
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Espen Eilertsen

High-level Action Planning for Marine
Vessels Using Reinforcement
Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas

June 2019

Espen Eilertsen

High-level Action Planning for Marine
Vessels Using Reinforcement Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Autonomous marine vessels have been the subject of much research in the past few years.

The motivation behind this is the potential financial gain from the shipping industry, the

environmental gain and an increase in safety. This thesis aims to investigate the added

value of reinforcement learning (RL) when applied to marine vessels control to increase

autonomy.

A Deep Q-Network (DQN) agent is tasked with selecting optimal actions, from a prede-

fined action set, to guide a vessel from outside a port to a designated docking space. The

agent should also be able to make intelligent decisions and avoid dynamic obstacles like

traffic.

The DQN agent could act as a high-level decision support system for the vessel, where

the actions are either sent to a captain for approval, or directly control the lower level

controllers. The action set takes the vessel dynamics into account in the final implemen-

tation, and the agent is tested on several scenarios in a simulated environment provided

by DNV GL. The agent will only be afforded information that could potentially be gath-

ered locally from a physical vessel. Examples of such information would be position and

heading for all vessels in the area and also map information. This information could be

collected via GPS, AIS data, satellite images or onboard sensors.

The results show that the DQN agent is fully capable of learning the environment, guiding

the vessel and avoiding traffic. It therefore has the potential to increase autonomy as it

goes beyond what can be accomplished using classical control theory and path-finding

algorithms. The final result of this thesis is a practical implementation strategy for a

DQN agent as a high-level decision support system.

I

Preface

This thesis was completed during the spring semester of 2019 at the Norwegian University

of Science and Technology (NTNU). The thesis is a summary of all my findings on the

added value of applying a DQN agent to increase the autonomy of a marine vessel. The

subject of this thesis was suggested by my supervisor Anastasios Lekkas, who recognized

the under-usage of RL methods in marine vessel autonomy and its potential.

The thesis is in small part inspired by a project completed the previous semester. In this

project, I applied Q-learning and SARSA to a modified version of the frozen lake problem.

The similarities between the frozen lake scenario and the port navigation problem pre-

sented in this thesis sparked interest in the possibilities of RL implemented on a marine

vessel.

The libraries and equipment used to complete this thesis is as follows:

• Python 3.7

• Tensorflow

• Port environment simulator, provided by DNV GL

• Dell computer, provided by NTNU

• Lenovo Yoga laptop

• LATEX

• GitHub

• Forums and learning material posted online by the AI community

It is expected that the reader has some prior knowledge of reinforcement learning and

neural networks. Prior knowledge regarding marine control theory, like LOS guidance

systems, is also beneficial. These subjects will be covered to some degree in this thesis,

however, only so that an inexperienced reader might understand the results.

II

Acknowledgement

I would like to thank Anastasios Lekkas for his guidance and support throughout this

semester. I would also like to thank Andreas Bell Martinsen for all his help and advice.

The simulated environment and vessel model provided by DNV GL has been instrumental

to this thesis. I would like to thank DNV GL and Jon Glomsrud specifically for their

assistance. My Family, friends and fellow students also deserve my thanks for keeping me

grounded and dragging me out of the office from time to time.

Trondheim

June 3, 2019

Espen Eilertsen

III

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Goal . 4

1.3 Contribution . 5

1.4 Outline . 6

2 Problem description 7

3 Background and Theory 9

3.1 Reinforcement Learning . 9

3.2 Q-learning . 13

3.3 Dyna Q . 15

3.4 Artificial Neural Networks . 17

3.5 Deep Q-Networks . 20

3.6 Deep Q-Extensions . 22

3.7 Classical Optimization Theory vs Reinforcement Learning 26

3.8 Explainable Artificial Intelligence . 28

3.9 Line-Of-Sight Guidance . 29

4 System description 32

4.1 Revolt . 32

4.2 Simulation . 33

4.3 Tensorflow . 35

5 Design and implementation 36

6 Simulation Results 44

6.1 Introduction . 44

6.2 Scenario One . 46

6.3 Scenario Two . 49

6.4 Scenario Three . 52

6.5 Supplementary Implementations . 58

7 Discussion and conclusion 64

7.1 Challenges . 64

7.2 Concerning Results . 67

7.3 Future Work . 70

7.4 Conclusion . 72

List of Figures

3.1 Reinforcement learning flowchart . 10

3.2 Flowchart of Q-learning . 14

3.3 Q-learning pseudo code . 14

3.4 Flowchart of Dyna Q . 15

3.5 Dyna Q pseudo code . 16

3.6 Comparison between artificial and natural neurons 17

3.7 An artificial neural network with two hidden layers 18

3.8 A few common activation functions . 19

3.9 A simple convolutional network structure 20

3.10 Deep Q-learning pseudo code . 21

3.11 Figure visualizing the two different streams and their reintegration 24

3.12 Feedback MPC flowchart . 26

3.13 XAI concept by DARPA . 28

3.14 LOS guidance system architecture . 29

3.15 LOS guidance system . 31

4.1 Simulation environment . 34

5.1 First vessel movement based on agent interaction 37

5.2 Second vessel movement based on agent interaction 38

5.3 Training scenarios . 39

5.4 Dynamic actions explanation . 41

5.5 More-convex training area . 42

6.1 Results for first scenario with simple actions 46

6.2 First and second run the first scenario with dynamic actions 47

6.3 Results form first scenario using final network structure 48

6.4 Results for second scenario, with and without prioritized experience replay 49

6.5 Results for second scenario with vessel dynamics 51

6.6 Results for third scenario with traffic . 52

6.7 Successful episode from third scenario with simple actions 53

6.8 Results for third scenario with traffic and dynamic actions 55

6.9 Successful episode from third scenario with dynamic actions 56

6.10 Crash from early training . 56

6.11 Results for DeepMind implementation . 58

6.12 Results from supplementary scenario with full environment and dynamic

actions . 60

6.13 Supplementary scenario with full environment and dynamic actions 61

6.14 Results from supplementary river test . 62

6.15 Supplementary river test using simple actions 63

List of Tables

3.1 Q-table example . 13

4.1 Degrees of disturbance available organized by column 33

6.1 Neural network variables used in the final implementation 57

CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Autonomous vehicles have been the subject of much debate and research in recent years.

Googles research on autonomous automobiles [1], Teslas© ”Autopilot” function installed

in their latest model [2] and Kongsberg’s research on autonomous marine vessels [3] are all

examples of the increase in research and application of autonomy. These all have varying

levels of autonomy and different implementation strategies but the goal remains the same:

to create a fully autonomous vehicle within an operational environment.

As of today, marine navigation relies heavily on humans when it comes to high-level

reasoning. The decision to go into dynamic positioning mode due to a busy dock, is one

example of an action that could complement the lower level controllers and help increase

autonomy. This thesis will try and add to this field by applying reinforcement learning

to assist in the decision making process, and thus potentially increasing autonomy.

In order to assess the current state of marine vessel autonomy a literary review was

conducted in preparation of this thesis. This review discovered several papers suggesting

reinforcement learning (RL) and neural networks applications to increase autonomy in

marine vessels. The subject of these papers varied heavily in regards to which aspect

of the marine vessel they were applied in. Multiple papers have been released on the

subject of trajectory tracking and path following [4; 5; 6; 7], as well as path optimization

[8]. Using neural networks to design behaviour based high-level control of underwater

vehicles has also been researched to some degree [9; 10]. The optimal control problem has

1

also been researched, one paper suggests using the RL method policy iteration together

with two neural networks to reach optimal control [11].

There are also examples of implementations of adaptive neural network controllers for

underwater vehicles [12], and implementations of deep RL for lower level control of au-

tonomous underwater vehicles [13; 14]. Papers implementing RL as obstacle avoidance

were also uncovered [15; 16; 17], as well as a study implementing RL to solve stowage

problems on cargo ships [18]. Research has also been done on approximation of unknown

model parameters using neural networks [19]. This short summary demonstrates the scope

in which modern RL and neural networks are being researched. The motivation for the

increase in research comes from multiple places, and is shared by this thesis.

From a financial perspective, there are multiple motivations for increasing autonomy in

marine vessels. If fully autonomous vessels were realised, this would most likely lead to a

complete redesign of both the business model and vessel design. The vessels themselves

would probably have less need for crew quarters and systems related to humans, like

ventilation, as crew size would decrease, which would free up more space for cargo. An

autonomous fleet would likely also be easier to optimize in regards to in regards to fuel

and energy consumption, further cutting operational costs.

Aside from the financial motivation, safety is also a large motivating factor. If the shipping

industry implement more autonomy this would likely reduce the number of accidents

due to human error. As long as the system is robust enough, an autonomous shipping

industry would be far safer than a human operated one. In addition to the financial and

safety motivations, there is also an environmental motivation to consider. If implemented

efficiently, the transportation of goods by sea could remove the need for transportation

by air and land.

This would greatly reduce the emission of greenhouse gasses as aeroplanes are far worse

then ships with regard to emission. Compared to a land-based transportation vehicle,

cargo ships are far better suited for transportation of goods, as it can carry more cargo.

This would also free up more space on roads and reduce the need to expand vehicle-

based infrastructure. The motivation also comes from challenging the implementation

of reinforcement learning. As no similar implementation was uncovered, the thesis also

holds added value to the field of marine autonomy itself and could uncover new ways to

implement reinforcement learning methods.

It is expected that the reader is somewhat familiar with the core concepts of reinforcement

learning, as well as general control and optimisation theory. There will be short sections

2

on what is deemed relevant material, though this will in no way be exhaustive, detailed

explanations, only short sections covering the basics. If the reader’s goal is to learn about

the details of reinforcement learning it would be recommended to look elsewhere first,

as the main focus of this thesis is the results gathered from the implementation of such

methods. The reference list might be a good place to start for a more in-depth look.

3

1.2 Goal

The goal of this thesis is to investigate how reinforcement learning (RL) methods can be

applied as a high-level decision support system to increase autonomy in a marine vessel.

The RL agent will be tasked with choosing the optimal actions, from a predefined set

of actions, in order to guide a vessel from outside a port to a designated docking space,

while avoiding traffic. Several implementations will be tested at various levels of control

in order to find a viable strategy. The focus will be to keep the agent as a decision support

system, above the lower level controllers.

The algorithms implemented in this thesis are the Dyna Q-learning algorithm and Deep

Q-network, which are both based in Q-learning. The main difference between the two is

that Deep Q-network utilizes a neural network, while Dyna Q-learning does not. This

gives both their own sett of pros and cons. For instance, Dyna Q-learning is easier to

implement, while Deep Q-learning is more versatile. The algorithms will be implemented,

tested and evaluated with different reward functions, action sets and implementation

strategies.

The suggested final approach is to use a Deep Q-network agent to explore the environment

while taking the vessel dynamics into account. The agent will be tested in multiple

relevant scenarios, the most challenging scenario also including traffic. The agent will

receive feedback from the environment regarding its position, heading, distance from goal

and traffic position, as well as a reward designating good and bad actions.

4

1.3 Contribution

Though many industries stand to gain for the possible solutions that may be uncov-

ered, this thesis is first and foremost focused on research. Therefore its contributions

will mostly be expanding the application of reinforcement learning (RL) in the maritime

domain. Identifying pitfalls and shortcomings of RL methods can also be considered as

contributions.

By using multiple variants of the Q-learning algorithm, individual pros and cons with

each variation will be discovered. Issues with larger state spaces, required training time

and implementation difficulty, for instance, are examples of negative elements associated

with some of the Q-learning variations. However, the most significant contribution of this

thesis is a feasible strategy for guiding a ship through a port using reinforcement learning

as a high-level decision support system. The high-level decision support system will also

be able to make intelligent decisions in a dynamic environment. Not only learning the

environment and guiding the vessel to the goal area, but also avoiding traffic while doing

so.

The suggested strategy presented in this thesis holds additional value in several regards.

Firstly, the final implementation takes into account the ship’s dynamics while choosing

actions. This means that the agent will not suggest actions that the vessel can not

physically complete. It also proves that additional intelligent decisions can be made by

the RL agent, like dodging traffic, making it capable of doing more than simply finding

an optimal path.

5

1.4 Outline

The thesis is divided into seven main chapters, the first chapter being this introduction.

Chapter two contains a problem description where the problem this thesis attempts to

solve will be fleshed out. After this, Chapter three will introduce relevant background

information and theory necessary to understand the results. Here reinforcement learn-

ing will be presented in a bit more detail, as well as a brief introduction to classical

optimization theory, Line-of-sight guidance and explainable AI.

Chapter four will contain a system description which will cover the simulation space and

the vessel model used in this thesis. This chapter will also contain a short introduction to

Tensorflow. Next, Chapter five will present the implementations strategies. This chapter

will present the strategies tested while attempting to solve the problem, the thought

behind them and what was learned from them. Following this, Chapter six will present

the results, before the thesis ends with Chapter seven, where the results are discussed and

a conclusion is drawn.

6

CHAPTER 2

PROBLEM DESCRIPTION

A cargo vessel needs to be guided from outside a port area to a designated docking space.

The vessel needs to be able to navigate both the open area before before reaching the

port, and the narrow areas of the port itself. While navigating, the vessel also needs to

be able to avoid moving obstacles in the form of other vessels operating in the port area.

Solving this environment requires the ability to learn highly non-convex areas and adapt

to a dynamic environment.

This thesis will implement reinforcement learning on a a marine vessel in an attempt

to solve the presented docking problem. The thesis aims to prove that reinforcement

learning has added value by showcasing a level of intelligence that is not possible to

achieve with traditional control theory and path-finding algorithms. Using the simulated

model for DNV GL’s autonomous concept vessel, Revolt [20], reinforcement learning will

be implemented on a vessel as a high-level decision support system. The agent will then

be tasked with find its way from outside the port to a designated docking space, in an

optimal fashion, and avoiding traffic.

As it is not beneficial for the algorithm to keep exploring when an optimal path is found,

the algorithm will be designed to gradually place less importance on exploring. Eventually

almost stopping to explore entirely. This way, the algorithm could potentially be trained

on board the vessel before reaching the port. And the user can be confident that the

agent will suggest the appropriate actions once the port is reached.

As the simulated Revolt model can be considered a digital twin, any result will be seen

as directly applicable to a physical model. An additional motivation is to help DNV

7

GL get closer to a functional autonomous vessel. Such a vessel could be beneficial for the

environment and represents a large financial potential for the company, as well as increase

safety. Proving the usefulness and benefits of reinforcement learning on such a system is

also a motivation.

8

CHAPTER 3

BACKGROUND AND THEORY

3.1 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that focuses on goal-oriented

learning. In the book ”reinforcement learning: An introduction” by Sutton and Barto

[21], it is compared to how humans learn by interacting with the environment. This is

a very accurate comparison, as a reinforcement learning agent also learns by interacting

with the environment. In short, reinforcement learning is a way to train a virtual agent

by allowing it to explore an environment while rewarding good actions and penalizeing

bad actions. This reward/penalty usually comes in the form of a scalar returned to the

agent after completing an action. The agents objective is to learn how it can take actions

to maximize this reward.

Say that there is a reinforcement learning agent that can execute actions to interact with

an environment. Every time the agent executes an action it is given a reward from the

environment. This reward is either a positive scalar or a negative scalar, depending on

the outcome of said action. Every time the agent executes an action it moves from its

current state to a new one. The state, in this case, would be some information given

by the environment. If the actions taken by the agent moves it around in a grid, for

instance, the state could be the agent’s position in the grid. This sets up the flowchart

seen in Figure 3.1. This process continues until the agent ends up in a terminal state.

A terminal state could be the goal state or perhaps that the agent ended up in a state

deemed extremely negative. This terminal state ends the episode and the environment

resets so the agent can try again. After several episodes, the agent will have learned the

9

most efficient way of maximizing the reward for a given episode.

Figure 3.1: Reinforcement learning flowchart

As an example, the goal of the agent might be to find its way through a maze of some

sort. In this example the agent might be given a positive reward for finding its way

through the maze, ending up in some goal area. Along the way, there might be traps

set up for the agent to fall in, areas of the maze which give a huge negative reward

and terminate the episode. Using reinforcement learning it is possible for the agent

to find its way through the maze to the goal area while avoiding the negative areas,

using only information gathered from the environment. This is the basic concept behind

reinforcement learning. The following sections will go over a few key concepts that explain

how an RL agent does this.

Terminology

In reinforcement learning an agent is often referred to be in a state s ∈ S, and can from

this state take action a ∈ A. The reward returned for completing this action is most

often labelled R and is usually a scalar value as mentioned earlier. The returned policy,

labelled π, can be described as a mapping from states to actions. The policy can also be

either deterministic, meaning that a certain state will always result in the same action,

or probabilistic, meaning the policy draws a sample from a distribution over actions,

a ∼ π(s, a) = P (a | s) [22]. Here P is the transition probability, meaning the probability

of action a resulting in state s.

Markov Decision Process

Markov decision process, often labelled MDP for short, is a mathematical formulation

of an RL problem. It can be explained as a set of states, actions, rewards and decision

10

probabilities that captures the dynamics of the system [22]. An MDP is what is used to

describe the environment to a reinforcement learning agent. In order to form a MDP it

is necessary for all states to fulfil the Markov property. The Markov property means that

all necessary information exists in each given state. What this means is that when a state

is reached all information encountered thus far can be disregarded. in short, a Markov

decision process is a sequence of states that all have the Markov property.

The Bellman equation

The Bellman equation is an important and powerful tool in reinforcement learning. As

mentioned, the reinforcement learning agent tries to maximise the reward gained over

time, and this is usually handled by the Bellman equation. Probably the greatest benefit

of the Bellman equation is that it makes it possible to express the value of each state as

a function of other states. This makes it possible for a lot of iterative solutions for MDPs

to be implemented.

V (s) = max
a

(R(s, a) + γ
∑
s′

P (s, a, s′)V (s′)) (3.1)

V (s) = max
a1

(R(s1, a1) + γ
∑
s′2

P (s1, a1, s
′
2)max

a2
(R(s2, a) + γ

∑
s′3

P (s2, a2, s
′
3)...] (3.2)

Q(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)max
a′

(Q(s′, a′)) (3.3)

The equation (3.1) is referred to as the state value equation in the literature, and gives

the value of a given state as a function of the reward, state, action, transition probability

and the next state. By expanding V (s′) the resulting equation is (3.2). This equation has

an infinite sequence, as the next state value can also be expanded using the next state and

action in the sequence. By grouping infinite sequence together after the first max operator

we can rewrite this as (3.3). This equation gives the quality of a given action in a given

state. It turns out that (3.3) is far more useful in the context of reinforcement learning

as it will be possible to find the expected value without having to know the transition

function and reward function in advance. Meaning it can be solved with information

gathered from interacting with the environment.

11

Exploration Vs Exploitation

An important topic in machine learning is exploration versus exploitation. Using the

maze from earlier as an example, this topic deals with how the agent should act when

exploring the environment. For the agent to find the path to the goal it is necessary to

allow it to explore the environment. If, for instance, the agent selects random actions in

states where no action has been explored before, and the best possible action otherwise,

it can be understood that the agent will eventually find its goal. After the goal is found,

however, the path will be set. The agent will now keep using the same path every episode

when moving through the maze. This result would be good enough if the only objective

was moving from A to B, but it is often desired to do so optimally. In this case, if the

agent did not find the optimal path through the maze the first time, it has no way of

finding it later, this is where exploration comes in.

Exploration allows the agent to make sub-optimal choices, allowing it to explore different

paths that could potentially be better than the first path found. There are multiple ways

of incorporating this into an algorithm [23; 24], perhaps the easiest way would be the

”epsilon-greedy” strategy. The epsilon-greedy strategy lets the agent chose a random

action, instead of the optimal one, at random times. This strategy has proven quite

effective and is well known in the field. It is often implemented at a decreasing rate, with

the goal being that the agent will explore a lot at first and eventually converge to the

optimal path. Regardless of strategy, it is important that there exists a balance between

exploration and exploitation. This balance is necessary as the objective is to find the

optimal path, but not move away from it once it is found. The element of exploration

also means that the agent might execute actions that lead to a negative outcome, just for

the sake of exploration. In the maze example, this means that the agent might jump into

a negative ”trap state”, even if it is aware that this is a terminal negative state.

12

3.2 Q-learning

Q-learning likely one of the most well known and explored reinforcement learning algo-

rithms. The main concepts of Q-learning are relatively easy to understand. Say we have

a Q-learning agent that exists in a simulated world, and we want to complete some goal.

It is possible for the agent to interact with this environment by executing actions. When

an action is finished the environment sends a response. This response comes in the form

of a positive reward or a negative penalty. What the Q-learning agent does is to simply

interact with the world, observe response and evaluate how good that action was based on

that response. The quality of executing a given action, in a given state, is often referred

to as the Q-value and is recorded in what is known as a Q-table. Table 3.1 is an example

of what a Q-table might look like.

Q(s1, a1) Q(s1, a2)

Q(s2, a1) Q(s2, a2)

Q(s3, a1) Q(s3, a2)

Table 3.1: Q-table example

The Q-table is most often a matrix where the rows represent states and the columns are

the actions that can be taken from the given states. When calculating the Q-value for

this table, a modified version of the Bellman equation, (3.4), is used.

Q(s, a) = Q(s, a) + α[R(s, a) + γmax(Q′(s′, a′))−Q(s, a)] (3.4)

In (3.4), Q(s, a) is thought to be the quality of an action taken from a given state. While

Q′(s′, a′) is the quality of the next move given that a previous action was taken from a

given state. The variable α is known as the learning rate, and γ is the discount factor. By

varying the learning rate we can decide what information the agent should consider. If the

learning rate equals one the agent only considers the most recent information gathered.

However, if the learning rate equals zero the agent will not learn anything new at all.

The discount factor, γ, decides the importance placed on future reward versus immediate

13

reward. If the variable is equal to one, the agent will focus on the long term gain. On the

other hand, if the discount factor is equal to zero the agent will focus on short term gain.

Figure 3.2: Flowchart of Q-learning

Figure 3.2 is a flowchart explaining the workflow of the Q-learning algorithm. As the

algorithm learns via interacting with the environment it is common practice to train the

agent on a simulated environment first, before implementing it on a physical one. This

is due to Q-learnings interactive way of learning and the nature of exploration. As the

agent tries multiple actions before figuring out what to do, it will likely fail multiple times.

If this was implemented on a physical system initially, say an autonomous car, the car

would likely crash multiple times before the agent can figure out what to do. This would

create many dangerous scenarios both for the system and the environment.

Figure 3.3: Q-learning pseudo code [21]

14

3.3 Dyna Q

A different variety of Q-learning, called Dyna Q, is introduced in the book ”Reinforcement

learning: An introduction” by Sutton and Barto [21]. This algorithm is an expansion on

the traditional Q-learning algorithm, and adds a planning phase between each interaction

the agent does with the environment. The algorithm can be explained as follows. First, the

normal Q-learning steps are executed, however, after updating the Q-table the algorithm

does three additional steps. It first estimates a transition model and reward function, then

it ”hallucinates experience” using only previously discovered state-action pairs. Finally,

the Q-table is updated again before starting back at the top. This means, that in Dyna Q,

planning, acting, model-learning and direct reinforcement learning all occur continuously.

Figure 3.4 explains the steps involved in Dyna Q in a more visual manner.

Figure 3.4: Flowchart of Dyna Q

The algorithm assumes a deterministic environment in the new ”planning phase” and

creates a Model(s, a) = r, s′. Then, for a given amount of steps, it chooses a random state-

action pair that has been observed before and updates r, s′ with respect to Model(s, a)

before updating the Q-table. Model(s, a) is, in other words, the state-action reward pairs

15

that have been discovered so far, a model of the world as seen from the agent perspective.

For every step the agent takes it then goes back and updates the model with this new

piece of information. This results in a faster convergence towards an optimal policy. The

pseudo code for this algorithm is shown in Figure 3.5.

The reason Dyna Q is faster then traditional Q-learning is mainly due to the fact that

the ”planning” is computationally inexpensive. While interacting with the environment is

an expensive method of learning, simply going back and ”hallucinating” new experiences

is a pretty cheap operation. By doing this multiple times for each interaction with the

environment, new information spread faster to previously discovered state-action pairs.

This means that when the agent finally discovers the goal that information moves faster

backwards through the other states with Dyna Q then with Q-learning. Resulting in the

agent having to discover the goal area fewer times before converging to an optimal policy.

This also means that Dyna Q is not an entirely model-free algorithm, as it does create a

model of the environment as it learns.

Figure 3.5: Dyna Q pseudo code [21]

16

3.4 Artificial Neural Networks

The Idea of an artificial neuron was first formed by McCulloch and Pitts in their paper

”A logical calculus of the ideas immanent in nervous activity” [25]. Here McCulloch and

Pitts outlined the idea of an artificial neuron based on the neurons existing in the human

brain. Biological neurons communicate with each other by sending electric pulses through

their ”neural wiring”. A basic model of a neuron can be seen in Figure 3.6. If we consider

the inputs to a artificial neuron as the Dendrites, the Soma as the node and the Axon as

the output, it is easy to see the similarities between an artificial neuron and a biological

neuron. This kind of single artificial neuron is referred to as a Perceptron in the literature,

and when connected as shown in Figure 3.7 they form an artificial neural network (ANN).

(a) Model of neuron
(b) Model of artificial neuron

Figure 3.6: Comparison between artificial and natural neurons

An artificial neural network can be described as multiple layers of interconnected nodes,

or neurons, which are used for machine learning purposes. The nodes are connected to

each other via edges between individual layers. First, information enters through the

input layer. Then it is passed to the hidden layer before ending up in the output layer.

If a neural network has multiple hidden layers, as in Figure 3.7, it is referred to as a deep

neural network (DNN). The network in Figure 3.7 is also what is referred to as a fully

connected neural network. Meaning that each node in a given layer is connected to every

node in the next layer, which is not always the case in ANN.

17

Figure 3.7: An artificial neural network with two hidden layers

An ANN can also be modelled as a function where, upon receiving some input, it will

produce an output. In fact, the entire network can be thought of in this way, (3.5) gives

us a mathematical representation if a single layer. Each layer can be represented as a

weighted input matrix, a bias in the form of a vector and an activation function. If the

network is then given an input, x, it will produce an output, y.

y = f(Wx+ b) (3.5)

The activation function decides when the node should ”fire”, meaning that it sends a signal

to the next node. An example of a typical activation function would be the Sigmoid

function, for instance. This is an S shape function that exists between 0 and 1. This

particular function is very useful if the goal is to predict probability as an output. Another

function that has become more used recently is the ”rectified linear unit” function [26],

or ”Relu” for short, shown in Figure 3.8. This function returns zero if it receives any

negative input, but returns a value back for any positive input. Softmax is an activation

function that is often used in the output layer. This is because it normalizes all the values

such that the sum of all the output nodes is equal to one, which is favourable when a

probability distribution as output is desired.

When choosing the activation function it is important to have an understanding of what

you would like to accomplish and what the input to the system is. For example, if the

18

input to the system is a vector of numbers in the range minus one to one. It might not be

favourable to use the Relu activation function, otherwise, all input information between

minus one and zero would be lost. In this case, a ”tanh” function might work better, as

it returns a value from minus one to one. If the output is to be a probability distribution,

Softmax might be the way to go. But if not, a linear function might be better suited.

Figure 3.8: A few common activation functions[27]

When training an ANN it is common to use labelled data sets. This data consists of a

set of inputs and outputs, where the output data corresponds with the given input data

and is the correct response to it. The ANN uses this data and adjusts the weights to

each node until it can reach a result which is as close to the correct result as desired.

A commonly used algorithm for this purpose is called backpropagation. This algorithm

trains the network by executing forward and backward passes through the network [28].

A forward pass is exactly what it sounds like. The input set is passed through the network

and the output is recorded. This output is then evaluated against the correct output set

and the error between them is calculated. The backwards pass then calculates the gradient

of the error function with respect to the weights in the network. As the gradient is defined

to move towards the greatest ascent, the weights are adjusted in the opposite direction,

towards the minimum.

19

3.5 Deep Q-Networks

Deep reinforcement learning can be explained as the combination of deep neural network

and reinforcement learning. One such method is the deep Q-network (DQN), which will

be implemented later in this thesis. DQN is the marriage between Q-learning and deep

neural network. This algorithm implements deep neural networks to approximate the

Q-values and allows for the use of a larger state space. The algorithm was originally

created by ”DeepMind”, who presented the algorithm in their paper ”Playing Atari with

Deep Reinforcement Learning” [29], which was later followed by the paper ”Human-level

control through deep reinforcement learning” [30]. The paper presented the algorithm

along with the result gathered by implementing it to solve classic Atari 2600 games.

This was done by using the pixel values of the screen itself as state descriptions, and giving

the agent the same actions as would be available to a human player. By stacking a number

of frames and passing them through a deep neural network as input, the network manages

to correlate actions with the change in input-frames. The network then estimates and

outputs the Q-values for the individual actions in the given state. Following the same logic

as a traditional Q-learning algorithm, the action associated with the highest Q-value will

be the optimal action once the agent is sufficiently trained. The neural network structure

is a combination of first convolutional, then dense layers using the ”ReLU” activation

function [29].

Figure 3.9: A simple convolutional network structure [31]

A convolutional layer is a type of neural network architecture that is often used when the

goal is to solve image classification tasks. These layers are different from dense layers, as

all nodes in one layer do not point to all nodes in the next layer. Instead, a region of

nodes is connected to every node in the next layer. Figure 3.9 is a visual representation

20

of a simple convolutional network. The region that covers a number of nodes is referred

to as a filter.

Although this might seem like a trivial achievement, it was a huge step towards general

AI. This was due to the fact that the algorithm was able to reach a near super-human

level of skill at any Atari game it was applied to. More importantly, it was able to do this

without being adjusted for the specific game.

It has been proven that a single hidden layer neural network can approximate any con-

tinuous function, provided there are no constraints on any weights or number of nodes

[32]. As this is the case one might wonder why bother with deep neural networks. It

turns out there are two advantages to deep neural networks. Firstly, they generalise well,

which helps avoid overfitting. And secondly, a shallow network will probably require more

nodes per layer than a deeper network. This gives deep neural networks a computational

advantage [32]. The pseudo code for a deep Q-learning network can be seen in Figure

3.10.

Figure 3.10: Deep Q-learning pseudo code [21]

21

3.6 Deep Q-Extensions

Though an effective algorithm, DQN can be regarded as rather old in reinforcement

learning years. However, that does not mean that the algorithm has been abandoned.

Over the years multiple strategies for improving the DQN algorithm has been developed.

This section will cover four such methods, fixed Q-targets, double DQN, duelling DQN

and prioritised experience replay.

Fixed Q-target

In traditional DQN we calculate the temporal difference error (TD error) as the difference

between the Q-target(Q′) and the current Q-value(Q), however, since the Q-target is

not known it needs to be estimated. In traditional Q-learning, these values are found

by interacting with the environment and using the Bellman equation. When using a

DQN, these values are estimated by the network. This becomes a problem as the same

parameters (weights) are used to calculate both the Q-value and Q-target. In other words,

there is a huge correlation between the Q-target and the changing parameters. The end

result is that for every step of training, both the Q-value and Q-target shifts.

We can visualise the effects of this by thinking of a famous scene from the movie Rocky,

where Sylvester Stallone (as Rocky) tries to chase down and catch the elusive chicken.

Suppose Rocky is the Q-value and the chicken is the Q-target. Rocky tries to catch the

chicken, however, every time Rocky moves closer, the chicken moves further away. This

is similar to the effect of using the same network to estimate both values. This causes

large oscillations during training, which is not desired. Luckily, the issue can be solved

by implementing fixed Q-targets.

Fixed Q-targets are relatively simple to implement in the DQN algorithm and was in-

troduced by DeepMind in the paper ”Human-level control through deep reinforcement

learning” [30]. First, two networks are created from the same template. These networks

are often referred to as the local and the target-network. Then a function that copies the

weights from the local network and ads them to the target-network is created. The last

step is to use the target-network to calculate the Q-target during training. The target-

network is then updated with the local-network weights at the desired interval. This

interval becomes another tuning parameter that must be tuned for the desired implemen-

tation.

22

Double Deep Q-Networks

Another problem with DQN is the tendency to overestimate the Q-values. This can be

solved by implementing double DQN, which was first introduced by Hado van Hasselt

[33]. The problem itself can be boiled down to a simple question, how can we know that

the best action in the next state is the action associated with the highest Q-value? At

the beginning of the training process, this value is very noisy and can often lead to a false

positive. This complicates learning and increases the time required for an agent to be

sufficiently trained.

The solution is again to utilise multiple networks to solve the problem. If we assume

that the local and target-network from the previous section is already implemented, this

network can be used to decouple the action selection from the Q-target generation. This

is done by using the local-network to select what the best action is in the next state and

use the target-network to calculate the target Q-value of taking that action in that state.

This way, the double DQN method reduces the overestimation of the Q-value and cuts

down training time in the process.

Duelling DQN

As mentioned before, the Q-values tells us how good it is to be in a given state and take

an action at that state. With this in mind, it is possible to decompose the Q-value into

two parts, resulting in (3.6).

Q(s, a) = A(s, a) + V (s) (3.6)

Here A(s, a) is the value for taking an action in a state and V (s) is the value of being

in the state. What a Duelling DQN tries to accomplish is the separation of these two

aspects of the Q-value. The network separates into two streams, with one aspect on either

side, before combining them again at the end to get the full Q-value. The Idea is that

this will give the network the ability to learn which states are valuable, without having

to explore the effects of all the actions in each state. This implementation was presented

in the paper ”Duelling Network Architectures for Deep Reinforcement Learning” [34].

23

Figure 3.11: Figure visualizing the two different streams and their reintegration [34]

Prioritized Experience Replay

Prioritized experience replay (PER) introduces the concept that some interactions with

the environment will contain more information than others. Assuming that this is true

it would obviously be better to replay these experiences more often when training the

network. In traditional DQN this is not the case, the algorithm simply replays a random

sample from the memory. PER introduces a way to prioritise the most important experi-

ences and replay them more often. In the paper ”Prioritized Experience Replay” [35] this

method was implemented on a DQN and proved to outperform the standard DQN in 41

of 49 games.

What constitutes a valuable experience can be found in the calculation of the TD error,

which is the difference between the Q-value and the Q-target. If this difference is large it

means that something significant happened during this interaction. This difference can

therefore be used as a priority variable to implement PER. It is important to realise,

however, that implementing a simple greedy solution will lead to the network only being

trained on a single experience. Therefore PER introduces stochastic prioritization, which

generates a probability of being chosen for replay, see (3.7). Here a is the priority scale,

where a = 1 will give full priority sampling, and a = 0 will give normal random experience

replay.

24

P (i) =
p(i)a∑

k p
a
k

(3.7)

It is also necessary to adjust how the weights in the network are updated, since the memory

selection now has a bias in the form of a probability transition. The adjustments suggested

in the paper ”Prioritized Experience Replay” [35], is to simply adjust the weights only a

small portion when replaying an important memory, see (3.8).

w = (
1

N
· 1

P i
)b (3.8)

25

3.7 Classical Optimization Theory vs Reinforcement

Learning

Problems that can be solved with reinforcement learning can often also be solved using

classical optimization theory. An optimization problem is usually formulated mathemati-

cally either as a minimization or maximization problem that is subject to some constraints.

The problem is usually a function referred to as a ”cost function”, which is based on the

model of the system. The fact is that RL is, in part, designed to do exactly the same

job as classical optimization. The main differences are how the problems are formulated

and solved, and both methods come with their own set of advantages and disadvantages.

Two classical optimization methods will be presented in this section, MPC and LQR, as

to get a better feel of the similarities. These methods are outlined in the paper ”Merging

optimization and control” [36]

MPC stands for ”Model Predictive Control” and is a well know and widely used opti-

mization method for optimal control. MPC runs different forecasts for what the optimal

control input should be for a system to reach a particular goal based on a model. It then

applies the first calculated input, observes results, and recalculates the forecasts. In other

words, the MPC first calculates the set of optimal inputs needed to reach the goal, applies

the first input, then recalculates all the optimal inputs again. This makes MPC a very

flexible, although somewhat computationally expensive, optimization strategy.

Figure 3.12: Feedback MPC flowchart

The LQR, Linear quadratic regulator, is another optimization method that is often used.

This method comes with a given cost function that enables the designer to put restraints,

or cost, on states and inputs, (3.9). This is done via two matrices designed in the cost

function. By designing the values in these matrices it is possible to penalize the system

for deviation of a state and restrict how much input is used. It has been proven that

26

there exists an optimal function that minimises this cost function. This is (3.10), which

is the linear quadratic regulator. Its a linear matrix, K, times a state, that minimises a

quadratic cost function, (3.9).

J =

∫ ∞
0

(xTQx+ uTRu) (3.9)

u = −Kx (3.10)

One of the most fundamental differences between RL and classical optimization theory is

the dependency on a model. Optimization theory is heavily dependant on a model, as we

can see from the MPC and LQR. Though simply having a model is not enough, they are

also dependant on this model being very accurate to get successful results. This means

that if the model deviates slightly from the actual physical system it might be impossible

to get the desired results using optimization. In addition to this, creating accurate models

is a very time consuming and expensive task. Model-free RL algorithms do away with this

problem by not considering the model at all and instead learn the system via interaction.

RL has the advantage of being far more adaptable than optimization. As the classical

methods are based heavily on a model, this causes serious problems if the model changes

or is inaccurate. It is not hard to imagine that an exact model of the ocean, for instance,

would be impossible to produce as it is highly dynamic. Again, several RL methods can

forgo the problem by not considering a model and can therefore adapt to a dynamic envi-

ronment. On the other hand, It is easier to prove optimality with classical optimization,

as long as the model is adequate. This is not a trivial task in RL, especially in complex

problems, due to the nonlinear mapping between states and actions.

RL decisions can be hard for humans to interpret. This is not a problem with classical

optimization, due to the fact that a model exists. If there are some questions as to why a

system is behaving as it is, the solution is simply to open the model and check. RL, often

being model-free, does not afford the user this luxury. Because of this, RL methods are

harder to trust as one can not always fully understand why it is taking any given action.

This leads into a topic that has been generating traction in the field lately, namely how

to make AI and machine learning more explainable.

27

3.8 Explainable Artificial Intelligence

In recent years machine learning and AI technologies have seen an increase in application

and use. The success of these methods has prompted more research that keep pushing

the limits and application of these technologies in modern society. Though this has led to

a problem with machine learning and AI becoming more apparent, they are non-intuitive

and hard to understand. The fact is that the more complex the system, the harder it is to

find out why the agent is acting the way it is. If the user does not know why an agent is

taking a given action, whether it is succeeding or failing, it is hard to trust that the agent

is behaving as intended. This trust is essential, as it stands in the way of using machine

learning and AI technologies on important and vital applications. In other words, the

fact that machines can not explain their decisions to users limits their effectiveness and

usability [37; 38].

This has prompted research focusing on how to make these technologies more explainable.

DARPA, for instance, has launched ”The explainable AI (XAI) program” [37] with this

goal in mind. The program aims to create machine learning techniques that:

• Produce explainable models without sacrificing high-level learning performance

• Enable users to trust, understand and manage the emerging generation of AI

Creating such models would not only help user trust, understand and manage the system,

it could also be a powerful tool in regards to debugging. The idea thus far is to develop or

modify ML techniques that produce explainable models, using human-computer interface

techniques to translate the model into understandable explanation dialog [37].

Figure 3.13: XAI concept by DARPA [37]

28

3.9 Line-Of-Sight Guidance

LOS, which is short for Line-Of-sight, is a form of guidance system very commonly used

in marine vessels. The guidance system has been proven very effective at guiding a marine

vessel along a path generated by two or more points, LOS does this by controlling the

heading of the vessel in such a way that it will converge to a given path. This is done

by working in tandem with a motion control system that controls the rudder to track

the desired heading angle. Figure 3.14 shows a block diagram of a generic LOS guidance

system.

Figure 3.14: LOS guidance system architecture

Implementing a LOS guidance system on trajectory tracking, for instance, usually involves

the LOS guidance calculating the desired heading and feeding it as an input into a PID

autopilot. This PID controller would be the motion controller in this example and is

implemented in series with the LOS system [39].

According to the book ”Handbook of Marine Craft Hydrodynamics and Motion Con-

trol” by Thor I.Fossen [40], LOS guidance is classified as typically a three-point guidance

scheme. The three points referring to a stationary reference point, the interceptor and

the target. The guidance system is illustrated in Figure 3.15. As an example, consider

a straight line path created by two points, P n
k = [xk, yk]T and P n

k+1 = [xk+1, yk+1]
T . And

a fixed path reference frame with Pk as its origin, whose x-axis has been rotated by a

positive angle relative to the x-axis, as shown in (3.11).

αk := atan2(yk+1 − yk, xk+1 − xk) (3.11)

The position of the vessel in the path fixed reference frame can then be calculated using

29

(3.12), where Rp(αk) is a rotation matrix about angle αk. In (3.13), s(t) is the along-track

distance and the e(t) is the cross-track error.

ε(t) = Rp(αk)T (pn(t)− pnk) (3.12)

ε(t) = [s(t), e(t)]T (3.13)

In this scenario, the control objective is to make the cross-track error tend towards zero.

The book by Fossen [40] outlines two ways of using LOS systems to do this, enclosure

based and look ahead based. Continuing the example, the enclosure based method will

be explained to get a better intuition on how a LOS guidance system works.

Consider a circle with a radius (R) enclosing pn = [x, y]T . Given that the circle is chosen

large enough it will intersect with the line between P n
k and P n

k+1 at some point pnlos =

[xlos, ylos]
T . Driving the velocity vector of the vessel toward this point would then drive

e(t) to zero, achieving the desired effect. The desired course is then found using (3.15).

tan(Xd(t)) =
∆y(t)

∆(x(t)
=
ylos − y(t)

xlos − x(t)
(3.14)

Xd = atan2(ylos − y(t), xlos − x(t)) (3.15)

Finally, the two unknowns in the pnlos vector can be found by solving the following two

equations.

[xlos − x(t)]2 + [ylos − y(t)]2 = R2 (3.16)

tan(αk) =
yk+1 − yk
xk+1−xk

=
ylos − yk
xlos − xk

= constant (3.17)

As mentioned there is also a method called ”lookahead based steering” which has the LOS

vector pointing at some point located a given distance along the path. This method will

not be explained here, as the enclosure based method explanation should be enough to

give the necessary intuition needed to understand the use of LOS guidance in this thesis.

30

Figure 3.15: LOS guidance system [40]

31

CHAPTER 4

SYSTEM DESCRIPTION

4.1 Revolt

Revolt is an autonomous concept vessel designed by DNV GL. The vessel exists as both

a small scale physical model and a simulated model. Though no real scale model exists

today, the ship is designed to be approximately 60 meters in length. The vessel is also

designed to be electric, driven by batteries stored aboard the vessel. As well as supplying

the vessels thrusters, the batteries also supply a multitude of sensors that makes autonomy

possible.

On the subject of thrusters, Revolt has two driving propellers in the aft as well as an

Azimuth thruster further towards the bow. These thrusters can be used for dynamic

positioning [41] as well as helping the vessel turn in tight spaces [20]. According to

DNV GL, the main motivation behind Revolt is the potential financial gain and reduced

emissions from the transport sector.

32

4.2 Simulation

The simulated model of the Revolt is developed by DNV GL and can be considered a

”Digital twin” of the physical model, according to DNV GL. This is because the simulated

model has been tested and compared to the small scale physical model to ensure that the

two are as similar as possible. DNV GL has done a multitude of tests and experiments

to make sure that this is the case. Because of this, all results gathered in the simulated

model can be expected to be equal to results from an experiment on a physical model.

This makes the simulated model a very powerful tool for testing varying solutions for

autonomy. It also opens for easier testing on the small scale physical model if desired.

The simulated environment comes equipped with several features that allow users to

control the vessel. For instance, a LOS guidance system has already been implemented.

This means that it is possible to simply design a set of waypoints, and the ship will

generate a path and move along these by itself. There are also a set of manual controls

available.

s ims [0] . va l (’ manualControl ’ , ’UManual ’ , Des i r ed speed)

sims [0] . va l (’ manualControl ’ , ’ PsiManual ’ , Des i r ed head ing)

These are used to control the speed and heading of the vessel. The UManual command

simply sets the desired speed, while the PsiManual command takes a desired heading

reference. This reference is fed into a PID controller that minimises the error between the

desired and actual heading.

There are also features to simulate different types of environmental disturbances, as well

as traffic in the form of other vessels. In regards to environmental disturbances, there are

several settings which vary the intensity of the disturbance. These are as follows:

Degree of disturbance Low Medium High Extreme

Low Glassy Slight Very Rough

Medium Rippled Moderate High

High Smooth Rough Very high

Extreme Phenomenal

Table 4.1: Degrees of disturbance available organized by column

33

In regards to traffic, it is possible to insert other vessels that follow a given path. This

path can be chosen as desired or generated to purposefully intersect with the controlled

ship’s path. This feature can be utilised when designing collision avoidance to test how

a system reacts if another ship enters its path. In regards to the problem posed in this

thesis, it is interesting to see if the agent can learn to avoid other vessels by itself, given

it knows their position.

Figure 4.1: Simulation environment

34

4.3 Tensorflow

The neural networks utilised in this thesis was designed using Tensorflow, which is a

software library for building and deploying neural networks. It was originally created by

a division within Google called Google Brain Team [42] for internal use, but was later

released as a free open-source library. Using the library cuts down development time

significantly and makes tuning the architecture and variables much easier. Tensorflow

has also made neural networks far more accessible to the general public and has helped

companies and amateur developers create AI solutions since its launch. It is designed to

run on multiple CPUs, GPUs and mobile operating systems, and can be coded in several

coding languages.

Tensorflows main application is machine learning and Deep Neural Networks. It has a

C/C++ backend, which results in it running faster than if it utilised a python backend,

for instance. Tensorflow is also based on data flow graphs. A data flow graph has two

basic units, nodes and edges. The nodes represent a mathematical operation and the

edges represent the tensors, which are multidimensional arrays [42; 43].

When using the Tensorflow library to create a neural network one usually starts by cre-

ating a placeholder. A placeholder is a variable that will be assigned data at a later time.

These are created for the variables that we wish to feed into the nodes of the graph. The

user can then design the neural network architecture, create a session and run it to train

the network, with relevant input.

35

CHAPTER 5

DESIGN AND IMPLEMENTATION

Different strategies were implemented and tested in an attempt to solve the docking

problem presented in this thesis. This section will present the most significant strategies

implemented. Some of these strategies did not yield any results but were steppingstones

in order to get to a functional implementation. These strategies will also be presented in

this section along with the initial planned functionality and an explanation on why they

did not function.

The first strategy was based on Dyna Q-learning and involved the agent choosing way-

points for the LOS guidance to follow. The environment was first discretized into a grid

of 100x100 cells. Potential waypoints were then placed on the corners of each cell. The

agent was then given the option of choosing between the waypoints surrounding the ves-

sel, see Figure 5.1. After the choice was made the LOS guidance system would take over

and guide the vessel to the waypoint. When the vessel arrived at the chosen waypoint

the agent would choose a new waypoint, and so on.

The agent would be rewarded for reaching the goal area and penalized for hitting land.

In order to encourage the agent to find the most optimal path to the goal area, the agent

would also receive a small penalty for moving. Since the agent also had the option of

keeping the vessel still this also helped the agent to avoid getting stuck.

Due to the design of the LOS guidance system, it was necessary to generate a fake waypoint

to make the vessel move. This fake waypoint was simply a transposed point further away

from the chosen point. This was necessary due to the LOS system being designed to

move to the final waypoint extremely slowly. Creating a fake waypoint was an easy

36

Figure 5.1: First vessel movement based on agent interaction

way to circumvent the problem. The intent was for the vessel never to reach the fake

waypointpoint, as it would choose a new waypoint when the first, not the fake, waypoint

was reached.

Initially, the strategy seemed to function as intended. The vessel would move as desired,

and the transition between waypoints was done in a smooth fashion, without the vessel

alternating between slowing down and speeding up. An issue revealed itself after a signif-

icant amount of training however. Apparently, there was a chance that the vessel would

somehow miss the circle of acceptance for the desired point and simply proceed to the

fake waypoint before halting. The reason for this is believed to be the LOS systems circle

of acceptance being far larger than desired. Due to a conflict between the agent and the

LOS system, the LOS would regard the desired point as reached, while the agent would

not. At this stage of the project, the LOS guidance system was unavailable for users so

the circle of acceptance radius could not be changed so easily.

There was another issue with the training strategy implemented. The strategy at this

point was to simply allow the agent to move around until it found the goal area and see if

it converged to an optimal path. However, the goal area was placed in the docking space

itself which is extremely difficult to find, as can be seen in Figure 4.1. Though the agent

at some point would be able to find the goal area, this would take a very long time.

Since the LOS guidance system circle of acceptance could not be changed at this point

the strategy was abandoned. It was decided that a different approach was needed to avoid

the issue with the vessel passing the desired point. The training process also needed to

be reworked, as the current method was deemed to take to long, regardless of strategy.

The next implementation tried to avoid the first problem by simply not utilising the LOS

37

system at all

In the second implementation the agent would control the lower level controllers more

directly. The agent’s action set consisted of either moving forward, turning or standing

still. The state description was the position, heading, velocity vector and velocity vector

angle. The environment was again discretized into a grid world of 100x100. One move

forward would take the vessel from one square to the other. This was a simple way of

having to have the forward movement of the ship be relatively consistent. The turning

action would turn the vessel ten degrees either left or right, and the wait action would

have the ship stay in place.

Figure 5.2: Second vessel movement based on agent interaction

The agent was also changed from being a simple Dyna Q-learning agent to a Deep Q-

learning agent. The change was done in order to manage the significant increase of states.

It has been proven from other implementations that DQN has significant advantages when

working with large state spaces [30]. The network was implemented as a multi-layered,

fully connected dense network with tanh as an activation function. The state values

were normalized between minus one and one so no information would be lost when being

passed through the network. And so that no state variable would dominate the network.

Multiple network structures were tested on this implementation. The structures ranged

from two to three hidden layers, with various amount of nodes per layer. The longest

running training process that yielded the most promising results was with three hidden

layer with 50, 150 and 50 nodes respectively.

The training strategy also changed with this implementation. The idea was to divide the

testing into several scenarios and train the agent on them separately, This would reduce

training time significantly, as the goal areas could be made easier to find, and several

scenarios could be trained simultaneously. The underlying concept was based on that

38

proving that the agent could solve the scenarios separately, also proved that it could solve

them collectively.

Three core training scenarios were devised. The first scenario had the agent attempt to

take the vessel from outside the port area to close proximity to the port entrance, as

seen in Figure 5.3a. The second scenario continued from where the first scenario ended.

Placing the vessel in the entrance of the port and having the agent find its way to the

docking station, as seen in Figure 5.3b. The final scenario would be a repeat of the second

scenario, only now there would also be an enemy vessel trying to exit the port.

(a) Simple ”get to port” scenario (b) Getting to docking station scenario

Figure 5.3: Training scenarios

The second implementation was only tested on the first scenario in a significant degree

before being abandoned. While the implementation functioned as intended it was aban-

doned due to an issue with the simulator. After some 5000 episodes the agent had found

the correct general direction to move and had a goal vs failure hit-rate of 25%. Though

the results seemed somewhat promising, these 5000 episodes took close to one week to

complete. This was due to the fact that the simulator was not optimised for the purpose

of training deep neural networks.

Being a digital twin of the Revolt concept ship, the model was extremely mathematically

dense. The simulator also lacked any functionalities for speeding up the process. As such,

training the agent would take a significant amount of time. In an attempt to combat this

problem efforts were made to make the DQN agent more advanced, hoping this would

significantly speed up the training process. Fixed Q-targets, prioritized experience replay

(PER) and a double DQN strategy was implemented in an attempt to make the training

process go faster. However, the efforts did not have the desired effect.

Despite the issues with time constraint an effort was made to try and train the agent

on the second scenario as well, hoping this might go faster as the state space was much

smaller. At this point, the problem with non-convexity had not been thought of so the

39

agent was placed randomly around the port area at episode start and expected to find the

goal area. Due to the difficulty in finding the goal area the agent would for the most part

stand, or turn, in place in order to survive the longest amount of time. The agent never

got to the point of finding the goal area at a consistent rate. As such, the implementation

strategy was abandoned in order to figure out a way around the slow simulator problem

As running the vessel was such a slow process, the focus shifted to finding a strategy

that would prove DQN could solve the problem without simulating the actual vessel

movement. With this in mind, a new strategy was developed based somewhat on the first

implementation. If the agent was regarded as a high-level agent only, there was no need

to actually move the ship to make any decision. The agent could in fact simply design

actions the vessel should take, trusting that the LOS guidance system would be able to

execute the chosen action.

Based on the action set and potential waypoints from the first strategy, see Figure 5.1, the

agent would now choose a point, check if it was on land or not, then choose a new point

without the vessel moving. This way the agent would be able to learn the environment

and find the optimal actions, without simulating the vessel movement. Once this was

done, a path could be generated for the LOS guidance system to follow. The initial state

description for this strategy was the vessel position. However, it was realised that the agent

might benefit from having some information on where it was going and that this might

speed up training. The vector between the vessel position and the goal area was therefore

also added to the state description. The DQN agent from the second implementation,

which included PER, fixed Q-targets and double DQN, was kept for the remainder of the

thesis.

The strategy was tested on the three scenarios outlined earlier, and gave the most signif-

icant and promising results of all the tested strategies so far. The results themselves will

be expanded upon in the Chapter six. As the results were far better using this strategy

then any of the others, it was decided to focus on this strategy and try tuning the network

parameters and optimize the performance. The number of hidden layers, learning rate,

target network update rate and varying the information in the state description were all

tuned and tested.

The action set was also changed to try and incorporate the dynamics of the vessel. This

was done by first running a set of tests in the simulator to find the vessels turning radius,

speed up and stopping distance. These variables were then used to make it so that the

agent’s actions mimicked the behaviour of the vessel. When using this action set, the

vessel heading, and a variable expressing whether the vessel was moving or standing still

40

(moving), was included in the state description. This action set will be referred to as the

dynamic actions from here on.

(a) Turning motion while standing still (b) Transitioning: standing-moving

(c) Turning while moving

Figure 5.4: Dynamic actions explanation

The Figure 5.4 shows how the dynamic actions interact with the vessel. Note that in

Figure 5.4c and 5.4a, the red arrows indicate the heading of the vessel after executed

action. In Figure 5.4b, transitioning from stop to moving gives the same result as ”Move

Forward”.

In a sense, the vessel now had two different modes, moving and standing still. Depending

on the mode, the vessel would behave differently when a given action was executed. If

the vessel was standing still, moving = 0, the vessel would be able to turn in place and

could stand still if desired, see Figure 5.4a. If the vessel was moving, moving = 1, the

turning radius would be around 200meters for a full circle, see Figure 5.4c. Transitioning

from moving to standing still would take 50meters, and when moving forward the vessel

would move 100meters at a time, see Figure 5.4b.

A problem arose when trying to solve the second scenario. The agent seemed incapable

of finding the goal area consistently. This was most likely due to the complex nature of

the environment. It turned out that the agent could find its way to the designated goal

area as long as it did not start in the docking space next to the goal. When the agent

ended up here it would try to enter the goal area directly and crash into the land area

41

separating the two docking spaces.

Several different strategies were implemented to try and solve this issue. One such strategy

was to try and give the agent information on land areas as it discovered them. The agent

state description would be made far larger by adding multiple state descriptions initialized

at zero. The agent would then add the points it had crashed to the state description as

it discovered them, replacing the zeros. Adding the vector to all the points the agent

had crashed while exploring was also implemented and tested. However, none of these

methods yielded any significant improvements.

It was recognized that the non-convexity of the area was a problem. Though the agent

would in time learn to avoid the land area separating the two docking spaces, this would

take far longer than desired. The solution to the problem was to split the area into two

areas, which were as convex as possible, and train the agent on one first, before adding

the other.

Figure 5.5: More-convex training area

This was done by restricting the training area for the agent as shown in Figure 5.5. The

red line in Figure 5.5 separating the two parts can be thought of as a gate. At first,

the agent starts training in the first area, labelled Part one in the figure. When some

condition is fulfilled the gate opens. When this happens the agent starts each episode in

the second area, Part two, and has to find its way to the goal area. The condition that

needs to be fulfilled is designed to prove that the agent is sufficiently trained in the first

area. In this implementation, this was simply hitting the goal area 20 times in a row.

The neural network is able to remember what was learned in the first area when starting

in the second. This means that once the agent finds its way back into the first area it

already knows what to do. Hence the ”goal” in the second area can be regarded as getting

to the first area, rather than getting to the goal area.

42

During testing the DQN suggested in the paper by DeepMind [30] was also implemented.

This was done mainly to be used as a comparison for results, as this method is proven

to work well on similar problems. Using the skimage package for python, a screenshot

capturing the agent’s working environment was taken. This image was then cropped,

grayscaled and normalized before being passed to the network. The network itself was

changed to a convolutional network as outlined in the paper by Deepmind. The results

from this implementation can also be found in the section on Results.

43

CHAPTER 6

SIMULATION RESULTS

6.1 Introduction

The final strategy was tested on three different scenarios using two different action sets,

one based on the first strategy, see Figure 5.1, and one also taking the vessel dynamics

into account. These results were then recorded and will be presented and compared in

this section. These two types of action sets will be referred to as simple actions and

dynamic actions.

The agent is rewarded for hitting the goal area and penalized for hitting land or moving

out of bound. A small energy penalty was also added to keep the agent moving towards

the goal and incentivise it to find the optimal path. The wait action had a slightly lower

energy penalty associated with it. This way, the agent would be encouraged to wait in

place for traffic to pass instead of moving back and forth or turning in place. When using

the dynamic actions the agent would also receive a penalty for trying to execute actions

that were deemed unavailable. An example of this is trying to wait while moving = 1,

the agent would have to first stop, moving = 0, then wait, to avoid this penalty.

Hitting the goal area would not end the episode, however. To allow the agent to ac-

cumulate positive reward the agent had to hit the goal a set number of times before

the episode would end. Unless specified otherwise, the state description in the following

section consisted of the vessel position and the distance to the goal area when using the

simple actions. While the dynamic actions also included heading and the moving variable,

telling the agent whether it was moving or standing still. In Scenario three the enemy

44

vessel position was added. Note that these variables were also present in the first and

second scenario, however, they equalled zero as there were no traffic included.

In addition to presenting the accumulated goals versus failures and episode score graphs,

scenario three will include a series of images explaining the movement of the vessel. Only

Scenario three will present these images as Scenario two is the same problem, only sim-

plified, and the solution to Scenario one is sufficiently explained in Figure 5.3a. At the

tail-end of the thesis there was also time to run a few additional scenarios, these will be

presented briefly in the end of this chapter.

45

6.2 Scenario One

Scenario One: Simple Actions

The first scenario was solved with ease by the agent. The network in this scenario was

not very sophisticated, consisting of only a single hidden layer with 100 nodes using a

tanh activation function. however, the agent managed to find the goal area within a few

minutes and kept consistently hitting the goal from there, see Figure 6.1.

(a) Goals versus fails (b) Score

Figure 6.1: Results for first scenario with simple actions

Figure 6.1 also illustrates the learning process of the agent in the first 1000 episodes.

The score plot makes it clear that the agent quickly learns which actions improve the

accumulated reward, and reaches an average of around eight points per episode. It can

also be seen that there are some elements of exploration in the figure, especially around

episode 900. Here we see a dip in the accumulated score, most likely due to the agent

finding itself in a less explored area of the map. We can also observe that it bounces back

after a few episodes, as the score increase.

46

Scenario One: Dynamic Actions

When including the dynamics of the vessel the results were equally promising. In Figure

6.2 we can observe the results from the agent training in the first scenario. As shown in

the graph, the agent finds the goal state relatively fast and consistently steers the vessel

this way. There are some failures along the way and we see an uptick in fails at 400

episodes in the second run. This is not completely unexpected, however. With dynamic

actions, the agent is far more complex and the state space is also far larger. It is possible

that the dip we see is due to underfitting, as the network still only has a single hidden

layer with 100 nodes.

(a) First 500 runs (b) Second 500 runs

(c) Score for first and second run

Figure 6.2: First and second run the first scenario with dynamic actions

47

Scenario One: Revisit

As we will see when we get to the second scenario, the neural network structure had to

change to complete this part. It was therefore necessary to revisit the first scenario and

verify that the results were still valid. In this test the episode would end if the agent went

out of bound, hit land, or hit goal five times in secession.

(a) Goals versus fails simple actions (b) Score simple actions

(c) Goals versus fails dynamic actions (d) Score with dynamic actions

Figure 6.3: Results form first scenario using final network structure

As we can see in the results in Figure 6.3, the results are more or less the same this time

around. From the plots we can observe that the agent using the dynamic actions takes

longer to learn the environment, which is expected. It is also expected that the score

for the agent using the dynamic actions will surpass that of the agent using the simple

actions at some point. This is due to the fact that the dynamic action agent needs fewer

actions to find the goal. Therefore the agent accumulates less energy penalty. However,

the simulation was not run long enough to reflect this, as the results show in Figure 6.3

was deemed more than adequate.

48

6.3 Scenario Two

Scenario Two: Simple Actions

When applying the agent to the second scenario, things turned out to be a bit more diffi-

cult. This is where the non-convexity problem came into play, and the agent struggled to

find the goal area when starting in the docking area neighbouring the goal area. However,

this was solved by implementing the more-convex area separation outlined earlier and

shown in Figure 5.5. The following results are from using this training method.

(a) Goals versus fails without PER (b) Score without PER

(c) Goals versus fails with PER (d) Score with PER

Figure 6.4: Results for second scenario, with and without prioritized experience replay

(PER)

While testing this scenario multiple network structures were tested to see if an optimal one

could be found. The results shown in Figure 6.4 was generated using a network consisting

of three hidden layers of 64, 128 and 64 nodes respectively. The two first layers using relu

activation function and the final hidden layer using the tanh. This was the network that

yielded the best results in this scenario and is considered the final network structure for

49

a viable strategy.

As a test, the results are gathered both with and without prioritized experience replay

(PER). This was done in order to show the effect of PER and to solidify that the imple-

mentation was working as it should. Looking at the graphs in Figure 6.4 depicting goals

versus fails, we can see that in both cases the agent managed to hit the requirement and

unlock the second area at around 150 iterations. They then both need some time before

managing to find the way back to the goal area. However, when they do the agent with

PER enabled is far more reliable. This can be seen from how the amount of fails flat out

sooner and that the line representing the accumulated goals seems to be almost linear.

The PER agent also has less accumulated failures at the end of 1000 iterations.

The Score graphs depicted in Figure 6.4 tell a similar story. Here we can see that the

start is strikingly similar. Both agents creating a peak in accumulated points early on

before decreasing. Both agents also pick themselves up after this, however, the agent with

PER is far more stable. This is also despite the graph for the agent without PER being

longer, depicting 1000 more iterations than the graph for the PER agent. These results

prove not only that the agent is capable of solving the problem, but also that the PER

has added value for the DQN network and makes it a more efficient and reliable learner.

50

Scenario Two: Dynamic Actions

The results from adding the vessel dynamics can be seen in Figure 6.5. As we can

observe, the results show that the agent is learning as the score increases over time.

When compared to Figure 6.4 we can see that both the score graph and the goal graph

are somewhat more erratic. This is to be expected as the two differ a great deal when

regarding the size of the state space complexity.

(a) Goals versus fails (b) Score

Figure 6.5: Results for second scenario with vessel dynamics

The dynamic action set is far more complicated than the simple action set. Though

there are fewer actions that can be taken, they behave differently depending on whether

the vessel is moving or standing still. The actions also take the vessel further each time

they are executed. This means that the land areas are ”closer” to the agent, in a sense.

Because of this, the agent is more likely to hit land multiple times.

The action set has not only made the vessel movement more complicated, but also made

the state space far larger. The inclusion of the moving variable alone doubles the number

of states. Since we also take the vessel heading into account the state space increases

eight-fold. Though the DQN is fully capable of handling this amount of states, it is to be

expected that it would take more time to train the agent sufficiently

Even so, the plots suggest that the agent is learning and that both the goal graph and

score graph will stabilise. Note that the element of exploration never goes completely

away, as epsilon never goes lower than 0.1. This means that there will always be some

variation in regards to score, and that the agent still might fail at times due to random

actions.

51

6.4 Scenario Three

Scenario Three: Simple Actions

As mentioned, the final scenario was similar to the second scenario only including an

enemy vessel exiting the port area. This enemy vessel was designed to move at the same

speed as the agent vessel and would move in the reverse path as depicted in Figure 5.3b.

As this test was thought to be an extension of the second scenario, the network would

already be trained in the environment without the enemy present. In other words, the

network was first trained on the second scenario and once finished the enemy vessel was

added. The results can be seen in Figure 6.6

(a) Goals versus fails (b) Score

Figure 6.6: Results for third scenario with traffic

As we can observe from the plots, the agent did not seem to have too much trouble with

finding the solution. Note that the red line in this graph represents failures in general,

which also includes crashing. The blue line indicates which of these failures were collisions

with the enemy vessel. Initially, the agent both crashes into land areas and the enemy

vessel before figuring out what to do. The agent would most often crash with the enemy

around the narrow area separating Part one of the environment from Part two. This

leads to the agent thinking that this area has turned inaccessible. It then tries to find an

alternative way into the goal area, which accounts for most of the failures as there only

ever was one entrance. Eventually, though, it does learn the behaviour of the enemy ship

and waits until it has passed before moving to the goal area. This is reflected in both the

score plot and the accumulated goals.

52

Figure 6.7: Successful episode from third scenario with simple actions

Figure 6.7 shows the agent completing the scenario using the simple actions. The enemy

vessel movement is represented by the purple arrow, while the agent vessel is movement

is represented by the black arrow. Reading from the top, left to right, the enemy vessels

53

starts in the goal area and moves toward the port exit. The agent vessel starts directly

in the path of the enemy vessel in this instance, and must therefor move out of the way

to avoid collision. As we can see from the figure, the agent does just that. The agent can

also be observed choosing to wait, instead of moving, while the enemy passes. It then

moves directly to the goal area. These images were taken during the training process and

is only one example of a successful episode.

54

Scenario Three: Dynamic Actions

Finally, scenario three was repeated again with the dynamic actions. The network re-

mained unchanged, as did the strategy of first training the agent without the enemy and

then adding it. The results recorded can be seen in Figure 6.8. These results are some-

what surprising when compared to the results from the simple actions test, seen in Figure

6.6.

(a) Goals versus fails (b) Score

Figure 6.8: Results for third scenario with traffic and dynamic actions

It was expected that the agent would take longer to find the solution for the same reason

as in scenario two. The state space is larger and the actions are more complicated, making

the environment itself more complicated. Considering this, it was expected that the agent

would take longer to find the correct actions to the goal area and fail more often. It is also

expected that the agent would gain a higher total score with dynamic actions. This is due

to the agent moving further per action, so fewer actions need to be taken to get to the

goal area. However, both plots seem to suggest a far smoother transition from untrained

to trained. Both the accumulated goal line and the score graph are far smoother than

when the simple actions were applied.

Figure 6.9 shows an example where the agent finds its way to the goal area with traffic.

Again, reading from the top, left to right, the agent is the vessel standing still in the

first image. The enemy vessel can be seen moving away from the goal area, its movement

indicated by the purple arrow. We can observe that the agent waits until the enemy

vessel has passed before making its move. The agent vessel heading is indicated by the

red arrow, and the vessel movement is indicated by the black arrow. Note that the

simulated environment has no visualisation functionality unless actually simulating the

vessel movement. As such it is difficult to keep track of the vessel heading. At this point,

the agent is not fully trained, as the movement is not completely optimal.

55

Figure 6.9: Successful episode from third scenario with dynamic actions

Not always successful, Figure 6.10 shows the agent waiting for the enemy vessel to pass in

the wrong position, early in the training process. This results in a crash with the enemy

vessel exiting the port. The red circle shows the area around the enemy vessel which

constitutes a crash. If the agent exists inside this circle, it counts as hitting the enemy

vessel. Another common failure was the agent waiting for the enemy to pass in a safe

position, but close to the land area. When this was the case, exploration would kick in

from time to time and send the vessel into the land area.

Figure 6.10: Crash from early training

56

Resulting Network and Variables

Variables

a 0.7 Priority scale

tau 0.01 Target network update rate

gamma 0.97 Discount rate

alpha 0.001 Learning rate

epsilon max = 1.0, min = 0.1 Exploration rate

epsilon decay 0.99 Exploration decay rate

Reward: goal 2 Reward for finding goal

Reward: fail -1 Reward for failing

Reward: invalid -2 Reward for trying invalid action

Reward: energy -0.001 Energy reward

Reward: waiting -0.0009 Energy reward for waiting

Network

hidden1 64 First hidden layer: Activation=tanh

hidden2 128 Second hidden layer: Activation=tanh

hidden3 64 Third hidden layer: Activation=ReLU

output action size output layer: Activation=None

buffer 100000 Memory buffer length

batch size 120 Memory sampling size

Table 6.1: Neural network variables used in the final implementation

57

6.5 Supplementary Implementations

DeepMind DQN Implementation

As mentioned, the DQN DeepMind outlined in the paper by DeepMind [30] was also

tested. There was interest in exploring how well this method would do, and use the results

as a comparison for the results gathered in this thesis. The main difference between the

strategy suggested in this thesis and the one implemented by DeepMind is the use of

state description. The goal of this thesis was to find a solution using only information

that could be gathered locally from a vessel. This differs from the DeepMind DQN which

uses the pixel values from a screen as state descriptions. The results from the test can

be seen in Figure 6.11. These results are from running the strategy implemented on the

second scenario.

(a) Goals versus fails (b) Score

Figure 6.11: Results for DeepMind implementation

There are some differences in the method outlined in DeepMinds paper and what was

implemented here. The DQN strategy from DeepMind did not include double DQN or

PER, while this implementation does. Apart from this the tuning parameters, reward

function and state description are practically the same. By examining the results we can

see that the agent unlocked the ”gate” after around 200 episodes. This is comparable to

the method suggested in this thesis, which also unlocked the second area in around the

same amount of episodes. However, after this, the method seems to struggle.

It is not until after another 600 episodes that the agent seems to find its way back to the

goal area. And even when doing so, the increase in accumulated goals is slow. Comparing

the result here to the results in Figures 6.4 and 6.5 we can see a drastic difference. The

results seen in these figures had almost a linear growth in accumulated goals after 400

58

iterations. Though this is not completely unexpected, as the state description is far larger

in the DeepMind network. Due to this, training it from scratch would take some time. It

was however expected that this network would work better considering previous results

presented by the DeepMind network. Though, the DeepMind networks main strength

would be its versatility, as it can be applied to any similar problem as long as there is a

depiction of the environment, and not its effectiveness in this specific problem.

59

Full Environment Guidance

Though this thesis had some time restrictions, there was time for some supplementary

testing of the agent. This section contains the results from testing the DQN agent on

two extra scenarios. The first supplementary test was testing the agent on the entire

environment using the dynamic actions. This test was an extension of the second scenario,

only that the agent would add the exterior port area when sufficiently trained inside the

port. This effectively proves that the agent is capable of finding its way through the entire

environment and solve the guidance part of the problem in its entirety.

(a) Goals versus fails (b) Score

Figure 6.12: Results from supplementary scenario with full environment and dynamic

actions

As we see from the plots shown in Figure 6.12a, the agent has some issues when the final

part of the environment was added. This area is rather large and the agent struggled for

some time before finding its way back to the port. The score graph shown in Figure 6.12a

also reflects this. We can observe that the agent has collected a large amount of negative

reward during the exploration. This is most likely due to trying to use invalid actions,

like waiting while moving, which gives a larger negative reward. However, this will only

improve over time, as the graphs show that the agent is solving the environment. The

Figure 6.13 shows the agent starting outside the port, close to the island. It then proceeds

to find its way in to the goal area.

60

Figure 6.13: Supplementary scenario with full environment and dynamic actions

61

River Guidance

In the second supplementary scenario, scenario two was again expanded. Only this time

the agent had to find its way to the goal by navigating the narrow ”river” area next to

the port. This was done to see if the agent was capable of navigating difficult, narrow

spaces. In this test the simple actions and the dynamic actions where used. Figure 6.15

shows the agent finding the path from the river to the goal area using the simple actions.

(a) Goals versus fails, simple actions (b) Score, simple actions

(c) Goals versus fails, dynamic actions (d) Score, dynamic actions

Figure 6.14: Results from supplementary river test

From the plots depicting in Figure 6.14 the results using the dynamic actions we can

observe that the agent struggled quite a bit. The plots show that the first two areas were

solved easily by the agent, using no more episodes than with the simple actions. When

solving the final river area, however, the agent struggles for a long time before finding the

goal area. As the river part is rather narrow the agent has problems moving through using

the dynamic actions, as these actions move the agent further then the simple actions do.

The agent does solve the environment eventually, and we can observe that once it does it

finds the goal consistently from that point on.

62

Figure 6.15: Supplementary river test using simple actions

63

CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Challenges

When designing and implementing any reinforcement learning solution there will always

be challenges along the way, and this thesis was no exception. Several of the attempted

solutions to solve the presented problem did not yield any results. Designing and im-

plementing solutions only to see them fail can often be disheartening. It is important to

remember, however, that there is also much to learn from failure. This section will discuss

some of the challenges faced in this thesis.

One major challenge which is always present in RL problems is the state description,

or, how does one describe the states to the agent in an effective manner? In the paper

by DeepMind [30] the pixel values of the screen as used as the state description. This

way, all information is afforded to the agent. If we look at the problem presented in this

thesis, then using the pixel values from the simulator gives the agent information on land,

obstacles, traffic, the controlled vessel and the goal area all at the same time. But how can

we know that all this information is useful? By inspecting the results from the suggested

network in this thesis and comparing it with the DeepMind network, it is clear that all

this information is not necessary to solve the problem. This is something that will always

be difficult to figure out, and something all RL applications must deal with.

When designing a reinforcement learning solution there is also the very challenging task

of tuning all the variables. In addition to this, when using DQN, the network structure

also needs some tuning. In this application, the tuning variables were the learning rate,

64

discount rate, update frequency for the target network, priority scale, step-size and reward

function to name a few. In regards to the network structure, the number of hidden layers

and the number of nodes per hidden layer also needs to be tuned.

It is often said that designing a neural network is more art than science. This is due to the

fact that there does not seem to be any general rules for how many hidden layers or nodes

one should have. These variables are all tuned based on experience, which makes this

an extra long process when sufficient experience is lacking. Another design challenge was

designing how the agent should interact with the environment. As shown in the sections

on design and implementation, multiple different interaction strategies were tested. This

was done both in regards to the controller level of the agent and what the actions afforded

to the agent would do. Some of these did not pan out due to design flaws and others

suffered from lacking functionalities in the simulator

The simulator provided by DNV GL is indeed an extremely powerful tool. The accuracy

of the model allows the agent to be tested on near identical conditions as in a test with

a physical system. This advantage can not be understated, as an agent trained in the

simulated environment could likely be directly transferred to a physical test, and do just

as well at any given task. However, it turns out that the simulator lacks the ability to

run fast enough to be used to train RL agents. This is likely due to the fact that it was

not created with this in mind.

This became a huge problem for any implementation that relied on actually simulating

the vessel movement. The second implementation was one such strategy that was not

feasible as it would take to long to train the agent. Since the agent was controlling the

vessel at a lower level, it would naturally have to simulate the vessel movement. This

implementation was one that had great initial expectations tied too it. Certain that the

agent would be able to learn to control the vessel. The plan was to test the agent with

multiple enemy vessels and environmental disturbances to prove that DQN could be a

very powerful tool for increasing autonomy in marine vessels. Sadly this never happened

as the agent was never able to complete its training. It is, however, a firm belief that this

method will work if given an environment that can sufficiently train the agent within a

realistic time frame.

As the second implementation did not turn out as intended due to the slow simulation

speed. There was probably far too much time spent on trying to get this implementation

to work. Though this lead to the implementation of fixed Q-targets, double DQN, PER

and a lot was learned concerning GPU compatibility, time might have been better spent

focusing elsewhere. For instance, if the focus had been on trying to implement a simpler

65

model that could be simulated at a faster rate the strategy might have worked.

66

7.2 Concerning Results

The results presented at the end of this thesis do indeed show that DQN has merit as a

high-level decision support system. It is able to solve the outlined scenarios with relative

ease and displays intelligence decision making capabilities while doing so. It shows this

by understanding that it has to wait for the the enemy vessel to pass in scenario three.

However, there are some criticisms that can be directed toward these results. Firstly, the

agent is never showed to be able to handle the problem in its entirety. The fact that it

can solve different scenarios does not prove that is can solve all when put together.

This is a valid critique of the suggested strategy. The agent has not been shown solving

the entire environment with traffic. This is, however, heavily implied by the results. The

fact is that DQN has solved far more complex problems in the past, so the one presented

here should not pose any issue. In addition, the amount of training time needed to solve

the three scenarios is minimal. Compared to other DQN implementations on different

systems, solving these scenarios in under a thousand episodes is quite impressive. Though

solving the entire problem might take longer in regards to training, the results and history

of DQN point to it being possible. The way this would be done would be to expand the

use of the more-convex area segregation introduced.

After training on the first two parts of the map the outside area would be added. The

vessel would then start in this area and find its way back to the goal area. This is precisely

how the supplementary scenario containing the full environment was done, and the agent

proved that it could solve this with ease. The next step would be to add traffic to the

environment and apply the trained agent. Another valid critique is that this strategy

places a lot of trust in the lower level controllers.

There is no denying that this is the case. As the agent is designed to be a high-level

decision support system, it has complete trust in the lower level controllers. This also

means that the agent has no way of compensating for any environmental disturbances.

As such, the agent does not take into consideration whether the actions found is at all

feasible for the vessel to execute, as it can not account for environmental disturbances.

However, a high-level decision support system is just that, high-level. It would have to

trust that the lower level controllers would be able to correct for disturbances and execute

a given action. Taking the ship dynamics into account while choosing the actions also

prevents the agent from asking the vessel to take actions that would be impossible.

It might, however, be the case that some actions are initially feasible, but becomes in-

67

feasible due to disturbances alone. The current strategy does not take this into account.

It might be a good idea for the agent to test the optimal policy once found and see if

the vessel is able to execute all the actions given by the agent. The agent could then be

given a reward dependant on the performance of the vessel. If the vessel hits land due to

environmental disturbances, this might prompt the agent to guide the vessel further from

land to compensate, for instance. This functionality does not exist as of now, but it is a

great idea for a future extension.

Another critique could be that the agent action set is rather simplistic. And this is true,

even when using dynamic actions. It is important to remember, however, that these

actions are in a sense only placeholders. In an expanded implementation the action set

would indeed be more complicated. The wait function would, for example, be replaced

with a dynamic positioning controller that would keep the ship stationary for a set amount

of time. Since the agent is able to solve these scenarios with two different actions sets

which behave very differently, it is implied that how the actions move the vessel is not

a deciding factor. As long as the agent is given actions that make it possible for it to

solve the problem, it will be able to do so. It is, however, not recommended to make

these actions needlessly complicated. This would only serve to increase training time and

possibly necessitate expanding the network structure.

The results also suffer from the same problem as most DNN implementations in regards

to explainability. These scenarios are very clear in what the proper action is, as the

scenarios were designed to have clearly distinct optimal actions. This was done in order

to more easily prove that the agent was, in fact, acting in a correct fashion. However, this

is not always the case, proving what factors have the greatest influence over the agent’s

choices is not an easy task. Adding some form of explainability to the algorithm would

certainly be an improvement. This especially since the strategy is meant to be utilized

on a physical system.

A design choice made in this thesis was to try and solve the problem using only information

that could be gathered locally on the vessel itself. The main argument for this choice was

that it would avoid the need for a graphical interface. If the DQN algorithm by DeepMind

was to be implemented directly it would be necessary to have a graphical interface for

each port area. This interface would also have to include enemy vessels and obstacles.

Creating such an interface seemed like a tedious process, that could be avoided by using

local information. It is assumed that the agent would have access to its own position,

heading and speed. It was also assumed that the agent would be able to receive the

positional information of any enemy vessels. As well as knowing the position of the

68

designated docking area, or goal area.

It is not unrealistic that the vessel would have access to this information when close to

the port area. This is proven by the existence of cellphone applications, like ”Gule sider

p̊a sjøen”, that are able to position the phone in a port area with ease. If sending and

receiving GPS locations is possible on such a small device. It is fair to assume that a large

vessel could be equipped to do the same. One might argue that GPS positions are not

always correct and can be subject to drift. However, this can be countered by creating

an area around obstacles. Punishing the agent for getting to close to land or an enemy

vessel instead of hitting them would give a safe distance for the vessel to operate within.

69

7.3 Future Work

Despite the positive nature of the results presented in this thesis, there is always room

for improvement. Some possible expansions have already been mentioned in the previous

discussion. This section will present some ideas on what could be improved in a potential

continuation of the research presented in this thesis.

It was mentioned earlier that the agent has no way to correct for environmental distur-

bances. Even though the agent does take the vessel dynamics into account, this does not

guarantee that a suggested policy is feasible. The policy might lead the vessel close to

land, where environmental disturbances could make the vessel ground, for instance. It

would probably be a good idea to give the agent some way to take this into account. This

could be done by adding a function for testing the policy once found. The agent could

then perhaps be rewarded based on the vessel performance. This would make the entire

system more robust, and also allow the agent to possibly correct for poor LOS guidance

design to some degree.

There is also an issue with the current strategy that it does not have any way of knowing

when the problem is solved. Say the agent is done exploring the environment and has

found the goal area. When do we decide that the agent is sufficiently trained? The

current implementation does not have any functionality do decide this. It would be useful

if there was a way for the agent to know that it was done training. It could then turn off

exploration entirely and be ready to complete the task in a real scenario. This could be

that the agent successfully reaches the goal a number of times in succession. Or perhaps

that the agent reaches the goal in a given number of actions, or achieves a given amount of

accumulated reward. Whatever the case, this would be a great expansion on the suggested

strategy.

Though the results show that the agent is able to make intelligent decisions in regards

to avoiding traffic. There was not enough time to test this aspect exhaustively. It might

be a good idea to test the entire problem, from outside port to the docking area, with

more traffic. This would reveal the limit of what the agent can keep track of. It might be

that the agent would have trouble navigating a port if there are too many enemy vessels

around. In this case, the agent might need to prioritise which vessels to keep track of.

This might be based on only vessels within a certain range, for instance, or enemy vessels

heading. Taking the enemy vessel heading into account, one could decide to only consider

vessels that might intersect with the given path from the agent.

70

Explainability is also something that has been touched on in this thesis. As of now,

there are no elements of explainability present in the final implementation. This is not

a particularly important issue for the purpose of this thesis. However, if this strategy

is to be implemented and utilized successfully we need to be able to trust the system.

Implementing an element of explainability would greatly improve the trust in the system,

and is a worthy pursuit for future research. LIME [44] is one such algorithm that was

researched at the tail end of this thesis, however, there was not enough time to implement

this solution.

71

7.4 Conclusion

This thesis explored the possibility of using RL methods as a high-level decision support

system for a marine vessel. The vessel was set in a ”close to port” scenario, and the agents

goal was choosing the correct actions in order to guide a vessel to a designated docking

area. This was completed using a DQN network to choose actions, make intelligent

decisions and design an optimal policy to guide the vessel. The agent also takes the

dynamics of the vessel into account when choosing actions, increasing the probability

that the policy is feasible for the lower level controllers to execute.

The neural network structure suggested in this thesis consists of an input layer, three

hidden layers and an output layer, which are all dense. The hidden layers have 64, 128

and 64 nodes respectively. As for the activation function, the two first layers use ReLU and

the final layer uses tanh. Input information given to the network was the vessel position,

distance to goal and enemy vessel position for the simple actions, with heading and moving

variables added for the dynamic actions. These values were normalized between zero and

five before being passed to the network. The output of the network corresponded to the

Q-value of the different actions the agent could take.

The agent was be rewarded for finding the goal area and penalized for hitting land or

colliding with an enemy vessel. While using the dynamic actions the agent would also

be penalized for trying to use actions not available when moving. In addition to this,

there would be a small energy penalty given to the agent for every action. This would

encourage the agent to find the fastest way to the goal.

In order for the agent to learn complex, non-convex areas at a faster rate a training

strategy was developed. This training strategy was based on dividing the environment

into as convex areas as possible. The agent starts training in the area containing the goal

first. When sufficiently trained, a new area is added and the agent starts training from

here. The goal would then be to find its way back to the goal area, from the new area.

The results gathered shows that the agent is able to find its way through highly complex,

non-convex areas. In addition to this, the agent is also shown to be capable of making

intelligent decisions. Despite the weaknesses discussed, the suggested strategy shows the

potential of RL method being implemented on such a system. It also lays a powerful

foundation that can be improved upon in future research.

72

BIBLIOGRAPHY

[1] M. Birdsall, “Google and ITE : the road ahead for self-driving cars,” ITE Journal

(Institute of Transportation Engineers), vol. 84, no. 5, pp. 36–39, 2014.

[2] M. Dikmen and C. M. Burns, “Autonomous Driving in the Real World: Experience

with Tesla Autopilot and Summon,” in 8th International Conference on Automo-

tive User Interfaces and Interactive Vehicular Applications, (Ann Arbor, MI, USA),

pp. 225–228, Association for Computing Machinery (ACM), 1 2017.

[3] K. B. Ånonsen and O. K. Hagen, “The HUGIN AUV Terrain Navigation Module,”

tech. rep., Kongsberg Maritime Subsea, FFI, Horten, Kjeller, 2013.

[4] A. B. Martinsen, End-to-end training for path following and control of marine vehi-

cles. PhD thesis, NTNU, 2018.

[5] A. B. Martinsen and A. M. Lekkas, “Straight-Path Following for Underactuated

Marine Vessels using Deep Reinforcement Learning,” IFAC-PapersOnLine, vol. 51,

no. 29, pp. 329–334, 2018.

[6] A. B. Martinsen and A. M. Lekkas, “Curved Path Following with Deep Reinforce-

ment Learning: Results from Three Vessel Models,” in OCEANS 2018 MTS/IEEE

Charleston, OCEAN 2018, (n.l), Institute of Electrical and Electronics Engineers

Inc., 1 2019.

[7] S. Haiqing and G. Chen, “path following control of underactuated ships using actor-

critic reinforcement learning with mlp neural network,” tech. rep., Dalian Maritime

University, Dalian, China, 2016.

[8] B. Yoo and J. Kim, “Path optimization for marine vehicles in ocean currents using

73

reinforcement learning,” Journal of Marine Science and Technology, vol. 21, pp. 335–

343, 2015.

[9] M. Carreras, J. Batlle, and P. Ridao, “Hybrid coordination of reinforcement learning-

based behaviors for AUV control,” in Proceedings 2001 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics

in the the Next Millennium (Cat. No.01CH37180), (Maui, Hawaii, USA), pp. 1410–

1415, 2001.

[10] M. Carreras, J. Yuh, J. Batlle, and P. Ridao, “A Behavior-Based Scheme Using

Reinforcement Learning for Autonomous Underwater Vehicles,” IEEE Journal of

Oceanic Engineering, vol. 30, pp. 416–427, 4 2005.

[11] Z. Yin, W. He, C. Sun, G. Li, and C. Yang, “Adaptive Control of a Marine Ves-

sel Based on Reinforcement Learning,” in The 37th Chinese Control Conference,

(Wuhan, China), pp. 2735–2740, 2018.

[12] K. Ishii and T. Ura, “An adaptive neural-net controller system for an underwater

vehicle,” in Control Engineering Practice, pp. 177–184, Pergamon, 2000.

[13] I. Carlucho, M. De Paula, S. Wang, Y. Petillot, and G. G. Acosta, “Adaptive low-

level control of autonomous underwater vehicles using deep reinforcement learning,”

Robotics and Autonomous Systems, pp. 72–86, 2018.

[14] R. Cui, C. Yang, Y. Li, and S. Sharma, “Adaptive Neural Network Control of AUVs

with Control Input Nonlinearities Using Reinforcement Learning,” IEEE Transac-

tions on Systems, Man, and Cybernetics: Systems, vol. 47, pp. 1019–1029, 6 2017.

[15] Y. Cheng and W. Zhang, “Concise deep reinforcement learning obstacle avoidance

for underactuated unmanned marine vessels,” Neurocomputing, pp. 63–73, 2018.

[16] Q. Xu, Y. Yang, C. Zhang, and L. Zhang, “Deep Convolutional Neural Network-

Based Autonomous Marine Vehicle Maneuver,” International Journal of Fuzzy Sys-

tems, vol. 20, pp. 688–699, 2017.

[17] R. Zhang, P. Tang, Y. Su, X. Li, G. Yang, and C. Shi, “An adaptive obstacle avoid-

ance algorithm for unmanned surface vehicle in complicated marine environments,”

IEEE/CAA Journal of Automatica Sinica, vol. 1, pp. 385–396, 10 2014.

[18] Y. Shen, N. Zhao, M. Xia, and X. Du, “A Deep Q-Learning Network for Ship Stowage

Planning Problem,” Polish Maritime Research, vol. 24, pp. 102–109, 11 2017.

[19] W. He, Z. Yin, and C. Sun, “Adaptive Neural Network Control of a Marine Vessel

74

with Constraints Using the Asymmetric Barrier Lyapunov Function,” IEEE Trans-

actions on Cybernetics, vol. 47, pp. 1641–1651, 7 2017.

[20] DNV GL, “The ReVolt - DNV GL,” https://www.dnvgl.com/technology-

innovation/revolt/index.html.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT

press, seconed ed., 2018.

[22] Y. Shi, C. Shen, H. Fang, and H. Li, “Advanced Control in Marine Mechatronic

Systems: A Survey,” IEEE/ASME Transactions on Mechatronics, vol. 22, pp. 1121–

1131, 6 2017.

[23] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing exploration strategies

for Q-learning in random stochastic mazes,” in 2016 IEEE Symposium Series on

Computational Intelligence, SSCI 2016, (n.l), University of Groningen, Technical

University Eindhoven, Institute of Electrical and Electronics Engineers Inc., 2 2016.

[24] S. B. Thrun, “Efficient Exploration In Reinforcement Learning,” tech. rep., Carnenie-

Mellon University, Pittsburgh, Pennsylvania, 1992.

[25] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[26] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,”

tech. rep., Google Brain, 10 2017.

[27] C. Oberndorfer, Research on new Artificial Intelligence based Path Planning Algo-

rithms with Focus on Autonomous Driving. PhD thesis, University of Applied Science

Munich, 2017.

[28] P. J. Werbos, “Generalization of Backpropagation with Application to a Recurrent

Gas Market Model,” tech. rep., U.S Department of Energy, 1988.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” tech. rep., Deep-

Mind Technologies, 2013.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-

abis, “Human-level control through deep reinforcement learning.,” Nature, vol. 518,

no. 7540, pp. 529–33, 2015.

75

[31] S. Patel and J. Pingel, “Introduction to Deep Learning: What Are Convolutional

Neural Networks? Video - MATLAB,” 2017.

[32] Ø. H. Gulbrandsen, AI Planning and Low-Level Control for a Robotic Manipulator.

PhD thesis, NTNU, 2018.

[33] H. V. Hasselt, “Double Q-learning,” in Advances in Neural Information Processing

Systems 23 (J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and

A. Culotta, eds.), pp. 2613–2621, Curran Associates, Inc., 2010.

[34] Z. Wang, T. Schaul, M. Hessel, and M. Lanctot, “Dueling Network Architectures for

Deep Reinforcement Learning,” tech. rep., Google Deepmind, London, UK, 2016.

[35] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience Replay,”

tech. rep., Google DeepMind, 2015.

[36] B. Foss and T. A. N. Heirung, “Merging Optimization and Control,” tech. rep.,

NTNU, Trondheim, 2016.

[37] D. Gunning, “Explainable Artificial Intelligence,” 2016.

[38] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”: Explaining

the Predictions of Any Classifier,” tech. rep., University of Washington, Seattle, USA,

2016.

[39] T. I. Fossen, M. Breivik, and R. Skjetne, “Line-of-sight path following of underactu-

ated marine craft,” tech. rep., NTNU, Trondheim, 2003.

[40] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. Trond-

heim: John Wiley & sons,Ltd, first ed., 2014.

[41] H. L. Alfheim, K. Muggerud, M. Breivik, E. F. Brekke, E. Eide, and Ø. Engelhardt-

sen, “Development of a Dynamic Positioning System for the ReVolt Model Ship,”

IFAC-PapersOnLine, vol. 51, no. 29, pp. 116–121, 2018.

[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, and G. Research, “TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems,” tech. rep.,

Google Research, n.l, 2015.

76

[43] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,

B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, and

G. Brain, “TensorFlow: A system for large-scale machine learning,” tech. rep., Google

Brain, Savannah, GA, USA, 2016.

[44] M. Stiffler, A. Hudler, E. Lee, D. Braines, D. Mott, and D. Harborne, “An Analysis

of Reliability Using LIME with Deep Learning Models,” tech. rep., USA military

academy, IBM research, Cardiff University, Cardiff, UK, 2018.

77

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Espen Eilertsen

High-level Action Planning for Marine
Vessels Using Reinforcement
Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas

June 2019

