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Preface

This master thesis was inspired by the impressive progress that reinforcement

learning (RL) and then especially deep reinforcement learning (DRL) have

seen in the last few years. The successful applications of DRL in the field

of robotics and control have mainly been focusing on how these algorithms

are able to solve complex problems that are typically hard to formulate via

the classical control theory approach. One drawback with the current state of

the art DRL however, is that these algorithms typically require an awful lot

of data and computational power to find good solutions. Not much research

has been conducted regarding the capabilities of DRL to act optimally under

imperfect information either seeing as most displays of DRL has been done in

simulations where ground truth state variables are available.

One area of robotics where DRL is viewed as an interesting alternative to

control is UAVs, and more specifically quadrotors. Motivated by both the ups

and downs of DRL, I started to explore the possibility of forming a solution to

the 3-D hovering problem for quadrotors using only camera images. To dispute

the common — but fair — presumption that was DRL requires too much data

to be applicable to robots in the real world I sought a solution that unites the

best of both worlds — the DRL and classical control theory approach. This

idea is what transpired the work presented in this thesis.

Even though the quadrotor problem is the topic of study in this thesis the

contributions are of general value and show how DRL can be used together

with a classical control theory approach for acting under imperfect information

while being feasible to apply in real-world applications.

This thesis was supervised by Anastasios Lekkas from the Department of

Engineering Cybernetics at Norwegian University of Science and Technology

(NTNU) and would not have been possible without his valuable input. This

masters’ thesis is not a direct continuation of the project thesis which simi-

larly studied a quadrotor control problem. However, this thesis utilizes prior
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knowledge and experience gained with DRL when working with the project

thesis, and the RL theory presented here is based on the project thesis. The

DRL algorithm used was also implemented (by myself) during the project the-

sis work. The project thesis has therefore been included as an attachment for

the evaluators of this work.

Lastly, I want to acknowledge the other contributions that made this project

possible:

• the open source software that was used, and which without would have

made this project impossible. This includes, but is not limited to, Ten-

sorflow, Numpy, Matplotlib, OpenCV, Gazebo and ROS.

• the provision of a quadrotor, extra batteries, and access to a laboratory

to conduct tests, by the institute.

June 24, 2019

Lasse Hansen Henriksen
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Abstract

In recent years the field of reinforcement learning has experienced a renais-

sance due to breakthroughs in the field itself, and because of other enabling

technologies such as efficient and powerful software frameworks, computa-

tional power, and especially research on artificial neural networks. Using re-

inforcement learning in conjunction with neural networks has evolved to be

the rule rather than the exception, and multiple examples exist that showcases

its impressive problem-solving capabilities as a general framework for solving

complex problems. Because of how general the framework is it can be applied

to a large variety of problems including the field of robotics and control.

One such problem of interest is control of quadrotors, which similarly

has seen a resurgence of interest because of its applicability to a multitude

of tasks including surveillance, transport, and commercial delivery services.

Even though the control of quadrotors is a well-studied problem in the liter-

ature it remains a hard one due to its underactuated nature, the difficulty of

modelling forces related to aerodynamics, and navigating in GPS denied envi-

ronments.

In this thesis, the 3-D hovering problem for quadrotors is studied and a con-

troller design that attempts to unite approaches from reinforcement learning,

computer vision, and traditional control theory is presented. By applying the

proposed controller to a simulated environment we show that the controller is

able to solve the problem by using ground truth state variables and by using in-

dicative state variables based on a simple computer vision algorithm. Further-

more, the simulated-tested controller is transferred to a real-world quadrotor

system where the controller is tested on the same problem. We then demon-

strate how the controller generalizes with respect to what it has learned in

simulation, and how training the controller to adapt to the real world can be

achieved through a feasible and practical method. Lastly, the controllers per-

formance post real-world training is demonstrated.
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Sammendrag

I de siste årene har fagfeltet forsterkendelæring opplevd en renessanse på grunn

av gjennombrudd i feltet selv, og på grunn av andre muliggjørende teknologier

slik som effektive software verktøy, beregningskraft og særlig forskning på

kunstige nevrale nettverk. Bruk av nevrale nettverk sammen med forstærkende

læring har utviklet seg til å være regelen i stedet for unntaket, og det finnes flere

eksempler som viser denne teknologiens imponerende problemløsningsevner

som et generelt rammeverk for å løse komplekse problemer. På grunn av hvor

generelt dette rammeverket er kan det brukes på et stort utvalg av problemer,

inkludert robotteknikk og kontroll.

Et problem innenfor robotteknikk av interesse er kontroll av quadcoptere,

som på samme måte har sett en gjenoppblomstring av interesse på grunn av

dets anvendelighet til en rekke oppgaver inkludert overvåking, transport og

kommersielle leveringstjenester. Selv om kontroll av quadcopters er et godt

studert problem i litteraturen, er det fortsatt vanskelig på grunn av dets un-

deraktuerte natur, vanskeligheten ved å modellere krefter relatert til aerody-

namikk, og navigering i områder uten GPS dekning.

I denne oppgaven studeres oppgaven med å holde et quadcopter svevende

i et gitt 3-dimensjonalt referanse punkt, og ett kontroller design som forsøker

å forene tilnærminger fra forsterkende læring, datasyn og tradisjonell kontroll-

teori presenteres. Ved å bruke denne kontrolleren i et simulert miljø viser vi

at styreenheten er i stand til å løse problemet både ved bruk av de sanne po-

sisjoneringsvariablene og ved hjelp av indikative tilstandsvariabler basert på

en enkel datasyn algoritme. Videre overføres kontrolleren som er blitt testet i

simulering til et virkelig quadcopter-system hvor kontrolleren testes på samme

problem. Vi demonstrerer så hvordan kontrolleren generaliserer med hensyn til

hva den har lært i simulering, og hvordan trening av kontrolleren for å tilpasse

seg den virkelige verden kan oppnås gjennom en praktisk metode. Til sist vises

kontrollerens evne til å kontrollere quadcopteret etter at den har fått trent i den
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virkelige verden.
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Chapter 1
Introduction

1.1 Background and motivation

While reinforcement learning (RL) first saw light in the 1950s, it has recently

caught new attention as deep reinforcement learning (DRL) has emerged promis-

ing a broad range of application areas. In addition to breakthroughs on the field

itself, its rise has been heavily enabled by other technologies. This includes the

increasing computational abilities of silicon-based computers and their avail-

ability, research on artificial neural networks (ANNs) that has been especially

driven by the ImageNet challenge [2], and software frameworks facilitating

efficient computation of – among other things – realistic simulations and the

aforementioned ANNs.

Using ANNs as function approximators in conjunction with reinforcement

learning has been such a good fit that it has even been been deserving of its own

name – deep reinforcement learning (DRL). Neural networks have empowered

reinforcement learning to work with tasks that inherit a continuous state space

with either a discrete or a continuous action space, and even so, has shown

promising results on tasks that are typically hard to formulate using traditional

methods requiring specifically tailored, ad-hoc solutions.

Especially two novel algorithms is owed much credit for the recent ad-

vances of applying reinforcement learning, namely Deep Q-Networks (DQN)

[3] and Deep Deterministic Policy Gradient (DDPG) [4]. DQN was the first

1



Chapter 1. Introduction

algorithm to solve complex tasks that have continuous state space and intro-

duced key advancements like target-networks and the replay buffer. DDPG

was inspired from the former and notes the first successful attempt at inte-

grating neural networks to solve continuous action space problems, which is

fundamental to tackling most problems in robotics.

Some general examples of successful applications includes abstract tasks

like robotic manipulator grasping and stacking of Lego using monocular im-

ages [5], navigation in complex environments [6], and playing various games

like Doom [7], Chess and Shogi [8], Go [9], all the Atari games [10] and Star-

craft 2 [11].

Many of these examples show the importance of simulators as they depend

on them, or are in a sense simulators themselves, in order to gather enough

training data to be able to converge to a satisfactory results. The combined

computational power that was required for simulation and training in these

and other successful applications are not typically available to the average user.

In fact, many of these examples required tremendous computational effort to

achieve their results and would require years of training in the real world to

achieve the same results. It is therefore often infeasible to apply them in prac-

tice. Training RL agents in the real world is also a question of safety because

optimal behaviour is only guaranteed in the long-run, and such trial and error

may cause potential damage to the environment the agent operates in. This,

other problems, and the potential side effects concerning safety in artificial

intelligence (AI) systems are reviewed in [12].

A significant part of the problem stems from the fact that the ANNs used

are difficult optimization problems that are inefficient to solve, but reinforce-

ment learning has also shown to be inept when it comes to sample efficiency.

Therefore large amounts of research goes into improving the sample efficiency

when training the networks. This includes research on optimizers like Adam

[13], picking the most important transitions experienced by the agents for train-

ing [14], learning to learn from sparse rewards [15], and learning to learn via

meta-learning [16][17] just to name a few relevant research topics.

This problem is further amplified considering that many of the aforemen-

tioned success stories learns directly from pixels which leads to a large amount

2



1.2 Thesis objective

of parameters to optimize for in a dauntingly vast search space. Even if using

pixel values directly as inputs is not always necessary or the best solution de-

pending on the task and the state feedback available, it is often the most con-

venient way to tackle a problem. The reason for this is diverse, for example

camera images provide large amounts of information, does not require extra

steps for state estimation because camera sensors do not drift, and camera im-

ages are flexible with respect to feature extraction. One approach for reducing

the large state space introduced by images is to use auto-encoders to form a

lower dimensional state representation. This has been applied with success

[18][19], but adds another ANN to the loop that has to be trained.

One interesting problem in robotics where DRL can be applied is quadrotor

control. This is a well studied problem, and control is typically achieved by

modelling the equations of motion for the aircraft [20]. Yet, this problem still

remains a challenging one due to the complexity of aerodynamics modelling,

and problems that arise with respect to estimating position when attempting to

navigate in indoor environments that lacks coverage of the global positioning

system (GPS). For indoor navigation position control is popularly achieved

by cameras and pose estimation techniques from computer vision theory by

either having a camera attached to the drone itself [21][22], or viewing the

drone from a stationary position [23][24] in the environment. Methods using

simultaneous localization and mapping (SLAM) are also used [25][26][27],

and are arguably more flexible because they can operate without relying on

artificial landmarks, but are in return more computationally expensive.

1.2 Thesis objective

The problem studied in this thesis is hovering of a quadrotor, otherwise known

as dynamic positioning. Motivated by the adversity of training deep ANNs that

learns directly from pixels it is therefore interesting to explore the possibility of

using low-level features extracted from pictures, in this case image positions,

by using traditional computer vision methods. In addition, because control of

quadrotors is a well-studied topic and motion controllers already exists, this

thesis seeks to construct a reinforcement learning controller that builds upon
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an existing low-level velocity controller as opposed to learning to control a

quadrotor from scratch.

Being able to utilize purely low-level extraction methods from computer

vision to do control is a desirable solution. It would represent a method that

rather of moving in the direction of more advanced computer vision methods,

for example SLAM as opposed to camera pose estimation, instead seeks to

move in the direction of a more sophisticated control algorithm able to act un-

der limited information. This could possibly yield a solution that is more light

weight, as opposed to SLAM which can be rather computationally expensive.

Since the reinforcement learning framework is able to act optimal even in the

case of imperfect– and uncertain information, it is reasonable to think that this

may be a viable solution.

Learning raw motor control inputs would be significantly harder consid-

ering that quadrotors are heavily underactuated, and experience tells us that it

would therefore be unrealistic to train such an agent to be able to perform well

within a practical time frame in the real world. In addition, most real systems

do not allow you to do the low-level control and features a velocity controller

instead. It is also reasonable to assume that the dynamics of a velocity con-

troller for a simulated drone to be more accurate than the actual dynamics of

a simulated drone compared to a real world replica. Therefore we expect that

the agent trained in a simulation to be able to transfer what it has learn to con-

trol the real drone better and reduce real-world training time, which can be

tedious because of safety concerns and time constraints. In this regard using

a velocity controller is also advantageous as we are guaranteed that the drone

will not flip over and fly with maximum velocity towards the ground and break

immediately after it is released in the real world for the first time. Lastly, it

is interesting to explore DRL as an alternative to quadrotor control as it is a

model-free approach and quadrotor dynamics are notoriously hard to model

because of aerodynamics that can vary significantly during operation.

To summarize, the goal of this thesis is to develop a position controller for

quadrotors based on DRL by using an existing low-level velocity controller

and monocular images to reason about position. In the end, this thesis aims to

make the following contributions:
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1. Explore the possibilities, and design a positioning controller to solve

quadrotor hovering control problem via the reinforcement learning frame-

work and simple monocular images.

2. Analyze the accuracy and potential of the resulting controller with re-

spect to operating under external disturbances.

3. Examine if the position controller is feasible to apply to a real-world

system within a reasonable time frame such that it is both a practical–

and a viable option to existing solutions that does not have to depend on

training in simulations for considerable amounts of time.

1.3 Related work

Because of the novelty of DRL algorithms it does not exist a plethora of re-

search that attempts to embed them into quadrotor– control problems and ap-

plications. And to the authors knowledge there does not exist any published

work based on DRL that attempts to tackle the quadrotor hovering problem by

using only image position features as proposed in this thesis. While none of

the research papers mentioned in this sections deal specifically with the hov-

ering problem, some of them solve it indirectly because they are in essence

general position controllers. The examples given below represents some of the

applications of DRL to quadrotor control and showcases a few issues related

to the use of DRL as well.

A model-based reinforcement learning (MBRL) approach was used in [28]

to control the pitch and roll angles of a drone for hovering and shows that while

starting from scratch the agent is able to make quick improvements. This work

however does not display a fully working controller solution, only the current

capabilities of MBRL.

In [29] and [30] DRL agents were trained for quadrotor control to fol-

low trajectories, and showcases controllers that can outperform the traditional

model predictive control (MPC) approach in accuracy while being two orders

of magnitude less expensive with respect to computational cost.

There are two notable works that tackle the quadrotor landing problem.
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The first approach [31] applies a divide and conquer strategy using two DQN

networks to learn from low resolution images to first detect a marker and then

do vertical descent. The other approach [32] uses DDPG to learn the reference

velocities to a velocity controller using the full orientation of the drone as state

representation consisting of the position and velocity relative to a moving plat-

form as well as a pressure sensor to register successful landing attempts. None

of this methods deal with state estimation, and requires hundred of thousands

of training steps to converge to satisfactory solutions.

In [33] a velocity controller for a quadrotor based on DRL that outper-

formed a well-tuned proportional-integral-derivative controller (PID). The con-

troller policy was trained within roughly 30,000 training steps, which is sur-

prisingly fast. This approached used the full 6-DOF velocity state from simu-

lation and did not deal with state estimation.

The work presented in [34] showcases a position controller based on Q-

learning and PID control that manages to stabilize the position of a drone hor-

izontally. The accuracy however is limited because the state space is divided

into a discrete grid-space. Even though this work is not DRL, it showcases

how RL can be used for hovering for a quadrotor. This approach does not deal

with state estimation either.

In fact, none of these research examples deals with state estimation and

uncertainty. This is often because the controllers are only displayed in sim-

ulation where one in practice are omniscient with respect to state variables.

It seems that the overwhelming work that has been conducted on DRL for

quadrotor applications so far has been focusing on showcasing the impressive

reasoning power of the algorithms — given perfect information. Another re-

occurring theme is that the controllers often requires training steps in the range

of 105 − 106 in order to converge to good control policies. In this thesis we

therefore hope to shed some light on both the issue of acting under uncertain

information and the issue of training tempo.
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1.4 Outline of report

In Chapter 2 the theory and background that was used in the design of the con-

troller is presented along with justification for why the particular methods were

chosen. Chapter 3 assembles the theory from Chapter 2 to design a position-

ing controller and the specifics of the design and implementation are discussed.

The proposed controller is then tested in a simulated environment in Chapter

4 and results displaying the performance of the quadrotor is presented and dis-

cussed. In Chapter 5 the controller that was trained in simulation is applied to

the real world by adapting the method used in simulation to train further and to

allow it to adapt to the real world, and then the performance of the controller

post training is presented and discussed. Chapter 6 discusses different paths

that is of interest to explore in the future, and finally, Chapter 7 concludes the

thesis.
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Chapter 2
Background and theory

2.1 Reinforcement learning

This chapter introduces the basic principles and theory that reinforcement learn-

ing is built on, and then explores the necessary prerequisites to understand the

more complex state-of-art reinforcement learning algorithms while the choice

of algorithm for the particular problem in this project is justified. The con-

tent discussed in these sections is heavily based on the book "Reinforcement

Learning: An Introduction" by Sutton and Barto [35].

2.1.1 The fundamental agent

In reinforcement learning (RL) the term agent is used to describe an entity

which act towards achieving a goal. For the agent there are three fundamental

signals at each timestep of its existence: the observation ot which is used to

construct the agent internal representation of the world – its current state st
– in the environment, a reward rt based on the agents current state and the

actions performed up until then, and the action at that the agent applies to the

environment. These signals represents the interactions between the general RL

agent and its environment. Figure 2.1 encapsulates these relationships.

In the literature it is common to find that the observation signal ot is omit-

ted entirely, in which case we have the direct relationship st = ot. It is how-
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ever useful in some cases to distinguish between the two signals in applications

where the raw sensory output is not used directly but instead passed through

a processing unit that builds the agents representation of the world from the

observation. An example of this is when the state of the system can only be

inferred by extrapolation of past observations, or when it is desirable to reduce

the dimensionality of the state vector itself. This is an emphasis on the fact that

agents in the real physical world has to deal with noisy sensors and imperfect

information which inevitably leads to uncertainty about the state of the system.

Processing of observations is therefore an important part of a RL agent even

thought it is not a part of the learning algorithm itself, and it has close connec-

tions to the underlying Markov property (Section 2.1.2) and should therefore

be designed with accord along with the state representation itself.

Learning
algorithm

action

� = ��

observation

��

reward

��

Reward
function

Agent

Environment

Observation
processing

state

��

 

Figure 2.1: Illustration of the interactions between the general reinforcement learning
agent and the environment in which it operates.

The distinction between the environment and the agent is not always clear.

Let us say the objective is to control a robotic arm and move the end-effector

to a desired location. It is then tempting to think of the robotic arm as the

agent, however it would be more correct to think of the agent as the brain of
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the robotic arm. The robotic arm can be viewed as a part of the environment

as well, and what the agent has to learn is the controlled arms dynamics, but

also its interaction with other parts of the environment. This is the gist of what

is known as model-free reinforcement learning. In the case of model-based

learning, the agent learns a representation of the underlying dynamics as well,

but that is out of scope for this project.

2.1.2 Markov Decision Processes

The reinforcement learning problem can be categorized as a sequential de-

cision making process where the agents goal is to learn how to take actions

based on states that gives the maximum amount of future rewards. An impor-

tant underlying assumption is that the transitions of the system is completely

characterized by the immediate preceding state and action only, St−1 andAt−1

respectively. This means that the dynamics of the system do not depend on ear-

lier states and actions at all. If this holds for any state of the system, the system

is said to have the Markov property, and a sequential decision problem which

has this property is called a Markov decision process (MDP) [36].

In the original formulation a MDP is denoted by the tuple (X , U , R, T ),

where X is the set of all states, U(x) is the set of all actions associated with a

state x ∈ X , R(x, u) is the reward function which depends on the state x and

action u and T is the transition model which gives the transition probabilities

P (x
′ |x, u). If the system is deterministic, then the transition function is simply

given by the current state x and action u: x
′

= f(x, u). Note that this notation

is not used further, and for the rest of this report the notation introduced in

Section 2.1.1 is used.

For this property to hold the present state of the system is required to con-

tain all information that influence the future states of the system. This property

is important because it reduces the amount of parameters required to construct

a the transition model of an arbitrary system. To see this, consider a transition

model where the Markov property holds, i.e.

P (st+1|st = P (st+1|st, st−1, ..s1). (2.1)
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This means that we can discard all previous states st−1, ..s1 as we try to predict

the future.

However, all the necessary information to infer about the future is not al-

ways available to us. Usually we operate in partially observable universes

where the true state of the system is not always given, but instead we observe

evidence of it. A MDP where the state is only partially observable is called a

Partially Observable Markov Decision Process (POMDP). A POMDP can be

converted into a MDP by introducing a belief state that can be derived from the

observed evidence, which is the observation ot in Section 2.1.1. This is useful

in many situations and can be used to act optimal based on the agents beliefs

of the world.

2.1.3 Rewards

The reward the agent receives at each timestep is designed by the programmer

and depends on the current state of the agent in the world and its goal. The re-

ward function can for example be related to how close the agent is to a setpoint

or path, or it can be a negative reward for each timestep that is not a terminal

state, an absolute goal, and a positive reward for reaching the terminal state.

The reward is essentially a scalar measure of how good the agent is currently

doing, and is a function of the state variable of the agent such that the agent is

able to infer about the value of its state. The performance of the agent depends

on the quality of the reward function and its design is therefore important.

The agent’s goal is in general to maximize its total expected reward over

a time horizon known as an episode. The total expected reward is called the

expected return Gt, and in its simplest form it is just the sum of the rewards

over an episode:

Gt , Rt+1 +Rt+2 +Rt+3 + ...+RT . (2.2)

However, the simple sum of rewards are seldom used. Instead the discounted

sum of future rewards are used. The agent chooses At which maximizes the
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expected discounted return

Gt , Rt+1 + γRt+2 + γ2Rt+3 + ...+ γN−1Rt+N =

N∑
n=0

γkRt+n+1. (2.3)

The discount factor γ determines the present value of future rewards such that

the agent will tend to prefer immediate rewards over future rewards. When

γ → 1 the agent becomes more farsighted, and when γ → 0 the agent becomes

more intent on immediate rewards.

It is important to note that returns and successive timesteps are related to

each other in a recursive relationship as

Gt , Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ...

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4) + ...

= Rt+1 + γGt+1

(2.4)

which also simplifies notation.

2.1.4 Value functions and policies

So far we have talked about the signals that the agent interacts with: the ob-

servation Ot the agent receives that it uses to represent its current state St,

the input (action) the agent applies to the environment At, and the reward the

agent receives Rt. Most reinforcement learning algorithms uses these quanti-

ties to define a "goodness" of states or taking certain actions in a state. The

"goodness" defines how much future reward is expected from a certain state

and onward into the future. This value is what has to be estimated, or learned,

by the agent.

Closely associated to the notion of valuing a state and the actions that can

be performed in them we have what is known as a policy which describes the

way the agent acts. The policy of an agent is a mapping from the current state

to either a probability distribution of actions, or a mapping directly from state

to action known as a deterministic policy. To present the basic principles in

this chapter the probabilistic policy π(a|s) is used, where the probability of

selecting action At = a is given by the state St = s at timestep t.
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By definition the value function vπ(s) expresses the value of a state S = s

when acting under the policy π from that particular state and onwards. In other

words, it is the expected return from starting in s and then following π to the

end of time. It is called the state-value function for policy π. For MDPs this

can be expressed formally as

vπ(s) , E [Gt|St = s] = E

[ ∞∑
k=0

γkRt+n+1|St = s

]
. (2.5)

In a similar fashion we can define the value of action a in state s under policy

π as qπ(s, a), which is called the action-value function. This is expressed as

qπ(s, a) , E [Gt|St = s,At = a]

= E

[ ∞∑
k=0

γkRt+n+1|St = s,At = a

]
.

(2.6)

The value– and action-value functions are learned from experience, and a

fundamental property of these functions is that they satisfy a recursive formula

similar to that of the recursive formula for returns given by equation (2.4). This

formula expresses a consistency condition between a state and its successors.

Hence, states that are spatially related to each other are related with respect to

their expected future value. For vπ(s) this can be expressed as:

vπ(s) , E
π

[Gt|St = s]

= E
π

[
Rt+1 + γGt+1|St = s

]
=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γ E

π

[
Gt+1|St+1 = s′

]]
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]
, for all s ∈ S, a ∈ A.

(2.7)

This is known as the Bellman equation for vπ. It expresses a relationship be-

tween a state s and successor states s′. The Bellman equation averages all the

rewards from successor states s′ weighted by their probabilities to form an esti-
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mate for the state s that is equal to the discounted sum of the expected rewards

from the successor states s′ plus the immediate reward that is associated with

transitioning from s to s′. This can be viewed as a one-step look-ahead into all

possible future states and performing a backup operation that conveys infor-

mation about the future states back to the current state. Deriving the Bellman

equation for the action-value function

This is actually a fundamental property which makes reinforcement learn-

ing methods able to not only learn from complete episodes of returns, but also

learn from any transition between states that the agent experiences.

2.1.5 Bellman optimality equations

Broadly speaking, the reinforcement learning problems objective is to find a

policy that generates the most reward over time. A policy π is considered better

or equal to another policy π′ if its expected return is greater or equal to that

of π′. In terms of the value function this can equally be expressed as having

vπ(s) ≥ vπ′(s) for all s ∈ S. The policies that satisfy this inequality have the

same state-value function called the optimal state-value function v∗, and they

are denoted as the optimal policy π∗. The optimal state-value function can be

expressed as

v∗(s) , max
π

vπ(s) (2.8)

for all possible state s ∈ S. The optimal policies also have the same optimal

action-value function

q∗(s, a) , max
π

qπ(s, a) (2.9)

for all possible states s ∈ S and all possible actions a in state S, a ∈ A(s). The

optimal action-value function q∗ can also be expressed as a function of v∗ as
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q∗(s, a) = E [Rt+1 + γv∗(S1+t)|St = s,At = a] . (2.10)

These functions also satisfy the consistency condition given by the Bell-

man equation in (2.7). The consistency condition for v∗ can be expressed

without a reference to a specific policy because it is the optimal value func-

tion. This means that the value of any state while following the optimal policy

is equal to the expected return of the best action a in state s. This is known as

the Bellman optimality equation, and for v∗ it is expressed as

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

E
π∗

[Gt|St = s,At = a]

= max
a

E
π∗

[
Rt+1 + γGt+1|St = s,At = a

]
= max

a
E
π∗

[Rt+1 + γv∗(St+1|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a)
[
r + γv∗(s

′)
]
.

(2.11)

By using (2.4). For q∗ the Bellman optimality equation is given by

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)|St = s,At = a

]
=
∑
s′,r

p(s′, r|s, a)

[
r + γmax

a′
q∗(s

′, a′)

]
.

(2.12)

The importance of the Bellman optimality equations can also be intuitively

understood by Richard Bellman’s Principle of Optimality:

An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first

decision [37].

This principle suggests that a sequential decision problem can be divided into
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smaller sub-problems and the optimal course of action in any of the sub-

problems also constitutes the optimal action in the full problem. Problems that

inherits this property is said to have optimal substructure and is fundamental

to dynamic programming, which why the Bellman equation is also known as

the dynamic programming equation. These equations are the cornerstone for

solving the problem of maximizing cumulative reward in a sequential decision

problem, otherwise known as reinforcement learning.

2.1.6 Temporal-difference learning

The Bellman equation (2.7) indirectly assumes that we are able to attempt all

actions in any given state and observe the outcome to predict the value of

any state at any time. This would be equivalent to performing an exhaustive

search over the state– and action space. The ability to observe all possible

outcomes given any state and all possible actions is seldom the case, and is

really only possible if the environment is a simulation. It would for example

not be possible if the agent operates in the real physical world and intractable

if the action or state variables are continuous variables. The latter is the case

for the project in this report, and more importantly: the transition probabilities

which describes the dynamic of the system is unknown. The Bellman equation

also assumes that there is an end state, which for this project is neither the case

because an episode may be of arbitrary length. It therefore seems clear that a

different approach must be taken.

A fitting approach that utilizes the Principle of Optimality (Section 2.1.5) is

a class of model-free reinforcement learning methods called temporal-difference

learning (TD learning). These methods performs an update to the current state

estimates by using the difference of the current states value estimate and the

discounted value of the proceeding state plus the reward associated with that

transition to give a prediction of the value estimate for the current state. Be-

cause learning only requires one transition between states these methods can

be applied to problems with episodes of arbitrary lengths. The learning pro-

cess is as an iterative process and is known as bootstrapping in statistics. To

illustrate this is the TD update rule which can be used to predict vπ, which

gives the value of any state while following the policy π:
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V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] . (2.13)

Here γ is the discount parameter, V (St) is the value of the current state St,

V (St+1) is the value of the proceeding state St+1, Rt+1 is the reward associ-

ated with the transition St → St+1, and 0 < α < 1 is the learning rate used to

move the estimate of V (St) towards its predicted value. Note that the capital

"V" for the value function expresses that this is an estimate of the value func-

tion, and not the true value function which we dealt with in Section 2.1.4-2.1.5.

The expression in brackets in equation 2.13 is known as the TD-error,

δt , Rt+1 + γV (St+1)− V (St), (2.14)

and is measure of the estimate error at the time. Furthermore, the first two

terms in the TD-error is known as the target,

yt , Rt+1 + γV (St+1), (2.15)

and expresses the current estimate of the true value function vπ under the cur-

rent policy.

The full algorithm is shown in Algorithm 1 and is known as the TD(0)

algorithm. It has shown to converge to an optimal value function v∗ under the

following conditions [38]:

1. The estimated values are stored in memory, such that they are not for-

gotten.

2. The learning rate, at any time, satisfies the condition 0 < α < 1.

3. The variance of the reward is bounded, hence Var(Rt) <∞.
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Algorithm 1 TD(0) prediction

Initialize learning rate α ∈ (0, 1]
Initialize V (s) for all states s ∈ S.
for episode in 1 : M do

Set S = S0

for timestep in episode 1 : n do
A← action given by π(S)
Perform action A, observe resulting reward R and new state S

′

V (S)← V (S) + α
[
R+ γV (S

′
)− V (S)

]
S ← S

′

end for
end for

The TD(0) algorithm alleviates the problem of needing to know the out-

come of all possible actions at any point in time, the problem of unknown

system dynamics, and allows episodes to be of any length, even infinite. There

is however one problem with this algorithm: it does not tell us how to improve

our policy, and in addition this method is less data efficient than it could be

because it only learns about the policy it is currently following. Fortunately

we can do better if we use the action-value function as opposed to the value

function, which is known as Q-learning. This is an off-policy TD learning

algorithm, which means that the learned action-value function Q directly ap-

proximates the optimal action-value function q∗ regardless of what policy is

being followed. We have

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
,

(2.16)

which is very similar to Equation 2.13 for the update rule for TD(0), however

transitioning from value– to action-value functions and using the max operator

for choosing the action in the proceeding state S
′
. This can be intuitively

understood by realizing that the value of the current state and the chosen action

can only be as good as the best option (or action) the agent can choose in the

proceeding state.

The full algorithm is shown in Algorithm 2. For the algorithm to converge
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to the true action-value function it is also required that all states are visited

an infinite numbers of times, meaning that the probability of visiting a state

never becomes identical to zero. A typical strategy for assuring this is to use

an ε-greedy policy that chooses a random action with a non-zero probability ε.

Algorithm 2 Q-learning
Set hyperparameters like total amount of episodes to train M step size α,
discount factor γ, and small ε > 0 for epsilon greedy exploration.
Initialize storage for action-values Q(s, a) and set initial values for all s ∈
S, a ∈ A
for episode in 1 : M do

Initialize S
while S is not a terminal state do

Choose action A from S using policy derived from Q (e.g ε-greedy)
Take action A, observe reward R and next state S′

Do:

Q(S,A)← Q(S,A) + α
[
R+ γmax

a
Q(S′, a)−Q(S,A)

]
(2.17)

S ← S′

end while
end for

The methods considered in this section requires memory to store all combi-

nations of state value– and state-action value pairs and they are therefore often

referred to as tabular methods because they require bookkeeping for all the es-

timates. The downfall of these methods is that they are not able to deal with

continuous state– and action spaces at all because it would require an infinite

amount of memory.

In some cases a solution can still be derived by discretizing the environ-

ment, but for complex problems – like control in robotics – this would in-

evitably lead to a sub-optimal solution because of loss of information. It is

also worth noting that even though discretization may enable use to form a

solution the amount of memory needed is still growing exponentially with the

number of state variables, and therefore the solution would still be intractable

to compute in many cases. The next section therefore discusses a learning
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method that is applicable to continuous environments.

2.1.7 Policy gradient methods

While the previously discussed learning methods were dependent on keeping

all value- and action-value estimates in memory, policy gradient methods can

learn a parameterized policy that selects an action directly given a state without

approximating the value or action-value function of the environment. Policy

gradient methods are generally divided into three different categories: actor-

only, critic-only and actor-critic methods. This section is dedicated to dis-

cussing actor-only methods, otherwise known as vanilla policy gradient meth-

ods. The next section discusses actor-critic methods, while critic-only methods

are omitted because they are best fit to deal with discrete action spaces which

is out of scope for this project.

The notation for the parameterized policy is denoted as π(a|s,θ) where

θ is the policys parameters. The policy outputs a probability for choosing an

action at given a state st and parameters θt at a time t: π(a|s,θ) = P (At =

a|St = s,θt = θ). The policys parameters also have the t-subscript indicating

they are also time-varying which is because they are subject to optimization.

Policy gradient methods seek to maximize some scalar performance mea-

sure J(θ). With respect to the policy parameters θ the objective can be opti-

mized by doing gradient ascent using the gradient of J :

θt+1 = θt + α∇J(θt) (2.18)

where ∇J(θt) is a stochastic estimate whose expectation approximates the

real gradient of the performance measure J . The objective which we seek to

maximize is the discounted expected return

J(θt) = E

[
T∑
t=0

γtRt

]
. (2.19)

We should expect the above expectation to be equal to vπθ where πθ is the

parameterized policy. And therefore we need a way of calculating
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∇J(θ) = ∇vπθ(s0). (2.20)

This however is not trivial, because the effect of the policy on the state distribu-

tion is a function of the environment dynamics which is unknown to us. This is

where the policy gradient theorem [39] comes in, which for the episodic case

can be stated as

∇J(θ) = ∇vπθ(s0)

∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ)
(2.21)

where µ(s) is the weighted state distribution probabilities under the policy.

Note that the right side of (2.21) can be calculated if the parameterized policy

πθ is differentiable with respect to its parameters.

Parameterization can be realized by devising a parameterized numerical

preference function h(s, a,θ) that assigns each action a probability of being

chosen. An example of this is the exponential soft-max function which gives

the probability distribution and policy

π(a|s,θ) =
eh(s,a,θ)∑
b e
h(s,b,θ)

(2.22)

where e ≈ 2.711828 is the base of the natural logarithm. An advantage of us-

ing the soft-max function is that exploration is assured by the stochastic policy,

and it will eventually converge to a deterministic policy as the agent learns the

best actions. This is clearly advantageous to the ε-greedy strategy often used

for exploration in tabular methods as we saw in Section 2.1.6. While this is one

example of a parameterization function the choices are many and the choice is

dependent on the specific problem. What is important is that the parameterized

function is able to approximate the policy function to a satisfactory degree. By

using a function approximator the requirement of visiting all states to compute

their value is deposed off, because the function also approximates the neigh-

bouring action-value pairs, not only the pairs it has observed. Other examples

of function approximators includes linear combinations of features (states) and

weights θ as h(s, a,θ) = θTx(s, a), or deep artificial neural networks (Sec-
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tion 2.2).

The policy gradient theorem provides us with an expression that is propor-

tional to the gradient. All we need now is a way to sample a quantity which is

equal to approximates this expression and eliminating the dependence on the

action-value function qπ such that a policy can be learned without consulting

the any value function. This can be done by noticing that the right-hand side

of Equation 2.21 is a sum over states weighted by how often states are visited

under the policy π, which if followed are encountered in these proportions,

hence:

∇J(θt) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

= E
π

[∑
a

qπ(St, a)∆π(a|St,θ)

] (2.23)

Next, the last sum and qπ can be reduced to the return Gt by multiplying and

dividing the inner sum by π(a|St,θ). This is because the expectation under the

weighting π(a|St,θ), which is the correct sum over actions, equals qπ(St, At),

therefore:

∇J(θt) = E
π

[∑
a

π(a|St,θ)qπ(St, a)
∆π(a|St,θ)

π(a|St,θ)

]

= E
π

[
qπ(St, At)

∆π(a|St,θ)

π(a|St,θ)

]
= E

π

[
Gt

∆π(a|St,θ)

π(a|St,θ)

] (2.24)

This sample can now be plugged into the generic gradient descent algorithm

(Equation 2.18) which yields the following update rule better known as the

REINFORCE update:

θt+1 = θt + αGt
∆π(a|St,θ)

π(a|St,θ)
(2.25)

The full REINFORCE algorithm is shown in Algorithm 3. It is important to

note that REINFORCE uses the complete return which includes all rewards
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the agent has experienced up to time t. Learning approaches that uses returns

like this are known as Monte-Carlo algorithms which are not well defined for

problems that have episodes of infinite length. These methods are not dis-

cussed further in this report as they are not used and we consider them to be a

sub-optimal approach for the problem studied in this project.

Algorithm 3 REINFORCE

Initialize the differentiable policy parameterization π(a|s, θ)
Initialize hyper parameters: learning rate α, discount rate γ
for episode in 1 : M do

Generate an episode S0, A0, R, 1...ST−1, AT−1, RT following the current
policy
for each step in the episode t = 0, 1, ...T − 1 do
G←

∑T
k=t+1 γ

k−t−1Rk
θ ← θ + αγtG∇ lnπ(At|, St, θ)

end for
end for

2.1.8 Actor-critic methods

The policy gradient method described in the previous section relies on the

episodic returns, which is the Monte-Carlo approach to learning. Monte-Carlo

learning has higher variance than temporal difference learning because tempo-

ral differences bootstraps and thus the action and immediate reward from one

timestep to another is not affected by previous actions in that episode. Since

all policies must be stochastic to some degree in order to learn, Monte-Carlo is

more prone to variance because at each timestep there is potential variance that

is injected into the return for that episode. In addition, Monte-Carlo methods

can be hard to implement in practice for continuing problems.

To alleviate some of this problem, we now introduce parameterized value

function, known as the critic, in addition to the parameterized policy which

we will now reference to as the actor. By modelling the critic as a bootstrap-

ping method we can thus reduce the variance associated with the pure policy

gradient approach. The value function is similarly to the parameterized policy

denoted v(s,w) where w is the parameter vector.

A popular approach to actor-critic methods is therefore to use a one-step
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return like TD(0), however any policy evaluation technique may be used in

practice. The parameter update rule from REINFORCE in Equation 2.25 can

be written in terms of the TD(0) update to form an online algorithm by re-

placing the return Gt with Gt:t+1− v̂(St,w) whose expectations are the same:

θt+1 = θt + α(Gt:t+1 − v̂(St,w))
∇π(At|St,θt)
π(At|St,θt)

= θt + α(Rt+1 + γv̂(St+1,w)− v̂(St,w))
∇π(At|St,θt)
π(At|St,θt)

= θt + αδt
∇π(At|St,θt)
π(At|St,θt)

= θt + αδt ln∇π(At|St,θt).

(2.26)

Where δt is the TD-error introduced Section 2.1.6. For the critic, the squared

TD(0) is used as the loss function because it is the estimated error between

the approximated value and the observed value (the reward) we would like to

minimize, hence

J(w) =
1

2
δ2
l , (2.27)

where δl = (R+ γv̂(S′,w)− v̂(S,w)). And because we want the TD error to

converge to 0 as the value function approaches the true value function, we get

the parameter update law directly by using∇J(w) = δl∇v(St,wt):

wt+1 = wt + αδt∇v(St,wt). (2.28)

We have now arrived at a model-free reinforcement learning method which

are able to deal with both continuous state– and action spaces while also being

applicable to problems that have episode undefined episode lengths. In the

next section one such method is introduced which is later used as a basis for a

high-level controller.
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2.1.9 Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient (DDPG) algorithm [4] is an actor-

critic algorithm that builds on the work of Silver et al [40] who found that

the deterministic policy gradient exists such that deterministic policies (not to

be confused by the weighed state distribution probabilities in Section 2.1.7),

denoted a = µ(s|θµ) can be constructed. The deterministic policy gradient is

∇θµJ ≈ ∇aQ(s, a|θQ)∇θµµ(s|θµ) (2.29)

Where θµ are the parameters of the policy function and θQ is the parame-

ters of the action-value function, and hence Q(s, a|θQ) is the parameterized

action-value function and µ(s|θµ) the parameterized policy function. The de-

terministic policy µ(s|θµ) deterministically maps a state s to an action a given

the policy parameters θµ.

The approach was also inspired by Mnih et al’s [41] contribution to re-

inforcement learning through an algorithm called Deep Q-Networks (DQN).

DQN is based on Q-learning and uses neural networks as function approxima-

tors and are able to take continuous state spaces as input to produce discrete

actions and output. DDPG specifically utilizes two inventions that allowed

DQN to learn in a stable and robust way:

1. Replay buffer that stores past experienced transitions. This allows for

off-policy training of mini-batches of past experienced sampled uni-

formly from the replay buffer, which increases sample– and computa-

tional efficiency which stabilizes training.

2. Separate target networks with separate parameters of the parameterized

policy– and action-value function to calculate the targets. In [4] these

are updated according to the "soft" update law:

θµ
′

= (1− τ)θµ
′
+ τθµ

θQ
′

= (1− τ)θQ
′
+ τθQ

(2.30)

Where θµ′ and θQ′ are the target policy– and action-value- function pa-

rameters for their respective target policy function µ′ and target critic
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function Q′. This constrains training of the targets to happen at a more

slow pace which improves stability.

The critic is learned using Q-learning and allows the agent to learn off-

policy, i.e the behaviour policy simulates trajectories while evaluating and im-

proving Q-values regardless of what policy is being followed. This is similar

to the loss function for the critic in Section 2.1.8, but using the action-value

function instead. By using the target networks to compute the returns, we get

yi = ri + γQ′(si+1, µ
′(ss+1|θµ

′
)|θQ′) (2.31)

and the critics loss function

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2. (2.32)

This is the sum of all the losses from i to N where N is the mini-batch size

used for training.

An advantage of being off-policy is that the algorithm can incorporate ex-

ploration into the process without interfering with the learning algorithm itself.

In DDPG an Ornstein-Uhlenbeck process is used to generate temporally cor-

related noise which is added directly to the actor policy output:

µ′(st) = µ(st|θµt ) +N (2.33)

Where the noise process is denoted N . The Ornstein-Uhlenbeck process be-

haves like a Wiener process, and has shown to be efficient in physical control

problems with inertia, but other noise models may be used as well depending

on what best suits the particular system.

The full algorithm is shown in Algorithm 4. Note that in practice the learn-

ing steps do not start before the replay buffer contains at least a mini-batch size

amount of transitions.
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Algorithm 4 DDPG

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with
weights θQ and θµ

Initialize target network Q′ and µ′ with weights θQ
′ ← θQ, θµ

′ ← θµ

Initialize replay buffer R.
for episode 1 : M do

Initialize a random process N for action exploration.
Receie an initial observation s1

for each step in the episode t = 1 : T do
Select action at = µ(st|θµ) + N according to the current policy and
exploration noise.
Execute action at and observe reward rt and observe new state ss+1.
Store transition (st, at, rt, st+1) in replay buffer R
Set yi = ri + γQ′(si+1, µ

′(ss+1|θµ
′
)|θQ′)

Update critic by minimizing the loss:

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (2.34)

Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si (2.35)

Update the target networks:

θµ
′ ← (1− τ)θµ

′
+ τθµ

θQ
′ ← (1− τ)θQ

′
+ τθQ

(2.36)

end for
end for

2.2 Artificial neural networks

As we have already established in Chapter 1, the control of quadrotors is a

challenging task because of the nonlinear system dynamics, and therefore we

need a parameterized functions that is capable of approximating the dynamics

of the system, the action-value and policy function space. For this we will use
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2.2 Artificial neural networks

artificial neural networks (ANNs), which when used as function approxima-

tors in reinforcement learning applications is often called deep reinforcement

learning (DRL). This chapter presents the basic operations of ANNs, justifies

the choice of using them in this project, and presents some of the most relevant

technologies that are used in state-of-the-art neural network architectures.

2.2.1 Basic operations

Artificial neural networks can be thought of as a mathematical function that

maps an input x to a final output y where the dimension of both the input

and output can be of arbitrary size. Figure 2.2 shows a generic ANN structure

which can be characterized as a directed graph where the arrows are the in-

coming signals from the previous layer, each blue circle represents a neuron,

and the grey circles represents the input layer that performs data augmentation

on the input. The neurons consists of a set of weights w and a bias b and an

activation function g(·) that is parameterized by the weights. For each neu-

ron the incoming signal x is processed such that the output from the neuron is

g(wxT +b), and therefore the mapping from the input to the output of the net-

work can be viewed as several steps of matrix multiplications. The final output

y is then a nested function of activations, y = f(g(g(..)..). The operation of

producing a output from the input is sometimes referred to as the feed-forward

operation.

The other fundamental operation of neural networks is the backpropaga-

tion algorithm. By using the chain rule known from basic calculus and a loss

function J the gradient of each weight can be found by propagating the error

from the end of the network backwards into the layers to calculate the con-

tributing error affiliated with each parameter in the network. The loss function

is parameterized by the networks parameters θ, where θ is the set of all weights

and biases in the network, and expresses the error in the networks prediction y

relative to a target. The target is what we want the network to produce, hence

its name, and we therefore want this error to tend to zero. The parameters of

the network is adjusted by an optimization algorithm, where the most popular

method used is the gradient descent algorithm. Given that the loss function is

a differentiable function its parameters can be adjusted by gradient descent as
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follows:

θ ← θ − α∇θJ(θ) (2.37)

where α is the learning rate.
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Figure 2.2: A generic feed-forward ANN with three input
units, one hidden layer with three neurons, and a single out-
put neuron.

2.2.2 Universal function approximator

The activation functions of the network plays in important role in networks

ability to approximate the function of the sampled inputs it is given. By letting

the activation functions be nonlinear functions, one can prove [42] that a net-

work with only one hidden layer and a finite number of neurons is in fact an

universal function approximator that can approximate any continuous function

on a compact region of the network’s input space to any degree of accuracy.

However, most networks used in practice displays at least two hidden layers

and often many more. This is because of an important insight [43] that shows

that deeper and bigger networks are required to extract abstract features from

the input space while at the same time being able to generalize well with re-

spect to new inputs.
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Networks with more than hidden layers, multi-layered, are often called

deep neural networks (DNNs). Training these networks can be difficult with

respect to convergence and stability because of the amount of parameters in

the optimization problem. Choosing just the right architecture with respect

to number of neurons in hidden layer, the number of hidden layers and the

activation functions in each of them can also be a challenging with respect

to the problem of over– and underfitting. These problems arises when the

network approximates the input to an accurate degree but fails to predict the

output of input it has not seen before, and when the training of the network is

stopped prematurely, respectively.

Because of the ANNs versatility as a function approximation it is there-

fore an appealing choice for reinforcement learning. Despite the shortcoming

of stability proofs, the computational expense of training the networks, and

the difficulty of explaining the networks actions, they have been applied to

reinforcement learning with great success. They have been showcased in the

majority of the most successful applications during the past years, including

problems [44][30][29] that are similar to the one studied in this project. Indeed,

it would seem that using ANNs in conjuncture with reinforcement learning is

the rule rather than the exception and monumental to the advances in the field.

2.2.3 Improvements

Neural networks have been studied intensively and many extensions to the acti-

vation functions, network architecture and optimizers have been added during

the last few years. Much of the research has been driven by the success of

applying convolutional neural networks to image classification and has led to

efficient frameworks for computing neural networks being developed.

Examples of extensions to the classical ANN architecture includes batch

normalization [45] which normalizes the input till each hidden layer by reduc-

ing the covariance shift, the rectifier linear unit (ReLU) [46] which is an activa-

tion function with many appealing features such as being less computationally

expensive than previous activation functions and mitigating the vanishing gra-

dient problem [47], Xavier initialization [48] which is method for initializing

each weight in each layer that improves convergence by reducing the effect of
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the vanishing– and exploding gradients, and the Adam optimizer [13] which is

an advanced form of gradient descent that utilizes the moments of the gradi-

ents and keeps a per parameter learning rate. There are many other extensions

that are used in state-of-the-art applications, but the aforementioned examples

are the most relevant as they are used directly in this project, and therefore

deserves a mention on their own.

2.3 Computer vision

In this project a single camera is used for providing the reinforcement learning

agent with observations. Instead of using the raw images, every pixel, as input,

they are processed such that the dimensionality of the input space is reduced.

This enables us to filter away superfluous information allowing the neural net-

works to train faster and more efficiently, and allowing networks to be trained

within a feasible time frame governed by the period and scope of this project

and the hardware available.

This section introduces a color model used for image processing, a sim-

ple method for tracking a distinctive colored object in an image, and how the

method can be used to infer about the position for a quadrotor by consider-

ing its dynamics and the camera configuration. The object tracking method

discussed in Section 2.3.3 is used in the controller design in Section 3.3, but

is not an advanced method at all, and entails that information is lost under

transformation. The choice of simplicity is intentional in order to explore the

reinforcement learning methods ability to act based on incomplete and imper-

fect information for control. The chosen method does not represent an ap-

proach that can be expected to work robustly in general, but rather used for

convenience in this project. The theory in this section is based on the book

"Computer vision: Algorithms and Applications" by Richard Szeliski [49].

2.3.1 Color model

Computer displays produces colors by mixing the three so-called additive pri-

mary colors red, green and blue (RGB). However, for the human intuition it

is hard to conclude what is the correct mixing of the three colors to produce
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any another other specific color, especially with respect to the lightness and

intensity of the color. This is what motivated the creation of the hue, saturation

and value (HSV) color model, which is based on how colors are understood by

the human perception system. A visualization of the HSV model is shown in

Figure 2.3. The figure depicts a cone where the the six most distinctive colors

consisting of the aforementioned additive colors red, green and blue, and the

subtractive colors yellow, magenta and cyan are featured around the circular

disc. Along the radius of the cone is the saturation, which defines the "color-

fulness" of the color relative to its brightness (or value), and along the height

of the cone is the value which defines the brightness of the color. This model

is useful for a human designer to define the color he/she is looking for in an

image with some leeway regarding the luminance in the room where the pic-

ture is taken, and therefore provides some robustness to the experimental setup

featured later in this report.

Figure 2.3: Visualization of the HSV color model (Wikipedia).

2.3.2 Pose estimation

The most relevant problem in computer vision in relation to this project is what

is known as pose estimation, which is the problem of determining the pose –

or transformation – of an object in a 2D image to the correct corresponding

points in the 3D world. In this section we will introduce the concept by using

camera projection as a starting point.
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Let us introduce two coordinate systems: the image plane, and the world

coordinates in which both the object and quadrotor reside in. The image plane,

or just the image, is a mapping from 3D points in the world coordinate frame

to a 2D plane conducted by the camera. This is visualized in Figure 2.4. It is

possible to calculate the 2D to 3D projection, which is the transformation from

pixel coordinates (u,v) in the image plane to world coordinates (X, Y, Z) if the

camera matrix is known:

x̃s = Ppw (2.38)

where x̃s = [u, v] is the pixel coordinate, pw = [X,Y, Z] is the world coordi-

nate point, and the camera matrix P is given by

P = K
[
R | t

]
. (2.39)

K is known as the calibration matrix that describes the camera intrinsics map-

ping from the camera coordinate frame to the image plane, R is the rotation

matrix relating the camera– and world coordinate frames via rotations around

the three major axis (X, Y, Z), and t is the 3D translation from the world–

to the camera coordinate frame. A commonly used parameterization for the

calibration matrixK is:

K =

f 0 cx

0 f cy

0 0 1

 (2.40)

where (cx, cy) is the optical center of the camera and f the cameras focal

length. Usually an invertible 4 × 4 matrix is used to calculate the camera

matrix P , such that

P̃ =

[
K 0

0T 1

][
R t

0T 1

]
= K̃E (2.41)

where E is a homogeneous, rigid-body 3D transformation. The intrinsic pa-

rameters of the camera can be estimated a priori via measurements, i.e via

matching known, corresponding points in the image with points in the world
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and performing an iterative least-squares search for the intrinsic parameters.

Z

X

Y

u

v

y

x

z

Camera coordinates Image coordinates World coordinates

Figure 2.4: There are three different coordinate systems in an imaging sys-
tem: the camera–, image– and world coordinate frames.

In an online setting it is possible to calculate the corresponding world

points via corresponding points in the image assuming the calibration matrix

is known. This is known as the perspective-n-point problem and there exists

several algorithms for solving it. Furthermore, it is possible to estimate the

pose of an object in the image if the objects geometry is known and assuming

it is possible to obtain feature descriptors that lies on the object in the image.

A general example of this that uses an assortment of known methods can be

found on the Open Source Computer Vision Library (OpenCV) projects web-

site [50].

However, to limit the scope of this project, and because it is of interest

for this project to explore the capability of the reinforcement learning agent

framework introduced in Section 2.1 to operate under limited– and imperfect

information, a simpler method described in the next section is used in this

project. This method has the advantage that it is computationally faster be-

cause it can be implemented via simple matrix multiplications and requires no

iterative schemes to obtain a solution. On the other hand, it only provides the

position of the object in the image, and hence carries less information about

the true position of the quadrotor relative to the object in the real world as

compared to the outlined method in this section.
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2.3.3 Image coordinates of a colored object

To track the position of an object in an image it is possible to use the colors of

the image, specifically the distinction between the colors of the object and the

rest of the image. This can be achieved in two steps: masking, and then using

the moments of the resulting image.

A mask in image processing is a operator that works on an a per individual

pixel level by a spatial– or logical law, or both. For this task we will use a mask

which returns 1 if the pixel is within a defined lower– and upper bound, and 0

otherwise. Using the HSV color model to define the bounds we can write this

mathematically as

Ixi,yj =

1, if HSVupper ≥ Ixi,yj ≥ HSVlower
0, otherwise

(2.42)

where i, j is the spatial index in the 2-dimensional image matrix, andHSVupper,

HSVlower is the lower– and upper bound by design, respectively. By applying

this method we now have a binary image where each pixel equal to one is a

member of the set of pixels that constitutes the object in the image.

Next, we define the image moments of the 2-dimensional structure which

is our image as the following:

mp,q =

i=W∑
i=0

j=H∑
j=0

Ixi,yjx
p
i y
q
j (2.43)

where p is the order along the x-axis, q is the order along the y-axis, W the

width of the image, H the height of the image, and Ixi,yj is the value of the at

position xi, yj for the binary image. To determine the position of the object in

the image we need three different moments, the first-order moment along the

x- and y axis, and the zero moment, otherwise known as the area of the object

in the image:

m1,0 =
i=W∑
i=0

j=H∑
j=0

Ixi,yjx
1
i y

0
j (2.44)

36



2.3 Computer vision

m0,1 =

i=W∑
i=0

j=H∑
j=0

Ixi,yjx
0
i y

1
j (2.45)

m0,0 =
i=W∑
i=0

j=H∑
j=0

Ixi,yjx
0
i y

0
j (2.46)

Finally, the position of the object in the image can be calculated as:

xc =
m1,0

m0,0 + ε
(2.47)

yc =
m0,1

m0,0 + ε
(2.48)

where xc, yc is the position of the centroid of the object, the momentsm1,0,m1,0,m1,0

is as defined in (2.44) – (2.46), and ε is a small constant included in practical

applications in order to avoid division by zero in case the area itself is zero.

2.3.4 Reasoning about horizontal position

The method presented in the previous section can track the position in the

image under the assumption that the color of the object is distinct from the rest

of the picture. However, in a real world application we are interested in the

position of a quadrotor relative to the object, not the actual position of it in the

image. By choosing a convenient configuration of the camera attached to the

quadrotor, and considering how a quadrotor moves through space, the position

of the object in the image can be used to control the relative position of the

quadrotor.

First, let us consider how a quadrotor moves in the xy-plane assuming a

constant altitude. The quadrotor can be characterized has having two modes of

flight: it "leans" over in order produce a net force that has components in both

the vertical direction as well as in the direction of desired motion, and when it

is hovering at a standstill the rotors are parallel to the gravitational plane. This

is depicted in Figure 2.5.
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Figure 2.5: A simplified representation of how a quadrotor moves through
space: 1) translation by rotation, and 2) standstill by aligning rotors parallel
to the gravitational plane.

Given the nature of the quadrotors movement and the assumption of con-

stant altitude, one possibility is to attach a camera underneath the chassis look-

ing downwards, and place a visible object beneath the drone. By this config-

uration the case where the centroid of the object is in the origin of the image

only has one stable equilibrium. In other words, given that the desired position

of the object is the center of the image, pc,d = [0, 0], then the only way for

the drone to maintain pc,d is when the velocity of the drone is zero, e.g. when

the drone is at standstill. This is illustrated in Figure 2.6 which shows the

two possible scenarios where the centroid position is the origin, one being the

aforementioned stable equilibrium, the other being an unstable equilibrium.

Note that while the figure indicates that there is only one unstable equilibrium

there is actually an infinite amount of them because the camera can be centered

at the object from anywhere in the xy-plane given the right tilt of the drone.

However, this is usually not realistic because a drone can not normally fly side-

ways, and the object would disappear from the view of the camera in any case

because real cameras has finite resolution.

Since the the stable equilibrium is the only equilibrium that is possible to

maintain over time for the drone, this seems to be an adequate problem for the

reinforcement learning framework to solve. This framework coincides soundly

with this problem because its goal is to maximize its cumulative reward, and by
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defining the origin of the image to be the desired position of the tracked object,

the maximum cumulative reward is achieved by obtaining and maintaining

the state in which the drone hovers directly above the object — the stable

equilibrium. This is also the behaviour we desire from a positioning stabilizing

controller.

z

xy-plane

21

Figure 2.6: The camera while attached to the drone can view the object to be
at the center of its view by either 1) tilting the camera such that the camera
points in the direction of the object, or 2) by hovering directly above it.
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Chapter 3
System design and
implementation

3.1 Software frameworks

In this chapter the third-party software frameworks the were used in the project

are introduced. To allow the focus of the project to be within the scope of con-

troller design several efficient frameworks was used to perform the underlying

tasks. Otherwise the task would be too large to take on within the time-scope of

this project. Among other things, these underlying tasks included simulating

the quadrotor system, training neural networks, processing images from the

camera, and inter-process communication. Note that all the software frame-

works presented here are free-to-use and open-source.

3.1.1 Gazebo simulator

The robotics simulator Gazebo [51] was used to simulate a quadrotor. Gazebo

is able to accurately simulate complex physical dynamics based on the objects

mass, friction, inertia and nearly all other physical properties that is of im-

portance to robotic vehicles in the real-world. The open-source library Open

Dynamics Engine [52] (ODE) is used by default for Gazebo to calculate the

dynamics and kinematics for all rigid bodies inside the simulation. A robot
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consisting of its joints and links, and their physical properties is specified by

its URDF (Universal Robot Description Format) files which is an XML file

format. A robots URDF files describes all elements of the robot, and also has

support for providing realistic 3D meshes to the robot.

The simulator provides a fine grained level of control of everything that

happens inside the simulation. Gazebo allows for programs that alter and con-

trol the simulation to be run within the simulation itself through entities called

"plugins" which is C++ programs that have full access to all objects resides

inside the simulation through Gazebos API. This allows the user to provide the

simulation with additional features. This can for example be battery-to-motor

torque– or steering dynamics for a car. The simulator also ships with several

plugins that is ready to be attached to the robot, which is done through the

robots URDF files. Most notable is the availability of plugins that provides

realistic sensor simulation for commonly used sensors in robotic applications,

such as LIDAR, sonar, mono– and depth cameras, IMU, GPS and more.

3.1.2 Robot Operating System

Robot Operating System [53] (ROS) is an open-source robotics middleware

which provides message passing between processes, implementation of com-

monly used functionality such as coordinate transformation and interrupt func-

tionality for reading new sensor data and other convenient features such as

logging and data visualization. ROS is multilingual and supports C++, Python

and Lisp and facilitates scalable programs and a modular design of software for

robotic applications. ROS also has a big online community and implementa-

tions of commonly used algorithms for robotics is easy to find. The modularity

and availability of implementations makes it a particularly good fit for use in

research applications, such as this project. Conveniently, ROS is also embed-

ded into Gazebo and makes communicating with the simulation easy. Gazebo

also provides services that ROS can use to reset the simulation, alter– and get

the state of objects, pausing and un-pausing it. These are practical features in

a reinforcement learning setting.
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3.1.3 OpenCV

OpenCV [54] (Open Source Computer Vision Library) is an open source com-

puter vision and machine learning library developed for accelerating computer

vision applications in commercial products and providing a common infras-

tructure for both companies and research groups. It provides optimized im-

plementations that are written natively in C++ of over 2500 commonly used

algorithms, which is important because processing images is computationally

expensive since they are essentially very large matrices. Because of its wide

spread use and being open source it also has a large online community and

therefore features readily available support as well.

3.1.4 Tensorflow

Tensorflow [55] is an open source library for numerical computation created

by Google that enables large-scale machine learning. In Tensorflow the devel-

oper defines what is known as the computational graph, which is a high-level

abstraction structure that defines how data moves from the input to the out-

put. While the high-level abstractions are provided through a python API, the

underlying functionality are implemented as high-performance C++ binaries.

Tensorflow offers implementations of all the necessary technologies that are

required to build state-of-the-art neural network architectures and promotes

quick prototyping and is therefore a good fit for this project.

3.2 Quadrotor platform

This section introduces the experimental quadrotor platform that was chosen

for this project — the AR.Drone 2.0. from Parrot Inc. This particular platform

was an attractive choice for several reasons. It is a commercially available

drone and is therefore easy to acquire, and it only costs about 1300 NOK (≈
150 USD) which is very cheap compared to some of the more high-end drones

on the market. Because of its availability the spare parts and extra batteries

are also easy to find. This is important due to the fact that testing with an

experimental controller may be both time– and battery consuming — with
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respect to training neural networks — and could easily lead to damage of the

drone itself.

The most decisive reason for choosing this quadrotor was however that the

drone features an internal velocity controller, a downwards looking camera, a

simulation freely available in Gazebo, and compatibility with ROS for both the

real– and simulated platform. The camera configuration was important for the

feasibility of applying the method described in Section 2.3.3, and the velocity

controller because we do not wish to "reinvent the wheel" as emphasized in

Chapter 1, but instead base the low-control on existing and established meth-

ods. The access to a simulation was critical in order to train an reinforcement

learning agent because those methods typically require a lot of data to work,

and the ROS communication middleware makes development easier because

the same written code can be used both on the real– and simulated drone with

very few adjustments.

The next subsections introduces the most important aspects of the drone in

regards to this project. This includes a short introduction to the dynamic model

of quadrotors, the coordinate frames of the drone, its sensors and hardware,

velocity controller, and the simulation. The interested reader may look to [56]

for additional details about the physical platform.

3.2.1 Equations of motion

For the sake of completeness, a general dynamic model of a quadrotor is in-

cluded here because it represents how the simulator – Gazebo, or rather ODE –

simulates the kinematics of a quadrotor. It is common for controller design ap-

proaches to model and study the kinematics of the robot to derive a controller

law. For the design of the controller in the next section the dynamics are of

no concern because we use the velocity controller of the quadrotor which al-

ready controls the underlying dynamics of the quadrotor and algorithm used,

DDPG, is a model-free optimization method. It is nonetheless important to

have some understanding of them in respect to how accurately the simulation

reflects the real world, which is of interest if we expect the controller to behave

accordingly in the real world after it has been developed in a simulation.

The equations for expressing the motion of a quadrotor in 6-DOF is promptly
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available in the literature, for example by [23]:

mẍ = (sinψ sinφ+ cosψ cosφ sin θ)u1

mÿ = (− cosψ sinφ+ sin θ sinψ cosφ)u1

m(z̈ + g) = cos θ cosφu1

Ixxφ̈+ (Izz − Iyy)θ̇ψ̇ = u2

Iyy θ̈ + (Ixx − Izz)φ̇ψ̇ = u3

Izzψ̈ = u4

(3.1)

The equations describing the linear motion in x, y, z are described in a earth-

fixed reference frame (otherwise known as the world frame), and the equations

describing the angular motion φ, θ, ψ are given in a body-fixed reference for

convenience. Here g acceleration due to gravity, Ixx, Iyy and Izz is the mo-

ments of inertia, and u1, u2, u3 and u4 are input signals defined via the forces

the propellers exert on the aircraft (see [23]). The coordinate frames and the

axis of rotation of the drone is summarized in Figure 3.1 which also shows the

image coordinate frame of the bottom camera discussed later.
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Figure 3.1: The Parrot AR.Drone 2.0 and its coordinate frames: the world
frame {w}, body frame {b}, and image frame {i}. Both the body– and image
frame are fixed to the body of the quadrotor. The angles φ, θ and ψ are
commonly referred to as the roll, pitch and yaw angles, respectively.

It is worth noting that the particular simulation makes no effort in intro-
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ducing more advanced aerodynamics, this is a major shortcoming with respect

to accuracy of modeling. For example, it does not take into account complex

aerodynamics such as drag forces, blade flapping and winds that occur when

the aircraft hovers close to the ground. However, because we intend to move

at slow speeds and at a sufficient height above the ground it should suffice for

this particular application. Since we are using the velocity controller of the

quadrotor it is the accuracy of this controller that is the most important aspect

with respect to the accuracy of the simulation. Furthermore, having knowledge

about the motion dynamics of the underlying controller can be instrumental to

designing an appropriate reward function later. For a more thorough review of

nonlinear aerodynamic phenomena for quadrotors see [20].

3.2.2 Sensors and hardware

The physical AR.Drone features several sensors intended to help stabilize the

drone. This includes an inertial measurement unit (IMU) with gyro, accelerom-

eter and magnetometer, pressure- and ultrasound sensor for altitude measure-

ments, and two camera: one mounted underneath the drone to measure optical

flow to aid stabilizing the horizontal velocity dynamics, and one mounted on

the front of the drone for general purposes. This assembly of sensors is partic-

ularly selected to be able to estimate the orientation of the drone and its altitude

which is imperative for the velocity controller to function. The simulated drone

features all the same sensors as the real one.

In addition to the altitude and orientation estimation that the quadrotor

provides, we are interested in the downward looking camera which will be used

to provide us information about the drones horizontal position. This camera

provides a 60 FPS video stream of 320x240 resolution images up-scaled to

640x360. It is not clear from the documentation [56], but the field of view

(FOV) of the camera appears to be 45◦x 25.3◦. This is a relatively small field of

view for a camera, and puts restrictions on the feasible range for the controller

proposed in the next section.

The physical drone is also equipped with an ad-hoc WiFi network. In

this project we connect to the drone via this network such that we can receive

sensor data, i.e. camera images, process them off-board and send velocity
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commands back to the drone. This introduces roughly 100 milliseconds of

delay to the controller loop, but has the advantage that the heavy computation

– like training of neural networks – can be off-loaded to more capable hardware

like a laptop or desktop computer. The extra latency can potentially be imitated

to improve the accuracy of the simulated drone to the the real system, but this

was not done.

3.2.3 Velocity controller

For the physical drone platform there are no documentation for how to the ve-

locity controller is implemented. However, for the simulated drone the velocity

controller is implemented as described in [1] which revolves around a quadro-

tor simulation available in the ROS package "hector_quadrotor". While this

paper revolves around a different simulated quadrotor, it was made by the same

creators that made the AR.Drone simulation used here, which can be found in

the ROS package "tum_simulator". By visiting the documentation for the two

ROS packages on the official ROS wiki website http://wiki.ros.org

and their respective git repositories it can be confirmed that the same velocity

controller is implemented in both of them.

Figure 3.2: The cascaded PID controller structure used to implement the
velocity controller in [1].

The implemented velocity controller follows a common designer concept
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that makes the initial assumption that each axis can be controlled indepen-

dently, and for motions with small deviations from the hovering state this as-

sumption remains valid. As depicted in Figure 3.2, the inner control loop con-

trols the attitude, yaw rate and vertical velocity, while the outer control loop

controls the horizontal velocities, altitude and heading. The superscript ’b’ in

the diagram refers to the body frame. It can be seen from the figure that the

desired horizontal velocities vbx,d and vby,d are controlled indirectly by steering

the pitch and roll angles of the drone. Figure 3.3 illustrates this by an example

that shows how the drones velocity and orientation responds to a step response

in vbx,d and vby,d, and also gives an indication as to how accurate the velocity

controller is.

Figure 3.3: At t = 4 the drone receives a sudden step from 0 to 1 in the
commanded x velocity, and at t = 8 commanded y velocity also jumps to
from 0 to 1. To obey the new commands the drone tilt its corresponding axis
– pitch or roll – to gain a horizontal force component, and to remain at the
desired velocity it has to continuously "rock" the axis of rotation.

The AR.Drone simulator differ slightly from Figure 3.2 because the verti-
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cal velocity and yaw rate can not be controlled by supplying the desired altitude

pz,d or desired heading ψd, only their derivatives vz,d and ωz,d. To summarize,

the velocity controller accepts a four-dimensional velocity command as

vd =


vbx,d
vby,d
vz,d

ωz,d

 . (3.2)

Even if the velocity controller of the physical– and simulated system are

not the exact same it is not critical for the purpose of this project. What is sig-

nificant is whether or not the motion of the quadrotor is accurate with respect

to the real system. Unfortunately, there does not exist any scientific publica-

tion with regard to the accuracy of the simulator compared to the real system.

However, judging by a video1 posted by the creators of the simulation, it seems

to be accurate to a certain degree.

Noise is included in the simulation and the drone therefore realistically

drifts over time when hovering. The only stable states of the drone are the

pitch and roll which are stabilized by the velocity controller. Figure 3.4 il-

lustrates the drift of the simulated drone over a 1 minute time interval when

hovering, i.e. when vd = [0, 0, 0, 0], using the initial pose [x, y, z, φ, θ, ψ] =

[0, 0, 2, 0, 0, 0]. The simulated drift was also observed to have a constant dis-

turbance component which is randomized every time the drone is reset inside

the simulation. One can imagine this as being a constant laminar airflow, and

it affected the drone such that for every episode it was tougher for the drone to

move in a particular direction.

The drone, which is only equipped with a velocity controller, is subject

to drift because it relies only on sensors that has to be integrated in order to

obtain position, and therefore error accumulates over time. As can be seen in

Figure 3.4 the altitude, or the z-direction, is the direction in which the quadro-

tor drifts the least. This is because of the ultra-sound and air pressure sensor

that enables the drone to measurement the altitude directly, which can be used

to aid in the altitude stabilization control. The extra redundancy with respect

1“Gazebo Simulator for the Parrot AR.Drone quadrocopter” - Youtube
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to measuring motion in z-direction explains why the drone is drifting less in

vertical direction than in horizontal direction.

Figure 3.4: The drones position and heading drifts over time, while the roll
and pitch angles are stabilized by the velocity controller. This data was gath-
ered using a single episode, but represents the drift of the drone in general.

3.3 Dynamic positioning controller

Based on the thesis’ goal outlined in Chapter 1 and the insight into reinforce-

ment learning and computer vision provided in Chapter 2 this section proposes

a dynamic positioning controller for quadrotor positioning relative to an object

fixed to the ground plane. First the problem is formulated, then a high-level

schematic of the controller is outlined before the output of the controller and

state representation of the system is discussed. Lastly, a reward function is pro-

posed for solving the particular problem in the reinforcement learning frame-

work. The controller represents the main contribution of this thesis, which is

to explore both the feasibility and capability of current state-of-the-art rein-
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forcement learning methods to act upon uncertain state information to perform

control tasks for quadrotors.

3.3.1 Problem formulation

Dynamic positioning is the task of maintaining the position of a vehicle relative

to a setpoint. In this case the vehicle is a quadrotor, and we wish to maintain the

quadrotors 3D position in space. We seek to do this by observing the position

of an object through camera images, and the altitude estimated by the drones

internal state estimator. The goal is for the drone to achieve the state where the

object is located in the exact middle of the camera view, and the altitude error

relative to some setpoint is zero. In reality we wish to control the drone such

that it hovers directly above the object, but we use the aforementioned image

based position of an object as a pseudo objective instead since the objective of

maintaining the object in the center of the image is closely related to having the

drone hover above the object in the real world. This was explained in further

detail in Section 2.3.4. To define the scope of the controller a restriction on the

initial condition of the problem is assumed: the object is assumed to be present

in the picture when the controller is turned on.

3.3.2 Controller schematic

The controller presented in this section is primarily based on the DDPG al-

gorithm presented in Section 2.1.9 to act as a high-level controller providing

reference commands to the already existing velocity controller of the drone.

To form a representation of the state of the system the controller uses the sim-

ple method for tracking the position of a distinctively colored object in images

presented in Section 2.3.3.
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Figure 3.5: Block diagram visualizing the controller and feedback loop of
the overall system. Marked in green is the position controller proposed by
this thesis, while marked in blue is the parts of the quadrotor system which
the position controller interacts with. The orange arcs represents the signals
during training of the neural networks.

An overall structure of the system is provided in Figure 3.5. The black

edges are the signals present in a single controller loop at time t. An image

It is received by the controller, it is processed into a state st which is used to

compute a reward rt – the performance measure of the agent2 – and compute a

new action at by the actor network which is used as new input to the velocity

controller of the drone. The action, reward and both the current and next state

is stored in the replay buffer as a transition t = [st, at, rt, st+1]. Next are the

orange arcs: the transitions in the replay buffer are used to train the neural net-

works that are used as function approximators for the Q-value function (Critic)

and control policy π (Actor). The gradient of the Q-network, ∇Q, is used to

train the actor network, and the dotted lined arcs represents the update to the

networks weights.

3.3.3 Output

The action – or output – of the positioning controller is a velocity reference

which is sent to the velocity controller. This controller will not attempt to con-
2Be aware that the term ’agent’ is used interchangeably with the term ’controller’ in this

case.
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trol the heading of the drone as it is sufficient to control the velocity commands

vbx,d and vby,d for horizontal control. The actor networks output is therefore the

action

at =

vbx,d
vby,d
vbz,d

 =

vcmdx,t

vcmdy,t

vcmdz,t

 , (3.3)

at time t, where the velocity command vbz,d is also included to control the

quadrotors altitude. Here, the subscript ’cmd’ is short for command. Instead

of adopting the notation of [1] where the implementation of the velocity con-

troller was outlined, we will use the notation above for convenience. This is

because the commanded velocity is always given in the body frame and it is

therefore implicit what frame the command exists in. And more importantly,

we need a form that is able to convey information about what timestep a signal

occurs.

Note that it is also possible to control the drone in the xy-plane by using the

yaw rate command and one of the horizontal velocity commands, or both of

them. Introducing an extra dimension to the action vector makes the problem

harder to learn for the neural networks and so the latter option was dropped.

There is no need to turn when you can simply move in any direction along

the xy-plane using the commands in (3.3). Likewise, using only one of the

horizontal velocity commands in combination with the yaw rate command was

considered sub-optimal in comparison.

The drone is able to reach rather high velocities exceeding 10 m/s. For the

purpose of this project however high velocities are unnecessary since the goal

is ultimately to hover at still. Furthermore, higher velocity commands leads

to bigger responses in the roll and pitch angles of the drone which affects the

bottom cameras view of the object underneath it. This causes the objects posi-

tion in the image to become unreliable as the image plane is no longer parallel

to the ground plane, and it might even lose sight of it completely. Some speed

is however required to achieve a satisfactory response of the controller and to

counteract the drift, and the maximum commanded velocities was therefore

restricted to 0.4 m/s.
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3.3.4 State representation

To represent the state of the system the following state variables were available

for use and experimented with during testing in simulation:

1. the position pot = [pox,t, p
o
y,t]

T of the object in the image relative to the

center of the image at time t,

2. the velocity vot = [vox,t, v
o
y,t]

T of the object in the image relative to the

center of the image at time t,

3. the altitude position pqz,t relative to a given setpoint at time t,

4. the velocity vqz,t of the quadrotor relative to the ground at time t,

5. the roll angle φt and pitch angle θt of the drone at time t, and

6. the action at−1 performed at the previous timestep t.

The position pot is the centroid of a colored object in the image calculated via

(2.47)–(2.48) in Section 2.3.3. In frames where the object is not visible in the

image the position of the centroid is mapped onto the closest image wall from

the previous image position of the object. The velocity of the object is calcu-

lated as vot =
pot−pot−1

∆t where ∆t is the reciprocal of the controller rate fc. The

altitude of the quadrotor, and its roll φ and pitch θ angles are estimated by the

quadrotors internal state estimator. The velocity in the z-direction is calculated

as vqz,t =
pqz,t−pqz,t−1

∆t . Similarly to the velocity commands always being in the

body frame, the position of the object is always given in the image frame, and

the altitude and its velocity always in the world frame. The idea behind this

representation of the system is that the position and velocity observed in the

image can be used for controlling the quadrotors x– and y position, and the

altitude and velocity relative to the ground can be used to control quadrotors z

position.

The state variables based on the image coordinates are visualized in Figure

3.6, where the position and velocity is given in the image frame coordinates.

The image coordinates are scaled coordinates where the aspect ratio is con-

served. They are normalized such that the shortest axis – the y-axis– spans
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from -0.5 to 0.5, and in addition the coordinates are also moved to the center

of the image by translation3:

pox,t =
u

H
− 1

2

W

H

poy,t =
v

H
− 1

2

(3.4)

where (u, v) is the pixel coordinate in the image, and (W, H) is the width and

height of the image, respectively. With an image resolution of 640x360 the

x-axis then spans from -0.888 to 0.888. The scaling was chosen such that the

values of the image coordinates was in the same order of magnitude as the

other state variables. This is a common pre-processing step for input data to

neural networks, and is done to avoid large differences in parameter values that

in return can cause instability during training.
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Figure 3.6: At each timestep the position po
t of the object – here represented

by a green blob – in the image is derived, and its velocity vo
t is calculated

with respect to the position of the object in the previous timestep.

In the state augmentation of the DRL agent it is advantageous to include as

much relevant information as possible such that it can efficiently infer about the

3Image coordinates usually have their origin in the top left corner, with the positive y-axis
pointing downwards.
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relationship between the future reward it experiences and the action it chooses

in an arbitrary state. This advocates for the inclusion of the pitch– and roll

angles, which are necessary for the reinforcement learning agent to infer about

the position of the drone. For example, imagine a scenario where the object in

the image is located at the center of the image, but the pitch– and/or roll angle

is far off from zero. From this we could logically deduce that the quadrotor is

in fact not hovering over the object, but rather is tilted such that the camera

is pointing directly to the object. This topic was touched upon in Section

2.3.4 where we discussed how a reinforcement learning agent would be able

to reason about the real position of the drone versus the position of an object

in an image, which was based on a quadrotors dynamics and configuration of

an attached camera.

Alternatively, the position in the image can be transformed onto the ground

plane. Thus when the quadrotor tilts in order to move the position of the object

will not change. This would be the equivalent of having a gyro-stabilized

camera that always points in the direction of the gravitational field. However,

it was decided to not do this because it injects noise in the observed position,

and we do not know the quality of the roll and pitch measurements of the rather

cheap quadrotor. In addition, the altitude of the real quadrotor was observed

to have some drift during flight time and therefore the transformation would

become exceedingly inaccurate over time.

The choice of using the previous action in the state vector to calculate new

actions may seem strange at first, but it has an intuitive explanation. Since the

velocity controller effectively stimulates the pitch and roll axis to achieve its

the desired velocity knowing the previous action gives the agent information

about how a new action will affect the roll and pitch. For example: the drone

may be following the command at = [0, 1.0, 0], but this does not mean that

the corresponding pitch angle is far off from zero. In fact, the same pitch

angle may be observed when following the command at = [0, 0, 0]. This

can be seen from Figure 3.3. However, if the action is suddenly changed to

at = [0,−0.1, 0], the response in pitch would be very different for the two

cases, and therefore the inclusion of the state of the velocity controller, at−1,

give valuable information to the agent.
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In the state representation of the system the past velocity and action vari-

ables was used in addition to the current state variables vot and at−1, such as

vot−1 and at−2. These variables were included to give the agent information

about the constant disturbance like drift in the simulation mentioned before.

This also has an intuitive explanation: by knowing how the past inputs have af-

fected the system we observe evidence of how the current drift, or disturbance,

affects the system, which in return can be used to counteract the disturbance.

3.3.5 Reward function

The reward function acts as a performance measurement for the agent, and

effectively defines how it ought to act in its environment. The design of the re-

ward function is therefore important, but unfortunately there is no golden rules

for how to do this since the design depends entirely on the problem and the

states available. Even though designing good reward functions require some

experience, there is a few ground principles that can be followed. First of all

we would like to avoid sparse rewards if possible as it slows convergence. Sec-

ondly, we would like to avoid too much complexity. For example, if the agent

is given reward for several concurrent objectives it may make the reward signal

more noisy and harder for the agent to understand, thus slowing convergence

and training data efficiency. Another reason for avoid complexity is that we

do not want to micromanage the exploration and behaviour of the agent too

much because it may unintentionally hinder the agent from finding the optimal

policy.

With this in mind we would like to choose a base reward function which

is at maximum when the position of the object is in the center of the image

and when the altitude error is zero. Additionally, we would like the reward to

decrease uniformly in distance from the center. This ensures that the path of

maximum reward is always a straight line from the current position to the goal.

The Gaussian function

f(x) = ae−
(x−µ)2

2σ (3.5)

was therefore used as a base reward signal for the agent, where a controls
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the amplitude of the function, µ is the expected value, and σ is the stan-

dard deviation. For the reward function we want the function to be at max-

imum for x = 0, and we therefore set µ = 0, choose a = 1, and with

x =
√

pox,t
2 + poy,t

2 + zqe,t
2 we get the reward function

rt = e−
pox,t

2+poy,t
2+p

q
z,t

2

2σ . (3.6)

The parameter x represents the error of the position of the object from the

image center and the altitude error relative to the setpoint. The idea here is that

x acts as pseudo euclidean distance error. This reward approaches one when

all the errors goes to zero. This function is visualized in Figure 3.7 as a 2-D

heat map with standard deviation σ = 0.05.

Note that there exists other functions with the same uniformly decreas-

ing characteristic, and some of them were experimented with during training.

They did however all give the same results, and none of them seemed to im-

prove convergence or performance over the others. The Gaussian function was

therefore chosen simply because it is intuitive to tune the parameters.

Figure 3.7: The reward function with σ = 0.05 visualized in the image frame
as a heat map where the altitude here is set to zero as a constant. In 3-D the
reward function is a sphere that gets progressively hotter – more red, higher
reward – towards the center.

The choice of the amplitude of the reward function however was not arbi-
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trary. If we know the maximum reward obtainable in a state st we can compute

the upper bound of the value function V (s) given a discount factor γ as

V (s) ≤
∞∑
n=0

rmaxγ
n =

rmax
1− γ

. (3.7)

Hence, if rmax = 100 and γ = 0.99 then V (s) ≤ 10000. This demonstrates

that the value function and therefore the parameters of the neural networks can

grow very large. We are therefore encouraged to limit the maximum reward

the agent experiences in order to improve numerical stability and avoid large

parameters in the neural networks. The use of L2 regularization in the DDPG

algorithm was therefore omitted from the critic networks because it was dif-

ficult to tune in practice. No other hyper-parameters of the original DDPG

algorithm was altered.

59



Chapter 3. System design and implementation

60



Chapter 4
Simulations

In this chapter the results attained from training the proposed controller from

Chapter 3 in the simulated environment will be presented along with discus-

sion revolving around the results and the most crucial parameters and their

importance for the system. The chapter starts of by introducing the training

setup that was used to train agents, and then continues by presenting the re-

sults of using the proposed controller. Next, a controller based on the ground

truth variables of the drone is constructed as a baseline and used for compar-

ison and to investigate the potential of the DRL based controller design when

imperfect information is taken out of the equation.

4.1 Training method

To train agents a simulated environment had to be constructed before the ex-

periments could be carried out. The environment built and the training method

used was constructed such that it would be feasible to reproduce the conditions

the quadrotor experienced in the simulation in the real world. A ground marker

for the image processing module to track had to be chosen, feasible initial con-

ditions for the drone had to be determined, appropriate length of episodes for

training had to be chosen, and a method for objectively evaluating the quality

of the agents during training had to be found.
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4.1.1 Environment

For the simulated environment it was desirable to make a simple environment

that could be reproduced in the real world. It is also beneficial to have as few

complex, visual objects in the simulation as possible because it reduces the

speed of the simulation. Therefore a very simple world was used with only

two objects: the drone and the marker on the ground. The marker used was a

simple flat circular disk with a very distinct green color easily recognized by

the image processing algorithm. This particular shape and color was chosen

because it can easily be modeled in the real world by simply carving out a

circular shape from green cardboard paper. Figure 4.1 shows a screenshot of

environment configuration from the actual simulation along with the view of

the bottom camera.

Figure 4.1: A screenshot showing both the simulated environment with the
drone and green marker on the ground, and the view of the bottom camera
of the drone. In the camera view the position of the marker is marked with
a red cross showing that the object tracking method successfully detects and
calculates the centroid position of the observed object. The red, green and
blue rays emitted from the center of the object is the origin of the simulated
world where the rays represent the x–, y– and z axis, respectively. These rays
and the unit grid on the basic, grey colored ground is of course not visible to
the camera, and are only shown for the viewers convenience.
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4.1.2 Initial conditions

For starters, an initial altitude zw0 is picked from a random uniform distribution

in the range [1.5, 2.5] where we used zqp = 2.0m as setpoint for the altitude of

the quadrotor. Allowing higher altitudes would let the controller view more of

the ground and hence giving it more room to navigate without loosing sight of

the object. This would be advantageous considering the small field of view of

the drone, but this height had to be restricted in order to be within a realistic

height for testing in an indoor environment. Note that the dynamics of the ob-

ject in the image is dependent on how close the quadrotor is to the object, and

therefore we can not make the altitude setpoint in terms of relative coordinates

such that it would work independent of the absolute altitude.

Given an initial altitude zw0 and the field of view of the camera we can cal-

culate the range of possible horizontal starting positions by simple trigonome-

try such that midpoint of the object is visible in the image as

|xwo | ≤ z0 sin(HFOV/2)

|ywo | ≤ z0 sin(VFOV/2)
(4.1)

where HFOV = 45◦ and VFOV = 35◦ are the horizontal– and vertical field of

view of the camera, respectively. This is of course only valid if the world axis

are aligned with the image axis, and therefore for simplicity we set the initial

yaw angle ψ0 = 0 because the yaw angle of the drone is irrelevant. This is

because the both image axis and the body axis which the velocity commands

are given in are rigidly attached to the drone itself. Lastly, we set the initial

roll φ0 and pitch θ0 angles to zero as well.

To create a realistic initial condition we will add a last component to the

mix: before the controller is turned on we will let the controller observe for at

least one timestep while the velocity controller is following the command a0 =

[0, 0, 0]. This allows the controller to observe the initial drift of the quadrotor

through the position and velocity of the object in the image, and gives us an

initial value for the previous action, that is at−1 = a0 = [0, 0, 0]. The object

– but perhaps not its midpoint – will still be visible in the image because the

drift of the quadrotor is limited, and if it is not we will simply terminate the
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episode, flag it as invalid such that the experience is not added to the replay

buffer, and choose a new random initial horizontal position (x0, y0, zo).

Reminiscing back to Chapter 2 and Section 2.1.6 we know that the optimal-

ity of Q-learning is only guaranteed if the probability of visiting a state never

becomes zero. While this do not follow follow directly when using function

approximators, it is still beneficial to balance the content of the replay buffer

such that agent continues to sample all possible states it may experience in the

state space. Following the method outlined above we guarantee that the start-

ing position of the object in the image can be anywhere within the image and

that the agent continues to visit them perpetually. This also assures that the ve-

locity of the object in the image is realistic with respect to how the controller

would be activated in a real world scenario.

4.1.3 Length of episodes

In addition to the initial conditions for a training episode the length of the

episode is also important to consider. To illustrate this lets consider how the

agent ought to control the quadrotor in course detail as three main steps:

1. The agent starts to accelerate from the initial starting point towards the

goal.

2. As it approaches the goal it has to slow down and stop at the goal.

3. The agent, now hovering above the goal, has to maintain this state indef-

initely.

And now lets consider an extreme example: if we choose episodes to last

forever, the agent – after it has learned the first two steps – will spend all

of its time in the last step trying to maintain the goal position. This causes

the replay buffer to be filled with the corresponding transitions which will

eventually dominate the replay buffer completely. This is undesirable because

the agent will start to over-train on this specific scenario and forget the other

two scenarios. Therefore, to condition the contents of the replay buffer, a

maximum episode length of 10s was used. The choice of this value is based
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on what worked best in practice, but the overall training procedure was not

particularly sensitive to this value.

An episode was also terminated if the altitude error was greater than 0.6m,

or if the controller lost sight of the object in the image for more than 1 second.

Allowing a few frames of "blindness" was useful because it allowed the agent

to move more freely when the object was located at the edge of the image.

This would be almost impossible otherwise because for the agent to be able

to control the objects position towards the center of the image it has to tilt its

camera away from the direction of the object.

4.1.4 Evaluation

During training different reward functions was experimented with. The cumu-

lative reward does not necessary indicate how well the agent is doing because it

can be hard to interpret, and comparing two agents with different reward func-

tions based on how much accumulative reward they achieve does not make

sense if different variables are used, or if the variables themselves are in differ-

ent units. We therefore need a unified way of measuring agents performance

relative to each other. Since we are training in a simulation we have the luxury

of knowing the actual ground truth variables such that we can inspect how well

the agent is doing with respect to the real objective, and not just the pseudo-

objective. The error function used for this purpose is

Pe =
1

N

t=N∑
t=0

pe(t)
2 (4.2)

where pe(t) is the position error at time t, and N is the length of the episode.

Both the position error of the pseudo objective and the position error measured

in world coordinates – real objective – was logged. Note that while the agent

seek to maximizes its cumulative reward, the accumulative error is here defined

such that lower is better. This error was not used by the agent internally to train,

but only used as a tool for the purpose of objectively comparing agents

Agents were evaluated periodically during training by performing an eval-

uation session where training was turned off and no exploration noise was

injected into the output of the controller, i.e. the Ornstein-Uhlenbeck noise
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used for exploration in the DDPG algorithm. This session consisted of four

episodes where the drone was initiated in four different positions that were

the same for each evaluation session. These positions were chosen as the four

corners of the image with four different altitudes. Averaging over multiple

episodes was done to verify that the agent was capable of handling different

initial conditions and such made evaluations more consistent.

The evaluation episodes had a maximum episode length of 15s as opposed

to the normal 10s for the training episodes. This was used to make sure that the

controller successfully managed to hover over the object for extensive amounts

of time.

In addition to the average error, an evaluation reward was also calculated,

defined as the average reward of the four episodes. It is common to keep track

of this reward because this is the objective the agent tries to maximize, after

all, even if it is not the actual objective that we wish to optimize for.

4.2 Image position-based controller

This section is dedicated to presenting the results obtained from training the

proposed controller in Section 3.3. Firstly, the main results from training the

controller are presented, and an improvement to the initial proposed reward

function is introduced, then a method that was used for improving training

convergence time is described. Lastly, the controller loop rate and its influence

of the controller performance is discussed separately. Discussion revolving the

results follows directly as the results are being presented.

4.2.1 Main results

The results shown here uses the reward function that was presented in Section

3.3.5, and is repeated here for convenience,

rt = e−
pox,t

2+poy,t
2+p

q
z,t

2

2σ , (4.3)

that is used together with a slight modification that is presented in the next

section. The parameter σ = 0.05 was used, but the overall performance and
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convergence of the controller however was not sensitive to this parameter. In

conjecture with the reward function above the state vector

st =



pot

vot

vot−1

vot−2

pqz,t
vqz,t
φt

θt

at−1

at−2

at−3



(4.4)

was used, which features all the available state variables presented in Section

3.3.4. Note that the position– and velocity of the object in the image and

the previous action are vectors themselves, and the state vector therefore has

dimensions 21x1.

Training progress

After the agent had experienced roughly 5,000 simulation steps the agent started

to exhibit satisfactory behaviour, but continued to make minor improvements

until roughly 40,000 simulation steps. The training progress in terms of the

evaluation reward is shown in Figure 4.2 where it is plotted versus the number

of simulation steps experienced. This also shows that the trained controller has

a very consistent performance from evaluation to evaluation. Once a trained

agent hit around 5,000 training steps it stopped faulting, i.e. it never lost track

of the object for more than 1 second or flew too high or too low such that an

evaluation episode resulted in termination.

Training agents was quite fast and it took only about 5 minutes to perform

5,000 simulation steps which equals less than 30 minutes of real-time simula-

tion time1. An Intel i7-8700k processor was used to train all neural networks
1In Gazebo the simulation can run faster than real-time. How fast depends on the caliber
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in this project and to run the quadrotor simulation itself. No dedicated GPU

was used.

Figure 4.2: The evaluation reward plotted versus that number of simulation
steps performed for the agent.

A controller rate fc of 3Hz was used for this agent, and because each eval-

uation episode lasted for 15s the maximum theoretical evaluation reward is 45.

However, obtaining an evaluation reward of 45 was not possible in practice.

This would require the agent to start at the setpoint in each evaluation episode

– which as described in Section 4.1 is not the case – in addition to being phys-

ically capable of maintaining identical to zero positional error.

Next, let us consider the average position error for each evaluation depicted

in Figure 4.3. This shows the pseudo objectives average positional error in

the image given as the difference between the tracked objects position from

the center of the image, versus the average horizontal position error of the

quadrotor relative to the marker on the ground. This clearly illustrates that the

of the hardware that is running the program.
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pseudo objective minimizes the real objective in practice. Note that the altitude

error is not included in any of these errors as no pseudo objective is used for

the altitude. This is because the altitude is measured directly by the quadrotor

and is included in the state representation of the agent.

Figure 4.3: The average positional error for the pseudo– and real objective
plotted versus the number of training steps performed. Note that the vertical
axis is logarithmic.

Image trajectory and position error

Figure 4.4 – 4.5 shows the trajectory of the object in the image and the po-

sitional error of the object in the image over time, respectively, for the four

evaluation episodes taken from the best evaluation session in the same training

session. Note that the image axes – as opposed to the world axes that are given

in meters – are given in the normalized pixel coordinates pn as described in

Section 3.3.4.

From these plots we can see that the trajectory of the object is quite volatile.

This is partly due to the low controller rate, and because the small field of view
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of the camera causes large motion in the image even for small offsets from

zero in pitch and roll. For each of the trajectories one can also observe how the

object at first appears to be moving away from the goal before it leaps towards

it. These is because the camera is tilted away from the marker on the ground

when the quadrotor itself starts to accelerate towards it, as discussed before.

Figure 4.4: The trajectories of the object in the image frame during the four
evaluation episodes. The red cross marks the starting position and the green
cross marks the desired goal position.
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Figure 4.5: The positional error of the object in the image frame over time
for the four evaluation episodes.

Quadrotor trajectory and position error

In Figure 4.6 – 4.7 is the horizontal trajectory of the drone in the world frame,

and the 3-D positional error of the drone with respect to the ground marker

and altitude setpoint over time, respectively. In addition, Figure 4.8 shows

the trajectory of the altitude of the quadrotor over time for the four test cases.

Overall, these results make it clear that the agent, given an initial starting point

where the object is visible in the image, successfully manages to obtain and

maintain the desired 3-D setpoint.
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Figure 4.6: The horizontal trajectories of the quadrotor for the four evalua-
tion episodes. The red cross marks the starting position and the green cross
marks the desired goal position.
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Figure 4.7: The positional error of the quadrotor in the world frame over time
for the four evaluation episodes.

It appears that the controller is best at controlling the height of the quadro-

tor which evidently has the lowest average error of the three coordinate axes,

as shown in Figure 4.7 and Figure 4.8. This may not be a surprise considering

that the height is directly measured while the x– and y position is observed

indirectly from the object position in the image. However, as shown in Sec-

tion 3.2.3, the quadrotors drift in z-direction is also significantly lower than

in horizontal direction. Furthermore, the simulation, as discussed in Section

3.2.3, was discovered to have a constant disturbance force which again affects

the horizontal movement of the quadrotor more so than the vertical. This may

indicate that the disparity in accuracy may also be a result of the fact that the

velocity controller is actually more accurate in vertical direction.
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Figure 4.8: The altitude of the quadrotor over time for the four evaluation
episodes.

Whether or not the velocity controller is more accurate in z-direction or

not, some of the error in horizontal direction is still directly tied to the distur-

bance. This is because the controller has to position itself in a position where it

can counteract the drift while positioning the object in the center of the image.

Given how the dynamics of the velocity controller works this is of course only

possible via a nonzero tilt.

In Figure 4.9 is the output of the position controller, i.e. the action that is

sent to the velocity controller for the four test cases. By looking at the output

for test case 1 we see an example how the controller manages to counteract

the disturbance present in the simulation by maintaining a net positive velocity

reference in the commanded y-velocity.

It is reasonable to think that the agents ability to counteract the disturbance

is because of the inclusion of the past velocity and action states in the state rep-

resentation, vot−1, vot−2 and at−1, at−2 respectively. Training agents without

these previous state variables was also experimented with, but training would
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often diverge very prematurely which is thought to be a direct of the distur-

bance in the simulation: if none of the state variables gives information about

the current disturbance the data collected by the agent will simply appear to

be noisy. But still, without these variables the training would still sometimes

diverge, albeit later rather than sooner.

Figure 4.9: The proposed controllers output used as input to the velocity
controller.

4.2.2 Penalizing controller change

The controller would under some training sessions learn a very noisy and os-

cillatory behaviour where it would shift its output in commanded z-velocity

between maximum and minimum between consecutive timesteps. Not only

would this kind of controller output tear on the durability of a real quadrotor

system over time and consume more power, but it also makes the position of

the object observed in the image more volatile because the actions directly af-

fects the pitch and roll of the quadrotor. Therefore it is also desirable to deter
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the agent from changing the commanded velocity in horizontal direction too

fast as it directly affects the performance of the controller. To prevent this kind

of control behaviour two penalties were introduced: on the change in action

between consecutive timesteps, and in the absolute value of the action. The

latter one was found to be effective for preventing unnecessary big leaps in the

tilt of the quadrotor making the position in the image less accurate. This was

was introduced in the reward function as

rt = e−
pox,t

2+poy,t
2+p

q
z,t

2

2σ − p∆a|∆a| − p|a||at| (4.5)

where ∆a = at − at−1, p∆a is a constant positive scalar that functions as a

penalty parameter for the change in action, p|a| functions as a penalty parame-

ter for the absolute value of the action, and ∆t is the reciprocal of the controller

rate fc. The penalty parameters was set as p∆a = 0.05 and p|a| = 0.02, which

gave good results in practice, but no exhaustive search was done to find opti-

mal values for these parameters. Figure 4.10 shows the typical output of the

controller before the action penalty term was augmented to the reward func-

tion.

It is also possible to penalize the observed velocity in the image, the offset

in pitch and roll from zero, or the velocity in z-direction. However, since the

change in commanded velocity directly affects the the tilt and the velocity vari-

ables, in addition to affecting durability and power consumption as previously

mentioned, it was more effective to penalize the action as it is essentially the

root of all evil in this context.
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Figure 4.10: Agents trained without penalizing changes in the output would
sometimes exhibit oscillatory behaviour in the output velocities, especially
with respect to the z-velocity component.

4.2.3 Exploiting symmetry of dynamics

To improve convergence and data efficiency of the training procedure the sym-

metry of the quadrotor dynamics was exploited. To see this symmetry consider

Figure 4.11: two quadrotors are arranged such that they in this moment are in

equal, but opposite, horizontal distance from the goal – marked with a star for

reference – and are approaching it with the same, but opposite, velocity and

tilt, and from the same altitude. At the same time the marker at the ground

would appear at the exact opposite side of the image, and have opposite veloc-

ity in the image. Producing these two states could also be done by sending the

opposite velocity references vbx,d and vby,d to the velocity controller. Hence, if

we have one set of state variables we can reflect this vector about the z-axis

into all four quadrants of the xy-plane and obtain three additional and equally

valid set of states.
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Since the two first velocity references in the action vector and the reward

is also symmetric about the z-axis we can then therefore also produce three

additional transitions which we can add to the replay buffer. So in summary,

for each transition of states the quadrotor experiences it can add four transitions

to the replay buffer. Note that the dynamics of how the marker moves in the

image is not symmetric about the xw– and yw axis because it is dependant how

close the camera is to the marker, i.e. the altitude, else we would be able to

produce eight transitions per actual transition experienced.

Figure 4.12 shows the training progress of the agent trained with and with-

out the extra transitions acquired through symmetry. Although the final per-

formance of the agent is the same, the agent reaches the point where it does

not fail, i.e. loses sight of the object or flies too low or too high, much quicker.

While this method was not of much use for the controller trained in simula-

tion, it can be beneficial for an agent that has to explore the real world where

time is crucial, and especially exploration in early stages can be tedious and be

problematic with respect to safety.

FOV

xy-plane

z

0

FOV

Figure 4.11: Two quadrotors approaches the goal from the opposite
direction in the horizontal plane. By looking at the symmetry of
the quadrotors dynamics we can see that the individual states of the
quadrotors are opposite about the z-axis and can therefore be used to
produce additional transitions for the DRL algorithm to learn from.
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Figure 4.12: The training progress of the controller trained with and without
using the method for generating multiple transitions per experienced transi-
tion. Here ’ST’ stands for Symmetry Training.

4.2.4 Controller rate

The controller rate fc was set to 3Hz for the controller discussed here, as was

stated initially. There was several reasons for why this rather slow control rate

was chosen:

1. Training the controller to an acceptable level of performance was slower

with increased controller rate

It seemed infeasible to adapt the controller to the real-world system if the re-

quired amount of training time was too high. Arguable the speed of conver-

gence presented previously is more than fast enough for real-world adaption,

but because we expected some missteps along the way some leeway with re-

spect to time was planned for and contributed to the choice of a lower controller

rate.

2. The communication delay associated with the real quadrotor
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As stated previously in Section 3.2.2 the delay between the quadrotor and the

off-board computer was roughly 100 milliseconds. Therefore a higher con-

troller rate would lead to a worse ratio between the delay and controller rate

making real-world adaption harder as it would affect the accuracy of the sim-

ulation to the real-world system.

3. The overall performance seemed to dwindle in line with increased con-

troller rate

Normally one would expect better performance with higher controller rate, for

this controller however that was not the case. While the exact reason for why

this is not known, we speculate it to be because of the noisy behaviour of the

position of the object in the image. It seemed difficult for the agent to not

get stuck in a local optima where it would alter between the maximum and

minimum commanded velocity to make the camera swipe over the marker at

the ground. It was this kind of behaviour we observed before penalizing the

change in actions between consecutive timesteps in Section 4.2.2. Unfortu-

nately, no amount of penalty appeared to alleviate this problem as too much

penalty would hinder the agent from moving at all and inhibit exploration.

Another approach that was tested was to increase the parameter γ in the

DDPG algorithm such that the agent would be more far-sighted. This was done

to make the agent realize that initial "backwards" movement it observes when

accelerating towards the goal (due to camera tilting in the opposite direction,

as described previously) was necessary to obtain the more sought after – higher

reward – setpoint. Unfortunately, this was also unsuccessful.

4.3 Ground truth-based controller

Even though the image based controller solves the problem studied in this

project it is not clear how good the resulting controller is. To investigate the

potential of the proposed positioning controller, and to better understand the

prevalent horizontal error of the controller, a controller that used the ground

truth horizontal variables was therefore constructed. This means that we in
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4.3 Ground truth-based controller

practice will assume that a perfect state estimator system exists and gives us

omniscient knowledge of the position of the quadrotor in the world.

This section first describes the alterations that was made to the original

controller design presented in Section 3.3 and the training method outlined in

Section 4.1 to realize this controller, and then the results obtained from training

it in simulation are presented. Discussion regarding the results follows directly.

4.3.1 Modified state representation

The reward function first presented in Section 3.3.5 that was used with the im-

age position based controller was modified to use the true horizontal position

of the quadrotor such that we get:

rt = e−
p
q
x,t

2
+p
q
y,t

2
+p
q
z,t

2

2σ − p∆a|∆a| − p|a||at|, (4.6)

where pqx,t and pqy,t is the horizontal position of the quadrotor in the world

frame, and pqz,t is the altitude of the drone. The penalty on controller changes

are included, and the parameter σ = 0.05 as before. The variables are as usual

given relative to the setpoint pq = [0, 0, 2m] which serves as the origin in the

eyes of the agent. In conjecture with the reward function above the state vector

st =


pq,ψt
vq,ψt
v̇q,ψt
ψdrift

at−1

 (4.7)

was used. Where pq,ψt , vq,ψt and v̇q,ψt is the 3-D position, velocity and acceler-

ation of the quadrotor in the world frame rotated with the yaw angle ψt of the

quadrotor, at−1 is the previous action sent to the velocity controller as before.

Lastly, the change in yaw angle from the previous timestep caused by the drift

ψdrift was included in the state representation to negate the effect of the non-

inertial frame created by the rotation applied to the other state variables. Note

that because the state variables in (4.7) are 3-dimensional vectors, except the

yaw drift, the full state vector has dimensions 13x1.
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Chapter 4. Simulations

Because the velocity commands are given in the body frame and the goal

position is in the world frame the position, velocity and acceleration of the

quadrotor needs to be transformed into a coordinate system which rotates with

the yaw angle of the quadrotor. Alternatively, the yaw angle could be included

in the state representation in (4.7) such that the agent would have to learn this

transformation by itself. The former option was however chosen as it was

considered unnecessary to augment the state vector with the yaw angle since

the transformation is known. The transformation is a simple rotation around

the z-axis,

Rz,−ψ =


cos(−ψ) − sin(−ψ) 0 0

sin(−ψ) cos(−ψ) 0 0

0 0 1 0

0 0 0 1

 , (4.8)

which together with the position and velocity given in the original world frame

gives us the position

pq,ψt = Rz,−ψp
q
t , (4.9)

the velocity

vq,ψt = Rz,−ψv
q
t , (4.10)

and the acceleration

v̇q,ψt = Rz,−ψv̇
q
t . (4.11)

The new rotated frame is visualized in Figure 4.13.
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Figure 4.13: A new worldly coordinate system is created by rotating it with the yaw
angle ψ of the quadrotor. Here the new coordinate system is denoted {w,ψ}. This
transformation is necessary to make the commanded velocity of the quadrotor and its
position and velocity in the world frame independent of the yaw angle.

4.3.2 Adapted training method

The training method that was outlined in Section 4.1 was adapted when train-

ing the ground truth based controller with respect to length of episodes and the

initial conditions. However, the requirements that the marker have to be visible

in the image was no longer required. Instead the position of the quadrotor was

initialized with an uniform distribution within an unit radius from the setpoint

position, and episodes terminated if the quadrotors distance from the setpoint

was greater than 1 + ε where ε was a small constant set to 0.1. The same start-

ing positions as used with the image based controller was used in the evaluation

session such that the two controllers could be compared fairly. In addition the

same controller rate was used for the same reason.

4.3.3 Main results

Training progress

The training progress of the agent is showed in Figure 4.14 and the speed of

convergence is on par with the image position based controller. This controller
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did however stop improving after only 10,000 simulation steps, which is less

than for the former controller. Note that while this agent acquired higher evalu-

ation rewards, this is not directly comparable with the other controller because

the units in the image and the world – normalized pixel and meters, respec-

tively – are not the same.

Figure 4.14: The evaluation reward plotted versus that number of simulation
steps performed for the agent.

Figure 4.15 shows the error in the pseudo– and real objective for the agent.

Unsurprisingly, because this agent was trained using the ground truth variables

the tight coherence between the two objectives has now diminished in contrast

to what we saw for the image based controller.
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4.3 Ground truth-based controller

Figure 4.15: The average positional error for the pseudo– and real objective
plotted versus the number of training steps performed. Note that the vertical
axis is logarithmic.

Image trajectory and position error

While this agent does not use the position from the image, it is still interesting

to see how the position in the image behaves. Figure 4.16 – 4.17 shows that

position is no longer stabilized in the middle of the image, as expected.
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Figure 4.16: The trajectories of the object in the image frame during the four
evaluation episodes. The red cross marks the starting position and the green
cross marks the desired goal position.

86



4.3 Ground truth-based controller

Figure 4.17: The positional error of the object in the image frame over time
for the four evaluation episodes.

Quadrotor trajectory and position error

Figure 4.18 – 4.20 shows the trajectory of the quadrotor for the four test cases,

the absolute error for the three coordinates and the euclidean error as well.

It seems that the higher positional horizontal error affiliated with the image

position-based controller was not due to the disturbance and drift being more

prevalent in the horizontal direction as the positional error in all three dimen-

sions are now virtually equal. It is now clear that the disturbance was the

primary source of error because the agent had to maintain a nonzero tilt to

achieve maximum reward. The altitude control performance does not seem to

differ from the first controller at all, which is to be expected since they use the

same state variables to reason about this objective.

87



Chapter 4. Simulations

Figure 4.18: The horizontal trajectories of the quadrotor for the four evalu-
ation episodes. The red cross marks the starting position and the green cross
marks the desired goal position.
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Figure 4.19: The positional error of the quadrotor in the world frame over
time for the four evaluation episodes.
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Figure 4.20: The altitude of the quadrotor over time for the four evaluation
episodes.

As a last note it should be mentioned that the agent based on the actual

horizontal position of the quadrotor in the world was able to learn the task even

for higher controller rates, as opposed to the image position-based controller

which struggled severely. However, similarly to the other controller the time it

took to learn the task increased dramatically. The performance did not benefit

from it either, but remained the same. To reduce the scope of this thesis the

issue was unfortunately not explored further.

4.4 Comparison

Until now we have only looked at the accuracy of the two controllers presented

in Section 4.2 and 4.3 for the best evaluation sessions of the two controllers,

which does not necessarily tell us how accurate the controllers are on average.

To more precisely examine the accuracy of the controllers, and the abil-

ity of the controllers to maintain the hovering setpoint, a test was conducted
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where both controllers were run for 100 trials of 60 seconds. The quadrotor

was initialized on the setpoint each time, which is (pqx,d, p
q
y,d, p

q
z,d) = (0, 0, 2)

as before. The position (pqx, p
q
y, p

q
z) of the quadrotor in the world frame dur-

ing all of tests were recorded and a final mean and standard deviation (STD)

was calculated. Snapshots of the agents’ network weights at the time they per-

formed the best were kept such that the exact same neural networks could be

used in these trials as in the results that have been presented earlier. Multiple

trials was conducted instead of letting the controller run the same amount of

time in a single trial because the disturbance force in the simulation is reset

when the simulation is reset, as explained in Section 3.2.3.

Figure 4.21: The image position-based controllers position error in the world
frame relative to the setpoint visualized via the mean error (circle) over 100
trails of 60 seconds duration each. The bars spanning out from the mean is
the standard deviation of the error.

Figure 4.21 – 4.22 shows the results for the image position controller,

which mean magnitude error was ca 9cm, and the ground truth based con-

troller which mean magnitude error was ca 5cm, respectively. It is clear that
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the horizontal position error for the image position based controller is higher

both in mean and standard deviation, which also mean that the magnitude of

the error is greater in both mean and standard deviation as well. The altitude

error is virtually identical for the two controllers.

For the image position-based controller it is important to note that the par-

ticular mean errors presented here is only indicative of the general magnitude

of the mean. The controller trained with the same parameters could for ex-

ample end up having a negative mean error in y-position instead of a positive

one.

Figure 4.22: The ground truth-based controllers position error in the world
frame relative to the setpoint visualized via the mean error (circle) over 100
trails of 60 seconds duration each. The bars spanning out from the mean is
the standard deviation of the error.

The ground-truth based controller had the potential of converging to better

solutions because its overall performance was not limited by the disturbance

force. As can be seen the in Figure 4.22, the z-positional error is slightly

less than in horizontal direction, which presumably is because the drone drifts
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slightly less in z-direction. The error in x– and y direction is not the same in

this case either, but there is no reason to think that the drones velocity controller

is more accurate in one direction over another in this case. The issue is more

likely due to the fact that training the neural networks, what the agent explores

and the transitions it experiences is a stochastic process, and therefore it is

unlikely that the agent will converge to a solution where it is equally proficient

at reducing the error in all three coordinates at the exact same moment in time.

This issue concerns both of the controllers presented here.
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Chapter 5
Real-world adaptation

The controller proposed for the Parrot AR.Drone 2 in Chapter 3 and tested in

its Gazebo simulation in Chapter 4 was designed such that it would be realistic

to apply the controller and training method to the real quadrotor system. In

this chapter the training method that was used is presented along with the main

results obtained from testing the simulation-trained before and after real-world

training

5.1 Training method

The simulated environment was replicated in the real world – which was de-

signed for replication in the first place – and the image processing method was

tuned such that the specific color of the marker could be recognized. The real

quadrotor was discovered to have two significant discrepancies with respect to

being accurately simulated in the simulation, and a new method for exploration

had to be constructed.

5.1.1 The environment

The simulation environment was recreated in a safe laboratory environment

that is equipped with a safety net in case of unruly behaviour. A picture of

the setup is shown in Figure 5.1 where a screenshot of the quadrotors view is
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embedded which gives an impression of how narrow the field of view of the

bottom camera is. The color rendering was not particularly accurate either, but

because the environment was under such controlled conditions it was possible

to tune the image processing method to recognize the object. To find the cor-

rect HSV values that isolates the ground marker from the rest of the image a

tool from the Python package imutils named "range-finder" was used which

allows an user to manually tune the range of minimum and maximum HSV

values of a picture.

Figure 5.1: The simulated environment was recreated in the real world in a
secure laboratory by carving out a green cardboard circle on the floor. The
embedded picture shows the drones view and the red cross marks the spot of
the centroid of the object as before.
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During testing we unfortunately did not have access to an external posi-

tioning system, and such the state variables that are used and shown in the next

session are all from the quadrotor and its internal state estimator. We therefore

had no means to accurately measure the true world position of the quadrotor

to check the accuracy of the controller.

5.1.2 Discrepancies of the simulation

With respect to how accurate the simulation was to the real-world system two

significant discrepancies was discovered. The first one is related to the re-

sponse of the quadrotor to velocity commands, and more specifically, the mag-

nitude and how it affected tilt of the quadrotor. A test was conducted to analyze

how the pitch and roll angles reacted to a step response in the commanded ve-

locity for both the drone in the real world and the simulated drone. The results

are shown in Figure 5.2 – 5.3, and it is clear that the real quadrotor has a much

more aggressive pitch angle response than the simulated drone.

Additionally, we can now see a side-effect of the simulations lack of aero-

dynamic forces. While the real quadrotor maintains a nearly constant and non-

zero pitch angle to maintain its velocity, the simulated quadrotor only tilts its

pitch axis for a short second before it goes back to zero. This is because the

real-quadrotor experiences drag forces which must be counteracted by main-

taining a non-zero horizontal force component.

The displacement of the real quadrotor in horizontal direction was also

considerably bigger during the test. The real quadrotor travelled approximately

4m during the two seconds it was following the commanded velocity, and the

simulated drone travelled roughly 1m. So for the real drone the numerical

values of the velocity command did not actually represent how fast the drone

was actually moving.

Because the real quadrotor travels faster and exhibits larger tilts that di-

rectly affects how the position of the object behaves in the image, the maxi-

mum commanded velocity was scaled down to 0.075m/s to accommodate for

the differences observed.
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Figure 5.2: Real-world quadrotor: A step response test for the velocity con-
troller where it receives the command vb

x,b = 0.4m/s at time t = 3s, which goes
back to zero at t = 5s. The other velocity commands were set to zero, but vb

y,b

is shown because it is directly related to the roll angle θ.

The second discrepancy is related to the drift of the velocity controller. In

the simulation this drift acted more like a constant disturbance force with a

particular direction while being noisy at the same time, as discussed before.

In the real-world however, the drift did not affect how difficult it was to move

in the opposite direction of the drift, which of course is how drift should and

do work. In addition to this, the real-world drift was discovered to be much

smaller than the simulated one. This means that the drone was actually more

stable than its simulated counterpart when hovering at still.
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Figure 5.3: Simulated quadrotor: A step response test for the velocity con-
troller where it receives the command vb

x,b = 0.4m/s at time t = 3s, which goes
back to zero at t = 5s. The other velocity commands were set to zero, but vb

y,b

is shown because it is directly related to the roll angle θ.

5.1.3 Exploration method

It was desirable to adopt a strategy that allows the agent to explore the state

space it operates in with minimal human intervention and supervision. For

example, if a human operator has to constantly stop and manually set initial

conditions for the agent to start from, the time spent training and gathering

data to the replay buffer would be reduced. Not to mention that this is a tedious

task in itself. This scenario is particularly unfavourable because of the short

discharge time of the batteries of the Parrot AR.Drone, which lasts for only 12

minutes of flight time and only four batteries was used for this project.

To facilitate autonomous exploration a method that progressively increased

the magnitude of the noise component over time was used, and when the po-

sitional error reached a certain threshold the noise was turned off for several
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seconds. This can be stated as:

n =

(1 + Cgton)N , if e < Emax and toff ≥ Tsw
0, otherwise

(5.1)

where n is the noise component that is added to action (output) by the ac-

tor network, Cg a constant that controls how fast the magnitude of the noise

grows, ton is the timesteps since the noise was previously switched on, toff is

the timesteps since the noise was previously switched off,N is the exploration

noise process as in the original DDPG algorithm, and Tsw a constant that de-

termined how long the noise would be switched off before it was switched on

again. The error e is a vector consisting of the three objective variables, i.e. the

horizontal position in the image and the altitude of the quadrotor pox,t, poy,t and

pqz,t, respectively. The maximum allowed error before the noise was switched

off was controlled by the constant Emax.

The idea behind this method is that the noise will force the quadrotor away

from the setpoint and force the agent to experience all parts of the state space,

and in the process balance the contents of the replay buffer. The noise was

turned off to allow the quadrotor to recover when it was about to lose sight of

the object.

5.2 Main results

In this section, the main results obtained from training and testing the con-

troller in the real world environment is presented. First, the performance of an

agent that was only trained prior in the simulated environment is shown, and

then the performance of the agent after training is presented. In the end some

potential sources of error are discussed. The agent used here is the one that

was presented in Section 4.2 based on horizontal positioning via the observed

position of an object in images. Discussion revolving the results follows di-

rectly.
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5.2.1 Performance prior to training

To test the agents in the real-world the quadrotor was manually flown to an

adequate position via keyboard control such that the object was roughly in the

right side of the image and the altitude was circa 1.8m. Figure 5.4 – 5.7 shows

the very first test was conducted with the agent where it had trained exclusively

in the simulated environment prior to testing. The tests had a duration of 15s

similar to the tests conducted in the simulated environment.

Figure 5.4: The initial real-world agent: Trajectory of the object as seen in
the camera images during the test. The red cross marks the starting position
and the green cross marks the goal position as usual.

Although the agent was not exactly excellent at controlling the quadrotor,

it was not completely awful either. The agent clearly appears to have gotten

the gist of it, but seems to have problems with braking, either too much with

respect to the altitude, or too little with respect to the object position in the

image. However, the performance was quite suitable for training. The initial

agent was able to train almost completely autonomously using the exploration

method outlined in 5.1.3, and about the only human intervention required was

changing the battery every 12 minutes or so.
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Figure 5.5: The initial real-world agent: Positional error of the object relative
to the center of the image during the test.

Figure 5.6: The initial real-world agent: The height of the quadrotor during
the test.
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Figure 5.7: The initial real-world agent: The velocity references sent to the
quadrotors velocity controller from the position controller during the test.

5.2.2 Performance post-training

The agent was trained in the real world for 10,000 steps (roughly 60 minutes

of real-world training time), and the results for the test are presented in Figure

5.8 – 5.11 which shows that the agent has made significant progress. While

it did not perform as good as it did in the simulation it was quite competent

at controlling the position of quadrotor considering how narrow the field of

view is, even though the altitude control did not improve much. Unfortunately,

because of time constraints the agent was not trained further than this.

As previously stated, no method for logging the actual horizontal position

was available. However, a short video was shot to demonstrate the agents

ability to track the object. It can be found as an attachment to this thesis,

and shows that the agent is able to track, and follow, the target as it is being

displaced by a human adversary.
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Figure 5.8: After training: Trajectory of the object as seen in the camera
images during the test. The red cross marks the starting position and the
green cross marks the goal position as usual.

104



5.2 Main results

Figure 5.9: After training: Positional error of the object relative to the center
of the image during the test.

Figure 5.10: After training: The height of the quadrotor during the test.
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Figure 5.11: After training: The velocity references sent to the quadrotors
velocity controller from the position controller during the test.

5.2.3 Potential sources of error

The agent never got to a point where it was as proficient at controlling the real-

world quadrotor as it was at controlling the simulated quadrotor. While we

do not know if the agent could have eventually converged to a better solution,

even though it seemed as if the agent was making steady progress, there are

some potential sources of error that are worth mentioning and discussing:

1. The first one is the delay associated with sending images from the quadro-

tor and sending back commands to the quadrotor over the WiFi connec-

tion. We do not know how much the delay varies, and the agent has no

information about the delay which would otherwise allow it to adapt to

it.

2. The height of the quadrotor drifted slightly, and the accuracy of the alti-

tude measurement therefore degraded over time. To combat this training

was paused periodically and the quadrotor was landed to allow for the

state estimator to re-calibrate the height. Yet, it still introduces some
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error because the motion of the object in the image depends directly on

the height.

3. Aerodynamic forces resides in the real world. While the quadrotor op-

erated in a 2m altitude the gusts created by the rotors will still affect the

quadrotor, and the agent only has limited information through the previ-

ous actions included in the state representation and how it affected the

quadrotor via the observed velocity of the object in the image to reason

about the forces.
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Chapter 6
Future work

A problem that was encountered in Chapter 4 was that the learned control pol-

icy would often diverge over time, and represents a quite severe problem with

DRL in general concerning stability and robustness as it would be difficult

to justify the using such an approach in an online real-world setting. Diver-

gence in DDPG is a known problem which is caused by an overestimation of

Q-values, which in returns leads to the policy deteriorating because the actor

networks are trained using the error in the Q-function. A more recent algo-

rithm, known as the Twin-Delayed Deep Deterministic policy gradient [57]

(TD3) which builds on the DDPG algorithm addresses this problem by ana-

lyzing the bias and variance of the Q-function. The resulting algorithm was

shown to substantially improve performance over the baseline DDPG that was

used in this thesis.

This is just one example of new additions to the rapidly expanding col-

lections of DRL methods and shows that both the performance and stability

of the controllers presented here can be improved by considering other DRL

methods and the ones to come. Because of safety concerns we therefore expect

that research on stability and explainable AI to be key in the following years

before we see DRL applied to real-world control problems in robotics by the

industry.

With respect to the performance of the proposed controller presented in

this thesis, and the design of the controller itself, there is a lot of room for
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improvement and interesting paths to explore. The internal controller of the

particular quadrotor studied in this project represents a common design for

velocity control of quadrotors as they assume that the velocity in x–, y– and

z-direction can be controlled independently. It would be interesting to extrap-

olate this assumption to position control, for example by using three instances

– three agents – of the DDPG algorithm (or other DRL method, like TD3) to

control each of the three axes independently. This would facilitate and allow

each agent to stop training when they have reached a satisfactory control per-

formance in their respective axis. This could be a solution to the issue that was

discussed in 4.4 regarding simultaneous convergence of the three objectives,

and represents an interesting area of research regarding DRL optimization in

multi-agent environments. Another interesting way of tackling this problem is

to look at way the replay buffer in the DDPG algorithm is sampled by selec-

tively picking transitions with high TD-error, for example by using a Priori-

tized Replay Buffer [14].

The learning process itself can also be improved upon. It would inter-

esting to investigate if guided policy search, where another controller decides

and help to explore in the initial training steps, would make the controller

based on the image position to be able to learn even at higher controller rates.

The controller based on the true horizontal position, or even the same, image

position-based controller trained with a lower control rate could be used as a

supervisor.

While we showed how the performance of the the controllers’ differed

by using both evidence of the true horizontal position and the true horizontal

position itself, no comparison was done to a more traditional control theory

approach. In the future it is therefore interesting to explore if the controller

showcased here can challenge previously established methods in terms of ac-

curacy, for example a position controller based on a well-tuned PID controller

or a more complex approach based on system modeling like model predictive

control (MPC).

The fashion in which DRL is coupled with a classical control theory ap-

proach in this project is just one way of doing it, and other methods to fuse

DRL with control theory is interesting to explore. For example, a position
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controller based on a PID controller where the gains of the controller are de-

cided by a DRL approach could prove to be a viable approach.

The controller proposed in this thesis showed to be capable of handling ex-

ternal disturbances which is a sought after characteristic for control of quadro-

tors because aerodynamics are notoriously hard to model. It would therefore

be interesting to explore if there are better ways of providing a DRL agent with

information about the disturbance rather than the approach of including past

state variables as done in this thesis.

Lastly, the range of the controller proposed in in this thesis was severely

crippled by the short field of view of the camera that was used. To increase

the range it could therefore be worth looking into using a camera with higher

FOV, for example one that uses a fisheye lens.
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Chapter 7
Conclusion

In this thesis, a method for solving the quadrotor hovering problem in indoor

environments was presented that was based on the deep reinforcement learning

framework and monocular images. In contrast to other common control meth-

ods, our approach embraces a path which seeks a more sophisticated control

method as opposed to a more complex state estimation technique. In addition,

instead of attempting to model complex aerodynamics the control method is a

model-free approach for optimal control.

The approach was realized by computing the 2-D position of a recogniz-

able object visible in camera images, and using this directly to represent the

horizontal position of the quadrotor as a pseudo-objective for controlling the

true position. The proposed controller was tested in a simulation based on

a commercially available quadrotor, the Parrot AR.Drone 2, and in addition

to being able to solve the problem, the controller was also found capable of

neutralizing disturbances present in the simulation. Furthermore, the proposed

controller was compared against itself when the position extracted from the

camera images was replaced with the true horizontal position of the quadro-

tor in the world. The results shown indicates that the controller, when using

the image position, is nearly as proficient at controlling the quadrotor as when

using the true horizontal position.

Simultaneously, training the proposed controller from scratch to a satisfac-

torily level in simulation was found to be rapid enough to be able to do even
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with the most commonly available hardware within minutes. This allowed for

quick prototyping and enabled us to test the proposed controller on the physi-

cal quadrotor in the real world as well. It was found that the controller, which

was only trained prior by simulation, could generalize well enough with re-

spect to the real world that training could continue practically autonomously.

While no definitive result with respect to how good the controller trained in

the real world turned out to be, or could be given enough time to learn, the

results shown indicates that proposed method could be a viable approach. This

is based on the level of accuracy it displayed in simulation, and that the time

required to learn the task was quite insignificant especially compared to similar

applications of DRL.

However, there some drawbacks to the approach presented here which is

directly related to DRL itself. A known shortcoming with DRL is stability un-

der training which was encountered during this project. There are no guarantee

with respect to convergence, and training may even diverge completely in the

midst of training. There is also no available proofs with respect to stability

for the resulting controller, which is of concern to safety for robots that inter-

acts with humans. It therefore seems evident that research on AI safety and

stability will be important in the years come, which will hopefully make the

powerful tool that is DRL more robust and a viable solution for a wider range

of problems.
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