
D
. Langer

Im
age registration and georeferencing w

ith snapshot cam
era for the H

YP
SO

 m
ission

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s 
th

es
is

Dennis Langer

Image registration and
georeferencing with snapshot camera
for the HYPSO mission

Master’s thesis in Industrial Cybernetics
Supervisor: Tor Arne Johansen

June 2019





Dennis Langer

Image registration and georeferencing
with snapshot camera for the HYPSO
mission

Master’s thesis in Industrial Cybernetics
Supervisor: Tor Arne Johansen
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Abstract
This thesis concerns three different, but related topics. Image registration and

georeferencing of push broom satellite images, and a snapshot camera satellite payload.
Image registration and georeferencing techniques are discussed. A geometric-direct

registration and georeferencing method is chosen and an algorithm to implement it has
been theorized and implemented in MATLAB. It was tested in simulations where it was
shown to work well. Arguments for use of a snapshot camera are collected and discussed.

A snapshot camera service has been implemented as module to an existing software
framework on the target hardware and successfully taken into use.
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Cover page figure contains a processed satellite image from ESA’s Sentinel-2A satellite
and shows a plankton bloom in the Barents Sea.
Credit: ESA/Sentinel-2A - CC BY-SA IGO 3.0
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Sammendrag
Denne masteroppgaven omhandler tre forskjellige, men beslektede temaer. Bilde

registrering og georeferering av push broom satellitt bilder, og et snapshot kamera
satellitt nyttelast. Bilde registrerings og georeferings metoder er diskutert. Et

geometrisk-direkte registrering og georeferering metode er valgt og en algoritme for
implementasjon har blitt utarbeided. Den har blitt implementert i MATLAB. Algoritmen
har blitt testet i simuleringer, der det ble vist at algoritmen fungerer bra. Argumenter for

et snapshot kamera er sammlet og diskutert. Et snapshot kamera tjeneste har blitt
implementert i et eksisterende programmvare rammeverk p̊a mål-hardware og suksessfult

tatt i bruk.
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Preface

This is a masters thesis written as part of the Small Satellite Laboratory at the Norwegian
University of Science and Technology, on its first satellite mission, HYPSO. The thesis
is about three different, but related areas, registration of push broom satellite images,
georeferencing them, and work on a small industrial snapshot camera as secondary satellite
payload which can aid the other two topics. The work was done during the spring semester
2019 and is not based on a previous specialization project.

Image registration and georeferencing is based on and related to a number of different
disciplines, ranging from optics and remote sensing to image processing, geodesy and even
a bit astronomy and orbital mechanics. Additionally, the part about the snapshot camera
required some knowledge about development for embedded systems. The topic was very
specialized and had little overlap with any of the courses I took during my three years
at NTNU. No one told me specifically what to do beyond the topic name, and it was
interesting to learn a bit about everything on this very interdisciplinary project.

I would like to thank my supervisor Tor Arne Johansen for guidance on writing, Sivert
Bakken for pointer to material I should look at, Magne Hov for help getting my C code
running on the embedded hardware. Thanks to Joseph Garrett discussing some aspects
of the algorithm with me. He also used parts of the registration algorithm to improve his
superresolution algorithm and wrote a paper about it [1].
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Chapter 1

Introduction

The NTNU Small Satellite Laboratory plans to build a satellite containing a push broom
hyperspectral camera to image the ocean surface and detect targets with a specific spectral
signature to support ocean dependent industry like fish farms and to support ground based
operations.

The NTNU Small Satellite Laboratory (SmallSat Lab) is a satellite program established
through a collaboration of NTNU AMOS, the Department of Engineering Cybernetics and
the Department of Electronic Systems at NTNU. Its purpose is to build satellites for the
AMOS project Mission-oriented autonomous systems with small satellites for maritime
sensing, surveillance and communication (MASSIVE).

1.1 HYPSO Mission

The HYPSO Mission is about building and operating the first satellite that is being build
by the NTNU SmallSatLab. HYPSO is an acronym for Hyperspectral Satellite for Ocean
Observation. The main payload of the HYPSO satellite is designed to take hyperspectral
images of the ocean, with the purpose of achieving scientific goals for oceanography, by
imaging and detecting among other things algal blooms, plankton and pollution and pro-
viding operational data that aid other robotic platforms in more detailed, in-situ sampling
and analysis of these things.

The Satellite is a 6U CubeSat and is planned to be launched into a sun-synchronous circular
polar orbit with an altitude of 500km. The launch date is planned to be in Q3 2020. The
main focus points of the design at NTNU SmallSatLab are processing of the hyperspectral
data, camera calibration and mechanical design of the optics and payloads. The satellite’s
non-payload subsystems e.g. frame, communication, thermal control, electrical power,
housekeeping and attitude control system, are all part of a satellite bus system delivered
by Nano Avionics [2].

1



CHAPTER 1. INTRODUCTION

1.1.1 CubeSats

CubeSat is short for cube satellite. It is a satellite following the CubeSat standard, which
defines among other things, size and mass of the satellite. In particular, the standard
defines the smallest type of CubeSat to be a cube of 10cm by 10cm by 10cm and at most
1.33kg [3]. Such a satellite cube is called a 1U CubeSat, one Unit. The larger versions
have dimensions and mass of stacks of 1U CubeSats, for example a 2U CubeSat is 10cm by
10cm by 20cm with a mass of at most 2.66kg, a 3U CubeSat is 10cm by 10cm by 30cm with
a mass of at most 4kg. The dimensions of the HYPSO satellite are 6U, which is 20cm by
10cm by 30cm, the size of two 3U CubeSats side by side, see Figure 1.1. The 6U CubeSat
specification has its own document [4]. It specifies the maximum mass to be 12kg, which
is 4kg more than the maximum mass of two separate 3U CubeSats. The HYPSO CubeSat
is expected to have a mass of less than 8kg.

CubeSats are launched from a small deployer called Poly Picosatellite Orbital Deployer
(P-POD), designed to be able to contain multiple CubeSats of different sizes in different
combinations during launch and separate them from the carrier rocket.

30 cm

10 cm

20 cm

Figure 1.1: The three components of the cubesat geometry. Body (yellow), Rails (gray)
and Access Ports (green). Figure from [4]

1.1.2 Satellite imaging systems

There are essentially three types of imaging systems which capture light in the range from
infrared to gamma. These are ’whisk broom’ scanning systems, ’push broom’ scanning
systems and framing systems. The whisk broom scanning system has a single detector and
it has to scan pixel by pixel to build an image. Scanning is the process of doing repeated

2



1.1. HYPSO MISSION

measurements of different areas over time. It is done along two orthogonal directions,
usually along track and across track. Along track is the direction parallel to the satellite’s
orbit motion and across track is the direction perpendicular to it.Some of the detectors on
the Landsat satellites are whisk broom sensors [5]. In their design, the satellite’s orbital
motion does the along track scanning and a rotating mirror does the across track scan-
ning. Push broom scanning systems are equipped with a linear array of detectors, thereby
eliminating the need for cross track scanning. An image is built one line at a time, usually
by scanning along track. Framing systems are equipped with a 2D array of detectors (area
detector array) and capture an image without the need for scanning, an image is built
instantly.

1.1.3 Hyperspectral imagers

Independent from the previous three types of image capture architecture, single optical
detectors can be classified into three types as well: Monochrome, multispectral and hy-
perspectral. They lie on a continuum, with monochromatic and hyperspectral at the
boundaries and multispectral in between. A monochrome detector is sensitive for a range
of wavelengths in some part of the electromagnetic spectrum and produces one value per
pixel, representing light intensity. A multispectral detector produces multiple values cor-
responding to different parts of the electromagnetic spectrum. These values are called
channels. A multispectral detector can be build from multiple monochrome detectors,
each sensitive to a different wavelength range. An example of a multispectral detector is a
RGB camera contained within every smart phone today. A RGB camera has three channels
per pixel, one corresponding to red wavelengths, one corresponding to green wavelength
and one corresponding to blue wavelengths. Different multispectral camera systems can
also contain channels corresponding to near infrared, infrared, ultraviolet or x-ray. With a
hyperspectral camera, the number of channels are so numerous so that the spectral dimen-
sion of an image can be considered continuous. The resulting data from a hyperspectral
camera is a 3D dataset with two spatial dimensions and one spectral dimension. Due to it
being a 3D dataset, hyperspectral images are also referred to a hyperspectral datacube, or
just datacube. Such a hyperspectral datacube is analogous to an image where every pixel
contains data representing a spectrum.

1.1.4 HYPSO satellite concept of operation

A sun-synchronous orbit at a height of 500 km has an orbital inclination of about 97◦.
An inclination near 90◦ makes an orbit polar, which means the satellite passes close above
earth’s poles. Such an orbit is chosen so that the ssatellite is able to scan the Norwegian
coast and the arctic ocean. A normal operating procedure is illustrated in Figure 1.2.
As the satellite approaches the northern latitudes, it is scheduled to wake up from a low
power state and prepare for operational data transmissions from and to ground. Target
area coordinates to image are uploaded. Shortly after, the satellite starts to point and

3



CHAPTER 1. INTRODUCTION

scan the target, in what is called a slew maneuver1. The goal is to image a square area
of 70km by 70km. After about one minute of scanning, the satellite has time to analyze
the data before stepping into contact with the ground again, where relevant information
which the satellite was able to extract is downloaded. When the satellite moved too close
to the horizon for radio contact, it enters the low power state again, and starts to collect
solar energy until the next pass again.

Figure 1.2: HYPSO mission basic concept of operation. Credit: Masiusz Grøtte

Some figures of interest are summarized in Table 1.1.

HYPSO Satellite and Orbit Properties
Orbit height 500km
Orbit inclination 97◦
Payload 1 Push broom Hyperspectral imager
Payload 2 Software defined Radio
Payload 3 Snapshot camera
Cube capture time 57s
Scan FPS <40
HSI field of view 8.35◦ × 0.02◦
HSI sensor Sony IMX249
HSI sensor resolution 1936×1216
Platform Sensors GNSS, IMU, Magnetometer, Star Tracker
Attitue actuators Magnetorquers, Reaction Wheels

Table 1.1: HYPSO mission, Satellite and orbit properties

1Explained in the next section
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1.1. HYPSO MISSION

1.1.5 HYPSO main Payload

The HYPSO main payload consists of two parts, a detector, the hyperspectral imager (HSI)
and the data processing part which is the on-board processing unit.

HYPSO hyperspectral imager

The Hyperspectral imager is shown in Figure 1.3. It is build from several objectives (lens
assemblies), an aperture in the shape of a slit, a collimator, a diffraction grating and a
digital camera.

Figure 1.3: The HYPSO hyperspectral imager

The slit determines the spectral resolution and helps to prepare the light for diffraction.
After passing through the optical collimator2, the light is broken up into a spectrum by
the grating. The detector is a monochrome area detector array which has a resolution of
1936 by 1216 pixels. The spectrum is spread along the dimension with the 1936 pixels, see
Figure 1.4 for an example image. The digital camera is an IDS UI-5260 model with a Sony
IMX249 sensor.

Figure 1.4: What one raw image taken with the hyperspectral imager looks like. Horizontal
direction represents wavelength and the vertical dimension represents space. More than
1000 of these images make up one hyperspectral datacube

2Collimation is the process of parallelizing the path of multiple rays of light
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CHAPTER 1. INTRODUCTION

The field of view of a single scan in a scanning imaging system is called the instantaneous
field of view, which is 8.45 degrees by 0.02 degrees in case of the HYPSO HSI. If the
satellite points straight down at a height of 500km, it results in a ground sample area of
about 74km by 0.17km. Thus the HYPSO satellite must scan at least 70km

0.17km = 412 images
to cover the goal area of 70× 70km2. Another opjective is to improve spatial resolution to
below 100 meters post sampling, by using special data processing techniques, which can
combine information contained in partially overlapping ground sample area. The actual
number of images captured is thus expected to be above 1000. The satellite’s orbital speed
is about 7.6km/s, and the satellite moves a ground distance of 70km in about 10 seconds,
which means the satellite would need to take 80 images per second to cover 70km with
50% overlap, if it were to rely on its orbital motion alone for along track scanning. 80fps
is beyond what is capable of the camera and the on-board processing unit, and thus the
satellite must actively control its pointing direction and rotation speed to enable longer
scanning time. This is called the slewing maneuver, illustrated in Figure 1.5.

Figure 1.5: Illustrating the slew maneuver. Credit: Mariusz Grøtte

HYPSO on-board processing unit

The On board processing unit will use a module with an ARM Cortex-A9 based system-
on-a-chip with embedded FPGA from Xilinx as CPU with 1GB RAM and eMMC storage,
Figure 1.6. It will apply a sequence of algorithms to the raw data to for example compress it
or extract information. The set of algorithms to be applied in order is called the processing
pipeline. It may not be possible for every planned algorithm to be implemented on the
satellite. Those that could not, may be applied on a different computer on ground after
the data has been downloaded. The stages in the pipeline are listed in the following. Some
of them will be briefly described.
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1.1. HYPSO MISSION

Figure 1.6: The hardware of the On-Board Processing Unit, the PicoZed system on module.

• Binning

• Registration

• Superresolution

• Dimensionality reduction

• Target detection

• Calibration

• Motion blur correction

• Atmospheric correction

• Classification

• Compression

Binning The spectral resolution of the optics as determined by the aperture is about
5nm. The spectum from 400nm to 800nm is spread across 1936 pixels, resulting in equally
many channels, and a potential spectral resolution of 0.2nm. This is much higher than the
optics and the camera is thereby oversampling and generating a lot of unnecessary data.
Binning is the process of averaging neighboring pixels to reduce the number of channels,
which reduces the amount of data and incidentally increasing signal to noise ratio, making
processing and downlink faster. After binning, one datacube will have between dozens to
two hundred channels.

Calibration There are three types of calibration which are to be done. Optical, geometric
and radiometric calibration. Optical calibration is correcting nonlinear optics effect, result-
ing in distortions like for example smile and keystone distortions. Geometric calibration is
about precisely figuring out quantitatively where the imager is located inside the satellite
body frame, and how it is oriented. Radiometric calibration is about converting the raw
binary data to physical units of radiance.

Registration is the processing step which this theses is about

Superresolution is a family of algorithms which increase spatial or spectral resolution of
an image post capture.

Atmospheric Correction Ideally, it is desired to measure only the light reflected off the
ocean surface. However, the light arriving at the satellite detector inevitably contains light
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scattered by the atmosphere as well. This processing step is about removing this light
component from the data.

Target Detection determines whether and where a specific target of known spectral
characteristic exists within the datacube.

Compression, ideally loss-less compression. Reduces the amount of data that needs to
be downloaded by a factor of two to three, making it two to three times faster.

Figure 1.8: Processing pipeline, data levels and success criteria. Credit: Sivert Bakken

1.1.6 Data Products

The data generated by the satellite is allocated into levels where a higher level indicates a
higher degree of processedness. There is no conventional way of defining data levels and
there are almost as many definitions as there are earth observation satellites. One may
define one level after each processing step. A subset of the data levels are to be released
for public access. These are the data products of the mission. At the time of writing there
are three data products more precisely defined, Level 0, Level 1A and Operational data.
Data level 0 consists of the binned data cube. Level 1A consists of Level 0 with ancillary
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1.2. THE PUSH BROOM REGISTRATION PROBLEM

information appended containing at least optical and geometric calibration parameters and
ephemeris3 information during image acquisition. What the Operational data contains
exactly is not yet defined and will depend on the types of robotic platforms in operation,
but may contain data similar to georeferenced information about ocean color or algae and
its amount and type.

1.1.7 HYPSO secondary payloads

In addition to the HSI payload, the HYPSO satellite has room for two secondary payloads.
The secondary payloads are a software defined radio (SDR) and the snapshot camera. The
purpose of the SDR payload is not relevant to this thesis and will not be further discussed.
The purpose of the snapshot camera is discussed in Chapter 4. It is an extra camera in
the form of an area detector array, which utilizes extra space in the satellite frame, as well
as room in the mass and power budget.

1.2 The push broom registration problem

Push broom imaging systems scan areas line by line and must assemble the lines into
an image post capture. If an image is assembled without a special process, by simply
appending the lines after each other as they are stored in memory, it can contain distortions
resulting from non uniform scanning, see Figure 1.9 and Figure 1.10. Non uniform scanning
will happen because of inaccurate control, overlapping or skipping of ground area, changing
point of view during scanning and from the curvature of the earth. Registration is a family
of image processing techniques that can correct these distortions to generate distortion
free, orthorectified images.

(a) Ground (b) Example 1 (c) Example 2 (d) Example 3

Figure 1.9: Examples of possible distortion resulting from non uniform scanning. (a)
Ground truth (b) Distortion due to excessively tilting sideways during sampling. (c) Dis-
tortion due to imager changing its distance to the scene during sampling. (d) Combination.

3Timestamped position and attitude
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The distortions make it harder to

• manually interpret the data and draw conclusions about it and

• integrate the data with other geographic information systems like topographic maps
of Norway or maps showing the locations of robotic agents or maps of the ocean floor.

(a) Ground (b) Example 4 (c) Example 5

Figure 1.10: More examples of possible distortions. Stretching effect due to (b) overlapping
of lines (c) skipping of lines.

1.3 The georeferencing problem

In order to, for example, direct drones to targets of interest for sample taking or to warn
fish farm installations of harmful algae in time, it is necessary to know as well a possible
where the targets are and how they are moving. Learning where on earth the targets are
is done through a process called georeferencing and estimating how the targets are moving
can be done by modelling ocean currents or by repeating georeferenced measurements.

Georeferencing can also mean transformation of spatially extended data (like images) into
a specific coordinate system, a geographic map, generated by a map projection.

1.4 Registration and georeferencing methods

Both image registration methods and georeferencing methods are one of two classes: geo-
metric [6] [7] and optical [8] [9]. Geometric methods work by geometric modelling of the
image capture system and utilizing extra sensors. optical methods work by comparing the
captured images with other available images of the same area. The other images could be
for example different satellite images or topographic maps containing recognizable features
like roads, rivers, coastlines or houses. The main difference between the two classes is that
geometric methods use extra information belonging to the sampled image, for example
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taken from attitude and position sensors that were active during image capture, whereas
optical methods consider only the content of the captured images.

1.4.1 Image registration

Image registration in general is concerned with finding a transformation, which transforms
one image into the coordinate system of the other, so that matching pixels of the two
image overlap and correspond to the same physical region of the scene being imaged [10].
One image is said to be registered into another if the transformation has been applied and
the image is resampled into the coordinate of the other. Given two images that are to be
registered, one of them is chosen as the reference system, called the source or reference
image, into which the other image, the target or sensed image, is referenced. An optical
image registration algorithm works in four steps [10]

1. Feature identification This step considers both images individually and identifies
features which can be for example edges, corners, intersection of lines or specific
shapes or regions.

2. Feature matching Iterates the lists of features and determines whether two features
from the two images correspond to each other.

3. Transformation Based on the matched features, this step identifies a transformation
or transformation parameters that as good as possible transforms the position of all
features in one image to the matching position in the other image.

4. Resampling The sensed image is resampled by some interpolation scheme using the
transformation found in the previous step.

For example, two slightly overlapping images (of e.g. a town) can be registered into one
image by finding the position of pixels of the same features e.g. the same houses (feature
identification) in both images (feature matching), which can then be used to fit/find the
parameters in the transformation model (Transformation) [11]. This transformation can
then be applied to all pixels of one image, which transforms them to the corresponding
position in the other image (Resampling).

Geometric methods consider 3D space as reference and use position and attitude infor-
mation about the camera with a camera model to place the pixels where their light was
initially reflected from in 3D space. There is not much literature discussing geometric
methods in general. This may be as they are all very similar.

The problem of registering more than two images is also called global registration (chapter
5 in [12]), for example during the creation of mosaics of aerial footage. In such a case, the
reference may not be derived from another image but defined in some other way.
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1.4.2 Georeferencing

Georeferencing by and large is a subset of image registration. Geoferencing an image can be
done by registration with a already georeferenced reference [13], thus many georeferencing
methods are also image registration methods. In the context of this thesis, georeferencing
can refer to two different procedures. The first procedure is only about finding the geo-
graphic coordinates of a point withing an image. The second one is about registering an
image into the reference system of a geographic map, such that it can be combined with
other geographic maps. The second one can be done by both by optical and geometric
image registration methods. The first one is purely geometric. Geometric georeferencing
is always doing a projection onto an earth model. Geometric georeferencing methods are
more commonly called direct georeferencing methods, whereas optical methods are called
indirect georeferencing methods.

1.4.3 Methods discussion

Optical or indirect georeferencing and registration methods are common in satellite im-
agery. However, in the case of HYPSO, the problem is not about registering two or more
2D spatial monochrome or RGB images together, but hundreds of 1D-1D spatial-spectral
images or frames. Since optical methods require previously mapped data of the imaged
area and the oceans are a changing from day to day, optical methods were considered un-
suitable for a ocean observing satellite and geometric methods were favored. This method
is similar to other publicized methods [6] [14], as they all consider pixel view directions and
earth projections, but this method differs in details corresponding to the specific satellite
and camera platform and concept of operation. This kind of attitude based direct georef-
erencing is especially interesting, since one of the attitude sensors is a star tracker with
expected angular resolution of 0.01◦ or better, and thus attitude is known to a very high
degree of accuracy. The image registration algorithm described in this masters thesis has
no name, but is similar to the one described in [14]. It is a type of global registration where
the reference system is the coordinate system of a projected map. The algorithm will be
continued to be referred to as ”the registration algorithm” or just as ”the algorithm”.

1.5 Thesis Structure

Section 2 gives some recommended background info and briefly describes the algorithm
in preparation for the next chapter.

Section 3 is the main Section of the thesis. It gives a detailed description of the registration
and georeferencing algorithm and discusses its properties.

Section 4 argues for the snapshot camera payload and its possible applications.
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Section 5 describes implementation details, shows registration algorithm results and dis-
cusses implementation of the RGB camera service.

Section 6 rounds off the report with conclusions.
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Chapter 2

Background

This chapter describes some relevant concepts used in the registration algorithm and gives
it a brief introductory description.

2.1 Celestial Sphere

The celestial sphere is a 2D spherical coordinate system fixes with respect to the stars. Its
coordinates are called right ascension and declination, which are analogous to longitude
and latitude coordinates on the earths surface respectively.

2.2 ECI and ECEF frame

When logging satellite positions, they can be given in two possible reference coordinate
systems: Earth centered intertial, ECI or earth centered earth fixed, ECEF. As the name
implies, both reference frames1 have their origin at the earth’s center of gravity. The ECI
frame has its x-axis pointing to the origin of the celestial sphere. This point is called the
vernal point, which is sometimes also called vernal equinox, even though vernal equinox
specifies a point in time. The intersection of the earth orbital and equatorial plane define
a line. This line intersects the celestial sphere at two points, one of them being the vernal
equinox and the other the autumnal equinox. At spring equinox, when the line intersects
the sun, the earth is opposite side of the vernal point. This defines the vernal point to be
near some dozen of degrees south of the Andromeda galaxy. This is the direction in which
the x-axis of the ECI frame points. Its z-axis points parallel to earth’s rotation axis, and
the y axis completes the right handed coordinate system.

1reference frame and reference coordinate system mean the same in this Thesis.
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The ECEF frame’s z-axis also points parallel to earth’s rotational axis, but its x-axis is
fixed to the earth and rotates with it. Thus it is not an inertial frame. The x-axis points
through the prime meridian2 and the y-axis completes the right handed coordinate system.

Both reference frames collectively are referred to as earth centered frames or ECF.

2.3 Sidereal Time

Sidereal time is an alternative time format that is referenced to earths rotation with respect
to the stars, as opposed to solar time with is with respect to the sun. One sidereal day
is 4 minutes shorter than a solar day. What makes this a useful concept is that sidereal
time is easily converted to an angle describing by what angle the prime meridian is rotated
with respect to the vernal point, that is, how the ECI and ECEF frames are rotated with
respect to each other, see Table 2.1.

Sidereal Time Angle between Vernal Equinox
and the prime meridian

6h 90◦
12h 180◦

15.73h 235.95◦
18h 270◦

Table 2.1: Sidereal time values and their implied angle between the ECEF x-axis and the
ECI x-axis. conversion factor 360◦

24h .

2.4 Aircraft principal axes

In 3D space, any rotation can be expressed as a sequence of three rotations around three
orthogonal axes. In aircraft dynamics, and analogously spacecraft dynamics, the craft’s
orientation is expressed in terms of rotations around three principal axes. They axes are
called roll-axis, pitch-axis and yaw-axis. The roll axis is usually the axis pointing along
the aircraft, the pitch axis points sideways horizontally and yaw points vertically. Let the
roll-axis for the HYPSO satellite be defined as its x-axis, let the pitch-axis be the its y-axis
and the yaw-axis be its z-axis.

2Meridians are circles of constant longitude.
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2.5 Algorithm brief description

The inputs to the algorithm are the following data

• Position timeseries from the on board GNSS
• Attitude timeseries from the ADCS subsystem
• Timeseries of datacube scan lines.

It is important that every measurement, every sampling is timestamped or at least it is
possible to calculate the timestamps afterwards for example if measurements occur at a
uniform rate and the starting time is known. Knowing position, attitude or frame capture
at imprecise times will degrade image registration quality. The output of the algorithm is
an array of coordinates and a new, resampled datacube. The algortihm is divided into 7
steps:

1. Ephemeris interpolation
2. Camera model and pixel view direction
3. Pixel view ray and intersection with earth model
4. ECF position to geographic coordinates
5. Map projection, boundary and resolution
6. Determining inverse mapping function
7. Backprojection and resampling
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Figure 2.1: Illustrating three stages of the algorithm. Note that map resolution in terms
of pixel count is higher than the original image. Each pixel corresponds to a spectrum.
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An example of how the algorithm works is shown in Figure 2.1. The plot to the right
illustrates the raw datacube. The pixels are arranged on a uniform grid as they are stored
in memory, containing distortions. After step 1. through 4., the result looks as the middle
plot. Every pixel has assigned its corresponding geographic coordinates. Then steps 5.
through 7. generate the plot to the left, where a new image has been generated that is
compatible with other maps of the same area. Note that the resolutions of the Image and
the Map are different.
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Chapter 3

Registration and georeferencing
algorithm

3.1 Notation

Let the image dimension be denoted by width M in pixels, which is the along track direc-
tion, and height N in pixels which is the across track direction. Thus one frame consists of
N pixels, and there are may be M frames in one datacube, though it is possible that M is
different for different datacubes. Each pixel within the image is indexed by (m,n) where
m ∈ {0, 1, ...,M − 1} and n ∈ {0, 1, ..., N − 1}. One pixel represents roughly 100 spectral
values, the exact count will depend on the binning. The registration and georeferencing
algorithm does not depend on wavelength, so one spectrum will continued to be referred to
as one pixel. The three dimensional spatial coordinates of a pixel projected onto the earth
with respect to an ECF are denoted pm,n. The corresponding geographical coordinates are
(λm,n, φm,n). The Map dimensions are width K by height L, where L are the pixel count
along the north-south direction and K is the pixel count along the east-west direction.
One map pixel is indexed by (k, l) where k ∈ {0, 1, ..., K − 1} and l ∈ {0, 1, ..., L− 1}.

Let P = {i ∈ N | (pi, tpi )} denote the set of all satellite position measurements and their
corresponding sample times and Q = {j ∈ N | (qj, tqj)} denote the set of all satellite
orientation measurements and their their corresponding times. Similarly, each frame also
has an associated capture time F = {m ∈ N | (fm, tfm)}. The set of all (data, time) tuples
is also called a timeseries. Thus there are three relevant timeseries, satellite positions,
satellite attitude and hyperspectral image frames. These three timeseries form the input
to the algorithm.

19



CHAPTER 3. REGISTRATION AND GEOREFERENCING ALGORITHM

3.2 Ephemeris Interpolation
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Figure 3.1: Meaning of the three time series, Position P , Attitude Q and Frames F . The
rate at which the qunatities are sampled can be irregular.

The first step is to determine the exact position and attitude at frame capture time. Given
frame fm, it is desired to find index i and j such that

tpi−1 ≤ tfm < tpi (3.1)
tqj−1 ≤ tfm < tqj (3.2)

In words, it is desired to find the times in the time series where the first time is is less
than or equal the frame capture time and the next time in the time series is larger than
the frame time. In other words, it is desired to find the two times in the time series closest
to the frame capture time.

The position pfm and attitude qfm for frame fm can then be found by different interpolation
schemes:

Nearest neighbor:

im = arg min
i′∈{i−1,i}

|tpi′ − tfm| (3.3)

pfm = pim (3.4)

Linear:

pfm = tfm − t
p
i−1

tpi − t
p
i−1

pi−1 + tpi − tfm
tpi − t

p
i−1

pi (3.5)
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The Linear interpolation scheme and also other schemes like cubic interpolation can be
derived using the general Lagrangian interpolation formula [14]:

pfm = p(tfm) =
i+n−2

2∑
k=i−n2

pk

i+n−2
2∏

l=i−n2 | l 6=k

tfm − t
p
l

tpk − t
p
l

(3.6)

where n is even and represents the number of samples centered around the frame capture
time that form the basis for interpolation. Equation (3.6) reduces to Equation (3.5) for
n = 2. Choosing n = 4 results in cubic interpolation. Similar formulas for qfm apply.

3.3 Pixel view-direction and camera model

From the attitude qfm , the view direction corresponding to the central view of the camera
is calculated, which points along the positive z-axis of the satellite’s body frame, Figure
3.2, unless the heavy vibrations during launch changes the exact pointing direction with
respect to the satellite frame. Any such pointing direction change can be parameterized
using for example two euler angles, which would need to be determined during geometric
calibration. Not doing so would degrade georeferencing accuracy, but not registration
accuracy, as the error would introduce a constant offset that is equal across all frames, and
only their relative position influences registration.

xy

z

Figure 3.2: Body frame definition of the 6U cubesat

In what way the satellite overall attitude is parameterized has not yet been decided as of
the time of writing, but it does not matter much for the algorithm. The only requirement
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to the attitude parameterization is that it is possible to to rotate body frame vectors into
ECI or ECEF frame, which any valid parameterization is able to do.

Let a quaternion parameterization be assumed, describing how the ECI frame axes need
to be rotated to coincide with the satellite body axes. Let

qfm =


ηm
ε1m
ε2m
ε3m

 (3.7)

Then the rotation matrix describing the relative rotation is calculated as follows

Rf
b (qfm) =

 1− 2ε2
2m − 2ε2

3m 2(ε1mε2m − ε3mηm) 2(ε1mε3m + ε2mηm)
2(ε1mε2m + ε3mηm) 1− 2ε2

1m − 2ε2
3m 2(ε2mε3m − ε1mηm)

2(ε1mε3m − ε2mηm) 2(ε2mε3m − ε1mηm) 1− 2ε2
1m − 2ε2

2m

 (3.8)

This rotation matrix transforms body frame vector components to earth centered frame
components. If the direction in which the view center points in body frame is the positive
z-axis. Thus the inertial frame camera view direction cm of frame m is calculated by

cm = Rf
b (qfm)Rgẑ (3.9)

Rg is the rotation matrix calculated from the geometric calibration. If there is no need for
geometric calibration or if it was determined that the pointing direction did not change
measurably during launch, then Rg = I and

cm = Rf
b (qfm)ẑ = Rf

b (qfm)

 0
0
1

 =

 2(ε1mε3m + ε2mηm)
2(ε2mε3m − ε1mηm)

1− 2ε2
1m − 2ε2

2m

 (3.10)

The individual pixel directions are calculated by applying a camera model. The pinhole
camera model will be assumed, whose geometry is shown in Figure 3.3. The variables in
the figure are as follows. d is the width of the camera sensor. f is the camera system focal
length. x1 is the distance from the image center that a point P in the scene, which is z ′
away and x2 across, falls on. θn is the viewing angle of pixel n. α is the field of view of the
camera. Only a one dimensional camera model is considered because one frame has a one
dimensional ground footprint.

The spatial dimension of one frame has N pixels, spread uniformly along the sensor size
d. Given a pixel number n, the pixel’s x-coordinate can be calculated
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Figure 3.3: Pinhole camera model - Note the x-z coordinate system with origin at the
optical center

x1 =
(
n

N
− 1

2

)
d (3.11)

Figure 3.3 provides two relationships:

I: tan θn = x1

f
II: tan α2 = d

2f (3.12)

Substituting for x1 in I:
tan θn =

(
n

N
− 1

2

)
d

f
(3.13)

we can eliminate the factor d
f

using II:

tan θn = 2 tan α2

(
n

N
− 1

2

)
(3.14)

Thus, given frame pixel index, the pixel view angle θ can be calculated:

θn = arctan
(

2 tan α2

(
n

N
− 1

2

))
(3.15)

Where α = 8.45◦ and N = 1216. The individual pixel view directions are found by rotating
cn by θn around an axis vector normal to cn and the direction in which the slit is oriented.
Since the slit is oriented along ŷ, the rotation axis is x̂. x̂ must also be rotated to ECF
components

n̂m = Rf
b (qfm)Rgx̂ (3.16)

The direction from which pixel (m,n) was captured is thus
vm,n = R(n̂m, θn)cm (3.17)

where
R(n̂, θ) = I + S(n̂) sin θ + S(n̂)2(1− cos θ) (3.18)
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3.4 Intersection with earth model

3.4.1 Choice of earth model

There were considered three possible models to represent earth geometry. The most ac-
curate models combine the geoid with a digital elevation model (DEM). This would give
georeferencing accuracy to within a few meters. However, a DEM is only available on
land and since the HYPSO satellite will primarily take images of the ocean, a DEM is not
necessary. The other two models were either using the geoid alone or an ellipsoid. A geoid
would be most accurate since it represents a level surface of constant gravity, which resem-
bles the ocean surface at equilibrium, only considering the earths mass distribution and
earth rotation. The differences between the geoid and the real ocean surface elevation is
called ocean topography and is caused by the tides, waves caused through weather effects,
ocean currents, heat expansion and contraction and salinity. The ocean topography is in
the order of a few meters [15]. The difference between the geoid and a reference ellipsoid
are called geoid undulations are vary between ±60 meters over the oceans [15].

Ultimately, a reference ellipsoid was chosen because of its simplicity and accuracy. An
ellipsoid is defined by only two numerical values, for example equatorial radius and ec-
centricity, while being accurate on the ocean surface to within 60 meters which is roughly
the ground footprint of two HSI pixels. The geoid in contrast is a dataset on the order of
Megabytes, though this could be reduced if the geoid is chosen to cover just the coast of
Norway. It is possible to upgrade the algortihm to use the geoid if it is desirable in the
future.

A spheroid is an ellipsoid with two of the three axis radii equal. A spheroid can be either
prolate or oblate. It is prolate if the remaining axis radius is larger than the other two,
and oblate if it is smaller. Hence earth reference ellipsoids are sometimes also called oblate
spheroids.

The International Earth Rotation and Reference Systems Service (IERS) recommends the
GRS80 ellipsoid parameters of semi-major axis (equatorial radius) a = 6378137.0m and
eccentricity squared e2 = 0.00669438002290 [16]. The eccentricity for a spheroid is defined
as

e2 = 1− b2

a2 (3.19)

where a is the equatorial radius and b is the polar radius. Solving for b

b = a
√

1− e2

The GRS80 parameters thus define the polar radius to be b = 6356752.3m. The geometric
center of the ellipsoid coincides with the center of mass of the earth. A reference ellipsoid
is often alternatively specified in terms of semi-major axis a and inverse flattening factor
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x

z
a

b

Figure 3.4: Ellipse semi-major axis a and semi-minor axis b, A spheroid is the surface of
revolution of an ellipse. Every spheroid is also an ellipsoid. Example of a prolate ellipse

and an oblate ellipse with a circle for comparison.

1/f . Flattening is defined in terms of semi-major and semi-minor axis

f = 1− b

a
(3.20)

The relationship between eccentricity and flattening is

e2 = 2f − f 2 (3.21)

Which can be easily verified. The equation that defines a spheroid surface in an earth
centered frame with z-axis pointing along earth rotation axis is

x2 + y2

a2 + z2

b2 = 1 (3.22)

or expressed in terms of GRS80 parameters

x2 + y2 + z2

1− e2 = a2 (3.23)

3.4.2 Pixel view ray

A ray is taken from satellite position along the pixel view direction and its intersection
with the earth model is to be found. Let the ray be defined by

pfm + tvm,n , t ≥ 0 (3.24)
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This is a vector expression with x-, y- and z-components

pfm + tvn =

 px + tvx
py + tvy
pz + tvz

 (3.25)

The ECF coordinates of the ray-spheroid intersection point is found by substituting Ex-
pressions (3.25) for x, y, and z in Equation (3.23) and solving for t. Substitution results
in(

v2
x + v2

y + v2
z

1− e2

)
t2+ 2

(
pxvx + pyvy + pzvz

1− e2

)
t+ p2

x + p2
y + p2

z

1− e2 − a
2 = 0

(3.26)
a t2 + b t + c = 0 (3.27)

This is a second order polynomial with two solutions:

tmin/max = − b

2a ±
1
a

√
b2

4 − ac (3.28)

The discriminant
b2

4 −ac = a2
(
v2
x + v2

y + v2
z

1− e2

)
− (pxvy−pyvx)2− (pxvz − pzvx)2

1− e2 − (pyvz − pzvy)2

1− e2 (3.29)

characterizes the problem. If
b2

4 − ac < 0 (3.30)

then the ray does not intersect the earth ellipsoid and there is no real solution. if

b2

4 − ac = 0 (3.31)

then the ray is tangential to the earth ellipsoid and there is one real solution. If

b2

4 − ac > 0 (3.32)

then the ray intersects the earth ellipsoid twice. The two solutions correspond to the two
intersections a ray can have with an ellipsoid, one on the side of the ellipsoid which is
facing the origin point of the ray and one at the other side. The intersection of interest is
the intersection closer to the origin point of the ray which is the one corresponding to the
smaller value of t

tmin = − b

2a −
1
a

√
b2

4 − ac (3.33)
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Substituting tmin into Equation (3.25) results in the ECF position corresponding to the
pixel.

pm,n = pfm + tminvn (3.34)

3.5 Cartesian coordinates to geographic coordinates

There are two caveats when converting earth centered cartesian coordinate positions to
geographic coordinates of longitude and latitude. The first one is that latitude on an
ellipsoid can be defined in multiple ways. The other one is the possible conversion from
ECI frame to ECEF frame, if the ephemeris data was given in ECI frame.

3.5.1 Going from Cartesian to geographical coordinates

Two kinds of latitudes on an ellipsoid are discussed, geocentric and geodetic latitude. see
Figure 3.5. Geocentric latitude is the angle between a line from the origin through A and
the equatorial plane. Geodetic latitude is defined as the angle between a normal to the
ellipsoid at the intersecting point A and the equatorial plane. Note that on a sphere, the
two definitions are equivalent, since the normal and the radius vector at the same point
are parallel.

Latitude and longitude are always with respect to some choice of ellipsoid as a represen-
tation of the earth. A choice of reference ellipsoid together with a definition of longitude
and latitude is called a Datum. In geodesics, geodetic latitude is preferred and thus it is
this latitude that the algorithm will use.

C
x

z

x

z

A

B

φφ′

Figure 3.5: Illustrating definition of geocentric φ′ and geodetic latitude φ on an ellipsoid.
λ = 0

The relationship between cartesian coordinates and longitude and geocentric latitude is
found by projecting the line CA onto the ECF coordinate axes. They resemble spherical
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coordinates.

x = r(φ′) cosφ′ cosλ (3.35)
y = r(φ′) cosφ′ sin λ (3.36)
z = r(φ′) sinφ′ (3.37)

where r(φ′) is some value between the polar and equatorial radius, whose exact value does
not matter. λ is longitude and φ′ is the geocentric latitude. The expressions are inverted
to obtain

λ = arctan y
x

(3.38)

φ′ = arctan z√
x2 + y2 (3.39)

Expressions for calculating cartesian position from geodetic latitude and longitude are as
follows [17]:

x = N(φ) cosφ cosλ (3.40)
y = N(φ) cosφ sin λ (3.41)
z = (1− e2)N(φ) sinφ (3.42)

where
N(φ) = a√

1− e2 sin2 φ
(3.43)

From which the inverse relations can be derived:

φ = arctan
(

z

(1− e2)
√
x2 + y2

)
(3.44)

λ = arctan
(
y

x

)
(3.45)

φ is the geodetic latitude. The expression for longitude λ is identical to the previous one.

3.5.2 Converting ECI longitude to ECEF longitude

If the initial ephemeris data was given in ECEF frame, there is nothing more that needs
to be done, since the x-axis intersects the prime meridian and thus the angle which the
ECEF position projectrd into the x-y plane does with respect to the x-axis is identical
to longitude. If the initial ephemeris data was given in ECI frame, then the x-axis is
rotated away from the prime meridian around the z-axis by some angle depending on the
time at which the frame was captured. One can solve this problem by determining this
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angle and subtracting it from the longitude value. This angle can be determined from the
corresponding sidereal time at which the line was scanned. The algorithm to calculate
Sidereal time from universal time is from [18] and is as follows.

It is given a date and universal time in the following format

DD.MM.YYYY - hh:mm:ss.ms (3.46)

First, the Julian Day corresponding to the date DD.MM.YYYY is calculated. If the month
M is 1 or 2, i.e. January or February, then replace

YYYY← YYYY− 1 (3.47)
MM← MM + 12 (3.48)

Next, calculate two intermediate variables

A =
⌊

YYYY
100

⌋
(3.49)

B = 2− A+
⌊
A

4

⌋
(3.50)

The Julian day is as follows

JD = b365.25(YYYY + 4716)c+ b30.60001(MM + 1)c+ DD +B − 1524.5 (3.51)

Then, the sidereal time in seconds s0h corresponding to midnight at the Julian Day is
calculated.

T = JD − 2451545
36525 (3.52)

s0h = 24110.54841 + 8640184.812866T + 0.093104T 2 − 0.0000062T 3 (3.53)

Subtract or add multiples of 86400 (seconds in the day) until s0h ∈ {0, 86400}. Lastly, the
seconds of the current day since midnight, i.e. the current universal time in seconds, are
added to obtain the current sidereal time in seconds.

ssidereal = s0h + 1.00273790935(3600hh + 60mm + ss.ms) (3.54)

From ssidereal may again be subtracted 86400 such that ssidereal ∈ {0, 86400}. This number
is then converted to the angle between the prime meridian and the vernal point by multi-
plying with 360◦

86400 or 2π
86400 and the ECI longitude is converted to proper, ECEF longitude

by subtraction
λECEF = λECI −

2π
86400s

sidereal (3.55)
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3.6 Map: projection, boundaries and resolution

Everything in the algorithm explained until now is applied per frame and is independent
from the other frames in one datacube. The steps that follow however, are dependent on
the other frames in one datacube and is applied on a per datacube basis.

At this point every pixel in the datacube has geographical coordinates associated with
them in terms of longitude and geodetic latitude:

φm,n = arctan
 zm,n

(1− e2)
√
x2
m,n + y2

m,n

 (3.56)

λm,n = arctan
(
ym,n
xm,n

)
(3.57)

λ′m,n = λm,n −
2π

86400s
sidereal
m (3.58)

Next, the pixels are to be resampled such that the image is oriented towards north and is
orthorectified. After resampling, the result is an image of an area of the earth represented
on a flat surface. Implicit in every such representation is a map projection. A map
projection is the mathematical operation that transforms the spheroidal earth onto a flat
plane. Any map of the earth has been generated using some choice of map projection or
cartographic projection, intentional or not. A map projection is defined as two functions
x = m1(λ, φ), y = m2(λ, φ) connecting geographic coordinates, longitude and latitude on
some choice of an ellipsoid, to 2D cartesian coordinates on a flat map. Some well known
map projections are the Marcator projections, the Gall–Peters projection or the natural
earth projection.

Any choice of projection is possible. Here, the simplest one is chosen, the equirectangular
projection. What makes it the simplest is that the transformation functions are affine1 and
decoupled

x = c1λ− λ0 (3.59)
y = c2φ− φ0 (3.60)

The geographic coordinates (λm,n, φm,n) for each pixel are transformed to map coordinates.

xm,n = c1λm,n − λ0 (3.61)
ym,n = c2φm,n − φ0 (3.62)

The smallest rectangle containing all map coordinates defines the map boundary. Within
the set of all map points {(xm,n, ym,n)}, there will be four points with

1Linear with translation
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• least x
• highest x

(xmin, ym1,n1)
(xmax, ym2,n2)

• least y
• highest y

(xm3,n3 , ymin)
(xm4,n4 , ymax)

xmin, xmax, ymin and ymax define the smallest rectangle containing all points (xm,n, ym,n).
Let

xspan = xmax − xmin (3.63)
yspan = ymax − ymin (3.64)

A uniform grid with some resolution is overlain covering the rectangle and defining the
positions and the amount of pixels in the map. Any choice of resolution is valid, but a
choice which is high enough, such that the information lost after resampling is minimized
is desirable. The number of pixels of the datacube is MN . Let f be a factor defining how
many more pixels the resampled image has, i.e. KL = fMN . Let r = xspan

yspan
= K

L
be the

aspect ratio of the resampled image. Then

fMN = K2

r
(3.65)

and

K =
⌊√

rfMN
⌋

(3.66)

L =
⌊
fMN

K

⌋
(3.67)

The map pixel pk,l is at position (xk, yl)

xk = xmin + k
xspan
K

(3.68)

yl = ymin + l
yspan
L

(3.69)

in map space.

3.7 Inverse projection and resampling

The next step is to transform all map grid points pk,l into image space for easier resampling.
The inverse mapping function f−1 : R2 −→ R2 needs to satisfy the following

(m,n) = f−1(xm,n, ym,n) (3.70)

That is, mapping the projected pixel position back to their respective pixel coordinates. If
f−1 were known, it would be applied to the map pixels pk,l to find their position in image
space

(mk,l, nk,l) = f−1(xk, yl) (3.71)
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The spectral values of the map pixels pk,l are found by interpolating the cube pixels near-
est to (mk,l, nk,l). There are multiple interpolation schemes that can be used as desired.
The most common are nearest neighbor, bilinear and bicubic. The interpolation scheme
is repeated per channel. These are similar to the schemes in Section 3.2 except two di-
mensional. Since the cube pixels in image space have integer coordinates, the nearest cube
pixels that surround (mk,l, nk,l) are easily found. Let c(k, l) denote the spectrum of the
map pixel (k, l) that is to be found and c(m,n) the spectrum of cube pixel (m,n). Then
by nearest neighbor interpolation

c(k, l) = c(bmk,le, bnk,le) (3.72)

where b·e denotes rounding to nearest integer.

Bilinear interpolation calculates c(k, l) as a weighted average of the four nearest cube pixels.
These are

(bmk,lc, bnk,lc) (dmk,le, bnk,lc) (bmk,lc, dnk,le) (dmk,le, dnk,le) (3.73)

or since the cube pixels in image space have integer coordinates

(bmk,lc, bnk,lc) (bmk,lc+ 1, bnk,lc) (bmk,lc, bnk,lc+ 1) (bmk,lc+ 1, bnk,lc+ 1) (3.74)

let

c1 = c(bmk,lc, bnk,lc) (3.75)
c2 = c(bmk,lc+ 1, bnk,lc) (3.76)
c3 = c(bmk,lc, bnk,lc+ 1) (3.77)
c4 = c(bmk,lc+ 1, bnk,lc+ 1) (3.78)

s1 = mk,l − bmk,lc (3.79)
s2 = nk,l − bnk,lc (3.80)

then

c′ = s1c1 + (1− s1)c2 (3.81)
c′′ = s1c3 + (1− s1)c4 (3.82)

And finally
c(k, l) = s2c

′ + (1− s2)c′′ (3.83)

Bicubic interpolation calculates a weighted average similarly except using the 16 nearest
pixels.

If a map pixel falls outside the image, that is, if one or more of the following is true for pk,l
mk,l < 1 mk,l > M nk,l < 1 nk,l > N (3.84)

Then the corresponding map pixel spectrum is set to black.
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3.8 Approximating the inverse projection function

The inverse mapping function will be different for each datacube and needs to be deter-
mined anew for each. A method inspired from [14] is used, where the inverse mapping
function is approximated as a polynomial. The inverse mapping function f−1 : R2 −→ R2

has two components, f−1
m : R2 −→ R and f−1

n : R2 −→ R. They are defined as

f−1
m (x, y) =

r∑
i=0

i∑
j=0

ai,jx
jyi−j (3.85)

f−1
n (x, y) =

r∑
i=0

i∑
j=0

bi,jx
jyi−j (3.86)

which are rth degree polynomials and ai,j and bi,j are each (r+1)(r+2)
2 unknown polynomial

coefficients. Since it is required that

m = f−1
m (xm,n, ym,n) (3.87)

n = f−1
n (xm,n, ym,n) (3.88)

The polynomial coefficients can be determined by solving the following unconstrained op-
timization problems

min
{ai,j}

M∑
m=1

N∑
n=1
|f−1
m (xm,n, ym,n, {ai,j})−m|2 (3.89)

min
{bi,j}

M∑
m=1

N∑
n=1
|f−1
n (xm,n, ym,n, {bi,j})− n|2 (3.90)

And this was the last piece in the registration and georeferencing algorithm. Examples
where the algorithm is applied are presented in Section 5.1.3.

3.9 Geolocation accuracy analysis

In this section some expected error sources that can degrade the accuracy to which pixels
are assigned geographical coordinates are listed.

3.9.1 Geoid Undulations

As was mentioned in Section 3.4.1, the difference between the geoid and the ellipsoid can
be up to 60m. The geolocation error that will result from that is shown in Figure 3.7.
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If an area is scanned from directly above and the imager points straight down with no
nadir angle, there will be no error, no matter the undulation. Assuming the maximum
undulation of 60m, when the nadir angle is 18.1◦ as it is at the start of a normal slewing
maneuver, a point that is imaged from A will be through to be at B. The error will be
about 20m. When the nadir angle is 61.8◦ in the case of a revisit maneuver, point A will
be thought to be at C. The error will be about 112m.

Ellipsoid

GeoidA

B
C

60.0 m

20 m112 m

Figure 3.7: Using an ellipsoid as earth model, a pixel whose real footprint is at A is believed
to be at B or C

This source of error may be mitigated by choosing a reference ellipsoid that is more accurate
in the specific are that is to be imaged.

3.9.2 Geometric calibration

If the imager moved relative to the body frame due to vibration or stresses during launch or
thermal expansion and contraction due to temperature variations in orbit, then the pointing
direction will be different from expected. in the same way as with geoid undulations, the
error will be amplified with larger nadir angle.

The snapshot camera can aid in geometric calibration as it can give an absolute metric on
where the satellite is pointing. The difference between the attitude measurement from the
ADCS subsystem and the attitude from there the snapshot camera image can characterize
the geometric error.

3.9.3 Nonlinear optics

Varying angular increment between directions of neighboring pixels i.e. deviations from
the pinhole camera model. This may be an effect that changes with varying temperature.
Can be mitigated by good optical calibration on ground.
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3.9.4 Finite precision effects

32bit floating point numbers lose precision in the 7th or 8th significant digit. Consider
the following example. At Norwegian latitudes of about 65◦, the following c program
demonstrates the smallest increment from 65◦:

1 #include <stdio.h>
2 main()
3 {
4 float a = 65.000000f;
5 float b = 0.000005f;
6 printf("\%.10f\n\%.10f\n", b, b+c);
7 }

The output is

65.0000000000
65.0000076294

Thus the smallest increment from 65 is 0.0000076294, which corresponds to a location
change on the earth of 0.8m, which is not so large that it needs to be worried about,
however to calculating the sidereal time involves parameters which are given up to the
precision of 14 significant digits, which does require higher precision, as [18] recommends.
The Xilinx Zynq 7030 is based on the ARMv7-A architecture, which is a 32bit architecture
and therefore would need to emulate higher precision floating point arithmetic in software,
which is much slower. It would be reasonable to use 32bit floating point arithmetic for
all parts of the algorithm for speed, except where higher precision is needed, as with the
calculation of sidereal time, where emulated 64bit double precision floating point arithmetic
should be used.

3.9.5 Earths Precession and nutation

An example in [18] shows that neglecting Earth’s precession and nutation will result in a
sidereal time error of about 0.2 seconds, which leads to a positional error of 9.2 meters. It
is not difficult to include the correction as [18] explains how.

3.9.6 Imperfectly fitted inverse model

Can be mitigated by choosing a different degree of polynomial or by changing the opti-
mization algorithm that solves Equation (3.89) and (3.90).
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3.10 Combining Registration with Superresolution

Since superresolution includes a resampling step as well as the image registration, they
may be combined into a single algorithm as in [1], in the future.

3.11 Registration of images of the moon

The satellite may for calibration purposes sometimes take images of the moon. The pre-
viously described method of registration will not work because the view directions do not
intersect the earth model. Instead, one could use a sphere centered on the satellite with
radius equal to or higher than the satellite’s distance to the moon and calculate the view
directions intersection with that sphere instead. This emulates the celestial sphere as
reference system and all other parts of the algorithm can be used without change.
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Chapter 4

Snapshot Camera Payload

This chapter discusses an extra camera payload in the form of a snapshot or full frame
camera that utilizes extra space as well as free room in the mass and power budget of the
satellite. There are three potential purposes for using using a snapshot camera.

1. Enabling the use of the processing technique panchromatic sharpening

2. Possible alternative georeferencing and registration

3. Other verification and redundancy purposes

4.1 Panchromatic Sharpening

Panchromatic sharpening, or pansharpening in short, is an image processing technique
used to increase the spatial resolution of a multi or hyperspectral image, using a different
monochrome image of higher spatial resolution taken of the same scene. The monochrome
image has to be taken from a camera that is panchromatic. A panchromatic camera is
a camera that is sensitive to all visible light wavelengths, hence the name panchromatic
sharpening. More specifically, it must be sensitive to all wavelength in the multi- or
hyperspectral image.

To optimally utilize an additional camera for pansharpening in the HYPSO satellite, the
camera would need to be monochrome, it would need to be sensitive to light in the band
from 400nm to 800nm with a known spectral response and it would need higher spatial
resolution than the HSI. There are two parameters that influence the spatial resolution
of a camera: sensor resolution, as in how many pixels the senor has, and field of view.
Increasing increasing sensor resolution will increase the spatial resolution and increasing
field of view will decrease spatial resolution. Thus the snapshot camera needs to either
have:
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• same sensor resolution as the HSI with lower field of view

• a higher resolution sensor with the same field of view

Decreasing the field of view of a camera below the 8.45 degrees of the HSI may put harder
demands on the camera optics, making it more expensive and easier to break during launch.
In addition, the panchromatic image would cover only a subset of the area which the
hyperspectral datacube coveres, making pansharpening possible only to to this area within
the datacube or introduces the need for a second imaging maneuver which captures more
panchromatic images. The concept of operation would need to be adjusted to make time
for such a maneuver.

A sensor with higher pixel count would be more expensive but would make the sensor not
necessarily easier to break. It would generate more data, but monochrome images require
only little data storage space compared to hyperspectral datacubes.

4.2 Georeferencing

For georeferencing, it is desirable to have a large field of view to maximize the potential
for capturing geological features which can act as features for optical registration. As the
satellite is designed to take images of the ocean, the most relevant geological features are
coastlines. Higher spatial resolution will be useful as well, since it will increase potential
for feature matching and increase georeferencing accuracy.

It may also be possible use the snapshot camera for image registration, since the snapshot
camera images are captured nearly at the same time as the hyperspectral datacube, thus
they might share features. The datacube is thereby georeferenced , if the snapshot camera
image is georeferenced.

4.3 Redundancy and verification purposes

Including an extra non-hyperspectral camera as payload in the satellite would require
much less design and implementation work than the HSI camera and would be simpler to
operate, since it can be based on commercial, off-the-shelf components. In contrast, the
HSI payload due to its complexity, has a higher chance of failure. A simple additional
camera would not leave the satellite useless, in case of main payload failure. In addition, a
single image captured before and after the slew maneuver would take only a few seconds,
so the concept of operation would need very little adjustment, the snapshot images would
add very little data compared with the compressed datacube and the camera would use a
negligible amount of energy because it would be shut off or idling most of the time

38



4.4. DISCUSSION

A secondary, non hyperspectral camera could speed up the commissioning phase as veri-
fication of the attitude control system is made easier, since monochrome or RGB images
show spatial features in an easily human identifiable form. To guarantee a functioning
camera, space proven hardware, that is, a camera module or sensor that has been operated
on a satellite before is desirable.

4.4 Discussion

Georeferencing and panchromatic sharpening are mutually exclusive. Capturing coastlines
for georeferencing requires a high field of view that will degrade the spatial resolution. A
high spatial resolution requires a low field of view that will lead to coastline being out of
view most of the time. Considering that this is the first satellite being built by NTNU
SmallSatLab, it is more important to build something that is will be functioning than to
add even more features to the already packed processing pipeline. A simple camera with
no extreme specifications will be robust and have a higher field of view than the HSI.

4.5 Chosen RGB camera

(a) Front of the camera (b) Back of the camera

Figure 4.1: The RGB Camera IDS UI-1250LE-C-HQ

4.5.1 Camera desciption

A different student working on a specialization project made a trade-off analysis between
a number of different cameras. The result was the camera shown in Figure 4.1. Its CMOS
sensor is the EV76C570. A sensor of the same series EV76C560 was confirmed to have been
used successfully in a different satellite mission before [19]. The sensor is of class 1/1.8”
which means its size is about 7.2mm×5.4mm. It has a resolution of 1600×1200 with a bayer
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filter, see Figure 4.2. In essence, every RGB camera is also just a monochrome camera,
except the presence of a color selective filter on the sensor with a special post processing
technique called debayering or demosaicing. The camera uses USB2.0 as interface. It
weighs 34.35g, though its plastic case will need to be replaced due to outgassing reasons
as determined by the HYPSO mechanical team. Its energy use is specified to range from
300mW to 700mW

Figure 4.2: RGB bayer pattern filter on a camera sensor. By en:User:Cburnett, Link, CC
BY-SA 3.0

4.5.2 Objective

An objective that fits to the camera has been found using the Lens Finder online tool of
the camera manufacturer IDS. Its the Tamron M118FM08. It has a focal length of 8mm,
variable focus and aperture, and is designed for the optical class/sensor size 1/1.8”.

The field of view has been roughly measured to be 57◦ horizontal and 43.6◦ vertical. The
measurement method was mounting the camera on a tripod and pointing it to a white-
board, then turning on a live feed from the camera using tools provided by the camera
manufacturer and noting on the whiteboard where the view boundaries of the camera are.
Measuring the distance of the camera to the whiteboard, and the horizontal and vertical
distance between the markings, the field of view can be calculated. With a field of view of
57◦ × 44◦ and pointing nadir, the ground sample area is about 543km ×404km.

(a) The chosen lens for the RGB camera (b) Camera with lens assembled

Figure 4.3: Camera with lens Tamron M118FM08
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Chapter 5

Implementation and Results

This section discusses implmentation and verification of the registration and georeferencing
algorithm and the implementation of the RGB camera service on a ZedBoard running
Petalinux.

5.1 Registration algorithm results

The registration algorithm is tested by comparing how well it can reconstruct an image
after a simulated push broom scanning operation.

5.1.1 Image capture details

When the satellite passes directly overhead, it is only visible for about 12 minutes over the
horizon. Shorter passes are more likely. It is determined that in an average pass, there
is time for about 57 seconds of target scanning. Due to the satellite being such a small
size, there are limits on energy generation and storage. There is room for only one scan
operation per pass. The rest of the pass is spent harvesting solar energy.

In a circular orbit, the satellite’s speed is constant and given by

v =
√
GMe

r
(5.1)

where G = 6.67× 10−11 m3

kg s2 , is the gravitational constant and Me = 5.972× 1024 kg is the
mass of the earth and r = 6871 km. This gives about 7.6km/s for the HYPSO satellite.
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From the height of the orbit, the period is calculated.

P = 2π
√

r3

GMe

(5.2)

which results in about 94 minutes.

Orbit

Earth

S1 S2

γ γ

T = 57s
l

s1

s2 s2

h h = 500km

R R = 6371km

T

θ

γ x

R + h
R

P1

C

Figure 5.1: Geometry of a longitudinal view of nominal cube capture

Since the orbital speed was 7.6 km/s, during the t = 57 seconds of scanning, the satellite
moves a distance of l = vt = 434km. The target area is 70km along track. This gives the
scene geometry during a slew maneuver shown in Figure 5.1. The ground track is

s1 + 2s2 = 402km (5.3)
s1 = 70km (5.4)
s2 = 166km (5.5)

Using that θ = s2
R

and using the cosine rule on triangle S1CT the distance x is found. Then
the initial along track nadir angle 1 is found using the sine rule to be about γ = 18.1◦.

1Nadir is the direction from the satellite to the center of the earth. The nadir angle is an angle between
nadir and the satellite’s pointing direction.
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ẑ ŷ

Figure 5.2: Recapturing the same target on second pass

A different maneuver as a followup to a previous one, is to scan the same area as the
previous pass to measure changes, Figure 5.2. In this case, the satellite would need to point
far off nadir across track, because during the 94 minutes it takes for the satellite to return,
the target has moved due to the rotation of the earth. This distance is approximately

d = Porb ωeR cos(φ) (5.6)

where Porb = 94min, ωe is the earth’s angular velocity and φ is the latitude of the target.
The maximum possible distance, when the target lies on the equator, is 2664km. At
Norwegian latitudes of about 65◦ the distance is 1126km. Using the cosine rule and sine in
a similar way as previously, the required nadir angle to point 1126km cross track is found
to be 61.8◦.

The maximum cross track nadir angle is such that the outermost pixel direction is tangential
to the earth surface, see Figure 5.3. A higher angle would mean that one border of the
image is imaging the outer space background. From the figure it can be seen that

sin
(
γ + fov

2

)
= R

R + h
(5.7)

Which gives a maximum cross track nadir angle of γ = 63.8◦. Which means the nadir
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Figure 5.3: Deriving maximum nadir angle

angle required for the revisit maneuver of 61.8◦ is close to the threshold of what is possible
to scan where only the earth in view.

Some derived quantities are summarized in Table 5.1.

HYPSO Satellite Numbers of interest
Orbital speed 7.6km/s
Orbital Period 94 min
Starting Nadir Angle 18.1◦
Ending Nadir Angle −18.1◦
Max Nadir Angle 63.8◦

Table 5.1: Derived HYPSO mission properties

5.1.2 Simulating an image capture maneuver

The simulated image capture maneuver and the registration and georeferencing algorithm
were implemented in MATLAB. During the simulation, the earth is assumed stationary.
The satellite positions are given in ECEF frame. The orientations parameterized as body
frame z- and x-axes given in ECEF frame. The orbit is assumed circular.

The parameters that are required for the simulation are listed in Table 5.2:

From the orbital period, the true anomaly change during the maneuver is calculated

∆θ = 2πT
P

(5.8)
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Radius of orbit r 6871 km
Duration of maneuver T 57 s

Number of frames M >1
Number of pixels in frame N >1

Initial longitude λ0 (−180◦, 180◦)
Initial latitude φ0 (−90◦, 90◦)
Move direction β0 (0◦, 360◦)

Table 5.2: Parameters from which the simulated datacube capture is determined

The starting position of the maneuver is

pf0 =

 a cosλ0 cosφ0
a sin λ0 cosφ0

a sinφ0

 (5.9)

The initial move direction, which is identical to the initial orbit tangent unit vector is

v̂f0 =

 sin λ0 sin β0 + cosλ0 sinφ0 cos β0
cosλ0 sin β0 + sin λ0 sinφ0 cos β0

cosφ0 cos β0

 (5.10)

The orbit normal unit vector is calculated

n̂ = pf0 × v̂f0

||pf0 × v̂f0||
(5.11)

An initial nadir pointing unit vector is as follows

ẑf0 =

 − cosλ0 cosφ0
− sin λ0 cosφ0
− sinφ0

 (5.12)

The true anomaly change ∆θ is divided into M − 1 intervals

δθ = ∆θ

M − 1 (5.13)

And the satellite positions for each frame capture are

pfi = R(n̂, iδθ)pf0 , i ∈ {0, 1, 2, ...,M − 1} (5.14)

where R(n̂, iδθ) is a rotation matrix corresponding to rotation around axis n̂ by angle iδθ.
A sequence of nadir vectors ẑfi and tangent vectors v̂fi are found similarly, i.e. by rotating
their respective initial vectors by R(n̂, iδθ). The vectors v̂fi , n̂ and ẑfi represent the satellite
body x-axis, y-axis and z-axis respectively.

The MATLAB function fit() was used to solve Equation (3.89) and (3.90).
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5.1.3 Results

In the following, four different simulated area scanning maneuvers are presented. Three of
them are with excessive pitching, excessive rolling and excessive yawing respectively and
one is with an extreme nadir angle. As ground truth for the simulations is the Sentinel
satellite image shown in Figure 5.4. The first maneuver resembles a slewing maneuver,
with too high sample density during the middle of the maneuver. The fourth maneuver
resembles when the satellite is to scan the same area again in the following pass with a
nadir angle of 63◦. The second and third maneuver may resemble other kinds of faulty
attitude control.

For each of the four maneuvers, five figures are shown. The first illustrated the how the
image is sampled during the simulation, and where in the ground truth image it was
sampled. The second and third image show the image before and after the algorithm was
applied. The fourth figure illustrates the state of the algorithm after the first four stages
of the algorithm, after all pixels have been ground projected and a map grid has been
overlain. The last figure shows the map pixel position in image space after they have been
inverse projected.

All four simulated cases demonstrate well that the algorithm manages to remove major
distortions from the raw images.
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Figure 5.4: Ground truth for simulated image capture. Credit: ESA/Sentinel-2 - CC
BY-SA IGO 3.0
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5.1.4 Maneuver 1 - Pitching

Figure 5.5: Ground sample points of pitching maneuver

(a) Raw image (b) Registered and georeferenced

Figure 5.6: Before and after applying the algorithm
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Figure 5.8: Image space pixel positions
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5.1.5 Maneuver 2 - Rolling

Figure 5.9: Ground sample points of maneuver

(a) Raw image (b) Registered and georeferenced

Figure 5.10: Before and after applying the algorithm
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Figure 5.12: Image space pixel positions
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5.1.6 Maneuver 3 - Yawing

Figure 5.13: Ground sample points of maneuver

(a) Raw image (b) Registered and georeferenced

Figure 5.14: Before and after applying the algorithm
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Figure 5.16: Image space pixel positions

53



CHAPTER 5. IMPLEMENTATION AND RESULTS

5.1.7 Maneuver 4 - extreme nadir angle

Figure 5.17: Ground sample points of pitching maneuver

(a) Raw image (b) Registered and georeferenced

Figure 5.18: Before and after applying the algorithm
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Figure 5.19: Ground space pixel positions

Image Space

(a) Every pixel

Image Space

(b) Zoomed in

Figure 5.20: Image space pixel positions
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5.2 RGB Camera

The software framework between the ground station and satellite is formed by two pro-
grams, hypso-cli and opu-services. hypso-cli is the command line interface running
on the ground station which is used to send commands and configurations to the satellite.
opu-services is running on the on-board processing unit and handles the configurations
and commands the satellite receives from ground station. There is among others a service
for file transfer, a service for running the HSI. This section will be about the RGB camera
service.

5.2.1 RGB service

The RGB service is started as a thread by opu-services. The camera manufacturer
IDS provides the ueye library containing an API to interface with the camera from C
code. When commands sent by hypso-cli are prefixed with rgb, they are sent to the
RGB service. There are five commands. rgb init, rgb configure, rgb configfile,
rgb capture and rgb deinit.

rgb init, see Figure 5.21. Sets the camera from idle into a standby mode, where it is
receptive to other commands and loads a pre generated textfile containing a complete
camera configuration.

rgb configure or rgb configfile, see Figure 5.22. Change some specific configuration
parameters manually or reload a different configuration file.

rgb capture, see Figure 5.23. Initiate the capture of one image. The image capture is
optionally externally triggered, if it is desired to capture the image at a different point
in time than when the software issue the command. The image can be read in a raw,
monochrome bayer pattern image, or as a RGB image, the save file format .bmp, .png or
.jpg can be specified and the path where to save the image.

rgb deinit, see Figure 5.24. Puts the camera from Standby back into idling, ready to be
shut off.

Ideally, the RGB camera will be connected to its own power rail on the EPS that can be
turned on and off. Turning power on would be the first action in a normal image capture
sequence, which may continue as follows. The rgb init command is issued, which puts the
RGB camera into a command receptive state. Then commands that configure individual
parameters or a commands that read a file in which the whole configuration is stored can
be issued, if the default configuration is not desired. Then the image capture command
is issued with its respective command arguments. The camera then proceeds to capture
and save an image to the specified file path. The deinit command puts the camera into a
pre-initialzed state ready to have power turned off again.
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Figure 5.21: rgb init command sequence diagram

Figure 5.22: rgb configure (or rgb configfile) command sequence diagram

Figure 5.23: rgb capture command sequence diagram

Figure 5.24: rgb deinit command sequence diagram
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The following energy usage has been measured during the different modes of operation and
configurations of the camera, see Table 5.3. It shows how pixel clock influences energy use.

Operational Mode Current [mA] Power [mW]
Idle 55.0 275

Standby 75.5 377.5
Capturing 10MHz 125 625
Capturing 24MHz 139 695
Capturing 35MHz 148 740

Table 5.3: RGB Camera energy usage. Supply voltage of 5V. The frequency denotes Pixel
Clock.

5.2.2 Camera configuration

Parameter Datatype Unit Range Default Value
Pixel Clock integer MHz 10 - 35 24
Frame Rate float Hz 1.0 - 16.9 -
Exposure float s 0.02 - 1

FrameRate
1

FrameRate

Gamma integer - 60-220 100
Per channel analog gain integer - 0-100 R: 11 G: 0 B:14

Table 5.4: Some configurable parameters of the IDS UI-1250LE-C-HQ Camera

Pixel Clock Determines how fast data is read out from sensor. Higher values lead to
higher power consumption. Must be set to maximum value to enable highest framerate.

Frame Rate When in video mode, determines how often an image is read from the sensor.
Video mode is not planned to be used

Exposure How long in milliseconds the sensor is collecting light. Higher values makes the
image brighter. Must be set with considereation about the lens aperture.

Gamma A per pixel mathematical operation: pout = p
γ

100
in . A value for γ of around 180

improves picture quality. There is also a hardware gamma setting of a fixed value of 160.

Analog Gain Changes channel brightness. Configure to adjust color balance.

5.2.3 RGB camera test

A development kit with the same family of processor has been used as test hardware, Figure
5.25, on which opu-services ran. An instance of hypso-cli ran on an Ubuntu laptop
and was communicating with the ZedBoard via its CAN interface using a USB to CAN
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converter. In image captured with the RGB camera of a test printed pattern is shown in
Figure 5.26a. A raw image pre-debayering is shown in Figure 5.26b. If we zoom into the
bayer pattern image, the pattern becomes noticeable, Figure 5.27.

Figure 5.25: Avnet ZedBoard development kit

(a) Debayered/Demosaiced (b) Bayer pattern image

Figure 5.26: Cropped image of a printed test pattern under cloudy sunlight. Hardware
gamma on.

Figure 5.27: Bayer pattern image zoomed in at the Red-Green-Blue part of the test pattern
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Chapter 6

Conclusions

Image registration alone is not a critical part of the HYPSO processing pipeline. Targets
within the datacube can be georeferenced without applying the full algorithm. It is however
always nice to have possibilities and properly registered and georeferenced images can be
combined with other geographic information systems from which better conclusion may be
drawn

The algorithm is working well and can remove distortions from raw images scanned through
many different kinds of irregular sampling. It remains to be seen whether its possible
to fully implement it on the on-board processing unit while still being practical for the
operations, because the polynomial fitting and resampling part of the algorithm at full
resolution of about 1216×1500 takes almost a minute, even on a laptop and that was not
even with hyperspectral images, but only three channeled RGB images. It is however fully
possible to assign geographic coordinates to the detected targets using on board processing
power.

6.1 Future work

There are two important things that should be done next. Implementing the algorithm
on target hardware and using it on real data instead of simulated data, either from other
similar satellite missions or from drone operations. Applying the algorithm on real data
may uncover important details which could be algorithm breaking if left unconsidered.

In addition, with the RGB camera working, one can start investigating how to best register
the images from the HSI into the RGB images, if it turns out to be doable.
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Appendices

A Algorithm MATLAB Code

Listing 6.1: Function to rotate a vector around axis by angle. Implements Equation (3.18)
1 function vr = rotateV(v, n, a)
2 %ROTATEV Rotates vector v around axis n by angle a
3 % both v, n, and vr are column vectors. n is a
4 % unit vector, a is in radians
5 n = n/norm(n);
6 vr = v*cos(a) + n*(n’*v)*(1-cos(a)) + cross(n, v)*sin(a);
7 end

Listing 6.2: Function to find the ray-spheriod intersection
1 function surfacePoint = projection(satPos, ViewDir)
2 %PROJECTPOINT traces a ray from satPos along ViewDir and returns
3 % intersection point of ray with oblate spheroid
4

5 % Projecting includes solving a second order polynomial
6 % c1 is the linear coefficient
7 % c2 is the constant coefficient
8 % t is found using the p-q formula and describes how long along
9 % viewDir needs to be traced until intersection point.

10

11 % will return satPos if there is no intersection with the earth
12

13 % Earth properties
14 earthEquRadius = 6378137;
15

16 % Oblate spheroid paramteres
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17 a = earthEquRadius;
18 f = 0.003452810665; % earth flattening
19 f_ = 1/((1 - f)ˆ2);
20

21 % xˆ2 + yˆ2 +f_*zˆ2 = aˆ2
22

23 % Projecting ray onto spheroid
24 h = 1 - (1-f_)*ViewDir(3)ˆ2;
25 c1 = (ViewDir(1)*satPos(1) + ViewDir(2)*satPos(2) + f_*ViewDir(3)*satPos(3))/h;
26 c2 = (satPos(1)ˆ2 + satPos(2)ˆ2 + f_*satPos(3)ˆ2 - a*a)/h;
27

28

29 if c1*c1-c2 < 0 % no intersection case
30 surfacePoint = satPos;
31 else
32 t = -c1-sqrt(c1*c1-c2);
33 surfacePoint = satPos + t * ViewDir;
34 end
35

36 end

Listing 6.3: Script to calculate sidereal time
1 % Date
2 Y = 2019; M = 6; D = 24;
3 % Time of day
4 h = 23; m = 47; s = 58;
5

6 if M < 3
7 Y = Y - 1;
8 M = M + 12;
9 end

10

11 A = floor(Y/100);
12 B = 2-A+floor(A/4);
13

14 JD = floor(365.25*(Y+4716)) + floor(30.60001*(M+1))+D+B - 1524.5;
15

16 % O: sidereal time at midnight at the day corresponding to julian day JD
17 T = (JD - 2451545) / 36525;
18 s0h = 24110.54841 + 8640184.812866*T + 0.093104*T*T - 0.0000062*T*T*T;
19 while s0h < 0.0
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20 s0h = s0h + 24*3600;
21 disp(’oi1’);
22 end
23

24 while s0h > 24*3600
25 s0h = s0h - 24*3600;
26 disp(’oi2’);
27 end
28

29 % sidereal time at time s seconds UT since midnight at julian day JD
30 s_sdrl = s0h + 1.00273790935*(3600*h + 60*m + s);
31

32 if s_sdrl > 24*3600
33 s_sdrl = s_sdrl - 24*3600;
34 end
35

36 hrs = floor(s_sdrl/3600);
37 mns = floor((s_sdrl-hrs*3600)/60);
38 scs = floor(s_sdrl-hrs*3600-mns*60);
39

40 disp([’Sidereal Time: ’ num2str(hrs) ’:’ num2str(mns) ’:’ num2str(scs)]);

Listing 6.4: Script which simulates the image capture
1 %% Setup - variable definitions
2 tic
3 % load ground truth image
4 im = imread(’simGroundTruth.jpg’);
5

6 % camera field ofview
7 fov = 8.45*pi/180;
8 % earth flattening
9 f = 0.003452810665;

10

11 a = 6871000; % approximate semi major axis of orbit
12 P = 2*pi*sqrt(a*a*a/(5.972e+24*6.67e-11)); % orbital period
13 T = 0*60 + 57; % image sampling duration in seconds
14 Dth = 360*T/P * pi/180; % true anomaly change during sampling
15

16 % sampled image dimensions
17 N = 30*5;
18 M = 15*5;
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19

20 % per frame true anomaly increment
21 dth = Dth / (N-1);
22

23 slo = 0*pi/180; % starting position longitude
24 sla = 0*pi/180; % starting position latitude
25

26 % angle defining move direction.
27 move_angle = 50*pi/180; % 0 deg means southward, 90 deg means eastwards.
28

29 % preallocating position and orientation timeseries
30 poses = zeros(3, N);
31 viewDirs = zeros(3, N);
32 sideDirs = zeros(3, N);
33

34 % ECI Position
35 p = [cos(slo)*cos(sla); sin(slo)*cos(sla); sin(sla)];
36 % ECI move direction
37 v = [-sin(slo)*sin(move_angle) + cos(slo)*sin(sla)*cos(move_angle);
38 cos(slo)*sin(move_angle) + sin(slo)*sin(sla)*cos(move_angle);
39 -cos(sla)*cos(move_angle) ];
40 % Vector normal to orbit plane
41 n = cross(p, v);
42

43 % Calculating positions during sampling and setting orientation to orbit frame
44 for i = 1:N
45 poses(:, i) = rotateV(p, n, dth*(i-1));
46 viewDirs(:, i) = -poses(:, i);
47 sideDirs(:, i) = cross(viewDirs(:,i), n);
48 end
49 poses = poses*a;
50

51 % then calculating orientation timeseries as perutbartion to the orbit frame
52 amp = 0;
53 angles = -amp*pi/180 * cos(0:pi/(N-1):pi);
54 axs = n;
55 for i = 1:N
56 viewDirs(:,i) = rotateV(viewDirs(:,i), axs, angles(i));
57 sideDirs(:,i) = rotateV(sideDirs(:,i), axs, angles(i));
58 end
59

60 for i = 1:N
61 axs = viewDirs(:,i);
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62 viewDirs(:,i) = rotateV(viewDirs(:,i), axs, 100*pi/180*(i-N/2)/N);
63 sideDirs(:,i) = rotateV(sideDirs(:,i), axs, 100*pi/180*(i-N/2)/N);
64 end
65

66

67 %% Simulating datacube capture
68 % Output of this section is one simulated image taken from the satellite
69 % as is moves plus corresponding position and attitude info from the
70 % previeous script section
71

72 % ground truth image dimensions
73 tmep = size(im(:,:,1));
74 img_px = tmep(2); % horizontal image axis
75 img_py = tmep(1); % vertical image axis
76 clear tmep;
77

78 % allocate sampled image
79 ims = uint8(zeros(N, M, 3));
80

81 % allocate array of sample point ground positions
82 samplePoints = zeros(N, M, 2);
83

84 toc
85 disp(’starting to sample an image ...’);
86

87 for i = 1:N
88

89 pos = poses(:,i);
90 viewDir = viewDirs(:,i);
91 sideDir = sideDirs(:,i);
92

93 for j = 1:M
94

95 th = atan(2*tan(fov/2 * ((j-1)/(M-1) - 0.5)));
96 % pixel view direction unit vector
97 vi = rotateV(viewDir, sideDir, th);
98

99 groundPos = projection(pos, vi);
100

101 e2 = 2*f - f*f; % eccentricity squared
102

103 % geodetic coordinates
104 long = atan2(groundPos(2), groundPos(1));
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105 lat = atan2(groundPos(3), (1-e2)*sqrt(groundPos(1)*groundPos(1) +
groundPos(2)*groundPos(2)));

106

107 % transforming coordinates to ground truth image space
108 groundPosX = 34000*lat + 4800;
109 groundPosY = 34000*long + 2200;
110

111 samplePoints(i, j, 1) = groundPosX;
112 samplePoints(i, j, 2) = groundPosY;
113

114

115 samplingMethod = 2; % 1: nearest neighbor 2: bilinear
116 if samplingMethod == 1
117 % nearest neighbor sampling of cube
118 is = round(groundPosX);
119 js = round(groundPosY);
120

121 % constrain pixels to within the image
122 if is < 1
123 is = 1;
124 elseif is > img_px
125 is = img_px;
126 end
127

128 if js < 1
129 js = 1;
130 elseif js > img_py
131 js = img_py;
132 end
133

134 % sample
135 ims(i,j,:) = im(js, is, :);
136 else
137 % bilinear interpolation sampling of cube
138

139 % constrain pixels to within the image
140 if groundPosY < 1
141 groundPosY = 1;
142 elseif groundPosY > img_py
143 groundPosY = img_py;
144 end
145

146 if groundPosX < 1
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147 groundPosX = 1;
148 elseif groundPosX > img_px
149 groundPosX = img_px;
150 end
151

152 % interpolate/sample
153 i_l = floor(groundPosX);
154 i_u = ceil(groundPosX);
155

156 j_l = floor(groundPosY);
157 j_u = ceil(groundPosY);
158

159 frac_i = groundPosX - i_l;
160 frac_j = groundPosY - j_l;
161

162 temp1 = (1 - frac_i)*im(j_l, i_l, :) + frac_i*im(j_l, i_u, :);
163 temp2 = (1 - frac_i)*im(j_u, i_l, :) + frac_i*im(j_u, i_u, :);
164

165 ims(i,j,:) = (1 - frac_j)*temp1 + frac_j*temp2;
166 end
167 end
168 end
169

170 disp(’Done sampling an image.’);
171 toc

Listing 6.5: Script which projects pixels onto earth and finds resample grid
1 %% Calculations
2 % 1. Giving each pixel groud coordinates
3 % 2. finding ground coordniate boundaries
4 % 3. defining registrations/resample grid
5

6 %% 1. and 2. Giving each pixel groud coordinates
7

8 disp(’Geocoding pixels ...’);
9

10 sampledData.pixelPoses = zeros(N,M,2);
11 sampledData.pixelColors = ims;
12

13 minx = inf;
14 maxx = -inf;
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15

16 miny = inf;
17 maxy = -inf;
18

19 pointWithLeastX = [-1 -1];
20 pointWithLeastY = [-1 -1];
21 pointWithLargestX = [-1 -1];
22 pointWithLargestY = [-1 -1];
23

24 % projecting pixels onto ground /
25 % / finding pixels corresponding group position
26 % and putting the positions into data.pixelPoses
27 for i = 1:N
28

29 pos = poses(:,i);
30 viewDir = viewDirs(:,i);
31 sideDir = sideDirs(:,i);
32

33 for j = 1:M
34

35 th = atan(2*tan(fov/2 * ((j-1)/(M-1) - 0.5)));
36

37 %v = rotateV(viewDir, sideDir, -fov/2 + (j - 1)*fov/im_size_j);
38 v = rotateV(viewDir, sideDir, th);
39

40

41 groundPos = projection(pos, v);
42

43 e2 = 2*f - f*f; % eccentricity squared
44

45 % geodetic coordinates
46 long = atan2(groundPos(2), groundPos(1));
47 lat = atan2(groundPos(3), (1-e2)*sqrt(groundPos(1)*groundPos(1) +

groundPos(2)*groundPos(2)));
48

49

50 % coordinates to image space function, part of the simulation, not
51 % part of the algorithm
52 groundPosX = 35000*long +500;
53 groundPosY = 35000*lat + 2000;
54

55 % ground truth space pixel poses of sample points
56 sampledData.pixelPoses(i,j,1) = groundPosX; % x
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57 sampledData.pixelPoses(i,j,2) = groundPosY; % y
58

59 if sampledData.pixelPoses(i,j,1) < minx
60 minx = sampledData.pixelPoses(i,j,1);
61 pointWithLeastX(1) = sampledData.pixelPoses(i,j,1);
62 pointWithLeastX(2) = sampledData.pixelPoses(i,j,2);
63 end
64 if sampledData.pixelPoses(i,j,1) > maxx
65 maxx = sampledData.pixelPoses(i,j,1);
66 pointWithLargestX(1) = sampledData.pixelPoses(i,j,1);
67 pointWithLargestX(2) = sampledData.pixelPoses(i,j,2);
68 end
69 if sampledData.pixelPoses(i,j,2) < miny
70 miny = sampledData.pixelPoses(i,j,2);
71 pointWithLeastY(1) = sampledData.pixelPoses(i,j,1);
72 pointWithLeastY(2) = sampledData.pixelPoses(i,j,2);
73 end
74 if sampledData.pixelPoses(i,j,2) > maxy
75 maxy = sampledData.pixelPoses(i,j,2);
76 pointWithLargestY(1) = sampledData.pixelPoses(i,j,1);
77 pointWithLargestY(2) = sampledData.pixelPoses(i,j,2);
78 end
79 end
80 end
81

82 disp(’Done Geocoding pixels.’); toc
83

84 %% 3. Defining registration grid
85

86 disp(’Defining registration grid ...’);
87

88 spanX = maxx-minx;
89 spanY = maxy-miny;
90

91 resolutionIncreaseFactor = 1.5ˆ2;
92

93 aspectRatio = spanX/spanY;
94 pixelCount = N*M*resolutionIncreaseFactor;
95

96 K = floor(sqrt(aspectRatio*pixelCount));
97 L = floor(pixelCount/K);
98

99 registrationGridPositions = zeros(K,L,2);
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100

101 test1 = ones(1,K)*minx + (0:(spanX/(K-1)):(spanX));
102 for i = 1:L
103 test2 = (miny + (i-1)*spanY/(L-1))*ones(1,K);
104

105 % ground truth space pixel poses of registration grid
106 registrationGridPositions(:,i,1) = test1;
107 registrationGridPositions(:,i,2) = test2;
108 end
109

110 disp(’Done defining registration grid.’); toc

Listing 6.6: Script which determines inverse projection function inverse projects and re-
samples

1 % Putting all 2D pixel positions into one large 1D array, to put it into
2 % the right format for polynomial fitting using the function fit()
3

4 disp(’Creating 1D array of pixel coordinates ...’);
5

6 pixelPoses1D = zeros(N*M, 2);
7 y1 = zeros(N*M, 1);
8 y2 = zeros(N*M, 1);
9

10 for i = 1:N
11 for j = 1:M
12 % ground truth space pixel positions of sample points
13 pixelPoses1D((i-1)*M + j, 1) = sampledData.pixelPoses(i,j,1);
14 pixelPoses1D((i-1)*M + j, 2) = sampledData.pixelPoses(i,j,2);
15

16 % image space pixel positions
17 y1((i-1)*M + j) = i;
18 y2((i-1)*M + j) = j;
19 end
20 end
21

22 disp(’Done creating 1D array of pixel coordinates.’);
23 toc
24

25 % letting matlab do the fitting
26 disp(’Starting to do the fitting ...’);
27 surffit_1 = fit(pixelPoses1D, y1, ’poly55’);
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28 disp(’Fitting 1 done’);
29 surffit_2 = fit(pixelPoses1D, y2, ’poly55’);
30 disp(’Fitting 2 done’);
31 toc
32

33 %% Inverse projecting the grid - Parallel with 4 threads (on my laptop)
34

35 registeredData.pixelPoses = zeros(K,L,2);
36

37 pPosesX = zeros(K,L);
38 pPosesY = zeros(K,L);
39

40 n = length(coeffnames(surffit_1));
41 coeffs1 = coeffvalues(surffit_1);
42 coeffs2 = coeffvalues(surffit_2);
43

44 % Finding image spae coordinates
45 disp(’Backprojecting ...’);
46 parfor i = 1:K
47

48 if mod(i,16) == 0
49 fprintf(’%d ’, i);
50 if mod(i,16*16) == 0
51 fprintf(’\n’);
52 end
53 end
54

55 v1 = zeros(1, L);
56 v2 = zeros(1, L);
57

58 for j = 1:L
59

60 %/*
61

62 lm = 0;
63 l = 0;
64 sum1 = 0;
65 sum2 = 0;
66 x = registrationGridPositions(i,j,1);
67 y = registrationGridPositions(i,j,2);
68

69 for k = 1:n
70
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71 sum1 = sum1 + coeffs1(k)*yˆl*xˆ(lm-l);
72 sum2 = sum2 + coeffs2(k)*yˆl*xˆ(lm-l);
73

74

75 if l == lm
76 lm = lm + 1;
77 l = 0;
78 else
79 l = l + 1;
80 end
81 end
82

83 v1(j) = sum1;
84 v2(j) = sum2;
85

86 end
87 pPosesX(i,:) = v1;
88 pPosesY(i,:) = v2;
89 end
90

91 registeredData.pixelColors = uint8(zeros(K,L,3));
92

93 pColorsR = uint8(zeros(K,L));
94 pColorsG = uint8(zeros(K,L));
95 pColorsB = uint8(zeros(K,L));
96

97 % Resampling the raw image
98 parfor i = 1:K
99

100 p1 = uint8(zeros(1, L));
101 p2 = uint8(zeros(1, L));
102 p3 = uint8(zeros(1, L));
103

104 for j = 1:L
105

106 pixelPosX = pPosesX(i,j);
107 pixelPosY = pPosesY(i,j);
108

109 if pixelPosX < 1 || pixelPosX > N || pixelPosY < 1 || pixelPosY > M
110 p1(j) = 0;
111 p2(j) = 0;
112 p3(j) = 0;
113 else
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114 i_l = floor(pixelPosX);
115 j_l = floor(pixelPosY);
116 i_u = ceil(pixelPosX);
117 j_u = ceil(pixelPosY);
118

119 frac_i = pixelPosX - i_l;
120 frac_j = pixelPosY - j_l;
121

122 temp1 = (1 - frac_i)*ims(i_l, j_l, :) + frac_i*ims(i_u, j_l, :);
123 temp2 = (1 - frac_i)*ims(i_l, j_u, :) + frac_i*ims(i_u, j_u, :);
124

125 temp3 = (1 - frac_j)*temp1 + frac_j*temp2;
126

127 p1(j) = temp3(1);
128 p2(j) = temp3(2);
129 p3(j) = temp3(3);
130 end
131 end
132

133 pColorsR(i, :) = p1;
134 pColorsG(i, :) = p2;
135 pColorsB(i, :) = p3;
136 end
137

138 registeredData.pixelColors(:,:,1) = pColorsR;
139 registeredData.pixelColors(:,:,2) = pColorsG;
140 registeredData.pixelColors(:,:,3) = pColorsB;
141

142 fprintf(’\n’);
143

144 registeredData.pixelPoses(:,:,1) = pPosesX;
145 registeredData.pixelPoses(:,:,2) = pPosesY;
146

147 disp(’Done backprojecting ...’);
148 toc

Listing 6.7: Script to generate the plots shown in the report
1 %% Plotting sampled image
2

3 figure;
4 imshow(ims);
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5 % saving sampled image
6 % imwrite(ims, ’sampled.png’);
7

8

9 %% Plotting ground sample points
10

11 figure; grid on;
12 imshow(im); hold on;
13 plot(samplePoints(:, :, 1)’, samplePoints(:, :, 2)’, ’o’,’Color’,[0,0,0],

’MarkerFaceColor’, ’w’);
14 axis equal;
15 title(’Ground Space’);
16

17

18 %% Plotting ground space grid with ground sample points
19

20 figure; hold on; box on; grid on;
21 title([’Image ’ ’Projected’]);
22

23 xlabel(’Longitude’); ylabel(’Latitude’); zlabel(’z’);
24

25 boundary = [minx maxx maxx minx minx;
26 miny miny maxy maxy miny;
27 0 0 0 0 0 ];
28

29 plot3(boundary(2,:), maxx-boundary(1,:), boundary(3,:));
30

31 for i = 1:L
32 plot3(registrationGridPositions(:,i,2), maxx-registrationGridPositions(:,i,1),

zeros(1,K), ’x’, ’color’, [0.5, 0.5, 0.9]);
33 end
34 for i = 1:M
35 plot3(sampledData.pixelPoses(:,i,2), maxx-sampledData.pixelPoses(:,i,1),

zeros(1,N), ’ro’);
36 end
37

38 axis equal;
39 title(’Ground Space’);
40 set(gca, ’xticklabel’, []);
41 set(gca, ’yticklabel’, []);
42

43

44 %% Plotting Image space resample grid positions
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45

46 figure; hold on; grid on; box on;
47

48 for j = 1:L
49 plot3(registeredData.pixelPoses(:,j,2), -registeredData.pixelPoses(:,j,1),

zeros(1,K), ’x’, ’color’, [0.5, 0.5, 0.9]);
50 end
51 for j = 1:N
52 plot(0.5:(0.499999+M), -(j-0.5)*ones(1,M), ’ro’);
53 end
54 plot([0; 0; M; M; 0], -[0; N; N; 0; 0], ’r’);
55

56 axis equal;
57 title(’Image Space’);
58 set(gca,’xticklabel’,[])
59 set(gca,’yticklabel’,[])
60

61

62 %% Plotting Registered image
63

64 figure;
65 imshow(registeredData.pixelColors);
66 % save registered image
67 % imwrite(registeredData.pixelColors, ’registered.png’);

77



B SmallSat Group Presentation
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C Full table of relevant Success criteria and Require-
ments

ID Requirement
MS-0-002 Shall observe Case 1 and Case 2 waters off the Norwegian of at least

70x70 km2 area
MS-0-003 Should observe Case 1 and Case 2 waters globally of at least 70x70 km2

area
MS-0-007 HSI images shall have at least 300 m spatial resolution
MS-0-008 HSI images should have at least 100 m spatial resolution
MS-0-009 S/C shall perform along-track slew maneuver at a angular velocity with

magnitude of 0.01 deg stability over 60 s
MS-0-010 S/C should perform cross-track slew maneuver at a angular velocity with

magnitude of 0.01 deg stability over 60 s
M-1-006 Shall have mapping knowledge error of less than 100 m (RMS)
M-1-011 HSI images shall be geometrically corrected, geo-referenced and validated

against a reference with predefined geometric control points and latitude
and longitude coordinates

M-2-004 Should perform image acquisition of target areas where there is highest
probability of detection off the coast of Norway with off-Nadir pointing
capability

M-2-005 Should use wide-FoV monochrome images as grid and reference for HSI
images with known geometrical features and coordinates (lat & lon)

M-2-009 HSI image resolution shall be enabled to be less than 100 m through
onboard or ground super-resolution/ deconvolution

M-2-010 Should enable onboard image registration, motion-blur correction, geo-
referencing, super-resolution and other fancy algorithms

M-2-017 S/C shall cover 430 km orbit-track, image acquisition shall be at least 57
s during slew maneuver, start at 20 deg view angle and end at -20 deg
view angle

M-2-018 L1A data shall have no more than 2200 frames and be less than 420 MB
M-2-020 Data processing time after shall be less than 70 s for L1A data
M-2-021 Data processing time after should be less than 120 s for operational data
SBUS-3-009 Orbit knowledge should be <10 m (2 sigma) with GPS
SBUS-3-010 PPS-signal from GNSS or other solution for time-synchronization as well

as navigational (attitude and orbit) data from ADCS or OBC shall be
interfaced to payload.

SBUS-3-011 ADCS shall have absolute pointing knowledge of 360 arcsec/0.1 deg (2
sigma) and absolute pointing accuracy of 3600 arcsec/1 deg (2 sigma).

Table 6.1: Relevant HYPSO mission success criteria and requirements
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D Musings into line-spheroid intersections

Given a spheroid described by semi major axis x and eccentricity e

x2 + y2 + z2

1− e2 = a2 (6.1)

and given a point p and a unit vector v that describe a line in 3D Cartesian space:

p+ tv , t ∈ R

The values of t that give the points of intersection of the line with the spheroid are found
by solving(

v2
x + v2

y + v2
z

1− e2

)
t2 + 2

(
pxvx + pyvy + pzvz

1− e2

)
t+ p2

x + p2
y + p2

z

1− e2 − a
2 = 0

The discriminant

∆ = b2

4 − ac = a2
(
v2
x + v2

y + v2
z

1− e2

)
− (pxvy − pyvx)2 − (pxvz − pzvx)2

1− e2 − (pyvz − pzvy)2

1− e2

characterizes the kind of intersection there is. The possibilities are

• No intersection, ∆ < 0

• One intersection, ∆ = 0

• Two intersections, ∆ > 0

let e = 0, that is, let the spheroid become a sphere, then a describes the sphere’s radius
and

∆ = a2
(
v2
x + v2

y + v2
z

)
− (pxvy − pyvx)2 − (pxvz − pzvx)2 − (pyvz − pzvy)2

= a2||v||2 − p× v
= a2||v||2 − ||p||2||v||2 sin θ

and since v is a unit vector
∆ = a2 − ||p||2 sin2 θ (6.2)

From this the following can be seen
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1. if ||p|| < a then ∆ > 0.
||p|| < a means that there is a point on the line that is inside the sphere. Thus there
are always two intersections.

2. if θ = 0, then ∆ > 0.
θ = 0 means p and v are parallel and that the line goes through (0, 0, 0). Since the
sphere is centered around (0, 0, 0), there are two intersections.

3. if θ = π
2 and ||p|| > a, then ∆ < 0.

θ = π
2 means that the line is perpendicular to the position vector p. If ||p|| = a, then

the line is a tangent. If ||p|| > a, then the line is a radially translated tangent which
implies that it does not intersect the circle.

Rearrange ∆ for the spheroid:

∆ = a2
(
v2
x + v2

y + v2
z

1− e2

)
− (pxvy − pyvx)2 − (pxvz − pzvx)2

1− e2 − (pyvz − pzvy)2

1− e2

∆ = a2
(
v2
x + v2

y + vz√
1− e2

vz√
1− e2

)
− (pxvy − pyvx)2

−
(
px

vz√
1− e2

− pz√
1− e2

vx

)2

−
(
py

vz√
1− e2

− pz√
1− e2

vy

)2

Replace the z-component of v and p with vz
√

1− e2 and pz
√

1− e2 respectively to obtain

∆ = a2
(
v2
x + v2

y + vz
√

1− e2
√

1− e2

vz
√

1− e2
√

1− e2

)
− (pxvy − pyvx)2

−
(
px
vz
√

1− e2
√

1− e2
− pz
√

1− e2
√

1− e2
vx

)2

−
(
py
vz
√

1− e2
√

1− e2
− pz
√

1− e2
√

1− e2
vy

)2

∆ = a2
(
v2
x + v2

y + v2
z

)
− (pxvy − pyvx)2 − (pxvz − pzvx)2 − (pyvz − pzvy)2

= a2||v′||2 − p′ × v′

= a2||v′||2 − ||p′||2||v′||2 sin θ

where p′ =
[
px, py, pz

√
1− e2

]>
and v′ =

[
vx, vy, vz

√
1− e2

]>
. Now the expression resem-

bles the expression for a sphere, (6.2).
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