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Summary

This thesis explores the world of computer vision in order to detect strawberries in images.
Three different methods of object detection are presented, implemented and compared in
this thesis. The first one is based on traditional computer vision and uses primarily a
segmentation algorithm to detect strawberries. The two other ones are based on a deep
learning framework that uses a single pass of a neural network to detect strawberries in an
image. The question this thesis intends to answer is; which of the two methods, traditional
computer vision and deep learning, is the most suited to detect strawberries in images?

The theory behind each method is first explained to understand how they work and
can be used. Then, the implementation is described and the results are presented. Finally,
the methods and results are discussed individually and compared in order to conclude and
discuss what further work can be done by Saga Robotics [1]. The code implemented in this
thesis can be found in Appendix A. Appendix B contains links to three videos showcasing
the results of each method implemented in this thesis.

The best results obtained in this thesis are a mAP of 87.1% and an average segmenta-
tion accuracy of 86.6% for YOLOv3-strawberry, the YOLOv3 object detection system [2]
trained specifically on strawberries. The thesis concludes that the deep learning methods
implemented are more suited to detect strawberries in images than the traditional computer
vision method implemented.

i



Sammendrag

Denne oppgaven undersøker hvordan datasyn kan brukes til å detektere jordbær i bilder.
Tre forskjellige datasynsalgoritmer legges frem, implementeres og sammenlignes med
hverandre i denne oppgaven. Den første er basert på tradisjonelt datasyn og bruker hov-
edsakelig en segmenteringsalgoritme for å detektere jordbær. De to andre er basert på et
rammeverk for dyp læring som bruker dype nett for å detektere jordbær. Spørsmålet denne
oppgaven prøver å svare på er som følger; hvilke av de to metodene, tradisjonelt datasyn
og dyp læring, egner seg best til å detektere jordbær i bilder?

Teorien bak hver metode forklares først for å forstå hvordan de fungerer og kan brukes.
Så blir implementasjonen av hver metode beskrevet og resultatene blir lagt frem. Til slutt
diskuteres metodene og resultatene for å kunne konkludere og diskutere hva Saga Robotics
kan gjøre videre for å forbedre resultatene. Koden implementert i denne oppgaven finnes
i Appendix A. Appendix B inneholder lenker til tre videoer som viser resultatet av hver
metode implementert i denne oppgaven.

De beste resultatene i denne oppgaven er en mAP på 87.1% og en gjennomsnitlig
segmenteringsnøyaktighet på 86.6% for YOLOv3-strawberry, en versjon av YOLOv3 [2]
trent spesifikt på jordbær. Denne oppgaven konkluderer med at metodene basert på dyp
læring som ble implementert egner seg bedre til å detektere jordbær enn metoden basert
på tradisjonelt datasyn som ble implementert.
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Chapter 1
Introduction

1.1 Problem description

Saga Robotics [1] in Ås are working on automating the picking of strawberries in green-
houses. They already have a robot equipped with a picking tool, but the detection software
can not detect strawberries with sufficient precision. The robot has to be able to detect
the position and depth of the ripe strawberries in order to pick them. This Master’s thesis
explores the use of traditional computer vision versus the use of deep learning to detect
the ripe strawberries.

Which of the two methods, traditional computer vision and deep learning, is the most
suited to detect strawberries in images?

1.2 Background and motivation

Computer vision has been around since the late 1960’s, and has evolved with the evolution
of computers. It started out with algorithms to recognize edges and lines, optical flow and
motion estimation. Nowadays, computer vision with neural networks can recognize the
most complex shapes and one single neural network may recognize up to thousands of
different objects [9]! This thesis handles simple red shapes that stand out from the green
and dark background. It is interesting to see if traditional computer vision can stay relevant
in this new age, or if the newer convolutional neural networks outperform the old methods.

The personal motivation to work with this project comes from my fascination for the
agriculture. For several summers I worked at a farm where I saw how overworked farmers
are. In addition, there are fewer and fewer farmers in Norway. The agriculture is one of the
main industries that lay behind on automation. The automation of the agriculture has a big
potential and may solve the problem of overworked and diminishing number of farmers. I
believe it is only a question of time before the agriculture becomes mostly automated, and
I wish to contribute to that change.

1



Chapter 1. Introduction

1.3 Objective and method
The main objectives of this thesis are to detect strawberries in images and to determine
which of traditional computer vision and deep learning is most suited for the task. To
accomplish these objectives, the following methods have been implemented:

• Implementing an algorithm based on traditional computer vision to segment straw-
berries in images.

• Implement a labeling script that utilizes the segmentation algorithm to label images
with bounding boxes.

• Implementing YOLOv3 [2] and YOLOv3-tiny with the labeled images to detect
strawberries in images.

• Comparing the methods implemented in this thesis.

1.4 Outline
In addition to this first chapter, this thesis contains five other chapters, each described
below:

• Chapter 2 explains the theory behind the methods used in this thesis. The first sec-
tion explains the traditional computer vision methods in details, whereas the second
section explains the neural networks used in this thesis in a more generalized way.

• Chapter 3 presents in its first section the different tools and libraries used in this
thesis. In its second section, it explains how these tools have been used to implement
the methods and where the code can be found.

• Chapter 4 presents the results obtained by the different detection methods by show-
ing example images in its first section and comparison metrics in its second section.

• Chapter 5 discusses the results presented in chapter 4 and compares the traditional
computer vision against the neural networks. It also discusses certain limitations of
each method.

• Chapter 6 concludes this thesis and discusses further work that can be done by Saga
Robotics to improve the results.

2



Chapter 2
Theory

This chapter presents the methods used in this thesis and goes through their theory. First,
the methods of traditional computer vision, or CV, are presented. Then, the newer methods
of deep learning are presented. Finally, evaluation metrics that can be used to compare the
methods are introduced.

2.1 Segmentation with traditional CV

This section presents methods that can be used to segment strawberries in images. First,
the RGB and HSV color models are introduced and used in combination with a threshold
segmentation to segment strawberries from the background. Then the Canny edge detector
[10] is presented to find edges between strawberries in clusters. Finally, a contour detection
algorithm [11] is introduced to separate strawberries in clusters.

Figure 2.1: Strawberry before thresholding (left), after RGB-thresholding (middle) and after HSV-
thresholding (right). The thresholding is done without filtering.

2.1.1 HSV-segmentation

In greenhouses that cultivate strawberries, the color palette is mostly made up of green and
blue from the plants and the background, but there is also some red from the fruits. This

3



Chapter 2. Theory

section will show how segmentation can separate the red fruits from the background, as is
shown in Figure (2.1).

Threshold segmentation

Segmentation consists in partitioning an image into segments and to classify the segments
into one or several classes. In this case, the strawberries must be segmented from the
background. Threshold segmentation consists in setting an upper and a lower threshold
Tu and Tl, then for every pixel intensity Ii,j in the image, the following operation is
performed:

Ii,j =

{
Ii,j , if Tl ≤ Ii,j ≤ Tu
0, otherwise

RGB- to HSV-conversion

The RGB color model consists of three values, red, blue and green. These values can
be added together to create most colors of the visible spectrum. Because of this additive
property, computers use the RGB color model to handle images; a pixel in an RGB image
can be represented on a LED screen by changing the intensities of the corresponding red,
blue and green LED’s on the screen.

The RGB color model is good at representing colors on a screen, but it is not intuitive
to the human mind. Intuitively, high values of red should only be red, but as is seen in
Figure (2.2), high values of red might be red as well as they might be white. A threshold
segmentation is the equivalent of cutting out a smaller cube from the cube in Figure (2.2).
If the lower left quadrant of the left side of the cube was to be segmented, the white would
not be segmented, but there would still be some orange and pink since the segmentation
is linear. A better segmentation would be to segment a sphere with center in the most red
corner, or use polar coordinates instead of Cartesian coordinates. This is what the HSV
color model intends to do.

Figure 2.2: The RGB color spectrum in Cartesian coordinates (left) and the HSV color spectrum in
cylindrical coordinates (right) [12].

The HSV color model consists of three values, hue, saturation and value, as seen on
Figure (2.2). This is a more intuitive model than the RGB color model since it separates

4



2.1 Segmentation with traditional CV

the intensity, or brightness, from the color. The HSV color model was first developed by
computer graphics researchers in the 1970’s [13] to mimic their perception of color. The
hue decides the color, the saturation decides how light the color is and the value decides
how dark the color is. Contrary to the RGB color model, only two of the channels, satura-
tion and value, are changed by different lightning conditions. This makes a segmentation
based on the HSV color model more adaptable to changes in lightning conditions. The
transformation from RGB to HSV is done with the following equations:

MAX = max(R,G,B)

MIN = min(R,G,B)

H =


0, if MAX = MIN

60◦ · (0 + G−B
MAX−MIN ), if MAX = R

60◦ · (0 + B−R
MAX−MIN ), if MAX = G

60◦ · (0 + R−G
MAX−MIN ), if MAX = B

H = H + 360◦ if H < 0◦

S =

{
0, if MAX = 0
MAX−MIN

MAX , otherwise

V = MAX

Threshold determination

When using threshold segmentation, a threshold must be set that segments all the straw-
berries and only the strawberries. The threshold can either be constant for all images, or
vary for every image with adaptive thresholding.

In the RGB color model, thresholds should be set by adaptive thresholding. The R,
G and B values all vary with different lightning conditions. Therefore, a threshold set
for a sunny day may not segment as well for a cloudy day. An example of an adaptive
thresholding algorithm is Otsu’s method [14]. For every image, Otsu’s method creates
histograms of the R, G and B values in the image to set thresholds.

In the HSV color model, thresholds can be set as constants for all images. Only the
S and V values vary with different lightning conditions. An interval of H values will
therefore cover most strawberries, from the darkest to the lightest, no matter the lightning
conditions. This interval on the H value must be chosen to correspond to the ripe straw-
berries. An interval on the S and V values must also be chosen to respectfully discard the
lightest and darkest objects that are not strawberries.

The HSV color model is often preferred to use in thresholding of color images because
it is is invariant to lightning conditions.

2.1.2 Canny edge detection
A lot of the strawberries grow in clusters and are difficult to differentiate from each other.
Threshold segmentation separates the strawberries from the background, but is not enough
to separate them from each other, since they have similar colors. This subsection will
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Chapter 2. Theory

describe how filtering, Canny edge detection and closing are able to detect edges of straw-
berries.

Figure 2.3: Strawberry before (left) and after (right) filtering, Canny edge detection and closing.

Image filtering

The first step of Canny edge detection is to filter the image. Typically this is done with
Gaussian filtering, but median filtering is used in this thesis. Both filters have edge-
preserving properties, but the Gaussian filter is linear while the median filter is non-linear.
The advantages and disadvantages of both are presented below.

The Gaussian filter is linear. For every pixel in the image, the Gaussian filter computes
a weighted average of the surrounding pixels with a kernel of size n× n. This kernel will
return a value for every pixel on the image, and flatten unsmooth noise. The advantages of
the Gaussian filter are that it is computationally effective and it filters out Gaussian noise.

The median filter is non-linear. For every pixel in the image, the median filter computes
the median of the surrounding pixels with a kernel of size n × n. The following example
demonstrates how well the median filter preserves edges. Consider a one dimensional
signal x with a clear edge and the output ym of a one dimensional median filter of size
n = 3:

x =
[
2 1 3 245 253 250

]
ym =

[
2 2 3 245 250 251

]
The signal on both sides of the edge has been smoothed out, and the clear edge has been
preserved. On the other hand, consider a one dimensional Gaussian filter f of size n = 3
and the output yg:

f =
[
0.28 0.44 0.28

]
yg =

[
1.44 1.84 70.2 179.48 253

]
The Gaussian filter has successfully smoothed out the signal, but the edge has not been
preserved as well as with the median filter. The same is seen on Figure (2.4). The edges
of the strawberry after median filtering are more sharp than after Gaussian filtering. The
texture of the strawberry is more smooth after median filtering, since a median filter is
good at eliminating salt and pepper noise, like the seeds on the strawberry. Further in this
subsection about edge detection, a gray-scale image of the result of the median filter will
be used because of these advantages.

6



2.1 Segmentation with traditional CV

Figure 2.4: Strawberry without filter (left), with Gaussian filter (middle) and with median filter
(right). Both filters have a kernel size of 19× 19.

Edge detection

After filtering, the Canny edge detector does four more steps to find edges. The first
step consists in finding the areas of steepest gradients in the image, as they probably will
correspond to edges. Two Sobel kernels, one horizontal Gx and one vertical Gy , are used
to find the intensity gradients in the image:

Gx =

1 0 −1
2 0 −2
1 0 −1

 , Gy =

 1 2 1
0 0 0
−1 −2 −1


Gx and Gy will respectively reinforce changes in the horizontal and vertical direction, as
is seen in Figure (2.5). They can be compared to partial derivative in calculus and can
be combined in the same way. For every pixel in the image, the Sobel kernels return a
gradient G in a direction θ:

G =
√
G2

x +G2
y, Θ = arctan 2(Gy, Gx)

Figure 2.5: Strawberry in grayscale (left), result of horizontal Sobel operator (middle left), result of
vertical Sobel operator (middle right) and combination of both results (right).

The second step is a non-maximum suppression operation. It reduces the width of the
detected edges from several pixels to only one pixel. First, the edge direction of every
pixel is rounded to the nearest of horizontal, vertical or a diagonal. Then for every pixel,
the edge magnitude is compared to those of the pixels in positive and negative direction of
the gradient. If the pixel has the largest magnitude, it is kept, or else it is suppressed.

7



Chapter 2. Theory

a b c
d ↗ e
f g h

Table 2.1: Example of non-maximum suppression with a north-east gradient direction.

Table (2.1) is a representation of 9 pixels in an image. The middle pixel is the one
undergoing a non-maximum suppression operation. Its gradient, represented as an arrow,
may be pointing at any of the eight surrounding pixels. If the gradient direction is pointing
in the north-east direction for example, the suppression will compare the middle pixel
with the pixels in either direction of the gradient, pixels c and f. If the pixel intensity of
the middle pixel is greater than the pixel intensity of both c and f, it is kept. If not, it is
set to 0. This operation returns an image with one pixel thick lines of varying intensity, as
seen in Figure (2.6).

Figure 2.6: Result from Sobel operators before (left) and after (right) non-maximum suppression.

The third step applies two thresholds to keep the edges with the strongest intensities
and ignore the edges caused by noise. For every pixel in the image with detected edges,
if its intensity is higher than the first threshold, it is marked as a high-intensity edge. If
the intensity of the pixel is between the thresholds, the pixel is marked as a low-intensity
edge. If the intensity of the pixel is below both threshold, the intensity is set to 0. In Table
(2.2), Th and Tl are respectively the high and low thresholds.

Pixel value Classification of pixel
P ∈ [Th, 255] High-intensity
P ∈]Tl, Th[ Low-intensity
P ∈ [0, Tl] P = 0

Table 2.2: Double threshold application.

The last step of the Canny edge detector goes through every low-intensity edge. If the
edge is connected to a high-intensity edge, it is kept, or else it is suppressed. This results in
eliminating the low-intensity edges caused by noise or by color changes. The gray-scale
image with intensities is finally converted to a binary image, where ones are edges and
zeros are the rest. Figure (2.7) shows the application of a double threshold and tracking by
hysteresis.

8



2.1 Segmentation with traditional CV

Figure 2.7: Result from non maximum suppression before (left) and after (right) double threshold
application and tracking by hysteresis.

Morphological operations

When detecting edges, the Canny edge detector will not detect every edges in their entirety.
The morphological transformations presented in this subsection are a way of closing the
edges that are not complete. Closing is an operation that consists of the morphological
operations erosion and dilation. The binary image A and the kernel B in Equation (2.1)
will serve as examples in this subsection. The binary image could be an output of the
Canny edge detector as it has two edges represented by ones.

A =

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

, B =
1 1 1
1 1 1
1 1 1

(2.1)

Dilation can be seen as an expansion of the shapes in a binary image, where shapes are the
area with a value of one. A structuring element, or kernel, made up of ones slides over the
binary image. For every pixel in the image that has a value of one, the kernel superimposes
the image at that area. For a kernel size of 3 × 3, the edges of shapes will expand by one
pixel and holes in the shapes will shrink by one pixel. The dilation of A by B returns:

A⊕B =

0 0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 0 0 0

(2.2)

Erosion is the opposite of dilation. It can be seen as a shrinking of the shapes in a binary
image. The same structuring element as in the dilation is used, but differently. For every
pixel in the image that has a value of one, if the kernel is completely contained inside that
area, the pixel is retained, or else it is set to zero. For a kernel of size 3 × 3, the edges
of shapes will shrink by one pixel and holes in the shapes will expand by one pixel. The

9



Chapter 2. Theory

erosion of (A⊕B) by B returns:

(A⊕B)	B =

0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

(2.3)

Closing is simply the erosion of a dilation by the same structuring element, (A⊕B)	B.
Equation (2.3) is the result of closing A with the kernel B. The dilation in Equation (2.2)
expands the shapes in A enough for the shapes to connect, then the erosion in Equation
(2.3) shrinks the expansions that did not connect to anything. This results in the edges
from A being connected, but still having a width of one pixel.

Figure 2.8: Result of hysteresis (left), result of dilation of hysteresis (middle) and result of closing,
or erosion of dilation (right).

Figure (2.8) shows the steps in the closing operation. The edges from the Canny edge
detector that were not fully connected are connected on the output of the closing operation.

2.1.3 Contour detection
When the strawberries in the image have been segmented from the background, the contour
of each strawberry must be determined. For strawberries in clusters, inner contours must
be determined in order to separate the strawberries from each other.

Border following

The algorithm used to find the contours is a border following algorithm from 1985 [11]
that takes in a binary image and puts out a hierarchy of contours with their coordinates.
The algorithm simply finds border pixels, which are pixels with ones next to pixels with
zeros. Then, it follows these borders with a 4- or 8-connectivity. The 4- or 8-connectivity
determines if the algorithm looks at all the 8 neighbouring pixels, or only at the 4 pixels in
North, East, South and West direction.

Contour hierarchy

When the borders have been found by the border following algorithm, they are arranged
in a hierachy tree, so that it can be determined if a contour is an inner or outer contour.
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2.1 Segmentation with traditional CV

The outermost contours are of the first level. Then, the contours inside of the outermost
contours are of the second level, and so on. In the case of this thesis, only the two outermost
layers of contours are of interest. Figure (2.9) displays the contours for the binary image
on the left. The outer contours, of first hierarchy level, are shown in the middle image.
The inner contours, of second hierarchy level, are shown in the right image.

Figure 2.9: Result of filtering, Canny edge detection and closing (left), outer contours (middle) and
inner contours (right).

The hierarchy tree of the contours is represented by a n×4-array where n is the number
of contours. Every row of the array contains 4 elements, [Next, Previous, First_Child,
Parent]. The hierarchy tree for the binary image in Figure (2.9) is shown in Table (2.3).
The contour hierarchy makes it easy to iterate through the contours and arrange them in
first and second hierarchy levels.

Contour Next Previous First_Child Parent
0 1 -1 -1 -1
1 -1 0 2 -1
2 3 -1 -1 1
3 4 2 -1 1
4 -1 3 -1 1

Table 2.3: Example of border hierarchy tree for binary image in Figure (2.9).

Minimum enclosing circle

Finally, the contour detection algorithm is used to separate strawberries in clusters from
each other. If a contour of first hierarchy level is a single standing strawberry, it is kept,
but if the contour is a cluster, its child’s contours must be kept. For the hierarchy in Table
(2.3) for example, the contours 0 and 1 are of first hierarchy level. Since contour 0 is not
a cluster, it is kept. Since contour 1 is a cluster, its child contours 2, 3 and 4 are kept.

To determine if a contour is a cluster or not, the minimum enclosing circle for every
contour is computed and their radiuses are computed. The mean value and standard devi-
ation of these radiuses can be computed to find outliers. The outliers in the list of radiuses
are identified as clusters of strawberries.
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2.2 Detection with deep learning

In the previous section, different methods of traditional CV were introduced in order to
segment strawberries in images. These methods successfully segment strawberries, but
must be designed specifically for every task. It is interesting to see if newer methods of
detection on images, like YOLOv3 [2], can be used in the case of strawberry picking.
These methods are detailed in this section.

2.2.1 Classification with CNNs

The YOLOv3 framework is build around a convolutional neural network, or CNN, which
is used to classify an object in a given image. An introduction to CNNs is given here.

Perceptrons

The smallest element of a neural network is the perceptron, as represented in Figure (2.10).
A perceptron can act as a binary classifier to classify an object in one of two classes. It
consists of n inputs, n weights, one bias and one output.

Figure 2.10: Model of a perceptron [15].

The perceptron creates an output y by multiplying a vector of inputs x with a vector of
weights w and adding a bias b:

y = x · w + b

In order to normalise the output, an activation function is used on the output. An example
of an activation function is the sigmoid function, as seen in Figure (2.11). It squeezes in-
puts from [−∞,∞] to [0, 1] and creates a steeper gradient around 0, which pushes outputs
to the extremities 0 or 1. This output is compared to a threshold in order to classify the
object in one of two classes.
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Figure 2.11: Sigmoid function used on the output of a perceptron.

In Figure (2.12), six objects from two classes are plotted in a graph. The two inputs x1
and x2 to the perceptron can for example be the weight and the height of the objects. The
output of the perceptron becomes x1w1 + x2w2 + b = 0, which is the equation for a line,
represented in red in Figure (2.12). Its gradient is −w1

w2
and its offset is b. By changing w

and b, the perceptron changes the equation of the line.

Figure 2.12: Parameters of a perceptron represented as a line between two classes.

In the example above, the separation line separates the two classes correctly, but for
complicated problems, it may be more difficult to set w and b correctly. To solve this,
the perceptron can be trained on training objects with back-propagation. This concept is
crucial for the functioning of the neural networks used in this thesis. When the number of
dimensions augment to more than four dimensions, it becomes impossible for humans to
set a separation between classes.

Simply put, the back-propagation algorithm passes an object with known class, 0 or
1. By looking at the output of the perceptron and comparing it to the ground truth, the
algorithm computes a loss value. Every weight and bias in the perceptron contributes to
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this loss, so they should be adjusted accordingly. By using the chain rule on the derivation
of the loss function, the contribution of every weight and bias can be calculated. A learning
rate decides how much of this contribution must be adjusted for every weight and bias.
This operation is repeated with many training objects over several epochs and returns a
trained perceptron that hopefully can classify objects. An epoch is one pass of every
training object.

By increasing the number of inputs to a perceptron, the number of dimensions aug-
ment, but the line remains linear with a single perceptron. For 3 inputs for example, the
separating line would be a plane in a three dimensional space. To get a nonlinear separa-
tion, more perceptrons must be added.

Neural networks

Neural networks consist of many neurons, or perceptrons, in a network consisting of lay-
ers. The first layer is the input layer, the last layer is the output layer and the middle layers
are the hidden layers. To explain neural networks, an example from Neural networks and
deep learning [15] will be used in this subsection.

An example of a neural network is the one in Figure (2.13). The inputs are every pixel
in a 28× 28 gray image of handwritten digits, not all the input neurons are represented in
the figure. Because of the sigmoid function, the output layers are 10 neurons that output
the probabilities from 0 to 1 of the image depicting a certain digit.

Figure 2.13: A fully connected neural network used to classify handwritten digits [15].

14



2.2 Detection with deep learning

When passing an image of a handwritten 8 through the network, the optimal result
would be to have an output of 1 on the output neuron annotated with 8 on the figure and
outputs of 0 on the rest of the output neurons. However, all output neurons will most
probably have other decimal values than the ground truth, 0 or 1. For every pass, a loss
value is computed, as for the single perceptron in the previous subsection. Thanks to the
chain rule, the contribution to the loss value of every weights and biases in the network
can be computed and the weights and biases can be adjusted accordingly. Because of the
chain rules however, the contribution of the first layers may disappear since differentiating
a function many times ends up in 0.

In the start, all weights and biases are set randomly, but over the course of a training
session, the network learns to classify digits. It can be seen as a statistical machine that
learns similarities between objects of the same class. For every new object to classify, the
network sees what similarities it has to every class and outputs a probability of belonging
for every class based on these similarities.

The middle layers are called hidden layers because it is not easy to understand their
functioning. Here is a guess of what may be happening. It may be that every neuron in
the hidden layer learns a certain feature of the input image and activates itself if the input
image has that feature. Digits are made up of a combination of 7 segments. Maybe 7 of
the neurons in the hidden layer each look out for one of these 7 segments. The output
neurons may then each look out for activations from a combination of certain neurons in
the hidden layer. If the neurons for all 7 segments are activated, then maybe the output
neuron for digit 8 is activated. If all but the middle segment are activated, then maybe the
output for digit 0 is activated.

Fully-connected neural networks are good for simple tasks, but increase exponentially
in complexity when layers are added because all neurons must be connected to all neurons
in the previous and the next layer. For every new connection, another weight must be
trained. Convolutional neural networks are a way of reducing this complexity.

Convolutional neural networks

This subsection uses another example from Neural networks and deep learning [15] to
explain CNNs.

Figure 2.14: A convolutional network for classifying handwritten digits [15].

A CNN solves some of the problems encountered with fully-connected neural net-
works. It consists of an input layer, convolutional layers, pooling layers and fully-connected
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layers, as is shown in Figure (2.14). The first layer is the input layer, the second and
third layers are the convolutional and pooling layers and the two last layers are the fully-
connected output layers. In a more complicated network, more convolutional and pooling
layers could be added in series, as well as more layers in the fully-connected layers. The
fully-connected layers at the end serve as a statistical classifier as the one in the previous
subsection.

Instead of being fully-connected with the previous layer, a convolutional layer is par-
tially connected to its previous layer. Every neuron in the convolutional layer is connected
to a n × n-region of the previous layer, as is shown in Figure (2.15). The region is called
the receptive field of the neuron. This ensures a local connectivity, which looks at the
relation between pixels that are close to each others. Such a convolutional layer can be
compared to the Gaussian filter explained in this chapter’s first section.

Figure 2.15: A convolutional layer [15].

All the weights and biases in a convolutional layer are shared. This reduces the number
of trainable parameters and the computation time. By sharing the weights and biases, all
neurons in a convolutional layer look for the same feature in the image. This is why the
n × n-kernel of weights used in a convolutional layer is often called a filter. The filter in
Figure (2.15) may for example look like this:

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


Such a filter would activate a neuron if the receptive field is a horizontal edge. The convo-
lutional layer would output a feature map for this specific filter, or a spacial representation
of where there are horizontal edges in the previous layer. The convolutional layer in Figure
(2.14) has 20 filters that produce 20 different feature maps. During training, these filters
will adjust their weights and biases to detect 20 different features in the input image and
pass these feature maps forward.

After a convolutional layer comes often a pooling layer. The pooling layer reduces
the size and resolution of the feature maps outputted by the convolutional layer, but also
reduces the complexity of the network. Every neuron in the pooling layer is connected
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to a n × n-region of the previous layer, as is shown in Figure (2.16). In the case of a
max-pooling layer, the neurons in the pooling layer output the maximum value of all the
values in its receptive field, which ensures that the features in the feature maps are passed
forward through the pooling layer. The pooling layer reduces the accuracy of the feature’s
position, but greatly reduces the complexity of the network.

Figure 2.16: A pooling layer [15].

By adding convolutional and pooling layers in series, they output feature maps with
features of features, and so on. Therefore, the early convolutional layers in a CNN recog-
nize low level features while the later convolutional layers recognize higher level features
made up of lower level features. These higher level features are then passed forward to the
fully-connected layers, or classifier, that classifies the object in the image. For one image,
a CNN can classify one object. In this thesis, the goal is to detect several strawberries in
one image. The YOLO framework is capable to use a CNN for this purpose.

2.2.2 Detection with YOLOv3

Classification consists in assigning one class to one image, whereas detection consists in
classifying several objects in an image and determining their position. Several detection
networks do this by sliding a window over the image at different scales and classifying
every window with a CNN. This means that there are many passes through the neural net-
work per image and that increases the computation time. YOLO solves this by partitioning
the image in a grid and passing the image once through the neural network. This is where
the name YOLO, or You Only Look Once, comes from.

From classification to detection

YOLOv3 rescales the input image to 416× 416, then divides the image into three grids of
cells at different scales, as seen in Figure (2.17). For each of these grid cells, 3 bounding
boxes, or anchor boxes, with different fixed dimensions are proposed and passed through
a CNN.
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Figure 2.17: Detection on a grid cell with YOLOv3 at first (left), second (middle) and third (right)
scale with three bounding boxes per scale.

The CNN used in YOLOv3 is called Darknet-53 and contains 53 convolutional layers.
It has been trained by Joseph Redmon for classification on the ImageNET [16] dataset of a
thousand classes. This results in a strong network that recognizes many different features
at different layers of the network. Darknet-53 is modified from a classifier to a detector
by removing the fully-connected layers at the end and replacing them with 53 additional
layers that are used for detection at three different scales. This results in 106 layers in
YOLOv3.

Figure 2.18: Darknet-53 architecture [2].

The detection at three different scales happens at three different layers in the network,
layer 79, 91 and 103. After the classifier Darknet-53, the feature map is downsized to a
13× 13-grid until layer 79 to detect at the first scale. Then the feature map from layer 79
is passed through some convolution layers before being upsampled to a 26 × 26-grid and
concatenated with a previous 26× 26 feature map from layer 61 until layer 91 to detect at
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the second scale. Then the feature map from layer 91 is passed through some convolution
layers before being upsampled to a 52×52-grid and concatenated with a previous 52×52
feature map from layer 36 until layer 103 to detect at the third scale.

The detection at every scale is performed with 1×1 convolutional kernels on layer 79,
91 and 103 to output a vector per grid cell. The output vector consists of the bounding box
coordinates, the objectness score and the class score for every of the 3 bounding boxes per
scale. The output vector is as the following:

[tx, ty, tw, th, po, pc] ∗ 3

The predicted bounding box coordinates tx, ty , tw and th can be converted to true bound-
ing box coordinates as in Figure (2.19). The objectness score po indicates which of the 3
bounding boxes have the highest IoU. The bounding box which has the highest IoU for a
given grid cell has an objectness score of 1, the others have an objectness score of 0. The
class score pc indicates the probability of the object in the bounding box to belong to a
given class.

Figure 2.19: Conversion from predicted to true bounding box coordinates [2].

This results in one possible detection for every of the grid cells in Figure (2.17). Small
objects, as well as big objects can be detected on a single pass of the network. Non-
maximum suppression is performed on the resulting bounding boxes to remove duplicate
bounding boxes.

YOLOv3-tiny

If YOLOv3 is too slow because of its 106 layers, YOLOv3-tiny is a faster but less precise
alternative. YOLOv3-tiny contains only 23 layers and is build around the Darknet classi-
fier with only 8 convolutional layers. Instead of three scales, YOLOv3-tiny detects at two
different scales, as is shown in Figure (2.20).
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Figure 2.20: Detection on a grid cell with YOLOv3-tiny at first (left) and second (right) scale with
three bounding boxes per scale.

2.3 Evaluation metrics

To compare the different networks and methods used to detect strawberries, different eval-
uation metrics are used. They are described in this subsection.

2.3.1 Detection

Mean average precision, or mAP, is the universal metric used to evaluate the detection
performance of neural networks. The mAP is the mean value of the average precisions, or
AP, of every class. In the case of a single class, as in this thesis, the mAP equals to the AP.
Here is how the mAP is calculated for a single class.

First of all, the intersection over union, or IoU, must be computed for every prediction
in an image. If a predicted bounding box overlaps with a ground truth bounding box, the
area of intersection and area of union can be computed. As the name would suggest, the
IoU is given by the following equation:

IoU =
Area of Intersection

Area of Union

Figure 2.21: Intersection and union for a prediction.
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Depending on the value of IoU, the prediction is either a true positive (TP), a false
positive (FP), a true negative (TN) or a false negative (FN). In the case of detection, a true
positive is when IoU ≥ 0.5 and a false positive is when IoU < 0.5 or the bounding box is
a duplicated one. A false negative is when IoU ≥ 0.5 but the prediction is the wrong class.
The precision and recall of a prediction are given by the following equations:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

A precision-recall curve can be plotted and the mAP for a single class will be the area
under the curve. During training, the mAP is calculated for every 100 epochs on the test
set. This is to avoid overfitting of the neural network. If the loss keeps on decreasing, but
the mAP begins to decrease after hitting a maximum, then the training should be stopped.
When the mAP on the test set diminishes, it means that the neural network has become to
specific to the training set.

Another metric used for evaluation of neural networks is the average loss. The loss
function in neural networks is used during training to improve the weights and biases with
back-propagation. It can also be used as a metric to evaluate how good the network has
adapted to the training dataset. For YOLOv3, the loss consists of the classification loss, the
localization loss and the confidence loss. The classification loss is the same as for a normal
CNN. It is the sum of the mean square error of the class conditional probabilities for every
grid cell. The localization loss is the sum of the mean square errors of the location and
size of the bounding boxes for every grid cell. The confidence loss is the sum of the mean
square errors of the confidence score for every grid cell.

A last metric used for evaluation of neural networks is the average confidence score.
This metric is simply the average of the confidence scores in the test images. It is correlated
with the average loss since the loss function contains the sum of the mean square errors
of the confidence scores. A lower average loss will indicate a higher average confidence
score.

2.3.2 Segmentation

While it is good at evaluating detection, mAP is not suited to evaluate segmentation since
it needs a confidence score and bounding boxes. Here are some metrics that will be used
to evaluate segmentation, the IoU, the accuracy and the precision. First, the notion of true
and false positives and negatives must be adapted to segmentation.
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Figure 2.22: Representation of true and false positives and negatives on a prediction.

The positives are the pixels that the segmentation has identified as strawberries and
the negatives are the pixels that have been identified as background. They are true if the
prediction is true and false otherwise. With this rule, the pixels of a segmentation can
either be a true positive (TP), a false positive (FP), a true negative (TN) or a false negative
(FN), as is shown in Figure (2.22). For every image, an IoU, an accuracy and a precision
can be computed:

IoU =
TP

TP + FP + FN

Accuracy =
TP

TP + FN

Precision =
TP

TP + FP

IoU is the intersection over the union and is a measure of how much overlap there is
between the prediction and the ground truth. It is a metric that combines the accuracy and
precision in one. The accuracy is the intersection over the ground truth and indicates how
much of the ground truth is covered by the prediction. The precision is the intersection
over the prediction and measures how much of the prediction is covered by the ground
truth.

2.3.3 Frames per second
Frames per second, or FPS is the last metric used to evaluate the speed of the detection
algorithms in this thesis. It is a measure of how many frames the algorithm can process
per second, as a frequency. To find the average processing time t per image, the inverse
of the frequency is computed. The higher the FPS, the lower the execution time and the
higher the speed:

FPS =
1

t
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Implementation

This chapter presents the tools and libraries used in this thesis, Python, OpenCV, NumPy,
Darknet and Google Colab. Then it presents the source code implemented in this thesis.

3.1 Tools and libraries
Several tools and libraries have been used in this thesis. This section explains the funda-
mentals of these tools and libraries and explains why they were chosen.

3.1.1 Python
Python [4] is a high-level open source programming language created by Guido van Rossum
in 1991. It was chosen in this thesis because of its ease of implementation and its many
libraries like OpenCV and NumPy.

3.1.2 OpenCV
OpenCV [5] stands for Open source Computer Vision and is a library for C++, Python
and Java developped by Intel. It is used in this Master’s thesis to segment the strawberries
with traditional CV. OpenCV is widely used and documented which makes its use and
debugging easy. The code is open source, so the source code is available for everyone for
free. Its purpose is to give everyone access to optimized CV functions so that developers
don’t need to reinvent the wheel for each CV task.

The OpenCV source code is written in C++, so when it is run in Python or Java, it
really runs the encapsulated C++ code. This makes OpenCV equally fast on all platforms,
as long as the OpenCV-functions are used for the CV tasks. However, as soon as functions
with nested for-loops are implemented in Java or Python, the code gets much slower than
it would if implemented in C++. An example for segmenting in Python is to use the
OpenCV-function cv2.inRange() instead of iterating through every pixel in Python. The
code will instead iterate through every pixel in C++, which is faster than in Python.
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The segmentation code in this thesis has been written in Python for ease of implemen-
tation and testing. As long as too many for-loops are avoided, the code will not be too
slow. It is possible to rewrite the code in C++ if the code in Python is too slow.

3.1.3 NumPy

NumPy [6] is an open source library in Python. It provides an array object and tools
to interact with these array objects. Python uses lists to handle arrays of object. A list
is resizeable and can contain object of different types. NumPy arrays can only contain
objects of the same type and are not resizeable. This makes them faster and take up less
memory than Python lists. Instead of being an array containing pointers to different objects
like a Python list, a NumPy array is one array of the same object type in memory, like in
C++.

3.1.4 Darknet

Darknet [8] is an open source neural network framework developed by Joseph Redmon at
University of Whashington. It can be used to train or use classifiers, but also detectors.
Classifiers can identify one object in one image, but detectors can identify and locate sev-
eral objects within an image. Since the goal of this thesis is to locate possible strawberries
in an image, some of the detectors of Darknet have been implemented in this thesis. A
detector can be seen as a classifier that works on subparts of the image.

Darknet is most known for its YOLO neural network. In short terms, it is a classifier
that classifies every cell in a m × n-grid of the image. YOLOv3 uses the Darknet-53
as classifier, which has been trained on 1000 classes. YOLOv3 has then been trained by
Joseph Redmon on 80 classes. By stripping the weights of the last convolutionnal layers
of the network, it can be trained to detect custom objects, like strawberries. This is what
has been done in this thesis.

Darknet automatically uses data augmentation, so that the user doesn’t need to think
about it. This gives different results for every training session, even if the training data and
configuration files are the same. Therefore, the network should be trained several times
with the same parameters, to ensure that good results are not just random coincidences
caused by different data augmentations.

Darknet has been chosen as neural network framework because it is easy to implement
for custom objects and its YOLOv3 model scores good in comparison to other neural
network frameworks [2]. It is also good at detecting many small and big objects in images
because of its different scales. Since there may be many small and big strawberries in
images from greenhouses, YOLOv3 should be a good choice.

3.1.5 Google Colab

Training neural networks on CPU’s is not a viable option, as the computing takes too
much time. The use of a GPU instead of a CPU reduces the training time drastically, in
an order of magnitude. Google Colaboratory [7] is an open source service developed by
Google that runs in Python. It gives the user the ability to switch between GPU and CPU
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processing. All the processing happens in the cloud, so training sessions can be supervised
with any device, regardless of processing power.

Google Colab has been used in this thesis to download Darknet, to train it and to test
it. Since all computing happens in the cloud, Google Colab can in an instant download big
datasets from other cloud services, like Google Drive.

Drawbacks of Google Colab are that the CPU and GPU may be shared with other users
if the demand is high, and that the runtime resets itself every 24 hours. This is for example
to avoid people from mining cryptocurrency. Advantages of Google Colab are that it is
free, it gives access to a GPU with all the necessary libraries installed and it is an easy to
use "plug and play"-service.

3.2 Source code
The source code implemented in this thesis is found in Appendix A. Here is a description
of the three different folders found in Appendix A.

3.2.1 Detection

The "detection"-folder contains a Google Colab Notebook that can be opened in Google
Colab. First, the Notebook downloads the trained models of the detection networks from a
public Google Drive folder. This includes configuration files, data files and trained weights
files. Then, the Notebook clones Darknet from a Github repository, moves the models of
the detection network to Darknet and makes Darknet. Finally, the Notebook tests the
models on an image and on a video.

To train YOLOv3, a Github repository [17] was cloned and the instructions at that
repository were followed, with some adjustements:

• A "strawberry" folder with images and corresponding text files of labels must be
made. This has in this thesis been done with the labeling script described below.
For each image "name.jpg", a text file "name.txt" contains a line for every bounding
box in the image. Every line in the file has this format: <object-class> <x_center>
<y_center> <width> <height>. In the case of this thesis, object-class is 0 for ev-
ery bounding box since there is only one class. x_center, y_center are the relative
coordinates of the center of the bounding box and width and height are the relative
width and height of the bounding box. This folder with images and labels is moved
to darknet/data/.

• A configuration file "yolov3-strawberry.cfg" of the network to train is made, based
on "yolov3.cfg". The number of batches is set to 64. The number of subdivisions is
set to 16 to avoid memory error in Google Colab. In a testing setting, the number
of subdivisions and batches are set to 1. The number of max_batches is set to 4000.
The number of steps is set to 3200,3600. For each [yolo]-layer, the number of
classes is set to one and the number of filters in the preceding [convolutional]-layer
is set to 18. Finally, "max=200" is added to the last [yolo]-layer for the network to
be able to detect more than the default 10 objects per image.
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• A text file "strawberry.names" containing the name of every class is made. It con-
tains one word: "strawberry". Two files containing the names of training and test
images are created and named "train.txt" and "test.txt". On every line, they contain
the path of every image. These three files are moved to darknet/data/.

• A text file "strawberry.data" summing up all the data information is created. It con-
tains the number of classes and the path to "train.txt", "test.txt", "names.txt" and
where to save the weights.

• The concatenated weights of YOLOv3 must be downloaded. Concatenated means
that the last convolutional layers of the weights have been deleted in order for the
network to be able to retrain its last layers on strawberry images. The concatenated
weights are downloaded [18] and are moved to darknet/.

The training session starts with the following command in Google Colab:

1 ! . / d a r k n e t d e t e c t o r t r a i n d a t a / s t r a w b e r r y . d a t a c f g / yolov3−s t r a w b e r r y .
c f g d a r k n e t 5 3 . conv . 7 4 −dont_show −map >> yolov3−s t r a w b e r r y . l o g

This command saves a graph of the training session like the ones in Appendix C as
"chart.png" in the darknet folder. The output of the training session is saved to a log-file
in the darknet folder, in this case "yolov3-strawberry.log".

3.2.2 Segmentation
The "segmentation"-folder contains two python program files, "main.py" and "segmenta-
tion.py":

• "main.py" reads images from a "images"-folder, segments them and draws proposed
bounding boxes on them before saving the images to a "results"-folder.

• "segmentation.py" contains the functions used by "main.py" to segment and detect
the strawberries in each image.

First, the segmentation module converts the image from the RGB color model to the
HSV color spectrum. Then, it filters the HSV-image with a median filter and segments the
image with the cv2.inRange() and cv2.bitwise_and() functions.

Then, a Canny edge detection is performed on the saturation and value channels of
the segmentation output with the cv2.Canny() function. The outputs of the Canny edge
detectors are added together with the cv2.bitwise_or() function. A closing operation is
then performed with cv2.morphologyEx() on the Canny edge detection output to close the
gaps in the edges.

The cv2.findContours() function is then used to detect the contours in the binary edge
image. For every contour of first hierarchy level over a certain size, the radius of the
minimum enclosing circle is computed with the cv2.minEnclosingCircle() function. The
mean value and standard deviation are computed for these radiuses and all radiuses that are
bigger than the mean by more than half a standard deviation are identified as strawberry
clusters. Their children are identified as being strawberries.
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For each of the contours that are assumed to be strawberries, a bounding box is drawn
on the image with cv2.boundingRect() and cv2.drawContours(). The bounding boxes are
also added to a list of bounding boxes, which is the return object of the segmentation
module. This enables other modules to use the segmentation script to get the position of
strawberries.

3.2.3 Labeling
The "labeling"-folder contains three python program files, "main.py", "segmentation.py"
and "utilities.py":

• "main.py" first reads images from a "images"-folder, segments them and draws pro-
posed bounding boxes on them. Then, it waits for the user to decide which bounding
boxes to save and discard with keyboard inputs before letting the user draw addi-
tional bounding boxes on the image. Finally, "main.py" saves the bounding boxes in
YOLO-format in a "labels"-folder, one labels text file per image. The filename and
path of every image is saved in "images.txt".

• "segmentation.py" is the same as in the "segmentation"-folder.

• "utilities.py" contains the functions used by "main.py" to receive user input and save
bounding boxes to files.
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Chapter 4
Results

This chapter presents the results obtained with the three methods implemented in this the-
sis, with traditional CV and deep learning. First, examples of each detection are presented.
Then, the evaluation metrics used to compare the methods are presented in tables.

4.1 Detection examples

This section presents examples of each detection on an image. Videos of the detections
are available in Appendix B. The image and video presented here were not a part of the
training set for the YOLOv3 models and were not used when designing the traditional CV
algorithm.

4.1.1 Traditional computer vision

Figure (4.1) shows a result of HSV-segmentation, Canny edge detection and contour de-
tection applied in series on an image. The blue contours are the contours of first hierarchy
level and the green contours are the contours of second hierarchy level.

Figure (4.2) shows a result of detection performed on an image with traditional CV.
The contours in Figure (4.1) were either identified as strawberries or strawberry clusters
by looking at the radiuses of the minimum enclosing circles and finding outliers. For
every contour identified as a strawberry, its bounding box was saved, and for every contour
identified as a strawberry cluster, the bounding boxes of its children were saved. Some of
the clusters were correctly identified and split up, but other clusters were too small to be
identified as clusters. In this example, two of the detections are false positives, meaning
that leaves were identified as strawberries.
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Figure 4.1: Example result of segmentation, Canny edge detection and contour detection.

Figure 4.2: Example result of detection by drawing the bounding boxes of the contours in Figure
(4.1).

4.1.2 YOLOv3-tiny-strawberry
Before training YOLOv3, YOLOv3-tiny was trained as a proof of concept because its
fewer layers make it faster to train than YOLOv3. Figure (4.3) shows an example de-
tection, Appendix C shows the average loss and mAP during training and Appendix B
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provides a link to a video of the detection results. The mAP quickly reached 81%, but
didn’t improve for the rest of the training session. This is probably caused by the small
size of the dataset. The small size of the dataset also explains the oscillations of the average
loss. This limitation in the dataset is discussed in the next chapter.

The final weights were chosen at 2000 iterations with an average loss of 4.0510 and a
mAP of 80.0%. Iteration 2000 was chosen because the mAP doesn’t improve further and
to avoid over-fitting of the network.

Figure 4.3: Example of detection with YOLOv3-tiny trained on strawberries.

4.1.3 YOLOv3-strawberry

Since YOLOv3-tiny-strawberry showed good results, YOLOv3 was trained on the same
dataset and with the same parameters. Figure (4.4) shows an example detection, Appendix
C shows the average loss and mAP during training and Appendix B provides a link to a
video of the detection results. These metrics behaved similarly to the metrics of YOLOv3-
tiny-strawberry because they trained on the same small dataset. The mAP reached 90%
quickly, but didn’t improve any further. The average loss had oscillations, but kept di-
minishing even if the mAP didn’t improve. This is an indication of over-fitting, that the
network is training too specifically for this dataset.

The final weights were chosen at 2000 iterations with an average loss of 1.7431 and a
mAP of 87.1%. Iteration 2000 was chosen because the mAP doesn’t improve further and
to avoid over-fitting of the network.
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Figure 4.4: Example of detection with YOLOv3 trained on strawberries.

4.2 Evaluation metrics
This section presents the performances of each method with several evaluation metrics,
the mAP, IoU, accuracy, precision and FPS.

4.2.1 Detection
The detection has been evaluated with the mAP. To compute the mAP of the traditional
CV algorithm, a Github repository [19] was used. Since a confidence score is needed to
calculate the mAP, but the detection doesn’t output one, a confidence score of 100% was
given to every detection. The mAP was calculated on the same dataset as YOLOv3 and
resulted in 21.4%. For YOLOv3-strawberry and YOLOv3-tiny-strawberry, the mAP and
the average loss from the training results in Appendix C were used. The resulting mAP,
average loss and average confidence score for each method are shown in Table (4.1).

Method mAP Avg. loss Avg. confidence score
Traditional CV 21.4% - -

YOLOv3-strawberry 87.1% 1.74 74.5%
YOLOv3-tiny-strawberry 80.0% 4.05 69.8%

Table 4.1: Mean average precision, average loss and average confidence score for the three methods
implemented in this thesis.

When looking at the mAP, there seems to be a significant difference between the
YOLOv3 models and the traditional CV method. This is discussed further in the next
chapter.
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4.2.2 Segmentation
As will be discussed in the next chapter, it seems that mAP is not suited to evaluate the
performance of the traditional CV method. This subsection evaluates the segmentation
performance of each method. A set of ground truths was created by segmenting the test
images and deleting the false positives. Then, the inside of the bounding boxes of each
detection method was segmented with the same thresholds. When compared to the ground
truth, their performance could be computed. The results are shown in Table (4.2).

Method IoU Accuracy Precision
Traditional CV 74.5% 75.0% 99.3%

YOLOv3-strawberry 86.1% 86.6% 99.4%
YOLOv3-tiny-strawberry 85.0% 85.5% 99.3%

Table 4.2: IoU, accuracy and precision for the different methods.

When evaluating the segmentation instead of the detection, traditional CV seems to
perform better, but the deep learning methods are still better. This is discussed in the next
chapter.

4.2.3 Frames per second
The speed performance of every method was tested in the Google Colab environment by
testing the methods on a video. The resulting videos are given in Appendix B and the
resulting FPS for each method are shown in Table (4.3).

Method CPU GPU
Traditional CV 3.0 FPS 3.5 FPS

YOLOv3-strawberry 0.1 FPS 16.6 FPS
YOLOv3-tiny-strawberry 1.1 FPS 41.3 FPS

Table 4.3: Speed performance of the different methods implemented in this thesis.

The different speed performances of each method with CPU and GPU usage are also
discussed in the next chapter.
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Chapter 5
Discussion

This chapter discusses the results presented in the previous chapter. First, it discusses
traditional CV and deep learning separately, then compares them with each other.

5.1 Traditional computer vision
This section discusses the choices taken in the implementation of the traditional CV algo-
rithm and its limitations.

5.1.1 Python vs. C++
Python and C++ were both considered as programming language for this thesis. Python
ended up being used to implement the detection method with traditional CV because of
its ease of implementation. Python is a higher level language than C++, so there is less to
declare. It makes Python very good to test ideas and get results fast.

Python is slower than C++, in part because of its dynamic memory allocation and its
dynamic typing, but this is solved by using the libraries NumPy and OpenCV. These use
encapsulated C and C++ code, so instead of using for-loops in Python, the for-loops and
the array handling can be used in functions from these libraries.

This thesis has served as a proof of concept to see if traditional CV can be used to
detect strawberries in images. If this code is to be implemented in hardware, it should be
translated to C++ to increase speed.

5.1.2 mAP calculation
In order to compare the detection with traditional CV and deep learning, the evaluation
metrics for detection were first used. mAP is well suited for detections with deep learn-
ing, but is not suited for detections with traditional CV. There is a great difference in
performance when evaluating the traditional CV method with detection metrics and seg-
mentation metrics, as is seen in Tables (4.1) and (4.2). For detection of one class, the mAP
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is given by the ratio of true positives over the sum of true and false positives. The more
detections are identified as false positives, the lower the mAP. Two factors are increasing
the number of false positives and thus lowering the mAP for the traditional CV method.
First, the method detects several double detections which end up as false positives. In
YOLOv3, these double detections are discarded by a non-maximum suppression on the
confidence score, but this is not possible with the traditional CV since there is no confi-
dence score. Second, the detections with an IoU less than 0.5 end up as false positives.
Since the method is not trained to match the bounding boxes, as in YOLOv3, the dimen-
sions of the predicted bounding boxes will vary more. Also, single standing strawberries
that are falsely identified as clusters will be detected as several smaller bounding boxes.
These will probably all end up as false negative and lower the mean average precision.

5.1.3 Limitations of method
The main limitation of this method is the separation of strawberries in clusters. It works
in some cases, but not in others. For example, if a cluster has the same size as the other
strawberries in an image, it won’t be identified as a cluster since its mininum enclosing
circle’s radius is not an outlier. Also, if the picture has many clusters, they will raise the
mean value and not be identified as outliers. Another case is if there are few strawberries in
an image. Then the mean and standard deviation of the radiuses of the minimum enclosing
circle may not find clusters as outliers.

It may be that this is not really a problem. In both cases, where a contour is either the
contour of a strawberry or of a cluster, the inner or outer contour will be detected.

5.2 Deep learning
This section discusses the difference between YOLOv3 and YOLOv3-tiny and the limita-
tions of the dataset used during training of these methods.

5.2.1 YOLOv3 vs. YOLOv3-tiny
Both YOLOv3 and YOLOv3-tiny were trained for object detection of strawberries in this
thesis. Table (4.1) sums up the mAP, average loss and average confidence score calcula-
tions of each method. At first glance, it may seem that YOLOv3-strawberry far outper-
forms YOLOv3-tiny-strawberry, but the fact is that they both achieved high mAPs. By
looking at the example detections in Figures (4.3) and (4.4), the differences are quite diffi-
cult to see, but when looking at Table (4.1), YOLOv3-strawberry has higher average con-
fidence scores for each detection than YOLOv3-tiny-strawberry. According to the mAP
and the average confidence score, both models are good, but YOLOv3-strawberry is even
better than YOLOv3-tiny-strawberry.

When looking at the segmentation performance of YOLOv3-strawberry vs. YOLOv3-
tiny-strawberry in Table (4.2), there is only a slight improvement in YOLOv3-strawberry
over all metrics. In a real world setting, the bounding boxes of the predictions must be
segmented to compute the depth of the strawberry in the bounding box. These metrics
may therefore be a better measure of performance than the mAP.
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With a CPU, YOLOv3-tiny-strawberry processed approximately 1 frame per second,
but YOLOv3-strawberry processed only 1 frame every 10 seconds. This will vary with
the CPU and GPU used. Especially the GPU and CPU of Google Colab may be slower
than a local GPU and CPU since they might be shared with other users of the service.
This may explain the low CPU performance of the methods. With these numbers, only
YOLOv3-tiny-strawberry can be used if there is no GPU available. With a GPU, YOLOv3-
tiny-strawberry processed 41.3 frames per second and YOLOv3-strawberry processed 16.6
frames per second, so both can be used with a GPU.

The preferred model would be to use YOLOv3-strawberry because it achieved a lower
loss, a higher mAP and higher confidence scores per detection. However if speed is an
issue, YOLOv3-tiny-strawberry can be used instead of YOLOv3-strawberry with a small
reduction in precision but a great increase in speed.

5.2.2 Testing on video

When using the trained YOLOv3 networks on video, the detection seems to lay behind
when the camera is moving fast, as is seen in Appendix B. However, when the camera
stops for example at 0:33, the detections are correctly aligned with the strawberries. This
is not a problem when using the traditional CV algorithm. Luckily, the robot must stop
whenever it must pick strawberries. This will give it time to adjust the detections before
picking.

5.2.3 Limitations of dataset

The dataset used to train the YOLOv3 networks in this thesis contains only 250 images
of strawberries taken in a greenhouse and the one used to test the networks contains 54
images. These 304 images were all taken on the same day so they all have similar light-
ning conditions. 304 is quite a low number of images to train a neural network of this
complexity on. Usually, tens of thousands of images with a lot of variation should be used
to train a network of this size. The low number of images can explain the oscillation of the
average losses observed in the Figures in Appendix C.

In spite of these limitations, the trained networks achieve low average losses and high
mAPs. This can have several explanations. First, the YOLOv3 models use data augmen-
tation before training. This means that for every image in the dataset, similar copies are
created. These copies are created by changing four different parameters, the hue, the sat-
uration, the exposure and the angle of the image by a small increment. This results in
a greater dataset with greater variations. Variation in the dataset is very important when
training a neural network to avoid over-fitting.

Second, the problem at hand is quite a simple problem compared to other detection
problems. The networks must only detect one single class, while the original YOLOv3
network is trained on 80 different classes. The strawberries to detect are all similar in
color and shape and they stand out from the background. No other objects in the image
have the same red color as the strawberries. In other detection problems, the objects to
detect may for example be dogs of varying color and shape. The non convex shape of a
dog is more complicated to recognize for the network than the mostly convex strawberry
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shape. The simplicity of the detection problem is the second reason why the network
performs well despite a low number of training images.

5.3 Traditional CV vs. deep learning

This section discusses the differences and similarities of traditional CV and deep learning
with observations made in this thesis.

5.3.1 Detection metrics

The mean average precision, the average loss and the average confidence score for the
three methods implemented in this thesis are summed up by Table (4.1). There is a sig-
nificant difference between the traditional CV and the trained YOLOv3 models. First and
foremost, the difference can be explained by the fact that the mAP metric is build for ob-
ject detection where a confidence score is given for every detection. Second, as discussed
previously in this chapter, the low score of the traditional CV algorithm can be explained
by the mismatch of dimensions between the ground truths and the detections.

By looking at the mAP only, it seems clear that the trained YOLOv3 models are a
lot better than the traditional CV method. However, mAP is a bad metric to measure the
performance of the traditional CV algorithm and should not be used to compare it to the
performance of the deep learning methods.

5.3.2 Segmentation metrics

By looking at the mAP and the videos in Appendix B, there seemed to be a mismatch be-
tween the mAP and the actual results. Therefore, the segmentation performance for each
method was computed. They are summed up in Table (4.2). These metrics seem to repre-
sent the results observed in Appendix B better than the mAP. The first metric that stands
out is the precision. It is approximately the same for all methods, which is probably caused
by the way the ground truths were created. They were created by segmenting the test im-
ages with certain thresholds and removing the false segmentations of the background. The
detected bounding boxes were segmented with the same thresholds, so the segmentation
almost doesn’t segments pixels not segmented by the ground truth. Since precision is the
ratio of intersection over the detection, it is almost 100% for all methods.

Since the precision is approximately 1 for all methods and IoU is a combination of
accuracy and precision, the IoU and accuracy are similar, as is observed in Table (4.2).
Since they are similar, only the segmentation accuracy will be discussed further.

YOLOv3-strawberry performs the best with an accuracy of 86.6%, then comes YOLOv3-
tiny-strawberry with an accuracy of 85.5% and finally comes the traditional CV method
with an accuracy of 75.0%. Even if the traditional CV method is based on a segmentation
algorithm and reaches a high accuracy, the trained YOLOv3 models outperform it with a
good margin.
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5.3.3 Frames per second
The number of frames per second achieved by the three methods implemented in this thesis
are summed up by Table (4.3).

The performance was evaluated in Google Colab for all the methods and the resulting
videos are linked in Appendix B. The trained YOLOv3 models have a great advantage
when using the GPU, but the traditional CV algorithm doesn’t improve noticeably. This
is because the YOLOv3 models have been optimized to work with GPU, which the tradi-
tional CV method has not.

When using a CPU, the traditional CV algorithm is clearly better than the trained
YOLOv3 methods. It processes 3 frames per second, which is tolerable as the robot doesn’t
move too fast. On another CPU, the traditional CV algorithm processed 10 frames per
second, but the measurement from Google Colab is used to compare with the trained
YOLOv3 models. YOLOv3-strawberry processes 1 frame every 10 seconds because of
the number of operations it must do per frame, this is way too slow. Since YOLOv3-tiny-
strawberry has fewer layers than YOLOv3-strawberry, it processes approximately 1 frame
per second. Based on speed performance, traditional CV should be chosen when using a
CPU.

When using a GPU, the trained YOLOv3 models far outperform the traditional CV
algorithm. The traditional CV method processes 3.5 frames per second, half a frame more
than with CPU. YOLOv3-strawberry processes 16.6 frames per second and YOLOv3-tiny-
strawberry processes 41.3 frames per second! If a GPU is available, the trained YOLOv3
methods should definitively be used instead of traditional CV.

5.3.4 Similarities
In the traditional CV method, the RGB color model was a problem since its segmentation
was linear. A solution to this problem was to use the HSV color model since its segmen-
tation is spherical. Instead of segmenting out a smaller cube from the cube representation
of the RGB model in Figure (2.2), the HSV segments out a sphere from the RGB-cube.

Interestingly, it may be that the neural network has learned to segment similarly to
the HSV-segmentation. By iterating over the training data over and over again, the neural
network has made a statistical model of the RGB-cube. For every R, G and B values in the
cube, the neural network will activate different neurons, that will output a different class
belonging. It will have stored a probability of these values being a part of a strawberry or
not.

5.3.5 Differences
A big difference in the two methods is the time and complexity of implementation. The
traditional CV method took several weeks to implement. There was a lot of trial and error
in order for the model to give good results. A detection algorithm that worked for one
image may not work for the rest of the images. If this segmentation algorithm was to be
used on another fruit or vegetable, it would take a lot of time to tailor it to the new object.

The YOLOv3 models, surprisingly, took under a week to implement to get good re-
sults. The first day was used to label training and test data with the labeling script. The
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second and third day were used to configure YOLOv3 in Google Colab. The fourth day
was used to train a model of YOLOv3-tiny with the labeled data. The fifth day was used
to train a model of YOLOv3. If YOLOv3 was to be used on another fruit or vegetable, it
would again take under a week to implement it and obtain good results.

Another difference between the methods is that the traditional CV algorithm can run
on a CPU, but YOLOv3-strawberry and YOLOv3-tiny-strawberry require a GPU to reach
a high enough FPS. A CPU is much cheaper than a GPU, so price is important to consider
when deciding which method to use. If the budget is tight, the traditional CV algorithm
might be better.

A third difference is that the YOLOv3 models can be trained further while the tradi-
tional CV algorithm can not. The dataset used to train the YOLOv3 models in this thesis
was small, but the trained models still achieved high mAPs. With a bigger dataset of thou-
sands of images, the models could become even more precise and detect strawberries that
are not detected with the current models. The traditional CV algorithm has little potential
to improve further, at least not as easily as the deep learning models.
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Conclusion

This chapter concludes this thesis and discusses further work that can be done by Saga
Robotics to build on this thesis. The conclusion answers the question from the problem
description; which of the two methods, traditional computer vision and deep learning, is
the most suited to detect strawberries in images?

6.1 Conclusion

This thesis has explored the world of computer vision in order to detect strawberries in
images. Three different methods of object detection have been presented, implemented
and compared in this thesis. The first one is based on traditional computer vision and
uses primarily a segmentation algorithm to detect strawberries. The two other ones are
based on a deep learning framework that uses a single pass of a neural network to detect
strawberries in an image.

When using the mAP as performance metric, the deep learning methods far outper-
formed the traditional CV algorithms, but this is because mAP is not suited to evaluate the
performance of the traditional CV method. However, when using the segmentation IoU
as performance metric, the traditional CV algorithm performs well with an accuracy of
75.0%, but the trained YOLOv3 models perform even better with accuracies of 86.6% and
85.5%. Another argument in favor of the deep learning models is the speed and ease of
implementation. In less than a week, a functioning neural network was implemented that
could detect strawberries better than the traditional CV algorithm that took several weeks
to implement. When using a CPU, the traditional CV method was the fastest with 3.0 FPS,
but when using a GPU, the trained YOLOv3 models were the fastest with 16.6 and 41.3
FPS.

To conclude, the trained YOLOv3 models based on deep learning are more suited to
detect strawberries in images than the method based on traditional CV. YOLOv3-tiny-
strawberry can be used instead of YOLOv3-strawberry if speed is an issue.

41



Chapter 6. Conclusion

6.2 Further work
Unfortunately, the code implemented in this thesis has not been tested on the actual robot.
This is in part because the strawberries in Norway are ready to be picked in June, but the
deadline for this thesis is the 3rd of June. The code has instead been tested on videos, with
the resulting videos found in Appendix B.

I would encourage Saga Robotics to implement YOLOv3-strawberry or YOLOv3-tiny-
strawberry on the robot with a GPU and use the weights trained in this thesis. They should
then test this implementation on the robot when strawberries appear in June.

To obtain higher mAPs and confidence scores, Saga Robotics should create a bigger
training dataset with the labeling script implemented in this thesis or with the labeling
script found in AlexeyAB’s Github repository [17]. The images to label should be taken
at different times of different days to augment the diversity of the training set. The images
should also be taken at different distances from the strawberries for the same purpose.

To improve the training performance, new anchor boxes should be generated that suit
the new training data. They can be generated by using k-mean clustering on the bounding
boxes of the training dataset. Darknet has a built-in function that can compute these anchor
boxes [17] based on a labeled dataset. This will create bounding boxes that have similar
shapes as the strawberries in the training set.

Finally, YOLOv3 or YOLOv3-tiny should be trained with this new dataset.
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Abbreviations

AP = Average Precision
Avg. = Average
CNN = Convolutional neural network
CPU = Central processing unit
CV = Computer vision
cv2 = OpenCV 2
FN = False negative
FP = False positive
FPS = Frames per second
GPU = Graphics processing unit
HSV = Hue, saturation, value
IoU = Intersection over union
mAP = Mean average precision
NTNU = Norges teknisk-naturvitenskapelige universitet
RGB = Red, green, blue
TN = True negative
TP = True positive
YOLO = You only look once
YOLOv3 = YOLO version 3
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Appendix

A. Source code
https://github.com/pierrecham/TTK4900

B. Video results
Traditional computer vision: https://youtu.be/RVBzKU2U57s
YOLOv3-tiny-strawberry: https://youtu.be/7XlbTPyxWHU
YOLOv3-strawberry: https://youtu.be/d0QasyvV-v8
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C. Training graphs

Figure 6.1: Average loss and mAP during training for YOLOv3-tiny.
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Figure 6.2: Average loss and mAP during training for YOLOv3.
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