and height shift, as described in section 3.1.2, were then tested. The images
were shifted 5%, 10%, 15% and 20% of the total picture width/height. Shifting the images
15% of the total size gave the best results.

Then zooming, as described in section 3.1.3, were tested. The images were zoomed
both in and out 5%, 10%, 15% and 20% of the total picture size. Zooming the images 15%
of the total size gave the best results.

Finally, flipping and flopping the images were tested. It was tested for flipping, flop-
ping and both flipping and flopping. Only flopping gave the best result.

The best working augmentations as determined by the cross validation were then
trained a final time before begin tested on completely unseen test-data. The final test
results compared to the baseline is presented in figure 4.2.

Loss for different image augmentation techniques
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Figure 4.2: A graph illustrating the different classification losses between the four different aug-
menting techniques and the baseline. The baseline result is set to 1, and the other losses are scaled
accordingly.
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Continuing, the best augmentation parameters were then tried in combination with
each other to see if the effect would compound. The results can be seen in figure 4.3. It
was not experimented with rotation, due to the poor performance.

Loss for different image augmentation techniques
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Figure 4.3: A graph illustrating the classification results when combining different augmentation
techniques. The baseline result is set to 1, and the other losses are scaled accordingly.

Loss for different image augmentation techniques on the CIFAR10 dataset
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Figure 4.4: A graph illustrating the classification results on the CIFAR10 dataset for different aug-
mentation techniques. The baseline result is set to 1, and the other losses are scaled accordingly.
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4.3 Pseudo labelling

The exact same procedure was done on the CIFAR10 dataset. The hypothesis was that
comparing the effect on both datasets will give further insights into why some augments
work while others don’t. Those results can be seen in figure 4.4. Due to time constraints
and in order to keep the complexity of the comparison low, there were not done any exper-
imenting with compounding augmentations on the CIFAR10 dataset.

Continuing, there was an attempt at clustering the different data using a clustering
algorithm called DBSCAN, which can be read more about in Ester et al. (1996). The
idea was to test augmentations on different clusters, seeing if it had any different effects.
Unfortunately, DBSCAN only produced very small clusters. There was hard to see why
the algorithm was putting certain images into the same cluster, making it a challenge to
gain any useful insight by augmenting just one (or a few) of the many clusters. It was
therefore decided to not pursue this further.

4.3 Pseudo labelling

For pseudo labelling the baseline model will be used as a starting point. This model will
be used to classify each picture in the test-set. Then, all the pictures the model seems fairly
certain about will be included in the training set, with the tag the baseline model predicted.
This threshold will be empirically found, due to the fact that we want to make sure that we
still have a fair number of sample in the test set for testing in the end. This is then trained
again using cross validation to determine the optimal number of epochs.

This will be done for two different train/test split ratios: 70/30, as the image augmenta-
tion case, and 30/70. The 30/70 split is to if there is a big difference in the effect of pseudo
labelling depending on how much training data you have, and how much unlabelled data
you have. Pseudo labelling was heavily used in the Kaggle competition, but this might be
due to the fact that they had to work on a 30/70 train/test split. Therefore it is done two
tests in this report, so the result can be compared between the “normal” train/test split of
70/30, and the Kaggle-split of 30/70.

4.3.1 Results

The final testing results can be seen in figure 4.5 and figure 4.6.
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Loss baseline compared to when using pseudo labelling for a 70/30 train/test split
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Figure 4.5: A graph illustrating the classification results when using pseudo labelling for a 70/30
test/train split . The baseline result is set to 1, and the other losses are scaled accordingly.

Loss baseline compared to when using pseudo labelling for a 30/70 train/test split
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Figure 4.6: A graph illustrating the classification results when using pseudo labelling for a 30/70
test/train split . The baseline result is set to 1, and the other losses are scaled accordingly.
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4.4 Test-time augmentation

The testing of test time augmentation will largely follow the same approach as the testing
of image augmentation. This is due to the fact that it is basically image augmentation
applied at a different place in the deep learning pipeline. What’s important is to avoid
the pitfall of testing the augmentation techniques at the test-set. This could result in over-
fitting the test-set, and we would get a too high end test result, not representative of the
general performance. Therefore, it was decided to test the augmentation parameters at the
validation data, once for each of the 5 folds. Since this approach requires a more care-
ful matching of images and their augmented counterparts, the Keras ImageDataGenerator
won’t be used, and a self implemented solution will be used instead. Once again, the
approach of testing one augment at a time, following by trying multiple of the best per-
forming augmentations at the same time were also done this time around. Then the best
performing combination were tested on the test-set.

4.4.1 Results

The results for the best single test-time augmentations can be seen in figure 4.7. The best
results were for rotation = 20°, only horizontal flip, zooming in 20%, 5 pixels of width
shift and 5 pixels of height shift.

Loss for different test-time augmentation techniques
T T T T T

0.98

0.92

0.9

0.88

baseline height shift width shift rotaticn zZoom flip

Figure 4.7: A graph illustrating the classification results when using different test-time augmenta-
tion techniques. The baseline result is set to 1, and the other losses are scaled accordingly.

Continuing, some of the augments were tried in pairs of two, seeing if the performance
gain would compound. Zooming, rotating and flipping were also tested in combination, as
they were the three best performing augments. Those results can be seen in figure 4.8.
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Loss for different test-time augmentation techniques
T

Figure 4.8: A graph illustrating the classification results when using different combinations of test-
time augmentation techniques. The baseline result is set to 1, and the other losses are scaled accord-

ingly.
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Discussion

5.1 Image augmentation

Image augmentation gave promising results. Giving the best performance boost was zoom-
ing, which gave a classification boost of 7%. On the other hand rotating the pictures gave
poor results, with about 1% better classification. Even though this is a gain in performance,
one have to consider if this is worth the effort, given that it introduces a higher computa-
tional complexity and, to be fair, might not even be a statistically significant reduction.

To explain why certain augments worked and why others didn’t, requires looking at
other datasets as well. This will give a better basis when trying to spot trends. Therefore,
what follows will be a comparison between the CIFAR10 dataset and the Equinor/C-CORE
dataset with regards to which augmentations that gave good results.

(a) (b)

Figure 5.1: Two example figures from the Equinor/C-CORE dataset and the CIFAR10 dataset

Consider the two pictures in figure 5.1, which are random examples from both the
Equinor/C-CORE dataset and the CIFAR10 dataset. For this section it is worth keeping in
mind the difference of CIFAR10 images and the C-CORE/Equinor dataset. While the first
one is a set of optical images, the last one is SAR satellite imagery. The biggest difference
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between augmenting the CIFAR10 and Equinor/C-CORE dataset is in their response to
shifting images. Looking at these two examples, it is easy to see why. The images in the
CIFAR10 datset is much better located, containing almost zero border around the object
of interest. Shifting the image will almost always result in loosing crucial information for
classification. On the other hand, the images from Equinor/C-CORE can be shifted at least
40% of the picture before the target leaves the image. It is not given that this won’t impact
our classification performance, due to the fact that the reflected water around the object
might contain useful information.

Continuing, they both have a good response to zooming. One might start wondering
why CIFARI10 performs better with zooming, since it didn’t perform well with shifting
the images. This is probably due to the fact that the images are zoomed both in and,
more importantly, out. Zooming out does not result in any information loss. One can
clearly see why the Equinor/C-CORE images might benefit from zooming, both in and
out. Zooming will result in a larger or smaller target, which in turn simulates a larger or
smaller iceberg/ship.

Interestingly, they both responded differently to flipping and flopping. While the ice-
berg/ship images responded best to only flopping, CIFAR10 responded to flipping. This
is highly surprising to the author, who believed that both would respond best to flopping.
Flipping, for example the CIFAR10 image in figure 5.1, would result in a upside down
car. Which, in the authors head, should not improve classification accuracy for upright
cars. Iceberg/ship responded the best to flopping, which essentially means to mirror the
image around the y-axis. Flipping would result in a upside down ship or iceberg, since the
images are captured at a certain incline, and not straight down. Therefore, a flipped image
does not represent something that might appear in the test-set.

Lastly, rotating didn’t work for either of the datasets. This could be due to some of
the same reasons as mentioned in the last paragraph. The images are taken at a incline,
a rotation might distort them, resulting in something not representative of what’s in the
test-set.

Interestingly, when trying to combine multiple augmentation techniques, the results
did not compound at all. The worst performing was when shifting was combined with
flopping. The best results were achieved when combining zooming and shifting, but they
still were worse than only zooming. One might question what’s going on here? A hy-
pothesis is that when adding multiple augmentations on top of each other, the performance
suffer due to the combination of augments becomes too much. When a ship is flopped, or
a ship is zoomed in, it still resembles a ship. When you both zoom and flop at the same
time, it might loose some of it’s ship resemblance. Another hypothesis is that the perfor-
mance gained by flopping an image are closely related to the performance gained when for
example shifting an image. That would mean that adding multiple augments won’t have
any big effects.

5.2 Pseudo labelling

Pseudo labelling did not give as good results as were reported in the Kaggle competition.
The 30/70 train/test split achieved a slightly better performance gain compared to 70/30,.
Still, the gain is small, and the results not very different. They both gave about a 2%
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increase in performance.

The first mystery to solve is why there were no big difference between the two splitting
techniques. The 30/70 split had a lot more data to do pseudo labelling on, and should
therefore give a large increase in performance. On the other hand, the 70/30 split have
more data to train on, and should therefore result in a model that’s better at predicting
on unseen data. This means that the 30/70 split does a worse job of classifying unseen
images, and therefore the pseudo labels are more often wrong as well. These two effects,
the larger amount of pseudo labelling data for the 30/70 split, and the better accuracy of
the 70/30 split model, seems to offset each other, so the effect becomes almost the same.

Another mystery is why this were reported to give a big boost in performance for the
Kagglers. First of, one can not exclude the possibility that some of what was said on the
forums wasn’t true. On the Kaggle platform, there is this concept of public and private
leaderboards. On the public leaderboard the algorithms are only tested on a small part of
the test set. On the other hand all results are available to everyone during the competition.
The private leaderboard only becomes accessible to the contestants when the competition
is finished, and here every algorithm is tested on the entire test-set. It could be that pseudo
labelling worked fine for the public leaderboard, but when the private was published a
lot of the models using heavy pseudo labelling fell down a lot of places without it being
reported on the forums. There was quite a big upset when the private leaderboard was
published, so it could be possible.

A second explanation could lay in the fact that many Kagglers had baseline models
that performed much better than the baseline used in this project. The performance of the
baseline were not the main focus of this project, so the baseline could have been much
better. A better classification result for small amount of training data would lead to a more
significant performance gain for the 30/70 split model.

A third explanation is in how the dataset were presented. For the Kagglers, the dataset
were split 30/70 (C-CORE (2018)), and the contestants had no information about the 70
% of the data that were saved for testing. Unlike in this project, where we could choose to
use the actual labels instead. For the Kagglers it is clearly beneficial to at least get the 2%
increase in classification performance, compared to nothing at all.

5.3 Test-time augmentation

Test-time augmentation gave good results. The best effect was by flipping the pictures,
which gave an 10% decrease in loss, zooming gave a decrease of 10%, rotation and width
shift 6% and height shifting about 5%. This is clearly the best results of any the techniques
that have been tested in this project. This were a surprise to the author, as this were pretty
far from the most discussed technique on the Kaggle forums. In the initial read-trough of
the forums it were only noticed once. None of the top 3 solutions reported using TTA in
their end documentation, but second place winner Beluga said it was something he wanted
to test but didn’t find time to. This experimentation indicates that a loss reduction could
have been possible if using TTA for Beluga and other contestants not using TTA.

The best working augments are pretty equal to that of image augmentation, except
for one big difference. That’s in the flipping/flopping of images. For image augmenta-
tion there were no performance increase when flipping the images, but there were a big
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one when flopping the images. For TTA there were some increase for flopping, but the
biggest increase of all were gained by flipping the images. This means that classifying a
upside-down version of the target alongside the original gives better accuracy than only the
original. This raises many questions, like why did flipping not work for image augmenta-
tion before training, but works so well after, during the classification process? For the time
being, the author does not have the answer to this. It might require further testing. An idea
is to try to do augmentation at both ends at the same time, and see how the classification
responds to that. That way, the network should be trained at recognising the for example
upside down version of an image, so when it is exposed to it at the end it should classify it
even better.

Looking further into the TTA results, the combination of multiple augmentations did
not perform as well as hoped. None of the techniques gave a compounded effect, and
more often than not the effect were worsened. Look at zoom+width as an example. In
combination they gave a relative loss of 0.92. At their own, zoom gave 0.90 and width
shift gave 0.94. This tells us something about how zooming increased the performance
compared to width shifting. Ideally, zooming would give increased performance on, for
example, 10 images, and width shifting on 6 completely different pictures. Then the effect
would compound and the accuracy would increase. The real world experiments shows
that zooming might for example affect 10 pictures, width shifting the same 10 images,
but also negatively affect 4 images. Then the effect of adding width shifting to zooming
is only negative compared to only zooming. This is a simplified example, but illustrates
what might happen. zoom+height also does not compound, but gives better results than
zoom+width, even though height shifting originally gave worse results than width shifting.
This indicates that height shifting has a positive effect on more different images to zooming
than width shifting.
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Chapter

Conclusion and future work

In this project we have looked at how satellite images are made and what’s been done
in the field of iceberg/ship discrimination already. Further, we have looked at machine
learning and how it could be used to solve the problem of classifying icebergs and ships.
We have studied different techniques for mitigating dataset shortcomings, proposed during
the Kaggle competiton hosted by Equinor and C-CORE. These have been presented and
discussed, and a few were chosen for further testing on a state-of-the-art dataset compiled
by C-CORE and Equinor. This testing showed impressively good results for some tech-
niques, like test-time augmentation, while lackluster performance for others, like pseudo
labelling. These experiences will be saved and used in a following master thesis, where a
more complete classifier will be built.

When working with this project, a few ways to continue exploring the project became
apparent. The first way is related to image augmentation, and the fact that adding multiple
augments did not give a compounded performance gain. Because of this, it could be
interesting for further work to look into ensambling a few of the single augmented models,
and see how that performs compared to those trained using multiple augmentations at the
same time. Then one could truly see if the performance gain can be compounded, or if the
gains are closely related to each other. One could also try different augmentations than the
ones used in this project. For example one could could experiment with shearing, the fill-
mode for what to happen with the edges of the pictures, or maybe use larger or different
values for the augments already tested.

Looking at what pseudo labelling could be used for in future work, it could be inter-
esting to see how a model would respond to large amounts of unlabelled data. In this
experimentation we were removing samples from an annotated test-set, only to give the
samples pseudo labels and place them in the training set. If there exists a large collection
of unlabelled iceberg/ship images, or if it could be quite easily constructed, it would be
very interesting to see how the model would respond to pseudo labelling and training on
those samples.

Further work on TTA could be what’s described earlier: testing using both image aug-
mentation on the training data and the test data at the same time. This could give interesting
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and even better results. There is also always possible to test more augmentations. Other
augmentation techniques, or the same but with different parameters.

Machine learning is an ever evolving field of study, with a lot of unexplored potential
use-cases. The case of classifying satellite images is clearly a task well suited for machine
learning, even though a lot of research is still required. Using the power of Kaggle and
crowd sourcing a solution has given a lot of potential ideas towards a useable solution. It
is only a matter of collecting and structuring the information.
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