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Abstract

The fields of artificial intelligence and thereby reinforcement learning has
attracted considerable attention the last few years as several breakthroughs
in research on both the particular field and the availability of computational
power has surged. Closely related to reinforcement learning is the domain
of control theory and the question has been raised if whether this new-found
technology can compete, or even outperform, traditional control theory ap-
proaches for robotic control applications. The theory of reinforcement is
therefore in this project studied thoroughly to first learn about the different
algorithms and approaches and the application areas they are best suited
to solve. Then, some of the algorithms are implemented on specific prob-
lems related to robotics control to gain practical experience with both the
algorithms themselves, but also with artificial neural networks which is a
technology important for state-of-the-art applications. In the end one of
the most prominent reinforcement learning algorithm at the time is applied
to devise a controller to solve a real robotic control problem: quadrotor
altitude control, by using a simplified simulated version of a quadrotor as
a starting point. The resulting controller is then compared to a traditional
control method and the results are discussed.
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Chapter 1

Introduction

1.1 Background and motivation

Control of rotor-based aerial vehicles have been studied intensively by the
scientific control theory community all the way back from the 20st century
and so the theory is well established at this point. However, despite all the
research that has gone into this subject the problem still remains a hard one.
This is because almost all classes of rotor aircrafts are underactuated sys-
tems which exert highly nonlinear dynamics because of the environment in
which they operate. Even though fluid mechanics is also a well established
field of study and good models for the forces and torques that affect the
aircrafts exists, these systems are also time-variant because their dynamics
depend highly on the mode of operation.

For example, a quad-rotor will experience very different environmental
forces when it’s hovering close to the ground versus high speed maneu-
vering while following a trajectory. In addition the aerodynamic forces is
often dominant in small-scale rotor crafts. In this regard, the control of
small-scale quad-rotors is a particularly challenging and interesting prob-
lem.

Because of the complexity of modelling aircrafts some trade-offs are
often necessary between the computational time required calculate actua-
tor inputs and the precision. Current approaches for control theory based
controllers for quad-rotors control utilize different methods like linear- or
nonlinear model predictive control [3], feedback linearization [4], back-
stepping control [5], and LQR- and PID control [6]. They have one thing
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in common, namely that they are based on a known model of the system
dynamics, which require modelling of the aforementioned complex dynam-
ics, which can be tedious and error-prone. This is problematic because the
performance of the controllers are highly susceptible to modelling errors
which often occur in complex systems.

Another interesting approach for controlling quad-rotors, or robotic sys-
tems in general, is machine learning. And more specifically, deep reinforce-
ment learning. This is an attractive alternative because many methods from
reinforcement learning are able to learn model-free, and can thus therefore
avoid some of the problems that traditional approaches have revolving sys-
tem modelling.

It is therefore interesting to investigate how current methods based on
artificial intelligence fares against control theory approaches in terms of
performance measures like robustness and precision and for the sake of
redundancy. Maybe even can the two methods be combined to form solu-
tions that benefits from the best of two worlds. Comparing the two different
methods is also of interest in a more philosophical nature with respect to
”Al vs human” intelligence. If we think about the traditional control ap-
proaches as human intelligence and DRL as the artificial intelligence (even
though, of course, it is human technology after all) then all we need is a
concrete task to solve.

In this project I aim to put this question to test, with quad-rotor altitude
control as the measuring task between artificial- and human intelligence.
Has the age of Al intellectual dominance finally dawned upon us? If that is
the case, then I would like to state for the record that I for one welcome our
new robot overlords [7].

1.2 Related work

Deep reinforcement learning (DRL) has shown particularly promising re-
sults where traditional control approaches are hard to apply. These are typ-
ically abstract tasks that requires an ad-hoc or a specifically tailored solu-
tions because they’re hard to express using traditional modeling methods.
Some examples of successful applications includes dexterous control of a
robotic arm to do Lego stacking [8], advanced autonomous aerobatic flight
of RC helicopter based on system dynamics found by model identification
of the system [9][10], learning hand-eye coordination for robotic grasping
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from monocular images [11] and path following for marine vessels [12]
that was shown to outperform the traditional control method.

Another interesting use of DRL in robotics is to use traditional ap-
proaches to guide the agent in learning. In direct relevance to quad-rotors,
[13] show that an Al controller can learn much faster by using a MPC con-
troller to guide the search and the final controller computes motor inputs
at a pace that is two orders of magnitude faster than the classic control
approach. Results from [14] also confirms that the computational time is
reduced by two orders of magnitude while performing tasks like in-air re-
covery and trajectory following.

There also exists examples of doing the opposite, improving traditional
approaches by using DRL. There exists numerous examples of DRL agents
that learns to tune PID controllers [15][16][17], and an example of more
relevant work [18] that tunes the weight matrices of a model-predictive
trajectory planning algorithm for an unmanned aerial vehicle (UAV).

DRL has also been applied to a closely related field of robotics, vir-
tual robotics, or more commonly known as video-games. Numerous results
have shown that DRL agents can learn to play better than the best pre-
vious known algorithm, and some can even perform at a human, or even
super-human level. Examples of this is agents that can play Doom [19] and
various Atari games [20][21][22]. Board games such as Go [23] and Chess
and Shogi [24] has also been mastered by DRL agents.

1.3 Project objective

This project is an assemble of work to prepare for future research to be
conducted under my master thesis. The main objectives in this project is
therefore the following:

1. Study and understand the theory of reinforcement learning including
basic theory and principles and up to what is currently considered
state of the art algorithms.

2. Gain practical experience by implementing reinforcement learning
methods for tasks related to robotics and control.

3. Study the dynamics of quadrotors, implement a reinforcement learn-
ing method to solve the quadrotor altitude control task and compare
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its performance and behavior to a control method based on traditional
control theory.

1.4 Outline of report

Chapter 2 introduces the basic theory of reinforcement learning in gen-
eral. Chapter 3 discusses different reinforcement learning algorithms and
applies each one of the actual algorithms to a specific problem. Chapter 4
introduces the dynamics of quadrotors and presents a simulated quadrotor
environment. Two controllers are then presented: one being based on rein-
forcement learning and the other on a traditional control approach. Finally
the controllers and compared and the comparative performance of the two
controllers are discussed. Chapter 5 attempts to draw a conclusion of the
project based on the initial research questions posed in Section 1.3 and the
results presented in Chapter 4.




Chapter

Theory

This chapter starts off by introducing the basic principles and theory that
reinforcement learning is built on, and then exploring the necessary prereq-
uisites to understand the more complex state-of-art reinforcement learning
algorithms are explored. The content discussed in this chapter is heavily
based on the book “Reinforcement Learning: An Introduction” by Sutton
and Barto [1]. It is rendered here for the sake of completeness, but also
interpreted from a control engineers viewpoint for the sake of comparison.
Only the most relevant concepts related to the project are included.

2.1 The fundamental reinforcement learning agent

2.1.1 Agent and environment

In any reinforcement learn-
ing (RL) agent there are
three fundamental signals at
each timestep of the agents
life: the observation O,
the action A; and reward
R; which is consequence
of its current state and the
actions performed up until
then. These signals rep-
resents the interaction be-

Cheervation

Agent'Corrincllar

K

marizes the interaction between the agent and th®
environment.



2.1 The fundamental reinforcement learning agent

tween the agent and the

environment.  Figure 2.1

encapsulates these relation-

ships. The observation is

used to construct the agent internal representation of its current state s;
in the environment.

The problem can be categorized as a sequential decision making pro-
cess where the agents goal is to learn how to take actions based on states
that gives the maximum amount of future rewards. This can be formally
expressed as a Markov decision process (MDP) which is introduced in Sec-
tion 2.1.3.

The distinction between the environment and the agent is not always
ambiguous. Let’s say the objective is to control a robotic arm and move the
end-effector to a desired location, it is tempting to think of the robotic arm
as the agent. It is however more correct to think of the agent as the brain of
the robotic arm. The robotic arm can be viewed as a part of the environment
as well, and what the agent has to learn is the controlled arms dynamics,
but also its interaction with other parts of the environment. This is the
gist of what is known as model-free reinforcement learning. In the case of
model-based learning, the agent learns a representation of the underlying
dynamics as well, but that is out of scope for this project.

2.1.2 Control theory analogy

The model in Figure 2.1 closely resembles what control engineers knows
as closed-loop feedback control, in which case the action signal is known
as the input signal u; and the observation is known as y;, but the notation
can vary in different literature. The environment is instead denoted as the
system, or the plant, and an additional signal is included known as the ref-
erence signal r; (not to be confused with the reward in the agent model) and
the objective is to steer the state of the system towards the r;.

The reward signal on the other hand has no direct analogy in this context
and at the core this is what separates the two methods from each other. The
reward signal, as we shall see, is what enables the Al agent to learn and
solve problems as opposed to traditional control methods that depend on
mathematical modelling and domain knowledge.

Traditional control theory approaches also requires a high level planner
in the overall system in many problem formulations. This can be illustrated

6



2.1 The fundamental reinforcement learning agent

by looking back at the robotic arm example. Say the task is to grasp an
object and put it somewhere, planning the successive control inputs to suc-
cessfully grasping it, holding on to it, and moving it to the desired location
must also be included in the solution. A RL agent on the other hand has the
advantage that all of the aforementioned steps does not have to explicitly
expressed, but can instead be learned by interacting with the environment.

2.1.3 Markov Decision Processes

An important underlying assumption in reinforcement learning is that the
transitions of the system is completely characterized by the immediate pre-
ceding state and action only, S;_; and A;_; respectively. This means that
the dynamics of the system do not depend on earlier states and actions at
all. If this holds for any state of the system, the system is said to have the
Markov property, and a sequential decision problem which has this prop-
erty is called a Markov decision process (MDP) [25].

In the original formulation a MDP is denoted by the tuple (X, U, R,
T), where X is the set of all states, U/(X) is the set of all actions associated
with a state x € X, R(x,u) is the reward function which depends on the
state x and action u and 7' is the transition model which gives the transition
probabilities P(x'|2, ). If the system is deterministic, then the transition
are simply a function of the current state 2 and action u: ' = f(z,u).
Note that this notation is not used further, and for the rest of this report the
notation introduced in Section 2.1.1 is used.

For the property to hold, the states of the system is required to contain
all information that influence the future states of the system. This property
is important because making an optimal decision at any point in time is im-
possible if we’re not aware of the full situation. However, all the necessary
information to infer about the future is not always available to us. Usually
we operate in partially observable universes where the true state of the sys-
tem is not always given, but instead we observe evidence of it. A MDP
where the state is only partially observable is called a Partially Observable
Markov Decision Process (POMDP). A POMDP can be converted into a
MDP by introducing a belief state that can be derived from the observed
evidence. This is useful in many situations and can be used to act optimal
based on the agents beliefs of the world.
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2.1.4 Rewards

The reward the agent receives at each timestep is designed by the program-
mer and depends on the current state of the agent in the world and its goal.
The reward function can for example be related to how close the agent is
to a setpoint or path, or it can be a negative reward for each timestep that
is not a terminal state (an absolute goal) and a positive reward for reaching
the terminal state. The performance of the agent depends on the quality of
the reward function and its design is therefore important.

The agent’s goal is in general to maximize its total expected reward over
a time horizon known as an episode. The total expected reward is called the
expected return (¢, and in its simplest form it’s just the sum of the rewards
over an episode:

Gy 2 Ryy1 + Ryyo + Ryys + ... + Ry (2.1)

However, the simple sum of rewards are seldom used. Instead the dis-
counted sum of future rewards are used. The agent chooses A; which max-
imizes the expected discounted return

N

Gy = Rt + YRipo + VP Rz + . 9V 'Ry = Z Y Ripny1. (2.2)
n=0

The discount factor v determines the present value of future rewards such
that the agent will tend to prefer immediate rewards over future rewards.
When v approaches 1 the agent becomes more farsighted, and when it ap-
proaches 0 the agent becomes more intent on immediate rewards.

It is important to note that returns and successive timesteps are related
to each other in a recursive relationship as

Gy = Rivi + YRiyo + 7V Rivs + 7 Reja + ..
= Ris1 + Y(Res2 + YRiys + 7 Rega) + .. (2.3)
= Riyy1 +7Gi

which also simplifies notation.

2.1.5 Value functions and policies

So far we have talked about the signals that the agent interacts with: the
observation O, the agent receives that it uses to represent its current state

8



2.1 The fundamental reinforcement learning agent

s¢, the input (action) the agent applies to the environment A;, and the reward
the agent receives R;. Most reinforcement learning algorithms uses these
quantities to define a ”goodness” of states or taking certain actions in a
state. The “goodness” defines how much future reward is expected from
a certain state and onward into the future. This value is what has to be
estimated, or learned, by the agent.

Closely associated to the notion of valuing a state and the actions that
can be performed in them we have what is called a policy. The policy of an
agent is a mapping from states to probabilities of selecting actions. 7(a|s)
is the probability of selecting action A; = a and state S; = s at timestep ¢.

By definition the value function v, (s) expresses the value of a state s
when acting under the policy 7. This is called the state-value function for
policy 7. For MDPs this can be expressed formally as

vr(s) 2 E[Gy[S; = 5] Z’Y Ripnia|Si=s| . (2.4)
k=0

In a similar fashion we can define the value of action a in state s un-
der policy 7 as ¢, (s, a), which is called the action-value function. This is
expressed as

QTr(Sa@) E[G|S; = s, Ay = Z’Y Riini1|Si =54 =a
k=0
(2.5)

The value- and action-value functions are learned from experience, and
a fundamental property of these functions is that they satisfy a recursive
formula similar to that of the recursive formula for returns given by equa-
tion (2.3). This formula expresses a consistency condition between a state
and its successors. Hence, states that are spatially related to each other are
related with respect to their expected future value.

For v, (s) this can be expressed as
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E
]:E [Rt+1 + 7Gt+1|5t = 5}

Z (als) ZZps rls,a) [T+7E[Gt+1’5’t+1—8]]

—Z (a|s) Zps rls,a) [r+yv(s')], foralls € S, a € A.

(2.6)
This is known as the Bellman equation for v,. It expresses a relationship
between a state s and successor states s'. The Bellman equation averages
all the rewards from successor states s’ weighted by their probabilities to
form an estimate for the state s that is equal to the discounted sum of the
expected rewards from the successor states s’ plus the immediate reward
that is associated with transitioning from s to s’. This can be viewed as a
one-step look-ahead into all possible future states and performing a backup
operation that conveys information about the future states back to the cur-
rent state.

This is actually a fundamental property which makes reinforcement
learning methods able to not only learn from complete episodes of returns,
but also learn from any transitions between states that the agent experi-
ences.

2.1.6 Bellman optimality equations

Broadly speaking, the reinforcement learning problems objective is to find
a policy that generates the most reward over time. A policy 7 is considered
better or equal to another policy 7’ if its expected return is greater or equal
to that of 7’. In terms of the value function this can equally be expressed
as having v,(s) > v (s) for all s € S. The policies that satisfy this is
inequality have the same state-value function called the optimal state-value
function v,, and they are denoted as the optimal policy 7,.. The optimal
state-value function can be expressed as

v,(8) £ max v (s) (2.7)

10



2.1 The fundamental reinforcement learning agent

for all s € S. The optimal policies also have the same optimal action-value
function

¢:(s,a) = maxqx(s, a) (2.8)

forall s € S and a € A(s). The optimal action-value function v, can also
be expressed as a function of v, as

q«(8,a) = E[Ry1 + v (S144)| St = s, Ay = a] . (2.9)

These functions also satisfy the consistency condition given by the Bell-
man equation in (2.6). The consistency condition for v, can be expressed
without a reference to a specific policy because it is the optimal value func-
tion. This means that the value of any state while following the optimal
policy is equal to the expected return of the best action a in state s. This is
known as the Bellman optimality equation, and for v, it is expressed as

v.(s) = Jnax Gr. (s, 0)
= max E [G;|S; = s, Ay = d

= mgx}? [Rt+1 +79G 1|5 =5, A = a]

(2.10)
= mgx}? [Ri1 4+ 70 (Se41]S: = 5, Ay = a
= mapr(s', rls,a) [r+ yv.(s)] .
By using (2.3).
For ¢. the Bellman optimality equation is given by
0.(5,0) = E | Risy + ymax . (S0, )| = 5, 4, = o
(2.11)

= Zp(s”r|s, CL) [T —l—’yme/qu*(s/’a/)} .

s'r

These equations can be illustrated graphically as backup diagrams, as
shown in Figure 2.2. As opposed to equation (2.2), they show that instead

11



2.2 Learning approaches

of taking the expected value given some policy, the action a that gives the
maximum reward is always chosen.

s s, a
r
max |
[« a l
,
s' max
a . . al
(a) Value graph. (b) Action-value graph.

Figure 2.2: Backup diagrams for the Bellman optimality equations.

2.2 Learning approaches

Solving the Bellman optimality equations analytically gives a solution to
the reinforcement learning problem. The class of methods that solves these
equations are known as dynamic programming. Unfortunately, explicitly
solving the set of Bellman equations is often impractical. There are three
main reasons for this:

1. The dynamics of the environment is not accurately known.

2. The state space of the problem is too large, which can lead to the
problem being computationally intractable to solve because the com-
putational requirements grow exponentially with the number of state
variables. Richard Bellman himself coined this phenomenon as the
“curse of dimensionality”.

3. The Markov property is not satisfied.

Usually we have to settle for approximate solutions because some or
all of the above properties are compromised. Therefore many reinforce-
ment learning methods are based on trying to find a way to approximate the
Bellman optimality equation based on past experienced transitions. Most
tasks considered to be interesting in robotics either have continuous, or very

12



2.2 Learning approaches

large action- and state spaces. The main problem of this project is a good
example of this. Therefore, the subsequent sections will focus on intro-
ducing several methods in reinforcement learning that aims to estimate and
optimize v,, ¢, and  without analytically solving the Bellman equations.

2.2.1 Prediction- and control problem

Generally, the different learning approaches can be divided into two prob-
lems. The first one is called prediction which aims to estimate the value- of
action-value functions. The second is called control which aims to optimize
the policy based on the estimated value/action-value functions.

The control problem is solved by acting greedily with respect to the cur-
rent estimation of the value/action-value function. If we have an estimate
of the action-value function, call it ¢(s, a), then the corresponding greedy
policy is the one that deterministically chooses the action with maximal
action-value, hence

7(s) £ argmax,q(s, a). (2.12)

Solving the prediction problem is where the main differences between
the methods lie, which is discussed briefly next. Readers may want to con-
sult [1] for the specifics and different flavors of the methods discussed.

2.2.2 Monte-Carlo learning

Monte-Carlo learning is a way of learning in environments that are based
on averaging samples of complete returns. Hence the environment must be
separable into episodes or be episodic in nature. Similarly to other methods
we discuss in this section the methods require only experience to learn. For-
mally we say experience is samples of states, actions and rewards gathered
from real or simulated interaction between agent and environment.

Monte-Carlo methods can be separated into two categories: first-visit
MC and every-visit MC. First-visit MC only estimates the value function
as the average of return of first visits to a state s, while every-visit MC
averages the return of all visits to s.

To illustrate the basic notion of the Monte-Carlo learning approach to
estimate m ~ m,, a version which uses first-visits and ES (exploring starts)
is summarized in Algorithm 1, where ES is an exploration strategy that
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always picks random states which assures that all states are continuously
visited. Note that even though the action-value function is used in this
example, using the value function instead is straight forward, and only re-
quires an extra one-step look-ahead to find the action a to calculate 7(S;).

Algorithm 1 Monte-Carlo with ES

Initialize storage for action-values ()(s,a) and set initial values for all
seS,ae A
Initialize 7(s) € A (arbitrarily) for all s € S
Initialize Returns(s,a) - empty container forall s € S,a € A
for episode in 1 : M do
Choose Sy € S, Ay € A(Sy) randomly such that all pairs of actions
and states as probability > 0 of being chosen
Generate an episode from Sy, A, following 7:
[(So, Ao, R1), (S1, A1, Ra), ...(Sn_1, An_1, Ry)]
G+0
for Each timestep in episode: 1 : n do
GG+ Ry
if S;, A, has not already appeared in the episode during time 0 : n—1
then
Add G to Returns(S;, A;)
Q(Sy, Ay) < average(Returns(S;, A;))
7(Sy) < argmax,Q(S;, a)
end if
end for
end for

Usually ES is an unlikely assumption in real applications, and other ap-
proaches are used to ensure that the agent continuously explores all states.
These can be divided into on-policy, and off-policy methods. On-policy
methods evaluates or improves the policy that is used to make decisions
while off-policy methods evaluate or improve a policy that is different to
the policy taking the actions. Algorithm 1 is an on-policy method.

Off- and on-policy methods are not directly linked to MC learning, but
to reinforcement learning approaches in general. On-policy methods are
usually simpler, have lower variance and converge faster, while off-policy
methods have higher variance, slower convergence, but are more power
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and have more applicable potential in general. Off-policy methods are for
example able to learn from other controllers, like a controller based on
control theory for robotics control. The greater variance related to off-
policy methods comes from the fact that it’s hard to guarantee that the data
received is related to the policy you're trying to learn about, and hence the
estimates are less likely to be accurate.

2.2.3 Temporal-difference learning

Another important idea of reinforcement learning is the notion of temporal-
difference learning. While Monte-Carlo learning estimates the value func-
tion based on averaging returns, TD learning only waits until the next
timestep before it can make an update to the current value function esti-
mate. Similarly to DP, TD also bootstraps, meaning it updates the existing
value V(s) of some state s based on another value V' (s') for some other
state s’ related to s by taking an action a in s. TD can thus be viewed as
taking the idea of sampling from MC and the idea of bootstrapping from
DP.
To illustrate the TD learning principle is the simple TD update

V(S) < V(S:) + a[Rip1 + 7V (Si1) — V(Sy)] (2.13)

which can be used to predict v, under the policy 7, where « is the learning
rate. The full algorithm is shown in Algorithm 2. This method is called
TD(0), or one-step TD. TD(0) is a special case of TD()\) which is a n-
step TD method which provides a seamless relation between TD- and MC
learning methods. However, TD(\) is not discussed here as it is not used
by the algorithms considering in this project.
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Algorithm 2 TD(0) prediction

Initialize learning rate « € (0, 1]
Initialize V' (s) for all states s € S.
for episode in 1 : M do
Set S = SO
for timestep in episode 1 : n do
A < action given by 7(S5)
Perform action A, observe resulting reward R and new state S '
V(8) « V(S)+a[R+V(S) = V(9)]
S+ S
end for
end for

The general 7'D(0) algorithm has been shown to converge to an optimal
solution V, under th following conditions [26]:

1. The estimated values are stored in memory, such that they are not
forgotten.

2. The learning rate, at any time, satisfies the condition 0 < o < 1.

3. The variance of the reward is bounded, hence Var(r;) < oc.

Both TD- and MC learning uses value- and action-value functions to
form a policy. This requires memory to store all combinations of state
value- and state-action value pairs and they are therefore often referred to
as tabular methods because they require bookkeeping for all the estimates.
The downfall of these methods is that they are not able to deal with con-
tinuous state- and action spaces at all because it would require an infinite
amount of memory.

In some cases a solution can still be derived by discretizing the environ-
ment, but for complex problems - like optimal control for a quadrotor - this
would inevitably lead to a sub-optimal solution because information would
be lost. It is also worth noting that even discretization may enable use to
form a solution, the amount of memory needed is still growing exponen-
tially with the number of state variables, and therefore the solution would
still be intractable to compute in many cases. The next section therefore
discusses a learning method that is applicable to continuous environments.
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2.2.4 Policy gradient methods

While the previously discussed learning methods were dependent on keep-
ing all value- and action-value estimates in memory, policy gradient meth-
ods can learn a parameterized policy that selects an action directly given a
state without approximating the value or action-value function of the envi-
ronment. Policy gradient methods are generally divided into three different
categories: actor-only, critic-only and actor-critic methods. This section
is dedicated to discussing actor-only methods, otherwise known as vanilla
policy gradient methods. The next section discusses actor-critic methods,
while critic-only methods are omitted because they are best fit to deal with
discrete action spaces which is out of scope for this project.

The notation for the parameterized policy is denoted as 7(als, §) where
6 is the policy’s parameters. The policy outputs a probability for choosing
an action a; given a state s, and parameters ¢, at a time ¢: 7(als,f) =
P(A; = a|S; = 5,0, =0).

Policy gradient methods seek to maximize some scalar performance
measure J(#). With respect to the policy parameters 6 the objective can
be optimized by doing gradient ascent using the gradient of .J:

9t+1 = 915 + OéVJ(Qt) (214)

where V.J(6,) is a stochastic estimate whose expectation approximates the
real gradient of the performance measure J. The objective which we seek
to maximize is the usual discounted expected return

T
Z ’Yth
t=0

We should expect the above expectation to be equal to v, where g is the
parameterized policy. And therefore we need a way of calculating

J() =E (2.15)

VJ(6:) = Vg, (so0)- (2.16)

This however is not trivial, because the effect of the policy on the state
distribution is a function of the environment dynamics which is unknown
to us. This is where the policy gradient theorem [27] comes in, which for
the episodic case can be stated as

17



2.2 Learning approaches

VI (6) = Vor, (s0)
x Z“(S)ZQW<S,G)VW(Q|S,9) (2.17)

where 1i(s) is the weighted state distribution probabilities under the policy.
Note that the right side of (2.17) can be calculated if the parameterized
policy 7y is differentiable with respect to it’s parameters.

Parameterization can be realized by devising a parameterized numerical
preference function h(s, a, f) that assigns each action a probability of being
chosen. An example of this is the exponential soft-max function which
gives the probability distribution and policy

eh(s,a,e))

Eb e(h(s,b,@))

where e ~ 2.711828 is the base of the natural logarithm. An advantage of
using the soft-max function is that exploration is assured by the stochastic
policy, and it will eventually converge to a deterministic policy as the agent
learns the best actions. This is clearly advantageous to the e-greedy strat-
egy often used for exploration in tabular methods, as in Section 3.1. While
this is one example of a parameterization function the choice is arbitrar-
ily. Other examples include using a linear combination of features (states)
and weights 6 as h(s,a,0) = 07x(s,a) or a deep artificial neural network
(Section 2.3).

Section 3.2 discusses a policy gradient method called REINFORCE
[28] which combines Monte-carlo learning with policy gradients. Readers
may want to read Section 3.2 before continuing to the next section to see
how the policy gradient theorem (2.17) is used to form a learning formula
for updating the policy parameter vector 6.

m(als,0) = (2.18)

2.2.5 Actor-critic methods

The policy gradient method described in the previous section relies on the
episodic returns (MC approach). Monte-Carlo learning has higher variance
than temporal difference learning because TD bootstraps and thus the ac-
tion and immediate reward from one timestep to another is not affected by
previous actions in that episode. Since all policies must be stochastic to
some degree in order to learn, MC is more prone to variance because at
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each timestep there is potential variance that is injected into the return for
that episode. In addition, MC methods can be hard to implement in practice
for continuing problems.

To alleviate some of this problem, we now introduce parameterized
value function, known as the critic, in addition to the parameterized pol-
icy which we will now reference to as the actor. By modelling the critic
as a bootstrapping method we can thus reduce the variance associated with
the pure policy gradient approach. The value function is similarly to the
parameterized policy denoted v(s, w) where w is the parameter vector.

A popular approach to actor-critic methods is therefore to use a one-step
return like 7°D(0), though any policy evaluation technique may be used in
practice. The parameter update rule for the MC case can be written in terms
of the 7'D(0) update to form an online algorithm:

R V7 (Ay|Sy, 0;)
P o VAR, V)

t+1 et + O[(Gt.t“rl /U<St7w>> W(At|St7 Qt)
X . V7T A S 76
=0 + a(Riy1 + y0(Seq1, W) — U(St’w))ﬁ (2.19)
t (A S, ;)

= et + Oé(;t In VW(At|St, Qt)

:9t+CK(5

For the critic part, the squared 7' D(0) is used as the loss function because
it is the estimated error between the approximated value and the observed
value (the reward) we would like to minimize, hence

J(w) = %52 (2.20)

where § = (R + ~y0(S’,w) — 0(S, w)). And because we want the TD error
to converge to 0 as the value function approaches the true value function,
we get the parameter update law

Wil = W + Oé(stV'U(St, Wt). (221)
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2.3 Neural networks

2.3 Neural networks

For solving our quad-rotor problem it is now clear that we need to use an
approach to learning that can handle continuous state- and action spaces,
such as an actor-critic method. As we have already established in chapter 1
this is a highly nonlinear task, and therefore we need parameterized func-
tions that is capable of approximating the dynamics of the system. A natu-
ral choice for a function approximation is therefore to use artificial neural
networks (ANNs), which has been applied with success to similar studied
problems [12][13][14] and others. When ANNSs are used in combination
with reinforcement learning it is often called deep reinforcement learning.

Figure 2.3 shows a generic ANN structure which can be characterized
as a directed graph where each circle represents a weight and activation
function, and the arrows represents the incoming signal from the feed for-
ward operation. This operation takes an input signal, for example states
variables, and does matrix multiplication with the first layer (left most row
of circles), and sends the output as input to the next layer and continues
to perform matrix multiplications until we get a final output from the net-
work. The activation functions that are parameterized by the weights of
the network plays an important role of introducing nonlinearity to the out-
put of the network. This enables the network to represent any continuous
function given by the sampled inputs [29]. In fact, this is true even for a
shallow network structure with only one hidden layer, but experience [30]
show that deeper networks are required to extract abstract features from
the input space while at the same time being able to generalize well with
respect to new inputs.

The second fundamental operation in neural networks in addition to the
feed forward operation is backpropagation. By using the chain rule known
from basic calculus and a loss function that specifies the loss function pa-
rameterized by the networks weight the gradient of each weight can be
found and adjusted in the direction that minimizes the loss. This is done by
an update law known as the optimizer, which is exactly like gradient ascent
(2.14) we saw in Section 2.2.4 and 2.2.5.
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Figure 2.3: A generic feed-forward ANN with four input
units, two output units, and two hidden layers [1].

Neural networks have been studied intensively and many extensions
to the activation functions, network architecture and optimizers have been
added during the last few years. Examples of this are batch normaliza-
tion [31] and the Adam optimizer [32] which are used in state of the art
applications. Much of the research has been driven by the success of ap-
plying convolutional neural networks to image classification and has led to
efficient frameworks for computing neural networks being developed, like
Tensorflow [33].
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Chapter

Reinforcement Learning Methods
and Implementations

To prepare for the quad-rotor problem three reinforcement learning meth-
ods were implemented to learn and gain practical experience: Q-learning,
REINFORCE and Deep deterministic policy gradient (DDPG), which cor-
responds to one or more of the learning approaches discussed in the pre-
vious chapter. These three methods were chosen to represent all of the
fundamental learning approaches in reinforcement learning, and to repre-
sent methods that together are able to solve a broad specter of different
environments in terms of being discrete or continuous, and sequential or
episodic. It is also beneficial to learn about older methods as a gateway to
understanding the more complex state-of-the-art algorithms, which is why
Q-learning and REINFORCE was experimented with before moving on to
DDPG which is considered as one of the current state-of-the-art algorithms.

The environments that the algorithms were implemented for all are all
from OpenAl Gyms [34] repository of environments and represent a variety
of problems from discrete to continuous in both action- and state space.

3.1 Q-learning

3.1.1 Algorithm outline

This an online and off-policy algorithm based on temporal difference learn-
ing (Section 2.2.3). It learns on the go and updates its action-value estimate
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3.1 Q-learning

at each time step ¢. In its basic form its applicable to problems which are
discrete in nature. It stores a action-value (s, a) for all possible values of
states s and actions a. The pseudocode for the learning algorithm is shown
in Algorithm 3, where (3.1) is the learning formula.

For each time step during an episode it performs a one-step look-ahead
backup for the current state based on taking the max action-value of the
current state to transition to the next state. The algorithm will therefore
never explore unless it is told to do so. To incorporate exploration into the
process the e-greedy exploration strategy was used, which means that the
agent at any time ¢ either performs an action from the max of the action-
values, or does a random one with probability e. This is the off-policy part
of the algorithm.

Since there are 500 different states and 6 different actions to perform
in each of them, we need to store 500 x 6 = 3000 different action-values

Q(s,a).

Algorithm 3 Q-learning

Set hyperparameters like total amount of episodes to train M step size a,
discount factor ~y, and small € > 0 for epsilon greedy exploration.
Initialize storage for action-values ()(s,a) and set initial values for all
seS,ae A
for episode in 1 : M do

Initialize S

while S is not a terminal state do

Choose action A from S using policy derived from Q (e.g e-greedy)

Take action A, observe reward R and next state S’
Do:

Q(S,A) + Q(S,A) +a |R+ fymng(S’,a) —Q(S,A)| 3.1)
S« 5

end while
end for
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3.1.2 Problem description

The environment that was chosen to apply Q-learning to is known as Taxi-
v2. The environment is illustrated in Figure 3.1. Our goal is for the agent
to perform as good as possible after a finite number of episodes.

Figure 3.1: An illustration of the Taxi-v2 environment found in OpenAl Gym.

State-space

The environment is a discrete, square grid with size 5 x 5 and the state-space
vector contains the x-y position of the taxi, the index of the location of the
passenger and the index of the drop-off location. There is four possible
drop-off locations (marked R, G, Y, B in Figure 3.1) for which the passenger
can be at the start of any episode. The passenger can also be inside the
taxi, which is the fifth possible location of the passenger. The destination
location and the initial passenger location are never the same because this
would be a terminal state. This means that the environment has 5 x 5 X 5 x
4 = 500 possible discrete states, for which 4 of them are terminal states.

Action-space

The agent (taxi) has six distinct actions which it can perform at any time
step during an episode. These are 1) move south, 2) move north, 3) move
east, 4) move west, 5) pick-up passenger and 6) drop-off passenger. The
environment is completely deterministic such that the effect of any actions

24



3.1 Q-learning

always has a probability of 1 of happening when the action is chosen. Mov-
ing towards a wall inside the grid will have no effect and will cause the
agent to stay put till the next time step. Note that there are walls not only
on the boundaries of the world, but also inside it.

Rewards

At each time step the agent receives a reward of —1 by default. If the agent
performs a drop-off or pick-up action that has no effect, i.e the passenger is
not at the tile or the tile is not the destination for the passenger, the agent
receives a —10 reward. A +20 reward is received by dropping the passenger
off at the correct destination. Because of these rewards the the return of
any episode is always less than 16 and depends on the initial state of the
environment. This is because there is a minimum of four tiles between any
two locations in the world.

3.1.3 Implementation and results

The agent was simulated inside the environment for A/ = 10000 episodes
with o = 0.1, v = 0.6, and with three different choices for e¢. Figure 3.2
shows the episodic returns for each different €, while Figure 3.3 shows a
snapshot of the agents policy after 2000 and 10000 episodes for € = 0.1.

By looking at Figure 3.3 we can see that the policy after 2000 episodes
is far from perfect, and without the extra exploration it’s easy to see that
it could potentially get stuck from multiple initial states. Even after 10000
episodes we can see that there is one state in particular (bottom right) for
which the agent has not yet found the optimal policy. Eventually the agent
will find the optimal policy for all possible states, albeit slow, under the
same conditions as for the general TD-learning algorithm discussed in Sec-
tion 2.2.3. However, checking for optimality is not practical or even possi-
ble.
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Figure 3.2: Returns for 10000 episodes of training for ¢ = 0.1, (blue), ¢ = 0.2
(red), and € = epet/T (green) with initial epsilon ¢y = 0.2 and time constant
T = 5000. Opaque lines are the raw return data while solid lines are smoothed
versions of the raw returns.

The consequence of this is that we can never turn off exploration com-
pletely (i.e set e = 0) because the agent is at risk of getting stuck in a subset
of S forever because the policy would turn greedy and would never explore
non-greedy actions. This also shows that exploration may contribute pos-
itively to the agents performance, but also inadvertently so, especially at
the later stages when it has found the optimal policy for the majority of the
possible configurations in the environment.

As we can see from Figure 3.2 an alternative to having constant explo-
ration is to adjust € adaptively, in this case by a exponential decay function
as €(t) = ege " where €y = €(0) and 7T is a time constant. This causes the
agent to explore more in the initial episodes and less in the latter. The agent
therefore learn faster at a cost of less rewards early on, but higher rewards
later. This strategy does however increase the risk of getting semi-stuck in
later episodes, like in certain states of Figure 3.3a,b as discussed above.
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(a) Policy after 2000 episodes. (b) Policy after 10000 episodes.

Figure 3.3: Visualization of the agents policy after a) 2000 episodes and b) 10000
episodes in an initial state where the passenger is in the top-left destination loca-
tion.

3.2 REINFORCE

3.2.1 Algorithm outline

Recalling the the contents of Section 2.2.4 we know that the gradient of the
the performance measure .J () in (2.15) is

VI(0:) <> u(s)>  ¢x(s,a)Vr(als,0) 3.2)

Where the first sum on the right hand side weights the states based on how
often they’re visited. However, when the policy 7 is followed the expres-
sion becomes an expectation:

VI(0) =E | ¢:(Si,a)Vr(alS:, 0) (3.3)

REINFORCE [28] uses this idea together with Monte-Carlo learning to
form an update rule for the policy parameter vector that is based on returns.
The expression in 3.3 can be simplified further, and becomes
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VW(At|St,9):|
VJ(O;) =E |Gi————— 34
R G4
or equivalently,

VJ(@t) =E [G’tV In F(At‘st, 9)] . (35)

With this update rule we are able to handle continuous state spaces by using
a parameterized policy function. The update rule for adjusting the parame-
ters of the policy function is therefore:

0t+1 = (9t -+ CY")/thV In W(At’St, 6,5) (36)

where « is the learning rate and -y is the usual discount factor. The pseu-
docode for the algorithm is shown in Algorithm 4.

Algorithm 4 REINFORCE

Initialize the differentiable policy parameterization m(als, 6), the neural
network, and weights
Initialize hyper parameters: learning rate «, discount rate y
for episode in 1 : M do
Generate an episode Sy, A, R, 1...S7_1, Ar_1, Ry following the cur-
rent policy
for each step in the episode t = 0,1,...7' — 1 do
G Zf:m YRy
0 < 0+ ay'GV Inm (A, S, 0)
end for
end for

3.2.2 Problem description

REINFORCE was used to solve the environment called CartPole-v0. In
this environment the agent is tasked with balancing a pole on top of a cart
which can move along a single frictionless axis. One end of the pole is
rigidly attached by an un-actuacted joint to a fixed point on top the cart
and can freely rotate around this point. A screenshot of the environment is
shown in Figure 3.4.
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Figure 3.4: Screenshot of a single visualized frame from the Cartpole environ-

ment.

The environment is initialized with the the pole in an upright position
and the cart close to the center of the axis. At each step of the environ-
ment the agent observes the linear- position and velocity of the cart, and
the angular- position and velocity of the end of the pole not attached to the
cart. The agent has two different actions, which is to either push the cart to
the left or to the right. For every time step that the agent manages to keep
the pole from falling more than 12 degrees from the vertical while keeping
the cart within +2.4m of the starting position it receives +1 reward. The
environment is summarized in table 3.1

Table 3.1: Summation of the Cartpole-v0 environment.

Environment

CartPole-v0

Initial states

Lo, Tie, Op, 0, € [—0.05,0.05]

uniformly
distributed random values

Observations Loy Ly Op, O Continuous variables
Actions Fe{-1,+1} Discrete variables
Rewards Ry =+1,Vt

Termination condition

|z.| > 2.4 or |6,] > 12° or t = 200

3.2.3 Implementation and results

An ANN was used as a function approximator with four nodes as the input
representing the four states, two hidden layers with size 10 and 2, and two
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output nodes representing the probability of choosing either one of the two
actions. For the hidden layers ReLLU was used as activation functions while
softmax with cross entropy was used for the output layer. As discussed in
Section 2.2.4 the softmax function produces probabilities which is suitable
for assigning probabilities in this case because we have a finite number of
actions while it also assures continuous exploration of the action- and state
space.

The agents was trained for 2000 episodes with and without the normal-
ization of the returns and the results are shown in Figure 3.5. The same hy-
perparameters was used for both of the agents, with learning rate o = 0.01
and discount factor v = 0.95.

Because the agent receives the same +1 reward at each time step it
struggled to separate the good actions from the bad ones. When all rewards
are strictly positive it will continue to increase the parameters ¢ of the policy
which can lead to stability issues related to the gradients computed in the
network. To counteract this problem the discounted returns the agent uses
for updating the parameters was normalized, which was computed as

G, = S 3.7)

o

Where o is the standard deviation and p is the mean of the discounted
returns G.

If none of the termination conditions were met after 200 time steps the
simulation was terminated to avoid infinite simulations, but also to set a
time limit for which the attempt at balancing the pole was considered a
successful episode. This is the default maximum number of steps that is
used for this environment. For successful episodes training of the network
is omitted. This is because it is impossible to separate a successful episode
from an unsuccessful in terms of rewards when a reward of +1 is always
given. Hence if you train on successful episodes you will effectively un-
learn the sought after behaviour.

30



3.3 Deep Deterministic Policy Gradient

200 [y

180 -

160 -

140 H

120

100

Return

80
60

40

. L

0 2000 4000 6000 8000 10000
Episode

Figure 3.5: Plot showing the return history for the REINFORCE agent with (red)
and without (blue) normalization in the Cartpole-v0 environment. Opaque lines
are the raw return data while solid lines are smoothed versions of the raw returns.

3.3 Deep Deterministic Policy Gradient

3.3.1 Algorithm outline

The Deep Deterministic Policy Gradient (DDPG) algorithm [35] is an actor-
critic algorithm that builds on the work of Silver et al [36] who found that
the deterministic policy gradient exists such that deterministic policies, de-
noted a = p(s|0*), can be constructed. The deterministic policy gradient
is

VouJ = VaQ(s,a|0%)Vgup(s|0") (3.8)

Where 0# are the parameters of the policy function and 6% is the parame-
ters of the action-value function, and hence Q(s, a|0?) is the parameterized
action-value function and y(s|0*) the parameterized policy function. The
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deterministic policy p(s|0*) deterministically maps a state s to an action a
given the policy parameters 6*.

The approach was also inspired by Mnih et al’s [21] contribution to rein-
forcement learning through an algorithm called Deep Q-Networks (DQN).
DQN is based on Q-learning and uses neural networks as function approx-
imators and are able to handle continuous state spaces, which - as noted in
Chapter 1 - was used to play several Atari games at a superhuman level.
DDPG specifically utilizes two inventions that allowed DQN to learn in a
stable and robust way:

1. Replay buffer that stores past experienced transitions. This allows
for off-policy training of mini-batches of past experienced sampled
uniformly from the replay buffer, which increases sample- and com-
putational efficiency which stabilizes training.

2. Separate target networks with separate parameters of the parameter-
ized policy- and action-value function to calculate the targets. In [35]
these are updated according to the soft” update law:

0" = (1—71)0" + 10"

, , 3.9
09 = (1 —71)09 + 769 G2

Where 0, and 0 are the target policy- and action-value- function
parameters for their respective target policy function p’ and target
critic function )’. This constrains training of the targets to happen at
a more slow pace which improves stability.

The critic is learned using the Bellman equations as in Q-learning and
allows the agent to learn off-policy, i.e the behaviour policy simulates tra-
jectories while evaluating and improving Q-values regardless of what pol-
icy is being followed. This is similar to the loss function for the critic in
Section ??, but using the action-value function instead. By using the target
networks to compute the returns, we get

Yi = 1+ 7Q (Si41, 1 (8511]0")[09") (3.10)

and the critic’s loss function

1
L= N Z(?Jz — Q(si,0,6%))? (3.11)
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This is the sum of all the losses from 7 to /N where NV is the mini-batch size
used for training.

An advantage of being off-policy is that the algorithm can incorporate
exploration into the process without interfering with the learning algorithm
itself. In DDPG an Ornstein-Uhlenbeck process is used to generate tempo-
rally correlated noise which is added directly to the actor policy output:

1 (se) = p(sel0) + N (3.12)

Where the noise process is denoted N. The Ornstein-Uhlenbeck process
behaves like a Wiener process, and has shown to be efficient in physical
control problems with inertia, but other noise models may be used as well
depending on what best suits the particular system.

The full algorithm is shown in Algorithm 5. Note that in practice the
learning steps don not start before the replay buffer contains at least a mini-
batch size amount of transitions.
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3.3 Deep Deterministic Policy Gradient

Algorithm 5 DDPG [35]

Randomly initialize critic network Q(s,a|0%) and actor s (s|0* with
weights 0% and 0*
Initialize target network Q' and ;i with weights 09" < 69, 6 « o*
Initialize replay buffer R.
for episode 1 : M do
Initialize a random process N\ for action exploration.
Receie an initial observation s;
for each step in the episode t = 1 : 7" do
Select action a; = u(s;|0") + N according to the current policy and
exploration noise.
Execute action a; and observe reward r; and observe new state s 1.

Store transition (s;, a;, 74, $;11) in replay buffer R
Set yi = i +7Q' (Sit1, 1 (5541]0")[609)
Update critic by minimizing the loss: L = & >, (v, — Q(s;, a;|09))?

Update the actor policy using the sampled policy gradient:

1
VouJ ~ ~ Z VaQ(8,a|09)|s=s; amp(sny Vora(s0")]s,  (3.13)

Update the target networks:

0" (1—7)0" + 70"

, , 3.14
09 « (1 —71)09 4 769 ©.14)

end for
end for

3.3.2 Problem description

DDPG was used to solve the environment called Pendulum-v0. The task is
to swing-up and balance the pendulum in an upright position. The task is
similar to the one discussed in Section 3.2.2 where we used REINFORCE,
but this environment has a single continuous action instead of two discrete
actions. This environment is also not under-actuated, as it only has 1 degree
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3.3 Deep Deterministic Policy Gradient

of freedom while having one input that directly affects it. A visualized
frame from the environment is shown in Figure 3.6.

Figure 3.6: Screenshot of a single visualized frame from the Pendulum environ-
ment. The red stock is attached to a actuated rotational joint and can swing around
without friction.

The system has two states, the pendulums angle to the vertical and its
angular velocity. The initial conditions for the states are in the range —7 to
m and —1 to —1 for the angle and angular velocity respectively. Both the
sine and cosine component of the angle, and the angular velocity is avail-
able for observation. The system has one input, which is the generalized
force (torque) applied by the rotational joint to the system which is in the
range —2 to 2. The reward the agent receives is negative, and quadratically
proportional to the angle error, the angular velocity and the force applied to
the pendulum:

R=—16%+0.160%+0.001F? (3.15)

The reward function has its maximum in the perfect upright position where
# = 6 = F = (0. The amount of force used is penalized in order to avoid
so-called bang bang control where the controller switches between the two
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3.3 Deep Deterministic Policy Gradient

input extremes /' = —2 and F' = +2. This can cause an oscillatory be-
haviour close to the desired position, and in a real system this behaviour is
also unwanted due to the wear and tear of the actuator and extra power con-
sumption. Table 3.2 sums up the environment in the reinforcement learning
context.

Table 3.2: Summation of the Pendulum-v0 environment.

Environment ‘ Pendulum-v0
Initial states 0e€l|—mmn],0€|-1,1] uniformly
distributed random values
Observations cos(), sin(0), 6 Continuous variables
Actions F e [-2,2] Continuous variables
Rewards R=—{62+0.16% + 0.001 F*
Termination condition Episodes lasts until ¢ = 200

3.3.3 Implementation and results

For the implementation of the DDPG agent the same hyper-parameters as in
the original paper [35] was used. Two hidden layers for the critic- and actor
network was used with 400 and 300 neurons respectively. The discount
factor was set to v = 0.99, minibatch size to 64, Adam optimizer with
learning rate le4 and le3 for actor and critic respectively, the soft target
updates used 7 = 0.001, and L2 regularization of the critic networks weight
was used with a factor of 0.001. The Ornstein-Uhlenbeck process noise
used 0 = 0.15, o0 = 0.2, and dt = 0.05 which is the time step used by the
environments internal integrator.

Figure 3.7 shows the training history returns for both training and evalu-
ation of the agent over the training session which lasted for 1000 episodes.
The returns appear quite noisy, but this is mostly due to the fact that the
pendulum may start in any position, even the goal position. The time and
effort needed to swing up to the right position therefore depends on the
initial conditions.

Already before 200 episodes of training the agent has learned to swing
up to the desired position and balance it, but as Figure 3.8 shows it is not
perfect even after 1000 episodes. The agent may have learned to swing
up and balance, but it fails to balance the pendulum perfectly upright and
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3.3 Deep Deterministic Policy Gradient

has a stationary error where it keeps the pendulum slightly off the desired
position with a constant force to support it.

This was found to be due to the v parameter which was then increased
to v = 0.999. By increasing vy the agent will tend to value long-term re-
wards higher. A new agent was thus trained for 1000 episodes. The training
history is shown in Figure 3.9, and as we can see by inspection, the evalu-
ation is marginally better. By testing the new agent it was easy to see why
the evaluation was better, as it now successfully manages to swing it up to a
near perfect upright position while keeping it there at almost no extra cost.
This is shown in Figure 3.10 for an arbitrary starting position.

-100

-200

-300

-400 |

Return

-500

-600 -

Evaluation
-700 | Training

-800

-900

ool | | |
0 200 400 600 800 1000

Episode

Figure 3.7: Return history during training for the DDPG agent in the
Pendulum-vO environment. Evaluation of the agent was peformed every
50’th time step, and the evaluation reward was calculated by taking the
average reward over 30 trials.
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Figure 3.8: Plot showing the state variables 6 and § and action F for a
trial episode with the trained agent after 1000 episodes.
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Figure 3.9: Return history for the improved DDPG agent with v = 0.999.
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Figure 3.10: Plot showing the state variables 6 and 6 and action F for the
improved DDPG that used v = 0.999.

39



Chapter

Quadrotor Altitude Control

This chapter presents the work and results of the main objective of this re-
port, which is to perform altitude control for a quadrotor in a simulated
environment. The simulation frameworks that were used to carry out the
simulation and provide convenient functionality is introduced briefly and
their selection justified. To simulate a quadrotor an existing implementa-
tion was used and the dynamics quadrotors and the specific implemented
dynamics for the motor and propeller thrust was studied to gain a better un-
derstanding of the problem. Several designs for an altitude controller based
on the DDPG algorithm was tested and the different designs was compared
to each other. Lastly, the RL-based controller was compared to a traditional
control design approach using a PID controller and the results are discussed
with respect to performance and potential application areas for the respec-
tive controllers.

4.1 Simulation framework

The Gazebo Simulator

The robotics simulator Gazebo [37] was used to simulate a quadrotor. Gazebo
is able to accurately simulate complex physical dynamics based on the ob-
jects mass, friction, inertia and nearly all other physical properties that is of
importance to robotic vehicles in the real-world. The open-source library
Open Dynamics Engine [38] (ODE) is used by default for Gazebo to calcu-
late the dynamics and kinematics for all rigid bodies inside the simulation.
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4.1 Simulation framework

A robot consisting of its joints and links, and their physical properties is
specified by its URDF (Universal Robot Description Format) files which
is an XML file format. A robots URDF files describes all elements of
the robot, and also the format also has support for providing realistic 3D
meshes to the robot.

The simulator provides a fine grained level of control of everything that
happens inside the simulation. Gazebo allows for programs that alter and
control the simulation to be run within the simulation itself through entities
called ’plugins” which is C++ programs that have full access to all objects
resides inside the simulation through Gazebos API. This allows the user
to provide the simulation with additional features, this can for example be
battery-to-motor torque- or steering dynamics for a car. The simulator also
ships with several plugins that is ready to be attached to any robot, which
is done through the robots URDF files.

Most notable is the availability of plugins that provides realistic sensor
simulation for commonly used sensors in robotic applications, such as LI-
DAR, sonar, mono- and depth cameras, IMU, GPS and more. However, for
this project no simulated sensors were used, and the ground truth for each
state variable was used instead because sensor fusion and state estimation
is out of scope for this project. However, it was still an important factor for
choosing Gazebo as the simulation framework because using real simulated
sensors will eventually be necessary with respect to future work.

Robot Operating System

Robot Operating System [39] (ROS) is an open-source robotics middle-
ware which provides message passing between processes, implementation
of commonly used functionality such as coordinate transformation and in-
terrupt functionality for reading new sensor data and other convenient fea-
tures such as logging and data visualization. ROS is multilingual and sup-
ports C++, Python and Lisp and facilitates scalable programs and a modular
design of software for robotic applications. ROS also has a big online com-
munity and implementations of commonly used algorithms for robotics is
easy to find. The modularity and availability of implementations makes it
a particularly good fit for use in research applications, such as this project.
ROS is also embedded into Gazebo and makes communicating with the
simulation easy. Gazebo also provides services that ROS can use to reset
the simulation, pause and un-pause it, and get the state of objects inside the
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simulation.

4.2 Quadrotor simulation

To simulate a quadrotor the hector_quadrotor” package from the official
ROS repository was used. A screenshot of the quadrotor in shown in Fig-
ure 4.1. The simulation is implemented in Gazebo and features a quadro-
tor model that has an implementation of the Extended Kalman Filter for
state estimation using simulated sensors, a position, velocity and orienta-
tion controller implemented as separate cascaded PID controllers, and real-
istic motor- and propeller thrust dynamics. The controller, sensors and state
estimator is not relevant for this project and they were turned off in order to
speed up the simulation and is therefore not discussed further.

The dynamic models used in the design of the simulation can be found
in [2] and the parameters by visiting the official ROS repository. The mod-
els used are based on wind tunnel tests and are given next together with the
equations of motion for quadrotors to gain an understanding of the dynam-
ics of the system and for the sake of completeness.

For a quadrotor modelled as a rigid body moving in a 3-dimensional
space with forces /' and torques M acting on it the equations are:

pn — ,vn
" =m 'C}F 4.1)
wb=J'M

where p" and v" are the position and the velocity of the body’s center of
gravity in the inertial navigational frame. The angular rate w" is expressed
in the body frame coordinates and C}' the rotation matrix parameterized
by the objects pitch, roll and yaw angles that transform a vector from the
inertial- to the body frame. The mass m and inertia J of the quadrotor
needs to be known and can be calculated by knowing the weight of all
the components of the quadrotor. The relation between the frames and the
forces and torques acting on the quadrotor body is shown in Figure 4.2.

The forces and torques acting on the system can be divided into drag-
and motor thrust induced components as well as the gravity force. The drag
induced forces are:
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Fy=—-Cur- Cz " — vl (v — V)

4.2
Md = _Cd,M . |wb|wb ( )

Figure 4.1: A screenshot of the simulated quadrotor. Since no cameras or other
sensors were used graphics were not important and therefore only a plain and gray
grid plane was present in the simulation beside the quadrotor itself.

Where Cg r and Cq, s are the diagonal drag coefficient matrices. The
gravity force is given by:

Fy=m-C%-[0 0 g]" (4.3)

The propulsion system consists of four brushless DC motors and the
rotor speed dynamics of each motor depends on the induced anchor voltage
and electromagnetic torque produced by the motors:

Ua = Rala + wwM
M, = 1.

The rotor speed dynamics of each motor:

(4.4)
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1 1 Y
v=— M. —M,)=—" |=— (Us— - M,, 4.5
W =7 ( ) | (Ua — Ywn) 4.5)
where the M,,, = kr - T where kr is a constant and 7" the thrust. This term
accounts for the bearing- and drag friction of the rotors.
Next the thrust forces can be calculated by using the motor speed dynamics
given by (4.5):

T = CT70CU%J + CTJ’Ule + CT72J2 (46)

The thrust coefficient C'r(.J) are found by dividing the former equation by
w3, and using the performance factor J = vy /wy:

Cr(J) = Cro+ CraJ £ CraJ? 4.7)

where the parameters Cr; have been identified in a wind tunnel. The ve-
locity of each rotor is in general different and can be found if the linear-
and angular velocity together with the distance between the rotors and ge-
ometric center [/, is known:

()i =—1[0 0 1] (" + (W’ x &) L) (4.8)
where e; are the units vectors for each motor. By using the numbering
shown in Figure 4.2 one can see that they must be e; = [1 0 O}T,
es =101 0", es=—=[1 00", ande; = —[0 1 0]". Finally,

the thrust- forces and torques that gives the overall wrench of the quadrotor
can be found by using (4.6) to find the resulting force produced by each
rotor:

0
Fb, = 0
4
:EME (4.9)
(F4_F2)'ZM
M, = (Fy — F3) - Iy
| — M,y + My — M3 + M,
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Figure 4.2: Sketch of a quadrotor [2] showing the moments and forces each of the
rotors exert on the body, the center of gravity and the relation between the body
and inertial frame.

Then by using equations (4.1) and (4.9) the motion of the quadrotor can be
solved for. The calculation of thrust- and drag forces acting on the quadro-
tor are implemented as two Gazebo plugins, and the full motion of the
quadrotor is then calculated by the Open Dynamics Engine.

It is worth mentioning that there is two crucial modelling shortcoming
with respect to realistically simulating a quadrotor, one being the effect of
so called blade flapping. This effect is significant in both small and large
scale aircrafts, but since the task we are interested in is altitude control,
meaning that the horizontal movement of the rotors is minimal, the effect
it has is minimal. The second is the nonlinear forces present when the
quadrotor is close to the ground due to aerodynamics, but since we’re only
interested in altitude control we consider only in-air initialization and the
ground is thought to not exist. More on quadrotor modelling can be found
in [40] [41], and why the unmodelled dynamics of the system mentioned
above is neglected is justified by a simplification of the problem that is
introduced in the next section.
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4.3 Altitude control

Next two controllers for doing altitude control is presented and their perfor-
mance shown using the simulation environment introduced in the previous
section. To restrict the problem to altitude control only, one crucial simpli-
fication was made: by initializing the quadrotor with inclination identical to
zero the quadrotor will not tilt as long as all the four rotor thrusts are equal.
Hence, the controllers only needed to output one voltage which was used
for all four motors. While this is of course unrealistic, as even the slight-
est offset or disturbance will cause the quadrotor to become unstable in the
real-world, it still serves well as a way to restrict the scope of the problem.
In effect this means that we assume that a perfect orientation controller for
stabilizing the pitch and roll of the quadrotor is already implemented and/or
there is no disturbances such as wind-gusts acting on the quadrotor.

The controller rate of all controllers were set to 100Hz such that each
action/input was repeated for 10ms, and the state variables used are the
noiseless ground truth variables. Fast response of controllers, zero steady
state error, and smooth behaviour of the input to the system was the main
criteria for evaluating controllers.

4.3.1 Using reinforcement learning
The environment

There were mainly four different states that were used in the design of
controllers: the positional error in the z-direction, defined as the difference
between the quadrotor z position and the desired z position z4, Z = z — zq;
the velocity in the z-direction, z; the acceleration in the z-direction, z; and
the previous input to the environment produced by the actor network, u.
The previous input was used as a state instead of the actual action to keep
all the state variables continuous, and keep all the states in a similar range
so input normalization was not necessary.

To ensure that the agent continuously explored a wide set of different
starting states the initial state variables were set to random values. The
quadrotor was initialized in a random position in the range 1 to Sm, with an
initial velocity between -2 and +2%, and acceleration and motor voltages
equal to zero. It is worth noting that setting the initial value u = zZ = 0 was
not a choice: it was not possible to decide their initial values.
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The output u of the actor network, which is -1 to 1, were mapped to be
in the discrete range of accepted voltage levels for the motors, ranging from
0 to 255. This voltage, denoted v, is the action decided by the agent. More
precisely the voltage level is a 8-bit encoder value that maps to the actual
voltage level by the simulation itself. Each episode in the environment had
a timestep limit of 500, which is equal to 5s using a 100Hz controller loop.
To restrict the training area and the range for which the actor network had
to generalize, the episodes were terminated if the quadrotor flew more than
2m away from z4, which was set to 3 in all cases. The environment as
defined in the reinforcement learning sense above is summarized in Table
4.1.

Table 4.1: Summation of the simulated quadrotor environment.

Environment ‘ Quadrotor
Initial states z € [2,4] uniformly
z € [—2,2] | distributed random values
7 =
u=20
Observations Z,7,7,1 Continuous variables
Actions v € [0, 255] Discrete variables
Termination condition |z| > 2 orn =500
Algorithm

The DDPG algorithm from Section 3.3 was used to create an altitude con-
troller. It was found that in the algorithm required a very high discount fac-
tor to converge to a steady state error with z = 0, and therefore v = 0.99999
was used. This caused a problem related to the size of action-values (s, a)
in the critic network due to the use of L2 regularization in the original algo-
rithm. This becomes apparent when considering the upper bound of a value
function V() for a state s given a maximum reward r,,,,., which is:

V() €Dty = 7 — (4.10)
n=0

Hence, if the maximum reward the agent can experience is 1, the maximum

. 1 . . .
value function would be ;—555555 = 100000. The use of L2 regularization
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of the critic networks was therefore omitted, and rewards were kept low to
avoid numerical instability in the networks. The other hyper-parameters of
the algorithm were kept the same.

To evaluate the goodness of the controller a test was constructed where
the quadrotor was initialized at three different positions with zero initial ve-
locity: one meter below the desired altitude, at the desired altitude, and one
meter above the desired altitude. The evaluation score was then calculated
to be the average reward of the three scenarios.

One learning step was performed for each step in the environment, and
evaluation was performed between every episode of learning. In general,
training was not particularly stable and so the evaluation fluctuated rapidly
between episodes. To obtain the best possible solutions, the algorithm was
therefore altered to include a form of precision training: stop generating
new training data when the evaluation reaches a certain level, and instead
sample the replay buffer and train for only 10 steps at a time between eval-
uations. The decision for when to enter precision training was decided
manually based on experience of what constituted a high return.

Reward functions

The first reward function used was a naive approach only incentivising z —
0 by giving maximum reward when z = zq — z = 0 and monotonically
increasing in the direction of zq4:

R, = K,e 1%l 4.11)

where K; was a constant set to le—2 and the subscript n denotes the
timestep. The agent used the position, velocity and acceleration for state
variables with this reward function. This did however not work at all, as
the agent would always learn to either put maximum- or minimum force all
of the time no matter the circumstance. A lesser state representation using
a combination of only the position and velocity or acceleration was also
tested, but gave very poor results,

The learning issue was speculated to a consequence of the slowness
of the rotor wind-up dynamic compared to the controller loop. And so
to combat this problem a new reward function was devised that applied a
simple piece of domain knowledge: to produce force equal to the force of
gravity and a voltage level of 121 is required. This is the minimum required
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force necessary to hover, and so it makes sense to guide the agent towards
this input. Denoting the voltage that produces a force equal to the force of
gravity as v, and the maximum voltage as vy, we write the second reward
function as:

2
Ry = Kol _ K, [u]

Vmaz

2
=R, - K, [—Vt — Vg}

Vma:c

(4.12)

where K, is a constant which was set to 1e—3, and v, 1S used as a nor-
malizing constant. The agent proceeded by adopting a strategy reminiscing
the infamous bang-bang control that were avoided in Section 3.3 by intro-
ducing a penalty to the square of the force used. The evaluation of the
best agent obtained is shown in Figures 4.3-4.5, and the evaluation reward
history is shown in Figure 4.6.

A reward function using the squared position error Z* in the exponent
of the Euler function instead of the absolute value was also experimented
with. This however yielded worse results as the agent struggled to find that
z = 0 gives the most reward, and convergence to good solutions took longer
time in general.
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Figure 4.5: Test case 3 for Ro: zg = 1.
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Figure 4.6: Return history for the agent using reward Rg. Training data is the
return of single episodes and evaluation data is the average of the three test cases
as previously defined.
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To counter the problem associated with Rs, the current motor voltage,
or equivalently, the previous input to the system u was used in the state
augmentation for the system to allow the agent to pick actions depending
on the previous action it picked. A new reward function was proposed:

2 A 2
Ry = Kol _ K, lu} K l v ]
Vmax Vmaz
Ay 72 (4.13)
= }%2 - }KllV [ }
Vmax

where Av = v; — v(_; and KA, a constant set to 1e—3. This reward func-
tion penalizes change in the input to the system. The evaluation of the best
agent obtained is shown in Figures 4.7-4.9, and the evaluation reward his-
tory is shown in Figure 4.10. While this greatly reduced the the fluctuations
in u, it did not eliminate the erratic behaviour completely, and it is easy to
see even for the human eye that that the given solution does not follow an
optimal policy. The learning process was also uncertain in the sense that the
agent was not guaranteed to converge to a good solution in any reasonable
time, and therefore several runs of the algorithm was required to obtain the
results shown here.

1
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Figure 4.7: Test case 1 for R3: zg = —1.
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Figure 4.8: Test case 2 for R3: zg = 0.
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Figure 4.9: Test case 3 for R3: zg = 1.
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Figure 4.10: Return history for the agent using reward R3. Training data is the
return of single episodes and evaluation data is the average of the three test cases
as previously defined.

The issues with the learning process related to R3 was thought to be a
result of the two penalties being conflicting: they both try to penalize the
input to the system, and so learning about this penalty becomes difficult. A
different reward function was therefore proposed to incentivize velocity in
the direction of the desired altitude z4 instead of the derivation of v from v,
that was used in Ry and Rj:

Vmazx

R Kze 12l — K, [ Av ]2, if sgn(2) # sgn(Z) or |z| <€)
L =
— KAy [%} ’ , otherwise
(4.14)

where K, K, as before and u used in the state augmentation as for Rs.
The constant € was set to 0.027* and was designed such that the agent was
allowed to move with small velocities even though it was moving away
from the target. It was included in order to avoid an oscillating movement
around the setpoint zg.

The evaluation of the best agent obtained is shown in Figures 4.11-

4.13, and the evaluation reward history is shown in Figure 4.14. The erratic
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behaviour in the input was nearly gone and the performance overall was
much better as the agent’s response was faster, z converged to zero, and the
velocity converged to zero as well. Training was also more stable where an
agent would almost always converge to a good solution.
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Figure 4.11: Test case 1 for R4: zg = —1.
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Figure 4.12: Test case 2 for R4: 7zg = 0.
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Figure 4.13: Test case 3 for Ry: zg = 1.
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Figure 4.14: Return history for the agent using reward R4. Training data is the
return of single episodes and evaluation data is the average of the three test cases
as previously defined.

4.3.2 Using a PID controller

A proportional-integral-derivative (PID) controller was picked to represent
the control theory approach in the project because it is a very popular choice
in the literature when it comes to altitude control of quadrotors. Figure 4.15
shows the block diagram of the controller, where the position error 7 is
used as input and the *T” block is the mapping from continuous to discrete
voltage levels in the range 0 to 255. The PID controller used clamping
to prevent integrator wind-up, limiting the integrator term to 0.5. Since
ground-truth state observations were used no extra features were used to
prevent spikes from the derivative term that is associated with noisy sensors.
A value equal to the voltage required to produce force equal to the force of
gravity, referred to as v, in Section 4.3.1, was added to the output of the
controller in order to center the contribution of the PID controller around
the stabilizing input which is v,.
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Figure 4.15: Block diagram of the PID controller.

To tune the controller a single-objective genetic algorithm was used
based on [42][43]. To evaluate the goodness of each set of PID controller
gains the fitness used was:

N
1
fitness = DS (4.15)
n=0

Where the trajectory z depends on the PID gains Kp, K; and Kp. The
objective subject to optimization is therefore:

N

argming, , ) [% Z 52] (4.16)
n=0

Where n is the timestep and N is the length of the episode, where N = 500

was used as with the RL-based controller. The same test that was used to

evaluate the RL-based controller was used to evaluate the fitness of each set

of PID gains as well.

As for the genetic operators the mutation operator added a value from
the normal distribution A/ (0,0) with 0 = 0.05 to one of the PID gains
picked at random, and the crossover operator performed an single arith-
metic recombination for one of the PID gains picked at random. For each
individual created the chance of performing a mutation was 0.4 and crossover
0.6. A population size of 50 was used with a generation size of 60. Elitism
was used to transfer the best 5%(= 3 rounded up) of individuals from the
previous generation to the next.

The best PID gains found with this tuning method for this particular
problem were the following:
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Kp =2.239, K; = 0.056, Kp = 1.041 4.17)

and the performance on the test cases are shown in Figure 4.16-4.18. The
performance overall was good, but the performance of the controller was
highly dependent on the starting position: starting beneath the setpoint re-
sulted in a slight overshoot while starting at the setpoint or above resulted in
no overshoot at all. The controller also had problems removing the steady-
state error.

Tuning a PI controller was also tested, but failed to give reasonable re-
sults. The slowness of the rotor wind-up dynamics and the overall nonlinear
dynamics of the system can contribute to explain why this approach failed.
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Figure 4.16: Test case 1 where Zy = —1 using the PID controller.
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Figure 4.17: Test case 2 where 7y = 0 using the PID controller.
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Figure 4.18: Test case 3 where 7y = 1 using the PID controller.
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4.4 Comparison and discussion

The performance of the reinforcement learning based controller using re-
ward function R, from Section 4.3.1 and the PID based controller from
Section 4.3.2 was compared using the test cases defined in Section 4.3. The
plots are shown in Figure 4.19-4.21.

From the plots it can be seen that that the RL-based controller design
exhibited a more erratic control input behaviour, and converged much faster
to a steady state error. The PID controller on the other hand has a faster
response time, but has some overshoot for the case where z, = —1, and
the behaviour of the step response for zo = —1 and 7z, = 1 was different
as opposed to the RL-based controller which had responses that were very
much identical. This shows that the RL-based controller was actually more
predictable when it comes to trajectory it took to reach the goal, and it’s
performance was not dependent on the starting position.

The difference in speed of convergence of zZ to zero for both controllers
were small, where the PID controller had a slightly faster response, but
only the RL-based controller managed to drive the steady state error to zero
in all three cases shown. It is possible to derive a PID controller that has
zero steady state error as well, but it would come at a cost of a slower
response. This trade-off is based on preference and the application area of
the controllers, like how much overshoot is acceptable, and what is best
comes down to the particular case. The results do however suggests that
the RL-based controller may give better performance with respect to the
trade-off between fast response, steady state error and overshoot. This of
course is only reasonable as the RL controller is a nonlinear controller that
can exhibit far more sophisticated behaviour than the linear PID controller.

For the price of a more complex controller comes also the cost of in-
creased computational time to compute controller inputs. For the con-
trollers written in Python with a Intel 15-7600k processor and a Nvidia 1060
GTX graphics card it took approximately 8e—4 ms and 4e—6 ms respec-
tively for the RL- and PID controller to compute a single input. This a
difference of two orders of magnitude, which is significant. The difference
would be even higher if it was not for the neural networks being GPU ac-
celerated. It may therefore not be feasible to run the RL-based controller
on smaller platforms which often use less computationally capable devices
such as micro-controllers. This is also fortified by the fact the RL controller
uses high level libraries such as Tensorflow that may not be available on a
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more bare-bone operative system.

Altogether, considering the potential performance gain discussed above,
computational times, and input behaviour, the results here may suggest that
the use of a RL-based controller is better suited for higher-end systems that
require higher precision with respect to control. However, more research
should be put into both PID- and the RL controller before any assertive con-
clusion can be drawn about the comparative performance of the controllers.
This includes using more realistic environments that have noisy sensors and
dynamics and that is not restricted to only moving along the z-axis.

1

\ ZRL
| URL
05 | ZpPID
— UupID
0 L
-0.5 8
-1 4
15 1 1 1 1
0 100 200 300 400 500
Time step [n]
Figure 4.19: Plot of test case 1 where zy = —1 showing the performance of the RL

controller using reward R, defined in 4.3.1 versus the PID controller from 4.3.2.
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Figure 4.20: Plot of test case 2 where 7y = 0 showing the performance of the RL
controller using reward R, defined in 4.3.1 versus the PID controller from 4.3.2.
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Figure 4.21: Plot of test case 3 where zg = 1 showing the performance of the RL
controller using reward R, defined in 4.3.1 versus the PID controller from 4.3.2.

4.5 Future Work

The results discussed in Section 4.4 were not decisive in determining whether
one approach was better than the other. It is clear that the parameters
of each of the algorithms and controllers were not optimally tuned, and
it would therefore be interesting to perform parameter optimization in or-
der to draw a stronger conclusion about the results that was obtained. The
genetic algorithm that was used to tune the PID controller did not have a
way to specifically evaluate the steady state error of the controller gains,
which can explain why the best gains it found resulted in some overshoot
and steady state error. A possible solution to this is to explore the use of
a multi-objective genetic algorithm (MOGA) instead to define a trade-off
between the three objectives that is steady-state error, response time and
overshoot.

The RL-based controller was not tuned optimally either, and more ex-
perimentation with reward functions could yield better results. As men-
tioned in Section 4.3.1, the training was unstable and convergence was not
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certain. A possible further improvement could therefore also be to investi-
gate other reinforcement learning based methods. One interesting approach
that has emerged recently is the Proximal Policy Optimization (PPO) al-
gorithm [44] which has been shown to give competitive results to other
methods for robotic applications while being more stable and reliable.

While the RL-based controller performs well in the simulated environ-
ment, the real-world is far more complex, and so it would be interesting to
apply the proposed controller to a real-world system. Unfortunately, train-
ing from scratch in the real-world is generally not feasible. This is due
to the potential hazard of destroying the quadrotor every time the RL con-
troller takes over the control, and the time consuming and tedious work
that is involved in resetting the quadrotor, charging batteries and not having
the luxury of generating training samples at a speed higher than real-time.
Performing transfer learning with the learned controller to a real system is
therefore interesting to investigate.

In this project noiseless, ground-truth variables was used as states from
a simulated environment, but real-world sensors are of course noisy. Rein-
forcement learning is in general designed to handle stochastic environment
such that an agent can still perform optimally under the influence of noise
and so it would be interesting to see how the proposed controllers perform
in the presence of noisy state variables. The algorithm used, Deep Deter-
ministic Policy Gradient[35], has also been shown to produce good results
only using raw pixels as input to the networks. It is therefore compelling
to explore the possibility of performing altitude control and other control
tasks using a camera as this would reduce the need for state estimation in
the system and other expensive sensors and systems.
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Chapter

Conclusion

During this project a strong theoretical foundation was built and practi-
cal experience was obtained with reinforcement learning. Both older- and
newer methods were studied and their application areas acquainted with.
A close understanding of approximate methods that use neural networks as
function approximators has been obtained. The use of these methods re-
quire experience with neural networks and design of reward functions that
can only be obtained by experimenting with them in practise.

Valuable knowledge was especially obtained in the robotics control do-
main where a controller based on one of the state-of-the-art algorithms in
reinforcement learning, DDPG, was designed and successfully applied to
the quadrotor altitude control task. Along with the dynamics of quadrotors
that was studied this project has functioned as a stepping to be able to solve
more complex tasks related to quadrotors and control in the future.

The main results were not conclusive with respect to the superiority of
either one of the controllers, but it did at least give a strong implication that
reinforcement learning is a competitive approach to control theory. The
next years research certainly has the potential to bring breakthroughs to
both fields.
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