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Abstract

The SmallSat Laboratory at the Norwegian University of Science
and Technology is developing a Hyperspectral Imager Payload for the
HYPSO nano-satellite mission. This work presents the payload net-
work stack consisting of a Controller Area Network bus link and the
CubeSat Space Protocol.

The details of CAN-bus and CSP are explained, before multiple in-
ternal communication architectures are evaluated for integration into
an Embedded Linux system. Architectures are implemented and tested
before one is suggested as a proposed solution.
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1 Introduction

1.1 Problem description

Through the project work, the student shall integrate the network protocol
Cubesat Space Protocol (CSP) and a Controller Area Network (CAN) link
into the software stack of the Hyperspectral Imager (HSI) payload system
for the HYPSO nano-satellite mission.

1.2 Small Satellites

The names minisatellites, microsatellites and nanosatellites are given to cat-
egories of human made satellites that fit within certain mass ranges. Col-
lectively, these categories can be referred to as small satellites, emphasising
their size relative to traditional satellites that perform heavy tasks such as
radio communication, global navigation systems and earth observation. The
range specifications range 100 – 500kg for minisatellites, 10 – 100kg for mi-
crosatellites and 1 – 10kg for nanosatellites [1].

Small satellites are much cheaper to produce and operate than traditional
satellites for several reasons. The smaller mass accounts for less material to
produce, procure and validate. However, not being able to put as many
subsystems into the satellite is also one of the main disadvantages. Smaller
satellites do often not have the necessary space or mass to include propulsion
systems.

The lower weight means that a smaller launch vehicle with less fuel can
be used to place the small satellite in orbit. However, the largest savings
come from being able to piggy-back as secondary or tertiary payloads on
launch vehicles that carry larger primary payloads.

The build time of a satellite tends to be proportional to its size. Some
small satellite projects use the low cost and low build time to justify lighter
requirements for verification and validation, and the use of Commercial off-
the-Shelf (COTS) components. Fire-and-forget seems to be a common ap-
proach, where a project develops a small satellite following a short and strict
timeline. In the case that the mission fails, it is considered more valuable
being able to reflect back on the previous design and iterate with a new small
satellite. This is only possible with the low cost and build time associated
with small satellites.

Low cost makes small satellites an attractive option for low budget projects,
and the increasing availability of launch options for small satellites has aided
the small satellite community in growing considerably the last few years.
Industry actors who previously did not have the funds or skills to develop
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satellites may to a greater extent rely on small satellites to reach their goals.
Small satellites are a driving factor for the democratisation of space [2].

Planet Labs is an example of a company reaching new goals with small
satellites. They have been able to create a constellation of over 150 nanosatel-
lites that together produce an image of the entire earth at least once a day
[3].

1.3 The HYPSO mission

The Centre for Autonomous Marine Operations and Systems (AMOS) at The
Norwegian University of Science and Technology (NTNU) develops technol-
ogy for autonomous maritime operations and control systems, in order to
meet the challenges related to the coasts and the oceans. The centre places
an emphasis on autonomous vehicles, ocean structures and advanced nav-
igation and guidance systems to fit the needs of scientists, fisheries and
industries.

Various robotic agents for underwater, in-air and on-surface operations
have already been developed through AMOS-related activities to collect cli-
mate data from maritime environments.

The SmallSat Lab at the NTNU is a project group working to build and
launch nano-satellites. The current mission, Hyperspectral surveillance of
the oceans (HYPSO), aims to supplement these robotic agents with satel-
lites. The mission carries a Hyperspectral Imaging (HSI) camera to enhance
the surveillance of coastlines, and a Software Defined Radio (SDR) to aid
communication in the arctic.

By placing the satellite in a near-polar orbit, one achieves a coverage and
revisit time that is expensive and impractical to match by using surface and
in-air robots. The hyperspectral camera onboard the satellite will be able
to capture images of remote locations without having to deploy robots on
lengthy missions. Additionally, the satellite will have a low revisit-period,
meaning that changes in a specific area can be surveyed over time, without
having to deploy multiple surface or in-air missions to the same area.

1.3.1 Hyperspectral Imaging

The HSI camera captures individual light intensities throughout the colour
spectrum, as opposed to only a few select bands as in traditional cameras.
Hyperspectral images contain two spatial dimensions and one spectral di-
mension, and are often depicted as cubes. This is illustrated in Figure 1.

The data that is captured by the HSI camera is stored and processed by
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Figure 1: Graphic representation of hyperspectral data [4].

an image processing system. After processing, the data needs to be trans-
ferred to a ground station over a radio link. The radio link is typically very
restricted in bandwidth for small satellites due to limitations in available
transmission power. The hyperspectral imager produces large data sets that
are of considerable size even after compression. As an example, a raw hy-
perspectral image can easily occupy several gigabytes of storage. Given a
S-band radio link with a data rate of 512 Kbps [5] it would take 35 minutes
to transfer a single image of one gigabyte.

1.3.2 Satellite platform

The HYPSOmission uses a commercially available satellite bus fromNanoAvion-
ics. In the remainder of this paper, the term satellite bus is taken to mean
the collection of subsystems that support the payload systems in perform-
ing their functions. This includes mechanical structures, electrical power
systems, communication systems and more.

The M6P satellite bus from NanoAvionics provides a mechanical frame
that is compliant with the 6U CubeSat Design Standard [6]. This means that
the volume and shape of the satellite must follow these specifications, and
that the maximum weight of the entire satellite must be kept within 12 kg,
including payloads and supporting subsystems. By following the CubeSat
Design Specification [6], the satellite is compatible to be released with stan-
dardised deployers, which increases the availability of launchers, and de-
creases the required efforts to successfully integrate the satellite into the
launch vehicle.
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The subsystems present on the M6P satellite bus, including payloads,
are outlined below. The physical architecture is illustrated in Figure 2.

• Flight Computer (FC), which is tasked with generating and sending
telemetry data, configuring an UHF radio, as well as housing the ADCS
(see next entry).

• Attitude Determination and Control System (ADCS), tasked with gath-
ering navigation data from various sensors systems, including sun sen-
sors, magnetometers, a startracker and a Global Navigation Satellite
System (GNSS) receiver.

• Electrical Power System (EPS), which receives power from solar pan-
els to charge batteries, and provides both regulated and unregulated
voltages to the other subsystems.

• Payload controller (PC), which acts as a Cubesat Space Protocol (CSP)
communication bridge between the payloads, primary radio and the
rest of the satellite. It is able to buffer payload data before forwarding
it to the radio when transmitting it to the ground [7].

• S-Band Radio, primary radio, intended to provide relatively high band-
width uplink and downlink.

• Ultra-High Frequency (UHF) Radio, a secondary radio, which can be
configured to send a beacon signal with telemetry data, and to receive
from, and forward CSP packets to ground stations.

• HSI Payload, consisting of a Breakout Board (BB) with a processing
module which connects to a HSI camera and a Red-Green-Blue (RGB)
camera.

When an image is requested to be downloaded from the HSI payload,
the payload sends the image over a communication network that connects
all communicating subsystems, including the ground station and other sup-
porting systems on the ground. In the M6P satellite bus, this network is
implemented using the open source network library CSP [9]. In order to
comply with the M6P satellite bus, the HSI and SDR payloads are required
to communicate with the satellite bus using the CSP library.
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Figure 2: M6P Physical Architecture. Adapted from NanoAvionics M6P
Platform ICD [8].
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1.4 Report Outline

The remainder of this report details the work of investigating, integrating
and testing CSP for the HYPSO HSI payload. The following section 2 ex-
plains constraints, concepts and modules that are used in the work, pro-
viding a background of knowledge on which the work can be reviewed and
understood. Thereafter, section 3 presents the external network architec-
ture, before internal architecture designs are evaluated. The term external
architecture is taken to mean the interfaces that connect the payload with
neighbouring subsystems, while internal architecture is taken to mean how
the software services access these interfaces. Multiple architectures are tested
and profiled in section 4, where the report also discusses issues, and suggested
improvements. A conclusion is finally given in section 5.

2 Background and Context

This chapter discusses concepts central to the HSI payload. First, the con-
straints and requirements of the HYPSO project are explained. Then the
network components of the Payload platform are presented.

2.1 Project Constraints and Requirements

The HYPSO project employs a System Engineering methodology based on
systems engineering standards from European Cooperation for Space Stan-
dardization (ECSS). Mission objectives, mission requirements, system re-
quirements, and project constraints are organised in a hierarchical fashion.
High level objectives and requirements are refined into increasingly detailed
requirements at the derived system and subsystem levels.

The HYPSO project requirements are kept in centralised documents that
always are kept up to date with the newest requirements. The requirements
that are relevant to this work have been included here to form a basis of
evaluation for proposed solutions. See Table 1.

Requirement IF-001 is derived from the fact that the HYPSO project
has procured a M6P satellite bus [8] from NanoAvionics. This limits which
protocols can be used to communicate with the remainder of the M6P satel-
lite bus. As illustrated in Figure 2, the HSI Payload shall be connected to
the PC, and must communicate through this subsystem whenever it needs
to communicate with the rest of the satellite bus, or with the ground sta-
tion. Therefore, the HSI payload system is required to use a Controller Area
Network (CAN)-bus to communicate. Furthermore, the PC employs CSP on
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Table 1: HSI Payload requirements that are relevant for communication.
Req. ID Definition

IF-001 The payload shall comply with NanoAvionics mechanical
and software ICD

M-1-015 L1A data product shall be downlinked in less than 24 hrs
and be ground truthed

M-1-016 Operational data shall be downlinked and ground truthed
in less than 3 hrs

M-2-026
S/C shall communicate to ground and downlink house-

keeping telemetry data of up to 200 kb for at least 1 pass
per day

SYS-3-007 Data rate from payload computer (FPGA) to radio should
be at least 0.8 Mb/s (Serial or CAN protocol)

SYS-3-016
S/C software should be sufficiently open (e.g. SDK, API,
protocols, open source) to enable the user to configure the
S/C and mission, develop own code, and integrate payload.

SW-4-006 Shall be able to output level 1a and level 4 data

SW-4-007
Shall provide a file transfer service that can send and
receive file reliably. Transfers must be able to continue

over multiple sessions or passes.
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top of the CAN-bus link to perform packet routing, meaning that the HSI
payload also is required to use CSP for communication.

The mission requirements M-1-015, M-1-016 and M-2-026 regard the
speed at which HSI data must be downlinked from the satellite. To fulfil
the requirements, the communication from the HSI Payload to the downlink
radio must be able support a minimum effective data rate. The most strict
of theses three requirements is to downlink a L1A image in 24 hours. The
HYPSO Mission Scenario budget [10] estimates a total downlink duration of
5394 s over the span of one day. The L1 data sets are estimated to a size
of 420 MB [10]. Using these estimates, the minimum needed data rate is
roughly 81 Kbps.

System requirement SYS-3-007 states that the data rate between PC and
the radio subsystem should be at least 0.8 Mbps. This is a requirement of
the M6P satellite bus, but implies that the data rate between payload and
PC also must be at least 0.8 Mbps, or that the internal buffering capabilities
of the PC must be utilised. The CAN-bus has a maximum bitrate of 1 Mbps.
Furthermore, subsubsection 3.1.2 will illustrate how the effective data rate of
the CAN bus will be considerably lower than 0.8 Mpbs. This already implies
that to in order to fulfil requirement SYS-3-007, the buffering capabilities of
the PC must be used.

Requirement SYS-3-016 is a requirement for the M6P satellite bus, how-
ever, it is also taken into consideration when designing the internal com-
munication architecture in the HSI Payload. Multiple developers will be
concerned with the communication interface when developing services and
processing applications for the HSI payload, therefore, the CSP communica-
tion interface should be integrated such that it is as easy as possible to use
for service developers.

Requirement SW-4-006 requires the HSI payload to be able to commu-
nicate at least two types of image data. Level 1A data is raw data, with
attached metadata and no non-reversible processing applied to it [11]. One
image of level 1a data is estimated to occupy roughly 450 MB, according
to the HYPSO data budget [10]. The level 4 data is heavily processed and
compressed, estimated to occupy only 6MB. For transmitting both of these,
a dependable communication path is required. Therefore, together with re-
quirement SYS-3-007, there is a need to verify that the communication link
can operate with a high bus utilization over an extended period of time.

Requirement SW-4-007 demands that a reliable file transfer service shall
be provided. For this to be possible, the CAN and CSP link from HSI pay-
load to PC and forward to the radio must be working. Furthermore, some
mechanism must be implemented to guarantee that packets are reliably de-
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livered, for example through retransmission of lost and corrupted packets.
This requirement is considered to be the responsibility of the upper applica-
tion layers, and is therefore out of scope for this report.

2.2 HSI Payload Hardware

The HSI Payload requires hardware capable of processing large amounts
of image data, while simultaneously being able to communicate with other
satellite subsystems. System on Chips (SoCs) combine processing units with
communication and control peripherals in a single chip, providing highly
flexible and capable processing systems. System on Modules (SoMs) com-
bines even more features, like external transceiver circuits, memory banks
and data storage units, on a small Printed Circuit Board (PCB), to provide
even more functionality out of the box.

When building systems with ready-built SoMs, a connector board must
necessarily be built to break out pins, routing them from the SoM to more
manageable connectors. However, most of the electrical design work is al-
ready finished on the SoM, and the core development can be focused on mak-
ing software applications instead of building hardware. Therefore, building
systems with SoMs is beneficial for projects with a tight schedule.

The HYPSO Payload is equipped with a PicoZed SoM from Avnet, which
itself is equipped with a Zynq 7000-series SoC from Xilinx. This SoC inte-
grates a Processing System (PS) based on ARM Cortex-A9 cores together
with a section of Programmable Logic (PL) [12]. The PS has two levels of
caching, 256 KB On Chip Memory (OCM), support for external DRAM, and
several interfaces for external static memory. The SoC offers a selection of ex-
ternal peripherals such as a SD-card (Secure digital) controller, gigabit Eth-
ernet, CAN-bus, Universal Serial Bus (USB), General-Purpose IO (GPIO),
Universal asynchronous Receiver-Transmitter (UART), Inter-Integrated Cir-
cuit (I2C) and Serial Peripheral Interface (SPI). The PS and PL can interface
each other through a shared memory bus, and can exchange data using one
of the chip’s 8 Direct Memory Access (DMA) controllers through Advanced
Extensible Interface (AXI) interfaces. The PicoZed SoM provides 1 GB of
Double Data Rate Type Three Low Voltage (DDR3L) memory, 8 GB of
Embedded MultiMediaCard (eMMC) storage, a USB 2.0 transceiver and a
gigabit Ethernet transceiver [13].

During development of the HSI Payload, a ZedBoard development kit
from Avnet is used instead of the PicoZed SoM. The ZedBoard development
kit is fully integrated on a single PCB and has transceivers and connectors
for almost all peripherals that are required by the HSI Payload. This board
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allows development to begin before a breakout board has been created for
the PicoZed SoM.

2.3 Operating system

When designing an embedded system in general, the choice of whether to
use an Operating System (OS) and which one to use is an important de-
cision. The choice of OS is reflected in the amount of programming tools
and documentation available to the software designer. There exist various
categories of OS, depending on the type of tools they provide, which abstrac-
tion level and platforms they target, and whether they deal with real time
requirements.

An OS takes care of tasks such as scheduling, memory management, low
level IO and security [14]. They provide a uniform interface on which appli-
cations can be built, without having to worry about specific implementations
of resources, drivers and interfaces.

Many embedded systems perform tasks with hard or firm deadlines. In
order to cater for these requirements, an OS must provide real time capa-
bilities. Real time scheduling algorithms can be used to prove the timely
execution of critical tasks.

A well established general-purpose OS such as those based on the Linux
kernel, have available a vast collection of software. This is a great help for
the developer who is able to use existing libraries and drivers.

Embedded systems usually require a smaller set of the available software
resources than the general-purpose computer. In this cases, the plethora
of software modules that come shipped with many distributions becomes
bloatware that slows down the system, uses more memory than necessary
and can increases the total complexity of the system. Additionally, the
extra software means that more code needs to be verified. However, many
of the available resources are open-source and the OS can be adapted to fit
a specific application [14].

From a development point of view, the large amount of software available
for an OS such as Linux makes it an attractive platform to work on. Although
one runs the risk of ending up with a bloated system if using too many general
purpose libraries, it is often possible to strip the system down to its bare
essentials right before deploying it. In this way, a larger set of software tools
may aid the development process, while not interfering with the performance
or requirements of the final product.

Embedded systems often favour a light weight OS because of limited
resources and ease of verification due to their simplicity. These are often not
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as established as the general purpose OS, and as a result they do not offer
the same amount of libraries and ready made software modules. An example
is FreeRTOS which provides several real time scheduling algorithms [15]. It
provides a simple tasking interface, as well as a few OS primitives such as
mutexes, semaphores, queues and timers. FreeRTOS is a popular OS for
CubeSats, with several CubeSat-specific systems offering it as a kernel. An
example is GomSpace’s NanoMind A712D On-board Computer (OBC) [16].

2.3.1 Board Support Packages

SoCs and SoMs generally have a large amount of peripherals that need to
be initialised before they can be used. To mitigate the setup cost related to
writing all of these drivers, SoM producers usually provide board support
packages for their modules. The Board Support Package (BSP) aids in ini-
tialising hardware components such that they are visible and accessible to an
OS. These packages can save hours of work in just getting a minimal system
up and running and lets the developer focus on applications.

2.3.2 PetaLinux

Xilinx maintains an embedded Linux build system and reference distribution
called PetaLinux. This framework employs project configuration files that
allow components to be included or excluded from the Linux kernel, including
custom built modules. The build system also provides a generous amount of
utility programs, libraries and drivers that can be compiled into a root file
system that works together with the compiled Linux kernel. The ZedBoard
and PicoZed both have BSPs for PetaLinux, released by Avnet. Additionally,
the PetaLinux build system makes available tools for modifying and creating
BSPs for custom boards.

The PetaLinux build system is based on tools developed by the Yocto
project [17]. This open-source project aims to provide better support in
creating Linux distributions for embedded platforms. It is made up of build
tools that configure and build Linux kernels and packages to deploy on top
of those system. It provides a reference configuration of an embedded Linux
system, and allows for heavy customisation. It can cross build for a large
selection of targets.

The PetaLinux OS was chosen for the HSI Payload because it is na-
tively supported on the ZedBoard and PicoZed platforms. Additionally, the
provided BSP and the large amount of available drivers and libraries save
development time. The PL section on the Zynq 7000 Series SoC is capable
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of running real-time specific modules, if such a requirement should appear.

2.4 Previous work with CSP at NTNU

There has been previous efforts to use CSP for the NTNU Test Satellite
(NUTS) project [18] at NTNU.

In 2012 Muench, Marius developed a Hash-Based Message Authentica-
tion Code (HMAC) scheme called the NUTS Authentication Protocol to
provide authentication of telecommands for the NUTS project [19]. The
protocol was formally verified, implemented and tested, but never integrated
back into the NUTS project.

In 2015 Jahren, Erlend Riis developed a reliable transport protocol (NUTS
Reliable Protocol) after concluding that the reliable transport protocol (Reli-
able atagram Protocol (RDP)) which is included in CSP was non-functional.
The NUTS Reliable Transport Protocol was concluded to be mostly working
with only a few unaddressed issues. However, no further efforts were made
to fully integrate the protocol into the NUTS software architecture.

In 2016 Normann, Magne Alvar made a Software Design for an Onboard-
Computer [20], for a ARM based platform running FreeRTOS. The proposed
software architecture is properly justified, and parts may be adapted for the
HSI Payload software architecture.

2.5 Alternative to CSP

Although the payload system is programmatically required to use CSP as
its network and transport protocol, it is worthwhile investigating alternative
protocols. Comparison of these might reveal areas where CSP falls short,
and can indicate what protocols and features might be implemented on top
of CSP.

The Jet Propulsion Lab (JPL), California, has implemented a Delay Tol-
erant Network (DTN) called Interplanetary Overlay Network. Rather than
being a single network protocol, it is a collection of protocols that enable
a network to span the entire solar system [21]. This implementation makes
heavy use of zero-copy techniques to avoid rewriting the contents of packets.
This is achieved by using memory sharing between processes and by passing
references to object buffers instead of copying the buffer contents.

2.6 Coding Standards

In order to provide some amount of consistency throughout the code pro-
duced in this project, the C coding style from the Linux Kernel project
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was adopted. By installing a style definition file into the project, the clang-
format tool from the Clang Project [22] can be used to automatically format
the source code.

2.7 Testing

Verification and validation are two development steps that are very impor-
tant for the success of a project, but are often skimped on or skipped in
small satellite projects. Many small satellite projects don’t have resources
to support a full verification and validation program. A recent survey by
Jacklin [23] details methods that are often employed in small satellite soft-
ware development. Simulation and testing is said to be the technique that
is most often applied, with model-based design being a technique which is
gaining popularity.

3 Design

In this section, the lower layers of the the network stack are presented in de-
tail in subsubsection 3.1.1, subsubsection 3.1.2 and subsubsection 3.1.3. Dif-
ferent communication architectures using CSP are presented and discussed
in subsection 3.2.

3.1 Network Architecture

When discussing networks it is helpful to have a common classification of
modules and protocols. There exist protocols that perform the same con-
ceptual function, while the way in which they work and how they are imple-
mented may be completely different. These should be categorised together
to illustrate that they perform related tasks.

The Open Systems Interconnect (OSI) network model is an often refer-
enced model on how the functionality of a communication network can be
classified [24]. It delegates the various tasks and responsibilities of a com-
munication network into layers, where higher layers have a higher level of
abstraction from the physical world. The names and functions of the layers
in this model are used when discussing network protocols in this report. See
Figure 3 for an overview of layers, names and respective functions.
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Figure 3: Illustration of the different layers in the OSI reference model for
networks, and their functions summarised.

3.1.1 Physical Layer - Controller Area Network

The physical layer is related to mechanical, electrical and wireless interfaces.
Some protocols define specific mechanical connectors and put requirements
on cabling and signal propagation mediums. Signal timing and electrical
properties are often defined, as well as working conditions that the medium
might have to withstand.

CAN is a physical and link layer protocol originally developed for the au-
tomotive industry. It is defined in a series of standards released by the Inter-
national Organization for Standardization (ISO): ISO11898-1 [25], ISO11898-
2 [26] and ISO11898-3 [27]. The physical layer protocol connects two or more
nodes via a physical serial bus, allowing them to exchange data frames using
a protocol-specific addressing scheme.

The physical bus is made up of a pair of twisted wires, with the two
wires being named CAN High and CAN Low. The wires are electrically
terminated with resistors. Active signalling on the bus is performed by a
node pulling the CAN High wire to a reference voltage of 5.0 V, and the
CAN Low wire to a reference voltage of 0 V. This represents the symbol ’0’,
which is termed a dominant symbol. To represent the recessive symbol ’1’,
the node stops driving the wires, allowing the wires to equalise in voltage
with the help from the terminating resistors. Listening nodes will measure
the voltage difference between the CAN High and CAN Low wires, and if
the difference is lower than some threshold the bus state will be interpreted
as a recessive symbol ’1’, otherwise it is interpreted as a dominant symbol
’0’.

By using twisted wires and differential signalling, the bus gains pro-
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tection to electromagnetic noise [28]. The twisting of the wires eliminates
unbalanced induction caused by non-uniform fields that originate from com-
ponents that are in close proximity to the bus. In an untwisted pair of wires,
the wire closest to the source of a magnetic field will experience a stronger
field, resulting in a higher induced Electromotive Force (EMF) in that wire.
By twisting the wires, they alternate on being closest to the noise source,
averaging out the induced electromotive forces. Now the induced voltage will
be the same in both wires, only causing an elevated common mode voltage.
The common mode voltage is removed from the signal when measuring the
difference between the wires. In order to provide protection against large
common mode voltages, CAN-bus transceiver circuits are dimensioned to be
able to operate on higher voltages than the nominal 5.0 V, and to be able to
survive much higher transient voltages.

There exists several variations and extensions on the physical implemen-
tation of the CAN-bus protocol, and they are targeted at different speed
classes.

High Speed CAN is defined in ISO 11898-2 [26] and its extensions, and
allows bandwidths of up to 1 Mbps. This variant has a linear topology, and
is terminated with 120 Ω resistors at each end of the bus. Nodes can connect
anywhere on the bus by electrically connecting to the CAN High and CAN
Low leads. This configuration is illustrated in Figure 4.

Figure 4: The physical CAN bus is terminated at each end. Nodes can
connect anywhere between the termiantors.

Low Speed Fault Tolerant CAN is defined in ISO 11898-3 [27], and is
limited to a bandwidth of 128 Kbps. This variant allows for a richer topology,
in which linear buses, star shaped buses, and hybrids are allowed. The
termination resistors are divided between the nodes of system, and must
together total to the desired impedance value of 100 Ω. The variant also
changes the thresholds for dominant and recessive differential voltages.
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3.1.2 Link Layer - Controller Area Network

A link layer is responsible for encapsulating and transmitting units of data
(often called frames) [24]. The structure of the data within the frame is
specified, and additional header data is added to provide for various func-
tions. A length header field is often used to encode the length of a frame.
When multiple devices are accessing the same medium, techniques must be
employed to avoid jamming the bus. There exists collision detection and
avoidance techniques, as well as a wide selection of bus arbitration schemes.
Error detection, signalling and recovery can also be implemented as link
layer features. Some link layer protocols also include Error-Correcting Code
(ECC) to improve the integrity or reliability of the link.

The CAN link layer protocol is described in ISO11898-1 [25], and defines
frame format, Medium Access Control (MAC) addressing, bus arbitration,
error handling and more. The frame format includes fields for identification,
payload length, payload data, checksum and a few other fields used for flow
control. There are two different frame formats depending on whether a 11
bit or 29 bit frame identifier is used. The frame layouts are illustrated in
Figure 5 and Figure 6.

Figure 5: Illustration of the base CAN bus frame format, with 11 bits for
identifiers. Frame format is derived from ISO11898-1 [25].

Figure 6: Illustration of the extended CAN bus frame format, with a 29 bits
for identifiers. The identifier is split up between two fields, A and B. Frame
format is derived from ISO11898-1 [25].

Addressing is performed using 11 bit or 29 bit identifiers , that simultane-
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ously represent the priority of the frame. A lower frame identifier has higher
priority, and is used to provide decentralised bus arbitration. All nodes that
are physically connected to the bus (see Figure 4) must refrain from driving
it as long as they measure traffic on it, meaning as long as they measure the
bus being pulled to a dominant state. When the bus is perceived as free, any
node may start transmitting a frame. With the exception of a start-of-frame
bit which is always dominant (’0’), the identifier is the first field to be trans-
mitted on the bus. While transmitting, the sender simultaneously samples
the bus state to verify that it was successful in transmitting the symbol.
Another node might initiate a transmission at the same time. Then, either
of the transmitting nodes might measure the bus being in a dominant state
(’0’) when itself is transmitting a recessive symbol (’1’). The dominant sig-
nal overrides the recessive state of the bus. The node that is transmitting
the recessive symbol will then interpret this as another node transmitting a
frame with a higher priority than its own. It will therefore stop transmit-
ting its own frame and wait until the bus is available before trying again.
In this way, CAN-bus implements Carrier Sense Multiple Access with Col-
lision Avoidance (CSMA/CA). In the rare case where two frames with the
same identifier are broadcast simultaneously, the arbitration boils down to
observing which frame contains a dominant symbol earliest in the remainder
of their frames.

All versions of the physical CAN protocol use a Non-Return-To-Zero
(NRZ) representation for physical bit states [25]. With this technique, the
state of the physical bus is not brought back to a default state between
symbols. The physical bus state will stay constant through the transmission
of multiple identical symbols.

The CAN-bus protocol does not employ a shared clock to dictate when
nodes should sample the state of the bus. Therefore, all nodes synchronise on
transitions from recessive to dominant bus states, aligning their phase to the
clock of the current sender. A prerequisite for continued synchronisation is
that all nodes in the network are configured to operate on the same frequency.

Because of NRZ and the lack of a sampling clock, a bit stuffing rule is
used as a run-length-limiting technique to avoid bit-slips [25]. After five con-
secutive symbols of the same state, a symbol of the opposite state must be
sent, and it is not considered part of the frame. This ensures frequent tran-
sitions on which nodes can synchronise their local clocks. If six consecutive
identical symbols are sent, the bit stuffing rule is violated, and an error is
signalled.

All CAN frames are tailed by a time period in which one or several
receivers of the frame put the bus into a dominant state to indicate an
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Acknowledgement (ACK) on receiving the frame. During this period, the
sender leaves the bus in a recessive state in order to measure the transition
from a recessive to a dominant state.

Cyclic Redundant Check (CRC) codes are included in the frame to allow
bit errors to be detected [25]. A CRC field encodes information about the
bit pattern of the remainder of the frame. Its value is computed as the
remainder of a polynomial division. Most of the frame fields are included in
the calculation.

When violations of ACK, CRC or bit stuffing are detected, by any node,
they signal an active error on the bus by pulling it to a dominant state for at
least six consecutive symbols. This should again be detected as a bit stuffing
error by other nodes. In this way, an error detected by a single node can be
signalled to all nodes.

Error handling is an integral part of the CAN specification [25]. Sources
of errors include invalid CRCs, bit stuffing violations and corrupt frames with
missing ACK. After a node has detected and signalled (six or more successive
dominant symbols) a certain number of errors, it will enter a passive-error
state where it may only signal errors with passive frames (six or more passive
symbols). If a node then continues to detect sources of errors it enters a state
where it logically disconnects, and stops participating on the bus. Most CAN
controller circuits include some mechanism to recover from passive and hard
error states by observing some amount of successful bus traffic.

3.1.2.1 SocketCAN Driver As part of the Linux kernel modules, Sock-
etCAN provides a link layer interface to CAN devices. The programming in-
terface is identical to that of the Transmission Control Protocol (TCP)/Internet
Protocol (IP) network interface. The driver code initialises a Linux socket
object from the networking protocol family PF_CAN, after which the Linux
system calls read and write can be used to communicate data with the
lower level CAN controller.

3.1.2.2 Transfer Rates Although the ISO11898-2 CAN-bus is able to
operate at 1 Mbps, the effective data transfer rate is significantly lower than
that.

In the best case, the extended CAN frame (shown in Figure 6) is filled
with a maximum number of data bytes, equal to 64 bits of data. The remain-
ing 64 bits are used for addressing, CRC and control, meaning only 50 % of
the transferred symbols are used for data. Between each frame, an interframe
space consisting of at least three recessive bits must be inserted. Addition-
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ally, depending on the content of the frame, extra bits may be inserted by
the bit stuffing rule, further lowering the effective transfer rate.

When only considering the 50 % frame overhead, the theoretical upper
limit on the data transfer rate is 500 Kbps.

3.1.3 Network Layer - Cubesat Space Protocol

A network layer is normally responsible for tasks related to host addressing,
packet forwarding and routing, and traffic control (see Figure 3).

CSP is a network library developed by GomSpace for use in CubeSats [9].
It performs the functions of the network layer (layer 3) and transport layer
(layer 4). The role of CSP in the network stack is illustrated in Figure 7.

Figure 7: Illustration of the role of CSP in a network stack using the
SocketCAN Linux driver for CAN-bus.

The protocol has been adopted by several small satellite designers and
has flight heritage. CubeSats such as GOMX-3 and AAUSAT3 have flown
successful missions with CSP. Several small satellite vendors, for example
NanoAvionics [29] and GomSpace [16] include CSP as part of their commer-
cial platform, showing the readiness of the technology.

In many ways, CSP performs the same functions as the Internet Protocol
(IP), but offers a lighter implementation which is suitable for resource limited
systems like those found in nano-satellites. The similarity of the application
programming interface (API) makes it easy to adopt for people who have
previous knowledge of network socket programming.

The CSP network facilitates communication by allowing data packets
to be sent between any two nodes in the CSP network. Each node in the
network has an unique 5 bit ID number. When sending a packet, the packet
is addressed with the ID number of the destination node, and a port number
which indicates which service inside the destination node should receive the
packet. The packet header also includes the source ID number and a source
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port number to let the receiver know from which node and service the packet
was sent from.

Each packet is fronted by a 16 bit data length field, encoding the number
of bytes in the data field. Eight flag bits encode CSP options that are enabled
for that packet. Options are detailed in Section 3.1.3.5. The complete CSP
frame layout, with a CRC option enabled, is shown in Figure 8.

Figure 8: A CSP frame with the CRC32 option enabled.

3.1.3.1 Buffer management When creating a CSP packet, a buffer
must first obtained from the CSP core. A call to csp_buffer_get() returns a
pointer to an unused packet buffer. The pointer is used to modify the packet
data field and to set the data length field. This must be done manually.
All packet buffers are kept in a central bank of buffers which is allocated
with malloc() when CSP is initialised, normally at the start of a program.
By passing buffer pointers around, one circumvents the need to copy the
contents of the packet between each user of the packet. This zero-copy
technique reduces unnecessary duplication of packet data in memory.

3.1.3.2 Router The driver code that receive packets from the OS or
lower level devices copies the packet data into a free packet buffer, and
appends the packet pointer to an input queue. Packets that are inserted
into the input queue must be routed to their final destination. The CSP
library provides a csp_route_work() function, which is usually run in its
own thread (csp_route_start_task()). This function is the single reader
from the queue of packets which all receiver tasks write to. It picks out
the first packet in the queue and examines the packet identifier. Packets
that are addressed to other nodes are redirected to the appropriate outgoing
interface. Packets that are addressed to the receiving node are appended to
the CSP socket which is bound with the appropriate port number. If no such
port has been bound, the packet is rightfully dropped. The router refers to
a routing table to resolve which interface it must forward a packet on. This
routing table is static and must be manually configured.
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3.1.3.3 Required functionality and resources CSP was developed
to initially run on FreeRTOS, but has also been ported to run on Portable
Operating System Interface (POSIX), Windows and MacOS. There is a set
of functional resources that CSP requires to run. These must be provided
by the OS, and will differ between different architectures. A list of the most
important resources is shown below.

Threading Threads are required to run routing work and to receive
packets from interfaces in the background.

Memory allocation Malloc is required to allocate the packet buffer
bank upon initialisation of CSP.

Queues Manipulation of incoming connections and packets requires an
implementation of queues to keep them in an organised structure.

Synchronisation Primitives Mutexes and semaphores are required
to ensure safe access to the shared queues that hold the connections and
packets.

System Services Ports 1 to 6 are reserved for system management
and CSP remote configuration. Some of these services require the system to
be able to supply information about the uptime of the system, the amount
of free memory in the system, and to provide commands for reboot and
shutdown.

Functions that are specific to the OS are declared in a compatibility layer
in libcsp/src/arch/. Functions that are supported by the OS are wrapped
and renamed to CSP-specific identifiers in order to provide a consistent in-
terface that the library can use. When the OS lacks certain functionality, it
is implemented directly in the compatibility layer files, such as for example
the implementation of queues for the POSIX architecture.

3.1.3.4 CAN interface The CAN protocol frame length is limited to
a maximum of eight bytes, implying that some kind of packet fragmenting
must be implemented on top of the CAN protocol. The CSP code base
includes a CAN interface implementation with automatic fragmentation of
CSP packets into CAN-bus frames. The Maximum Transfer Unit (MTU)
over the interface is limited to 256 bytes, which should be enough to allow
the majority of telecommands and telemetry messages to fit within one CSP
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packet. When transferring large amounts of data, such as a file, it will be
necessary to fragment the data object at a higher level, probably in the
application code.

The MTU of this interface can be decreased, but it should be noted
that the MTU represents a trade-off between low overhead when using large
MTUs, and a lower chance of packet loss as an effect of data corruption when
using small MTUs.

3.1.3.5 CSP Options Confidentiality, integrity, and authenticity (CIA-
triad) forms the foundation of a secure service [28]. The CSP library offers
mechanisms to support each of these concepts.

Cyclic Redundancy Check If compiling the library with the CRC
option enabled, packets can be flagged to use 32-bit CRC to protect their
integrity. The packet feature is enabled by creating a socket or connection
while passing a {CSP\O\CRC32} flag as a function parameter.

Checksum creation and verification is done by the interface modules, and
the checksum is not visible to the user of CRC32-enabled packets. When
sending packets on a CRC32-enabled connection, the CRC32 flag of the
header will be set, and every interface that supports CRC32 will then add a
checksum at the end of the data field before transmitting the packet. Note
that there must be enough remaining space in the packet buffer to append
the checksum on the end of the data field.

Hashed Message Authentication Code When compiling with the
HMAC option enabled, packets can be protected with a message authenti-
cation code field. Packets can then be verified to have been signed with the
correct key, proving the authenticity of the packet. The key which is used to
verify the packets must be distributed to the satellite in a safe manner, for
example by installing the key before launch.

Extended Tiny Encryption Algorithm When compiling with the
Extended Tiny Encryption Algorithm (XTEA) block cipher option enabled,
packets may be encrypted using a symmetric key. The satellite must have
the shared key installed in order to to decipher the encrypted packets. Used
together with HMAC, it allows new security keys to be safely uploaded.
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3.1.4 Transport layer - CSP Unreliable Datagram Protocol

There are two different transport protocols offered by CSP. The Unreli-
able Datagram Protocol, which is similar to, but more simple than the User
Datagram Protocol used with IP, and provides the simplest form of trans-
port without any guarantee of successful delivery. The Reliable Datagram
Protocol (RDP) is another compiled option, and adds support for acknowl-
edgement of received packets and automatic retransmission of lost packets.
It is similar to the TCP protocol used with IP, but is a smaller and more
specialised implementation.

3.1.5 Higher Layers - CSP Applications

Applications can easily be built as clients and servers, using a traditional
request-response pattern. A correspondence between a client and server is
shown in Figure 9. Packets are sent between CSP nodes by creating and
writing to CSP connection objects. A connection object can be obtained by
calling csp_connect() with the appropriate destination address and port,
after which packets can be sent to the node by calling csp_send() with the
connection and a packet as argument. To receive packets, a CSP socket
object must be created, bound and be listening to the correct port. A socket
pointer is first obtained with csp_socket(), then it must be associated with
a specific port using csp_bind(). A connection queue must be allocated
via csp_listen(). A connection handle for an incoming packet may be
obtained with csp_accept(), and packets may be read from that connection
using csp_read(). The same connection can be used to send replies with
csp_send().

3.2 Internal Communication Architecture

In addition to implementing simple test programs that verify the basic func-
tionality of CSP across nodes, like sending and receiving ping packets, a
general communication architecture is sought for integrating and combining
the various services of the HSI payload. Although no fixed software architec-
ture for the HSI payload exists yet, it is natural to expect that there might
be multiple concurrent services that need to communicate over CSP. The
way in which CSP is integrated into the processing system directly affects
the software architecture, and will restrict the ways in which the services
may communicate.
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Figure 9: Basic CSP communication. A client application sends a request
packet to and receives a response packet from a server application.

3.2.1 Processes vs Threading

In the Linux OS, processes and threads are both concepts for concurrent
execution of program contexts. However, there are significant differences
between them that must be taken into account when thinking about software
architecture. Linux processes are created when a new program is loaded
into memory and executed. Processes have their own memory segments for
instruction and data memory. Threads are different in that they share these
memory and instruction segments with the process that they were spawned
from. Threads keep their own Central Processing Unit (CPU) register values
and stack memory in order to facilitate execution of different contexts [14].

3.2.2 Inter process communication

While memory sharing is default behaviour between Linux threads, Linux
processes can not directly access the memory of each other. Therefore, in
order to integrate CSP into a Linux environment, where multiple processes
might work and communicate between each other and with a CSP interface,
it is necessary to consider Inter-Process Communication (IPC). A small in-
quiry into the available methods of IPC under the Linux OS is performed.
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3.2.2.1 Signals Signals in POSIX (and the equivalent implementation
in Linux) is a way to send simple commands between processes (SIGNAL(2)
[30]). A signal is made up of a single integer, taking on one of the values from
a predefined set. Signals are usually not used to pass data, but are perfect
for passing small commands and notifications, as long as the signalled values
fit within the predefined set of signals. Some of the standard signal values
are intended to invoke a specific functionality, like terminating or restarting
a process. However, most of these (there are exceptions like SIGKILL and
SIGSTOP) can be repurposed to perform any function by registering custom
signal handling routines. For the purpose of passing network data between
processes, signals score a low score.

3.2.2.2 Shared memory The Linux OS provides methods to allocate
chunks of working memory (mmap) that may be shared between processes
(MMAP(2) [30]). This provides a flexible way to communicate between pro-
cesses, because all processes read and write directly to the working memory
that has been mapped to their virtual memory space. It is also a very fast
method of communication because access to the shared data does not re-
quire the process to requests expensive system calls from the kernel. This is
a clear advantage when compared to other mechanisms offered by the OS,
which often depend on system calls to pass data.

If used across multiple cores, the method may create challenges with re-
gard to synchronisation, because the coherence between the data caches of
different cores needs to be considered. When used together with synchroni-
sation primitives, or an explicit protocol to safely govern concurrent access
to the shared memory, the method offers one of, if not the fastest way to
communicate any type of data between processes.

This method is used in the Interplanetary Overlay Network developed by
the Jet Propulsion Laboratory in California (see [21] for an overview of the
project), which implements a whole suite of network protocols intended for
the use in embedded systems in space. The project employs a module that
manages a chunk of shared memory. The various communication protocols
attach to the shared memory, and request buffers of dynamic length from
this pool. The buffers may be passed to any other processes that also have
attached to the shared memory. In addition to manipulation of the shared
memory being fast compared to system calls, the buffers are also being passed
around using zero-copy mechanism.
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3.2.2.3 Files All processes can write and read to files, as long as they
have the correct access rights. Naturally then, a process can communicate
data with another process by opening and writing to a file, while the other
process opens and reads from the same file. This is a very simple approach,
but lacks intrinsic mechanisms to encapsulate the concept of a message or
packet. Readers and writers must agree on some protocol, for example to
always write new data at the end of the file, and to always read from the
start of the file, while making sure to remove data when it has been read.
In the discussion about pipes and First in First outs (FIFOs) below, it will
become clear that those methods are preferred because of the way they are
interfaced.

3.2.2.4 Pipes and FIFOs Pipes are channels on which unidirectional
communication can take place. It consists of two ends, one for reading and
one for writing ( PIPE(7) [30]). A pipe is first opened by a process, which
must then pass the file descriptor pointing to either the write or the read end
of the pipe, to a different process. Child processes can easily be passed the
file descriptor of either end of the pipe upon creation with fork(). Passing a
file descriptor to an unrelated process is slightly more complicated, requiring
the use of a separate method of IPC called UNIX domain sockets. Internally,
buffers are allocated and data is moved, by system calls to the kernel.

Named pipes, or FIFOs as they are also called, provide an interface to
using pipes that is interleaved with a virtual file system (FIFO(7) [30]).
Instead of being returned two file descriptors like ones does when creating
a pipe, an open system call is called on a special file in the file system.
Standard file access semantics govern whether a process may read or write
to a specific FIFO file. Options passed along when opening the FIFO file
determines whether a file descriptor for the writing, the reading, or for both
ends are returned. FIFOs may be read and written to by multiple processes,
although for the sake of simplicity and coherence, it is often clever to limit
the users at each endpoint. The way to address a FIFO is to specify its full
path name when opening it, such as "/tmp/proc_fifo_rx".

3.2.2.5 UNIX Domain Sockets Sockets in Linux provide a general in-
terface which can be used to communicate internally between processes (then
referred to as UNIX domain sockets (SOCKET(7) [30]), and to communicate
over an IP network (then referred to as INET domain sockets), to name
a few underlying channels. Sockets are appropriately named to appear as
something you can put objects into, and then expect the objects to appear
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at the intended opposite end of the communication channel. When using
Linux sockets, data is buffered in kernel space.

When using UNIX domain sockets, as is the case for inter-process com-
munication, addressing is done by specifying a file path to a special socket
file. Communication is slow compared to a shared memory method, and
should offer speeds similar to that of pipes and FIFOs, as those methods
also do buffering in kernel space.

3.2.2.6 IPC Conclusion The shared memory (mmap) method offers the
highest performance for IPC, identical to that of shared memory between
POSIX threads. However, the method requires explicit synchronisation to
provide safe concurrent access to the shared memory, demanding more de-
velopment work than the alternatives.

Named pipes (FIFOs) offers a small but safe interface for sending data
between processes. It is at least as fast as the other alternatives that also
use kernel space for data buffering. Additionally, there exists examples of
how to implement a simple prototype of a CSP interface based on FIFOs.
Therefore, it is chosen as the method to be used for IPC in the internal
communication architecture.

3.2.3 Monolithic Process

This and the following sections explore different communication architectures
within the OS, and how the different ways CSP can be integrated.

The simplest approach to an internal communication architecture is the
one where all communicating services reside in the same monolithic process
as threads.

The important distinction between processes and threads for the use of
CSP is that threads are spawned from the same process and may access the
same CSP instance. Since threads execute from the same chunk of linked
CSP code, they use the same instruction code which points to the same
bank of allocated packet buffers. This is advantageous when implementing
payload services with threads, because all services can communicate as the
same CSP node, like illustrated in Figure 10.

The Monolithic Process approach is most similar to how CSP is used on
the lower level OS such as FreeRTOS, where all tasks run in the same access
space and can interact with a central CSP instance directly (illustrated in
Figure 11). This is the case in the work of Normann [20], where CSP is
proposed as an interface for inter process communication. CSP can also
be used for inter-thread communication on Linux, and provides the same
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Figure 10: Under Linux with threading, services are run in separate threads
that all connect to the same CSP instance.

benefit of fast communication thanks to shared memory, as explained in
Section 3.2.2.2.

Figure 11: An example of CSP in an OS without user space. In FreeRTOS,
CSP is linked together with the whole system, allowing all tasks to access
the CSP interface.

There is a disadvantage with the monolithic process approach. All com-
municating services will have to be linked into a single executable. If the
code for one services is to be changed, then the program file containing the
code of all services must be changed. This might pose a challenge when
upgrading single services.
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3.2.4 Separate Processes with unique CSP IDs

As soon as services are implemented as separate processes instead of threads,
they cannot access the same CSP instance, which is a major disadvantage. A
work-around for this is to expand the CSP network by instantiating multiple
CSP nodes in different processes internally in the Payload Processing System.
In an e-mail correspondence with one of the CSP developers [31] this was
suggested as a solution that had been used for Linux systems. This would
then require an inter-process CSP interface to be implemented.

In order to facilitate routing of packets between the processes, a routing
process is created. The separate communicating processes connect to the
Router Process via a FIFO based inter-process CSP interface. The design is
illustrated in Figure 12.

Figure 12: Each service is run as its own process, with its own instance
of CSP. A Router Process makes sure that internally addressed packets are
routed internally, while externally addressed packets are sent to the CAN
bus interface.

There exists advantages to implementing services as distinct processes
instead of threads. Since processes have their own instruction segments, a
service’s code may be changed without halting the other services. Another
advantage is that there exists a larger set of management and monitoring
tools for processes than threads. For these reasons, architectures using both
processes and threads as a basis for services have been investigated.

Each communicating process would require its own CSP ID. One must
consider that there are only 32 unique IDs in CSP’s entire address space,
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and furthermore that there are only 4-8 unique CSP IDs allocated for the
payloads [29]. It becomes clear that address exhaustion could be a problem if
using separate processes for services. Additionally, having multiple CSP IDs
for a single Payload is not consistent with the CSP ID assignment scheme
that is used with the remainder of the satellite, where a single CSP ID is
given to each subsystem.

Buffering Issue The fact that the CSP packet data is routed through
FIFOs means that the data must be copied to and from kernel space more
times than in the Monolithic Process approach. This is expected to cause
overhead that can be observed as delay on round trip times. Additionally,
when a node that is connected to the Router Process sends packets quickly,
the FIFO interfaces may fill up faster than the Router Process is able to
dispatch packets on the CAN-bus. The result is that the receive thread of
the FIFO interface uses up all free packet buffers while reading from the
FIFO.

3.2.5 Separate Processes with identical CSP IDs

In an attempt to solve the shortcomings of the approach using separate pro-
cesses with unique CSP IDs, another design is proposed which lets separate
processes use the same CSP ID.

As illustrated in Figure 13, this approach has a similar architecture to
that of the approach with unique CSP IDs, but now the processes all have
the same CSP IDs. The Router Process must now inspect the destination
port of incoming packets to determine which process it is addressed to.

In order to perform the routing correctly, the Routing Process must know
which process owns the destination port of the incoming packet. For incom-
ing connections, a predefined range of ports can be reserved for each commu-
nicating process. The Router Process can then bind to all incoming ports,
and check who owns a specific destination port by looking it up in a new
static port routing table.

3.2.5.1 Source Port handling Each CSP instance has a pool of ephemeral
ports. Ephemeral ports are temporarily reserved as source ports for outgo-
ing connections, such that replies to that specific connection can be correctly
routed back to it. Specifically, when a reply to an incoming connection is
created, the source port will be used as a destination port.

Since ephemeral ports are chosen at random (initialised with srand()),
the router will have trouble knowing which process a specific reply is intended
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Figure 13: Earch service is run with its own instance of CSP, but with the
same CSP ID. A Routing Process inspects the destination port of incoming
packets to determine which process it is addressed to.

for. A solution to this is to limit each CSP instance to a range of ephemeral
ports, such that their source ports may only be drawn from that range. In
this way, the destination port of replies will also reside in that same range,
and the router will have all the necessary information to route it back to
the sender. The downside of this solution is that the CSP library does not
support setting a range for ephemeral ports. In order to implement this
solution, the library must be patched. It is undesirable to change the library
because that can cause compatibility issues. However, the necessary patch is
relatively small, only a few lines of code, and provides a solution the routing
problem.

3.2.5.2 CRC field handling The way in which CSP implements CRC
handling creates problems for the implementation of the port-based Routing
Process. When CSP routes a packet, it checks whether the packet was sent
from its own CSP address to decide whether to append a CRC checksum
before passing it to the link layer. When routing on ports, the Router Process
necessarily has the same CSP address as the leaf CSP node that it serves.
This means that a CRC field will be added when sending the packet to the
Routing Process, as well as when the Routing Process sends it further on.

When a packet has arrived at the correct node with a Port based Routing
Process, it is first accepted by a socket listening on all ports. The action of
reading from the socket destroys the CRC field. When the Routing Pro-
cess forwards the packet to the destination process, the CRC field is only
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potentially restored. If the packet is sent from the current node, another
CRC field is automatically added, such that the CRC field is present when
the packet is passed to a FIFO interface. If the packet was not sent by the
current node, a CRC field will not be automatically added before passing
the packet to a FIFO interface. Therefore, a field is manually added in the
implementation of the FIFO interface when this scenario is detected.

When a packet from the current node has arrived at the port based
Routing Process, but is addressed to some other node, it will not be accepted
by the socket listening to all ports. Therefore, the existing CRC field will
not be removed. However, the CSP send-function still appends a new field
because it thinks it is the original sender of the packet. To mitigate this,
the FIFO interface is implemented to remove the CRC field if it detects this
scenario. A packet addressed from the current node to some other node
will then arrive at the Routing Process without a CRC field, but with the
CRC-flag set. The CSP send-function will then correctly add the CRC field
before sending it on the external interface.

The fact that a workaround like this is necessary to make port-based rout-
ing work, makes the solution less attractive as it increases complexity. The
problem was first discovered after already having tested the implementation
through multiple iterations. The reason why a certain action is required in
each of the described scenarios is not obvious and required close examination
of the implementation of CSP. This also means that this approach is more
difficult. The ID-based Routing Process does not have any of the problems
associated with CRC field handling, and is therefore simpler to understand
and maintain.

3.2.6 CSP as a Kernel Module

When a module is to be interfaced by lots of different processes, it might
seem a natural choice to place the module in kernel space, as illustrated in
Figure 14.

A CSP kernel module would allow multiple processes to access the same
CSP interface, without needing to employ a Routing Process. A single CSP
ID could be used for the kernel instance of CSP.

However, the disadvantages of developing a kernel module greatly out-
weighs the advantages. The implementation of the CSP library as a kernel
module would require significant development efforts. This contradicts the
idea of saving development effort by using a ready developed network library.

Kernel space is a dangerous place to make code for. When faults are
allowed to exist and propagate it can cause the entire kernel to crash. In
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Figure 14: A CSP kernel module would allow multiple proceses to acces the
same CSP interface.

comparison, running faulty code in a user space program will only cause the
single process to crash.

The Linux kernel has a high readiness level as a result of being heavily
reviewed by the whole Linux kernel community. Introducing kernel modules
with lower levels of review and testing brings down the readiness of the entire
OS.

3.2.7 Summary

The advantages and disadvantages of the proposed architectures are sum-
marised in Table 2.

The Monolithic Process approach offers the best performance, but the
worst flexibility. The ID-based Routing Process approach sacrifices perfor-
mance for greater flexibility, while the port-based Routing Process approach
offers even greater flexibility with a similar sacrifice. Depending on the test
results, either the Monolithic Process approach or the port-based Routing
Process approach is thought to be the most suitable solution.

The development efforts and risks associated with the kernel module
approach are too large to consider it a suitable solution.

3.3 Implementation

This section describes the physical setup of the system.

3.3.1 Physical setup

Although the final version of the Payload Processing System is meant to
include a PicoZed SoM with a Zynq 7030 SoC, the breakout-board which
makes the physical pins accessible to standard connectors is not yet ready.
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Table 2: Summary of the proposed internal architectures.
Architecture Advantages Disadvantages
Monolithic Minimal overhead with regards Monolithic binary means
Process to inter-thread communication. that it is impossible

Only uses a single CSP ID. to replace the code of
CSP can be used for inter- a service without
thread communication with the having to stop the
performance of shared memory. others.

Separate Services can exists without Overhead from IPC.
Processes depending on the binary or Having to buffer packets
routing on state of other services. multiple times.
CSP ID CSP can be used for IPC. Exhaustion of the CSP

address space.
Separate The CSP interface is identical Overhead from IPC.
Processes for all connecting processes. Having to buffer packets
routing on The added routing is invisible multiple times.
CSP ports to the services. Requires code changes

CSP can be used for IPC. to the CSP library.
CSP as a No limitations on implementing IPC via CSP not as fast
kernel module services as processes or as the shared memory in

threads. Monolithic Process.
Shared CSP ID for all processes Significant development
and threads. cost and risk.
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Therefore, the CSP communication stack is implemented to run on a Zed-
Board development board from Avnet. This board is equipped with a Zynq
7020 SoC, which is close enough to the Zynq 7030 SoC in terms of processing
power and identical in terms of available peripherals. An on-board UART
to USB converter circuit allows terminal access to the Zynq 7020 on-board
the ZedBoard, and the ARM cores can be booted with a Linux image loaded
from a SD-card.

The ZedBoard development kit lacks a CAN bus transceiver circuit.
Therefore, an external MCP2551 CAN bus transceiver was acquired and con-
nected to a pair of GPIO pins. The MCP2551 transceiver operates on 5.0 V
logic, while the Zedboard is configures to operate on 3.3 V logic. Therefore,
a BSS138 based logic level converter circuit was added to the external circuit
to step the voltages between the CAN-bus transceiver and the Zynq 7000
SoC. The external circuit was realised on a breadboard, and the complete
setup is illustrated in Figure 15 and Figure 16.

Figure 15: Setup of the ZedBoard development board, and an external
CAN transceiver circuit which connects to a CAN bus.

3.3.2 Setting up Operating System

The procedure of building a custom kernel and a root filesystem in PetaL-
inux proved to be more challenging than anticipated. This procedure is not
required to be repeated many times, and is primarily a cost when setting
up the system. The setup and build procedures for boot image and root file
systems are described in detail in the Xilinx document UG1144: PetaLinux
Tools Documentation - Reference Guide [32].
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Figure 16: Schematic of test setup, with Zedboard, CAN-bus and Linux
workstation.

The first steps include importing the BSP for the ZedBoard SoM, pro-
vided by Avnet. This BSP lacks a CAN interface. To add the CAN inter-
face, the BSP is imported into Xilinx’s Integrated Development Environment
(IDE) Vivado. In addition to being a development environment for design-
ing, simulating and implementing Field-Programmable Gate Array (FPGA)
modules and Application-Specific Integrated Circuits (ASICs), it also allows
the user to configure the Zynq peripherals to be connected on specific Mul-
tiplexed IO (MIO) pins. After configuration, an updated BSP is exported.

At this stage, the modified BSP is imported into a PetaLinux project,
which is then configured to include the necessary libraries, and utilities. A
boot image and root files system is created and loaded to a SD card. The
development board can now be booted from the SD card, and run stored
applications that are built with CSP.

3.3.3 Proposed Architectures

With the exception of a kernel module, all the proposed internal communica-
tion architectures were implemented. This allowed them to be compared in
terms of performance and usability. Some guidelines on how to compile and
use the CSP library is gives in Appendix A. All produced code is available
via a GitHub link in Appendix B.

The Routing Process that was implemented for the architecture with
separate processes was used for both the ID based architecture and the port
based architecture.

A FIFO-based inter-process interface for CSP was created. The code
was adapted from one of the application code examples provided by the
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CSP library. The interface uses Linux FIFOs to send and receive packets.
The CSP packet length field is sent first. This fixed-length field is first read
to see how many bytes should be read for the remainder of the packet.

To test bandwidth utilization, Trivial File Transfer Protocol (TFTP) was
adapted 1 and implemented on top of CSP. Files are fragmented into CSP
packets by one node, and recombined by the other. The fragment size is set
to the MTU of a CSP packet. However, the MTU was also lowered in certain
scenarios to observe what effect the MTU has on the link layer.

4 Results and Discussion

To verify that the implemented communication architectures fulfil the listed
requirements in subsection 2.1, multiple tests were carried out. The test
results provide grounds for evaluating the architectures.

4.1 Basic Communication

A Command Line Interface (CLI) capable of sending CSP service packets
was created to test the basic functionality of CSP. The functionality was
tested between the ZedBoard and a Linux Workstation. The results are
summarised in Table 3.

Table 3: Summary of tests of basic CSP functionality.
Function under Test Test Result
Ping Successful
Request amount of free memory Successful
Request number of free buffers Successful
Request uptime Successful
Reboot system Successful
Shutdown system Successful

4.2 Round trip time

When sending a packet, it must pass through multiple execution contexts
before reaching the physical interface. After the sending thread has queued
a packet, the router thread must be given a chance to execute before the
packet is passed on to the appropriate interface. In the case of SocketCAN

1Adapted from RFC-1350 https://tools.ietf.org/html/rfc1350
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interface, the packets are queued in kernel buffers, and is dependent on yet
another kernel thread to execute before it is actually dispatched to the CAN
controller. All of these delays add up when transmitting, but also when
receiving.

The architectures with a Routing Process will have each packet pass
through another three execution contexts, as it is picked up on a FIFO in-
terface, routed internally again, and possibly handled by a port-based routing
thread.

To measure the impact of this extra overhead, a round trip time test is
created. The round trip time was calculated by sending ping like packets
and measuring the time to receive a response packet. The measurements
were averaged over 10000 packets.

The different architecture were tested on the development workstation,
while the ZedBoard responded to the packets.

Table 4: Averaged results of round trip test.

Architecture Round trip time,
averaged [us]

Monolithic Process 1475
Separate Processes, routing on CSP ID 1643
Separate Processes, routing on CSP Ports 1700

From the results presented in Table 4 it is evident that the Routing
Process is adding overhead into the network stack, and that the port-based
Routing Process adds more than the ID-based Routing Process.

Even when averaged, the measured round trip time varied a lot, and was
heavily dependent on instantaneous CPU utilization.

Although the architectures with a Routing Process increase the round
trip delay, the increase is insignificant when compared to the delays that can
be expected from the rest of the communication chain. The delay should
also not affect the data bandwidth as much if using delay tolerant protocols.

4.3 Bus Utilization

Files were transferred between CSP nodes to put strain on the CAN link. The
canbusload utility from the Linux package can-utils was used to monitor
the bus utilization.

The transfer rate for theoretical maximum bus utilization is also calcu-
lated. In a single packet, the CSP header occupies 4 bytes, the CSP length
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field occupies 2 bytes, and the CRC field occupies 4 bytes. Given that the
CAN interface has a MTU of 256 bytes, there are only 246 bytes left for data.
Additionally, the CAN link layer adds a substantial amount of header bits
to the frames before they are sent. Given the 50 % data utilization of the
CAN link, the overall data utilization for one CSP packet of maximal length
is approximately 48 % as calculated in Equation 1. This equals a theoretical
maximum transfer rate of 480 Kbps. This is still unobtainable because of
the lesser effects explained in Section 3.1.2.2.

η =
246B

512B
= 0.480 (1)

4.3.0.1 SocketCAN MTU issues When transmitting large packets
(more than 50 % of the maximum 256 bytes in a packet) from the Linux
Workstation, the communication link became unresponsive. Sometimes, af-
ter a large CSP packet had been written to the CAN socket, the last few
bytes of the CSP packet would not be transmitted on the CAN-bus. Only
when a new packet was written to the CAN socket did the last few bytes
of the previous packet get transmitted on the bus, before the new packet
was transmitted. The effect was more frequent for larger packets, and the
effect was rarely observed for packets of size 64 and below. The author was
not able to find the root cause of this issue. However, the issue was only
observed on the development Linux Workstation, and not on the ZedBoard
or PicoZed.

In Table 5, the results of transferring a 1.51 MB file are shown. The file
was transferred from the ZedBoard to the Linux Workstation. When using
Stop-and-Wait flow control, the transfer was able to reach an average data
rate between 350 Kbps and 380 Kbps.

Table 5: Transfer rates of TFTP using Stop-and-Wait flow control, and 64B
fragment size.

Architecture canbusload,
estimate [%]

Average transfer
rate [Kbps]

Percentage of
Theoretical

Maximum [%]
Monolithic Process 90 380.68 79.3
Separate Processes,
routing on CSP ID 85 356.52 74.3

Separate Processes,
routing on CSP Ports 83 354.45 73.8
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The decrease in transfer rates for the two architectures that use a Rout-
ing Process is accounted to their increased round trip time. This effect is
prominent when waiting for ACKs, such as with Stop-and-Wait flow control.

Buffering Issues As discussed in subsubsection 3.2.4, sending CSP pack-
ets too quickly over a FIFO interface to a Routing Process will exhaust its
packet buffers. The effects are observed when transferring files with TFTP
without any flow control. When the Routing Process’s packet buffer bank
has been exhausted, the csp_get_buffer() function starts running expen-
sive system calls to print error messages. The observed effect is that the
data rate drops to a few percent of what the link normally can handle.

The issue stems from the fact that the CSP library has no method to
have a thread block or suspend until there are available packet buffers. This
could be implemented using POSIX condition variables, but would require
a larger modification to the CSP library.

The Monolithic Process architecture does not suffer from this exact prob-
lem, because all buffering is performed by the SocketCAN networking module
inside the Linux kernel. The buffer space offered by the networking module
can also be observed to become exhausted, but the CSP SocketCAN driver
implements a short usleep() to allow the kernel to process the data before
attempting again.

The same work-around using usleep when no buffers are available was
implemented in the FIFO interface, resulting in the wanted effect. Most,
but not all warning and error prints were eliminated. The achieved data
rates was restored to more reasonable speeds. The now infrequent, but still
present warning and error prints, caused this transfer mode to not perform
as well as the one with Stop-and-Wait flow control.

Table 6: Transfer rates of TFTP using no flow control and 64B fragment
size.

Architecture canbusload,
estimate [%]

Average transfer
rate [Kbps]

Percentage of
theoretical

maximum [%]
Monolithic Process 82 367.74 76.61
Separate processes,
routing on CSP ID 82 367.67 76.60

Separate processes,
routing on CSP ports 82 367.24 76.51
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In Table 6, the results from transferring a 1.51 MB file without any flow
control is shown. The file was transferred from the ZedBoard to the Linux
Workstation. The transfer rates are comparable, with only a slight decrease
in throughput for the architectures with a Routing Process, compared to the
Monolithic Process approach.

The highest obtained data transfer rate is not high enough to fulfil re-
quirement SYS-3-007, which demands a transfer rate of 800 Kbps (which is
actually higher than the theoretical maximum). However, all architectures
achieve a rate that is high enough to fulfil requirements M-1-015, M-1-016
and M-2-026, which at most requires a data rate of 81 Kbps.

Given that the buffering capabilities of the PC are used, the requirement
SYS-3-007 may still be fulfilled. As the satellite orbits around the earth,
most of the time spent in one orbit will be time without free sight to a
ground station. A solution could then be to use this period of time to pre-
buffer data on the PC. When the ground station comes into sight, the PC is
able to downlink the data at full speed, thus fulfilling the requirement.

4.4 Stress test

A 1005 MB file was transferred over the link using the architecture based on
port routing. The transfer lasted approximately six hours, and completed
without any faults. This demonstrates how the network is able to with-
stand a high bus utilization over a longer period of time, as was required by
requirements SW-3-007 and SW-4-006.

4.5 Validating the M6P platform

The M6P satellite bus was tested by connecting to a so called remote FlatSat.
The payload’s CAN-bus link was connected to a workstation in the SmallSat
Lab running a piece of software that acts as a TCP/IP bridge. The bridge
connects to a server in NanoAvionic’s facilities, which forwards all commu-
nication to and from a complete M6P satellite bus over the Internet. This is
similar to connecting to the a real physical satellite bus at the SmallSat Lab,
with only a few limitations. One thing is the extra delay that is experienced
when communicating between Payload and PC. Another is the fact that the
satellite bus subsystems can not be physically observed or manipulated, due
to the system being connected over the Internet.

Basic CSP functionality was verified to be working. Ping was received
from all subsystems present in the FlatSat.

Telemetry data was received from telemetry services on the EPS and FC
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nodes. This demonstrated that the Flatsat and CSP network was able to
transfer packets of considerable size (roughly 250 bytes).

5 Conclusion

The CSP network library and a CAN-bus link have been integrated into the
HSI Payload.

Several internal communication architectures have been evaluated. One
architecture that use a port-based Routing Process has achieved greater flex-
ibility than the other architectures, in the sense that it offers multiple pro-
cesses to communicate as the same CSP node. However, the added complex-
ity and the additional issues that were discovered in the architectures that
utilise a Routing Process is not justified by the increased flexibility. There-
fore, the thread-based Monolithic Process approach is preferred and offered
as a proposed solution.

Although the SYS-3-007 requirement was not fulfilled by the proposed
architecture, it is believed that the buffering capabilities of the PC will make
it possible to fulfil that requirement.

The findings of this report are thought to be valuable to the process of
defining a overall software architecture for the HSI Processing System.

Future Work The services that implement the functionality needed
to operate the HSI camera are currently under development. In order to
integrate these, a software architecture needs to be defined. The software ar-
chitecture should manage services by starting, stopping and restarting them
as necessary, and should integrate the communication architecture that is
proposed in this report.

During the work, all testing has been carried out with a ZedBoard an
Linux Workstation, as well as a remote FlatSat. It still remains to test the
CSP network with physically connected PC hardware.

The SocketCAN MTU issue described in subsubsection 3.2.4 should be
further investigated, despite the issue not manifesting itself on the ZedBoard.

A solution for the Routing Process buffering issue could be sought.
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Appendix A Cubesat Space Protocol

The CSP source code is downloaded from the public GitHub repository:
https://github.com/libcsp/libcsp.

A.1 Compiling CSP Library

The library is configured with the python based build tool waf. The build
program is included in the repository. Python version 2.7.15 was used to
build the library, after failing to run the waf scripts with Python version
3.7.0. Other version of python3 were found to work. The virtual envi-
ronment python tool can be used to enforce a specific python version.

The CSP library can be configured with a wide selection of options. The
options can be applied with

• >> ./waf configure <option1> <option2> . . .

The following options were used when configuring

• --enable-crc32

allows CRC32 field to be added to packets.

• --enable-if-can

adds the CAN interface, which includes an automatic fragmentation
protocol etc.

• --enable-can-socketcan=socketcan

adds a simple SocketCAN CSP driver.

• --with-os=posix

adds the POSIX compatibility layer. Necessary to run on Linux.

• --with-max-bind-port=PORT

was used when implementing the Routing Process, in order to be able
to bind source and destination ports.

• --with-router-queue-length=COUNT

was used to increase the number of packets the Router Process could
buffer.
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• --with-max-connections=COUNT

used to increase the number of connections the CSP instance can keep
active at one time.

The library is compiled with:

>> ./waf build

The build folder can be changed by supplying the option:

--out=<build_dir>

The compiled library and library header files can be installed with

>> ./waf install

The install directory can be changed by supplying the option:

--prefix=<install_dir>

Problems were encountered when trying to configure, compile and install
the library in separate waf commands. When supplying all the commands
simultaneously, no problems were encountered:

• >> ./waf configure <option1> <option2> ... build install

The following Makefile wrapper was used to configure and build the li-
brary:

# If installing outside libcsp directory, please define
LIBCSP_BUILD_DIR↪→

# Default architecture
ARCH ?= x86
BUILD=build_$(ARCH)

PYTHON2 = python2

ROOT = $(abspath ..)

LIBCSP_DIR = $(ROOT)/libcsp

LIBCSP_CONFIG_COMMON = --enable-crc32 --enable-if-can
--enable-can-socketcan=socketcan --with-os=posix
--with-padding=0 --install-csp --with-connection-so=64

↪→

↪→
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ifeq ($(ARCH),arm) # ARM toolchain
LIBCSP_CONFIG_PLATFORM =

--toolchain=arm-linux-gnueabihf-↪→

endif

# Allow a custom build dir to be specified,
# along with extra configuration options LIBCSP_CONFIG_EXTRA
ifeq ($(LIBCSP_BUILD_DIR),)

LIBCSP_CONFIG_BUILD =
--out=$(LIBCSP_DIR)/build_$(ARCH)
--prefix=$(LIBCSP_DIR)/build_$(ARCH)

↪→

↪→

LIBCSP_BUILD_DIR = $(BUILD)
else

LIBCSP_CONFIG_BUILD = --out=$(LIBCSP_BUILD_DIR)
--prefix=$(LIBCSP_BUILD_DIR)↪→

endif

LIBCSP_CONFIG_FULL = $(LIBCSP_CONFIG_COMMON)
$(LIBCSP_CONFIG_PLATFORM) $(LIBCSP_CONFIG_BUILD)
$(LIBCSP_CONFIG_EXTRA)

↪→

↪→

all:$(LIBCSP_BUILD_DIR)/libcsp.a

%/libcsp.a: $(shell find src -type f) $(shell find include
-type f)↪→

cd $(LIBCSP_DIR) && \
$(PYTHON2) waf configure --jobs=$(shell nproc)

$(LIBCSP_CONFIG_FULL) build install↪→

clean:
cd $(LIBCSP_DIR) && \
$(PYTHON2) waf configure $(LIBCSP_CONFIG) clean

A.2 Using CSP Library

To use the library it must be statically linked with the application code. Here
it is assumed that the GNU Compiler Collection (gcc) is used for building
programs.

One way to link the library is to provide a library search path -L<CSP_-
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install/lib and a library name -lcsp:

• >> gcc -L<CSP_install/lib> main.c <other sources> -lcsp

Or one can also just include the static library like any other object file:

• >> gcc main.o <other objects> <CSP_install/lib>/libcsp.a

Appendix B Project Code

The project code is released on and can be downloaded from GitHub: https:
//github.com/magne-hov/hypso/releases/tag/TTK4550
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