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Problem Description

A Collision Avoidance (COLAV) System is essential for autonomous systems
which are to operate in complex situations involving dynamic and static obsta-
cles. The autonomous system will have to employ a tracking method to obtain
information about the obstacles. Information uncertainty plays a crucial factor
in this system, and will affect the COLAV performance.

This thesis has the aim of investigating methods for incorporating uncer-
tainty in a COLAV system using the Scenario-Based Model Predictive Control
(SBMPC) approach[19], and see if this yields better performance for the system.
In maritime navigation, uncertainty has many sources. Uncertainty in the asso-
ciation of data to tracks from nearby vessels, uncertainty in the intent of nearby
vessel captains in collision situations and vessel kinematic uncertainty are some
of the inherent challenges which have to be dealt with in a good manner in
Autonomous Surface Vehicles (ASVs). The thesis will mainly deal with kinematic
uncertainty, as a first step in managing uncertainty in a COLAV system. The
main goals of the thesis are the following.

• Perform a literature survey on tracking methods, COLAV algorithms and
collision risk and probability estimation between the own-ship (defined
as the ASV) and obstacles.

• Implement the Scenario-BasedMPC in a simulator together with a tracking
system

• Implement and validate a method for quantifying collision probability
between two objects

• Modify the SB-MPC to also account for collision probability, using the
chosenmethod. Furthermore, performMonte Carlo simulations to validate
the COLAV performance with the implemented modifications
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Abstract

A robust Collision Avoidance (COLAV) system is of paramount importance in
order to ensure safe operation of Autonomous Surface Vessels (ASVs). The
COLAV system is highly dependent on a reliable tracking system to infer and
predict the trajectories of nearby obstacles. Here, uncertainty becomes an
important factor to be dealt with, as sensor systems are never perfect, nor are
all vessel driven equally.

This thesis used obstacle state estimates and the corresponding uncertainty
in the form of error covariances produced by a Kalman Filter, to estimate the
probability of collision of the ASV with obstacles, using Monte Carlo integration
and importance sampling. Two strategies were tested, where only the first was
made to be a working approach. This strategy samples possible straight line
obstacle trajectories and uses the fraction of the number of them crossing a
defined satefy zone around the ASV at the Closest Point of Approach (CPA) as the
probability estimate. Decent results were obtained, but not feasible for real-time
due to long computational times per probability evaluation. This was mainly
because uncertainty in both position and velocity were considered, causing the
need for sampling in 4 dimensions. Here, a minimum number of nmc ,int = 1000
samples should be drawn to have acceptably low variance in the probability
estimate.

The collision probability evaluation method was further used in a proba-
bilistic version of the Scenario-Based Model Predictive Control (SBMPC), where
three different modifications to the latter method’s cost function to account for
collision probability were tested. Simulation results with the suggested modifi-
cations did not give any significant performance gain, but serves as a first-step
in finding better ways of modifying the SBMPC to account for uncertainty.
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Samandrag

Eit robust antikollisjonssystem er viktig for å sørge for sikker styring av au-
tonome overflatefartøy. Dette antikollisjonssystemet er avhengig av eit påliteleg
målfølgingssystem for å halde styr på hindringar i nærleiken. Her er usikkerheit
ein viktig faktor som må handterast, ettersom ingen sensorsystem er perfekte,
ei heller blir alle fartøy køyrt på samme måte.

Dennemasteroppgåva brukte tilstandsestimat for hindringarmed tilhøyrande
usikkerhet representert som kovariansar, til å estimere sannsynet for kollisjon
mellom det autonome overflatefartøyet og hindringane. Eit Kalmanfilter blei
brukt for å produsere estimata og kovariansane. Monte Carlo- integrasjon og
viktigheitssampling blei brukt til utrekning av kollisjonssannsyna. To strategiar
blei her testa, der bare den første var ein fungerande metode. Den fungerande
strategien punktprøver moglege rettlinja banar hindringar kan ta, og brukar an-
delen av dei banane som krysser ein definert sikkerheitssone rundt det autonome
overflatefartøyet ved det nærmaste punktet mellom to objekt med rettlinja rørsle
(CPA), som eit estimat for kollisjonssannsynet. Greie resultat blei oppnådd, men
ikkje gode nok til bruk av metoden i sanntid, på grunn av lang reknetid per
evaluering av kollisjonssannsynet. Her burde eit minimum av nmc ,int = 1000
samplepunkt bli brukt for å få ein akseptabelt låg varians i estimatet av sannsynet.

Evalueringsmetoden for å rekne ut kollisjonssannsynet blei vidare brukt i
ein probabilistisk versjon av den scenariobaserte modellprediktive regulatoren
(SBMPC), der tre forskjellige endringar på kostfunksjonen i den sistnevnte meto-
den, for å ta høgde for kollisjonssannsyn, blei testa. Simuleringsresultat med
dei foreslåtte endringane gav ingen betydelege forbetringar for antikollisjon-
ssystemet, men utgjer eit første skritt på vegen for å finne betre måtar å endre
SBMPC-en på for å ta høgde for usikkerheit.
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Chapter 1

Introduction

1.1 Motivation

Collisions between vehicles occur every year, and can cause significant human
casualties, environmental damage and destruction of property. In the maritime
sector, the European Maritime Safety Agency reported a total of 14002 casualty
events with a ship from 2011 to 2017, in which collisions represented 23.2%
(3248) of the these [10].

In these maritime accidents, humans are estimated to be the main cause of
collision 80% of the time [26]. According to [7] and [32], operational factors such
as lack of experience, competency and situational awareness are detrimental
here. Despite the emergence of advanced navigational aid systems such as radar,
Automatic Identification System (AIS), GPS, radio and navigational sensors, there
is not any evident decrease in maritime accidents [10][39][1].

This gives incentives for the employment of autonomous systems, which can
operate on land, at sea and in the air. An autonomous system is a complex and
intelligent self-governing agent, which through sensory input from its environ-
ment can execute various tasks as commanded. In recent years, low cost sensory
equipment, big data and gradually more effective data processors have made it
possible to realize these systems at a higher degree. By eliminating the human
factor, there is a large room for improvements in the safety aspect. However,
large challenges yet remain for these systems to be trusted and integrated into
our daily lives [36][41].

For Autonomous Surface Vessels (ASVs) [37], the operation is dependent on

1
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a highly reliant and fault tolerant system for Guidance, Navigation and Control
(GNC) . One of the most important aspects of the ASV is the Collision Avoidance
(COLAV) system, which is meant to ensure that the vessel does not collide with
surrounding obstacles in its path. Moreover, the avoidance maneuvers should
comply with The International Regulations for Preventing Collisions at Sea
(COLREGS) [18], which defines a set of rules to follow depending on the type of
situation.

Collision avoidance for ships has been a research topic since the Second
World War [42], and far from all challenges have been solved. One of the main
challenges is related to quantifying the risk and uncertainty for collision between
vessels. A tracking system using for instance radar equipment is typically
employed for the ASV, to monitor the positions of nearby vessels. However,
as there is no such thing as a perfect sensor, uncertainty will be inherent in
the application. In addition, as a vessel can be driven in many ways, there
will be uncertainty related to the intent of the ship commander in a collision
situation, and whether or not the vessel follows COLREGS. This thesis attempts
to incorporate uncertainty, typically from a tracking system, into a COLAV
system, and test if this can improve the performance of the system.

1.2 Previous Work

Numerous approaches for solving the COLAV problem in maritime navigation
have been suggested in recent years, for instance based on evolutionary algo-
rithms [8], neural networks [40] and fuzzy logic [24]. However, these approaches
suffer from bad scalability to situations with increasing number of vessels, and
have only been tested in a simulation environment [21].

State of the art maritime COLAV algorithms today with COLREGS compli-
ance, which have been tested in real-time, includes the Velocity Obstacle (VO)
method [21], the Scenario-Based Model Predictive Control (SBMPC) [19][15]
and grid based path planners using A-star (A*) search [38]. The first method com-
putes a cone (the VO) in the velocity space of the ASV, and selects an own-ship
(the ASV) velocity outside of the cone in order to avoid collision. The second
method evaluates a cost function which penalizes being too close to nearby
vessels, breaching COLREGS, and large deviations from the planned path, for
different control behaviours, selecting the one which yields the minimal cost.
The third method incorporates collision avoidance in a lattice-based path planner
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using A* search [16], which uses the collision probability with nearby vessels in
its cost function.

ASVs with collision avoidance need to have a tracking system to get infor-
mation about the trajectories of nearby vessels. When multiple measurements
are received by the sensor system, false measurements becomes an apparent
problem, in addition to the problem of associating the measurements obtained
at any given time to different tracks/targets. For cases where tracks are well sep-
arated, Probabilistic Data Association Filters (PDAF) [4], which is a single-target
tracking method, can be used for each track. This filter calculates the probabili-
ties of associating any of the obtained measurements to a track at a given time,
and uses these probabilities to weigh the correction term in a Kalman Filter [20].
This method is in general sub-optimal, because it assumes for instance that the
track (target) exists and is initialized, and that all past information about the
target can be summarized as a Gaussian posterior distribution.

Another caveat with the PDAF, is that it assumes that all non-target measure-
ments origin from false measurements which are uniformly spatially distributed
inside the surveillance region of the sensor system, i.e random inference. In cases
where tracks coalesce, due to targets approaching each other, this assumption
will not hold, and we have persistent interference. The Joint Probability Data
Association Filter (JPDAF) solves this problem by calculating the measurement-
to-target association probabilities jointly for multiple targets, when assuming a
known number of targets [2].

Further, the Integrated Probability Data Association Filter (IPDAF) [28] and
Joint Integrated PDAF(JIPDAF) [27] for single- and multi-target tracking, respec-
tively, extends the PDAF/JPDAF to include target existence probabilities, using
Markov chains. An alternative to the JPDAF/JIPDAF, is the Multiple Hypothesis
Tracker (MHT) [35], which considers all possible sequences of measurements
that could origin from a target. At each time sample, the MHT considers three
possibilities for each measurement; that the measurement originated from a
previous track, a new track, or is a false measurement. This method thus includes
track initiation into the algorithm, which is not the case for the JPDAF.

The problem of quantifying risk and probability related to collisions has
been an active research field for a long time, in both the maritime and air
traffic sector. Some previous work on this topic in the marine sector have
focused on using Quantitative Risk Assesment (QRA) models to estimate the
frequency and consequence of collisions [13][25], which use historical data,
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human error statistics and ship dynamics to perform the estimation. Other work
have assessed collision risk by using the closest point-, time- or distance of
approach between two vessels [22][9]. The above mentioned methods suffer
from the fact that no explicit representation of vessel position uncertainty is
included in the assessments.

Recent, more advanced methods for air and maritime traffic, consider the
positional uncertainty of the own-ship and nearby vessels, in addition to a pre-
set safe distance between vessels, and use this to quantify collision probability
[32]. The probability is obtained by integrating the probability distribution over
a conflict zone, which is the overlap between the combined multivariate posi-
tion uncertainty ellipse (in practice the probability distribution) and combined
safety zone of two vessels. The integration is usually approximated, due to its
complexity. For air traffic, the integration is approximated numerically in [23]
and analytically with different assumptions in for instance [33][31].

In this thesis, the collision probability will be calculated using Monte Carlo
integration [6], which is an importance sampling method that uses the proba-
bilistic definition of a variable or function’s expectation to find an approximation
of the integral. The probability evaluation will also consider uncertainty in the
obstacle velocity, which is not accounted for in most of the above previous
work [32][23][33][31]. The collision probability estimate will further be used to
modify the SBMPC method in order to account for obstacle tracking uncertainty.

1.3 Thesis outline

The thesis is organized as follows. Chapter 2 describes the GNC-system and
simple simulator used as a basis for implementing the tracking system and
COLAV-algorithm. Chapter 3 will provide necessary information about the COL-
REGS and the COLAV method used in this thesis. Chapter 4 introduces different
tracking methods to be used in conjunction with the COLAV system. Chapter 5
introduces two ways of quantifying collision probability, where Chapter 6 uses
one of the introduced methods to validate the collision probability for different
examples. Chapter 7 suggest several modifications to be made on the COLAV
method in order to account for collision probabilities, and compares the perfor-
mance for the COLAV system with these modifications to the original method
in simulations. Lastly, Chapter 8 concludes the thesis and presents suggestions
for future work.



Chapter 2

Simulator and GNC System

This chapter provides information about the models used for simulating collision
avoidance scenarios (the simulation environment), in addition to a description
of the Guidance, Navigation and Control system for the own-ship (the ASV),
used as a foundation for implementing the COLAV-system in this thesis.

2.1 Simulation Environment

The simulator uses a 3 Degrees of Freedom (DOF) model for the own-ship vessel
model and Constant Velocity Models (CVM) for nearby vessels (obstacles). These
models are described in Section 2.1.1 and 2.1.2 below, respectively.

2.1.1 Own-ship Model

The 3DOF own-ship model describes the motion of a displacement vessel in
surge, sway and yaw (horizontal motion), and is based on the work in [14]. The
Society of Naval Architects and Marine Engineers (SNAME) notation is used for
forces, moments, velocities and angles, with equations of motion in vectorial
form as in [12]. The model derivation follows the same lines as in [14].

The vessel position in the North-East-Down (NED) coordinate system is
given by η = [x y ψ ]T , whereas its velocity in the BODY-fixed coordinate

system is given as ν = [u v r ]T . The vector τ = [X Y N ]T describes
the generalized forces and moments affecting the ship in surge, sway and yaw.
The equations of motion for the own-ship can then be represented in vectorial

5
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form as [12]

Ûη = R(ψ )ν (2.1a)

M Ûν +C(ν )ν + +D(ν )ν = τ +w (2.1b)

where R(ψ ) is the rotation matrix from the NED frame {n} to the BODY frame
{b}, and is for the horizontal 3DOF model given as

R(ψ ) = Rnb =


cos(ψ ) −sin(ψ ) 0

sin(ψ ) cos(ψ ) 0

0 0 1


(2.2)

This matrix thus represents a rotation of ψ about the NED frame z-axis. The
inertia matrix M consists of the rigid-body mass of the vessel, in addition to
the added virtual mass due to the vessel having to displace surrounding fluid as
it moves through it [12]: M = MRB +MA. The rigid body mass matrix will be
given as

MRB =


m 0 0

0 m 0

0 0 Iz


(2.3)

wherem and Iz are the vessel mass and moment of inertia about the body z-
axis, respectively. Similarly, the coriolis and centripetal matrix C(ν ) can be
decomposed into a rigid body part and an added mass part: C(ν ) = CRB (ν ) +

CA(ν ). The rigid body coriolis matrix is given as

CRB (ν ) =


0 0 −mv

0 0 mu

mv −mu 0


(2.4)

The added mass part for the inertia matrixM and coriolis matrixC(ν ) were set
to zero in [14], and is also done here.

Further, the damping term in the model (2.1) can be decomposed into a linear
and a nonlinear part: D(ν )ν = DLν + DNL(ν )ν . The linear damping matrix DL

is given as
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DL = −


Xu 0 0

0 Yv Yr

0 Nv Nr


(2.5)

where the matrix element values are the linear damping coefficients in each
degree of freedom, for each motion (surge, sway and yaw). The nonlinear
damping part is given by

DNL(ν )ν = −


X|u |u |u |u + Xuuuu

3

Y|v |v |v |v + Xr r rv
3

N|r |r |r | r + Xr r r r
3


(2.6)

The generalized force vector τ can be written as a function of the forces in the
body x- and y-direction, as

τ =


τX

τY

τN


=


Fx

Fy

lr Fy


(2.7)

where Fx and Fy are the forces produced by the own-ship actuators in the x-
and y-direction, respectively. lr is the moment arm between the body z-axis and
the y-direction force’s point of action.

Lastly, the environmental disturbance vectorw is neglected in this thesis, as
is done in [14]. The parameters for this 3DOF model are the same as those used
in [14].

2.1.2 Constant Velocity Model

The trajectories of nearby obstacles (vessels) are often predicted by straight line
motion with constant velocity [19][4][35][2]. The model also may include some
process noise in order to take into account the uncertainty of the prediction. This
is typically done in a tracking system, but control methods such as the SB-MPC
will typically ignore this and use a deterministic model. In the following, the
general CVM with process noise and a measurement model will be presented.

The state vector for the CVM used to model the kinematics of obstacle i is
here given as x i = [x i V i

x yi V i
y ]

T , where x i and yi are the north -and east
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coordinates, and V i
x and V i

y are the north -and east velocities, respectively. The
position of the vessel is assumed measured, such that the model in discrete time
for obstacle i is given as

x ik+1 = Fx ik +v
i
k (2.8a)

zik = Hx ik +w
i
k (2.8b)

where F and H are the transition and measurement matrix, respectively. The
vectorsvi

k is the process noise affecting obstacle i , andw i
k is the measurement

noise affecting the measurement at discrete time instant tk . Lastly, the vector
zik contains the noise corrupted position measurement of obstacle i at time tk
for instance obtained through a radar system or GPS. The transition matrix F is
given as

F =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


(2.9)

where T = tk+1 − tk is the sampling time for the linear prediction, and could be
time varying. The measurement matrix H is given as

H =


1 0 0 0

0 0 1 0

 (2.10)

The process noise and measurement noise are assumed to be zero mean, white,
mutually independent and Gaussian with known covariance matricesQ and R,
respectively. For this model, the process noise covariance is given as

Q = σ 2
a



T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T


(2.11)

where the process noise strength σa is chosen based on the expected maneuver-
ability of the vessel [6]. Note that other prediction- and measurement models
are also possible, for instance the constant turn rate model [5] or the constant
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acceleration model [3] for prediction. In this thesis, the CVM with process noise
and a measurement model as in (2.8) is used in the tracking system, whereas a
deterministic version with full state knowledge is used in the SB-MPC prediction.

2.2 GNC System

A system for guidance, navigation and control enables the automatic control of
devices that move under water, on the surface or in space [12]. The guidance
part enables the vehicle to follow trajectories and paths without direct human
control. The navigation part is responsible for determining the vehicle position
or attitude, velocity and acceleration. Lastly, the control system makes sure
that position/attitude, velocity and acceleration are automatically controlled. In
other words, the GNC system is the autopilot for the vessel.

In this thesis, the own-ship position and velocity are assumed known through
the vessel model from the previous Section. Thus, the navigation part of the
GNC system entails using the vessel model (2.1) to get the current state of the
own-ship. Therefore, only the control system and guidance system are described
in the following two subsections.

2.2.1 The Control System

The own-ship is assumed to have thrusters which produce forces Fx and Fy in
the body x -and y-direction. The controllers implemented in this thesis are the
same as in [14]. A feedback linearizing controller

Fx = −mvr − (Xu + X|u |u |u | + Xuuuu
2)u + Kp,um(ud − u) (2.12)

is used to control the surge speedu of the own-ship, whereud is the desired surge
speed. The headingψ is the other controlled variable, using the PD controller

Fy = Iz
Kp,ψ

lr
((ψd −ψ ) − Kd ,ψ r ) (2.13)

The controller gains are given in Table 2.1, and differ somewhat from [14] due
to different tuning. The tuning is mostly based on trial and error.
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Table 2.1: Own-ship controller gains.

Parameter Value Unit
Kp,u 5.0 s−1

Kp,ψ 5.0 s−2

Kd ,ψ 2.0 s

2.2.2 The Guidance System

Line of Sight (LOS) guidance[12] is used to keep the own-ship on the desired path,
taking in the desired path in the form of waypoints, and outputing the reference
course for the autopilot control system. The LOS law tries to minimize the cross-
track error, which is the distance from the vessel to the path, perpendicular to
the path.

For piecewise straight line paths, which are considered here, the active
straight line segment between two waypoints is considered in the LOS law.
Given twowaypoints in the NED frame, consisting of their Cartesian coordinates:
pnk = [xk yk ]

T and pnk+1 = [xk yk ]
T , the first step in the LOS law is to find

the path-tangential angle αk between north and the path segment given by the
two waypoints:

αk = atan2(yk+1 − yk , xk+1 − xk ) (2.14)

where k here is an index corresponding to the current waypoint, such that k + 1
is the next waypoint to be reached by the vessel. atan2 is the four-quadrant
inverse tangent function. This angle is then used to compute the along-track
error s(t) and cross-track error e(t) defined relative to the path-fixed reference
frame

ϵ(t) =


s(t)

e(t)

 = Rp (αk )
T (pn(t) − pnk ) (2.15)

where

Rp =


cos(αk ) −sin(αk )

sin(αk ) cos(αk )

 (2.16)

The goal of the path-following is thus to achieve e(t) = 0, as this means that
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the vessel has converged onto the straight line segment. For the LOS-law, the
desired course, which ensures vessel convergence onto the path, is computed as

χd (e) = αk + χr (e) (2.17)

where
χr (e) = atan

(
−e

∆

)
(2.18)

is the velocity-path relative angle. atan is the inverse tangent returning values in
the interval [− π

2 ,
π
2 ]. The lookahead distance ∆ > 0 determines how aggressive

the steering towards the path becomes. Further, as the vessel approaches the
next waypoint pnk+1, the inequality

(xk+1 − x(t))2 + (yk+1 − y(t))
2 ≤ R2

a (2.19)

is used to switch between straight line segments, i.e. incrementing the current
waypointpnk topnk+1. Here, Ra is the radius of acceptance, whose circle the vessel
has to be within for the switching to activate. The LOS law parameters were
here chosen to the values given in Table 2.2, again mostly based on trial and
error.

Table 2.2: Guidance law parameters.

Parameter Value Unit
∆ 100.0 m
Ra 20.0 m

As the environmental disturbance vectorw were assumed neglected in the
vessel model from Section 2.1.1, the desired headingψd for the heading controller
in Section 2.2.1 is taken directly as χd here. If this assumption did not hold in
the simulator, crab-angle compensation or a LOS law with integral action could
be implemented to account for non-zero environmental disturbances [12].
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Chapter 3

COLREGS and SBMPC

This chapter provides the necessary background regarding the relevant COL-
REGS rules and the COLAV algorithm SBMPC, used in this thesis. A small
section about Model Predictive Control is also given, for the readers unfamiliar
with optimization based control.

3.1 InternationalRegulations for PreventingCol-
lision at Sea

The International Regulations for Preventing Collision at Sea (COLREGS) define
a set of "rules for the road" for vessels to follow, and was published by the
International Maritime Organization in 1972 [18]. The rules in the COLREGS
from Section B about steering and sailing have most relevance for this thesis,
and these will be briefly described here. Only rules 8(b and d), 13, 14, 15, 16 and
17 will be introduced. These rules specify actions for a vessel to take in different
collision situations, depending on its classification as a give-way or stand-on
vessel.

3.1.1 Description of Rules

The following descriptions are mostly taken from [18].

13
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Rule 8 - Action to Avoid Collision

Actions taken by a vessel in order to avoid collision should be made in good
time and be clearly visible (8b), and the action should result in passing at a safe
distance from the other vessel (8d).

Rule 13 - Overtaking

A vessel A is said to be overtaking if it is approaching another vessel B from
a direction more than 22.5 degrees abaft of vessel B. Moreover, the overtaking
vessel shall keep out of the way of the vessel being overtaken. The situation is
depicted in Figure 3.1.

22.5◦ 22.5◦

Figure 3.1: Overtaking situation, with green as the overtaking vessel. The correct
behavior for the overtaking vessel is shown by the dashed arrows.

Rule 14 - Head-on Situation

If two vessels see each other ahead or nearly ahead and are approaching each
other, the vessels shall alter their course to starboard such that the other vessel
is passed on the port side. This is illustrated in Figure 3.2.
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Figure 3.2: Head-on situation, with the correct behavior for the vessels shown
through the dashed arrows.

Rule 15 - Crossing Situation

When two vessels are in a crossing situation, the vessel which has the other
on her starboard side shall keep out of the way, and avoid crossing ahead of
the other vessel if the circumstances of the situation allow it. The situation is
illustrated in Figure 3.3.

Figure 3.3: Crossing situation, with the correct behavior for the give-way vessel
shown with the dashed arrow.
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Rule 16 - Actions by Give-way Vessel

Vessels which are directed to keep out of the way of other vessels shall take, if
possible, early and substantial actions to keep well clear of the other vessels.

Rule 17 - Actions by Stand-on Vessel

One of the two vessels in a possible collision situation shall keep out of the
way of the other (give-way vessel), whereas the other shall keep her course and
speed (stand-on vessel). The stand-on vessel may take action to avoid collision
if it becomes apparent that the give-way vessel does not do so according to the
Rules.

3.2 Model Predictive Control

Model Predictive Control (MPC) is an optimization-based technique which
employs a plant model to solve a finite horizon open loop control problem
using the current plant state or measurement as initial condition. This results
in an optimal input sequence for the horizon from t ′ to t ′ + N , where t ′ is the
current time and N is the prediction horizon. Here, the first control input in this
sequence is used at the current time as input to the system. This optimization is
then performed at each sampling instant. The method is displayed in Figure 3.4.

Figure 3.4: Illustration of the MPC principle [11].
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3.3 Scenario-Based Model Predictive Control

The SBMPC [19][15] is a COLAV algorithm based on MPC which evaluates a cost
function for a finite set of own-ship control behaviors or so-called scenarios, and
chooses the scenario which yields the minimum cost over all nearby obstacles
and over the entire prediction horizon. Models of the own-ship and obstacle
kinematics are used as equality constraints for the prediction part, typically
the ones described in the previous Chapter, from Section 2.1. The deterministic
version of the Constant Velocity Model (CVM) is used for predicting the obstacle
motion, i.e. the measurement model and process noise are disregarded, and the
state is propagated using only the transition matrix F :

x ik+1 = Fx ik (3.1)

The LOS-law from Section 2.2.2 is also used in the prediction. Alternatively, a
transitional cost could be included in the SBMPC to fully decouple the guidance
strategy from the COLAV system, as in [15]. Moreover, effects from wind, waves
and ocean current can also be taken into account, but will not be done here.

The control behaviors specify offsets in desired course and surge speed from
the nominal references as produced by the guidance system, and the optimal
offsets are chosen in order to minimize the risk of collision, path deviation and
in addition comply to the COLREGS. The SBMPC thus evaluates the hazard
for each scenario and obstacle over the prediction horizon. The algorithm is
summarized in Figure 3.5.
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Figure 3.5: Summary of the collision avoidance control algorithm [19].

Architecture

The position of the SBMPC COLAV method in the GNC-system for the ASV is
shown in Figure 3.6, which shows an apparent decoupling between the COLAV
system and the mission planning and steering parts of the ASV. This allows for
easy modification and reusability of the COLAV method across different GNC
architectures. The inputs to the SB-MPC are predicted obstacle positions and
velocities possibly with associated error covariances from the tracking system
(see Chapter 4), own-ship navigational information and references for course
and speed from the mission planner. The outputs consists of offsets χm and um
to course and speed, respectively. The modified references χc = χd + χm and
uc = udum are fed into the ASV autopilot, where χd and ud are the original
course and surge speed references from the mission planner, respectively.
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Figure 3.6: Block diagram illustrating the information flow between the main
modules in the system [19].

Control Behaviors

The set of control behaviors typically used, are given below [19]

• Course offsets χm ∈ {−90,−75,−60,−45,−30,−15, 0, 15, 30, 45, 60, 75, 90}
degrees.

• Full stop in forward speed, slow forward and nominal propulsion (keep
current speed), i.e um ∈ {0, 0.5, 1}.

which sums up to 13 · 3 = 39 scenarios. Ideally, one should investigate all control
behaviors at each sample time in the SBMPC prediction, as in a traditional MPC.
However, this will quickly make the real-time implementation infeasible, as the
computational demand increases substantially. For instance, with 5 changes in
control behavior over the prediction horizon, the amount of scenarios to evaluate
grows to 395 = 90224199. Thus, the control behavior is therefore assumed fixed
over the horizon.

Risk of Collision

The hazard of collision is included in the cost function, and is given by the
collision risk factor Rk

i (t) multiplied by the cost of collision Ck
i (t) associated

with obstacle i in scenario k at time t . The risk factor is defined as

Rk
i (t) =


1

|t−t0 |
p

(
dsaf ei
dk0,i (t )

)q
, if dk0,i (t) ≤ d

saf e
i .

0, otherwise
(3.2)
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where t0 is the current time and t > t0 is the current time in the prediction. The
exponent q ≥ 1 and distance dsaf ei are chosen large enough such that COLREGS
Rule 16 from 3.1.1 is satisfied. The value of p ≥ 1

2 weights the importance of
time until the event of collision occurs. Further, the cost of collision Ck

i (t) is
given by

Ck
i (t) = Kcoll

i

vk
0 (t) −vk

i (t)
2

(3.3)

which essentially is a scaling of the kinetic energy given by the relative velocity
between the own-ship and obstacle i . Here, Kcoll

i is the cost scaling factor,
possibly dependent on the type of obstacle and its size.

COLREGS Satisfiability

In order to penalize breaching the COLREGS, one must first determine the type of
collision situation, given that the nearby obstacle is within a predefined distance
dclose . To comply to the COLREGS, the rules from Section 3.1.1 must be satisfied.
The following inequality tests are used to determine the situation at time t

in scenario k , which is given by the boolean variables CLOSE, OVERTAKEN,
STARBOARD, HEAD-ON and CROSSED:

• An obstacle i is said to be CLOSE if

dk0i (t) ≤ dclose (3.4)

• The own-ship is said to be OVERTAKEN by obstacle i if

vk
0 (t)

Tvk
i (t) > cos(68.5◦)

vk
0 (t)

 ·vk
i (t)

 (3.5)

and in addition the obstacle is CLOSE and has higher velocity than the
own-ship, i.e.

vk
0 (t)

 < vk
i (t)

. Here, vk
0 (t) and v

k
i (t) are the velocity

vectors of the own-ship and obstacle i in the horizontal plane, respectively.

• Obstacle i is said to be STARBOARD to the own-ship, if

∠Lki (t) ≥ ψ k (t) (3.6)

where Lki (t) is the unit LOS-vector from the own-ship to obstacle i , and
ψ k (t) is the own-ship heading.
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• Obstacle i is said to be HEAD-ON if

vk
0 (t)

Tvk
i (t) < −cos(22.5◦)

vk
0 (t)

 ·vk
i (t)

 (3.7a)

vk
0 (t)

TLki (t) > −cos(15◦)
vk

0 (t)
 (3.7b)

holds, and if it is CLOSE and the obstacle speed
vk

i (t)
 is not close to

zero.

• Obstacle i is said to be CROSSED if it is CLOSE and

vk
0 (t)

Tvk
i (t) < cos(68.5◦)

vk
0 (t)

 ·vk
i (t)

 (3.8)

The angles not associated with overtaking can in general be adjusted based on
the type of obstacle, velocity and so on. Then, using the above defined boolean
variables, a binary indicator µki ∈ {0, 1} determines whether Rule 14 or 15 in the
COLREGS are violated between the own-ship and obstacle i in scenario k , given
as

µki = RULE14 or RULE15 (3.9)

where
RULE14 = CLOSE & STARBOARD & HEAD-ON (3.10a)

RULE15 = CLOSE & STARBOARD & CROSSED

& NOT OVERTAKEN
(3.10b)

Rule 13 is also included here, as it states that the overtaking vessel shall keep
out of the way.

Path Deviation Cost and Grounding Cost

As the offsets will lead to a deviation from the references set by the LOS-law,
the term

f (χm,um) = Kum (1 − um) + Kχ χ
2
m + K∆um (um − um,last )

+ K∆χ (χm − χm,last )
(3.11)
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penalizes this behavior. Here, Kum , Kχ , K∆um and K∆χ are penalty parameters.
In [14] it was suggested to use different cost on the terms in (3.11) depending on
whether a port or starboard turn is made, in order to help assuring compliance
with the COLREGS. This gives the modified path deviation cost

f (χm,um) = Kum (1 − um) + Kχ (χm) + ∆um (um,um,last )

+ ∆χ (χm, χm,last )
(3.12)

where

Kχ (χm) =


Kχ ,portχ

2
m, if χm < 0.

Kχ ,starboardχ
2
m, otherwise

(3.13)

and
∆um (um,um,last ) = K∆um

��um − um,last
�� (3.14)

,

∆χ (χm, χm,last ) =


K∆χ ,port χ

2
m, if χm < 0.

K∆χ ,starboard χ
2
m, otherwise

(3.15)

are the new penalty parameters. This path deviation cost is used here. The cost
for port turn is here larger than for starboard, which ensures the correct behavior
in the SBMPC. A grounding cost д(·) can also be included in the cost function,
which quantifies penalty based on information about the nearby environment,
from an electronic map or possibly own-ship sensor data.

The Cost Function

The hazard or cost Hk (t0) associated with scenario k at current time t0 is given
as

Hk (t0) = max
i

max
t ∈D(t0)

(Ck
i (t)R

k
i (t) + κiµ

k
i (t))

+ f (χm, χm,last ,um,um,last ) + д(·)
(3.16)

where D(t0) = {t0, t0 +Ts , ..., t0 +T } contains the discrete sample times in the
prediction from the current time t0, where Ts is the sample time and T is the
prediction horizon. Lastly, κi is a tuning parameter for the COLREGs cost term.

The optimal scenario which yields minimal hazard is then found on 5 − 10
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minute intervals as

k∗(t0) = arg min
k

Hk (t0) (3.17)

after the hazard of all scenarios have been evaluated. The parameter values for
the SBMPC used in this thesis are given in Table 3.1.

Table 3.1: SBMPC parameters used in the thesis.

Parameter Value Unit
T 150 s
Ts 0.05 s

d
saf e
i 40.0 m

dclose 200.0 m
p 1.0
q 4.0

Kcoll
i 0.5
κi 3.0
Kum 2.5
K∆um 2.0
Kχ ,port 1.8

Kχ ,starboard 1.5
K∆χ ,port 1.2

K∆χ ,starboard 0.9

The parameters differ slightly from those used in [14], due to different tuning,
again mostly based on trial and error.
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Chapter 4

Tracking Methods

In this chapter, a selection of single- and multi-target tracking methods are
introduced. A tracking method utilize the information obtained by the own-ship
sensor system in order to produce an estimate of nearby obstacle/target positions
and velocities, often in addition to some measure of the estimate uncertainty.
These estimates produced by a tracking system are vital for use in a COLAV
system, where it is paramount to keep track of the obstacles, be it static or
dynamic ones.

The Kalman Filter (KF) is introduced as the first single target trackingmethod,
with the Probability Data Association Filter (PDAF) and its Integrated version
(IPDAF) derived afterwards, mainly based on [2],[28] and [6], with some deriva-
tions from [43].

The multi-target tracking methods introduced are the Joint Integrated Proba-
bility Data Association Filter (JIPDAF) and Multiple Hypothesis Tracker (MHT),
with derivations mainly based on [2], [27] and [6]. A slightly different notation
from the sources mentioned above are used in the derivation of the tracking
methods, with the index j used for the measurement number, which is preserved
for i in the literature. However, the index i is preserved for the obstacle number
in this thesis.

Radar systems are often used by vessels to detect nearby obstacles, which
sends out beams of radio waves in 360 degrees covering its surveillance region.
When nearby obstacles reflect these waves, the time of return and direction of the
reflection can be used to determine the obstacle position. However, as the radio
waves can be reflected of irrelevant entities such as water and clouds, so-called

25
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clutter or false measurements will be a challenge here. In addition, because the
reflected signals need to be above a certain threshold in order to pass on as valid
measurements, there will be false alarms originating from for example noisy
measurements. Thus, at each sampling instant or scan k , multiple measurements
Z (k) = {z jk }

m′
k

j=1 can be obtained, which can originate from multiple targets or
from clutter. Here,m′

k is the total number of measurements obtained at sampling
instant k . This give rise to the problem of associating measurements to each
target, which require more complex tracking methods than the Kalman Filter
in order to have good performance, one of them being the PDAF. The extra
uncertainty from data association is also a challenge that need to be dealt with
in a COLAV system for an ASV.

4.1 The Kalman Filter

The Kalman Filter was introduced in 1960 by Rudolf E. Kálmán [20], and is an
optimal recursive estimator in the sense of minimal variance. The estimator can
be derived by solving a least squares optimization problem, or by maximizing
the conditional probability density p(xk |z0, z1, ..., zk ), using the measurements
z from an initial time t0 up to the current time tk [34]. The Kalman filter is said
to be optimal in the Bayesian sense if the following criteria are satisfied

• The system is linear

• The system is observable

• The initial state x0 is normally distributed with a known mean and covari-
ance

• The proess noisev and measurement noisew are independent zero mean
white noise processes with covariance matrices R andQ , respectively.

The KF uses one measurement at each sampling instant for its estimate update,
and thusm′

k = 1. In general, the covariance matrices R and Q can vary with
time. As a result of the given optimality criteria, the conditional probability
density p(xk |z0, z1, ..., zk ) is a multivariate Gaussian, where the expectation and
covariance are updated through the Kalman Filter. A multivariate Gaussian can
be described by
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N(x ; µ, Σ) =
1

|2π |
nx

2 |Σ|
1
2
e−

1
2 (x−µ)

T Σ−1(x−µ) (4.1)

where µ and Σ are the mean and covariance of the distribution, respectively,
and nx is the dimension of x . Further, the noise covariance matrices should also
have proper values for the KF to be optimal.

When k = 0, the KF is initialized with

x̂k |k−1 = x̄0 (4.2a)

Pk |k−1 = P̄0 (4.2b)

where x̂k |k−1 and Pk |k−1 are the a priori state estimate and estimation error
covariance, respectively. x̄0 and P̄0 are the a priori initial state and error covari-
ance, respectively. These variables are obtained through process knowledge,
data, or just by guessing. A highly uncertain initial guess for x̂k |k−1 corresponds
to a large Pk |k−1. Upon arrival of the first measurement, the estimate and er-
ror covariance are updated respectively through the Kalman gain and Ricatti
equation

Kk = Pk |k−1H
T (HPk |k−1H

T + R)−1 (4.3a)

x̂k |k = x̂k |k−1 +Kk (zk − ẑk |k−1) (4.3b)

Pk |k = (I −KkH )Pk |k−1(I −KkH )T +KkRK
T
k (4.3c)

Kk is here the Kalman gain at time instant tk , which blends the measurement
and process noise covariances to update the a posteriori estimate x̂k |k using the
new measurement zk . Pk |k is the a posteriori error covariance, updated through
the recursive Ricatti equation. Moreover, ẑk |k−1 = Hx̂k |k−1 is the predicted
measurement at time tk . Before the next time step tk+1, the new a priori estimate
and error covariance are projected ahead using the estimation model

x̂k+1 |k = Fx̂k |k

ẑk |k = Hx̂k |k
(4.4)

which yields the prediction part

x̂k+1 |k = Fx̂k |k (4.5a)
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Pk+1 |k = FPk |kF
T +Q (4.5b)

4.2 The PDAF

When the number of measurements m′(k) obtained at sampling instant k is
greater than 1, the problem of determining which measurements originated
from which target arises, i.e. the so-called data association problem. In this
situation, assuming the target track has been initialized, the KF needs some extra
logic in order to determine which measurement to use in its update, for instance
by choosing the measurement closest to its predicted measurement ẑk |k−1, in
a nearest-neighbour fashion. However, whenever the closest measurement is
clutter, the performance of the KF can quickly degrade. The PDAF solves this
problem by calculating the probability that measurement j is associated with
the target, using the following assumptions [2]

• Only one target of interest exists.

• The track of the target has been initialized.

• The past information about the target can be summarized by the statistic

p(xk |Z
k−1) = N(xk ; x̂k |k−1, Pk |k−1) (4.6)

whereN(xk ; x̂k |k−1, Pk |k−1) is the multivariate Gaussian described in (4.1),
with mean and covariance x̂k |k−1 and Pk |k−1, respectively. Moreover,
Zk−1 = {Z (l)}k−1

l=1 is the cumulative set of measurements from sampling
instant 1 up to k − 1.

• At each sampling time, a validation region (gate)

ν jT
k S−1

k ν j
k ≤ γG (4.7)

is set up around the current measurement prediction ẑk |k−1, where γG is
the gate threshold and Sk = HPk |k−1H

T + R is the predicted innovation
covariance of the single obstacle/target. Moreover, ν j

k = z jk − ẑk |k−1

is measurement innovation j. All measurements z jk inside the region
are validated, and considered as possibly target-originated. A total of
0 ≤ mk ≤ m′

k measurements are validated at each sampling instant k .
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• Among the validated measurements, at most one of them can be target
originated. The rest are assumed to be caused by clutter or false alarms,
and are modelled as independently identically distributed (i.i.d), uniformly
distributed inside the validation space.

• The target is detected with known probability PD , independent of time.
Thus, the target generates a measurement zk with probability PD .

The value of the gate threshold γG is determined through the inverse cumula-
tive χ 2 distribution with nz degrees of freedom, where nz is the measurement
dimension. It is often chosen such that measurements are gated with a high
probability PG ≥ 0.9.

The PDAF updates the state estimate and covariance in the same fashion
as the KF, with the difference in that the innovation used in the update part
is blended with the association probability β jk of each validated measurement
being target originated, or that none was target originated for j = 0. To find the
association probabilities, the association hypothesis

θ jk =


z jk is the target originated measurement, j = 1, 2, ...,mk

no measurement originated from the target, j = 0
(4.8)

is defined. Then, the posterior mean x̂k |k can be written as

x̂k |k = E[xk |Z
k ]

=

mk∑
j=0

E[xk |θ
j
k ,Z

k ]P(θ jk |Z
k )

=

mk∑
j=0

x̂ j
k |kβ

j
k

(4.9)

using the total probability theorem. The association probabilities β jk = P(θ jk |Z
k )

are given below in (4.15). Then, the update part of the filter is given by [2]

Kk = Pk |k−1H
T S−1

k (4.10a)

x̂k |k = x̂k |k−1 +Kkνk (4.10b)
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νk =
mk∑
j=1

β jkν
j
k (4.10c)

Pk |k = β
0
kPk |k−1 + (1 − β0

k )P
c
k |k + P̃k (4.10d)

where the covariance Pck |k in (4.10d) is associated with the state update using
the correct measurement:

Pck |k = Pk |k−1 +KkSkK
T
k (4.11)

and the last term in (4.10d) is the spread of the innovations, given as

P̃k = Kk

mk∑
j=1

(β jkν
j
kν

jT
k − νkν

T
k )K

T
k (4.12)

One can see from (4.10d) that if the association probability of no measurement
being target originated is β0

k = 1, the state covariance is not updated, and
Pk |k = Pk |k−1. Otherwise, the effect of having multiple validated measurements
and data origin uncertainty is seen through an increase of P̃k in the posterior
state covariance Pk |k .

To find the association probabilities, a model of the clutter measurements
is needed. The clutter measurement distribution can be modelled as a Poisson
model with clutter density λ:

µF (mk ) = e−Vk λ
(Vkλ)

mk

mk !
(4.13)

where Vk is the volume of the validation region, given as

Vk = cnx
��γGSk �� 1

2 , c1 = 2, c2 = π , c3 =
4π
3
, ... (4.14)

where nx is the dimension of the target (obstacle) state vector. The a priori
clutter density λ is replaced with mk

Vk
when the non-parametric clutter model is

used. For the parametric case, the density λ is either estimated or determined a
priori. The resulting association probabilities β jk when using the diffuse prior
model are shown here, and can be found as [43]

β jk =


1
c1
e−

1
2ν

jT
k S−1

k ν jk , j = 1, 2, ...,mk .

1
c1

2(1−PDPG )

γG
mk , j = 0

(4.15)
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where c1 is a normalization constant such that
∑mk

j=0 β
j
k = 1.

This filter can be used reliably also in multi-target scenarios, if the targets
are far enough from each other such that their PDAF validation gates do not
overlap. Due to its recursive form, and it being an extension to the KF, the filter
is fast and computationally efficient, although in general sub-optimal.

4.3 The IPDAF

The Integrated Probability Data Association filter proposed by Darko Musicki
in 1994 [28] extends the PDAF to include target existence probability, which
relaxes the PDAF assumption that the target must exist. For the IPDAF, the
target exist at sampling instant k with posterior probability ϵk , and does not
with probability 1−ϵk [6]. To include the target existence into the filter, the state
vector is extended with a discrete variable indicating whether the target exists or
not. This variable can then be used in the tracking system as a binary decision
to choose whether or not to terminate the track. The existence probability is
propagated using Markov chains, where the type of chain to be used can vary
based on if the track is in its initiation phase, or in the maintenance phase
[28]. The first Markov chain is stated here, which only includes whether or not
the target exists at time tk or not. The other Markov chain also includes the
possibility that the target may or may not be observable at the current time
instant.

The IPDA-algorithm can be decomposed in 5 steps [6]: existence probability
prediction, state prediction, calculate association weights, state update and existence
probability update. Existence probability prediction using the first Markov chain
is given by 

ϵk+1 |k

1 − ϵk+1 |k

 =

p11 p12

p21 p22



ϵk

1 − ϵk

 (4.16)

where ϵk |k−1 is the a priori existence probability for the next time instant, and
ϵk is the a posteriori existence prbability at time tk . The coefficients in the
prediction matrix satisfy p11 + p12 = p21 + p22 = 1.

Further, using the following quantity (see [28] or [6] for the derivation)

δϵk = PDPG + PDPG
1
λ

mk∑
j=1

p(z jk |Z
k−1) (4.17)
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where p(z jk |Z
k−1) = N(z jk ; ẑk |k−1, Sk ) is the a priori likelihood function for

measurement j and λ is the clutter density, the existence probability update
becomes

ϵk =
1 − δϵk

1 − δϵkϵk |k−1
ϵk |k−1 (4.18)

With the target existence included in the filter framework, the association prob-
abilities β jk then becomes [28]

β jk =


1−PDPG

1−δ ϵk
, j = 0

PDPG 1
λ p(z

j
k |Z

k−1)

1−δ ϵk
, j = 1, 2, ...,mk

(4.19)

4.4 The JIPDAF

In situations with multiple targets relatively close to each other such that their
validation gates overlap [6], the performance of the PDAF/IPDAF will degrade,
as all except at most one validated measurement are modelled as random infer-
ence (clutter). In this case, with other targets being present in close vicinity of
each other, persistent interference will occur, and not only random inference.
The multi-target extension of the PDAF; the Joint Probability Data Association
Filter, solves this problem by considering hypotheses or joint association events
which corresponds to all possible feasible combinations of which validated mea-
surements that originated from which target. Moreover, the Integrated version
(JIPDAF) incorporates track existence probabilities into the filtering framework
in a similar manner as for the IPDAF.

Figure 4.1 gives an illustration of the problem when the tracks from two
targets t = 1 and t = 2 coalesce, causing the validation gates around the predicted
measurements to overlap. Using a PDAF in this situation for the two targets
shown, can cause problems, due to the filter assumption that all measurements
not target originated are clutter. The probability that the measurement present in
the validation region of both targets is classified as either clutter or as originated
from target 1 or 2 must now be calculated.
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Figure 4.1: JPDAF state estimation update where the new position estimate of
target 1 ẑ1

k |k is weighted based on the distance from the validated measurements
z jk to the predicted position ẑ1

k |k−1 and the possibility of them originating from
another target. Notice that the closest measurement z3

k is weighted significantly
less than the other measurements. This is because this measurement is much
closer to another target estimate ẑ2

k |k−1 [17].

The assumptions underlying the JIPDAF are given below

• Measurements can occur inside of the validation region of multiple neigh-
bouring targets over many sampling instants, causing the persistent inter-
ference.

• Past information about each target state is (as in PDAF) summarized by
an approximate statistic, which gives the mean and covariance of each
target/track state.

• The past information is normally distributed with known mean and co-
variance

• Each target has a model as in (2.8), where the same model need not be
used for all targets.

• Each target t is detected with known probability P tD , independent of time.
Thus, the target generates a measurement zk with probability P tD .

• Each track validates measurements inside its validation region with prob-
ability P tG , in the same manner as for the PDAF. Validated measurements
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inside overlapping validation regions from neighbouring tracks are clus-
tered (see third paragraph below).

As one can see, many of the points are similar or equal to that in the PDAF/IPDAF.
The main improvement from the IPDAF to the JIPDAF is the evaluation of the
measurement-to-target joint association probabilities based on joint events,
which are computed jointly for all targets. As for the IPDAF, the probabilities are
computed only based on the latest set of measurements, and the state estimation
is done separately for each target t . A coupled estimation approach is described
in [2], for the interested reader. The a posteriori state estimate and covariance
for target t are here denoted by x̂ tk |k and P tk |k , respectively, and similarly for the
a priori entities.

In a similar manner, the existence probabilities ϵtk for each target t =
1, 2, ...,nt are maintained in the JIPDAF, with the existence prediction again
following (4.16). The number of targets nt varies depending on whether on not a
track is terminated or initialized, where the termination can be made on a basis
of the target existence probabilities. Initialization of tracks can be done using
for instance the 2/2&m/n logic [2].

To prevent computational overflow in evaluating association probabilities,
overlapping validation regions from multiple tracks (as in Figure 4.1) or tracks
with separated validation regions can form clusters in the JIPDAF. For each
cluster, there is a set ofmk validated measurements, and a joint event defines
a possible assignment of these measurements to the cluster targets, with the
assumption of maximum one target-originated measurement. Thus, the associa-
tion hypothesis is here redefined as a vector θk = [θk (1) θk (2) ... θk (nt ) ]

T

[6] where

θk (t) =


j, if measurement j is claimed by target t

0, if no measurement is claimed by target t
(4.20)

for j = 1, 2, ...,mk . The set of all association hypotheses for each cluster are
mutually exclusive and exhaustive. The posterior joint association probabilities
are found via Bayes’ formula as

P(θk |Z
k ) = P(θk |Zk ,mk ,Z

k−1)

=
1
c2
p(Zk |θk ,mk ,Z

k−1)P(θk |mk )
(4.21)



4.4. THE JIPDAF 35

where c2 is a normalization constant, and where one has used that the asso-
ciation hypothesis θk is only conditionally dependent on the current number
of measurementsmk . Denoting φ as the number of clutter measurements hy-
pothesized by the event θk , the first term in the product of (4.21), which is the
likelihood of the measurement function, is found using the total probability
theorem, conditioned on every target state x t ,θk (t )k under the hypothesis θk (t),
as [6]

p(Zk |θk ,mk ,Z
k−1) =

1
V
φ
k

∏
t :θk (t )>0

N(zθk (t )k ;Hx̂ t ,θk (t )k ,HP t ,θk (t )k HT + R) (4.22)

where

x̂ t ,θk (t )k =


x̂ tk |k−1 if θk (t) = 0

x̂ tk |k−1 +K
t
k (z

θk (t )
k −Hx̂ tk |k−1) if θk (t) > 0

(4.23)

and

P t ,θk (t )k =


P tk |k−1 if θk (t) = 0

(I −K t
kH )P tk |k−1(I −K t

kH )T +K t
kRK

t ,T
k if θk (t) > 0

(4.24)

are the state estimate and error covariance of target t conditioned under the
hypothesis θk (t). The likelihood (4.22) says that the clutter measurements are
uniformly distributed in the validation region volume Vk , whereas the target-
originated measurements come from Gaussian distributions.

Further, the following track-oriented configuration vector is now defined [6],
as a step in finding the last term in the product of (4.21): τc = [τc (1) ... τc (nt ) ]

T ,
which is not to be mistaken as the generalized force vector from Section ??. This
vector of binary elements encode information about which targets that are
detected under the association hypothesis θk , although which measurements
these detections correspond to are not given. The element τc (t) = 1 if target t is
detected, and 0 otherwise. Thus, the following relation is established between τ ,
φ andmk :

mk = φ +
nt∑
t=1

τc (t) (4.25)
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The unconditional probability of the eventτc , when including the target existence
framework of the JIPDAF, is given as

p(τc ) =
∏

t :θk (t )=0

(1 − P tDP
t
Gϵ

t
k |k−1)

∏
t :θk (t )>0

P tDP
t
Gϵ

t
k |k−1 (4.26)

Further, the following probabilities conditioned on τc

P(mk |τc ) = e−Vk λ
(Vkλ)

φ

φ!
(4.27)

P(θk |τc ,mk ) =
φ!
mk !

(4.28)

are used. The first probability comes from the fact that, among the remaining φ
measurements not assigned in τc , the rest must be from clutter, which here are
distributed through a Poisson model. The latter probability (4.28) is due to the
existence ofmk !/(mk −

∑
t τc (t))! =mk !/φ! equally likely permutations of the

detected measurements, given τc . Thus, the latter term in the product of (4.21)
is found using Bayes’ formula as

p(θk |mk ) = p(θk ,τc |mk )

=
1
c3
p(θk |τc ,mk )p(mk |τc )p(τc )

=
1
c3
e−Vk λ

(Vkλ)
φ

mk !

∏
t :θk (t )=0

(1 − P tDP
t
Gϵ

t
k |k−1)

∏
t :θk (t )>0

P tDP
t
Gϵ

t
k |k−1

∝
∏

t :θk (t )=0

(1 − P tDP
t
Gϵ

t
k |k−1)

∏
t :θk (t )>0

P tDP
t
Gϵ

t
k |k−1

(4.29)

again where c3 is a normalization constant. This gives the posterior joint associ-
ation probabilities [2][27][6]
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p(θk |Z
k ) =

1
c4
µF (φ)

φ!
mk !

V
−φ
k

∏
t :θk=0

(1 − P tDP
t
Gϵ

t
k |k−1)∏

t :θk>0

P tDP
t
Gϵ

t
k |k−1N(zθk (t )k ;Hx̂ t ,θk (t )k ,HP t ,θk (t )k HT + R)

∝
∏

t :θk=0

(1 − P tDP
t
Gϵ

t
k |k−1)∏

t :θk>0

P tDP
t
Gϵ

t
k |k−1N(zθk (t )k ;Hx̂ t ,θk (t )k ,HP t ,θk (t )k HT + R)

(4.30)

with normalization constant c4. Finally, the probabilities for all joint events
where a measurement z jk is associated with each target t , t = 1, 2, ...,nt , are
summed, giving the marginal association probabilities

β t , jk =
∑

θk :θk (t )=j
p(θk |Z

k ) (4.31)

These are applied in the decoupled target state estimation (4.10) (replaces β jk )
for each target t , in exactly the same manner as for the single-target PDAF.

4.5 The MHT

The Multiple Hypothesis Tracker proposed by Donald B. Reid in 1979[35] de-
velops association hypotheses by considering all possible sequences of mea-
surements (i.e all hypothesized tracks), and calculates all the corresponding
association probabilities. This causes an exponential increase in complexity
with time, and several methods for mitigating this problem are used in practice.
Methods used for complexity reduction are pruning of low probability hypothe-
ses, merging of similar hypotheses and clustering of tracks. Each sequence of
measurements or hypothesized track is updated and propagated in time using a
Kalman Filter as described in Section 4.1.

A thing that separates MHT from the approaches described in the previous
sections, is that it is measurement-oriented. The MHT evaluates the probability
that a certain measurement sequence originated from either an established
target or a new target. On the other hand, the PDAF/JPDAF are target-oriented
approaches, which evaluate the probability that measurements origin from a
specific target. Because of this feature in the MHT, track initiation can easily
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be included in its algorithm. The derivation of this tracker can for instance be
found in [2] or [6].

4.6 Remark

Several methods were here introduced for tracking obstacles, with different
levels of complexity. As mentioned in the Problem Description, this thesis only
deals with kinematic uncertainty and sensor precision uncertainty, as a first step
of incorporating uncertainty into a COLAV method. Thus, the simplest of the
methods introduced here will be used as a tracking method in the rest of this
thesis, namely the Kalman Filter.

The reason why the other methods were described, is to give an introduction
to the multi-target tracking problem and the data association problem, which
come with extra challenges to be solved in future work.



Chapter 5

Collision Probability
Evaluation Methods

In Chapter 3, it was shown how the SBMPC defines a safety zone around the
own-ship in order to determine its cost penalization. Moreover, in Chapter 4,
it was shown how the uncertainty related to the nearby obstacle position and
its velocity can be represented using the mean and covariance produced by the
tracking system, which essentially describes an ellipse in 4 dimensions (position
and velocity). This uncertainty will be used in determining collision probabilities.
In this chapter, two methods for quantifying the probability of collision with
other obstacles are presented, using the uncertainty produced by the tracking
system.

Previous work that attempts to determine the collision probability is mainly
based on integrating only the PDF describing the obstacle (and own-ship) po-
sitional uncertainty, over the so-called conflict zone [32][30][31]. The conflict
zone [32] is defined as the overlapping region between the safety zone and prob-
ability ellipse. Thus, the probability of collision can be obtained by integrating
the probability density of the obstacle position over the conflict zone. If the
kinematic uncertainty of the own-ship also were taken into account, which is
not done here, the combined positional uncertainty of both vessels would have
to be used instead. To do this, the own-ship uncertainty ellipse must then be
transformed in order to be combined with the obstacle uncertainty ellipse.

Now one may ask if it is sufficient to only consider positional uncertainty
in evaluating the collision probability? The answer will depend on how the

39
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probability is defined and what the application is. If the goal is to calculate the
instantaneous collision probability at a particular time instant, only the positional
uncertainty is required. However, if the goal is to predict the probability of
collision at some point in the future, the uncertainty in velocity also need to be
accounted for. This introduces challenges related to efficient evaluation methods,
as 4-dimensional integrals involving horizontal position and velocity need to be
solved, or 6-dimensional if 3D-motion is considered. This thesis will primarily
look at the last case for horizontal motion, considering also velocity uncertainty,
as this can be important knowledge to utilize in a COLAV method for more
efficient avoidance maneuvers.

The first method presented here which attempts to quantify the collision
probability and which is used in the rest of this thesis, is based on importance
sampling, namely Monte Carlo integration. The other method presented in this
thesis uses the concept of probability flow to determine this probability [32],
which is at the front in the literature with respect to efficiency and quality of
the collision probability calculated, although it does not consider uncertainty in
velocity in its calculations. Thus, this method can not be used to predict collision
probabilities, using the full PDF of the obstacle.

Note that the notation used in these two chapters (5 and 6) have the obstacle
index i as a superscript instead of a subscript, as is used in Chapter 3 about
COLREGS and SBMPC.

5.1 Thesis Collision Probability Definition

The collision probability between an obstacle i and the own-ship, is in this thesis
defined using the events

Ai
k = A collision occurs between obstacle i and the own-ship

at some time tc ≥ tk inside the own-ship safety zone.
(5.1)

and

Bi
k = A collision between obstacle i and the own-ship does not occur

at any time tc ≥ tk inside the safety zone.
(5.2)

which are mutually exhaustive. The safety zone is in general the circular region
with radius dsaf e = d

saf e
i around the own-ship (same for all obstacles in this
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thesis, see Section 3.3), as defined in the SBMPC (Section 3.3). The probability of
collision with obstacle i at time tk then becomes

Pic ,k = P{Ai
k } = 1 − P{Bi

k } (5.3)

Thus, the definition of the collision probability in this thesis allows for predicting
this value, instead of just calculating it for the current time instant. Note that
the probability flow method which will be described in Section 5.3 defines the
probability of collision to be at a particular time instant, i.e. the probability that
tc = tk in the above defined events.

The goal is thus in general to find the collision probability by integrating the
obstacle PDF pi (x, tk ) over some region in R4. If only uncertainty in position is
considered, as is the case in much of the previous work [32][30][31], the obstacle
position PDF is integrated over the conflict zone Dxy ⊂ R2:

Pic ,k =

∬
Dxy

pixy (x,y; tk )dxdy (5.4)

where pixy (x,y; tk ) is the obstacle position PDF at time tk . The conflict zone
represent the overlapping area between the in general combined positional
uncertainty of the obstacle and own-ship, and the safety zone around the own-
ship (see Figure 5.1). The own-ship position (and velocity) are in this thesis
assumed known perfectly, thus only the obstacle uncertainty is considered in
the integral (5.4). If both position and velocity uncertainty is considered, the
integral

Pic ,k =

∫
Df ul l

pi (x ; tk )dx (5.5)

must be evaluated, where Df ull ⊂ R
4 is a region in 4 dimensions which include

all obstacle trajectories that cross the own-ship safety zone at some time.

5.2 Monte Carlo Integration

Given a PDF π (x) where x is for instance an obstacle position, one would often
like to extract properties such as the mean and covariance of x , through an
integral
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I1 =

∫
x
д(x)π (x)dx (5.6)

where д(x) = x if for instance the mean is to be found. A closed form expression
of the integral in (5.6) can in general not be expected to exist, for an arbitrary
π (x). In these cases, an estimator can be used instead. For the calculation of the
mean, one can samples values xl from the PDF π (x), and use the average

x̂ =
1
N

N∑
l=1

xl (5.7)

as an estimator for the mean x̄ , where N is the amount of samples drawn. This
can be extended to the general case where one can generate sample values д(x i )
using π (x), and approximate the integral (5.6) using the average of these sample
values.

Now, lets say one wants to determine an integral

I2 =

∫
x
f (x)dx (5.8)

If one can decompose the integrand as f (x) = д(x)π (x), then the above method
can be applied also here. In the Monte Carlo Integration method[6], an integral
of the form

I =

∫
x
f (x)dx =

∫
x
д(x)π (x)dx

=

∫
x
д(x)

π (x)

q(x)
q(x)dx

(5.9)

which one wish to evaluate, is approximated as

IN =
1
N

N∑
l=1

д(xl )w̃(xl ) (5.10)

where w̃(xl ) =
π (xl )
q(xl )

is known as an importance weight. As it may be difficult
to sample from π (x), the approximation q(x) can be used instead. Otherwise,
q(x) = π (x).

Following the above described Monte Carlo integration method to find an
approximation to the integral (5.5), the integrand (also a function of time) f (x, t)
is here equal topi (x, t), where x is here the state vector of the obstacle, consisting
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of both position and velocity, thus,

д(x) =
pi (x, tk )

π (x, tk )
(5.11)

where π (x, tk ) is the PDF to sample from. For the double integral (5.4), the
density pi (x, tk ) in (5.11) is merely replaced by pixy (x,y, tk ).

5.3 Probability Flow

The conflict zone probability or collision probability has in previous studies been
calculated through the use of for instance Monte Carlo Integration, analytical
approximations and neural networks. The more recent method developed by
Jeonghong Park and Jinwhan Kim[32] uses the flow of probability across the
conflict zone boundary to find the collision probability, where the flow is decom-
posed into drift- and diffusion components. The method employs a kinematic
model similar to the one described in Section 2.1.2 for trajectory prediction. The
difference is that the state vector for the own-ship and target only consist the
respective positions. The target- and obstacle model follows the Wiener process
(using the notation in [32])

ÛxO = [ ÛxO ÛyO ]T +wO

= [vOcosψ vOsinψ ]T +wO

(5.12a)

ÛxT = [ ÛxT ÛyT ]T +wT

= [vT cosψ vT sinψ ]T +wT

(5.12b)

where xO and xT are the own-ship and target (obstacle) x-y position, respec-
tively. Similarly, vO and vT are the speeds of the own-ship and obstacle, and
ψO and ψT are the respective heading angles. The process noise wO and wT

are assumed zero-mean and Gaussian distributed with covariance matricesQO

and QT , respectively. As the kinematic uncertainty of the own-ship is not in-
cluded in the simulation environment of this thesis, the process noise of the
own-ship is neglected. Thus, only the obstacle uncertainty is of interest here,
when determining the collision probability.
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When the two objects approach each other, their respective position uncer-
tainty ellipses (probability densities) will eventually overlap. The Instantaneous
Collision Probability (ICP) at time t between the own-ship and obstacle is then
found by integrating the joint probability density of the objects over the over-
lapping region

Pic =

∬
D

pO (x ; t)pT (x ; t)dxdy (5.13)

where D ⊂ R2 is the overlapping region, and pO (x ; t) and pT (x ; t) are the
ownship and obstacle probability densities, respectively.

The method further defines a safety zone around the obstacle and own-ship
in a similar manner to the SB-MPC, which is the minimum distance to be kept
in order to avoid collision. Further, the safety zones for both ships are combined
and centered around the own-ship. In a similar way, the combined uncertainty of
the own-ship and obstacle are calculated using a transformation of the own-ship
probability ellipse to the obtacle, centered to the obstacle. This is shown in
Figure 5.1.

As the integral in (5.13) in general has no analytical solution, the proposed
method attempts to calculate it using the flow of probability across the boundary
of the conflict zone. Then, the ICP at time t is calculated as the integral of the
probability flow from a time t0 to t :

Pic = P
i
c (t0) +

∫ t

t0

ÛPic (t)dτ (5.14)

where ÛPic (t) is the rate of change of collision probability through the combined
safety zone boundary. Further, as the rate of change of probability must be equal
to the net flow of probability into the safety boundary, and as no probability can
disappear or be created inside the safety zone, the continuity equation

∂

∂t
f (x, t) = −∇J (5.15)

must be satisfied. Here, f (x, t) = p(x ; µ, Σ) is the PDF of the combined un-
certainty ellipse, Gaussian and described by (4.1) with mean µ and covariance
Σ = QcQT

c , whereQc is the 2×2 combined positional covariance of the own-ship
and target. J is the flux of probability over the safety zone boundary. This flux
is here decomposed into a drift and diffusion component
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Figure 5.1: Illustration of the combined probability ellipse and the combined
safe separation zone: The combined probability ellipse is obtained through
coordinate transformation. The combined safe separation zone is denoted by a
circle whose radius is the sum of the safe separation distances of the own and
target ships[32].
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J = Jdr if t + Jdif f (5.16)

which describes the flux originating from the translation and expansion of the
probability ellipse, respectively. The drift component is defined as[32]

Jdr if t = f (x, t)v (5.17)

wherev is the relative velocity between the own-ship and the obstacle. Further,
the diffusion component is defined as

Jdif f = −D(t)(∇f (x, t)) (5.18)

where D(t) is the diffusion coefficient and ∇ denotes the differential operator
with respect to the obstacle position. Then, the rate of change of ICP can be
found as the flux integral along the safety zone boundary

ÛPic = −

∬
S

(∇ · J)dS

= −

∬
L

((−D(∇p(x ; µ, Σ)) +vp(x ; µ, Σ)) · n)dL
(5.19)

where S is the conflict zone area, L is the combined safety zone boundary and
n is the normal vector pointing outwards from the safety boundary. The ICP
along the own-ship trajectory can then be estimated using (5.14).

The method also proposes to use the ICP in a collision risk index, using also
the relative velocityv between the own-ship and obstacle. This index is defined
as

Γc = η

∫ tf

t0

Pic (τ )∥v ∥
2 dτ (5.20)

where η is determined by the combined mass of the two objects, and t ∈ [t0, tf ]

is the time interval considered. Thus, the index gives the collision risk based on
the kinetic energy of the system with the two objects.
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5.4 Remarks

Of the two above described methods, the probability flow method has the
strongest assumptions, namely that of a Wiener process describing the ob-
stacle motion, with Gaussian distributed process noise. As the own-ship and
obstacle speeds are assumed constant with no uncertainty, only the position
uncertainty are considered. This assumption will clearly not hold in all cases,
especially not with small boats with high speed and maneuverability showing
varying behavior, and is a strong simplification. However, for large tankers with
little maneuverability, the assumption can be acceptable.

Thus, depending on the type of obstacle, different models can be used and
possibly combined to predict its motion. A Multiple Model (MM) approach [2]
can for instance be used for obstacles with varying behavior, which may switch
from one model to another based on the probability of a mode being in effect.
There is however a trade off with complexity here, as the model framework
increases, which must be taken into account.

The Monte Carlo integration method makes no assumptions on the underly-
ing PDF for the obstacle uncertainty, and thus no assumptions about the obstacle
motion are made. This makes the method applicable for both instantaneous and
predictive collision probability calculation. However, a modelling choice for the
obstacle motion must also be made here, and the same trade-off with complexity
must be considered. The Monte Carlo integration method will be used in the
rest of this thesis, due to it being able to handle uncertainty also in velocity, and
because it is not directly clear from [32] how the probability flow method was
implemented.
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Chapter 6

Collision Probability
Validation

The previous chapter presented two different methods for calculating the colli-
sion probability. In this chapter, the collision probability is calculated for three
different examples, using Monte Carlo simulation. This is done to check whether
the results make sense or not, as this is important to verify before using the
probabilities in an SBMPC for collision avoidance. The first example calculates
the probability when there is a static obstacle directly in the path of the own-ship,
with only positional uncertainty considered. The other two examples deal with
a dynamically moving obstacle, which requires that its velocity uncertainty is
also considered when calculating the collision probability. The own-ship does
not have an active COLAV system in these examples, and will thus not attempt
to avoid collision.

The Monte Carlo Integration method as described in Section 5.2 is used to
calculate the collision probability in order to check if reasonable results are
obtained. The Monte Carlo simulation involves simulating the same example
for different random number generator seeds, in order to sample different real-
izations of the random number sequences, in order to obtain an average result.
The number of Monte Carlo simulations and number of random samples drawn
in the Monte Carlo integration will be varied, in order to see how this affects
the results.

49
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6.1 Simulation Setup

A number of NMC Monte Carlo simulations are performed on each example,
where the seed of the random number generator, which is used to generate
samples for the Monte Carlo Integration, is varied. The examples assume that a
deterministic CVM is available, thus with the full state of the obstacle available,
with no process noise. Further, the obstacle and own-ship are treated as point
masses. There is in general a circular safety zone around the own-ship, with
radius dsaf e = d

saf e
i , i.e. in the same way as for the SBMPC described in Section

3.3 and as was described in the previous chapter.
Further, a number of nmc ,int samples are generated for the Monte Carlo

integration. These two parameters are varied in order to see the effects on the
collision probabilities. Here, the following values for NMC and nmc ,int are used:

• NMC ∈ {1, 10, 100, 1000}

• nmc ,int ∈ {100, 1000, 10000, 50000}

A number of Nend = 300 samples are simulated with a sample time of dtint =
0.1 s, i.e. each simulation/example lasts 30 seconds. Moreover, as there is only
one obstacle in consideration, i = 1 = nobst . The resulting collision probabilities
Pic ,k for each sampling instant k = 0, 1, ...,Nend (not to be mistaken as the
scenario number in the SBMPC) are averaged over the amount of Monte Carlo
simulations NMC . Matlab R2018b is used as the programming software for all
the simulations in this thesis.

6.2 Example 1: Static Obstacle

This examplewas considered as a first step in finding a general method for finding
the collision probability (5.5) which considers uncertainty in both position and
velocity. Thus, in this example, only the positional uncertainty is considered,
and it is the integral (5.4) that is estimated here.

6.2.1 Setup

When evaluating the conflict probability or probability of collision in this exam-
ple, the safety zone around the own-ship is not represented as a circle, as was
shown and used by the SBMPC in Section 3.3, but instead as a corridor (corr) of
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width 2dcorr stretching from the own-ship and ahead along a straight line up to
a predefined distance lcorr , where its slope is given by the own-ship headingψ .
This is illustrated in Figure 6.1, and is similar to the approach in [30] and [31].

dcorr

x

y

yb

xbψ

lcorr

Figure 6.1: Illustration of the safety corridor from the own-ship (blue) along a
straight line, with the uncertainty ellipse of an obstacle (green) included (assumed
to be covering the entire probability mass). The conflict zone is here shown as
the filled grey area.

The parameter values for dcorr and lcorr used here are given in Table 6.1,
and are essentially equal to the SBMPC parameters dsaf e and dclose described
in Section 3.3.

In this example, the own-ship is travelling due north with constant speed of
u = 5 m s−1 starting in the origin (x,y) = (0, 0), and a static obstacle is placed at
coordinates (x i ,yi ) = (100,−46.5), where x i and yi are the xy-coordinates of the
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Table 6.1: Safety corridor parameters.

Parameter Value Unit
dcorr 40.0 m
lcorr 200.0 m

obstacle (with index 1). This is done for the purpose of validating the collision
probability for a simple starting case. The obstacle position is assumed to be
constant and known by the own-ship through a constant Gaussian distribution
with expectation

µi =



x i

0

yi

0


(6.1)

and with a covariance

P i =



25 0 0 0

0 0 0 0

0 0 25 0

0 0 0 0


(6.2)

The variance in x i and yi of 25 m2 for the obstacle is deemed reasonable based
on the results in [43]. The own-ship will here collide with the obstacle at around
tc = 20 s with probability Pic ,exact = 0.0985, and pass through it with constant
speed, as the collision dynamics are not accounted for in the simulator. The
”exact” probability Pic ,exact , as given by (5.4) with integration limits given by the
safety corridor

Pic (t) =

∫ lcorr

0

∫ dcorr

−dcorr
pi ,xy (x ; t)dxdy (6.3)

was calculated by discretizing the safety corridor in the body x- and y-direction
with discretization step length ∆x = ∆y = 0.1 m, and summing the integrand
(obstacle PDF) for the xy values. After passing/colliding with the obstacle, the
collision probability will quickly decrease to zero. The example is illustrated in
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Figure 6.2, which is found in the next subsection.

6.2.2 Importance Sampling Scheme

Two strategies π1(x, t) and π2(x, t) (importance functions) for generating random
position samples for the Monte Carlo integration method are used here. The
first one samples from a 2 dimensional multivariate Gaussian (MVG) for the
obstacle position

π1(x, t) = N(x ; µbci , P
b
ci ) (6.4)

referenced to the body fixed frame, which is essentially the obstacle position
uncertainty projected (rotated and translated) into the safety corridor, with
variances aligned with the corridor. The variance along theyb axis is designed to
be equal to dcorr , and the variance along the xb axis will be equal to the aligned
x or y variance of the obstacle uncertainty, depending on its orientation.

The importance center µbci is found by calculating the closest point of ap-
proach (CPA) between the own-ship (vessel A) and obstacle (vessel B) [17]

tCPA =


0, if ∥vA −vB ∥ < ϵCPA

−
(pA−pB )·(vA−vB )

∥vA−vB ∥2 , otherwise
(6.5)

which gives that

µbci = pA +vAtCPA (6.6)

It is assumed here that the positions and velocities are represented in the NED
frame. The parameter ϵCPA was here chosen to be 0.5 m s−1. The yb component
will naturally be 0 as the own-ship and obstacle are assumed to follow straight
lines in the instant when the probability is calculated. The first step in finding
the 2 × 2 importance Gaussian covariance matrix Pbci in body is by aligning the
obstacle uncertainty using a rotation matrix Raliдn , such that

P̄bci = RaliдnP
i
xyR

T
aliдn (6.7)

where P ixy is the position only covariance of obstacle i represented in NED,
extracted from P i . The angle α of the rotation is found by first finding the
orientation θi of the obstacle uncertainty ellipse with respect to the NED frame,
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which is given by the direction of the largest eigenvector el of the covariance
matrix P ixy :

θi = atan
(
el ,y

el ,x

)
(6.8)

Depending on the value ofψ − θi , the angle α is then given as

α =



ψ − θi ,
��ψ − θi

�� ≤ π
4

ψ + π
2 − θi ,

π
4 < ψ − θi ≤

3π
4

ψ + π − θi ,
3π
4 < ψ − θi ≤

5π
4

ψ + 3π
2 − θi ,

5π
4 < ψ − θi ≤

7π
4

(6.9)

where it is assumed thatψ − θi ≥ 0 for the 3 last cases in (6.9). The rotation of α
aligns the obstacle uncertainty ellipse such that the ellipse eigenvector which is
closest to being parallel to the corridor, is rotated to being parallel. The variance
along this rotated eigenvector is used for the Gaussian importance variance
along the xb axis. Hence, the importance function covariance Pbci is found as

Pbci =


σ 2
ci ,x 0

0 σ 2
ci ,y

 =

diag

(
[ P̄bci ,11 d2

corr ]

)
, if α = ψ − θi or α = ψ + π − θi

diag
(
[ P̄bci ,22 d2

corr ]

)
otherwise

(6.10)
where P̄bci ,11 and P̄

b
ci ,22 are the xb and yb variance of P̄bci , respectively.

The other random sampling method uses a uniform distributionU(y;a,b)
with a = −b = dcorr along the yb direction, and a scalar normal distribution
N(x ; µbci ,x ,σ

2
ci ,x ) along the xb axis with mean µbci ,x and variance σ 2

ci ,x . Thus, the
other sampling density becomes

π2(x, t) = U(y;−dcorr ,dcorr )N(x ; µbci ,x ,σ
2
ci ,x ) (6.11)

Figure 6.2 illustrates the sampling scheme for π1(x, t).
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xb

yb

µci

Figure 6.2: Illustration of the first example, with the own-ship in blue and obstacle
drawn in green with a sample orientation ofψ1 =

π
2 . Moreover, a sample 3σ (3

standard deviations) probability ellipse of the obstacle positional uncertainty is
shown in black. The 1σ probability ellipse of the multivariate Gaussian π1(x, t)
used for random sampling in the first method is indicated in blue. The other
sampling method π2(x, t) will have constant density in the yb direction, and
equal variance as π1(x, t) in the xb direction.
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6.2.3 Results

The resulting collision probability Pic ,k from simulation using the first and second
importance strategy π1(x, t) and π2(x, t) with the different values of NMC and
nmc ,int , are shown in Figures 6.3 and 6.4, respectively. A comparison of the two
strategies when NMC = 1000 and nmc ,int = 50000 is shown in Figure 6.5. Time
is shown on the x-axis instead of sample number k in the plots.

From the Figures one can see that the collision probability calculated using
Monte Carlo integration, for both sampling strategies, varies around the ”exact”
value of 0.0985 in the first 17 seconds, before it reduces to zero as the own-ship
passes the obstacle. From for instance Figure 6.3, it is seen that the variation
in the collision probability decreases with the amount of samples nmc ,int used
in the Monte Carlo integration. Furthermore, it is seen that the amount of
Monte Carlo simulations NMC does not affect the results. This is as expected,
because the amount of Monte Carlo simulations will in this case only give a
more averaged result.
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Figure 6.3: Collision probability Pic ,k for different values of NMC and nmc ,int ,
using the first importance sampling method π1(x, t).
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Figure 6.4: Collision probability Pic ,k for different values of NMC and nmc ,int ,
using the second importance sampling method π2(x, t).
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Figure 6.5: Collision probability Pic ,k comparison for the two importance strate-
gies, when NMC = 1000 and nmc ,int = 50000.
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Comparing the two strategies, there is no apparent difference in the resulting
probabilities. However, by plotting the samples used in the MC integration, one
can see that π2(x, t) is clearly more effective, as the uniform sampling in the yb
direction is only done inside the safety corridor. This is shown in Figure 6.6. The
multivariate Gaussian sampling wastes many samples here, as many of them
are outside the integration domain inside the corridor.

Figure 6.6: Samples generated by the two importance strategies π1(x, t) (MVG
Sampling) and π2(x, t) (U (Uniform) + Scalar G (Gaussian) Sampling) with
nmc ,int = 50000, referenced to the body frame. The red cross marks µbci , and
the blue cross marks the obstacle position. The blue ellipse is the 3σ probability
ellipse for the obstacle.

6.3 Example 2: Dynamic Obstacle 1

In this example and all the following, the safety zone for the own-ship is again
chosen to be a circle, as is used in the SB-MPC algorithm, with radius of dsaf e .
Further, as uncertainty in the obstacle velocity is also included in the collision
probability calculation of these two dynamic examples, the integral (5.5) is
estimated here.
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6.3.1 Setup

In the first example with a moving obstacle, the own-ship is standing still at
(x,y) = (100, 0), and the obstacle now starts at (x i ,yi ) = (55,−55), and is
travelling east with constant speedV i

y = 4 m s−1. Thus, the obstacle will pass the
own-ship 5 m south of its circular safety zone. The example is shown in Figure
6.7.

-100 -80 -60 -40 -20 0 20 40 60 80 100

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Figure 6.7: North-East plot of the obstacle (green) path (also green), with the
own-ship plotted in blue, with its safety zone of radius dsaf e in purple. The
obstacle is plotted at the CPA, directly below the own-ship, in addition to at its
position at the end of the simulation.

The obstacle covariance received by the collision probability evaluation
module is chosen to be constant and equal to

P i =



25 0 0 0

0 1 0 0

0 0 25 0

0 0 0 2


(6.12)

and its state vector is updated and assumed known directly (the full state)
through a deterministic CVM with parameter T = dtint = 0.1 s, i.e. no process
noise included. The same variance in position as for Example 1 is chosen. The
variance in north and east velocities are chosen primarily based on a guess for
a vessel of length in the range 20 − 40 meters, similar to the NTNU Gunnerus
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vessel [29].

As the velocity and its corresponding uncertainty is also considered in evalu-
ating the collision probability, it calls for a method to determine the integration
limits in the integral (5.5). Here, this is done by creating a ray from each sample of
position and velocity from the importance functions in the MC integration, and
checking whether this ray intersects the safety zone at some time tc ≥ tk , with tk
being the current time. This is repeated for each sample, and all non-intersecting
rays give integrand value of zero. The ray can be described by

r = pl +vl t (6.13)

where pl = [xl yl ]
T andvl = [Vx ,l Vy,l ]

T are the sampled obstacle position
and velocity, and t is the time parameter for the ray r .

The safety zone boundary around the own-ship can be described by the
circle

(xc − x)2 + (yc − y)
2 = (dsaf e )

2 (6.14)

where x and y are the own-ship north- and east coordinates. This can be repre-
sented in vector form as

pTOpO − 2pTOpc + p
T
c pc = (dsaf e )

2 (6.15)

where pO = [x y ]T and pc = [xc yc ]. Inserting pc for the ray equation
(6.13), the second order polynomial

At2 + Bt +C = 0 (6.16)

with

A = vT
l vl (6.17a)

B = 2(pTl − pTO )vl (6.17b)

C = pTOpO − 2pTOpl + p
T
l pl − (dsaf e )

2 (6.17c)

can be found. If the roots of this polynomial are real, the ray intersects the safety
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zone at two time instants (with distinct roots) or one time instant (with repeated
roots). This can then be used to count the sampled trajectories which cross the
safety zone. However, a time constraint on what interval of time the obstacle
has to be within in order for a collision to happen is not added here, except from
the criteria that the collision time satisfies tc ≥ tk .

6.3.2 Importance Sampling Scheme

Again, two strategies π3(x, t) and π4(x, t)were here tested. The first one samples
from the obstacle Gaussian distribution directly, i.e

π3(x, t) = N(x ;x i , P i ) (6.18)

This strategy can be considered as a brute force method for calculating the
collision probability, where all possible obstacle trajectories are sampled, and
the fraction of the number of intersecting trajectories with the safety zone to
the total number of trajectories, are used as the collision probability estimate.

The strategy π4(x, t) attempts to make the sampling more effective, by ideally
sampling only the trajectories that may intersect with the safety zone at some
future point in time, Thus, the importance function is a MVG

π4(x, t) = N(x ; µief f , P
i
ef f ) (6.19)

with expectation µief f and covariance P ief f . The position part of the expectation

is just taken as the current obstacle expected position, i.e. pief f = [x i yi ].
The velocity part of the expectation was found by assuming that the obstacle
position at CPA is at the own-ship position at CPA, i.e. a direct collision with
full overlap between the two objects:

vi
ef f =


vief f ,x

vief f ,y

 =
1

tCPA
(pCPA − pi ) (6.20)

Thus, this velocity vector points towards the own-ship position at CPA. As the
obstacle (i) has a max speedU i

max , the velocity vectorvi
ef f is saturated to

vi
ef f =


U i
maxcos(ψ̂

i
ef f )

U i
maxsin(ψ̂

i
ef f )

 (6.21)
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when
vi

ef f

 > U i
max , where ψ̂ i

ef f is a crude heading estimate of the obstacle,
whenvi

ef f is taken as its velocity. The estimate is here calculated as

ψ̂ i
ef f = atan ©«

vief f ,y

vief f ,x

ª®¬ (6.22)

Then, the importance expectation is

µef f =



x i

vief f ,x

yi

vief f ,y


(6.23)

The covariance of the importance function is chosen to be on the form

P ief f = diag
(
[P ixy P ief f ,v ]

)
(6.24)

where P ixy is the 2×2 position covariance part of P i , and P ief f ,v is the 2×2 velocity
covariance of the importance PDF, ideally designed with variance such that all
sampled trajectories intersect the own-ship safety zone. The position-velocity
covariance part is designed to be zero for simplicity.

The velocity covariance is heuristically based on the difference velocity
vdif f = v

i
ef f −vi using the variance expression

varU,a,b =
(a − b)2

12
(6.25)

for a uniform distribution, with a and b as the interval limits of the distribution,
here taken as a = vef f and b = vi . The velocity covariance for the importance
PDF was then chosen as

P ief f ,v =


v2
dif f ,x

12 0

0
v2
dif f ,y

12

 (6.26)

as a first trial in finding a more effective importance sampling, than the one used
in π3(x, t). The importance strategy is attempted illustrated in Figure 6.8.
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dsa f e

vi

vi
e f f

vdi f f

vs

(xs,ys)

v1

v2

Figure 6.8: Illustration of the attempted more effective sampling scheme for
Example 2, with the own-ship in blue and obstacle drawn in green, with the
circular safety zone of radius dsaf e drawn around the own-ship. The obstacle
velocity vector vi , importance function velocity expectation vi

ef f and their
differencevdif f are also indicated, drawn from the tip of the obstacle, instead
of the point mass center. The 1σ probability ellipse of the obstacle position
uncertainty is shown, and a sampled trajectory starting at a position (xs ,ys )
with velocity vectorvs is drawn. An example standard deviation in velocity for
the particular importance sample is shown for the velocity vectorvs , inv1 and
v2, which is calculated based on the difference velocityvdif f .
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6.3.3 Results

The resulting collision probability Pic ,k from simulation using the third and
fourth importance strategy, π3(x, t) and π4(x, t), for the different values of NMC

and nmc ,int , are shown in Figures 6.9 and 6.10. Results when NMC = 1000 have
been dropped due to excessive simulation time required. A comparison plot
of the two strategies have also been dropped due to the less effective strategy
not being a working approach. Time is shown on the x-axis instead of sample
number k in the plots.

From Figure 6.9 one can see that the collision probability starts at about
0.4, before it decreases to zero as the obstacle approaches and passes by the
own-ship. This makes sense, as the probability will be higher in the start due to
a larger amount of trajectories which can cross the safety zone are possible, and
this amount decreases as the obstacle gets closer.

The less effective approach shows relatively stable collision probabilities
when the number of samples drawn nmc ,int is sufficiently high, as seen from
Figure 6.9. This is as expected, as all possible trajectories from the obstacle
PDF are sampled, and one merely need to count the ones intersecting with the
safety zone to obtain an estimate of the probability. The variance in this estimate
naturally decreases with the number of samples used.

One can see large fluctuations in the collision probability when using the
attempted more effective importance sampling, which can be seen from Figure
6.10. This can be explained using Figure 6.11, which shows the samples in
position and velocity from strategy π4(x, t)when nmc ,int = 10000. Here, one can
see that the obstacle velocity expectation is relatively far from the importance
function velocity expectation, which results in relatively few samples inside the
illustrated integration region (only an example region, not the actual one) where
the samples are valid (non-zero and used in the MC integration). Variations in
these few samples give rise to large variations in the MC integration. This is
a problem with the attempted effective sampling, as one uses the velocity that
the obstacle would have if it reached the same position at CPA as the own-ship,
which may differ quite from the current expected obstacle velocity.

Another issue is the velocity variance used in this importance sampling,
which here was taken as a uniform variance expression in the difference velocity
vdif f . This variance is heuristically based, and will not be a true representation
of the variance which give samples only inside the region where sampled trajec-
tories intersect with the safety zone. More work is here needed to refine this
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approach.
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Figure 6.9: Collision probability Pic ,k for different values of NMC and nmc ,int ,
using the third importance sampling method π3(x, t).
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Figure 6.10: Collision probability Pic ,k for different values of NMC and nmc ,int ,
using the fourth importance sampling method π4(x, t).
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Figure 6.11: Sampling plot in position and velocity for the fourth importance
strategy π4(x, t) in the NED frame. The 3σ probability ellipse for the importance
function is shown in red, and the same for the obstacle in blue. The red- and
blue crosses mark their expectations, respectively. For the velocity sampling, an
example integration region of where the samples are valid, i.e. nonzero, is shown
in the orange ellipse. For the position sampling, the importance strategy uses
the same covariance and expectation as the obstacle’s, and the two probability
ellipses thus overlap.
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A crude estimate of the average computation time per collision probability
evaluation for the less effective third importance strategy π3(x, t) was also
calculated. Running on an Intel i7 - 7700 CPU with 32 GB installed RAM on
a 64-bit operating system with almost no running background programs, the
results are summarized for the different random sample numbers nmc ,int in
Table 6.2.

Table 6.2: Average computation time t̄π3 per collision probability evaluation for
the strategy π3(x, t), for the different values of nmc ,int , with NMC = 10.

nmc ,int t̄π3

100 0.0013 s
1000 0.011 s
10000 0.11 s
50000 0.50 s

One can see here that relatively high computation times are needed per
evaluation of the collision probability, with around 1 ms being the lowest average
time.

6.4 Example 3: Dynamic Obstacle 2

6.4.1 Setup

In this example, both the obstacle and own-ship are moving. The obstacle
starts in (x i ,yi ) = (100, 100), and is travelling south-west with velocity vi =

[ −2.5 −4 ]T . The own-ship starts in the origin, and travels straight north with
forward speed u = 5 m s−1. A deterministic CVM is again employed for the
obstacle, and its covariance is again set to be constant, and the same as in (6.12).
The example is shown in Figure 6.12, which shows the obstacle and own-ship
trajectories in the NE-plane.
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Figure 6.12: North-East plot of the obstacle path (both in green), with the own-
ship (blue) path plotted in black, with its position and safety zone of radius dsaf e
in purple drawn at the CPA. The obstacle and own-ship are plotted at the CPA
in addition to at their end positions. The red line marks the own-ship planned
path.

6.4.2 Importance Sampling Scheme

The scheme is the same as for Example 2, only that the attempt of a more effective
sampling π4(x, t) has been left out, due to it not being a working approach at
this moment. Thus, only the less effective strategy π3(x, t) is used from now on.

6.4.3 Results

The resulting collision probability Pic ,k from simulation using the third impor-
tance strategy, π3(x, t) for the different values of NMC and nmc ,int , are shown in
Figure 6.13. Results when NMC = 1000 have again been dropped due to excessive
simulation time required. Time is shown on the x-axis instead of sample number
k in the plots.

In this example, the collision probability is predicted to be relatively high at
just below 0.6, due to a high amount of possible trajectories which may cause
collision. The probability reaches peak value at CPA around tCPA ≈ 16 s, as
the obstacle is at this time almost inside the own-ship safety zone, and almost
80% of all possible trajectories will intersect with the zone. This is reasonable,
considering the standard deviation of 5 m in the obstacle x - and y-position, and
the velocity standard deviation of 1 m s−1 and 1.41 m s−1 in the x- and y-direction,
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which amounts to a sector with relatively small spread, in which the obstacle
future trajectory lies.
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Figure 6.13: Collision probability Pic ,k for different values of NMC and nmc ,int ,
using the third importance sampling method π3(x, t).

6.5 Discussion

The probability of collision were calculated for three examples, where the obsta-
cle was static in the first, and dynamic in the two last. In the example with a
static obstacle, only positional uncertainty was used in order to calculate the
probability, which gave decent results, matching the ”exact” collision proba-
bility quite well. From the results for this example, one need a minimum of
nmc ,int = 1000 in order to have an acceptably low variance in the probability
estimate.

When including velocity uncertainty in calculation of the probability as in the
two other examples, a collision probability prediction method is obtained. The
attempted more efficient method π4(x, t) for evaluating the probability requires
refining, and is a subject of future work. Results using MC integration with
the less effective importance sampling gave reasonable estimates of collision
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probability, but the computation time used per probability calculation is not
acceptable for real-time use in an SBMPC. This can be illustrated with the
following example calculation. With 39 possible scenarios, a prediction horizon
of T = 150 s and sample time of Ts = 0.1 s in the SBMPC, the required total
computation time for all collision probability evaluations in one run of the
algorithm amounts to around 0.0013 s×39× T

Ts
= 76 s, this when using nmc ,int =

100, which is not feasible for a real-time system.
It is therefore need for more effective evaluation methods, possibly similar

to that of the probability flow method described in Section 5.3, but extended to
be able to deal with velocity uncertainty. However, the less effective probability
evaluation method developed here, can be used to benchmark more efficient
methods in the future.

Note that only straight line motion were considered here. In practice, a
dynamic obstacle can take a large variety of paths depending on for instance its
maneuverability and the type of driver ”behind the wheel”. A suggestion here
would be to use machine learning in order to infer the maneuvering behavior of
a vessel based on for instance lots of AIS data of vessels travelling in a region.
The resulting model would then be representative of that region only, and the
type of vessels from which data are collected. The model could then be used
to modify the predicted straight line path for the obstacle, or to make a switch
between multiple models in a MM framework, as was discussed briefly in the
previous chapter. This would then require the development of another type
of importance sampling strategy if Monte Carlo integration is to be used, as
more parameters than the current position and velocity would then be needed
to predict the obstacle trajectory.



Chapter 7

A Probabilistic SBMPC

The previous chapters have described the SBMPC COLAV method and several
methods for tracking obstacles. The tracking method yields a corresponding
state estimate and error covariance. Further, a method for calculating collision
probability has been presented, which will use the tracking method outputs, and
work yet remains here in order to come up with a more effective and correct
approach, as was discussed in the previous chapter.

In this chapter, the author aims at bringing all these parts together in one
system, by altering the SBMPC to account for the probability of collision with
obstacle i , which indirectly makes use of its kinematic uncertainty. The result-
ing probabilistic COLAV method is then tested and compared to the original
deterministic approach in the end. This is done as an attempt of increasing the
performance of the COLAV method.

7.1 SBMPC Cost Function Modifications

The SBMPC cost function or hazard corresponding to scenario k at the current
time t0, is, as described in Section 3.3, given as (3.16)

Hk (t0) = max
i

max
t ∈D(t0)

(Ck
i (t)R

k
i (t) + κiµ

k
i (t))

+ f (χm, χm,last ,um,um,last ) + д(·)
(7.1)

71
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The proposed modifications made by the author here in order to incorporate
uncertainty into this framework, is to change the collision cost and risk term
from Ck

i (t)R
k
i (t) to the following suggestions

aCk
i (t)P

i
c (t) (M1)

Ck
i (t)R

k
i (t)P

i
c (t) (M2)

aCk
i (t)P

i
ce

−(t−t0) (M3)

where a is a constant parameter. The SBMPC with modifications to account
for kinematic uncertainty (collision probability) will from now on be called the
Probabilistic SBMPC (PSBMPC).

7.2 Simulation

7.2.1 Setup

The SBMPC and PSBMPC were simulated for an overtaking situation, a head-on
situation and a crossing situation, with nobst = i = 1 obstacle for simplicity. The
number of samples Nend simulated for each situation is chosen to be Nend = 800,
and a simulation step length of dtint = 0.1 s was again used. A number of
NMC = 1 Monte Carlo simulations were performed, due to long simulation times
required, and little time left until deadline.

In all the three situations, the own-ship starts in the origin at rest with x = 0
(where x here is the 6 × 1 own-ship state vector), and is set to travel north with
desired surge speed u = 9 m s−1. Waypoints are placed at (0, 0) and (800, 0) to
achieve this through the Guidance system (see Section 2.2.2). Obstacle motion
description:

• For the overtaking situation, the obstacle starts in (x i ,yi ) = (100, 0) and
initially travels north with speed V i

x = 3 m s−1.

• For the head-on situation, the obstacle starts in (x i ,yi ) = (600, 0) and
initially travels south with speed V i

y = −4 m s−1.

• For the crossing situation, the obstacle starts in (x i ,yi ) = (400,−200) and
initially travels towards east with speed V i

y = 4 m s−1.
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Process noise will be added to the obstacle motion, making its path non - de-
terministic, and will simulate a sort of randomness in its maneuvering intent.
This is achieved by varying the random number generator seed in Matlab before
each simulation. A regular Kalman Filter as described in Section 4.1 is used
to track the obstacle, using the stochastic CVM from Section 2.1.2, where it is
assumed that position measurements are available. These measurements are
here designed to have a covariance

R =


25 0

0 25

 (7.2)

which the KF matches. The noise covariance values are deemed reasonable based
on the results in [43]. The parameter T was set to T = 0.1 s for the tracking
system, as this is the sample time in simulation. Then, with a chosen noise
strength of σa = 0.05, the process noise covariance is then given by (2.11), which
the KF also matches. This choice of σa was based on simulating a vessel with
relatively low maneuverability [6][43]. The KF uses the same noise covariance
matrices as the true model for simplicity. The initial a priori covariance in the
KF-tracking of obstacle i for all three situations was here set to

P̄ i0 =



25 0 0 0

0 1 0 0

0 0 25 0

0 0 0 2


(7.3)

i.e. the same as chosen for the dynamic examples in the previous chapter. The
initial a priori position estimate is set to be equal to the first measurement
arriving (i.e. the recursive equations (4.3) and (4.5) are used for k ≥ 1), and the
initial a priori velocity estimate is set to be zero. Thus, the initial obstacle state
estimate is

x̄ i0 =



z0,x

0

z0,y

0


(7.4)

For both versions of the SBMPC, the deterministic CVM is used to predict
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the obstacle motion, initialized with the KF state estimate x̂ i of the obstacle. The
PSBMPC in addition uses the corresponding error covariance P i to evaluate the
collision probability at all time steps in the prediction.

For the collision probability evaluation in the PSBMPC, the Monte Carlo
integration method is used, considering both position and velocity in the calcu-
lation, as was used in the last two examples of the previous chapter. The less
effective importance sampling method (6.18) is used

π3(x, t) = N(x ;x ip, P
i ) (7.5)

with a number of nmc ,int = 100 samples drawn and used in the estimation of
the collision probability (5.5), and where x ip is the predicted obstacle state using
the deterministic CVM, initialized to x̂ i at the current simulation time step. The
probability evaluation is done for each scenario and time step in the prediction
of the PSBMPC.

Further, the guidance parameters from Table 2.2 and controller parameters
from Table 2.1 are used for both SBMPC versions. The parameters for both
versions are given in Table 7.1 below. The value of nmc ,int = 100 for the PSBMPC
was chosen to be able to simulate faster, due to the relatively long computation
time per probability evaluation, as was discussed in the previous chapter.
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Table 7.1: Parameters used in the thesis for the two versions of the SBMPC.

SBMPC PSBMPC
Parameter Value Unit

T 150 150 s
Ts 0.05 0.1 s

d
saf e
i 40.0 40.0 m

dclose 200.0 200.0 m
p 1.0 1.0
q 4.0 4.0

Kcoll
i 0.5 0.5
κi 3.0 3.0
Kum 2.5 3.0
K∆um 2.0 2.5
Kχ ,port 1.8 1.8

Kχ ,starboard 1.5 1.5
K∆χ ,port 1.2 1.2

K∆χ ,starboard 0.9 0.9
a 1

nmc ,int 100
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Note that because the number of samples drawn in the Monte Carlo integra-
tion was chosen to be nmc ,int = 100, to reduce the computational time needed
per probability evaluation, there will be a variance in the probability estimate
which may affect the resulting PSBMPC behavior in the simulations. Ideally, this
number should be chosen larger than 1000 in order to have a sufficiently low
variance for use in the PSBMPC, based on the results from the previous chapter.

7.2.2 Results Modification 1

Here, results for the SBMPC and PSBMPC with the cost function modification
(M1) are given for the three situations.

Overtaking

Figures 7.1 - 7.5 show the overtaking simulation results. A North-East plot of the
vessel motion is shown in Figure 7.1, and a comparison of the heading response
and surge speed response for the two versions in Figure 7.2 and 7.3, respectively.
Lastly, the track estimates versus the true obstacle motion and the distance from
the own-ship to the obstacle are shown in Figure 7.4 and 7.5, respectively.

From the results, one can see that the original SB-MPC performs decently,
following COLREGS Rule 13 as the overtaking vessel (Figure 7.1), and keeping
its distance to the obstacle (Figure 7.5). The PSBMPC on the other hand waits a
good 15 s before it decides to drive forward and avoid the obstacle. This can be
explained from the cost function alteration (M1). Here, the risk of collision Rk

i

in (3.2), which gives a non-zero value when the obstacle is inside the own-ship
safety zone and based on the time it happens, is not considered anymore. Since
only the collision cost and the corresponding collision probability are considered,
the COLAV system becomes overly conservative and gives high hazard for all
scenarios with um , 0.

Moreover, Figure 7.4 shows that the KF manages to track the obstacle, which
is as expected, as the optimality criteria described in Section 4.1 are satisfied,
and the process noise and measurement noise covariances are identical for the
true model and the estimation model. The process noise added on the obstacle
motion results in a Wiener process for its velocity, which in return results in
different trajectories for each realization of the noise.
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Figure 7.1: Overtaking situation with cost function alteration (M1). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path with the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.2: Overtaking situation with cost function alteration (M1). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.
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Figure 7.3: Overtaking situation with cost function alteration (M1). Surge re-
sponse for the two SBMPC versions. The nominal surge reference ud , the surge
(propulsion) offset um , the actual surge reference uc and own-ship surge u are
here shown.
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Figure 7.4: Overtaking situation with cost function alteration (M1). Track esti-
mates for the obstacle, versus the true motion.
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Figure 7.5: Overtaking situation with cost function alteration (M1). Distance
from the own-ship to the obstacle, for both SBMPC versions. The red line marks
the safe distance dsaf e = d

saf e
i = 40 m.



80 CHAPTER 7. A PROBABILISTIC SBMPC

Head-On

Figures 7.6 - 7.10 show the head-on simulation results, with the same set of
figures attached as for the overtaking situation. The PSBMPC again behaves
overly cautious, by standing still and waiting out the situation for the first
15 s, before it this time also breaches COLREGS Rule 14 for a head-on situation.
However, an argument can be made in that, since the obstacle turns to port, the
own-ship with PSBMPC must also turn to port in order to avoid the possible
head-on collision. The conservative behaviour in the PSBMPC is again caused
by the risk of collision being omitted in the cost function. The original SBMPC
on the other hand again performs correctly, following COLREGS Rule 14 by
turning to starboard in order to avoid the obstacle. Some oscillations are seen
in the heading response from both SBMPC versions in Figure 7.7, which are
caused by a non-optimal tuning. A decrease in the path deviation penalty
parameters Kχ ,starboard and Kχ ,port for the course offset should here be made to
obtain smoother trajectories.
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Figure 7.6: Head-on situation with cost function alteration (M1). North-East plot
of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is plotted in
green, with its KF tracked path shown in yellow/gold. The own-ship is plotted in
blue with a black path with the original SBMPC. For the PSBMPC, the own-ship
is plotted in cyan with a dashed black path. The grey line with two red crosses
marks the planned path for the own-ship.
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Figure 7.7: Head-on situation with cost function alteration (M1). Heading re-
sponse for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.
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Figure 7.8: Head-on situation with cost function alteration (M1). Surge response
for the two SBMPC versions. The nominal surge reference ud , the surge (propul-
sion) offset um , the actual surge reference uc and own-ship surge u are here
shown.
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Figure 7.9: Head-on situation with cost function alteration (M1). Track estimates
for the obstacle, versus the true motion.
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Figure 7.10: Head-on situation with cost function alteration (M1). Distance from
the own-ship to the obstacle, for both SBMPC versions. The red line marks the
safe distance dsaf e = d

saf e
i = 40 m.
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Crossing

Figures 7.11 - 7.15 show the crossing simulation results. In the situation, the
obstacle is meant to give-way for the own-ship, following COLREGS Rule 15, but
this does not happen, such that the own-ship need to perform evasive maneuvers.
One can again see that the PSBMPC behaves conservatively with the first cost
function modification, due to high hazard for all um , 0, and waits until the
obstacle has crossed its path before it starts increasing its forward speed, which
can be seen from Figure 7.11 and 7.13. The original SBMPC performs decently,
taking early preemptive action in order to avoid collision.
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Figure 7.11: Crossing situation with cost function alteration (M1). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path with the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.12: Crossing situation with cost function alteration (M1). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.
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Figure 7.13: Crossing situation with cost function alteration (M1). Surge re-
sponse for the two SBMPC versions. The nominal surge reference ud , the surge
(propulsion) offset um , the actual surge reference uc and own-ship surge u are
here shown.
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Figure 7.14: Crossing situation with cost function alteration (M1). Track esti-
mates for the obstacle, versus the true motion.
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Figure 7.15: Crossing situation with cost function alteration (M1). Distance from
the own-ship to the obstacle, for both SBMPC versions. The red line marks the
safe distance dsaf e = d

saf e
i = 40 m.
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7.2.3 Results Modification 2

Here, results for the SBMPC and PSBMPC with the cost function modification
(M2) are given for the three situations.

Overtaking

Figures 7.16 - 7.20 show the overtaking simulation results. One can see from the
figures that the SBMPC and PSBMPC perform identically for this case, with no
added benefit of the cost function alteration (M2) here. This can be explained
from the fact that the collision probability Pic (t) becomes close to or equal to 1
before tCPA for the majority of the SBMPC scenarios, and thus the max value
of the modified collision risk and cost term (M2) will be nearly identical to the
max value of Ck

i R
k
i in the original cost function, when a = 1 in the PSBMPC.

-2
00

-1
00 0

10
0

20
0

East [m]

0

100

200

300

400

500

600

700

800

N
o

rt
h

 [
m

]

-2
00

-1
00 0

10
0

20
0

East [m]

-2
00

-1
00 0

10
0

20
0

East [m]

Figure 7.16: Overtaking situation with cost function alteration (M2). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path with the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.17: Overtaking situation with cost function alteration (M2). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.

0 20 40 60 80

Time [s]

0

5

10

S
p

e
e

d
 [

m
/s

]

w/SB-MPC

u
c

u
d

u
m

u

0 20 40 60 80

Time [s]

0

5

10

S
p

e
e

d
 [

m
/s

]

w/Probabilistic SB-MPC

u
c

u
d

u
m

u

Figure 7.18: Overtaking situation with cost function alteration (M2). Surge
response for the two SBMPC versions. The nominal surge reference ud , the
surge (propulsion) offset um , the actual surge reference uc and own-ship surge u
are here shown.
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Figure 7.19: Overtaking situation with cost function alteration (M2). Track
estimates for the obstacle, versus the true motion.
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Figure 7.20: Overtaking situation with cost function alteration (M2). Distance
from the own-ship to the obstacle, for both SBMPC versions. The red line marks
the safe distance dsaf e = d

saf e
i = 40 m.
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Head-On

Figures 7.21 - 7.25 show the head-on simulation results. Here, the COLAV
methods behave correctly according to COLREGS Rule 8 and 14, taking early
action to starboard in order to avoid collision. Similarly to the overtaking
situation with the alteration (M2), the collision probability will be near or equal
to 1 at some point before CPA, and thus the max value of the modified term
in the cost function becomes approximately equal to that in the original cost
function. This makes the PSBMPC and SBMPC performance similar.
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Figure 7.21: Head-on situation with cost function alteration (M2). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path with the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.22: Head-on situation with cost function alteration (M2). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.
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Figure 7.23: Head-on situation with cost function alteration (M2). Surge re-
sponse for the two SBMPC versions. The nominal surge reference ud , the surge
(propulsion) offset um , the actual surge reference uc and own-ship surge u are
here shown.
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Figure 7.24: Head-on situation with cost function alteration (M2). Track esti-
mates for the obstacle, versus the true motion.
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Figure 7.25: Head-on situation with cost function alteration (M2). Distance from
the own-ship to the obstacle, for both SBMPC versions. The red line marks the
safe distance dsaf e = d

saf e
i = 40 m.
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Crossing

Figures 7.26 - 7.30 show the crossing simulation results. Again the behaviour
with the two SBMPC versions are identical, due to the same argumentation as
for the two previous situations. Moreover, both have trouble with the crossing
situations, due to the obstacle not following COLREGS, and due to a non-optimal
parameter configuration. Again, a decrease in the course offset penalty parame-
ters Kχ ,starboard and Kχ ,port could improve on the performance here. However,
the north-east direction the obstacle takes with time makes the hazard of a
starboard maneuver higher, and thus the own-ship turns over to port to avoid
collision with certainty.
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Figure 7.26: Crossing situation with cost function alteration (M2). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path with the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.27: Crossing situation with cost function alteration (M2). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.
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Figure 7.28: Crossing situation with cost function alteration (M2). Surge re-
sponse for the two SBMPC versions. The nominal surge reference ud , the surge
(propulsion) offset um , the actual surge reference uc and own-ship surge u are
here shown.
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Figure 7.29: Crossing situation with cost function alteration (M2). Track esti-
mates for the obstacle, versus the true motion.

0 10 20 30 40 50 60 70 80

Time [s]

0

100

200

300

400

500

D
is

ta
n

c
e

 [
m

]

w/SB-MPC

w/Probabilistic SB-MPC

Figure 7.30: Crossing situation with cost function alteration (M2). Distance from
the own-ship to the obstacle, for both SBMPC versions. The red line marks the
safe distance dsaf e = d

saf e
i = 40 m.
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7.2.4 Results Part 3

Here, results for the SBMPC and PSBMPC with the cost function alteration (M3)
are given for the three situations.

Overtaking

Figures 7.31 - 7.35 show the overtaking simulation results. The SBMPC again
performs correctly, obeying to the COLREGS Rule 13 being the overtaking vessel
and also converging smoothly to the planned path. However, the PSBMPC just
drives directly ahead and almost collides with the obstacle, which enters the
own-ship safety zone around t = 16 s. This comes from the use of the exponential
term e−(t−t0) in (M3), which values collision cost longer forward in time lower
than the cost closer to the current time. A parameter 0 < b < 1 should here in
hindsight be set in front of the exponent in the exponential (e−b(t−t0)) in order to
adjust the discounting of future collision costs. As seen in some of the previous
situations, some oscillations in the heading reference for the own-ship with
PSBMPC occurs, mostly because of too high values of the penalty parameters
Kχ ,starboard and Kχ ,port.
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Figure 7.31: Overtaking situation with cost function alteration (M3). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path with the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.32: Overtaking situation with cost function alteration (M3). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.



7.2. SIMULATION 97

0 20 40 60 80

Time [s]

0

5

10

S
p

e
e

d
 [

m
/s

]

w/SB-MPC

u
c

u
d

u
m

u

0 20 40 60 80

Time [s]

0

5

10

S
p

e
e

d
 [

m
/s

]

w/Probabilistic SB-MPC

u
c

u
d

u
m

u

Figure 7.33: Overtaking situation with cost function alteration (M3). Surge
response for the two SBMPC versions. The nominal surge reference ud , the
surge (propulsion) offset um , the actual surge reference uc and own-ship surge u
are here shown.
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Figure 7.34: Overtaking situation with cost function alteration (M3). Track
estimates for the obstacle, versus the true motion.
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Figure 7.35: Overtaking situation with cost function alteration (M3). Distance
from the own-ship to the obstacle, for both SBMPC versions. The red line marks
the safe distance dsaf e = d

saf e
i = 40 m.

Head-On

Figures 7.36 - 7.40 show the head-on simulation results. The SBMPC here
performs correctly according to the COLREGS Rule 8 and 14. The PSBMPC acts
more poorly, turning to port first and then to starboard in order to avoid the
obstacle. However, as the COLREGS violation is only detected when the obstacle
is within dclose = 200 m in the SBMPC, the PSBMPC acts correctly from the
point in time this threshold is crossed.
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Figure 7.36: Head-on situation with cost function alteration (M3). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path when the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.37: Head-on situation with cost function alteration (M3). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.
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Figure 7.38: Head-on situation with cost function alteration (M3). Surge re-
sponse for the two SBMPC versions. The nominal surge reference ud , the surge
(propulsion) offset um , the actual surge reference uc and own-ship surge u are
here shown.
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Figure 7.39: Head-on situation with cost function alteration (M3). Track esti-
mates for the obstacle, versus the true motion.
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Figure 7.40: Head-on situation with cost function alteration (M3). Distance from
the own-ship to the obstacle, for both SBMPC versions. The red line marks the
safe distance dsaf e = d

saf e
i = 40 m.

Crossing

Figures 7.41 - 7.45 show the crossing simulation results. The PSBMPC here takes
a more risky approach where it drives straight forward for a long time before
taking a starboard turn in order to avoid collision, still keeping the obstacle at
safe distance. The SBMPC takes a more cautious approach with an early evasive
maneuver. The oscillations in the heading for the PSBMPC may be a result of the
KF velocity estimate variation affecting the collision probability, which again
affects the COLAV system behaviour. The variance in the collision probability
evaluation with only nmc ,int = 100 samples may also affect this, in addition to
non-optimal tuning of the COLAV method, as was mentioned for some of the
previous situations.
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Figure 7.41: Crossing situation with cost function alteration (M3). North-East
plot of the vessel motions at t = 10 s, t = 40 s and t = 80 s. The obstacle is
plotted in green, with its KF tracked path shown in yellow/gold. The own-ship
is plotted in blue with a black path when the original SBMPC. For the PSBMPC,
the own-ship is plotted in cyan with a dashed black path. The grey line with
two red crosses marks the planned path for the own-ship.
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Figure 7.42: Crossing situation with cost function alteration (M3). Heading
response for the two SBMPC versions. The nominal course reference χd , course
offset χm , actual course (equal to heading) reference χc = ψd and own-ship
headingψ are here shown.
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Figure 7.43: Crossing situation with cost function alteration (M3). Surge re-
sponse for the two SBMPC versions. The nominal surge reference ud , the surge
(propulsion) offset um , the actual surge reference uc and own-ship surge u are
here shown.
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Figure 7.44: Crossing situation with cost function alteration (M3). Track esti-
mates for the obstacle, versus the true motion.
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Figure 7.45: Crossing situation with cost function alteration (M3). Distance from
the own-ship to the obstacle, for both SBMPC versions. The red line marks the
safe distance dsaf e = d

saf e
i = 40 m.

7.3 Discussion

Note that the results obtained here can not be said to be representative for the
average case, as only single realizations of the stochastic process describing the
obstacle motion were sampled. The number of Monte Carlo simulations NMC

should be increased in order to get a more robust result. Moreover, different
values of the noise strength σa in the CVM should be tested, in order to test the
probabilistic COLAV performance for obstacles with varying maneuverability.
Tests in a larger variety of situations, with multiple obstacles in congested
areas, for instance near land in Trondheimsfjorden, should also be performed.
However, the results gained here can serve as indicators for the probabilistic
COLAV performance with the chosen modifications.

The Probabilistic SBMPC, which involved three suggested modifications
to the SBMPC cost function, was tested against the original version for three
situations. Results using the first cost function modification (M1) gave overly
conservative behavior in all situations for the PSBMPC, due to the risk of collision
term being omitted. Thus, it shows that a term accounting for the safety zone
formalism, i.e. when an obstacle is inside the safety zone or not, and a weighting
of the time when a collision might occur, need to be included in the cost function
in order to obtain good performance.

For the second cost function modification (M2), the results with both SBMPC
version were identical, and thus no added benefit with scaling the collision cost
and risk term in the cost function (7.1) by the collision probability was gained
here. This was due to the max value of the modified collision cost and risk term
becoming approximately equal to the max value of the original collision cost
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and risk term.
The third cost function modification (M3) gave a more risk-taking COLAV

system, because possible collisions occuring later in the prediction horizon are
discounted through the use of the exponential term e−(t−t0), and thus given
lower cost. In addition to the scaling by the collision probability, this allows the
PSBMPC to make more daring maneuvers. A factor b should here have been
used in front of the exponent in the exponential in order to tune the discounting
of future possible collisions. The choice of b can adjust the PSBMPC behavior
between being conservative and risk-averse, to being more risk-taking.

In total, the optimal modification to the SBMPC to account for uncertainty
or collision probability with obstacles can not be said to be found yet. More
modifications should here be done to the SBMPC and tested in multiple scenarios.
The results with the three modifications (M1) - (M3) can however serve as a first
step towards developing a better PSBMPC version.
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Chapter 8

Conclusion and Future
Work

8.1 Conclusion

In this thesis, a probabilistic version of the Collision Avoidance System based
on the Scenario-Based Model Predictive Control have been implemented and
compared to the original version in three different situations; an overtaking situ-
ation, a head-on situation and a crossing situation. The simulation environment
with the COLAV systems were implemented in Matlab, with a Kalman Filter
used as the tracking method, which produces the obstacle state estimates and
the corresponding error covariance.

The probabilistic version PSBMPC utilizes the probability of collision Pic
with an obstacle i in its framework. The collision probability was here calculated
using Monte Carlo integration with a less effective importance sampling strategy.
This strategy samples a number of nmc ,int possible trajectories that the obstacle
may take based on the current obstacle expected position and velocity and the
corresponding uncertainty. Further, it counts the number of these trajectories
which cross with the own-ship safety zone at the Closest Point of Approach, at
some point in the future, and uses the ratio of crossing trajectories to the total
number of trajectories as a collision probability estimate. An attempted more
effective method for sampling the obstacle trajectories was also implemented.
This was based on the expected velocity the obstacle need to have in order to

107
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collide directly with the own-ship at CPA, and a heuristic estimate of the variance
in velocity and position needed to cross the own-ship safety zone. However,
work yet remains for this approach to function correctly, and it was thus not
used in the PSBMPC testing. A limitation of the current collision probability
evaluation method is that only straight line paths are assumed for the future
obstacle trajectory. This will in practice be, among other factors, determined by
the type of vessel, its goal destination and the driver type ”behind the wheel”.

Three modifications to the cost function in the SBMPC to account for the
collision probability were suggested for the PSBMPC. The first modification gave
poor results, because the risk of collision Rk

i with scenario k , which involves
the time of collision and whether obstacle i resides inside the own-ship safety
zone, was omitted from the cost. This did however prove the need for having a
term in the SBMPC cost function which determines whether or not the obstacle
crosses the safety zone, and at what point of time in the horizon this occurs. The
second modification gave identical results as for the original SBMPC, because of
the max value of the modified- and original term being approximately equal, not
causing different optimal course or propulsion offsets. For the third modification,
inclusion of an exponential term involving the difference between the prediction
time and current time allowed for more risk-taking behavior in the PSBMPC, as
future possible collision events were discounted. A discounting factor b should
here be introduced, to tune the COLAV method behavior between being overly
cautious, and being too risk-taking.

8.2 Future Work

Several suggestions are made for future work, stated in the following.

Development of Efficient andRealistic Collision Probability
Evaluation Methods

The first suggestion involves research on developing more efficient methods
for evaluating the collision probability between the own-ship and an obstacle,
which uses both the uncertainty in both position and velocity. The less effective
method used here, based on Monte Carlo integration, uses a computational time
per probability evaluation which is not feasible for real-time, as was discussed in
Chapter 6. The attempted more effective sampling strategy developed could here
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be refined to become a working approach, or a different method for instance
based on an extension of the probability flow method described in Chapter 5
could be developed.

Development of Vessel Intent Models

The assumption used in this thesis that an obstacle travels along a straight line
with constant velocity will not hold for all vessel types in practice. A possibility
is here to use machine learning or a similar technique using AIS data for a large
amount of vessels travelling in a region, to infer the maneuvering intent of
an obstacle. This maneuvering intent can then be used to change the obstacle
trajectory in the SBMPC prediction, and give a possibly more robust collision
probability estimate which does not only consider straight line trajectories.

Testing Out More Modifications To The SBMPC

The second suggestion involves testing out more modifications to for instance
the SBMPC cost function beyond the proposals made here. A stand-alone term
involving the collision probability with possibly other factors such as the time of
collision, could be added to the cost function. As a non-zero collision probability
estimate higher than 1 percent is a strong hint that an evasive maneuver should
be taken, this factor might need a term on its own to signify the importance of
avoiding collision.

Testing thePSBMPCWithMoreComplexMulti-Target Track-
ing Methods

The single target trackingmethod Kalman Filter used in this thesis for tracking an
obstacle is simplistic and does not account for whether the target (obstacle) exists,
nor data association uncertainty (when using for instance radar measuremenst)
whenmultiple targets are present. Testing with amulti-target trackingmethod in
more congested situations near land is therefore advised and will aid in proving
the performance of the modified SBMPC.
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