
M
agne H

ov
D

esign and Im
plem

entation of H
ardw

are and Softw
are Interfaces for a H

yperspectral P
ayload in a Sm

all Satellite

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Magne Hov

Design and Implementation of
Hardware and Software Interfaces for
a Hyperspectral Payload in a Small
Satellite

Master’s thesis in Engineering Cybernetics
Supervisor: Tor Arne Johansen

June 2019

Magne Hov

Design and Implementation of Hardware
and Software Interfaces for a
Hyperspectral Payload in a Small
Satellite

Master’s thesis in Engineering Cybernetics
Supervisor: Tor Arne Johansen
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

Abstract

This thesis details the design and implementation of a file transfer system for a hyperspectral
imager payload on a small satellite. The payload produces large amounts of imaging data that
must be downloaded to produce ocean colour forecasts and to provide researchers with hyper-
spectral data. A small satellite platform from NanoAvionics supports the payload with a radio
link that provides connectivity through a network based on the CubeSat Space Protocol.

Several file transfer protocols are described and used as input to the design process. The
satellite platform and communication architecture is detailed, and a Breakout Board for the
imager payload is designed.

Mission requirements are mapped and used as input in the design process of the file transfer
system. An implementation of the complete file transfer system is tested.

The implemented file transfer system is shown capable of transferring files across an unreliable
network. A store and forward feature is used to circumvent a communication bottleneck between
payload and satellite platform. This capability is demonstrated.

ii

iii

Sammendrag

Denne oppgaven beskriver design og implementasjon av et filoverføringssystem for en nytte-
last på en liten satellitt med et hyperspektralt kamera. Nyttelasten produserer store mengder
bildedata som må lastes ned for å lage havfargeprognoser, og for å forsyne forskere med hyper-
spektral data. En platform for småsatellitter fra NanoAvionics gir radioforbindelse til bakken
gjennom et nettverk som er basert på CubeSat Space Protocol.

Flere filoverføringsprotokoller er beskrevet og brukt som grunnlag i designprosessen. Satel-
littplatformen og kommunikasjonsarkitekturen er presentert, og et grensesnittskort til nyttelasten
har blitt designet.

Oppgragskrav er kartlagt og brukt i designprosessen til filoverføringssystemet. En komplett
implementasjon av filoverføringssystemet har blitt testet.

Det blir demonstrert at det implementerte filoverføringssystemet er i stand til å overføre filer
over et upålitelig nettverk. En funksjon som lagrer og videresender filer er brukt for å omgå en
flaskehals mellom nyttelasten og satellittplatformen.

iv

v

To Eva, Arne and Anna

vi

Preface

This text is the results of a five months thesis project during the spring of 2019 following a
four months specialisation project on the same topic during the autumn of 2018. The work was
performed at the Department of Engineering Cybernetics at the Norwegian University of Science
and Technology (NTNU).

This thesis details the design, implementation, and testing of a file transfer system for a
hyperspectral imager payload that is being developed by NTNU SmallSat Lab. The inspiration
to do this project stems from a three year long adventure volunteering for the student satellite
project NTNU Orbit (formerly NUTS). It is my hope that the NTNU SmallSat Lab is able to use
and build on the products of this thesis, ultimately achieving success with our HYPSO mission.

NTNU SmallSat Lab has provided me with a place to work, computer monitors and tools
that were required to perform my tasks. They have made available the satellite subsystems that
were required to develop and test my work. Cooperation between NTNU SmallSat Lab and
NanoAvionics gave me access to the necessary information about the satellite subsystems. I had
to seek out the documentation on the use of the network protocols, and experiment with ways
of integrating them into the payload.

I would like to thank my co-supervisors Milica Orlandic and Roger Birkeland for answering
questions, steering me in the right direction, and for reading my drafts while guiding me through
the writing process. I am grateful to Amund Gjersvik for helping me design and manufacture
payload hardware. Some of my results are thanks to Rimantas Žičkus from NanoAvionics, who
has answered questions and assisted me with technical issues. I would like to thank my supervi-
sor Tor Arne Johansen for giving me the opportunity to work with this project. Last, but not
least, I would like to thank NTNU SmallSat Lab and Evelyn Honoré-Livermore for providing me
with a wonderful team and work environment in which to do my thesis.

Magne Hov
Trondheim, June 3, 2019

vii

viii PREFACE

Contents

Preface vii

List of Figures xi

List of Tables xiv

Acronyms xvii

I Introduction & Background 1

1 Introduction 3
1.1 The HYPSO Mission . 3

1.1.1 Hyperspectral Imager Payload . 4
1.1.2 Software Defined Radio Payload . 5

1.2 M6P Satellite Platform . 6
1.3 Problem Statement . 7
1.4 Thesis Outline . 8

2 Background 9
2.1 Communication Theory . 9

2.1.1 Flow Control . 9
2.1.2 Communication Errors . 9
2.1.3 Error Detection and Correction . 10

2.2 Automatic Repeat Query . 11
2.2.1 Stop-and-Wait . 12
2.2.2 Sliding Window . 13
2.2.3 Hybrid ARQ . 15

2.3 Network Stack Model . 15
2.4 Controller Area Network Bus . 18
2.5 CubeSat Space Protocol . 19

2.5.1 Network Layer . 19
2.5.2 Transport Layer . 20
2.5.3 CSP Options . 20
2.5.4 CSP in Linux . 21

2.6 File Systems . 22
2.6.1 File Directories . 24
2.6.2 File Operations . 24
2.6.3 M6P File System . 25

2.7 File Transfer Protocols . 26

ix

x CONTENTS

2.7.1 Trivial File Transfer Protocol . 26
2.7.2 The File Transfer Protocol RFC-959 . 28
2.7.3 Kubos File Transfer . 29
2.7.4 CCSDS File Delivery Protocol . 30
2.7.5 M6P File Transfer . 32

II Design & Implementation 35

3 Requirements 39
3.1 Satellite Bus Requirements . 39
3.2 Downlink Requirements . 39
3.3 Uplink Requirements . 40
3.4 Quality Requirements . 41

4 Payloads & Communication Architecture 43
4.1 Onboard Processing Unit . 43

4.1.1 Imagers . 43
4.1.2 PicoZed System-On-Module . 44
4.1.3 ZedBoard Development Kit . 44
4.1.4 Breakout Board . 45
4.1.5 Operating System . 46

4.2 Software Defined Radio Payload . 48
4.3 Communication Architecture . 49

4.3.1 Space Segment . 49
4.3.2 Ground segment . 51
4.3.3 nanoMCS and Flatsat . 51

5 File Transfer System 53
5.1 Service and Client Architecture . 53
5.2 File Organisation . 54

5.2.1 File Format . 54
5.2.2 File System Module . 55
5.2.3 File Mapping Module . 56
5.2.4 Proposed Directory Hierarchy . 57

5.3 File Transfer . 57
5.3.1 File Stream . 58
5.3.2 Automatic Repeat Query . 59
5.3.3 File Transfer Modules . 60
5.3.4 Transfer Modes . 63
5.3.5 Direct Download . 63
5.3.6 Direct Upload . 70
5.3.7 Buffering . 72

6 Testing & Results 77
6.1 Breakout Board . 77
6.2 Hardware Test Setup . 78
6.3 Automated Module Testing . 78
6.4 HYPSO CLI . 80

6.4.1 File Transfer Client . 81
6.4.2 Remote Shell . 81

CONTENTS xi

6.4.3 Loopback Services . 82
6.5 Communication Delays . 84
6.6 Effective Data Rates . 84
6.7 Packet Loss Test . 85
6.8 Payload Controller Buffering . 86

7 Discussion & Conclusion 89
7.1 Fulfilment of Requirements . 89
7.2 Channel Utilisation . 90
7.3 CSP Buffer Exhaustion . 91
7.4 Buffering . 91
7.5 Memory Footprint of Formatted Files . 91
7.6 On the use of Linux . 92
7.7 Future Work . 92
7.8 Conclusion . 93

A M6P Satellite Platform 97
A.1 Mechanical Frame . 97
A.2 Electrical Power System . 98
A.3 Flight computer . 99

A.3.1 On-board Computer . 99
A.3.2 Attitude Determination and Control System 99
A.3.3 GPS Module . 100
A.3.4 UHF Radio . 100

A.4 Payload Controller . 101

B Breakout Board Design Files 103

C HYPSO CLI 115

D Packet Loss Test 119

xii CONTENTS

List of Figures

1.1 Illustration of push broom scanning. 5
1.2 Illustration of hyperspectral data. 6
1.3 Relations between the subsystems of the HYPSO satellite. 7

2.1 The stop-and-wait ARQ strategy. 12
2.2 The Go-back-N ARQ strategy. 14
2.3 The Selective Repeat ARQ strategy. 16
2.4 OSI reference model for network protocols. 17
2.5 HYPSO communication protocol stack. 17
2.6 The extended CAN protocol frame. 18
2.7 CSP packet format. 20
2.8 Usage of CSP in Linux. 21
2.9 A file allocation table. 22
2.10 A journaled file system. 23
2.11 Packet formats in TFTP as defined in RFC-1350. 27
2.12 Connection architecture of RFC-959 FTP. 28
2.13 Contents of a CFDP NACK. 31
2.14 Illustration of the store and forward concept. 32
2.15 Format of a stream packet. 34

4.1 Engineering model of HSI camera. 43
4.2 PicoZed System-on-Module from AVNET. 44
4.3 ZedBoard development kit used for testing OPU software. 45
4.4 High level architecture of communication network. 50
4.5 Architecture of the CSP network with flatsat. 52

5.1 Service and client architecture. 54
5.2 Comparison of formatted file layouts. 55
5.3 Memory layout of a formatted file with interleaved metadata. 56
5.4 Functions provided by the fs module. 57
5.5 A file ID map. 57
5.6 Functions provided by the fs_idmap module. 58
5.7 Proposed directory tree for the OPU payload. 58
5.8 A file stream. 59
5.9 ARQ strategy of the FT system. 60
5.10 C modules for the FTC. 61
5.11 C modules for the FTS. 62
5.12 Data path of the direct download transfer mode. 64
5.13 The download request service procedure. 65
5.14 The send range service procedure. 66

xiii

xiv LIST OF FIGURES

5.15 The download file id procedure. 67
5.16 The download file formatted procedure. 68
5.17 The download arq procedure. 69
5.18 The download range procedure. 70
5.19 The receive stream procedure. 71
5.20 Data path of the direct upload transfer mode. 72
5.21 The upload file formatted procedure. 73
5.22 The upload arq procedure. 74
5.23 The upload range procedure. 75
5.24 Buffered download mode. 75
5.25 Sequence of buffering data on the PC. 76

6.1 A rendering of the Breakout Board PCB. 78
6.2 Hardware setup used in testing. 79
6.3 Block diagram of the hardware setup. 79
6.4 Example use of the hypso-cli program. 82
6.5 Remote shell sequence. 83
6.6 Setup for performing system tests on development workstation. 83
6.7 Setup for measuring communication delays. 84
6.8 Setup for testing the reliability of the FT system. 86
6.9 Effective data rates for various packet drop rates. 87
6.10 Setup for testing the buffering service on the PC. 87

A.1 M6P satellite bus mechanical frame and solar panels. 97
A.2 EPS operating modes. 99

List of Tables

6.1 Round trip delay times for the subsystems in the test setup. 84
6.2 Effective data rates in the network stack. 85

7.1 Summary of the design requirements. 89

xv

xvi LIST OF TABLES

Acronyms

ACK Acknowledgement. 11–13, 15, 29–31, 68, 69, 74, 91

ADCS Attitude Determination and Control System. 6, 7, 59, 99, 100

AMOS Centre for Autonomous Marine Operations and Systems. 3, 4

ARQ Automatic Repeat Query. 11, 15, 29, 31, 34, 58–60, 71

BOB Breakout Board. 7, 37, 43–46, 77, 78, 92, 93

CAN Controller Area Network. 17–20, 39, 45, 49, 51, 59, 75–78, 81, 82, 84–86, 89–92, 101

CBOR Concise Binary Object Representation. 29

CCSDS The Consultative Comittee for Space Data Systems. 26, 30

CFDP CCSDS File Delivery Protocol. 30, 31, 34, 72, 75

CIDR Classless Inter-Domain Routing. 20

CLI Command Line Interface. 37, 47, 51, 80–82, 86, 93

CoE Centre of Excellence. 3

COTS Commercial off-the-Shelf. 3, 43

CPU Central Processing Unit. 48

CRC Cyclic Redundant Check. 11, 18, 21, 25, 34, 54, 59, 65, 72

CSP Cubesat Space Protocol. 17, 19–21, 25, 32, 33, 39, 41, 46, 49, 51, 53, 54, 58, 59, 62, 64,
72, 74, 76, 80–82, 84, 85, 89–92, 98, 101

DSP Digital Signal Processing. 44

ECC Error Correcting Code. 11, 15, 44, 48

EM Electromagnetic. 10, 18

eMMC Embedded MultiMediaCard. 44, 46, 48

EOF End of File. 22, 29, 31

EPS Electrical Power System. 6, 7, 46, 49, 77, 78, 84, 98, 99

FAT File Allocation Table. 22, 48

xvii

xviii Acronyms

FC Flight Computer. 6, 7, 49, 99, 100

FEC Forward Error Correction. 11, 15

FPS Frames Per Second. 44, 47

FSBL First Stage Boot Loader. 47, 48

FT File Transfer. 8, 19, 37, 39–41, 47–49, 53, 54, 56, 57, 59, 60, 72, 77, 85, 89–93

FTC File Transfer Client. 53, 54, 60, 62–65, 67, 69–71, 78, 80, 85, 86, 90, 92

FTP File Transfer Protocol. 26, 30

FTS File Transfer Service. 53, 54, 60, 62–64, 67–72, 78, 80, 81, 85, 86, 90

FUSE Filesystem in Userspace. 22

GPIO General-Purpose IO. 45

GPS Global Positioning System. 7, 45, 99, 100

HMAC Hash-Based Message Authentication Code. 21

HSI Hyperspectral Imaging. 5, 6, 39–41, 43–47, 77, 92

HYPSO Hyperspectral SmallSat for Ocean Observation. 3–8, 15, 17, 18, 20–22, 39–41, 43, 44,
48, 49, 53, 54, 59, 91, 93, 100

I2C Inter-Integrated Circuit. 101

iDS Imaging Development Systems. 43, 44, 46

IP Internet Protocol. 19, 49

JSON JavaScript Object Notation. 29

LEO Low Earth Orbit. 4, 97

LOS Line of Sight. 4, 10, 49

LUT Look-Up-Table. 44

M6P M6P Multi-Purpose Nano-Satellite Bus. 6, 7, 25, 26, 32, 39, 45, 49, 51, 53, 54, 59, 60, 62,
77, 78, 80, 82, 85, 86, 89, 91–93, 97

MCS Mission Control Software. 51, 63, 90, 92

MIO Multiplexed IO. 46

MPPT Maximum Power Point Tracking. 98

MTU Maximum Transfer Unit. 20, 33

NA NanoAvionics. 6, 7, 32, 39, 49, 51, 53, 59, 60, 72, 78, 90, 101

NACK Negative Acknowledgement. 11, 30, 31

Acronyms xix

NASA National Aeronautics and Space Administration. 39

NNG NanoMsg-Next-Generation. 51, 81

NTNU Norwegian University of Science and Technology. 3, 4, 45, 51

NTP Network Time Protocol. 45

NUTS NTNU Test Satellite. 3

OBC On-board Computer. 29, 99

OCM On Chip Memory. 48

OPU On-board Processing Unit. 4, 5, 8, 37, 39, 43–49, 57, 59, 77, 78, 84, 86, 89, 92, 93

OSI Open Systems Interconnect. 15, 17

PC Payload controller. 7, 45, 49, 51, 63, 64, 70, 72–78, 84–86, 90, 91, 101

PCB Printed Circuit Board. 45, 46, 97

PDU Protocol Data Unit. 17–19, 27, 29, 31

PL Programmable Logic. 44

PPS Pulse-Per-Second. 45, 77, 100

PS Processing System. 44

PZ PicoZed. 7, 43–46, 48, 77, 78, 92

QSPI Quad-SPI. 44, 46, 48

RAM Random Access Memory. 44

REPL Read–eval–print loop. 80

RFC Request for Comments. 26, 28

RGB Red-Green-Blue. 5, 43–45, 77, 92

ROM Read-Only Memory. 48

RTOS Real-Time Operating System. 47

RTT Round Trip Time. 12, 84, 85

SD Secure Digital. 22, 44, 46, 48, 77

SDR Software Defined Radio. 4, 6, 8, 39–41, 48, 49, 59, 89

SNR Signal-to-Noise Ratio. 10

SoC System on Chip. 44–47, 49

SoM System on Module. 43–46, 48, 78, 92

xx Acronyms

SPI Serial Peripheral Interface. 49, 59, 75, 101

SSBL Second Stage Boot Loader. 47, 48

TCP Transmission Control Protocol. 19, 29, 49, 51, 81

TFTP Trivial File Transfer Protocol. 26–28, 37, 85, 90

TM Telemetry. 51

TT&C Telemetry, Tracking and Command. 41

UART Universal asynchronous Receiver-Transmitter. 101

UHF Ultra-High Frequency. 6, 7, 49, 51, 90, 99, 100

UNIS The University Centre in Svalbard. 43

USB Universal Serial Bus. 43–45, 51, 77

WDT Watchdog Timer. 99

XTEA Extended Tiny Encryption Algorithm. 21

Part I

Introduction & Background

1

Chapter 1

Introduction

Technological advances are allowing electrical and mechanical systems to be miniaturised. This is
apparent in many of the products that are being used every day, like laptops and mobile phones,
and satellites are going through the same process.

A CubeSat is a small satellite that is made up of one or more units. Each unit has a 10 cm ×
10 cm × 10 cm form factor. They are associated with low-cost Commercial off-the-Shelf (COTS)
components and are used as a cost effective platform to get small payloads into space. The
CubeSat satellite must adhere to the design rules defined in the CubeSat standard in order to
qualify for integration into a launch vehicle [1].

Since the first wave of CubeSats in the early 2000’s there has been a steady growth of small
satellites being launched for scientific and commercial purposes. Over a thousand CubeSats have
been launched to this date, and three thousand more are predicted to be launched during the
next six years [2].

Companies that supply components for small satellites are offering matured systems, and
launch service providers are benefiting from catering to small satellites. A CubeSat is increasingly
seen as a platform to solve real world problems.

1.1 The HYPSO Mission
The SmallSat Lab at the Norwegian University of Science and Technology (NTNU) is a loosely
structured organisation and team consisting of professors, postdocs, Phd. candidates, Msc.
students, BSc. students and volunteers. The team is supported by the Centre of Excellence
(CoE) Centre for Autonomous Marine Operations and Systems (AMOS), which administrates
multiple research projects related to maritime operations and systems in Norway.

The SmallSat Lab was created in 2017 and has since been working to develop a mission plan
and systems for a small satellite mission in association with AMOS. The mission has had several
names, and is currently named Hyperspectral SmallSat for Ocean Observation (HYPSO). The
HYPSO mission is designed with consideration to the needs of several users and beneficiaries.

The HYPSO mission is in itself an instrument used by the SmallSat Lab to develop and build
competence. The SmallSat Lab is associated with NTNU’s small satellite strategy.

The SmallSat Lab aims to promote space technology at NTNU, but is not the only project
to do so. Previous efforts at NTNU include NTNU Test Satellite (NUTS), a student driven
CubeSat project that ran from 2013 to 2017. The NUTS organisation has since been rebranded
as Orbit NTNU, which still develops CubeSat projects. Propulse NTNU is a new addition to
the space related activities at NTNU. This project is also student driven, and aims to develop
and manufacture rockets for participation in Spaceport America Cup, an international student
competition for rocketry.

3

4 CHAPTER 1. INTRODUCTION

The needs of the Norwegian maritime industries are communicated via collaborated projects
that are managed through AMOS. The technological advances that the HYPSO mission aims
to enable are particularly applicable to aquaculture. For this reason, many of the requirements
that set the basis for the mission design are derived from the needs of this area of industry.

The fishing industry is naturally concerned about the wellness of its livestock. A common
cause of concern for fish farmers is the effect that algal blooms can have on the fish farming
environments. Certain algae are toxic to fish, and can reduce the quality of the fish or even kill
it. Therefore, the fishing industry has a need for good methods of detecting and monitoring such
blooms. If a bloom is detected before it reaches a farm, the farmers can carry out preventive
measures before their livestock is damaged. The algae usually floats in the top layers of the
ocean, which is also where the fish resides while being fed. By not feeding the fish when a bloom
is detected, the fish will remain deeper within the fish enclosure and avoid contact with the
damaging algae. Recent events saw 3000 tonnes of salmon being wiped out by algal blooms in
Norway [3].

The technologies that the HYPSO mission seeks to demonstrate will be able to provide
detection of these algal blooms. A hyperspectral imager will be able to record images which can
be analysed to identify algal blooms. The requirements of the fish farmers are included in the
mission design. The mission is designed for the ability to provide early signs of bloom detection.
By being in Low Earth Orbit (LEO), the satellite gains a large field of view and a short revisit
period. These two properties will enable the satellite to detect blooms in a large area. It can
therefore provide warnings in a relatively short time frame.

Another goal which is collaborated through AMOS is the development of a network of sensory
entities for surveillance of the oceans. This long term goal is what the HYPSO mission draws
inspiration from for its name. In this project, the HYPSO satellite plays several roles. One
role is to be a producer of coastal and oceanic imagery, which can be used for a wide range of
monitoring and tracking purposes.

A secondary mission objective for the HYPSO mission is to test communication services for
remote sensor nodes. Small satellites are being envisioned as communication nodes for a network
of sensors [4]. These nodes are normally out of reach of conventional networks. Example are the
sensory buoys that regularly collect environmental climate data from the arctic oceans. With
conventional methods, the collected data is retrieved by visiting the buoy, which is only possible
during certain periods of the year. A space borne network node such as the HYPSO satellite
would be in Line of Sight (LOS) to the buoy on a daily basis, and would not be limited to
seasonal periods of access.

The HYPSO mission carries two scientific payloads: an imaging system with an On-board
Processing Unit (OPU), and a Software Defined Radio (SDR) system. Both systems are designed
to carry out tasks and experiments that are of interest to the NTNU SmallSat Lab and its
collaborators.

1.1.1 Hyperspectral Imager Payload
The primary payload of the HYPSO mission is a camera. It is capable of capturing hyperspectral
images, which contain spectral (colour) information over a sampled range of wavelengths.

The camera works like a push broom scanner [5], as illustrated in Figure 1.1. Light is
received through a slit and diffracted to distribute the spectral bands in the direction normal to
the direction of the slit and the direction of travel. The image sensor captures a two dimensional
frame where one of the two dimension corresponds to the spatial dimension along the slit, and
the other dimension corresponds to the distribution of colour.

Multiple frames are merged to create a hyperspectral cube with three dimension. Two of the
dimensions are spatial, and the last one is spectral, as illustrated in Figure 1.2. The last spatial

1.1. THE HYPSO MISSION 5

Diffraction of Linear Array

Satellite Motion

Captured Frame

Figure 1.1: Illustration of push broom scanning. A slit of light is refracted onto a plane.
One dimension of the plane corresponds to the spatial dimension of the linear array, while
the other dimension of the plane corresponds to the spectral content of the linear array.
The linear array covers new ground as the satellite moves.

dimension is governed by the pointing of the satellite as it progresses through time.
Image capture is controlled by an OPU. The OPU is responsible for processing the images

that it receives from the Hyperspectral Imaging (HSI) sensor.
The image files produced by the HSI must be downloaded to the ground to be analysed and

distributed to researchers. The files are compressed before transmission to reduce the required
transfer time.

There are also systems being developed that will perform on-board analysis of the images.
This will allow useful information to be extracted from the images without having to first down-
load them to a ground station.

Regardless of whether the images are analysed on-board or on the ground, the captured
information will be useful for a range of applications. The fishing industry can use the data to
produce algae forecasts. The ocean colour community benefits from getting more hyperspectral
data that can be used to monitor new areas and to develop new analytic methods.

An auxiliary, conventional Red-Green-Blue (RGB) camera is also included in the mission.
This camera provides wide-angle imagery along the same direction as the HSI camera. The
image data can be used to validate the HSI imager, to provide geographical data that is used
for geo-referencing the HSI images, and to enable super-resolution techniques. The camera also
serves the purpose of producing traditional images of the earth, which is in itself an interesting
product.

Although the HSI is the primary function of the payload, the term OPU is used to refer to
the whole payload, including HSI, RGB and other constituent components.

1.1.2 Software Defined Radio Payload
The second payload of the HYPSO mission is a Software Defined Radio (SDR) system. This is
an experimental radio.

6 CHAPTER 1. INTRODUCTION

y, Spectral
x, Spatial

z, Spatial

Figure 1.2: Illustration of hyperspectral data. Two dimensions are spatial, while the last
dimension contains spectral information. Each plane represents a captured frame.

A SDR is a category of radio modules that has moved the functionality that was convention-
ally performed by analogue components into to the software domain. The components that have
been replaced by software would previously perform processing on the signal after or before the
signal would have been passed to the power amplifiers and antennas. Examples of processes that
are replaced are mixers, filters, modulators/demodulators and detectors.

The SDR system is intended to carry out tests and experiments for the envisioned commu-
nication network that is required to operate remote sensor nodes. The fact that the radio is
software programmable means that it can test different operating configurations.

1.2 M6P Satellite Platform
The mission payloads depend on a number of resources and capabilities from a supporting plat-
form. Both payloads must be supplied with electrical power to operate. The HSI payload requires
a radio link to transmit images to the ground, and depends on the satellite being able to con-
trol its attitude and point towards specifics locations on Earth. The SDR payload requires an
external antenna.

The HYPSOmission procures satellite components from the Lithuanian company NanoAvion-
ics (NA). This company specialises in developing and manufacturing subsystems and platforms
for CubeSat missions. NA offers a series of satellite buses, with variants for the most common
sizes: 2-unit, 3-unit and 6-unit CubeSats.

The HYPSO project is using the M6P Multi-Purpose Nano-Satellite Bus (M6P), NA’s 6-unit
CubeSat platform. It provides the following components:

• Mechanical frame and solar panels.

• Electrical Power System (EPS) module.

• Flight Computer (FC), which contains:

– Attitude Determination and Control System (ADCS).

– Ultra-High Frequency (UHF) radio module.

1.3. PROBLEM STATEMENT 7

– Global Positioning System (GPS) module.

• S-Band radio module.

• Payload controller (PC).

• Room to install payloads.

An architectural diagram is provided in Figure 1.3 to illustrate the relations between the
satellite subsystems. The Breakout Board (BOB) and PicoZed (PZ) components are described
later in Chapter 4.

Figure 1.3: Relations between the subsystems of the HYPSO satellite.

The EPS subsystems collects energy from the solar panels, stores it in batteries, and provides
regulated power to the other subsystems. The FC subsystem performs ADCS related activities
such as pointing and slew manoeuvring, as well as collecting sensor and GPS data. The UHF radio
and S-Band radio communicates with ground stations. The PC handles all interfaces between
the payloads and the satellite platform, including a communication bus and power connections.

The M6P satellite platform is created with a reliable and redundant design in mind. At all
times, except when lacking electrical power, all subsystems can operate independently of each
other. The EPS is equipped with several fail-safe mechanisms to avoid electrical damage to itself
and other subsystems. The PC is able to perform some of the FC’s tasks in case of system
failure. The ADCS has a redundant pair of actuators available, based on different technologies,
and two radios operating on different frequency bands are installed. Accelerated lifetime tests,
such as high radiation dosing, have been performed by NA to guarantee a minimum lifetime of
5 years in low earth orbit.

More details about the subsystems have been summarised in Appendix A.

1.3 Problem Statement
The student shall develop, implement and test solutions for file transfers for the HYPSO mis-
sion payloads. The task includes developing or applying derived components such as electronic
hardware and an operating system for the payload processor system. The file transfer implemen-
tations shall make use of and integrate with the existing communication architecture provided
by the satellite bus provider.

8 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline
This thesis is concerned with the work of designing, implementing and testing a File Transfer
(FT) system for the HYPSO mission. The OPU and SDR payloads both depend on file transfer
capabilities to perform their responsibilities. The OPU payload must downlink captured image
data, and the SDR payload must downlink experimental measurement data. The FT system is
focused on software design, but some hardware was also designed as part of this thesis.

Part I provides information about the satellite project and background theory, while Part II
is concerned with the contributions of the thesis.

Chapter 2 explores background material that is relevant for the design process of the FT
system, which is the primary product of Part II.

Relevant mission requirements are mapped in Chapter 3. The HYPSO payloads and com-
munication architecture is described in Chapter 4, together with design considerations for the
OPU hardware.

Chapter 5 presents the design and implementation details of the FT system. The FT system
is tested, and results presented in Chapter 6. Results are discussed in Chapter 7 before a final
conclusion is presented.

Chapter 2

Background

This chapter introduces theory that is relevant in order to understand the work performed in
this thesis.

2.1 Communication Theory
The topics of this thesis deal with the communication between a satellite and a ground station.
A few communication concepts are discussed to provide some background.

2.1.1 Flow Control
Regardless of which technology is being used to transfer a message, there will always be some
maximum speed at which the communication channel can transfer messages. The speed at which
a channel can transfer messages is referred to as its data rate.

In the case of peer-to-peer communication through a direct channel, the data rate of the
channel will create a self-regulating bottleneck which limits how quickly the sender will be able
to dispatch messages. If the recipient is not able to receive messages at the same frequency,
messages will be dropped.

Another problem appears when dealing with indirect communication. If there is more than
one node that takes part in the communication chain, then each message must be buffered
while it is processed and passed forward. A system will always have a limited amount of buffer
space available. If a node receives messages faster than it is able to send them (mismatched
sending frequency on total of input and output channels), then the buffer space will eventually
be exhausted and messages will be dropped.

If there are multiple users on a network, congestion becomes a problem. When there are
multiple users, they must either share the data rate of the network, or find that their packets
are dropped due to congestion.

Packet loss can be prevented by measuring the loss rate and feeding it back to the sender
which can adjust the sending rate.

2.1.2 Communication Errors
Errors manifest themselves on a communication channel in a number of different ways. The space
environment introduces new sources of errors for electronic systems [6]. Strong radiation in the
form of ionising particles (ions, electrons, photons) can deposit or disturb charges present in elec-
trical components. The foreign charges can cause transient errors in communication equipment.
An error that is caused by such an effect is called a single event upset.

9

10 CHAPTER 2. BACKGROUND

A charge that is present in a capacitive storage device can be displaced as a result of radiation.
The bit that was represented by that charge is then altered, resulting in data corruption.

The telecommunication technologies that are used in spacecrafts are inherently noisy. The
transmission and reception of Electromagnetic (EM) waves is dependent on a number of analogue
components that pick up noise, such as antennas, amplifiers, modulators and filters [6].

The atmosphere degrades an EM wave signal via effects such as absorption and reflection
[6]. Through a full pass of a satellite, the degrading effect is most prominent when the ground
station and the spacecraft has a low LOS on the horizon. At this point the radio waves must
pass through the longest distance of the signal-degrading atmosphere. This and other effects will
reduce the Signal-to-Noise Ratio (SNR). If the signal is degraded beyond the capability of the
receiver to decode the signal, it will result in loss of messages. A low SNR also makes it more
probable to incorrectly interpret a symbol, causing data corruption.

2.1.3 Error Detection and Correction
In the general case of data corruption, error detection and correction methods can be used to
mitigate the effects.

Other communication errors such as total loss of message, duplication of message and reorder-
ing of messages must also be considered when discussing error mitigation techniques. Duplication
and reordering of messages can be solved by employing a sequence number. A number is added
to each message, and is increased by one for each successive message. The number is examined at
the receiving node to determine what order the messages should be received in. Additionally, if
two messages with the same sequence number are received, a duplication is detected and only one
of the messages is kept. Depending on the application, to mitigate reordering by using sequence
numbering, extra buffer space might have to be utilised to store reordered messages while wait-
ing for delayed messages. Some applications do not care about the ordering of packets, and can
also be unaffected by duplication of packets. The loss of a message necessitates retransmission
techniques, like those detailed in Section 2.2.

The general idea of detecting data corruption is to append redundant information to the
data. The additional data is added in such a way that the message fulfils a specific property.
The property is checked when the message is received, and will indicate whether the message
has maintained its integrity.

The simplest way to provide error detection is to add a 0 or 1 parity bit, which is calculated
from the message. The receiver performs the same calculation and compares. This method is
weak, however, because it can only detect an odd number of bit flips.

Checksum

A more robust technique is to use a checksum, a code that is computed by using the message
as input to a hashing function. A hashing function takes data of arbitrary length as input
and produces a fixed length output. Hash functions are characterised by being able to produce
seemingly random and distinct output from similar inputs.

Polynomial codes have proved to be good checksum generators. A polynomial code is defined
as the polynomial remainder R of a polynomial long division, where the input data is used as the
dividend A and a static polynomial (a number) is used as the divisor B [7]. The natural number
(integer) quotient of the division is discarded, and the remainder R is used as the checksum. The
resultant quotient and remainder fulfil equation (2.1). The size of the remainder R is governed
by the size of the static divisor B, which is also called the generator polynomial, and which must
be known by both sender and receiver. The choice of the generator polynomial directly affects
the error detection performance of the checksum.

2.2. AUTOMATIC REPEAT QUERY 11

A = B ·Q + R (2.1)

Polynomial codes used as checksum are more commonly referred to as Cyclic Redundant
Check (CRC) codes. There are different variants of CRC depending on how long of a checksum
is wanted. Popular variants include CRC16 and CRC32, which produce 16 and 32 bits long codes,
respectively.

Like other error detection methods, CRC can only prove corruptness of data, not that the data
is valid. The performance of a checksum is therefore reliant on the hashing function producing
vastly different output for small differences in input. Then it becomes highly improbable for a
checksum to be verified when it is in fact corrupt.

An important factor to the performance of CRC is that it is also very easy to implement in
software or hardware, requiring few instructions to compute. Additionally, parts of the algorithm
can be implemented through memoisation, meaning that the intermediary results from expensive
operations can be stored and looked up cheaply from memory.

Forward Error Correction

In addition to error detection schemes, there are methods of Forward Error Correction (FEC).
Given specific situation, these FEC methods can not only detect data corruption, but also correct
for it. For certain applications, this type of error mitigation can be preferred over methods that
are based on retransmission, like those later detailed in Section 2.2. It is especially useful for
applications that cannot keep data stored, in order to enable retransmission of lost messages. It
is also useful for applications where the delay that results from a retransmission would render
the data unusable because of real time requirements.

In a similar fashion to error detection, redundant data is appended to the message to create a
Error Correcting Code (ECC). The additional information is used to recover the original message.

All ECCs come with a performance cost. The additional data required to perform error
correction increases a constant message overhead. Therefore, if a channel exhibits a low symbol
corruption rate, the presence of ECC may ultimately decrease the overall performance.

2.2 Automatic Repeat Query

In Section 2.1.3, FEC was shown as an error mitigation technique, and here Automatic Repeat
Query (ARQ) is detailed as an alternative approach of error mitigation.

There are two ways in which the successful delivery of a message can be expressed and
communicated. One way is for the receiver of the data to send an Acknowledgement (ACK) for
data that has been received. Upon receiving an ACK, the sender of the data will know that a
specific piece of data was successfully received.

The other way is for the sender of the data to implicitly assume that all data that is sent
will be received successfully. If the receiver of the data detects that it did not receive some piece
of data that is should have received, it will issue a Negative Acknowledgement (NACK) for that
specific data. Upon receiving a NACK, the sender of the data will resend the missing data.

The different strategies for sending ACKs and NACKs are referred to as ARQ, regardless of
whether the query is a positive or negative acknowledgement. Several of these retransmission
strategies are explained in the following sections.

12 CHAPTER 2. BACKGROUND

2.2.1 Stop-and-Wait
The stop-and-wait strategy is one of the simplest communication schemes that also can provide
some amount of reliability on channels with message loss.

For comparison, a strategy is imagined, where a sender is sending successive messages as
quickly as it is able to send. The receiver accepts any valid message and interprets it as the next
message in the stream of messages.

The stop-and-wait strategy improves on this unrestricted strategy by having the receiver
respond with an ACK for every received message [8]. The sender must wait for an ACK of
the previous message before sending the next one. A stop-and-wait exchange is illustrated in
Figure 2.1.

Figure 2.1: The stop-and-wait strategy. The sender waits for an ACK of the previous
message before sending the next message. Message 2 is lost in transmission, and the
sender times out because of a lacking ACK. As a result, Message 2 is retransmitted.

The act of waiting on an ACK before sending the next message has the effect of limiting the
sending frequency. The sending period will roughly be the Round Trip Time (RTT) between
sender and receiver, plus additional processing times at each node, and the transmission time of
the data packet.

Sending Period = RTT + Data Transmission Time + Processing Time (2.2)

The stop-and-wait strategy does not survive the loss of a message. The strategy is extended
by adding a timeout on receiving ACKs. If the sender does not receive a ACK within a certain
time period, it will assume that the previous message was lost, and will retransmit it. This can
be repeated a number of times until the sender gives up after reaching a configurable threshold.

The extension with timeout on ACK can handle data message loss, but not the loss of ACK
messages. If an ACK is lost, then the sender will time out and retransmit the previous message.
The receiver, however, has successfully received the previous message, and has no mechanism in
place to detect whether the ACK was received successfully by the sender. Therefore, the receiver

2.2. AUTOMATIC REPEAT QUERY 13

is not able to distinguish between the next or previous message. The receiver will incorrectly
accept a retransmitted message as the next message.

The solution to this duplication problem is to include a sequence bit with each message. The
sequence bit is toggled for each successive message. Since there are only two possible messages
that the recipient can receive, namely the previously retransmitted and the next one, the receiver
can examine the sequence bit to determine whether the message is a new one, or a retransmission
of the previous one.

2.2.2 Sliding Window

The extended stop-and-wait strategy is reliable, but not very efficient. While waiting for the data
message to be processed by the receiver, and for the ACK to reach the sender, the communication
channel is not being utilised.

In order to improve performance, the notion of a sliding window is introduced. The idea is
to let the sender transmit multiple data messages before waiting for ACKs. A sequence number
is added to each data message, and a corresponding sequence number is added to every ACK
message. This way an ACK can be linked to a specific data message.

The window length decides how many data messages can be in transmit at once. The stop-
and-wait strategy is a special case of the sliding window class of strategies, where the window has
a length of n = 1. The upper and lower bound of the sender window determines which messages
are allowed to be sent, while the upper and lower bound on the receiver window determines
which messages the receiver is ready to accept.

The windows are said to be sliding because the lower and upper bounds grow when message
are received and successfully acknowledged. The exact way in which they are advanced is different
for each variant of sliding window protocol.

The length of the windows affects performance. Increasing the sending window length n up
from zero will initially increase throughput. However, at some point the sending frequency will
be greater than the channel or receiver is able to handle. This could be because of congestion,
mismatched interface speeds or other more complex issues. At this point, raising the sending
window length might decrease the throughput because messages are dropped and will have
to be retransmitted. There will be a specific window length which gives the highest effective
throughput, but it might change over time along with a changing environment. The window can
be regulated to achieve the highest throughput, or to avoid loss of packets.

Go-back-N

The Go-back-N protocol uses a sender window length of N + 1 and is based on the idea of
resetting the transfer back to the last message that was lost.

The sending node dispatches all the messages in its sending window. Then it waits for ACKs
for the transmitted messages. The sender never progresses further than N messages ahead of the
previously acknowledged messages. A timer keeps track of every transmitted data message, and
if any of them times out, retransmission is performed from the beginning of the sending window.
An example of Go-back-N with a window length of three is illustrated in Figure 2.2.

The receiver has a window of length one, and will therefore only accept the next message
in the sequence. Any message that arrives and that is not the next message in the sequence is
discarded. This means that messages that arrive out of order will also be discarded. This is an
advantage as it does not require the receiver to buffer messages that are stored out of order, but
it is also a disadvantage in that it results in a greater number of retransmission.

14 CHAPTER 2. BACKGROUND

Figure 2.2: The Go-back-N strategy with a sender window of length 3. Message number 2
is lost in transmission, such that the sender times out on ACK 2. The second transmission
of Message 2 succeeds, as does all subsequent messages. However, Message 3 and 4 are
retransmitted even though they were successfully received the first time.

2.3. NETWORK STACK MODEL 15

Selective Repeat

The selective repeat protocol attempts to improve performance by allowing the receiver to store
out of order messages while waiting for earlier messages. An example of the selective repeat
strategy is shown in Figure 2.3.

The idea is to let the receiver have a window length of more than one. The receiver may
store any messages that are within its window. The window is moved one to the right whenever
the earliest message (left-most in window) is received. If there are messages stored right after
the earliest message, then the window is moved straight up to the first earliest message that is
not received yet. The sender window is restrained such that only messages that are within the
receivers window will be sent in the first place.

The sender window is anchored by the earliest message that has not yet been acknowledged.
Whenever the sender receives an ACK, it can automatically assume that all messages earlier
than the ACK are also received. An ACK therefore moves the sender window to one past the
sequence number of the ACK.

The selective-repeat strategy will typically outperform the go-back-n strategy when there are
frequent message losses. The cost is increased buffer space at the receiver side, and a greater
number of states that increase the complexity of the implementation.

2.2.3 Hybrid ARQ
Instead of relying solely on FEC or ARQ for error mitigation, it is possible to combine the two
approaches. This is especially helpful when a channel has multiple failure modes that produce
different kinds of errors.

If on a constantly noisy channel there happens to be a single bit error in a large amount of
messages, then a ECC is the best approach. A pure ARQ approach would end up having to
retransmit almost every message. However, if the channel has periods of disruption, such that a
sequence of messages is completely lost, then an ARQ approach is better. An ECC is of no use
if the whole message is lost.

When a channel exhibits the failure characteristics of both, corrupted bits are frequently
encountered and full messages are being sporadically lost, then the best approach is a combination
of FEC and ARQ.

The two approaches must not necessarily be applied to the same technology or even placed
on the same level in the network stack. It is entirely possible, and even widely adopted, to
utilise FEC in lower level protocols, while relying on higher level protocols or even applications
to perform ARQ.

A 2001 study looks at Incremental Redundancy, a retransmission scheme where additional
parity bits are transmitted if the original message could not be decoded [9]. This combines the
idea of retransmission and FEC into the same protocol. The study found that for many situations
the hybrid solution performed better than retransmission of the whole original message.

2.3 Network Stack Model
The HYPSO satellite is comprised of a number of subsystems. These subsystems communicate
between each other and form a network. Multiple technologies and protocols are stacked on top
of each other to create the network.

In order to talk efficiently about the mission network, the protocols that are relevant to the
HYPSO mission payloads will be discussed in the following sections. To arrange the protocols
into a structure, the Open Systems Interconnect (OSI) reference model for network systems is
used to organise the protocols into layers [8]. The lower level layers perform low level functions

16 CHAPTER 2. BACKGROUND

Figure 2.3: The Selective Repeat strategy with a sender and receiver window of length
3. Message 2 is lost in transmission, but Message 3 is still stored at the receiver. ACK
1 advances the sender window, such that Message 4 is sent. No ACK 2 is sent, so that
Message 2 times out, issuing a retransmit of Message 2. When Message 2 arrives, ACK
4 can immediately be sent instead of ACK 2 because both Message 3 and 4 have already
been stored. The ACK 4 is an implicit acknowledgement for also Message 2 and Message
3.

2.3. NETWORK STACK MODEL 17

such as electrical signalling, while higher level layers perform higher level functions such as session
handling and reliable message delivery. Figure 2.4 presents all the original OSI layers, their usual
functions and the corresponding names of their data units.

Figure 2.4: OSI reference model for network protocols. Layers are stacked with increasing
levels of abstraction.

Each layer has its own Protocol Data Unit (PDU), as shown in Figure 2.4. Most PDUs
contain a small amount of auxiliary metadata which is used by the protocol to deliver the
message. Metadata placed at the start of a message is called a header, while metadata placed at
the end is called a tail.

There are primarily two specifications that define the protocols used in the HYPSO mission
network stack. The two specification are the Controller Area Network (CAN) specification and
the Cubesat Space Protocol (CSP) specification. The CAN specification defines protocols for the
physical layer and the link layer, while the CSP specification defines protocols for the network
layer and the transport layer, as illustrated in Figure 2.5.

Figure 2.5: HYPSO communication protocol stack. The CAN specification defines
protocols that perform the responsibilities of the physical layer and the link layer. The
CSP specification defines protocols and mechanisms that perform the responsibilities of
the network layer and the transport layer.

18 CHAPTER 2. BACKGROUND

2.4 Controller Area Network Bus
This section describes the CAN protocol. The ISO11898 specification series was originally de-
veloped for the automotive industry. It is used in the HYPSO mission to connect the satellite
payloads to the satellite platform.

The physical bus is made up of a pair of twisted wires: CAN High and CAN Low, and is
driven by differential signalling, which provides some protection against EM noise [10]. This
linear bus must be terminated with 120 Ω resistors to provide a drain path for the differential
signal, and also to prevent signal reflections.

Link Layer

The ISO11898-3 specification defines the link layer of the CAN protocol [11].
The CAN PDU, the extended frame, is illustrated in Figure 2.6. A length field encodes how

many bytes are present in the variable length data field. A CRC checksum is used for the receiver
to verify frame integrity. The remaining fields are primarily concerned with flow control, such as
acknowledgement and frame boundaries.

Figure 2.6: The extended CAN protocol frame, with various header fields.

A 29-bit identifier field is used for addressing (or 11-bit in the case of a regular CAN frame).
For more details on CAN-bus, see report on integrating the network stack with the payloads [12].

Transfer Rate

Although the ISO11898-2 CAN-bus is able to operate at signalling speeds up to 1 Mbps, the
effective data transfer rate is significantly lower.

In the best case, the extended CAN frame (shown in Figure 2.6) can hold 8 bytes of data.
The remaining bits are used for addressing, CRC and control. Between each frame, an interframe
space consisting of at least three recessive bits must be inserted. Additional data bits may be
inserted by a bit stuffing rule, further lowering the effective data rate. In the worst case, 64
successive identical data bits causes 12 extra bits to be inserted. In the best case, no extra bits
are required.

At full bus utilisation, the theoretical upper limit for effective data rate becomes 48.85 % or
488.5 kbps, as calculated in equation (2.3). At the worst case with 12 bits being stuffed, the
effective data rate drops to 44.76 % or 447.6 kbps, as calculated in equation (2.4).

Max utilisation, upper limit =
Data

Data + Overhead + Interframe

=
64

64 + 64 + 3
= 48.85%

(2.3)

2.5. CUBESAT SPACE PROTOCOL 19

Max utilisation, worst case =
Data

Data + Overhead + Interframe + Stuffing

=
64

64 + 64 + 3 + 12
= 44.76%

(2.4)

It is unlikely, however, that the CAN controller is able to fully utilise the bus for extended
periods of time. The controllers would need a constant feed of data.

It is also unlikely to experience long sequences of identical data bits during transfers of large
files because they are compressed. The compression eliminates long sequences of identical bits.
The bit stuffing is therefore not expected to cause a significant decrease in effective data rate for
the FT system.

SocketCAN Driver

As part of the Linux kernel modules, SocketCAN provides a link layer interface to CAN de-
vices. The programming interface is identical to that of the Transmission Control Protocol
(TCP)/Internet Protocol (IP) network interface. The driver code initialises a Linux socket ob-
ject from the networking protocol family PF_CAN, after which the Linux system calls read and
write can be used to communicate data with the lower level CAN controller.

2.5 CubeSat Space Protocol
This section describes the mechanisms defined by the CSP specification.

CSP is a network library developed by GomSpace for use in CubeSats [13]. It performs the
functions of the network layer (layer 3) and transport layer (layer 4). The protocol has been
adopted by several small satellite designers and has flight heritage. CubeSats such as GOMX-3
and AAUSAT3 have flown successful missions with CSP [13].

2.5.1 Network Layer
When discussing CSP, the terms ID and address are used interchangeably.

The CSP protocol performs similar functions as IP, but offers a smaller implementation that
is suitable for resource limited systems like those found in small satellites. It allows any node
in the CSP network to send packets to any other node in the network. Every node in a CSP
network has its own unique CSP address.

Packet Format

The format of the CSP PDU is shown in Figure 2.7. Each packet is fronted by a 2 byte data
length field that encodes the number of bytes in the data field. The destination ID and source
ID fields encode the address of receiver and sender. The destination port and source port fields
encode which service port that the packet is sent to and from. Eight flag bits encode CSP options
that can be enabled for the packet.

Buffer Management

The CSP stack maintains a bank of buffer memory for internal routing of CSP packets. Before
creating a CSP packet, a packet buffer pointer must be acquired with csp_buffer_get(). Packet
buffers must be manually released with csp_buffer_free() when they are no longer needed.

20 CHAPTER 2. BACKGROUND

Figure 2.7: CSP packet format. The length field indicates the number of bytes in the
data field. ID and port fields encode the address of sender and recipient.

When sending the packet, the pointer to the buffer is passed down the protocol stack, without
having to copy the buffer contents. This zero-copy technique reduces unnecessary duplication of
packet data.

Routing

Interfaces provide channels between CSP nodes. A node may receive and send CSP packets on
an interface.

The CSP protocol maintains a single queue for incoming packets. All interfaces will feed
packets to this queue. The CSP library provides a csp_route_work() function, which is usually
run in its own thread (csp_route_start_task()). This function reads packets from the input
queue and routes them to the correct interface. Packets that are addressed to the receiving node
are appended to the CSP socket that is bound to the appropriate port number. If no such port
has been bound, the packet is rightfully dropped.

The router refers to a routing table to resolve which interface it must send a packet to. This
routing table uses the Classless Inter-Domain Routing (CIDR) method to specify address ranges.
This method allows a range of addresses to be specified in a single entry, instead of having to
specify every static address that is available on an interface.

CAN interface

The CAN protocol frame length is limited to a maximum of eight bytes. In order to fit larger CSP
packets over a CAN interface, some kind of packet fragmenting must be implemented. The CSP
code includes a CAN interface implementation with automatic fragmentation of CSP packets
into CAN-bus frames. The Maximum Transfer Unit (MTU) over this interface is limited to 256
bytes.

2.5.2 Transport Layer
The network layer delivers the CSP packets to the correct node, while the transport layer provides
ports that let an application address specific services.

The standard CSP transport unit is called Unreliable Datagram Protocol, reflecting the fact
that it does not offer a mechanism to deliver the packet reliably. A reliable transport unit called
Reliable Datagram Protocol is available, but is not used in the HYPSO network because it has
previously been reported as glitchy [14].

2.5.3 CSP Options
Confidentiality, integrity, and authenticity (CIA-triad) forms the foundation of a secure service
[10]. The CSP library offers mechanisms to support each of these concepts.

2.5. CUBESAT SPACE PROTOCOL 21

Cyclic Redundancy Check

If compiling the library with the CRC option enabled, packets can be flagged to use 32-bit CRC
to protect their integrity. The packet feature is enabled by creating a socket or connection while
passing a CSP_O_CRC32 flag as a function parameter.

Hashed Message Authentication Code

When compiling with the Hash-Based Message Authentication Code (HMAC) option enabled,
packets can be protected with a message authentication code field. Packets can then be verified
to have been signed with the correct key, proving the authenticity of the packet. The key which
is used to verify the packets must be distributed to the satellite in a safe manner, for example by
installing the key before launch. This option is not employed in the HYPSO network because,
authentication is provided in the radio link layer protocol.

Extended Tiny Encryption Algorithm

When compiling with the Extended Tiny Encryption Algorithm (XTEA) block cipher option
enabled, packets may be encrypted using a symmetric key. The satellite must have the shared
key installed in order to decipher the encrypted packets. Used together with HMAC, it allows
new security keys to be safely uploaded. This option is not used or tested in this work, but could
be included at a later point.

2.5.4 CSP in Linux
When using CSP with Linux, the compiled library is linked into a userspace process. Conse-
quently, only threads that are spawned by that process are able to access the CSP stack.

This means that all services that want to communicate on the same CSP network are required
to be part of the same program, as illustrated in Figure 2.8.

Figure 2.8: Usage of CSP in Linux. The CSP library is linked into the private memory
space of the process. All services must be threads spawned from the same process.

Alternatives using various forms of inter-process communication to link multiple CSP pro-
cesses have been explored [12]. The alternatives were found to cause new problems during
implementation, and were dismissed as too expensive in terms of development effort.

22 CHAPTER 2. BACKGROUND

2.6 File Systems
A file is an abstraction of information, a container of data. Computers use files to store and
organise data. Various aspects of file management is touched upon in this section. Linux is used
for most of the examples throughout the section because it is the operating system being used
for the HYPSO mission.

Files are organised in a file system. These have a number of responsibilities, including how
the file data is stored in the underlying memory technology, how the file operations are carried
out, how the files are organised logically, and what set of metadata is stored along side the file.

Most often it is the computer operating system that implements and manages the file systems,
although systems such as Unix’s Filesystem in Userspace (FUSE) interface also allows userspace
applications to implement file systems.

In addition to storing the content of a file, the file system must also store metadata. The
location of the file in underlying medium must always be stored. Additional meta information
that can be stored is filenames, ownership of the file and the time of creation or modification.

The File Allocation Table (FAT) file system is popular in multimedia card technologies such
as Secure Digital (SD) cards, and is also used as internal storage in embedded devices. The
FAT file system implements a table of entries that each represents a continuous length of storage
called a cluster. A file is constructed as a linked list of entries, with each entry indicating which
entry is the next fragment in the file, as illustrated in Figure 2.9. A special value is used to
indicate End of File (EOF).

Figure 2.9: A file allocation table. Each entry indicates either the index of the next
entry in the file, or the end of the file (-1). A file is shown to consist of the following
entries: {2, 4, 5, 7}.

Memory technologies place limitations on how data can be stored. For example, a conse-
quence of each FAT entry only being able to hold a single address is that the maximum file size is
limited by the maximum number of bytes addressable with a single address length. For example,
the 32-bit version of FAT can at maximum hold a 4 GB file.

The ext4 file system is a popular file system that is used in lots of modern Linux based
operating systems. It offers multiple advanced file system features such as extents, journaling
and checksum on metadata [15].

An extent is a long, contiguous length of storage that is defined by a starting index and
a length (or end index). Compared to block allocation maps such as FAT, which are required
to store the index of each constituent cluster, a scheme using extents can keep track of larger
files while storing a minimal amount of metadata. While extents are suitable for tracking long
contiguous files, they do not perform well for files that have a heavily fragmented layout.

2.6. FILE SYSTEMS 23

A journaled file system aims to prevent file system corruption that results from unexpected
shutdowns or system failures during file writes. The general concept is illustrated in Figure 2.10.
Whenever the file system intends to modify a stored file it first records the changes that it intends
to make in a structure called the journal. After recording the intended changes, the write of the
actual file takes place. If a file is corrupted as a result of an unexpected shutdown or system
failure during a write, the file system can refer to the journal to see what changes were suppose
to be made. The changes can then be finalised, and the file system is returned to a consistent
state. If a system failure occurs while the journal is being written, then the file is still consistent,
and the corrupt journal entry can be discarded.

Figure 2.10: A journaled file system. Every file write is first recorded in a journal before
actually writing to the file. In the event of an unexpected system failure, the journal is
used to finish file transactions and restore the file system to a consistent state.

When file content data that is stored on disk becomes corrupted, only the single file is affect.
When the metadata of a file is corrupted, it can affect other files and the file system itself. For
example, a corrupted data allocation structure can cause a file to suddenly point inside another
file. Writing to the corrupt file can then start corrupting other files. Therefore it is important
to keep the metadata consistent. The file system can store a checksum for each file computed
from the metadata. When corrupted, the checksum will not match the metadata. In this way,
the file system can prevent itself from corrupting further files.

24 CHAPTER 2. BACKGROUND

2.6.1 File Directories
File directories are used to organise files in a hierarchical way, like a tree. In Linux and other
Unix-like operating systems, a file directory is usually represented as a path, a sequence of
directory names, such as this/is/a/directory/path/ and another/directory/path.

A file system will typically have a top level directory called the root directory. Every file in the
file system must be placed directly in the root directory, or in some sub directory under the root
directory. The root directory is indicated by a file or directory path starting with a / character,
such as /images where images is a directory directly under or inside the root directory.

Operating systems usually enforce a standard layout on the root file system, which is where
all the operating system files reside. The Unix directory layout has been extended and adopted
by many operating systems. Linux defines root directories such as /usr/bin/, /usr/lib/ and
/usr/include as program, library and header file directories, and /home/<username>/ as home
directories for user files.

2.6.2 File Operations
Since files can store data, it is natural that they can be created, deleted, read from and written
to. File system implementations are normally contained within the kernel, meaning that file
operations must be communicated with the kernel. Low level file operations are implemented as
kernel system calls.

Some operating systems require the user to explicitly open the file before reading or writing,
and to close the file after reading or writing is finished. Opening a file allows the file system to
allocate resources that are required during reading and writing. Linux will return a file descriptor
number for the process to use as a handle to the opened file structure. These resources can also be
allocated when a file is requested to be read or written, but it is expensive to do so for every read
or write. For example, the contents of a file that is stored on a persistent medium will have to be
copied into the computers working memory and cache before it can be used by an application.
Explicitly telling the operating system to open and close a file limits these expensive setup and
teardown operations to the start and end of the usage of the file.

The read and write operations transfers data between file and process memory by passing
a buffer and a length to the kernel via system calls.

An internal file position state works as a cursor within the file, and is the point at which
data will be read or written. Linux implements the lseek system call for manipulating the file
position.

File streams

The low level system calls that operate on files are often sufficient to implement an application,
but they are not always the most efficient. A source to their inefficiency is the fact that for every
read and write the computer must perform a system call which can be an expensive operation.
System calls are expensive because they cause the computer to do a context switch to and from
a kernel thread, as well as switching the privilege mode of the machine. If the file that is being
operated on must access memory on disk there will also be blocking delays while waiting for data
to be fetched.

File operations can be bundled together and performed in a fewer amount of write and read
calls. The implementation of file streams in the C programming language can do this.

A file stream provides an abstraction on top of a file descriptor. The C standard library
implements a family of file stream functions for operating on file streams:

• fopen and fclose for creating, opening and closing files.

2.6. FILE SYSTEMS 25

• fread and fwrite for writing from and reading to files.

• fseek and ftell to adjust and examine the file position of the stream.

• fflush to push stream buffer content from user-space to kernel.

• fsync to push kernel buffer content to the underlying storage medium.

When a file stream is created a chunk of memory is allocated as buffering space. When
data is written to the stream, it is copied to the buffer instead of being passed to the write
system call. When data is read from a stream, the operating system requests more data than
is actually requested and copies it all into the stream buffer. For most applications this will
improve performance because data is often accessed in a continuous or spatially close pattern.
Since the buffers reside in the process’ memory space, the operations are cheap to perform.

Certain conditions causes the stream to pass the buffer with its modified content to the
operating system. This is called flushing, and happens when the buffer is full or file position
jumps to a region outside the buffered region.

Memory Mapped Files

Another approach to reducing the number of system calls when reading and writing files is to
utilise the memory mapped file mechanism provided by Linux. A file can be memory mapped by
using the mmap system call.

Memory mapped files are mapped directly to the private address space of the process that
requests the mapping. This is achieved by configuring a memory subsystem (which consists of
software and hardware) to link the contents of a file to a specific address region in main memory.
The first access to the memory mapped address will cause the corresponding section of the file
to be paged into main memory. Every subsequent access to that region will then access the main
memory instead of having to go back to the file via some system call. If a region is being accessed
that has not been paged in to main memory yet, a context switch is still necessary for the kernel
to fetch the new page.

File streams allocate memory in their own private memory space, which in turn is copied to
kernel buffers before being written to disk. Memory mapped files, on the other side, depends on
the memory subsystem to fetch and link parts of files directly into the process’ memory space.

The performance of fwrite and mmap depends on the specific usage patterns. Ultimately,
both fwrite and mmap end up having to switch to kernel mode, either to perform passing of
buffered data, or to set up the memory controller and fetch new pages on page faults. The
number of system calls depend on the buffer and page sizes. A large buffer or page size would
result in wasteful copies if only accessing a small region of the file.

2.6.3 M6P File System
Original subsystems in the M6P bus employ a common, custom file system. The file system is
accessible to other subsystems via a CSP service.

Each subsystem has a file store, where each file is listed with an unique identifier. The IDs
are assigned starting at zero, and are increased by one for each additional file.

Files have an internal layout consisting of equally sized entries. The size of the entries is
specified when formatting the file. When reformatting a file, the entry size can be changed,
allowing the file to be repurposed. Within each file, each entry has an ID, which is incremented
by one for each successive entry.

Each entry is internally composed of a header and a data field. The header contains a 32-bit
CRC value and an entry length value. The CRC value encodes a checksum calculated from the

26 CHAPTER 2. BACKGROUND

length field and the data field. When discussing the entry as a memory region, or when including
the entry header, the term cell is used to refer to the entry as a whole. Each entry is stored in
a cell. The structure is shown in Listing 1. The two header values occupy 6 bytes. The entry
data occupies the remaining space in the cell.

struct cell {
uint32_t CRC32;
uint16_t entry_length;
uint8_t entry_data [1.. cell_size - 6];

}

Listing 1: Memory structure of an entry. The whole structure is referred to as a cell.

The file system supports file types. Log files are used to store telemetry, debug and error
output, and configuration files. Static files are used as containers for larger files, and are used
for uploads.

The files on the M6P subsystems are allocated on various physical storage mediums, which
will affect how quickly they can be read or written. This must be taken into consideration when
requesting a download or uploading a file.

2.7 File Transfer Protocols
This thesis is concerned with transferring files to and from satellite payloads. The primary
function of a File Transfer Protocol (FTP) is to transfer files from one file host to another.
Other functions may include the explicit creation and deletion of files, moving files and copying
files. It is also useful to be able to manipulate directories, with operations such as for example
create, delete and list available files.

The term file store is used to mean the medium in which files are stored. In some cases, it
will be synonymous to a file system.

A number of FTP specifications have been studied and are used as inspiration to the work
in this thesis. The following systems will be detailed:

• Trivial File Transfer Protocol (TFTP).

• The File Transfer Protocol (RFC-959).

• KubOS File Transfers.

• The Consultative Comittee for Space Data Systems (CCSDS) File Delivery Protocol.

• M6P File Transfer System

2.7.1 Trivial File Transfer Protocol
One of simplest implementations of a FTP is the TFTP. This protocol was defined by K. Sollins
in Request for Comments (RFC)-1350 in 1992 [16]. The RFC describes a simple FTP. The
protocol is defined as an application layer protocol, and depends on a functioning transport layer
to deliver the TFTP packets to a specific host. The transport layer protocol being used is not
required to be reliable, as TFTP handles retransmission of lost packets.

The protocol defines a set of packet types that are differentiated with unique opcodes. The
packet formats are illustrated in Figure 2.11.

2.7. FILE TRANSFER PROTOCOLS 27

• RRQ & WRQ, file read and file write requests.

• DATA, PDU containing data fragments of files.

• ACK, acknowledgement of a data fragment.

• ERROR, containing a situational error code.

Figure 2.11: Packet formats in TFTP as defined in RFC-1350.

A transfer is initiated by sending a RRQ or WRQ. The RRQ and WRQ packets contain a string
encoding the file name of the file that is being requested to be read from or written to. As seen in
Figure 2.11 , there is also a mode field. The mode field must contain one of the following strings
{netascii, octet, mail}. The modes netascii and octet both indicate that the filename field
indicates an actual file to be read from or written to. The netascii mode demands that the
transferred data be translated from network byte order to host byte order upon reception. This
is necessary when a host operates with a different character encoding from the network. The
octet mode tells the recipient to send the data in the same encoding as it is stored, regardless
of which character encoding is being used. The data should be consistent if it is transferred
back using octet mode. The mail mode is only valid for the WRQ opcode, and indicates that the
received data should be sent as an e-mail from the receiving host, with the filename field used
as an e-mail address.

A successful RRQ is immediately followed by a DATA response, while a WRQ is immediately
followed by a ACK response. When transferring the file, TFTP uses the stop-and-wait strategy
described in Section 2.2.1. Each DATA packet is acknowledged with a ACK packet before sending
the next DATA packet.

In the case of a lost DATA packet, the sender will timeout because no ACK packet is received,
issuing a retransmission of the lost DATA packet. If a ACK packet is lost, then the sender will
also time out and resend the previous DATA packet. The duplicate DATA packet is detected by
examining the sequence number, which TFTP calls a Block number.

Each TFTP packet can be up to 512 bytes long, and any DATA packet which is short of 512
bytes is interpreted as the last block in the transfer. This protocol effectively has a sending and
receiving window of length one, meaning that it should not be possible to mistake one DATA
packet for another.

Error packets are used to indicate status when requesting RRQ and WRQ. A missing file, or
incorrect permissions will result in an ERROR packet with an appropriate error message and error
code. Errors are also returned during transmission if the sender repeatedly times out.

28 CHAPTER 2. BACKGROUND

2.7.2 The File Transfer Protocol RFC-959
The generically named File Transfer Protocol is defined in RFCs-959 [17]. The name RFC-959
is used to refer to the protocol, to avoid confusion with the acronym for a general file transfer
protocol.

The RFC-959 protocol is normally hosted on internet servers and allows multiple users to
store and retrieve files.

RFC-959 is a connection oriented protocol, meaning that a connection to the server has to be
established before making a file request. A reliable connection is assumed, such that the protocol
does not need to worry about retransmission of individual packets.

A connection is first established between client and server. This connection is called a control
communication connection, and handles requests and responses. On this connection, a range of
operations may be requested. Some examples of commands are:

• RETR and STOR for retrieving and storing files.

• RNFR, RNTO and DELE for renaming (moving) and deleting files.

• CWD and CDUP for changing the current directory.

• MKD, RMD and LIST for making, deleting and listing directories.

• PORT, TYPE and MODE to change data port and type, and transfer modes.

When establishing the connection one can also prompt the user for a user name and pass-
word. Alternatively, user and account details can be configured with dedicated commands after
connecting.

When a file transfer is requested, a separate data connection is established. All file data
is moved over this connection, while protocol commands may still be exchanged on the control
connection. This architecture is illustrated in Figure 2.12.

Figure 2.12: Connection architecture of RFC-959 FTP. A control connection is first
established between client and server. All file data is transfered over a separate data
connection. Illustration taken from RFC-956 [17].

In a similar way to TFTP, different data types can be specified. In ASCII mode, the data
is translated from the host’s representation of characters to a standardised 8-bit ASCII format.

2.7. FILE TRANSFER PROTOCOLS 29

In Image mode, each byte is sent unmodified, so as not to mangle image or program files. There
are also other modes that take into account the byte alignment in data words of different length.

There are also several data transfer modes that are allowed in RFC-959. Stream mode is
the simplest of the transfer modes, and is lacking in terms of reliability. The block mode breaks
the file into block segments that are prepended with a segment header. The compressed mode
employs a simple compression algorithm to compress the file on-the-fly before sending it.

In stream mode, the file data content is sent directly over a TCP connection, with the TCP
implementation using the sliding window go-back-N as its ARQ strategy. In this way, the stream
mode achieves reliable, in-order transfer on a packet to packet basis. The EOF is implicitly indi-
cated by the termination of the data connection. The stream mode can therefore not differentiate
between a successful termination initiated by the sender and an unexpected termination.

In block mode each file segment is prepended with a header. The header encodes special
codes for indicating transfer status, such as EOF. In this way, if a data connection is terminated,
the receiver will know that it has not yet received the EOF indicator, and can issue a RESTART
command to resume an unfinished transfer. The RESTART mechanism is only available for block
mode and compression mode.

The compressed mode can decrease the file size before transmission. It implements a lossless
run-length encoding. This means that long repetitions of bytes are replaced by a structure
defining the byte to be repeated, and a number defining how many times the byte should be
repeated.

Since RFC-959 depends on TCP, it automatically gains the congestion control mechanisms
of TCP. Packet loss is monitored via ACK timeouts, and is used as a control input to adjust the
sending characteristic of the protocol. The sending frequency is strongly linked to the sending
window size. Generally, packet loss will reduce the sending window and successful ACKs tend to
increase the sending window. Several algorithms can be used in tandem to improve the channel
utilisation.

2.7.3 Kubos File Transfer
KubOS is a flight software framework for small satellites. It implements a number of protocols
and service modules that can be integrated into an On-board Computer (OBC). All protocol
details described in this section are obtained and compiled from public KubOS documentation
[18]. KubOS features include:

• A File protocol and service.

• A Shell protocol and service.

• A Communication service.

• A Telemetry Database.

• A Mission Application service.

The KubOS file protocol encodes all of its command messages in the Concise Binary Object
Representation (CBOR) format. This format encodes name-value pairs, in the same way as
JavaScript Object Notation (JSON), but with a smaller footprint which makes it suitable for
resources limited space applications.

The file protocol prepares a file for transfer by splitting it into chunks whenever an export
command or import message is received. Each chunk is then transferred as individual PDUs.
The file is reassembled at the receiver side when all chunks are received.

30 CHAPTER 2. BACKGROUND

Automatic Repeat Query

Initially, all chunks are transmitted. When no more chunks have been received for some period of
time, the receiver will send a status message back to the sender. If all chunks have been received,
an ACK is sent to indicate that all chunks have been received. In the case that a chunk has been
lost in the unreliable network, a NACK will be sent.

The NACK message includes a list of ranges that indicates which chunks are still missing.
Upon reception of a NACK, the sender retransmits the indicated missing ranges. This repeats
until no more chunks are missing and an ACK is successfully sent and received.

KubOS maintains a session state for each transfer by creating a file directory for each transfer.
The hashsum of the file being transfered is used as the name of the directory. This way two
files with the same name but different content can be sent without interfering with each other’s
transfers. On the sender side, the directory is populated with the chunks to be transferred.
Chunks are saved to the directory as they are received. The chunks are named with the same
index as their position in the file.

2.7.4 CCSDS File Delivery Protocol
CCSDS File Delivery Protocol (CFDP) is a massive specification for file transfer systems intended
for space applications. It was first defined by CCSDS in 2002, and has since been superseded by
the latest edition from 2007 [19].

The specification assumes a single underlying communication layer, which it refers to as the
Unitdata Transfer (UT) layer. This layer may or may not be reliable.

Protocol Classes

The specification defines several classes of file transfer systems:

• Class 1 - Unreliable Transfer.

• Class 2 - Reliable Transfer.

• Class 3 - Unreliabel Transfer Via One Or More Waypoints In Series.

• Class 4 - Reliable Transfer Via One Or More Waypoints In Series.

The specification does not attempt to define a single FTP system that should be used in all
missions, but rather a clear and concise definition of components that can be used to construct a
system that fulfils the mission needs. Reliable transmission is a component that can be included
in such a system, but as Class 1 indicates, it is not a requirement to do so in order to be CFDP
compliant.

File Store Operations

The specification also defines a set of file store operations, and assumes that the underlying
storage medium is able to provide them:

• Create and Delete files.

• Rename files (including move functionality).

• Append and Replace files.

• Create and Remove directories.

2.7. FILE TRANSFER PROTOCOLS 31

Unacknowledged File Transfer

Before a file can be transferred, a Metadata PDU must be exchanged with the receiving entity.
This packet contains the length of the file, the source and destination file name and various flow
control options.

In Unacknowledged Mode the sending entity will simply dispatch the whole file as file seg-
ments. The arrival of the last segment is indicated by an EOF PDU that is dispatched by the
sending entity. The reception of the EOF PDU at the receiving side indicates the end of the
transfer. The receiving entity offers no response as to whether all segments have been received,
or whether the EOF has been received.

Automatic Repeat Query

If the underlying transport layer is not reliable, then CFDP can be run in Acknowledged Mode.
Multiple ARQ strategies (or retransmission strategies as the specification names them) are de-
fined and can be chosen from or even switched between to fit the exact need of the mission.

In Acknowledged Mode, Lost Segment Detection procedures monitor the PDUs as they arrive
and are stored. Different detection modes are defined, but the main distinction is whether NACKs
are sent immediately upon detection of a missing PDU, or whether they are accumulated and
deferred until a later moment.

Every NACK PDU contains a file scope defined by a starting and ending offset. Following
this scope declaration is an array of ranges that indicate which segments of the file are missing,
as illustrated in Figure 2.13. Upon reception of a NACK, the sending entity can retransmit the
indicated ranges.

Figure 2.13: Contents of a CFDP NACK. The NACK includes a set of ranges that
indicate which segments of the file are still missing.

Store and Forward

Class 3 and Class 4 describes protocols where waypoints collaborate to perform file delivery. This
is necessary when the source and destination entities can not communicate directly. This could
be because the communication chain depends on multiple links that are available at different
times.

Delivery via waypoints is achieved by using a store and forward strategy. An example is
shown in Figure 2.14. The original source entity will first transfer a file to a proxy entity. It will
then request that the proxy entity transfers the file to the destination entity. The proxy entity
will transfer the file to the destination entity. In acknowledged mode, the destination entity will
respond with a ACK to the file transfer, and the proxy (or multiple proxies in a chain) will
propagate this indication of completion back to the original source entity.

32 CHAPTER 2. BACKGROUND

Figure 2.14: Illustration of the store and forward concept. A proxy entity stores a file
and is requested to forward it to a destination entity.

An important property of this system is that the chain of waypoints is not required to be
connected all the way from end to end at any moment. Files can be stored for a period of time
and forwarded when a connection to the next waypoint has been established. This may be after
the connection to the previous waypoint has disappeared. This is also illustrated in Figure 2.14,
where the proxy entity must wait for the destination entity to be reachable, and then wait for
the source entity to be reachable once again.

2.7.5 M6P File Transfer
NA provides file transfer capabilities for their M6P platform, based on the file system described
in Section 2.6.3.

Each M6P subsystem hosts a file transfer service that listens for CSP packets on CSP port
10. The services respond to a number of file requests. The available commands are described in
the following sections.

file info

A file info request returns file metadata. The file is specified by a file ID. The following informa-
tion is returned on a successful response.

• File ID : ID number of file being requested.

• Last entry ID : most recently written entry (log file).

• Total entries: number of entries available to be requested.

• Cell size: byte size of the memory region holding one entry.

• Used cells: number of cells that are being used.

2.7. FILE TRANSFER PROTOCOLS 33

• Max cells: total number of cells available.

• Sector quantity : number of sectors allocated for the file.

• Sector size: byte size of each sector.

• File type: Can be a LOG or STATIC type.

• File name: ASCII file name.

A file listing can be constructed by requesting file info for a range of file IDs.

file clear

A file clear request removes the contents of existing entries. It will reset a LOG file, and discard
the data of a STATIC file.

file format

A file format request prepares a STATIC file for writing. It will allocate a specified number of
entries with a specified entry data size.

The entries are allocated in the memory region of the file specified by its file ID. The specified
file must have enough space to hold the specified number of entries. The 6 byte entry overhead
must be considered when requesting a format.

When uploading, the entry size is limited by the size of the data field in a CSP packet.

file check

A file check request provides information about the condition and progress of a STATIC file.
A file can be checked for data integrity or for presence of data. The former can detect data
corruption, and the latter is useful for checking which parts of a file still need to be written to
or be transferred.

The response contains a bitmap that encodes the status of the requested entry range. Each
bit corresponds to one entry. A bit value of 0 indicates bad integrity or no data presence, while
a bit value of 1 indicates good data integrity or data presence. Checks on large files must be
split into multiple requests in order to fit the returned bitmaps into individual CSP packets.

file download

A file download request initiates a download of a range of entries from a specified file. The
request specifies a period which determines the sending frequency. A maximum duration for the
whole transfer is also specified. Additionally, the maximum data size of the data packets must
be specified, and is limited to the MTU of the CSP network.

A successful request is acknowledged with a response that confirms the requested file ID.
After a one second delay, a stream of data packets is sent. The stream of packets stops when the
whole range of requested entries has been sent, or when the specified duration has timed out, or
when a cancel request is received.

The file stream is made up of a series of stream packets, which contain a header and data
blocks, as illustrated in Figure 2.15.

The header encodes which file that the stream originates from, the ID of the first entry in
the stream packet, and optionally the byte offset of the first entry in the stream packet.

The data field of the stream packet is constructed from blocks that contain entries. Each
block has a length field that encodes the length of the block. The block data field contains an

34 CHAPTER 2. BACKGROUND

Figure 2.15: Format of a stream packet. The header encodes which entries are being
sent and which file that they come from.

entry cell, complete with CRC field, length field and data. The data field of the stream packet is
completely filled with blocks as long as there are more entries to be transferred. This results in
entries being fragmented, and blocks containing partial entries. When an entry is fragmented,
the remainder of the entry is sent as the first block of the next stream packet. The first entry
byte offset field is then set appropriately to indicate that the first block is the remainder of a
fragmented entry.

Entries that fail to be read are indicated with error blocks. These blocks have a fixed size
and are distinguish from ordinary blocks by their length field being set to 0xFF. The error blocks
contain a single byte error code.

The received packets are not acknowledged, meaning that this is an unreliable form of transfer.
After having received a stream of packets, it is recommended to inspect the integrity of the
received data. Corrupt and missing entries can then be requested with a new file download
request for the appropriate range.

This form of ARQ is similar to the the ones used in KubOS and CFDP.

file cancel

A file cancel request aborts an ongoing download. This request is useful for situations where
an incorrect download has been requested. Whole satellite passes could go wasted if a wrong
download was unable to be cancelled.

file upload

A file upload can only be performed for a STATIC file.
The target file must be formatted with the exact entry size and amount of entries of the

source file. When a file has been formatted it will readily accept uploaded data, there is no need
to explicitly request an upload.

File data is sent in stream packets, like in Figure 2.15. In contrast to the download procedure,
the data block in the upload stream packets may only contain the data field of the entry cell.
Only one entry block may be put in each stream packet, and the blocks may not be fragmented.
This means that the target file must be formatted with an entry size that can fit within a single
stream packet.

After having transmitted all entries, file check requests can be used to determine whether
any entries were lost. Lost entries can then be transmitted.

Part II

Design & Implementation

35

37

This part contains details of the design and implementation of the OPU payload and of a
FT system.

Contributions

The work contributing to this thesis is listed below:

• Specification and design of BOB hardware for the OPU payload (Section 4.1.4).

• Design and complete implementation of a FT system (Chapter 5).

• Design and implementation of a Command Line Interface (CLI) program for payload in-
terfacing (Section 6.4).

• Design and implementation of a shell service for the payloads (Section 6.4.2).

• Design and implementation of TFTP module, which is used in comparison to measure the
performance of the FT system in Section 6.6.

Proposed designs are presented in the following sections. Software implementations are kept
within a Git repository [20]. The software implementation amounts to 10308 lines of C code
produced for this thesis. Specification and design files for hardware are included as appendices.

38

Chapter 3

Requirements

This chapter outlines the main design requirements relevant for this work. The requirements are
sourced from HYPSO mission design documents.

The HYPSO project maintains a central requirements document titled Requirements HSI
SmallSat [21]. This document contains mission objectives, mission requirements and system
requirements for the OPU payload.

Data budgets for the SDR payload are acquired from a SDR-DR-001 System Design Report
document [22].

3.1 Satellite Bus Requirements
The HYPSO project is committed to using the M6P CubeSat platform from NA. The mission
requirements state:

IF-001: The payload shall comply with NanoAvionics mechanical and software ICD.

This requirement necessitates the use of the CSP network stack and CAN-bus protocol on
the HYPSO payloads. A result of this is that the FT system must be implemented on top of the
CSP network stack.

3.2 Downlink Requirements
The HYPSO mission requires downlink capabilities for different types of files. The National
Aeronautics and Space Administration (NASA) model for data products in remote sensing is
used to denote different types of data sets [23]. The HSI mission requirements state:

MS-0-011: Shall downlink 1 hyperspectral image in L1A data format containing
detectable optical signatures (Chl-a, CDOM etc.) to be processed on ground.

MS-0-012: Should downlink 1 operational hyperspectral images in less than 3 hrs
after successful onboard dimensionality reduction, classification and target detection
with certainty of 10 % of positive optical signatures (Chl-a, CDOM etc.) to be
ground truthed.

M-2-018: L1A data shall have no more than 2234 frames and be less than 422.15 MB.

M-2-019: Operational data should be less than 34.27 MB.

39

40 CHAPTER 3. REQUIREMENTS

The two types of HSI data that are mentioned are:

• L1A data, which consists of image data. The image may have had its pixels binned to
produce a lower resolution, and may be compressed. Timing and attitude data are also
appended. According to requirement M-2-018, the L1A data set may not be larger than
422.15 MB.

• Operational data, which corresponds to L4 data. These data sets are heavily processed and
compressed, and will only contain the information that is most relevant to the operational
situation. According to requirement M-2-019, the operational data set may not be larger
than 34.27 MB.

Other files such as telemetry data and output logs from services must also be downloaded.
The mission requirements state:

MS-0-014: Shall downlink house-keeping telemetry data for at least 1 pass per day.

M-2-026: S/C shall communicate to ground and downlink house-keeping telemetry
data of up to 200 kb for at least 1 pass per day.

From the perspective of a FT system, the transfer of an image file is the same as the transfer
of a telemetry file or log. The image files are likely to be of a larger size and therefore take longer
to transfer. Requirement M-2-026 suggests a size for telemetry data that is significantly smaller
than any of the image data sets. By designing the file transfer system to handle image files it
should also be able to handle smaller files.

The SDR payload performs radio measurements. The SDR System Design Report [22] states
a secondary mission objective:

SDR-SMO-1: To measure downlink channel in UHF using sensor node antennas.

These measurements produce relatively large amounts of data. The data must be downlinked
in order to be analysed. The SDR data budget estimates the size of various measurement files
[22], the largest of which is a global heatmap. Two examples of files are:

• Same band heatmap and stats in Arctic: 22.75 MB

• Same band global heatmap and stats: 136.37 MB

3.3 Uplink Requirements
The HYPSO mission also requires uplink capabilities. Mission requirements state:

MS-0-013: Shall enable flexible mission planning & scheduling and subsystem up-
dates through successfully integrated uplinked mission data, FPGA programming
logic and codes.

M-1-012: Shall incorporate uploaded mission data prior to imaging/operations that
includes updated commands (TT&C), reprogrammed code, FPGA programming
logic, schedulers, parameters, radiometric and geometric coefficients

M-2-015: Mission plan data and TT&C shall be updated on-board through up-
linked data in the same pass in minimum 5 min prior to the observations are made

3.4. QUALITY REQUIREMENTS 41

SBUS-3-017: S/C software & scheduling (including payload code) shall be open for
updates (mission operations; change in objectives; bug fixes) and upgraded (func-
tionality and efficiency) after launch.

Requirements MS-0-013, M-1-012 and M-2-015 state that mission plan and operations
scheduling information must be uploaded to the satellite. Requirements MS-0-013, M-1-012,
and SBUS-3-017 indicate that it must be possible to deploy software upgrades to the HSI
payload, which means that new software must be uploaded to the satellite.

These requirements specify that a FT system must have the capability to transfer files from
the ground to the satellite.

M-2-014: Nominal ground station for uplink and downlink shall be NTNU Trond-
heim and 2 additional ground stations for downlink shall be KSAT Tromsø and
Svalbard

Requirement M-2-014 states that multiple ground stations should be able to downlink data
from the satellite. This is requirement for the HYPSO communication network. As long as the
communication network is maintained as a single CSP network, the requirement should not affect
the design or functioning of the FT system.

The SDR System Design Report lists a secondary mission objective:

SDR-SMO-4: The system shall allow for update in flight.

In addition to SDR-SMO-4 requiring the SDR payload to be able to receive software up-
grades, it must also be able to receive python scripts for each new GnuRadio experiment.

3.4 Quality Requirements
In order to meet all top level mission objectives, time restrictions are introduced. The mission
requirements state:

M-1-015: L1A data product shall be downlinked in less than 24 hrs and be ground
truthed

M-1-016: Operational data shall be downlinked and ground truthed in less than 3
hrs

The requirementsM-1-015 andM-1-016 are fulfilled by designing a file FT that can transfer
files at a sufficient data rate. The primary factors are the data rates of the individual commu-
nication links in the CSP network. Packet overhead introduced in the FT system will further
decrease the effective data rate.

There are no lower bounds on how fast the upload routines for software upgrades are required
to be. Requirement M-2-015 suggests that mission plans and Telemetry, Tracking and Com-
mand (TT&C) must be uploaded in the same pass. The required effective uplink speed therefore
depends on the size of the mission plan data and TT&C.

The SDR mission documents do not place any restrictions on downlink or uplink time [22].

42 CHAPTER 3. REQUIREMENTS

Chapter 4

Payloads & Communication
Architecture

This chapter details the HYPSO payloads and supporting communication architecture. Some of
the details are results of work performed in this thesis, such as the BOB in Section 4.1.4, and
configuration of PetaLinux in Section 4.1.5.

4.1 Onboard Processing Unit
A part of the work for this thesis has consisted of configuring and installing the OPU system, as
well as specifying and designing hardware for the OPU. As illustrated in Figure 1.3, the OPU
payload encompasses the HSI and RGB imagers, as well as BOB and a PZ System on Module
(SoM) (from AVNET) [24].

4.1.1 Imagers
The hyperspectral imager is constructed from optical parts from Thorlabs and Edmund Optics
[5], and digital parts from Imaging Development Systems (iDS). The RGB imager is an integrated
COTS camera from iDS.

The HSI camera is developed by Prof. Fred Sigernes at The University Centre in Svalbard
(UNIS) and is produced with COTS sensor and optics. Some of the mechanical parts are man-
ufactured by the SmallSat Lab. The image sensor is an UI-5260CP-M-GL system from iDS. A
prototype of the HSI imager is depicted in Figure 4.1.

Figure 4.1: Engineering model of HSI camera. The gray box to the very left is a CMOS
image sensor from iDS. The optical parts include lenses and a diffraction grating from
Edmund Optics, and adaptors, mounting parts and a slit from Thorlabs [5].

The HSI imager has been selected to have a Gigabit Ethernet interface. Development and
testing were carried out on a variant that had an Universal Serial Bus (USB) interface, but was

43

44 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

found to be too slow to transfer sufficient amounts of data. The image resolution in the direction
of the push broom sweep is directly linked to the Frames Per Second (FPS) captured. In order
to achieve a high enough FPS, the USB camera was changed to one with a Gigabit Ethernet
interface, but still using the same image sensor.

The decision to change the HSI camera impacted the design of the BOB, as detailed in
Section 4.1.4.

The auxiliary RGB camera consists of a UI-1250LE unit from iDS. The selected RGB camera
has an USB interface.

4.1.2 PicoZed System-On-Module
Upon joining the project, the AVNET PZ SoM had already been selected as a computing unit
for the OPU. This unit is a so called SoM, meaning that it is a partially integrated hardware
system that is intended to be used as a module in a larger system.

The PZ SoM is based on a Zynq-7000 System on Chip (SoC) from Xilinx. This SoC combines
a Processing System (PS) part with a Programmable Logic (PL) part. The PS part contains a
dual ARM core. The PL part contains a generous amount of Look-Up-Tables (LUTs), Flip-Flops,
adder circuits, block Random Access Memory (RAM) units and Digital Signal Processing (DSP)
blocks.

The PL on the Zynq-7000 SoC is an instrumental part in implementing the image processing
techniques that the HYPSO mission requires. Without the hardware acceleration that the PL
provides, the HSI data can not be processed and compressed at a fast enough speed to fulfil the
mission requirements.

Figure 4.2: PicoZed System-on-Module from AVNET.

Memories

The PZ SoM has two non-volatile memories. It is equipped with a Cypress S25FL128S chip and
a Micron MTFC4GMDEA-4M chip [24].

The S25FL128S chip is a 128 Mb NOR flash device, while the MTFC4GMDEA-4M is a 4 GB
NAND Embedded MultiMediaCard (eMMC) flash device. The smaller NOR flash is interfaced
with Quad-SPI (QSPI), while the eMMC NAND flash is interfaced with a standard SD controller.
Both of these have internally managed ECC that can correct single bit errors.

4.1.3 ZedBoard Development Kit
Development of OPU software has primarily been carried out by testing on a ZedBoard devel-
opment kit from AVNET. This kit contains a Zynq chip, similar to the one on the PZ SoM,

4.1. ONBOARD PROCESSING UNIT 45

with only a few differences. It offers the same interfaces as the PZ SoM, but makes them more
available by having connectors for every interface. The ZedBoard development setup is depicted
in Figure 4.3.

Figure 4.3: ZedBoard development kit used for testing OPU software.

4.1.4 Breakout Board
When building a system with SoM components, it is necessary to have a BOB or carrier card
which provides a mechanical and electrical connection to the SoM. The BOB must provide power
to the SoM.

The work performed for this thesis includes the specification and design of functions and
interfaces that the BOB requires, as well as coordination of the implementation and production
of the BOB. The specification and design is considered a contribution of this thesis, while im-
plementation of the Printed Circuit Board (PCB), and logistics of manufacturing was handled
together with NTNU SmallSat Lab staff.

A previous version of the BOB was used as a baseline, and only the differences from the
baseline version are outlined in this thesis. The specification and design documents for the new
BOB are included in Appendix B.

Interfaces

As illustrated in Figure 1.3, the OPU requires a BOB to connect the PZ SoM to the two imagers,
and to the rest of the satellite via the PC. The PZ SoM has three Micro Headers that carry all
interfaces. These headers slot into a corresponding set of connectors on the BOB.

The HSI camera requires the BOB to have an Ethernet connection, and the RGB camera
requires the BOB to have an USB connection. Both of these were added in the new design.

A CAN bus transceiver had to be added to facilitate the connection to the M6P payload
CAN-bus, CAN2. A few CAN transceiver chips were assessed. The chip MCP2562 was chosen
because it is able to interface the Zynq-7000 SoC’s 1.8 V logic pins directly.

The Pulse-Per-Second (PPS) timing signal that is provided by the GPS module on the M6P
platform is required to achieve time synchronisation of high accuracy. A General-Purpose IO
(GPIO) header was added to the BOB to connect to the PPS signal to the SoC. The PPS signal
can be used by the Network Time Protocol (NTP) in Linux to perform the clock synchronisation.

46 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

The BOB also holds a SD-card which provides additional long-term storage memory. A SD
controller chip was present on the previous BOB version, and is kept unchanged. Together with
the PZ SoM, the OPU contains three different non-volatile memories:

• 128 Mb NOR Flash over QSPI.

• 4 GB NAND Flash, eMMC over SD.

• A SD-card, with 32 GB storage.

Removing Integrated Image Sensor

The previous version of the BOB had the additional responsibility of housing the image sensor
of a previous version of the HSI camera. Since the decision to use the HSI V6 camera, the image
sensor is integrated into the camera structure, so the next version of the BOB is not required to
house the image sensor.

By removing the image sensor, a sizeable area of the PCB was freed up, and two voltage
regulators could be retired, since their only purpose was to supply voltage levels that were only
needed by the image sensor.

Power Supplies

Various components on the PZ SoM require a voltage level of 5.0 V, and the Multiplexed IO
(MIO) banks in the Zynq-7000 SoC require voltages of 3.3 V, 1.8 V.

The BOB receives unregulated battery voltage VBAT from the EPS. This voltage depends
on the level of charge in the EPS battery bank, and varies between 6.0 V and 8.4 V [25]. The
voltage is regulated down to a stable 5 V, which in turn is used to synthesise the required 3.3 V
and 1.8 V.

With the new version, the addition of using the Gigabit Ethernet transceiver on board the
PZ adds a requirement of supplying 1.2 V and 1.0 V to the PZ SoM. The two voltage regulators
that were made obsolete by removing the old image sensor have been repurposed to produce the
voltages for the Gigabit Ethernet transceiver instead.

The HSI camera requires a input supply of 12 V - 24 V. Since this is higher than the main
input voltage to the BOB (VBAT), it must either be boost regulated from the VBAT, or acquired
from the EPS. In order to avoid another power synthesis chain on the BOB, an additional input
connector for a 12 V supply was added. The EPS is then configured to output a 12 V channel,
which is also used for the BOB.

4.1.5 Operating System

The Zynq-7000 SoC has dual ARM cores that can run a conventional operating system. This is
necessary to run the CSP network stack.

The OPU payload will run a Linux based operating system. The operating system was chosen
during spring 2018, during a time when much of the initial work with the ZedBoard development
setup was being performed.

There are a few reasons why a Linux based operating system was chosen. The iDS cameras
that are a part of the HSI payload require a proprietary driver, which is only available for
Windows, Linux x86 and Embedded Linux ARM.

4.1. ONBOARD PROCESSING UNIT 47

Benefits of Using Linux

In an enquiry into the current use of Linux in spacecraft flight software, Leppinen outlines a few
benefits and drawbacks [26]:

• The Linux code base is considered very reliable because of its wide adoption and high level
of revision.

• There is a large community of developers for Linux, making it easier to find developers to
recruit for the project.

• Parts of the testing can be carried out inside the development environment, as long as the
development machines run Linux.

• Ready made libraries, protocols and applications can be selected from a large collection of
free software and quickly integrated into the system.

Drawbacks of Using Linux

Since the Linux system is being used for so many different applications, it has grown to become
a relatively complex system with a large number of customisation parameters. The large number
of customisation options is what allows Linux to be used for so many different applications, but
can also cause problems because there are more components to be tested, certified and debugged.

Leppinen also mentions a few drawbacks [26]. Linux has not been designed to be a Real-
Time Operating System (RTOS). However, the FT system does not have any hard real time
requirements.

The closest thing to a real time requirement for the OPU is the timing and control of the
HSI imager, which is necessary to achieve a desired FPS when capturing frames. This task is
not considered in this thesis.

With CLI access to a Linux system, and because of the large number of customisation
parameters, it is possible to put the system into an unrecoverable state. It is difficult to freeze,
lock or remove all of the extensive Linux features that makes this possible, but different strategies
can be put in place to mitigate the risk and effect. Fallback boot images can be installed to allow
the system to boot into a safe mode if the working copy of the boot image becomes misconfigured.

Linux System

A few variants of Embedded Linux for the Zynq-7000 series were assessed before PetaLinux was
chosen. PetaLinux is not a Linux distribution in itself, it is a framework for customising and
building a distribution. The framework is maintained by Xilinx and provides Linux support for
several of their architectures, including the Zynq-7000 SoC, Zynq UltraScale and MicroBlaze
[27].

The PetaLinux framework provides the following components for the OPU system:

• A First Stage Boot Loader (FSBL) for the Zynq architecture.

• The popular Second Stage Boot Loader (SSBL) U-BOOT.

• Scripts for configuring and cross-compiling the Linux Kernel.

• Libraries and applications for Linux, such as busybox and canutils.

48 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

PetaLinux is based on the Yocto framework. The Yocto project maintains a library of recipes
for configuring and building kernels, libraries and applications. These recipes are combined into
a project, which is interpreted by the build tool BitBake to perform the configuration, compiling
and integration of the components into boot images and root file systems. PetaLinux works as
a wrapper around Yocto, adding additional recipes that are required by the Xilinx architectures.
For more information on PetaLinux, and how to use it, see [27].

Boot sequence

The Zynq holds a small section of on-chip Read-Only Memory (ROM) that contains startup
code. The code initialises Central Processing Unit (CPU) states, and searches for and loads the
initial boot image. The boot image is usually a FSBL which performs board-specific peripheral
initialisation, before handing over execution to a SSBL.

The FSBL can be executed directly from flash if it is located on a QSPI flash device, such
as an SD-card. Otherwise, the image is first loaded into the On Chip Memory (OCM) before it
can be executed [28].

When using PetaLinux, the FSBL is automatically generated, and U-BOOT is used as SSBL.
The SSBL loads the Linux kernel into main memory and initiates its execution. The FSBL is
compiled into a BOOT.BIN file, while the SSBL and Linux kernel image is compiled into a single
image.ub file. Further details on booting the ZedBoard and PZ SoM can be found in [27].

File systems

The Zynq BootROM code is hard coded to read the first partition on the selected boot device
as FAT. The boot images are therefore required to reside on a FAT file system. The boot device
can be selected by setting a hardware switch on the PZ SoM.

Because the OPU payload runs Embedded Linux, a Linux compatible file system is being
used to store the root file system.

In the current configuration, the Linux root file system resides on a ext4 partition on the
SD-card, while the Linux kernel is stored in a FAT32 partition on the SD-card. The SD-card
provides a large amount of storage for program files and image files. The ext4 file system is
being used because it is the default file system in the petalinux build system.

The primary reason for choosing the default file system was to avoid complications. Features
such as journaling and metadata checksums suggest that ext4 is a good choice for reliable
operation. The choice of file system could be further justified by comparing more file systems
features.

An additional feature that may be desirable is increased redundancy in the form of ECC. The
ext4 file system does not offer the ability to store files with ECC, but the underlying memory
technologies do. The eMMC and the NOR Flash chips have integrated ECC, providing some
level of protection against bit flip errors.

The file system configuration is subject to change, as the eMMC on the PZ and integrated
memories in the Zynq offer storage that is so far not utilised.

Redundant boot images on separate memory technologies will reduce the risk of critical
failures. Boot image management and fall-back mechanisms have not been studied for this
report, but is a point of interest that the HYPSO project will look into.

4.2 Software Defined Radio Payload
No work has been performed on the SDR system in this thesis. A short description of the system
is still included because the system is intended to use the same FT system.

4.3. COMMUNICATION ARCHITECTURE 49

The SDR payload is comprised of a TOTEM module and an UHF antenna system. The
TOTEM SDR system from Alén Space combines an UHF frontend with a SDR processing system
[29]. It is acquired as a complete hardware unit.

The UHF frontend card can be tuned to operate between 70 MHz and 6 GHZ. The UHF
radio consumes 160 mW when receiving, and up to 3 W when transmitting [29].

The processing system is equipped with a similar Xilinx Zynq-7000 SoC as the one used in
the OPU. This SoC also runs Embedded Linux. The TOTEM uses CAN-bus to connect to the
CAN2 bus, and must also use the CSP network stack on top of the CAN protocol.

The sampled, digital radio signals are internally processed by GnuRadio, which is a SDR
framework. It is implemented in C++, but can interpret Python scripts to create and configure
flow graphs.

The FT system that is produced in this thesis can be used to upload these GnuRadio files,
letting the SDR system be upgraded as new experiments are designed.

4.3 Communication Architecture
The HYPSO mission employs a communication architecture based on the CSP network stack.
In this section, a high level model of the network is described. A top level representation of the
network is illustrated in Figure 4.4.

The HYPSO communication architecture uses CSP for the space segment and ground segment
in order to interface with NA components.

The space segment and the ground segment connect to the same conceptual CSP network.
The subsystems inside the spacecraft are connected via various data interfaces, allowing any two
of the satellite subsystems to communicate with each other. The ground segment components
are primarily connected via various protocols running on top of IP/TCP. The space segment and
the ground segment are connected via a radio link that is established by one of several ground
stations.

A radio link can only be active while the satellite is within LOS of a ground station, meaning
that the space segment and the ground segment are only periodically and temporarily connected.

During an active pass, the two networks connect and allow the whole network to be treated
as a single uniform network. This distributed topology allows any node to communicate with
any other node that is connected to the network, even when one node is in space and another is
on the ground.

4.3.1 Space Segment
As mentioned, the M6P subsystems and HYPSO payloads are connected via a CSP network. As
illustrated in Figure 4.4, the subsystems are physically connected via two separate CAN-buses.
One CAN-bus (CAN1) connects all the original M6P subsystems: EPS, FC, PC and UHF. The
second one (CAN2) connects the payloads to the PC. The S-Band radio is connected directly to
the PC over a Serial Peripheral Interface (SPI) interface. The roles of the NA subsystems are
described in Section 1.2, and more details can be found in Appendix A.

The partition of the space segment network into two CAN-buses is justified with the following
reasoning. From NA’s perspective, having a dedicated CAN-bus for the payloads allows them to
isolate their subsystems from whatever system the customer connects to the satellite. Instead
of having to connect the payload to multiple of their systems, they only have to customise and
maintain the interfaces between the PC and the payloads. Additionally, it may prevent the
original M6P subsystems and the payload subsystems from blocking each other with data traffic.
For example, the imaging payloads will have large amounts of data that must be transferred to

50 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

Figure 4.4: High level architecture of the communication network inside the satellite,
and between the satellite and ground operators.

4.3. COMMUNICATION ARCHITECTURE 51

the PC, which thereafter is forwarded directly via the S-Band radio. If the two CAN-buses were
merged, the transfer of the image data would cause congestion between the M6P subsystems.
With this configuration, the payload may sustain a high data rate via S-Band, while other
subsystems may still communicate over CAN1 without obstruction.

4.3.2 Ground segment
The ground segment consists of one or more ground stations, a database, and one or more
operators.

There may be several ground stations in the ground network. The operator must direct
telecommands to the currently active ground station such that network traffic can be forwarded
to the space network. NTNU SmallSat Lab intends to operate a ground station from NTNU.
Additionally, there are plans to utilise ground stations from KSAT.

Each ground station must be equipped with antennas and transceivers for a UHF link and
a S-Band link. NA provides Mission Control Software (MCS) which acts as a gateway by main-
taining network connections to operators and a telemetry database. The precise details of this
architecture are still not available at the time of writing.

A satellite operator may be a human operating a network connected computer, or a computer
program running automatic procedures. Either way, an operator node must connect to the MCS
gateway. The operator node can communicate CSP packets directly on the network through the
gateway, allowing TM/TC to be exchanged. Since the operators can connect to the MCS over
the internet, they do not need to be geographically present at the ground station.

A database is included in this network to store all Telemetry (TM) received from the satellite.
All downlinked TM will be forwarded to the database, even when it was intended for an operator
node. Consequently, all payload data that is downlinked will be stored in a database.

The database provides operational safety by backing up all downlinked data. Storing all data
in a database allows the operator and end user to query historical data, and to replay stored
records. By being stored in a cloud storage service, the data can be distributed to multiple
end-users.

4.3.3 nanoMCS and Flatsat
NA provides a CLI application for the Windows operating system called nanoMCS. This program
acts as a CSP node and can connect to the CSP network in several ways. It can connect directly
to a CAN bus by using a CAN-to-USB adaptor. It can connect to MCS servers over a TCP
connection using the NanoMsg-Next-Generation (NNG) protocol 1.

The nanoMCS software can also be used to connect to an engineering model of the M6P
platform which is hosted by NA. This engineering model is called a flatsat and is used for early
development of payloads. The intention of having a flatsat available for development is that
software can be tested at a much earlier phase. The architecture when connected to the flatsat
is illustrated in Figure 4.5.

1https://github.com/nanomsg/nng

52 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

Figure 4.5: Architecture of the CSP network that connects the flatsat engineering model
to payloads and nanoMCS at SmallSat Lab.

Chapter 5

File Transfer System

This chapter details the design and implementation of a file transfer system for the HYPSO
payloads.

The file transfer system that has been designed and implemented for this thesis is referred to
as the FT system. It should not be confused with the M6P file transfer system, which is installed
on the M6P subsystems and provided as a specification.

M6P Foundation

The FT system which is detailed in this chapter is designed by the author and the implementation
is entirely produced by the author.

However, the M6P file transfer system is used as an inspiration and foundation for designing
the FT system. This is done for a number of reasons:

• Using an existing specification as a basis rather than creating a new one saves development
time.

• By being compliant with the NA file transfer specification, the same file transfer utilities
can be used for the M6P subsystems.

• The M6P file transfer system can be used to verify the FT system that is made for the
HYPSO payloads to some degree.

• The NA file transfer specification has flight heritage.

Consequently, the FT system borrows from concepts described in Section 2.6.3 and imple-
ments the procedures described in Section 2.7.5.

Although the FT system is separate from the M6P file transfer system, the two are compatible
to a certain degree. The FT system is able to interface the M6P file transfer services, but does
also provide some features that are not supported by the M6P file transfer system.

5.1 Service and Client Architecture
The request-response pattern is used to implement the FT system, as is typical for CSP appli-
cations. A service receives requests from clients, performs the requested tasks, and returns a
reply with data or a status indication. A File Transfer Service (FTS) is intended to run on each
payload, while a File Transfer Client (FTC) is integrated on the ground operation nodes.

The term FTS is used to refer to the service that continually runs on then payload, while
the term FTC is used to refer to an application that requests file operations and file transfers.

53

54 CHAPTER 5. FILE TRANSFER SYSTEM

The architecture depends on the CSP network described in Section 4.3. The underlying
network layers are transparent to the FT system, so the architecture can be simplified to the
architecture shown in Figure 5.1.

Figure 5.1: Service and client architecture. The underlying CSP network is transparent
to the service and client.

The FT system is implemented such that the FTS stores as few states as possible. This is
done to limit the complexity of the code that goes into the payload, in an effort to minimise bugs
that are difficult to debug and correct. It is achieved by having the transfer state being stored
in formatted files, and by making the FTC perform as much decision making as possible.

5.2 File Organisation

File management on the HYPSO payloads include the formats in which files are transferred, and
the organisation of different types of files.

5.2.1 File Format

During transmission, a file is fragmented into segments that are reassembled at the receiving
node. Segments that arrive in-order can be reconstructed into the original file by concatenating
one segment’s data to the previous. If the segments do not arrive in-order, then the segments
must be stored until enough information has arrived to use them in the reconstruction.

The approach taken here adds a sequence number to each segment. The sequence number is
used to place the segment at the correct offset in a destination file. A custom file format is used
to store the incoming segments during a transfer.

Scope

A formatted file is only intended to be used by the FT system. Other modules will not and can
not use the formatting metadata. A file should only be transformed into a formatted file when
it is to be transferred over the FT system.

The metadata that is added to create a formatted file encodes the information that is neces-
sary for keeping track of a transfer.

The M6P file system defines the entry structure in Listing 1 as a file segment. The entry
data, CRC and length fields combined are defined as a cell. These cells are used as segments
when sending file data in the M6P file transfer system, and this is adopted for the FT system.

The CRC field and length field in the cell indicate whether an entry is present and valid.

5.2. FILE ORGANISATION 55

Layout

Regardless of which layout is used, the formatted files can be created by modifying the original
file in-place, or by creating a new file with copied data.

Two memory layouts, (1) and (2), are considered for the formatted file.
The first layout has entry metadata interleaved with the entry data (1). It is then easy to

extract an entry with data and metadata, as the memory region of the cell can be copied directly
into a packed C structure.

When interleaving the metadata (1), the data offsets in the original file do not match the
data offset in the formatted file. Every entry is shifted some amount to the right. A consequence
of this is that if the formatted file (1) is created in-place, a large amount of copy operations is
required to perform all the shifting. This must also be done if converting from a formatted file
back to the original file in-place.

The alternative is to combine all of the metadata and append it at the end of the original file
(2). The file can be converted back by truncating the end of the file. The layout with appended
metadata (2) is therefore not required to shift the entry data.

A drawback of modifying the original file in-place is that the original file can be corrupted if
an unexpected interruption occurs while it is being formatted. To prevent this, the contents of
the original file should be copied to a new, separate formatted file. This requires more storage
space, as two copies of the original data must be stored, but it is safer.

See Figure 5.2 for a visual comparison of the two.

Figure 5.2: Comparison of layout and footprint of interleaved metadata and appended
metadata. The first grey field represents a file header, while the thin grey fields represent
metadata for each successive entry.

The formatted file with interleaved metadata (1) is chosen because it provides a simpler
implementation of reading and writing entries when metadata and corresponding data is chunked
together into a struct. The data is copied to a new file to avoid corrupting the original file,
meaning that the appended format (2) would also need to copy each of the entries. Shifting
the data at the same time as copying it (1), does therefore not cause a performance loss when
compared with the alternative (2). The chosen layout (1) is shown in Figure 5.3.

For the remainder of this report, the term formatted file will mean a formatted file with
interleaved metadata (1).

5.2.2 File System Module
The C module fs has been implemented to provide functions for handling formatted files. The
implemented functions are shown in Figure 5.4.

56 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.3: Memory layout of a formatted file with interleaved metadata (1). A file
header stores information about the size and number of entries.

• The function fs_format_file() handles creation of a formatted file.

• The functions fs_get_file_header() and fs_write_file_header() retrieves and writes
the header section of a formatted file.

• The functions fs_write_cell(), fs_write_entry() and fs_clear_file() handle writing
and clearing of data in formatted files.

• Entries and cells are read with fs_read_cell() and fs_read_entry().

• Transformations between original file and formatted file is handled by fs_prepare_file()
and fs_extract_file().

• The presence and integrity of entries is checked with fs_check_cell(), fs_check_entry(),
fs_check_file() and fs_print_bitmap().

The modules use the fstream class of functions to modify the formatted files. If the layout of
the formatted file is ever changed this module can be reimplemented without significant changes
to its interface.

5.2.3 File Mapping Module
In order to provide a compatible interface for the file download and file upload procedures that
are defined in Section 5.3.5 and Section 5.3.6, a file mapping structure is defined for the FT
system. The structure is illustrated in Figure 5.5.

The file ID map is stored in a configuration file, such that the mappings persist across reboots
and unexpected shutdowns. The methods in the implemented module are shown in Figure 5.6.

• The functions fs_idmap_init(), fs_idmap_close() and fs_idmap_format() are used to
load, close or create a new mapping file.

• The mappings can be modified with fs_idmap_add_file() and fs_idmap_remove_file().

• File path can be queried from file ID with fs_idmap_get_file_path().

• Helper functions fs_idmap_open_r() and fs_idmap_open_rw() are provided for opening
a fstream to a mapped file by providing a file ID.

5.3. FILE TRANSFER 57

Figure 5.4: The fs module provides functions for creating, reading and writing formatted
files.

Figure 5.5: A file ID map that contains mappings from file ID to file path.

5.2.4 Proposed Directory Hierarchy
A file path has to be registered to a file ID before it can be used for transfers. File paths should
be kept short to avoid long registration and deregistering command packets.

The example directory tree in Figure 5.7 is proposed as a baseline for the OPU payload. It
contains various mission data, as well as a directory for upgrade files.

As mentioned in the Flight Results from the Aalto-1 Mission [30], it is recommended to
separate the file system that contains mission data from the file system that contains Linux
system files. The Linux system files should be read only, so as not to accidentally overwrite them
while modifying mission data.

5.3 File Transfer
This section describes file transfers in the FT system. The following topics are covered in order:

58 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.6: The fs_idmap module provides functions to get file path from file ID, and
to register new file ID mappings.

/
home

hypso
scripts...Often used script files

cap-hsi-buf....................Capture HSI image and buffer on PC
cap-rgb...............................Capture and store RGB image

hsi ...Captured HSI images
2019-05-25.12:30:45.dat..........................Example HSI file
2019-05-25.12:40:00.dat

rgb..Captured RGB images
2019-05-25.12:30:45.png.........................Example RGB file
2019-05-25.12:40:00.png

log
ftsDebug and error output from File Transfer Service
hsi.........................Debug and error output from HSI Service
rgb........................Debug and error output from RGB Service

upgrade....................................File patches and boot images
BOOT.BIN.......................................Example upgrade file
hypso-service.patch

Figure 5.7: Proposed directory tree for organising files on the OPU payload.

• The concept of a file stream (Section 5.3.1).

• The ARQ strategy being used (Section 5.3.2).

• Implementation details of modules (Section 5.3.3).

• Details of the transfer procedures (Sections 5.3.5 to 5.3.7).

5.3.1 File Stream
A file stream is a sequence of CSP packets that make up data in a file transfer. These stream
packets contain entries from a formatted file.

5.3. FILE TRANSFER 59

When transferring a file, the original data is first fragmented into entries. The entries are
prepended with a CRC checksum and length value to produce a cell, and then packed into a
formatted file. These entries are inserted into stream packets, as shown in Figure 5.8.

Figure 5.8: A file stream. The data of an original file is fragmented into the entries of a
formatted file. The cells of the formatted file are inserted into stream packets.

In the NA specification, a single stream packet may contain multiple (and even fragmented)
entries when downloading a file, but only a single entry when uploading a file. In order to be
compliant, the HYPSO implementation is able to receive stream packets containing multiple
(and even fragmented) entries. However, it is advised to keep the entry lengths equal to the
stream packet lengths, as to not make the fragmentation of the original file redundant.

The first entry ID field in the stream packet header serves as sequence number. Together
with the first entry ID field in the formatted file header, the sequence number can be used to
determine where in the destination file the cell should be inserted. The inclusion of a sequence
number allows entries to arrive out-of-order.

The offset field in the stream packet header is used in the case that the first entry in the
packet contains a fragmented cell which must be placed at an offset.

5.3.2 Automatic Repeat Query
The mission requirements state that file transfer must be possible (MS-0-011, MS-0-12, MS-
0-013) over the communication network provided by M6P (IF-001).

The CSP network is unreliable. CSP packets can be lost for a number of reasons:

• Communication errors in the lower layer protocols (CAN, SPI, UHF and S-Band radio).

• Congestion on links that are used by multiple users. The SDR and OPU payloads could
try to communicate at the same time.

• Buffer exhaustion, which could happen because of congestion, or because of an excessive
sending rate.

• Link disruptions, such as the sudden loss of ADCS pointing accuracy, causing the S-band
radio connection to drop out.

Retransmission procedures are therefore implemented by the FT system. The ARQ strategy
for the FT system is inspired by the M6P file transfer system.

60 CHAPTER 5. FILE TRANSFER SYSTEM

Control Message Loss

The loss of control messages, such as requests to transmit a file, is handled by timeouts that
issue retransmission of requests.

File Segment Loss

The NA documentation suggests that ARQ can be achieved by alternating between two phases.
Figure 5.9 illustrates the concept. In one phase entries are being transferred in unacknowledged
mode, while in the other phase the completeness of the file is checked. If packets were lost, it is
detected, and the missing data can be retransmitted by requesting a new file stream for a range
of entries.

Figure 5.9: ARQ strategy of the FT system, with alternating phases of transfering data
and checking file for missing entries.

This is the general ARQ strategy that is being used in the FT system.
The download and upload procedures automatically request the sending node to repeat the

entries of the file that are still missing. The download and upload procedures are similar, but
not identical since the FTC and FTS are implemented differently. The FTC will perform most
ARQ related tasks in order to keep the FTS implementation as simple as possible.

5.3.3 File Transfer Modules
The file system module from Section 5.2.2 is the basis for the FT modules. In order to limit
the scope of each module, separate modules for download and upload procedures have been
implemented.

Client

Client modules are shown in Figure 5.10.
The FTC modules implement procedures for all of the original M6P file requests, which are

also used in the FT system:

• ft_client_info() requests metadata for a specified file ID.

5.3. FILE TRANSFER 61

Figure 5.10: C modules for the FTC.

• ft_client_list() requests metadata for a range of file IDs.

• ft_client_format() requests a file to be reformatted to a new or different number or size
of entries.

• ft_client_check() requests a bitmap encoded with the integrity of the file.

• ft_client_clear() requests a file to have its entries cleared of data.

• ft_client_cancel_download() requests an ongoing file transfer to be aborted.

File ID mappings are handled by a dedicated pair of requests:

• ft_client_register() requests a mapping from a specified file ID to a specified file path.

• ft_client_deregister() requests the removal of an existing file ID mapping, if it exists.

Transformations between original and formatted files are handled by a pair of requests:

• ft_client_prepare() requests the creation of a formatted file from an original file.

• ft_client_extract() requests the restoration of an original file from a formatted file.

The following upload and download client procedures are detailed in Sections 5.3.5 to 5.3.7:

• ft_client_upload_file_formatted()

• ft_client_upload_arq()

• ft_client_upload_range()

• ft_client_download_file_id()

62 CHAPTER 5. FILE TRANSFER SYSTEM

• ft_client_download_file_formatted()

• ft_client_download_arq()

• ft_client_download_range()

• ft_client_receive_stream()

• ft_client_receive_stream_packet()

• ft_client_buffer_request()

Service

Service modules are shown in Figure 5.11.

Figure 5.11: C modules for the FTS.

On the top level, the FTS is implemented as the pthread task ft_service_task(). It listens
to a socket that accepts CSP connections, and responds to the requests received from FTCs.

All the original M6P requests are answered:

• ft_service_info() replies with metadata of a specified file, if it exists.

• ft_service_format() attempts to reformat a specified file and replies with a result code.

• ft_service_check() checks a specified range of entries in a file, and replies with a bitmap
that encodes the result of the checking.

• ft_service_clear() clears every entry in a specified file, and replies with a result code.

• ft_service_cancel_received() replies with an error code when there is no ongoing trans-
fer. Cancel requests are handled internally in the download procedure.

5.3. FILE TRANSFER 63

File ID mappings requests are handled:

• ft_service_register() performs a mapping of a specified file ID to file path and replies
with a result code.

• ft_service_deregister() removes an existing file ID mapping, if it exists, and replies
with a result code.

Transformations between original and formatted files are handled:

• ft_service_prepare() creates a formatted file from an original file.

• ft_service_extract() restores an original file from a formatted file.

The following upload and download service procedures are detailed in Sections 5.3.5 to 5.3.7:

• ft_service_receive_upload()

• ft_service_receive_stream_packet()

• ft_service_missing_range()

• ft_service_download_request()

• ft_service_send_range()

• ft_service_fill_from_formatted()

• ft_service_fill_from_unformatted()

• ft_service_buffer_file()

• pcbuf_buffer_file()

5.3.4 Transfer Modes
The following sections go into detail on the procedures that are used in the different transfer
modes.

• Direct download mode (Section 5.3.5).

• Direct upload mode (Section 5.3.6).

• Buffered download mode (Section 5.3.7).

5.3.5 Direct Download
The data path of a direct download is shown in Figure 5.12. The stream packets are addressed
directly to the FTC in the operator node. The file data is sent from the FTS and routed through
the PC before being transferred over the S-Band link. The MCS distributes the packets to the
operator node as well as backing up the traffic in the database.

The FTS is referred to as the source, and the FTC is the destination. The FTS holds the
source file, and the FTC holds the destination file.

64 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.12: Data path of the direct download transfer mode. A file download command
initates a file transfer from the FTS. The data is routed through the PC, S-Band radio
and ground station before reaching the FTC.

Service

The FTS replies to download requests with file streams.
A few procedures are used together to answer each request:

• ft_service_download_request(), which validates the download request.

• ft_service_send_range(), which sends the file stream.

• ft_service_fill_from_formatted(), which creates stream packets.

• ft_service_fill_from_unformatted(), which creates stream packets.

There is only a single type of download request, and it is answered with the download
request procedure. This procedure is illustrated in Figure 5.13.

Each download request must specify the file ID of the file that should be downloaded. The
FTS queries the fs_idmap module to check whether the file exists. An error is returned if it does
not.

The request must also include the start and end of the range of entries that should be
downloaded from the file. The FTS checks whether the specified range exists in the file, and
replies with an error code if it does not.

Once validated, the requested range of entries will be passed to the send range procedure,
which is illustrated in Figure 5.14.

The send range procedure will first fetch a CSP packet buffer. If no buffers are available,
it will sleep for a duration of time and try again. Once a packet buffer has been acquired, it
will fill it with entry data by using different procedures depending on whether the source file is
formatted or not.

The fill from formatted procedure is used to create stream packets from formatted source
files. It uses the fs module to fetch cells, and inserts them into the stream packets.

The fill from unformatted procedure is used to create stream packets from source files
that are not formatted. This function copies data directly into the stream packets, without

5.3. FILE TRANSFER 65

Figure 5.13: The download request service procedure. It validates the request before
sending a range of entires.

creating a formatted file. The procedure requires an extra parameter to determine the entry
size since the source file does not have a file header. The entry size is used to calculate the
data offsets for entries in the unformatted file. The procedure uses the pkt_sz parameter of the
download request to calculate the entry size. When inserting data into the stream packets, the
procedure simultaneously inserts a calculated CRC code and length field.

The send range procedure terminates once it has sent the last entry in the specified range.

Client

The FTC conducts the download by sending download requests and receiving the resulting file
streams.

Several nested procedures are called to perform the transfer:

• ft_client_download_file_id(), which creates a formatted destination file.

• ft_client_download_file_formatted(), which validates the formatted destination file.

• ft_client_download_arq(), which performs retransmission.

66 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.14: The send range service procedure. It creates stream packets from the
specified range of entries. It uses one of two different procedures to fill the data field of
the stream packet, depending on whether the file is formatted or not.

• ft_client_download_range(), which downloads individual ranges.

• ft_client_receive_stream(), which handles an incoming file stream.

• ft_client_receive_stream_packet(), which handles individual stream packets.

The top level download file id procedure, illustrated in Figure 5.15, will first request in-
formation about a specified source file at the source node. The requested information is used to
create a formatted destination file that the source file can be downloaded into. If the destination
file already exists, and has the correct format, it will be used as it is. This way, a transfer
that was interrupted can be continued by downloading to the incomplete formatted file. If the
destination file exists, but is not correctly formatted, the user is given a choice to reformat the
file.

5.3. FILE TRANSFER 67

The source file can be formatted or not formatted. If the source file is formatted, an identical
formatting is performed on the destination file. If the source file is not formatted, a formatted
destination file of type STATIC is created, and the entry size is decided by the FTC. The entry
size is then communicated via the pkt_sz parameter in the subsequent download requests.

When a formatted destination file has been created or validated, the download file formatted
procedure is called to perform the next stage in the transfer.

Figure 5.15: The download file id procedure prepares a formatted destination file
before requesting a download.

The download file formatted procedure is illustrated in Figure 5.16. The procedure down-
loads a formatted file from a FTS, and assumes that a corresponding formatted destination file
exists at the FTC node.

First, the FTC requests information about the formatted source file. If the formatted desti-
nation file matches the format parameters (file ID, entry size, entry number), then the download
arq procedure is run. Otherwise, the formatted destination file cannot be used to download that
formatted source file, and an error is reported.

68 CHAPTER 5. FILE TRANSFER SYSTEM

The download file formatted procedure is similar to the download file id procedure,
but will not create or reformat a formatted destination file, it will only verify that one exists.
The function is included as a separate procedure to be integrated into automatic procedures that
do not ask the user for input in the way that download file id does.

Figure 5.16: The download file formatted procedure verifies that a valid formatted
destination file exists before starting the actual download procedure.

The download arq procedure, as illustrated in Figure 5.17, is responsible for performing the
reliable transfer. It will find the first occurrence of a range of missing entries in the formatted
destination file, and send a download request for that range with the download range procedure.
For a new transfer, this will first be a request to download the whole file. After one iteration,
any entries that have been lost or corrupted in transmission will be detected as the procedure
again seeks out the first occurrence of a range of missing entries. This repeats until all entries
are transferred successfully.

The download range procedure, as illustrated in Figure 5.18, sends a download request to
a FTS and waits for a response acknowledging the request. If a successful ACK is received, the
connection is passed to the receive stream procedure.

There are two scenarios that require extra attention. The request packet and the response
packet that acknowledges the request may both get lost in transmission. In the first case, a
response will not get sent, so the client will time out and resend the download request. This

5.3. FILE TRANSFER 69

Figure 5.17: The download arq procedure requests transmission of missing entries until
a complete file has been downloaded.

repeats until a maximum number of retries have been exhausted. In the second case, the ACK
response is lost, such that the client receives one of the subsequent stream packets instead. The
client must therefore check whether it has instead received a stream packet for the file range it
just requested. If so, it can assume that the ACK response was lost, and will carry on receiving
the stream as normal.

The receive stream procedure, as illustrated in Figure 5.19, waits for the arrival of stream
packets and stores their entries into a formatted destination file. If the procedure times out while
waiting for a stream packet, or if the final stream packet in the requested range arrives, it will
terminate successfully.

Together, the described download procedures are able to reliably transfer a formatted file
from the FTS to the FTC.

70 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.18: The download range procedure, which downloads a specified range of a
formatted file.

5.3.6 Direct Upload
The data path of a direct upload is shown in Figure 5.20. The stream packets are addressed
directly to the FTS in the payload. The file data is sent from the FTC via a ground station that
routes the packets to the satellite over a connected radio link. The PC receives the packets from
the S-Band radio, and routes them to the FTS on the payload.

The upload procedures are similar to the download procedures. The FTC is now referred to
as the source, and the FTS is the destination. The FTC holds the source file, and the FTS holds
the destination file.

Service

The following procedures are used for receiving uploads:

• ft_service_receive_upload(), which validates stream packets.

• ft_service_receive_stream_packet(), which stores the contents of stream packets.

• ft_service_missing_range(), which responds to missing range requests.

When the FTS receives a stream packet it is interpreted as part of an upload procedure. The
FTS is always ready to accept file entries, but it will only store them if there is a valid, formatted

5.3. FILE TRANSFER 71

Figure 5.19: The receive stream procedure, which stores the entry data from incoming
stream packets into a formatted destination file.

file prepared to accept them. Therefore, before uploading a file, a formatted file must be created
at the FTS.

File streams are directed to the ft_service_upload() procedure, which examines the stream
packets to determine whether a formatted destination file exists.

After verifying that a formatted destination file exists, the stream packets are passed to
the ft_service_receive_stream_packet() procedure. This procedure examines the formatted
destination file to check whether it already contains the received entries. Missing entries are
inserted into the formatted destination file.

The ft_service_missing_range() procedure responds to the missing range requests, which
is a part of the upload ARQ strategy. The response returns a list of ranges that indicate which
entries of a formatted destination file are still missing. The list is used by the FTC to determine
which ranges of entries it should upload.

Client

The FTC also conducts the upload procedures.
The following nested procedures are used to upload a file:

• ft_client_upload_file_formatted(), which verifies that a formatted destination file
exists.

• ft_client_upload_arq(), which performs retransmission of missing entries.

• ft_client_upload_range(), which uploads individual ranges of entries.

The FTC is responsible for making sure that there is a valid formatted destination file at the
FTS before attempting to send file entries.

72 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.20: Data path of the direct upload transfer mode. The user transmits file data
to the payload. The data packets are routed through the MCS and S-Band radio. The
PC performs the final routing before the data is received at the payload and stored into
a formatted file.

The top level procedure upload file formatted, illustrated in Figure 5.21, will attempt to
upload a formatted source file. It will first request information from the FTS to check whether
a valid, formatted destination file exists. If a matching formatted destination file (file ID, entry
size, entry number) exists, the upload arq procedure is called, otherwise an error is reported.

The upload arq procedure, illustrated in Figure 5.22, will attempt to reliably upload a
formatted source file. It will alternate between requesting ranges of missing entries from the
FTS, and issuing the upload range procedure on the returned ranges. Initially, the request for
missing ranges will yield a single range indicating that the whole file is missing. If packets are
lost or corrupted in transmission, several requests for missing ranges must be sent. The upload
arq procedure terminates once the response to missing ranges yields an empty list, or if an error
occurs.

The upload range procedure, illustrated in Figure 5.23, will send a specified range of entries
as a file stream. It will pack exactly one entry in each stream packet, without CRC or length
fields. After sending the last entry, it will successfully terminate.

5.3.7 Buffering
Similar to CFDP’s store-and-forward capabilities, the PC can be used to store a file before
forwarding it. The datapath for this operation is shown in Figure 5.24.

Instead of sending a data stream directly to the intended recipient, the payload sends the
file contents to a CSP service on the PC. The PC stores the data in a buffer file, which can then
be transferred using the file transfer facilities provided by NA, or with the FT system that is
described in this Chapter.

The FTS can be requested to act as a buffering client to the buffering service on the PC.
The following procedures are used for buffering files:

• ft_client_buffer_request(), which sends the buffering requests.

• ft_service_buffer_file(), which validates the buffering request.

• pcbuf_buffer_file(), which performs the actual buffering.

5.3. FILE TRANSFER 73

Figure 5.21: The upload file formatted procedure, which upon verifying that a valid,
formatted destination file exists, will attempt to upload data to it.

Upon receiving a buffering request sent with ft_client_buffer_request(), the ft_service_-
buffer_file() checks that the specified file exists. A valid request is passed to the pcbuf_-
buffer_file() procedure which uses the pcbuf module to send the file contents to the PC
buffering service.

When buffering a new file, the buffer file must be cleared before sending data to it. The
whole procedure, with clearing, buffering and subsequent direct downloading is illustrated in
Figure 5.25.

When buffering, the file format that is outlined in Section 5.2.1 is not used. The raw file

74 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.22: The upload arq procedure, which attempts to reliably send a formatted
file by requesting missing entries.

data is inserted directly into CSP packets without any metadata. The buffering service in the
PC accepts and appends the data of each packet at the end of the buffer file.

Reliability

The buffering procedure employs a stop-and-wait strategy. Each packet of raw file data is ac-
knowledged with an ACK packet. There is no sequence number, meaning that the transmission
may theoretically suffer from the problem described in Section 2.2.1. If the data packet is lost,
then no ACK is generated, such that the buffering client can retransmit the data packet. How-
ever, if an ACK packet is lost and a retransmission of the data is issued, then the buffering
service may incorrectly interpret the retransmitted data as the next data.

5.3. FILE TRANSFER 75

Figure 5.23: The upload range procedure, which sends a range of entries as a file stream.

Figure 5.24: Buffered download mode. A file is buffered on the PC before being down-
loaded.

Store and Forward

Buffering is not used to solve the same problem as in CFDP. Whenever the radios have an
established connection to the ground, the payloads also have a connection to the ground, so the
feature is not being used to work around a partially connected network. The issue it solves is the
CAN-bus being a bottle neck in communication chain. By storing the file in the PC, the faster
SPI interface becomes the slowest link during a direct download from the PC.

76 CHAPTER 5. FILE TRANSFER SYSTEM

Figure 5.25: Sequence of buffering data on the PC, and then downloading it with a direct
download procedure.

Transfer Speed

The transfer speed from the PC to the ground is fully dependent on the radio link quality. The
effective data rate of the S-band link is approximately 0.8 Mbps [21], almost double the effective
rate of CSP over the CAN-bus [12].

Chapter 6

Testing & Results

A BOB has been designed for the OPU payload, and a FT system has been designed and
implemented.

This chapter presents the achieved results. The BOB is presented before the hardware test
setup is outlined.

Tests are performed to check or measure:

• Correctness of fs and ft modules (Section 6.3).

• Correctness of service and client interactions (Section 6.4).

• Communication delays between subsystems (Section 6.5).

• Effective data rates in the network stack (Section 6.6).

• Reliability of the FT system (Section 6.7).

• Buffering capability of the PC (Section 6.8).

6.1 Breakout Board
The BOB design process has resulted in an implementation that should be able to fulfil the
requirements of all connected components.

The achieved features of the implemented BOB are listed as results.

• The PZ is provided a connection to the M6P CAN-bus.

• The BOB is supplied with VBAT and 12 V power from the EPS.

• BOB distributes regulated power to PZ, HSI and RGB.

• The HSI camera is provided a data and control interface over Gigabit Ethernet.

• The RGB camera is provided a data, control and power interface over USB.

• The flash signal of the HSI camera is provided a connection, which is used to timestamp
the captured images.

• The PPS signal from the PC is provided a connection, which will allow the OPU to
synchronise its local real time clock.

• The PZ is provided with a SD storage device to store image data.

77

78 CHAPTER 6. TESTING & RESULTS

Figure 6.1: A rendering of front side and back side of the final Breakout Board PCB.
A model of the PicoZed SoM is included on the back side render to illustrate how the
Breakout Board and PicoZed will look like when they are connected.

A render of the final implementation is shown in Figure 6.1.
The BOB was not manufactured in time to be tested for this thesis. The PZ SoM was also

not tested because it depends on the BOB.

6.2 Hardware Test Setup
All tests that include payload hardware were performed using the ZedBoard development kit
(see Section 4.1.3).

The PC and EPS subsystems that were used during testing were pre-programmed with a
125 kbps CAN-bus rate. New firmware that enables a 1000 kbps CAN-bus rate was eventually
provided by NA, but not in time for the testing for this thesis. In order to connect to the M6P
subsystems, the OPU payload has therefore been tested at 125 kbps instead of the full CAN-bus
rate of 1000 kbps.

A photo of the hardware setup that is used for testing is given in Figure 6.2. A block diagram
of the same setup is provided in Figure 6.3.

The PC is in the top left corner. The EPS is in the top right corner. The ZedBoard
development kit, which runs the OPU services, including the FTS, is in the bottom left corner.
The M6P CAN-bus, CAN1, is annotated as (1). CAN1 connects to the development workstation
via a CAN-bus adaptor. The development workstation runs the FTC. CAN1 also connects to
the PC and EPS. The payload CAN-bus, CAN2, is annotated as (2). CAN2 connects the PC
to the Zedboard. The ZedBoard is connected to CAN2 via a logic level shifter circuit and CAN
transceiver circuit shown as (3). The ZedBoard is provided 12 V power from a wall socket adaptor
(4). The PC is provided 3.3 V power from output channel 5 on the EPS (5). The EPS is being
charged at 12 V from a wall socket adaptor (6).

6.3 Automated Module Testing
The modules created for this thesis are implemented for payloads that run Linux on an ARM ar-
chitecture. Since the modules are implemented for Linux, they can be tested on the development
workstation (x86_64 Linux) with no change to the source code. This allows the modules to be

6.3. AUTOMATED MODULE TESTING 79

Figure 6.2: Hardware setup used for all tests that were performed on the ZedBoard.
(1) shows CAN1. (2) shows CAN2. (3) shows CAN transceiver. (4) shows lab power for
ZedBoard. (5) shows PC power from EPS. (6) shows charger cable for EPS.

Figure 6.3: Block diagram of the hardware setup in Figure 6.2.

80 CHAPTER 6. TESTING & RESULTS

frequently tested during development, even automatically. This way, regressions can quickly be
detected.

The CMake build system1 is used to compile and link the applications, and the CTest subsys-
tem of CMake is utilised to run tests [31]. CTest is CMake’s test driver program, and is instructed
via CMakeLists.txt configuration files to run specified programs as a test suite. Results are col-
lected from the tests and presented on the command line. Jenkins2 was used throughout parts
of the thesis work to run the test suite automatically whenever new code was pushed to the Git
repository.

Unit Tests

Some of the C modules, like fs, fs_idmap and fs_log (implemented to test the logging capabil-
ities of the M6P subsystems) can be functionally tested with a limited amount of dependencies
to other modules. The only dependency of fs is to crc32, and fs_idmap and fs_log is only
dependent on fs. Unit tests have been created for these.

The unit testing framework Check3 is used to create unit tests for the low level modules.
The tests are compiled and then run with CTest.

Automated System tests

The client and service modules are challenging to automatically test because they have many
interdependencies. Both the client node and the service node must be initialised and run concur-
rently in order to exchange CSP packets and perform meaningful tasks. This requires the test
code to initialise the nodes and place them into a known state before initiating the actual test
case. Consequently, it takes more time to write tests for these.

Despite the challenges, some of the FTC and FTS functionality has been given automatic
test coverage. These cover basic request/response transactions and basic download functionality
over a lossless channel. Most client and service functionality, however, does not have automatic
test coverage.

Automatic tests for the flatsat have been created. These are not run to verify the correctness
of the M6P subsystems, but rather to verify the communication between payload and flatsat.
The tests are used to diagnose connectivity issues, which have proved to be a frequent occurrence.

Automated Test Results

The functionality that was given automated test coverage has been continuously tested through-
out the thesis work. All tests are passing successfully. The CTest report is presented in Listing 2
as a result.

6.4 HYPSO CLI
The majority of system level functionality has been tested manually. A CLI program has been
created to perform this testing.

The hypso-cli program is implemented as a Read–eval–print loop (REPL), it takes readable
text commands as input from a human operator, executes them, and presents the results or
output.

1https://cmake.org/
2https://jenkins.io/
3https://libcheck.github.io/check/

6.4. HYPSO CLI 81

make -C build/x86 CTEST_OUTPUT_ON_FAILURE =1 test
make [1]: Entering directory '/home/magne/repos/hypso/build/x86 '
Running tests ...
Test project /home/magne/repos/hypso/build/x86

Start 1: test_fs
1/5 Test #1: test_fs Passed 0.44 sec

Start 2: test_fs_idmap
2/5 Test #2: test_fs_idmap Passed 0.17 sec

Start 3: test_log
3/5 Test #3: test_log Passed 0.02 sec

Start 4: test_ft_service
4/5 Test #4: test_ft_service Passed 4.59 sec

Start 5: test_shell_service
5/5 Test #5: test_shell_service Passed 0.33 sec

100% tests passed , 0 tests failed out of 5

Total Test time (real) = 5.56 sec
make [1]: Leaving directory '/home/magne/repos/hypso/build/x86 '

Listing 2: Reported results from automated tests run with CTest.

In most situations, the hypso-cli program acts as a client that sends requests and receives
replies from services. It does this by connecting to a CSP network via a CAN interface or a
NNG/TCP interface. The CAN interface can be connected to the engineering model of the
satellite, or directly to a payload. The NNG/TCP interface can connect to the flatsat.

The capabilities of the hypso-cli program are summarised in Appendix C. A terminal dump
is provided for the help command which prints the available commands, their arguments and a
corresponding help text.

6.4.1 File Transfer Client
An example of a CLI interaction is illustrated in Figure 6.4, where a user downloads a file from
a FTS. After starting the CLI program, the user can insert a text command. If the parser can
deduce a valid command from the input, it is promptly executed with the provided arguments.
A download command results in a series of ft_client module functions to be executed. A file
info request is first exchanged to verify that the source file exists, and that the destination file
is correctly formatted. Then a file download request is exchanged to initiate the download
stream. All output from the ft_client module is printed for the user to see, and the final
return code is reported.

6.4.2 Remote Shell
A remote shell module was implemented to aid development. The remote shell enables an user
to execute arbitrary shell commands on a remote CSP node.

A shell service module runs as a task on the payload, listening for shell command packets.
A corresponding shell client module accepts text strings which it transmits as commands to the
shell service. An example where the shell command uname -a is executed is shown in Figure 6.5.

When executing a command, the shell service wraps the command in a timeout command.
This prevents the shell service from locking up when waiting for a command that does not
terminate in a reasonable amount of time.

82 CHAPTER 6. TESTING & RESULTS

Figure 6.4: Example use of the hypso-cli program. A file transfer request is sent to a
FTS, and the result is reported back to the user.

The implementation of the shell client module is made compatible with the remote shell
capabilities of the M6P subsystems. This is useful for system integration because it lets the
developer access the M6P subsystem shells over the CSP network, without having to attach an
extra serial cable to each subsystem.

Although it is not a listed requirement, the author suggests that the service be included in
the flight version of the payloads. Access to a shell on the payload can be a powerful tool for
in-orbit debugging and development.

6.4.3 Loopback Services
In addition to performing the role of a client, the hypso-cli program can also run payload
services locally. The payload services can be run concurrently with the command interpreter, and
by utilising the loopback capabilities of the CSP library, the client and service can communicate
with each other within the same Linux process. The concept is illustrated is Figure 6.6.

The primary reason for running the services locally in the CLI program is that the services
can be tested quicker than if the client and service had to be deployed to different machines. If
deploying on different machines, either the source code or the compiled program binaries need
to be distributed before the client or service can be executed.

A downside to running the services in the same program as the CLI is that the service being
tested is not the same program as would be run on the payload, and it is not compiled for the
same architecture. It has other threads running concurrently, contesting for resources such as
CSP packet buffers.

An alternative to running services in the same program is to run them in a standalone
program, but still on the same computer. Just like the CSP enabled payload program must
be able to connect to an external CAN-bus, it can connect to a virtual CAN-bus. A virtual
CAN-bus is interfaced just like a regular Linux CAN device, but acts as a loopback interface. It
does not represent an external CAN-bus, and only processes on the same machine can connect

6.4. HYPSO CLI 83

Figure 6.5: Remote shell sequence. An user inputs a command that is sent to the shell
service and executed. The output from the shell command is returned to the shell client
and printed for the user.

Figure 6.6: Setup for performing system tests on development workstation.

84 CHAPTER 6. TESTING & RESULTS

to it.
The CSP loopback feature and virtual CAN devices have both been leveraged to perform

manual and automatic functional system testing on a single development machine.

6.5 Communication Delays
Communication delays between satellite subsystems are measured on the hardware setup. The
listed delays are averages of measured RTTs. The RTT includes the time it takes for the interfaces
to receive and transmit packets (transmission time), as well the time it takes CSP to exchange
packets with service and client code (processing time), as summarised in equation (6.1).

Communication Delay = Transmission Time + Processing Time (6.1)

The setup for measuring the communication delays is shown in Figure 6.7.

Figure 6.7: Setup for measuring communication delays.

The RTT is measured by sending CSP ping packets. The ping packets have empty data fields,
but still contain six bytes worth of CSP identifier and length information. The transmission time
of these six bytes is directly proportional to the CAN baud rate. For this reason, different results
are expected when using the full CAN baud rate of 1000 kbps.

The measured communication delays for 125 kbps baud rate are listed in Table 6.1 as average
RTTs.

Table 6.1: Round trip delay times for the subsystems in the test setup.
Node Repetitions Averaged RTT [ms] Distance [Hops]
PC 1000 2.58 1
EPS 1000 2.78 1
OPU 1000 4.73 2

6.6 Effective Data Rates
The data rate at each level in the network model is measured. The setup from Figure 6.7 is used.
All CAN-buses are run at 125 kbps.

• Link layer CAN-bus: data rate is measured with the canbusload Linux utility program.

6.7. PACKET LOSS TEST 85

• Network and Transport Layer CSP: raw data rate over CSP is measured by using TFTP
in unacknowledged mode, and subtracting TFTP overhead.

• Application layer FT system: effective data rate is measured by transferring a file.

• Application layer TFTP: effective data rate is measured by transferring a file with the
send-and-wait strategy.

The measured data rates are summarised in Table 6.2.

Table 6.2: Effective data rates of different layers and protocols in the network stack.
Layer Protocol Data rate [kbps] Ratio of CAN [%]
Link CAN 57.87 100.00
Network/Transport CSP 56.50 97.63
Application FT system 52.00 89.86
Application TFTP 25.95 44.84
Application TFTP, no PC 51.87 89.63

The measured effective data rate of the CAN-bus is 46.29 % of the signalling speed, and
94.77 % of the theoretical upper limit on maximum utilisation (equation (2.3)).

Table 6.2 shows that the effective data rate over CSP is 97.63 % of the measured CAN data
rate. The combined overhead of CSP and the FT system puts the effective data rate of the
FT system at 89.86 % of the measured CAN data rate. This suggests an average overhead of
10.14 % when transferring files, although this does not account for the communication delays for
the requests.

The data rate of TFTP is included to compare the FT system with a stop-and-wait strategy.
The significant decrease in data rate for TFTP is caused by the large RTT that is caused by
having to go through the PC. For a stop-and-wait protocol such as TFTP, the data rate is
directly proportional to the RTT. This was confirmed by repeating the experiment without the
PC, which halved the RTT and doubled the effective data rate.

6.7 Packet Loss Test
The reliability of the FT system must be tested and demonstrated. This section details a setup
for testing the FT system over an unreliable channel.

Setup

The test setup is illustrated in Figure 6.8. The hypso-cli program is designated as the FTC,
while a ZedBoard is configured with a FTS. To simulate a situation with a more realistic CSP
network, the M6P PC is included as an intermediary CSP node that acts as a packet router. The
PC connects to the ZedBoard payload via CAN2 and to the development workstation that runs
the hypso-cli program via CAN1. Additionally, a CSP bridge that drops packets at random is
included in the communication chain. This bridge program connects to the external CAN1 bus,
and to the hypso-cli program via a virtual CAN-bus.

Test parameters

The packet dropper bridge can be configured to drop a certain percentage of packets. It can
also be configured to drop bursts of packets instead of dropping packets evenly. The bridge can

86 CHAPTER 6. TESTING & RESULTS

Figure 6.8: Setup for testing the reliability of the FT system. A CLI program acts as a
FTC which sends file transfer requests to a FTS on the ZedBoard. A CSP bridge drops
packets to mimick an unreliable radio channel.

decide to only drop packets in a single direction to simulate an asymmetric radio link, but for
this test it does not discriminate between space-bound and Earth-bound packets.

Combinations of channel configurations are tested to characterise the system. A number of
drop rates are tested and compared to equivalent drop rates with bursts.

Test results

The same 769.541 KB image, is transferred in all configurations. The transfer duration is
recorded, and the effective data rate calculated.

The test results are shown in Figure 6.9. The collected measurement data is included in
Appendix D.

6.8 Payload Controller Buffering
The buffering capabilities of the PC are tested. The typical use case for buffering is to download
a large file.

The hardware setup from Figure 6.2 is used for testing the buffering capabilities. The data
path is illustrated in Figure 6.10.

The payload (ZedBoard) FTS is connected to the PC via CAN2, and the PC is connected to
the ground (workstation) FTC via CAN1. The PC hosts a buffering service, a buffer file, and a
M6P file transfer service.

The test is carried out by moving a file through the entire data path, from FTS on the
ZedBoard to the FTC on the workstation.

A buffering request is first sent to the FTS. The FTS then starts the buffering procedure, in
which the file is fragmented and sent to the buffering service on the PC using the stop-and-wait
strategy. When the whole file is buffered on the PC, it is downloaded from the PC file transfer
service using the reliable direct transfer mode.

Functional testing shows that a 769.541 KB file could be buffered and then downloaded
successfully. For the 125 kbps CAN bus, the data rate was 52.17 kbps when buffering from OPU
to PC, and 47.50 kbps when downloading from PC to the CLI node.

6.8. PAYLOAD CONTROLLER BUFFERING 87

Figure 6.9: Effective data rates of the file transfer system for various packet drop rates.
Configurations with packets dropped evenly are shown as crosses and configurations with
packets dropped in bursts are shown as triangles.

Figure 6.10: Setup for testing the buffering service on the PC.

88 CHAPTER 6. TESTING & RESULTS

Chapter 7

Discussion & Conclusion

In this chapter, the initial requirements are reviewed in order to discuss the achieved results.
Concluding remarks are made.

7.1 Fulfilment of Requirements
The requirements from Chapter 3 are reviewed to determine whether the implemented FT system
fulfils them. A summary of the requirements and their level of fulfilment is provided in Table 7.1.

Table 7.1: Summary of the design requirements, and the level to which they were fulfilled.
Requirement Relevance for FT system Level of fulfilment
IF-001 Compatibility with M6P. Full

MS-0-011 Downlink 1 image of L1A data. Full
MS-0-012 Downlink L4 data in 3 hours. Partial
MS-0-14 Downlink telemetry in 1 pass. Full
M-2-026 Downlink telemetry less than 200 kb. Full
SDR-SMO-1 Downlink measurement data. Full

MS-0-013 Uplink mission data and code. Full
M-1-012 Uplink mission data and code. Full
M-2-015 Uplink mission data 5 min before. Partial
SBUS-3-017 Ability to upgrade OPU software. Full
M-2-014 Up/downlink from multiple stations. Out of scope
SDR-SMO-4 Ability to upgrade SDR software. Full

M-1-015 Downlink L1A data in 24 hours. Partial
M-1-016 Downlink L4 data in 3 hours. Partial

The requirement of being compatible with the M6P bus (IF-001) is fully fulfilled by employ-
ing the CAN protocol and CSP protocol in the communication stack.

All requirements that state an ability to download or upload files, without specifying a time
limit, have been satisfied as a result of producing a FT system capable of up downloading and
uploading files. This includes MS-0-011, SDR-SMO-1, MS-0-013, M-1-012, SBUS-3-017
and SDR-SMO-4.

89

90 CHAPTER 7. DISCUSSION & CONCLUSION

The requirements MS-0-12, M-2-015, M-1-015 and M-1-016 state a time limit. The FT
system was tested with a CAN-bus rate of 125 kbps, and achieved an effective data rate of 52 kbps
when downloading over a perfect channel. The timing requirements have been created with the
assumption that the files could be downloaded at the full 1 Mbps non-effective data rate of the
S-Band radio [32]. The achieved effective data rate of 52 kbps (or even a projected 416 kbps if
assuming a 1000 kbps CAN-bus) does not suggest that the timing requirements would be fulfilled
if using the direct transfer mode.

If using the store and forward capabilities of the PC, where files are stored on the PC in
advance of downlinking them, the full data rate of the S-Band radio can be used. In this case
the timing requirements would be satisfied, but they are still listed as partially fulfilled because
the S-Band radio was not available to demonstrate an effective data rate.

The requirements MS-0-14 and M-2-026 are timing requirements and have been listed as
fully fulfilled. These timing requirements assume an UHF radio link with a 9.6 kbps data rate,
which is within the data rates that the FT system is able to handle with the 125 kbps CAN-bus
rate.

The requirement M-2-014 is considered out of scope for the FT system. The ground station
network is handled by the MCS that is provided by NA. The FT system will work as intended
as long as there is CSP connectivity throughout the whole mission network.

7.2 Channel Utilisation
The effective data rate of the FT system is approximately 52 kbps, as shown in Table 6.2. If
assuming a proportional increase in effective data rate when switching to a CAN rate of 1000 kbps,
one can expect an effective data rate of 416 kbps. This is 85.2 % of the theoretical limit on the
effective CAN data rate that was established in Section 2.4.

The communication delay between FTC and FTS is demonstrated to be the primary driver
of the effective data rate in protocols using stop-and-wait strategies, such as TFTP, as shown
in Table 6.2. This effect would be further increased by the communication delays added by the
radio links and ground station processing. The FT system is less prone to these delays, as it
attempts to transfer large ranges of entries without acknowledgement. However, the effect is
apparent in the FT system during the final stages of a transfer. Lost packets or ranges must be
requested individually, causing the FTC to experience delays while waiting for replies.

Reliability

The results of the packet loss test (Figure 6.9) show that the FT system is able to deal with
packet loss rates of up towards 30 %. A significant drop in effective data rate is experienced as
the packet drop rates increases. The plot suggests that the FT system will struggle with packet
drop rates of 30 % or above.

The system seems to achieve higher effective data rates for channels that exhibit bursts of
packet drops rather than evenly distributed packet drops. This was expected from the design
of the FT system. A burst causes a continuous range of entries to be dropped, all of which can
be requested with a single download request. Since evenly distributed packet drops are unlikely
to be neighbouring, the majority of them must be requested with individual download requests.
A large number of download requests results in a large accumulation of transmission delays,
during which no data is being transferred. Therefore, it can be expected that the FT system will
perform worse if the packet drops are evenly distributed.

The drop rate in the packet drop test is specified in terms of CSP packets, and not in terms of
link layer drop rates. The effect of various drop rates for the S-Band radio should be investigated.
If a CSP packet is fragmented into multiple frames at the S-Band link layer, a CSP packet could

7.3. CSP BUFFER EXHAUSTION 91

be dropped as a result of a single link layer frame being dropped. In this case the FT system
might benefit from sending smaller file segments, even though it increases the overhead of each
packet.

Congestion Monitoring

The traffic on a CAN bus be measured by any node that is connected directly to it. This means
that congestion on CAN2 can be directly measured by the payloads. However, the payloads do
not have direct access to CAN1 and so can not measure traffic on CAN1. When transferring files
with the S-Band radio, the payloads have no way of directly measuring the traffic from PC to
S-Band radio.

Congestion must therefore be estimated by monitoring packet loss.

7.3 CSP Buffer Exhaustion
The CSP library allocates a bank of packet buffers. If an application is unable to process packets
at the same rate that they arrive in, the buffer bank will be exhausted and incoming packets will
be dropped.

This situation can occur under erroneous circumstances such as a task deadlocking, or a
blocking system call that stalls a task for an unexpectedly long time.

The buffer bank was monitored during multiple file transfers. The bank was never found
to drop below a few percent. These transfers were carried out on a 125 kbps CAN rate, which
places an unrealistically low limit on the received data rate. Buffer exhaustion could be more
likely on a 1000 kbps CAN-bus.

7.4 Buffering
An added benefit of the PC buffering capability is that it can be used to extend the effective
storage space of the payloads. The M6P file transfer system also has a higher technology readiness
level than the HYPSO payloads, demonstrated through flight heritage. If the direct download
mode for any reason stops functioning, the buffering capability can be used as a redundant
system for downloading files, provided that the buffering procedure on the payload still works.

The reliability concern that was described in Section 5.3.7 was monitored by checking the
integrity of buffered files while testing the buffering capabilities . However, no attempt was made
to provoke a fault.

Throughout the work of this thesis, a duplication of data as a result of a lost ACK was
never detected. The problem was therefore not proven to exist. There is only a single CAN-bus
between the payloads which send the data and the PC which receives the data. It is therefore
thought to be unlikely, but not impossible, for buffered data to be lost.

7.5 Memory Footprint of Formatted Files
As mentioned in Section 5.2.1, the file format that is used in the FT system can be changed to
append the metadata instead of interleaving it. The benefit of doing so is that a formatted file
could be created in-place in the original file without moving the original data. This could be
advantageous if storage space appears to be a scarce resource.

Such a change should only be made after an assessment has been carried out on the risk of
corrupting the original file when modifying it in-place.

92 CHAPTER 7. DISCUSSION & CONCLUSION

7.6 On the use of Linux
Some benefits and drawbacks of using Linux have already been discussed in Section 4.1.5.

M6P FreeRTOS

The M6P subsystems use FreeRTOS. This operating system is significantly less complex than
Linux. In fact, it has been designed to be small and simple [33]. Consequently, the system has
fewer states and is generally easier to verify.

The fact that the M6P subsystems and the payloads do not run same operating system means
that they also cannot share source code that uses operating system primitives.

CubeSat Space Protocol

By using CSP, one ends up with ad-hoc protocol solutions, because CSP does not readily interface
with standard Linux networking systems. One way of justifying the use of CSP is that small
satellites require a smaller footprint than the machines that use the Linux networking system,
which are designed for the requirements of the global internet. The M6P subsystems that use
FreeRTOS are examples of such resource limited systems.

Some of the benefits of using Linux are therefore not leveraged. The OPU has available the
Linux networking system, which is robust and dependable from having been heavily scrutinised
and reviewed. Despite this, a custom networking solution had to be made to fit the M6P
compatibility requirement IF-001.

7.7 Future Work
Breakout Board

The manufactured BOB must be tested. The voltage regulators must be verified to be providing
the correct voltages. All interfaces must be tested after connecting the PZ SoM to the BOB.

Integration testing should verify that the BOB can successfully interface the HSI camera, the
RGB camera and the M6P CAN-bus at the same time.

Channel Utilisation

Further work on the FT system could incorporate a mechanism to prevent congestion by adjusting
the sending speed based on reported packet loss.

Communication Network

A few assumptions have been made about the ground station network. Since it is not fully
defined or implemented yet, the FT system has been designed with the expectation that the
FTC can connect directly to the CSP network (Figure 4.4) that is automatically routed through
ground stations and to the space segment.

The integration of the FT system into the ground station network must be performed once
documentation for the ground stations and MCS is available.

Operations

Higher level procedures that can automatically prepare and extract formatted files should be
created, and must be integrated with procedures for capturing images. A scheduler is required
to execute mission plans.

7.8. CONCLUSION 93

7.8 Conclusion
The work in this thesis documents the implementation of hardware and software that is required
to integrate the HYPSO payloads with the M6P satellite platform. This includes integration of
an operating system, hardware design for a BOB, and design, implementation and testing of a
FT system.

Specific contributions:

• A BOB for the OPU payload has been specified, designed and manufactured with the help
of NTNU SmallSat staff (Section 4.1.4).

• Configuration and application of an operating system for the OPU payload (Section 4.1.5).

• A functioning FT system has been designed and implemented, while keeping compatibility
to M6P in mind (Chapter 5).

• A FT system has been implemented and tested with M6P hardware (Chapter 6).

• A CLI program for interfacing the payloads has been implemented (Section 6.4).

• A shell service for interfacing the payloads has been implemented (Section 6.4.2).

Test results show that the implementation of the FT system is capable of transferring files.
Files can be transferred with effective data rates comparable to the data rates of the underlying
protocols, and even over an unreliable network. The FT system should therefore be able to carry
out the tasks necessary to achieve at least partial mission success.

The quality requirements in Section 3.4 have not been fully verified. The ultimate effective
downlink data rate depends on the effective data rate of the S-Band radio, which was not available
for testing. The FT system needs to be tested again when a more complete setup is available.

Further work remains to test and verify the BOB, and to fully integrate the FT system into
the ground station network.

94 CHAPTER 7. DISCUSSION & CONCLUSION

Bibliography

[1] California Polytechnic State University, 6U CubeSat Design Specification, 7 2018.

[2] Nanosats Database, “Nanosatellite cubesat database,” 2019. https://www.nanosats.eu/
#info.

[3] "Andreas Budalen, Markus Thonhaugen, Andreas Nilsen Trygstad, “Oppdretter fortviler:
– Algene har drept laks for opp mot 200 millioner,” NRK, 2019.

[4] R. Birkeland, On the Use of Micro Satellites as Communication Nodes - in an Arctic Sensor
Network. PhD thesis, Norwegian University of Science and Technology, 1 2019.

[5] Fred Sigernes, Mariusz Eiving Grøtte, Julian Veisdal, Evelyn Honore-Livermore, João For-
tuna, Elizabeth Frances Prentice, Mikko Syrjäsuo, Kanna Rajan, Tor Arne Johansen, “Push-
broom Hyper Spectral Imager version 6 (HSI v6) part list - Final prototype,” tech. rep.,
University Centre in Svalbard (UNIS), Norwegian University of Science and Technology
(NTNU), 2018.

[6] J. Wertz, Space mission engineering : the new SMAD. Hawthorne, CA: Microcosm Press
Sold and distributed worldwide by Microcosm Astronautics Books, 2011.

[7] A. J. Menezes, Handbook of applied cryptography. Boca Raton: CRC Press, 1997.

[8] A. Tanenbaum, Computer Networks. Upper Saddle River, N.J: Prentice Hall PTR, 1996.

[9] E. D. Pål Frenger, Stefan Parkvall, “Performance Comparison of HARQ with Chase Com-
bining and Incremental Redundancy for HSDPA,” in IEEE 54th Vehicular Technology Con-
ference. VTC Fall 2001. Proceedings, pp. 1829–1833, 2001.

[10] C. Doerr, Network Security in Theory and Practice. Christian Doerr, 2018.

[11] International Organization for Standardization (ISO), ISO11898-3 Road vehicles – Con-
troller area network (CAN) – Part 3: Low-speed, fault-tolerant, medium-dependent interface,
2006.

[12] Magne Hov, “Project Thesis: Integration of a Network Stack on a Nano-Satellite Payload,”
2018.

[13] H. D. Ledet-Pedersen J., Christiansen J.D.C, “Cubesat Space Protocol.” https://github.
com/GomSpace/libcsp, 2018.

[14] E. R. Jahren, “Design and implementation of a reliable transport layer protocol for nuts,”
Master’s thesis, NTNU, 2015.

95

https://www.nanosats.eu/#info
https://www.nanosats.eu/#info
https://github.com/GomSpace/libcsp
https://github.com/GomSpace/libcsp

96 BIBLIOGRAPHY

[15] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas,
Laurent Vivier, “The new ext4 filesystem: current status and future plans,” in Proceedings
of the Linux Symposium, pp. 21–34, June 2007.

[16] K. Sollins, “Rcc 1350 - the tftp protocol (revision 2).” https://tools.ietf.org/html/rfc1350,
1992.

[17] J. Postel, “Rcc 959 - file transfer protocol.” https://tools.ietf.org/html/rfc959, 1985.

[18] “KubOS.” https://www.kubos.com/kubos/, 2017.

[19] The Consultative Committee for Sapce Data Systems, CCSDS File Delivery Protocol
(CCSDS 727.0-B-4), 1 2007.

[20] D. L. Magne Hov, “HYPSO Software - Git Repository.” https://github.com/
NTNU-SmallSat-Lab/hypso-sw/, 2019.

[21] HYPSO Project Team, “Requirements HSI SmallSat,” tech. rep., NTNU SmallSat Lab,
2019.

[22] HYPSO Project Team, “SDR System Design Report,” tech. rep., NTNU SmallSat Lab,
2019.

[23] Liping Di, Ben Kobler, “NASA Standards for Earth Remote Sensing Data,” in International
Archives of Photogrammetry and Remote Sensing, vol. XXXIII, pp. 147–155, 2000.

[24] Avnet, PicoZed 7Z015 / 7Z030 SOM - Hardware User guide, 2018.

[25] NanoAvionics, EPS Electrical Power System, Data Sheet, NA-EPS-G0-R0, 2018.

[26] H. Leppinen, “Current use of linux in spacecraft flight software,” in IEEE Aerospace and
Electronic Systems Magazine, vol. 32, pp. 4–13, 2017.

[27] Xilinx, Inc., PetaLinux Tools Documentation Reference Guide, UG1144, 2018.2 ed., June
2018.

[28] Xilinx, Inc., Zynq-7000 SoC Technical Reference Manual, UG585, 1.12.2 ed., July 2018.

[29] Alén Space, TOTEM Nanosatellite SDR Platform - Motherboard UHF Front end.

[30] H. Leppinen, P. Niemela, N. Silva, H. Sanmark, H. Forsten, A. Yanes, R. Modrzewski,
A. Kestila, and J. Praks, “Developing a Linux-based nanosatellite on-board computer: Flight
results from the Aalto-1 mission,” in IEEE Aerospace and Electronic Systems Magazine,
pp. 4–14, 2019.

[31] Kitware, Inc, CTest Command-Line Reference, 3.14.3 ed., 2019.

[32] Grøtte, Mariusz et.al, “HYPSO Mission Budgets,” tech. rep., NTNU SmallSat Lab, 2018.

[33] Real Time Engineers Ltd., “The FreeRTOS™ Kernel.” https://freertos.org/RTOS.html,
2017.

[34] NanoAvionics, SSTR6U 6U Structure, Data Sheet, NA-SSTR6U-G0-R0, 2018.

[35] NanoAvionics, Option Sheet, EPS Electrical Power System, NA-OS-EPS-R0, 2018.

[36] NanoAvionics, SatBus 3C2, Data Sheet, NA-OS-EPS-R0, 2018.

https://www.kubos.com/kubos/
https://github.com/NTNU-SmallSat-Lab/hypso-sw/
https://github.com/NTNU-SmallSat-Lab/hypso-sw/
https://freertos.org/RTOS.html

Appendix A

M6P Satellite Platform

This appendix contains details about the M6P satellite platform subsystems.

A.1 Mechanical Frame

The satellite frame is compliant with the 6U CubeSat Design Specification, with only a few
differences from the reference design [34]. The frame is geometrically constructed from a single
rectangular cuboid and two cylinders protruding from one of the smaller faces, see figure A.1.

Figure A.1: M6P satellite bus mechanical frame and solar panels. The two cylindrical
protrusions are nicknamed tuna cans by NanoAvionics.

The satellite frame holds all the subsystems together. It provides mechanical stability that
is important to the survivability of the satellite during launch. The lack of thermal convection
in space means that thermal connections to the frame are important in avoiding overheating
problems. The payload computer(s) may have to be thermally coupled to the satellite frame to
avoid overheating.

The frame also provide a mechanical interface for connecting the payload components. The
components can be fixed to the frame using a grid of countersunk holes. The grid is organised
to be compatibly with PC/104 PCB stacks, which will be useful in the design of the payload
computer hardware. In terms of volume, approximately 4 CubeSat units of space are available
for payload integration.

Each face of the satellite frame is covered by a solar panel carrying triple junction solar cells
from AzurSpace. These cells are rated to an efficiency of 29.3 %. The maximum power output
from a single panel (only one panel is illuminated at the optimal attitude) is rated to 19.4 W in
LEO.

97

98 APPENDIX A. M6P SATELLITE PLATFORM

A.2 Electrical Power System
In many ways, the EPS is the most critical subsystem in the satellite, if it fails all other subsystems
fail as well. The EPS is responsible for providing electrical power to the remaining subsystems,
and for storing the electrical power supplied by the solar panels in lithium-ion batteries.

Many of the EPS features are managed via software by the EPS computer.
The EPS design can be organised into three sections: input, output, and storage [25].
The input section is primarily concerned with loading the solar panel outputs in the most

efficient manner. Because of an internal impedance in the solar panel, there exists a certain
load impedance that will extract the maximum amount of power from the solar panel. The
input section achieves this by utilising Maximum Power Point Tracking (MPPT) circuits that
continuously adjust their impedance while loading the solar panels. The MPPT chips also house
converter circuits that regulate the output to a target voltage that is configurable by software.
The six solar panels are distributed between four MPPT converter modules. Two panels can
connected in parallel to the input of each MPPT converter. This allows panels that are placed
on opposite faces of the satellite to use the same MPPT circuit, since only one will be sufficiently
illuminated at any time. Ideal diodes are placed in series with each solar panel to avoid reverse
currents between parallel panels.

The output section regulate a battery voltage to stable operating voltages that the subsystems
can use. Four buck-boost converter circuits are employed to supply output channels with four
distinct operating voltages. Two of the output converters are fixed at 3.3 V and 5.0 V, while
the last two can be configured to any voltage in the range 3.0 V to 18 V by selecting hardware
components. The regulated supplies can be individually routed to any of the ten output channels.
There are two additional channels that provide always on 3.3 V and 5.0 V.

Each output channel has two types of overcurrent protection. One is hardware based and is
typically triggered at 3.12 A, but can be customised to any value in the range 0 mA to 3130 mA
by changing hardware components [35]. The other type is software enabled and run-time con-
figurable, and switches the channel off when the current exceeds a specified value in the range
1 mA to 3000 mA. Additionally, the output converters (that feed the channels) perform internal
current limiting.

The storage section implements the battery itself, and additional protection mechanisms
to maintain the health of the lithium-ion battery and the EPS. Further overcurrent protection
monitors the battery current and disconnects the battery completely if it detects currents that
exceed the safe operating condition of the battery.

Undervoltage protection is implemented as different operating modes that are activated by a
state machine in the EPS computer. At decreasing battery voltage levels, a decreasing number
of output channels and features are enabled. The voltage threshold for each mode, and the
organisation of output channels are configurable via software. Only the lowest and most critical
mode is hardware triggered and will disconnect the battery even from the EPS computer. At
this point only the MPPT outputs are connected to the battery. A smaller external circuit will
then periodically monitor the battery voltage and reconnect the EPS computer when it reaches
a safe voltage level. The mode transitions are illustrated in figure A.2.

Overvoltage protection ensures that the battery is never charged past its maximum capacity.
The overvoltage mechanism is implemented in the MPPT converter circuits, which will adjust
their impedance to change their output. When the battery reaches 8.33 V the MPPT converters
shift their power points downwards until the battery voltage is perceived as stable.

There is also an external charging port which is connected directly to the battery assembly
and bypasses the overvoltage protection of the MPPT circuits. Care must be taken to only use
compatible chargers when using this port.

Extra features include a watchdog timer that is only reset when receiving CSP packets from

A.3. FLIGHT COMPUTER 99

Figure A.2: EPS operating modes .Each mode has a software configurable vector describ-
ing which output channels will be turned on .Transitions are based on battery voltage.
Illustration taken from [25].

a ground station. Upon expiration, the EPS disconnects the battery from the output converters
and even itself, long enough to let all systems power completely down. This Watchdog Timer
(WDT) is especially useful when testing new radio configurations. In the case that the satellite
enters a state where communication can not be established, the dedicated WDT will power cycle
the entire satellite to restore it to a default configuration.

The EPS is the only subsystem that has circuits that are powered even during launch, a
period when all subsystems are technically require to be off [1]. One of the always-on circuits is
an RTC.

After the satellite has been deployed from the its launch vehicle, it must refrain from deploying
antennas for a duration of 30 minutes, and it must keep all radios silent for a duration of 45
minutes. The EPS performs the timekeeping necessary to fulfil these requirements, and switches
on power to the appropriate subsystems when the deployment period has expired.

A.3 Flight computer
The flight computer subsystem hosts multiple modules: an OBC, an ADCS and a set of redundant
UHF radio modules (COMM) [36]. The OBC and the ADCS are implemented one the same
physical computer, meaning that they share computing resources. Additionally, the FC directly
connects to an external GPS module.

A.3.1 On-board Computer
The responsibilities of the OBC are few; most tasks are performed by dedicated modules and
subsystems. However, it is able to collect telemetry about the FC and other subsystems, it can
run uploaded script files, and it can store data for other subsystems. It can also receive firmware
updates while in orbit, providing capabilities for bug fixes and software upgrades to the ADCS.
Thus, it can also be reprogrammed to take over computational tasks from failing subsystems.

A.3.2 Attitude Determination and Control System
The ADCS software module collects sensor data which is used to estimate the attitude of the
satellite, and can run a variety of control modes to manipulate the satellite attitude with actua-
tors. Sensor data from magnetometers, gyroscopes, sun sensors and a star tracker are fused in a
kalman filter to produce the attitude estimate.

Attitude control is achieved by using two redundant actuators. A set of reaction wheels
are able to produce a torque by accelerating the spin of a mass. The reaction torque of the
accelerated spinning mass acts on the satellite, producing an angular acceleration. Three of the
reaction wheels are oriented orthogonally relative to each other, such that a combination of the

100 APPENDIX A. M6P SATELLITE PLATFORM

three are able to produce an angular acceleration in any direction. Redudancy is achieved by
installing a fourth reaction wheel at an angle relative to the three orthogonal reaction wheels.
When combining the slanted backup wheel with any two of the orthogonal wheels, an arbitrary
angular acceleration can still be achieved.

The ADCS software allows the satellite to be put into one of several mission control mode:

• Velocity direction pointing mode: Pointing in the direction of flight.

• Nadir mode: satellite points to nadir (towards centre of the earth).

• Sun maximum power tracking: Keeps one of the largest solar panels pointing towards the
sun.

• Earth target tracking: Keeps pointing to a geographical point on earth.

• No mode: the ADCS system performs no control.

The satellite tumble rate is continuously monitored by the ADCS. If the satellite is found
to have an angular velocity that exceeds a configurable threshold, the ADCS automatically
transitions to a detumbling mode. In this mode, the ADCS computes (with B-dot algorithm)
and applies a control vector that counteracts the tumbling motion. This action is typically
performed until the unwanted angular velocity has been eliminated. In this mode, only the
magnetometers are used to estimate the tumble rate, and only the magnetorquers are used to
create the counter torque.

A.3.3 GPS Module

A GPS module provides the FC with accurate information about time and date. The GPS is
connected to the FC via a serial interface and an analogue PPS signal.

When receiving a new timestamp over the serial interface, there is a communication delay
rendering the received timestamp invalid by the time it can be merged with the local FC clock in
software. One could attempt to correct the timestamp by adding a delay offset, but communica-
tion jitter makes it difficult to find a good estimate of the offset. Despite the error, the deviation
from true time is significantly smaller than one second. The auxiliary PPS input is intended to
solve this issue. The PPS signal exhibits a pulse with a rising edge that is precisely fixed to a
period of 1 s, with an accuracy of 10 ns. This hardware signal is installed as an interrupt in the
FC computer, and can therefore be handled with much smaller delay and jitter effects.

The typical initialisation time for the GPS module is 30 s, and it cannot provide a valid
timestamp before it is initialised. The GPS module can also provide positional data and velocity
data.

A.3.4 UHF Radio

The FC board can hold up to two UHF radios, where one is usually used as backup. The UHF
radio establish a radio link connection to a ground station, and relays network packets between
the subsystems in space and the ground station.

In the M6P configuration that the HYPSO mission will use, there is only one UHF radio
present on the FC. This UHF is connected to a four monopole antennae system.

A.4. PAYLOAD CONTROLLER 101

A.4 Payload Controller
The PC subsystem is intended to provide an interface that any payload can be connected to.
It offers a CAN interface, 2x RS422 interfaces, 3x Inter-Integrated Circuit (I2C) interfaces, 3x
SPI interfaces, and 2x Universal asynchronous Receiver-Transmitter (UART) interfaces. Any of
these can be used to connect to communicate with payload systems, but only the CAN interface
and the RS422 interfaces support CSP. The remaining interfaces all require custom modification
to the PC software, and would have to be implemented in collaboration with NA.

The PC is running FreeRTOS.

102 APPENDIX A. M6P SATELLITE PLATFORM

Appendix B

Breakout Board Design Files

The included specification files have been created while defining the required interfaces of the
Breakout Board.

The included design files show the final design of the Breakout Board. A few of the schematic
pages that contain unimportant details have been removed to reduce page count.

103

PicoZed Default MIO Assignment
Function Protocol Zynq Interface MIO Pins

eMMC 4GB NAND Flash SDIO SD1 0, 10-15
128Mb NOR Flash QSPI QSPI 1-6, 8
RGB Camera USB 2.0 USB0 7, 28-39
HSI Camera Gigabit Ethernet Enet0 16-27, 52-53

Breakout Board Specific MIO Assignment
Function Protocol Zynq Interface MIO Pins

SD Card Storage SDIO SD0 40-45, 46
UART Terminal UART UART1 48-49
Can-bus CAN CAN0 50-51
PPS, HSI Flash GPIO N/A 9, 47

SD Card [SD0] Pinout
Function MIO Pin

clk 40
cmd 41
data[0] 42
data[1] 43
data[2] 44
data[3] 45
card detect 46

UART [UART1] Pinout
Function MIO Pin
tx 48
rx 49

CAN [CAN0] Pinout
Function MIO Pin
rx 50
tx 51

Various Pinout
Function MIO Pin
PPS 9
HSI Flash 47

Connectors
Hirose HSI Connector: HR25-7TR-8PA
Function Connector Pin Connects to (all to a header?)
GND 1 GND
Flash optocoupled output negative (-) 2 GND
GPIO 1 3
Trigger input with optocoupler (-) 4
Flash optocoupled output positive (+) 5 MIO 47, 1V8 pull up
GPIO2 6
Trigger input with optocoupler (+) 7
Input power supply (VCC) 12-24 V DC 8 Power from EPS or lab,

Gigabit Ethernet RJ-45: L829-1J1T-43

104

Function Connector Pin Connects to
TRCT3 1 0.1uF in series to GND
TRD3- 2 ETH_MD3_N
TRD3+ 3 ETH_MD3_P
TRD2+ 4 ETH_MD2_P
TRD2- 5 ETH_MD2_N
TRCT2 6 0.1uF in series to GND
TRCT4 7 0.1uF in series to GND
TRD4+ 8 ETH_MD4_P
TRD4- 9 ETH_MD4_N
TRD1- 10 ETH_MD1_N
TRD1+ 11 ETH_MD1_P
TRCT1 12 0.1uF in series to GND
LED1 Yellow Negative 13 ETH_PHY_LED0
LED1 Yellow Positive 14 3V3
LED2 Orange Negative 15 N/C
LED2 Common Positive 16 3V3
LED2 Green Negative 17 ETH_PHY_LED1

105

P
ar

ts
P

ar
t n

am
e

P
ar

t n
um

be
r

(d
is

tri
bu

to
r)

D
es

cr
ip

tio
n

Q
ua

nt
ity

C
an

 b
us

 tr
an

ce
iv

er
M

C
P

25
62

-E
/S

N
23

62
83

9
ph

ys
ic

al
 tr

an
sc

ei
ve

r
1

U
S

B
 p

ro
te

ct
io

n
IP

42
20

C
Z6

15
06

62
9

D
ua

l U
S

B
 2

.0
 in

te
gr

at
ed

 E
S

D
 p

ro
te

ct
io

n
2

U
A

R
T

to
 U

S
B

 a
da

pt
er

FT
D

I2
30

X
Q

-R
20

81
32

4
ua

rt
to

 u
sb

 c
on

ve
rte

r c
hi

p
1

U
A

R
T

M
ux

TS
3A

24
15

9
29

6-
21

91
4-

1-
N

D
A

na
lo

gu
e

S
w

itc
h

IC
 V

S
S

O
P

-1
0

1
S

D
 C

ar
d

co
nt

ro
lle

r
TX

S
02

61
2R

TW
R

23
35

61
7

Fr
eq

ue
nc

y
S

yn
th

es
iz

er
, 6

0M
H

z,
 1

.1
V

 to
 3

.6
V

, W
Q

FN
-2

4
1

LD
O

 p
ow

er
 re

gu
la

to
r 1

V
8

3V
3

TP
S

74
80

1D
R

C
R

27
64

83
3

S
in

gl
e-

ou
tp

ut
 1

.5
A

 L
D

O
 re

gu
la

to
r,

ad
ju

st
ab

le
 (0

.8
V

 to
 3

.6
V

),
pr

og
ra

m
m

ab
le

 s
of

t s
ta

rt
2

LD
O

 p
ow

er
 re

gu
la

to
r 1

V
0

1V
2

TP
S

74
70

1D
R

C
R

27
64

74
7

S
in

gl
e-

ou
tp

ut
 5

00
m

A
 L

D
O

 re
gu

la
to

r,
ad

ju
st

ab
le

 (0
.8

V
 to

 3
.6

V
),

pr
og

ra
m

m
ab

le
 s

of
t s

ta
rt

2
S

w
itc

hi
ng

 p
ow

er
 re

gu
la

to
r 5

V
LM

Z3
15

06
H

R
U

Q
T

23
73

55
8

D
C

/D
C

 P
O

L
C

on
ve

rte
r,

A
dj

us
ta

bl
e,

 B
uc

k,
 7

80
 k

H
z,

 1
.2

 V
 to

 5
.5

 V
 o

ut
, 6

 A
, Q

FN
-4

7
1

FP
G

A
-d

on
e

LE
D

 m
os

fe
t

B
S

S
13

8B
K

W
,1

15
20

53
83

6
M

O
S

FE
T

Tr
an

si
st

or
, N

 C
ha

nn
el

, 3
20

 m
A

, 6
0

V
, 1

 o
hm

, 1
0

V
, 1

.1
 V

1

C
on

ne
ct

or
s

U
S

B
 R

G
B

, U
S

B
 C

10
54

50
-0

10
1

25
24

07
6

U
S

B
 T

yp
e

C
, U

S
B

 3
.1

, R
ec

ep
ta

cl
e,

 2
4

W
ay

s,
 S

ur
fa

ce
 M

ou
nt

, R
ig

ht
 A

ng
le

1
U

A
R

T
ad

ap
te

r,
U

S
B

 C
10

54
50

-0
10

1
25

24
07

6
U

S
B

 T
yp

e
C

, U
S

B
 3

.1
, R

ec
ep

ta
cl

e,
 2

4
W

ay
s,

 S
ur

fa
ce

 M
ou

nt
, R

ig
ht

 A
ng

le
1

C
A

N
 b

us
, P

ic
oL

oc
k

4
pi

n
50

40
50

-0
49

1
23

92
59

2
M

at
es

 w
ith

 5
04

05
1-

04
01

1
P

ow
er

 E
P

S
 V

B
A

T,
 P

ic
oL

oc
k

10
 p

in
50

40
50

-1
09

1
W

M
10

13
8C

T-
N

D
M

at
es

 w
ith

 5
04

05
1-

10
01

1
P

ow
er

 E
P

S
 H

S
I,

P
ic

oL
oc

k
4

pi
n

50
40

50
-0

49
1

23
92

59
2

M
at

es
 w

ith
 5

04
05

1-
04

01
1

La
b

po
w

er
, b

ar
re

l j
ac

k
FC

68
14

78
24

50
49

6
D

C
 P

ow
er

 C
on

ne
ct

or
, J

ac
k,

 2
 A

, 2
.1

 m
m

, T
hr

ou
gh

 H
ol

e
M

ou
nt

, T
hr

ou
gh

 H
ol

e
1

P
ow

er
 s

yn
th

es
is

 s
ou

rc
e

m
an

ua
l s

ho
rt

se
le

ct
or

3
pi

n
10

0
m

il
1

H
S

I P
ow

er
 s

ou
rc

e
m

an
ua

l s
ho

rt
se

le
ct

or
3

pi
n

10
0

m
il

1
X

A
D

C
 fo

r T
em

pe
ra

tu
re

2
pi

n
10

0
m

il
1

U
A

R
T

M
ux

 m
an

ua
l s

ho
rt

se
le

ct
3

pi
n

10
0

m
il

1
P

P
S

 S
ig

na
l

2
pi

n
10

0
m

il
1

H
S

I 8
-p

in
 e

xt
er

na
l c

on
ne

ct
or

8
pi

n
10

0
m

il
1

H
S

I c
irc

ul
ar

 c
on

ne
ct

or
H

R
25

-7
TR

-8
P

A
(7

3)
29

29
84

0
M

at
es

 w
ith

 H
R

25
-7

TP
-8

S
(7

2)
, H

R
25

 S
er

ie
s,

 B
ul

kh
ea

d
R

ec
ep

ta
cl

e,
 8

 C
on

ta
ct

s,
 P

C
B

 P
in

1
H

S
I,

G
ig

 E
TH

, R
J4

5
L8

29
-1

J1
T-

43
26

75
99

7
M

od
ul

ar
 C

on
ne

ct
or

, R
J4

5
Ja

ck
, 1

 x
 1

 P
or

t,
8P

8C
, C

at
5e

, T
hr

ou
gh

 H
ol

e
M

ou
nt

1
S

D
 C

ar
d

sl
ot

50
25

70
-0

89
3

20
60

73
1

M
em

or
y

S
oc

ke
t,

50
25

70
 S

er
ie

s,
 M

ic
ro

 S
D

, 8
 C

on
ta

ct
s,

 C
op

pe
r A

llo
y,

 G
ol

d
P

la
te

d
C

on
ta

ct
s

1
JT

A
G

TB
D

TB
D

E
xt

er
na

l c
on

ne
ct

or
, v

ar
io

us
 fu

nc
tio

ns
53

26
1-

08
71

21
19

49
6

W
IR

E
-B

O
A

R
D

 C
O

N
N

E
C

TO
R

 H
E

A
D

E
R

 8
P

O
S

, 1
.2

5M
M

1

106

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Architecture OverviewTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

1 172.0

JTAG_TCK

JTAG_TDO

PWR_ENABLE

JTAG_TMS

JTAG_TDI

CARRIER_SRST#

VP_0_N
VP_0_P

SoM (a)
ntnu-hsi-prototype-fpga-part-a.SchDoc

VCCIO_EN

PG_CARRIER

PS_MIO9
PS_MIO10
PS_MIO11
PS_MIO14
PS_MIO15
PS_MIO12
PS_MIO13
PS_MIO0

SoM (b)
ntnu-hsi-prototype-fpga-part-b.SchDoc

USB_OTG_P
USB_OTG_N

PS_MIO40

PS_MIO42

PS_MIO45

PS_MIO50
PS_MIO51

PS_MIO44

PS_MIO41

PS_MIO43

ETH_MD2_P
ETH_MD2_N

ETH_PHY_LED1

ETH_MD4_P
ETH_MD4_N

ETH_PHY_LED0

ETH_MD1_P
ETH_MD1_N

ETH_MD3_P
ETH_MD3_N

PS_MIO46

PS_MIO49
PS_MIO48

PS_MIO47

SoM (c)
ntnu-hsi-prototype-fpga-part-c.SchDoc

ENABLE

Power
ntnu-hsi-prototype-power-section.SchDoc

D+
D-

TX
RX

USB (UART + RGB)
ntnu-hsi-prototype-usb.SchDoc SD_D2

SD_D0
SD_D1

SD_D3

SD_CMD
SD_CLK

SD_CD

SD card
ntnu-hsi-prototype-sd-card-interface.SchDoc

TMS
TCLK

TDO
TDI

INIT

JTAG
ntnu-hsi-prototype-jtag.SchDoc

JT1
JT2
JT3
JT4
JT5
JT6
JT7
JT8

External connector
ntnu-hsi-prototype-external-connector.SchDoc

TXIN
RXIN

TX1
RX1

TX2
RX2

UART switch
ntnu-hsi-prototype-uart-switch.SchDoc

GND

LDO_3V3

PWR_ENABLE
VCCIO_EN

LED0
LED1

TRD1+
TRD1-
TRD2+
TRD2-
TRD3+
TRD3-
TRD4+
TRD4-

FLASH+

HSI (power + com/GigE)
ntnu-hsi-prototype-ethernet.SchDoc

RX
TX

CAN
ntnu-hsi-prototype-can.SchDoc

V_THERMO-
V_THERMO+

Thermal sensor (placeholder)
ntnu-hsi-prototype-temp.SchDoc

PPS

ADCS (PPS, RTC, etc.)
ntnu-hsi-prototype-adcs.SchDoc

PS_MIO47

PS_MIO47

GND

FID1 FID2 FID3 FID4 FID5 FID6 FID7 FID8

Microheaders for the system-on-module (PicoZed)

PicoZed pinouts

MIO:
0: (unassigned)
1..6: QSPI Flash
7: (unassigned)
8:QSPI FBCLK
9: (unassigned)
10..11: CAN0
12..13: (unassigned)
14..15 UART0
16..27: Enet0
28..39: USB0
40..45: SD0
46..49: Camera Timing MIO
50: SD0 CD
51: (unassigned)
52..53: Enet0

MIO 0, 9-15 are connected to
eMMC.
They can be used as long as
eMMC is not.
Use pins in the MIO40-51 range
instead.

COFID1 COFID2 COFID3 COFID4 COFID5 COFID6 COFID7 COFID8

PIMH10MOUNT

COMH1

PIMH20MOUNT

COMH2

PIMH30MOUNT

COMH3

PIMH40MOUNT

COMH4

PIMH50MOUNT

COMH5

PIMH60MOUNT

COMH6

PIMH70MOUNT

COMH7

PIMH80MOUNT

COMH8

PIMH10MOUNT PIMH20MOUNT PIMH30MOUNT PIMH40MOUNT PIMH50MOUNT PIMH60MOUNT PIMH70MOUNT PIMH80MOUNT

NLPS0MIO47

NLPWR0ENABLE
NLVCCIO0EN

1

1

2

2

3

3

4

4

D D

C C

B B

A A

PicoZed FPGA Part ATitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

2 172.0

JTAG_TCK
JTAG_TDO

PWR_ENABLE

GND GND

JTAG_TMS
JTAG_TDI

JTAG_TCK
JTAG_TDO
PWR_ENABLE

JTAG_TMS

CARRIER_SRST#CARRIER_SRST#

JTAG_TDI JTAG_TMSJX1-2

JTAG_TDIJX1-4

CARRIER_SRST#JX1-6

JX1_SE_1JX1-10

JTAG_TCK JX1-1

JTAG_TDO JX1-3

PWR_ENABLE JX1-5

FPGA_VBATT JX1-7

JX1_SE_0 JX1-9

JX1_LVDS_1_PJX1-12

JX1_LVDS_1_NJX1-14

GNDJX1-16

JX1_LVDS_3_PJX1-18

JX1_LVDS_3_NJX1-20

JX1_LVDS_0_P JX1-11

JX1_LVDS_0_N JX1-13

GND JX1-15

JX1_LVDS_2_P JX1-17

JX1_LVDS_2_N JX1-19

JX1_LVDS_11_PJX1-42

JX1_LVDS_11_NJX1-44

GNDJX1-46

JX1_LVDS_13_PJX1-48

JX1_LVDS_13_NJX1-50

JX1_LVDS_10_P JX1-41

JX1_LVDS_10_N JX1-43

GND JX1-45

JX1_LVDS_12_P JX1-47

JX1_LVDS_12_N JX1-49

GNDJX1-52

JX1_LVDS_15_PJX1-54

JX1_LVDS_15_NJX1-56

VIN_HDRJX1-58

VIN_HDRJX1-60

GND JX1-51

JX1_LVDS_14_P JX1-53

JX1_LVDS_14_N JX1-55

VIN_HDR JX1-57

VIN_HDR JX1-59

GNDJX1-22

JX1_LVDS_5_PJX1-24

JX1_LVDS_5_NJX1-26

GNDJX1-28

JX1_LVDS_7_PJX1-30

GND JX1-21

JX1_LVDS_4_P JX1-23

JX1_LVDS_4_N JX1-25

GND JX1-27

JX1_LVDS_6_P JX1-29

JX1_LVDS_7_NJX1-32

GNDJX1-34

JX1_LVDS_9_PJX1-36

JX1_LVDS_9_NJX1-38

GNDJX1-40

JX1_LVDS_6_N JX1-31

GND JX1-33

JX1_LVDS_8_P JX1-35

JX1_LVDS_8_N JX1-37

GND JX1-39

JX1_LVDS_17_PJX1-62

JX1_LVDS_17_NJX1-64

GNDJX1-66

JX1_LVDS_19_PJX1-68

JX1_LVDS_19_NJX1-70

JX1_LVDS_16_P JX1-61

JX1_LVDS_16_N JX1-63

GND JX1-65

JX1_LVDS_18_P JX1-67

JX1_LVDS_18_N JX1-69

GNDJX1-72

JX1_LVDS_21_PJX1-74

JX1_LVDS_21_NJX1-76

VCCO_34JX1-78

VCCO_34JX1-80

GND JX1-71

JX1_LVDS_20_P JX1-73

JX1_LVDS_20_N JX1-75

GND JX1-77

VCCO_34 JX1-79

JX1_LVDS_23_PJX1-82

JX1_LVDS_23_NJX1-84

GNDJX1-86

BANK13_LVDS_1_PJX1-88

BANK13_LVDS_1_NJX1-90

JX1_LVDS_22_P JX1-81

JX1_LVDS_22_N JX1-83

GND JX1-85

BANK13_LVDS_0_P JX1-87

BANK13_LVDS_0_N JX1-89

BANK13_LVDS_3_PJX1-92

BANK13_LVDS_3_NJX1-94

GNDJX1-96

DXP_0_PJX1-98

DXN_0_NJX1-100

BANK13_LVDS_2_P JX1-91

BANK13_LVDS_2_N JX1-93

GND JX1-95

VP_0_P JX1-97

VN_0_N JX1-99

FPGA_DONEJX1-8

MHMOUNT
SOM4A

PicoZed

VCCO_34

VCCO_34
LDO_1V8

25V

C70
1.0uF

25V

C71
100nF

FB1

742792609

GND

VCCO_34
LDO_1V8

25V

C72
1.0uF

25V

C73
100nF

FB2

742792609

GND

LED4
0805 LED

R28
270R

LDO_3V3

GND

FPGA_DONE

ZYNQ BANK 34/35

1

2
3

Q1
BSS138BKW,115

FPGA_DONE

SMPS_5V

VP_0_P
VP_0_N

VCCO_34

SMPS_5V

GND

PIC7001
PIC7002

COC70
PIC7101
PIC7102

COC71

PIC7201
PIC7202

COC72
PIC7301
PIC7302

COC73

PIFB101 PIFB102

COFB1

PIFB201 PIFB202

COFB2

PILED40A
PILED40K COLED4

PIQ101

PIQ102

PIQ103
COQ1

PIR2801

PIR2802
COR28

PISOM40JX101 PISOM40JX102

PISOM40JX103 PISOM40JX104

PISOM40JX105 PISOM40JX106

PISOM40JX107 PISOM40JX108

PISOM40JX109 PISOM40JX1010

PISOM40JX1011 PISOM40JX1012

PISOM40JX1013 PISOM40JX1014

PISOM40JX1015 PISOM40JX1016

PISOM40JX1017 PISOM40JX1018

PISOM40JX1019 PISOM40JX1020

PISOM40JX1021 PISOM40JX1022

PISOM40JX1023 PISOM40JX1024

PISOM40JX1025 PISOM40JX1026

PISOM40JX1027 PISOM40JX1028

PISOM40JX1029 PISOM40JX1030

PISOM40JX1031 PISOM40JX1032

PISOM40JX1033 PISOM40JX1034

PISOM40JX1035 PISOM40JX1036

PISOM40JX1037 PISOM40JX1038

PISOM40JX1039 PISOM40JX1040

PISOM40JX1041 PISOM40JX1042

PISOM40JX1043 PISOM40JX1044

PISOM40JX1045 PISOM40JX1046

PISOM40JX1047 PISOM40JX1048

PISOM40JX1049 PISOM40JX1050

PISOM40JX1051 PISOM40JX1052

PISOM40JX1053 PISOM40JX1054

PISOM40JX1055 PISOM40JX1056

PISOM40JX1057 PISOM40JX1058

PISOM40JX1059 PISOM40JX1060

PISOM40JX1061 PISOM40JX1062

PISOM40JX1063 PISOM40JX1064

PISOM40JX1065 PISOM40JX1066

PISOM40JX1067 PISOM40JX1068

PISOM40JX1069 PISOM40JX1070

PISOM40JX1071 PISOM40JX1072

PISOM40JX1073 PISOM40JX1074

PISOM40JX1075 PISOM40JX1076

PISOM40JX1077 PISOM40JX1078

PISOM40JX1079 PISOM40JX1080

PISOM40JX1081 PISOM40JX1082

PISOM40JX1083 PISOM40JX1084

PISOM40JX1085 PISOM40JX1086

PISOM40JX1087 PISOM40JX1088

PISOM40JX1089 PISOM40JX1090

PISOM40JX1091 PISOM40JX1092

PISOM40JX1093 PISOM40JX1094

PISOM40JX1095 PISOM40JX1096

PISOM40JX1097 PISOM40JX1098

PISOM40JX1099 PISOM40JX10100

PISOM40MOUNT

COSOM4A

PISOM40JX106
NLCARRIER0SRST# POCARRIER0SRST#

PIQ101

PISOM40JX108
NLFPGA0DONE

PIC7001 PIC7101

PIC7201 PIC7301

PIQ102

PISOM40JX1015 PISOM40JX1016

PISOM40JX1021 PISOM40JX1022

PISOM40JX1027 PISOM40JX1028

PISOM40JX1033 PISOM40JX1034

PISOM40JX1039 PISOM40JX1040

PISOM40JX1045 PISOM40JX1046

PISOM40JX1051 PISOM40JX1052

PISOM40JX1065 PISOM40JX1066

PISOM40JX1071 PISOM40JX1072

PISOM40JX1077

PISOM40JX1085 PISOM40JX1086

PISOM40JX1095 PISOM40JX1096

PISOM40JX1098

PISOM40JX10100

PISOM40MOUNT

PISOM40JX101
NLJTAG0TCK

POJTAG0TCK
PISOM40JX104

NLJTAG0TDI
POJTAG0TDI PISOM40JX103

NLJTAG0TDO
POJTAG0TDO

PISOM40JX102
NLJTAG0TMS

POJTAG0TMS

PIFB101

PIFB201

PIR2802

PILED40A
PIR2801

PILED40K

PIQ103

PISOM40JX107

PISOM40JX109 PISOM40JX1010

PISOM40JX1011 PISOM40JX1012

PISOM40JX1013 PISOM40JX1014

PISOM40JX1017 PISOM40JX1018

PISOM40JX1019 PISOM40JX1020

PISOM40JX1023 PISOM40JX1024

PISOM40JX1025 PISOM40JX1026

PISOM40JX1029 PISOM40JX1030

PISOM40JX1031 PISOM40JX1032

PISOM40JX1035 PISOM40JX1036

PISOM40JX1037 PISOM40JX1038

PISOM40JX1041 PISOM40JX1042

PISOM40JX1043 PISOM40JX1044

PISOM40JX1047 PISOM40JX1048

PISOM40JX1049 PISOM40JX1050

PISOM40JX1053 PISOM40JX1054

PISOM40JX1055 PISOM40JX1056

PISOM40JX1061 PISOM40JX1062

PISOM40JX1063 PISOM40JX1064

PISOM40JX1067 PISOM40JX1068

PISOM40JX1069 PISOM40JX1070

PISOM40JX1073 PISOM40JX1074

PISOM40JX1075 PISOM40JX1076

PISOM40JX1081 PISOM40JX1082

PISOM40JX1083 PISOM40JX1084

PISOM40JX1087 PISOM40JX1088

PISOM40JX1089 PISOM40JX1090

PISOM40JX1091 PISOM40JX1092

PISOM40JX1093 PISOM40JX1094

PISOM40JX1097 POVP000P
PISOM40JX1099 POVP000N

PISOM40JX105
NLPWR0ENABLE POPWR0ENABLE

PISOM40JX1057 PISOM40JX1058

PISOM40JX1059 PISOM40JX1060

PIC7002 PIC7102

PIC7202 PIC7302

PIFB102

PIFB202

PISOM40JX1078

PISOM40JX1079 PISOM40JX1080
NLVCCO034

POCARRIER0SRST#

POJTAG0TCK
POJTAG0TDI POJTAG0TDO
POJTAG0TMS

POPWR0ENABLE

POVP000N
POVP000P

107

1

1

2

2

3

3

4

4

D D

C C

B B

A A

PicoZed FPGA Part BTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

3 172.0

GNDGND

SMPS_5V

SMPS_5V SMPS_5V

VCCIO_EN

MIO13JX2-2

MIO15JX2-4

MIO11JX2-6

MIO9JX2-8

PG_1V8JX2-10

MIO10 JX2-1

MIO14 JX2-3

MIO12 JX2-5

MIO0 JX2-7

INIT# JX2-9

VIN_HDRJX2-12

JX2_SE_1JX2-14

GNDJX2-16

JX2_LVDS_1_PJX2-18

JX2_LVDS_1_NJX2-20

JX2_SE_0 JX2-13

GND JX2-15

JX2_LVDS_0_P JX2-17

JX2_LVDS_0_N JX2-19

JX2_LVDS_9_PJX2-42

JX2_LVDS_9_NJX2-44

GNDJX2-46

JX2_LVDS_11_PJX2-48

JX2_LVDS_11_NJX2-50

JX2_LVDS_8_P JX2-41

JX2_LVDS_8_N JX2-43

GND JX2-45

JX2_LVDS_10_P JX2-47

JX2_LVDS_10_N JX2-49

GNDJX2-52

JX2_LVDS_13_PJX2-54

JX2_LVDS_13_NJX2-56

VIN_HDRJX2-58

VIN_HDRJX2-60

GND JX2-51

JX2_LVDS_12_P JX2-53

JX2_LVDS_12_N JX2-55

VIN_HDR JX2-57

VIN_HDR JX2-59

GNDJX2-22

JX2_LVDS_3_PJX2-24

JX2_LVDS_3_NJX2-26

GNDJX2-28

JX2_LVDS_5_PJX2-30

GND JX2-21

JX2_LVDS_2_P JX2-23

JX2_LVDS_2_N JX2-25

GND JX2-27

JX2_LVDS_4_P JX2-29

JX2_LVDS_5_NJX2-32

GNDJX2-34

JX2_LVDS_7_PJX2-36

JX2_LVDS_7_NJX2-38

GNDJX2-40

JX2_LVDS_4_N JX2-31

GND JX2-33

JX2_LVDS_6_P JX2-35

JX2_LVDS_6_N JX2-37

GND JX2-39

JX2_LVDS_15_PJX2-62

JX2_LVDS_15_NJX2-64

GNDJX2-66

JX2_LVDS_17_PJX2-68

JX2_LVDS_17_NJX2-70

JX2_LVDS_14_P JX2-61

JX2_LVDS_14_N JX2-63

GND JX2-65

JX2_LVDS_16_P JX2-67

JX2_LVDS_16_N JX2-69

GNDJX2-72

JX2_LVDS_19_PJX2-74

JX2_LVDS_19_NJX2-76

VCCO_35JX2-78

VCCO_35JX2-80

GND JX2-71

JX2_LVDS_18_P JX2-73

JX2_LVDS_18_N JX2-75

GND JX2-77

VCCO_35 JX2-79

JX2_LVDS_21_PJX2-82

JX2_LVDS_21_NJX2-84

GNDJX2-86

JX2_LVDS_23_PJX2-88

JX2_LVDS_23_NJX2-90

JX2_LVDS_20_P JX2-81

JX2_LVDS_20_N JX2-83

GND JX2-85

JX2_LVDS_22_P JX2-87

JX2_LVDS_22_N JX2-89

GNDJX2-92

BANK13_LVDS_5_PJX2-94

BANK13_LVDS_5_NJX2-96

VCCO_13JX2-98

BANK13_SE_0JX2-100

GND JX2-91

BANK13_LVDS_4_P JX2-93

BANK13_LVDS_4_N JX2-95

BANK13_LVDS_6_P JX2-97

BANK13_LVDS_6_N JX2-99

PG_CARRIER JX2-11

SOM4B

PicoZed

PS_MIO15 PS_MIO14

VCCO_35
LDO_1V8

25V

C74
1.0uF

25V

C75
100nF

FB3

742792609

GND

VCCO_35VCCO_35

VCCO_13B

LDO_3V3

25V

C78
1.0uF

25V

C79
100nF

FB5

742792609

GND

ZYNQ BANK 34/35

VCCO_13B

PS_MIO10

PS_MIO11 PS_MIO12

PS_MIO13

PS_MIO9 PS_MIO0

PG_CARRIER

Pins MIO9 through MIO15 (inclusive) and MIO0
must be kept free so the onboard eMMC on the
PicoZED can be utilized. All signals currently
employing MIO9-15 and MIO0 must be place on
other available pins.

Alternatively, MIO9-15 can have dual use by
routing them to a connector on the breakout board.
NB! MIO0 is enable/disable for the eMMC and
must not be used for signaling. It can be routed to a
pad on the carrier board for manual enable/disable.

PIC7401
PIC7402

COC74
PIC7501
PIC7502

COC75

PIC7801
PIC7802

COC78
PIC7901
PIC7902

COC79

PIFB301 PIFB302

COFB3

PIFB501 PIFB502

COFB5

PISOM40JX201 PISOM40JX202

PISOM40JX203 PISOM40JX204

PISOM40JX205 PISOM40JX206

PISOM40JX207 PISOM40JX208

PISOM40JX209 PISOM40JX2010

PISOM40JX2011 PISOM40JX2012

PISOM40JX2013 PISOM40JX2014

PISOM40JX2015 PISOM40JX2016

PISOM40JX2017 PISOM40JX2018

PISOM40JX2019 PISOM40JX2020

PISOM40JX2021 PISOM40JX2022

PISOM40JX2023 PISOM40JX2024

PISOM40JX2025 PISOM40JX2026

PISOM40JX2027 PISOM40JX2028

PISOM40JX2029 PISOM40JX2030

PISOM40JX2031 PISOM40JX2032

PISOM40JX2033 PISOM40JX2034

PISOM40JX2035 PISOM40JX2036

PISOM40JX2037 PISOM40JX2038

PISOM40JX2039 PISOM40JX2040

PISOM40JX2041 PISOM40JX2042

PISOM40JX2043 PISOM40JX2044

PISOM40JX2045 PISOM40JX2046

PISOM40JX2047 PISOM40JX2048

PISOM40JX2049 PISOM40JX2050

PISOM40JX2051 PISOM40JX2052

PISOM40JX2053 PISOM40JX2054

PISOM40JX2055 PISOM40JX2056

PISOM40JX2057 PISOM40JX2058

PISOM40JX2059 PISOM40JX2060

PISOM40JX2061 PISOM40JX2062

PISOM40JX2063 PISOM40JX2064

PISOM40JX2065 PISOM40JX2066

PISOM40JX2067 PISOM40JX2068

PISOM40JX2069 PISOM40JX2070

PISOM40JX2071 PISOM40JX2072

PISOM40JX2073 PISOM40JX2074

PISOM40JX2075 PISOM40JX2076

PISOM40JX2077 PISOM40JX2078

PISOM40JX2079 PISOM40JX2080

PISOM40JX2081 PISOM40JX2082

PISOM40JX2083 PISOM40JX2084

PISOM40JX2085 PISOM40JX2086

PISOM40JX2087 PISOM40JX2088

PISOM40JX2089 PISOM40JX2090

PISOM40JX2091 PISOM40JX2092

PISOM40JX2093 PISOM40JX2094

PISOM40JX2095 PISOM40JX2096

PISOM40JX2097 PISOM40JX2098

PISOM40JX2099 PISOM40JX20100

COSOM4B

PIC7401 PIC7501

PIC7801 PIC7901

PISOM40JX2015 PISOM40JX2016

PISOM40JX2021 PISOM40JX2022

PISOM40JX2027 PISOM40JX2028

PISOM40JX2033 PISOM40JX2034

PISOM40JX2039 PISOM40JX2040

PISOM40JX2045 PISOM40JX2046

PISOM40JX2051 PISOM40JX2052

PISOM40JX2065 PISOM40JX2066

PISOM40JX2071 PISOM40JX2072

PISOM40JX2077

PISOM40JX2085 PISOM40JX2086

PISOM40JX2091 PISOM40JX2092

PIFB301

PIFB501

PISOM40JX201 POPS0MIO10 PISOM40JX202 POPS0MIO13
PISOM40JX203 POPS0MIO14 PISOM40JX204 POPS0MIO15
PISOM40JX205 POPS0MIO12 PISOM40JX206 POPS0MIO11
PISOM40JX207 POPS0MIO0 PISOM40JX208 POPS0MIO9
PISOM40JX209 PISOM40JX2010 POVCCIO0EN
PISOM40JX2011 POPG0CARRIER
PISOM40JX2013 PISOM40JX2014

PISOM40JX2017 PISOM40JX2018

PISOM40JX2019 PISOM40JX2020

PISOM40JX2023 PISOM40JX2024

PISOM40JX2025 PISOM40JX2026

PISOM40JX2029 PISOM40JX2030

PISOM40JX2031 PISOM40JX2032

PISOM40JX2035 PISOM40JX2036

PISOM40JX2037 PISOM40JX2038

PISOM40JX2041 PISOM40JX2042

PISOM40JX2043 PISOM40JX2044

PISOM40JX2047 PISOM40JX2048

PISOM40JX2049 PISOM40JX2050

PISOM40JX2053 PISOM40JX2054

PISOM40JX2055 PISOM40JX2056

PISOM40JX2061 PISOM40JX2062

PISOM40JX2063 PISOM40JX2064

PISOM40JX2067 PISOM40JX2068

PISOM40JX2069 PISOM40JX2070

PISOM40JX2073 PISOM40JX2074

PISOM40JX2075 PISOM40JX2076

PISOM40JX2081 PISOM40JX2082

PISOM40JX2083 PISOM40JX2084

PISOM40JX2087 PISOM40JX2088

PISOM40JX2089 PISOM40JX2090

PISOM40JX2093 PISOM40JX2094

PISOM40JX2095 PISOM40JX2096

PISOM40JX2097

PISOM40JX2099 PISOM40JX20100

PISOM40JX2012

PISOM40JX2057 PISOM40JX2058

PISOM40JX2059 PISOM40JX2060

PIC7802 PIC7902
PIFB502

PISOM40JX2098
NLVCCO013B

PIC7402 PIC7502 PIFB302

PISOM40JX2078

PISOM40JX2079 PISOM40JX2080
NLVCCO035

POPG0CARRIER

POPS0MIO0 POPS0MIO9

POPS0MIO10

POPS0MIO11 POPS0MIO12

POPS0MIO13
POPS0MIO14 POPS0MIO15

POVCCIO0EN

1

1

2

2

3

3

4

4

D D

C C

B B

A A

PicoZed FPGA part CTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

4 172.0

GNDGND

PS_MIO42

PS_MIO40

PS_MIO45

PS_MIO41
PS_MIO43

PS_MIO44

PS_MIO51
PS_MIO50

USB_OTG_P
USB_OTG_N

MGTREFCLK1_PJX3-2

MGTREFCLK1_NJX3-4

GNDJX3-6

MGTRX0_NJX3-10

MGTREFCLK0_P JX3-1

MGTREFCLK0_N JX3-3

MGTAVCC JX3-5

MGTAVCC JX3-7

MGTAVCC JX3-9

GNDJX3-12

MGTRX1_PJX3-14

MGTRX1_NJX3-16

GNDJX3-18

MGTRX2_PJX3-20

MGTAVCC JX3-11

MGTTX0_P JX3-13

MGTTX0_N JX3-15

GND JX3-17

MGTTX1_P JX3-19

PS_MIO48JX3-42

PS_MIO49JX3-44

VCCO_13JX3-46

ETH_PHY_LED1JX3-48

GNDJX3-50

PS_MIO46 JX3-41

PS_MIO40 JX3-43

VCCO_13 JX3-45

ETH_PHY_LED0 JX3-47

GND JX3-49

ETH_MD2_PJX3-52

ETH_MD2_NJX3-54

GNDJX3-56

ETH_MD4_PJX3-58

ETH_MD4_NJX3-60

ETH_MD1_P JX3-51

ETH_MD1_N JX3-53

GND JX3-55

ETH_MD3_P JX3-57

ETH_MD3_N JX3-59

MGTRX2_NJX3-22

GNDJX3-24

MGTRX3_PJX3-26

MGTRX3_NJX3-28

MGTAVTTJX3-30

MGTTX1_N JX3-21

GND JX3-23

MGTTX2_P JX3-25

MGTTX2_N JX3-27

GND JX3-29

MGTAVTTJX3-32

PS_MIO41JX3-34

PS_MIO43JX3-36

PS_MIO45JX3-38

PS_MIO47JX3-40

MGTTX3_P JX3-31

MGTTX3_N JX3-33

GND JX3-35

PS_MIO42 JX3-37

PS_MIO44 JX3-39

GNDJX3-62

PS_MIO51JX3-64

PS_MIO50JX3-66

USB_VBUS_OTGJX3-68

USB_OTG_CPENJX3-70

GND JX3-61

USB_ID JX3-63

GND JX3-65

USB_OTG_P JX3-67

USB_OTG_N JX3-69

GNDJX3-72

BANK13_LVDS_8_PJX3-74

BANK13_LVDS_8_NJX3-76

GNDJX3-78

BANK13_LVDS_10_PJX3-80

GND JX3-71

BANK13_LVDS_7_P JX3-73

BANK13_LVDS_7_N JX3-75

GND JX3-77

BANK13_LVDS_9_P JX3-79

BANK13_LVDS_10_NJX3-82

GNDJX3-84

BANK13_LVDS_12_PJX3-86

BANK13_LVDS_12_NJX3-88

GNDJX3-90

BANK13_LVDS_9_N JX3-81

GND JX3-83

BANK13_LVDS_11_P JX3-85

BANK13_LVDS_11_N JX3-87

GND JX3-89

BANK13_LVDS_14_PJX3-92

BANK13_LVDS_14_NJX3-94

GNDJX3-96

BANK13_LVDS_16_PJX3-98

BANK13_LVDS_16_NJX3-100

BANK13_LVDS_13_P JX3-91

BANK13_LVDS_13_N JX3-93

GND JX3-95

BANK13_LVDS_15_P JX3-97

BANK13_LVDS_15_N JX3-99

MGTRX0_PJX3-8

SOM4C

PicoZed

VCCO_13C
LDO_3V3

25V

C80
1.0uF

25V

C81
100nF

FB6

742792609

GND

VCCO_13CVCCO_13C

ZYNQ BANK 13, 501

VBUS

C88
100nF

GND

ETH_PHY_LED1

ETH_MD2_P
ETH_MD2_N

ETH_MD4_P
ETH_MD4_N

ETH_PHY_LED0

ETH_MD1_P
ETH_MD1_N

ETH_MD3_P
ETH_MD3_N

PS_MIO47

PS_MIO48
PS_MIO49

PS_MIO46

MGTAVTT

MGTAVCC

MGTAVTT
LDO_1V2

25V

C27
1.0uF

25V

C28
100nF

FB7

742792609

GND

MGTAVCC
LDO_1V0

25V

C25
1.0uF

25V

C26
100nF

FB4

742792609

GND

USB Connector should be connected to:

- USB_OTG_N
- USB_OTG_P
- USB_ID
- USB_OTG_CPEN

USB_OTG_CPEN signal allows the user to control
an external power source for USB VBUS on the
carrier board and is only used when USB operates
in host mode.

JX3 connector used for microSD Card, UART,
USB2.0 and bank 13 PL I/0

PIC2501
PIC2502

COC25
PIC2601
PIC2602

COC26

PIC2701
PIC2702

COC27
PIC2801
PIC2802

COC28

PIC8001
PIC8002

COC80
PIC8101
PIC8102

COC81

PIC8801
PIC8802

COC88

PIFB401 PIFB402

COFB4

PIFB601 PIFB602

COFB6

PIFB701 PIFB702

COFB7

PISOM40JX301 PISOM40JX302

PISOM40JX303 PISOM40JX304

PISOM40JX305 PISOM40JX306

PISOM40JX307 PISOM40JX308

PISOM40JX309 PISOM40JX3010

PISOM40JX3011 PISOM40JX3012

PISOM40JX3013 PISOM40JX3014

PISOM40JX3015 PISOM40JX3016

PISOM40JX3017 PISOM40JX3018

PISOM40JX3019 PISOM40JX3020

PISOM40JX3021 PISOM40JX3022

PISOM40JX3023 PISOM40JX3024

PISOM40JX3025 PISOM40JX3026

PISOM40JX3027 PISOM40JX3028

PISOM40JX3029 PISOM40JX3030

PISOM40JX3031 PISOM40JX3032

PISOM40JX3033 PISOM40JX3034

PISOM40JX3035 PISOM40JX3036

PISOM40JX3037 PISOM40JX3038

PISOM40JX3039 PISOM40JX3040

PISOM40JX3041 PISOM40JX3042

PISOM40JX3043 PISOM40JX3044

PISOM40JX3045 PISOM40JX3046

PISOM40JX3047 PISOM40JX3048

PISOM40JX3049 PISOM40JX3050

PISOM40JX3051 PISOM40JX3052

PISOM40JX3053 PISOM40JX3054

PISOM40JX3055 PISOM40JX3056

PISOM40JX3057 PISOM40JX3058

PISOM40JX3059 PISOM40JX3060

PISOM40JX3061 PISOM40JX3062

PISOM40JX3063 PISOM40JX3064

PISOM40JX3065 PISOM40JX3066

PISOM40JX3067 PISOM40JX3068

PISOM40JX3069 PISOM40JX3070

PISOM40JX3071 PISOM40JX3072

PISOM40JX3073 PISOM40JX3074

PISOM40JX3075 PISOM40JX3076

PISOM40JX3077 PISOM40JX3078

PISOM40JX3079 PISOM40JX3080

PISOM40JX3081 PISOM40JX3082

PISOM40JX3083 PISOM40JX3084

PISOM40JX3085 PISOM40JX3086

PISOM40JX3087 PISOM40JX3088

PISOM40JX3089 PISOM40JX3090

PISOM40JX3091 PISOM40JX3092

PISOM40JX3093 PISOM40JX3094

PISOM40JX3095 PISOM40JX3096

PISOM40JX3097 PISOM40JX3098

PISOM40JX3099 PISOM40JX30100

COSOM4C

PIC2501 PIC2601

PIC2701 PIC2801

PIC8001 PIC8101

PIC8802

PISOM40JX306

PISOM40JX308

PISOM40JX3010

PISOM40JX3012

PISOM40JX3014

PISOM40JX3016

PISOM40JX3017 PISOM40JX3018

PISOM40JX3020

PISOM40JX3022

PISOM40JX3023 PISOM40JX3024

PISOM40JX3026

PISOM40JX3028

PISOM40JX3029

PISOM40JX3035

PISOM40JX3049 PISOM40JX3050

PISOM40JX3055 PISOM40JX3056

PISOM40JX3061 PISOM40JX3062

PISOM40JX3065

PISOM40JX3071 PISOM40JX3072

PISOM40JX3077 PISOM40JX3078

PISOM40JX3083 PISOM40JX3084

PISOM40JX3089 PISOM40JX3090

PISOM40JX3095 PISOM40JX3096

PIFB401

PIFB701

PIFB601

PIC2502 PIC2602 PIFB402

PISOM40JX305

PISOM40JX307

PISOM40JX309

PISOM40JX3011
NLMGTAVCC

PIC2702 PIC2802 PIFB702

PISOM40JX3030

PISOM40JX3032

NLMGTAVTT

PISOM40JX301 PISOM40JX302

PISOM40JX303 PISOM40JX304

PISOM40JX3013

PISOM40JX3015

PISOM40JX3019

PISOM40JX3021

PISOM40JX3025

PISOM40JX3027

PISOM40JX3031

PISOM40JX3033 PISOM40JX3034 POPS0MIO41
PISOM40JX3036 POPS0MIO43

PISOM40JX3037 POPS0MIO42 PISOM40JX3038 POPS0MIO45
PISOM40JX3039 POPS0MIO44 PISOM40JX3040 POPS0MIO47

PISOM40JX3041 POPS0MIO46 PISOM40JX3042 POPS0MIO48
PISOM40JX3043 POPS0MIO40 PISOM40JX3044 POPS0MIO49

PISOM40JX3047 POETH0PHY0LED0 PISOM40JX3048 POETH0PHY0LED1

PISOM40JX3051 POETH0MD10P PISOM40JX3052 POETH0MD20P
PISOM40JX3053 POETH0MD10N PISOM40JX3054 POETH0MD20N

PISOM40JX3057 POETH0MD30P PISOM40JX3058 POETH0MD40P
PISOM40JX3059 POETH0MD30N PISOM40JX3060 POETH0MD40N

PISOM40JX3063 PISOM40JX3064 POPS0MIO51
PISOM40JX3066 POPS0MIO50

PISOM40JX3067 POUSB0OTG0P
PISOM40JX3069 POUSB0OTG0N PISOM40JX3070

PISOM40JX3073 PISOM40JX3074

PISOM40JX3075 PISOM40JX3076

PISOM40JX3079 PISOM40JX3080

PISOM40JX3081 PISOM40JX3082

PISOM40JX3085 PISOM40JX3086

PISOM40JX3087 PISOM40JX3088

PISOM40JX3091 PISOM40JX3092

PISOM40JX3093 PISOM40JX3094

PISOM40JX3097 PISOM40JX3098

PISOM40JX3099 PISOM40JX30100

PIC8801
PISOM40JX3068

PIC8002 PIC8102 PIFB602

PISOM40JX3045 PISOM40JX3046
NLVCCO013C

POETH0MD10N
POETH0MD10P

POETH0MD20N
POETH0MD20P

POETH0MD30N
POETH0MD30P

POETH0MD40N
POETH0MD40P

POETH0PHY0LED0 POETH0PHY0LED1

POPS0MIO40

POPS0MIO41

POPS0MIO42
POPS0MIO43

POPS0MIO44
POPS0MIO45

POPS0MIO46

POPS0MIO47

POPS0MIO48
POPS0MIO49

POPS0MIO50
POPS0MIO51

POUSB0OTG0N
POUSB0OTG0P

108

1

1

2

2

3

3

4

4

D D

C C

B B

A A

USB ManagerTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

5 172.0

GNDA1

TX1+ A2

TX1- A3VBUSA4

CC1 A5

D+ A6

D- A7

SBU1A8

VBUSA9

RX2- A10RX2+ A11

GNDA12 GNDB1

TX2+ B2

TX2- B3VBUSB4

CC2 B5

D+ B6

D- B7

SBU2B8

VBUSB9

RX1- B10

RX1+
B11

GND
B12

USB1

USB-C

GNDA1

TX1+ A2

TX1- A3VBUSA4

CC1 A5

D+ A6

D- A7

SBU1A8

VBUSA9

RX2- A10RX2+ A11

GNDA12 GNDB1

TX2+ B2

TX2- B3VBUSB4

CC2 B5

D+ B6

D- B7

SBU2B8

VBUSB9

RX1- B10

RX1+ B11GNDB12

USB2

USB-C

TX
RXV

C
C

10

V
C

C
IO

1
3V3OUT8

G
N

D
3

G
N

D
13

USBDM7

USBDP6

RESET#9

TXD 15

RXD 2

RTS# 16

CTS# 4

CBUS0 12

CBUS1 11

CBUS2 5

CBUS3 14EP
17 U8

FT230XQ-R

GND

UART_TX
UART_RX

USB_UART_N

USB_UART_P

C63
100nF

C64
100nF

C65
100nF

R17 27R

R18 27R

GND

GND

VBUS_2

LED2

LED3

R19

270R
R20

270R

VCCIO

VCCIO

I/O 11

GND 2

Vp 5

I/O 2 3I/O 34

I/O 46

D1

IP4220CZ6

I/O 1 1

GND2

Vp5

I/O 23 I/O 3 4

I/O 4 6

D2

IP4220CZ6

GND

GND

R21 27R
R22 27R

VBUS

USB_P
USB_N

i
Net Class

USB-UART

i
Net Class

UART

i
Net Class

USB

GND

GND

R29
5K1

R30
5K1

GND GND

CC1A
CC2A

CC1B
CC2B

USB_OTG_P
USB_OTG_N

USB OTG Device

USB UART BRIDGE

D+
D-

R31
5K1

R32
5K1

GND GND

VBUS

i
Net Class

USB

UART is connected to UART1
MIO48(tx)-MIO49(rx).

The USB device is setup to act like a
USB Device. See Chapter 15 of the
Zynq7000 for USB implementation
details.

CPEN is not used (used to control
external pwe supplies in Host mode).
ID is left floating according to USB-B
device standard.

Add TUSB320 for USB-C CC role
detection etc.

IN UART C desing use two 5.1K pull
down resistors on CC1 and CC2

PIC6301
PIC6302

COC63

PIC6401
PIC6402

COC64
PIC6501
PIC6502

COC65

PID101

PID102

PID103

PID104 PID105

PID106

COD1

PID201

PID202

PID203

PID204 PID205

PID206

COD2
PILED20A PILED20K

COLED2

PILED30A PILED30K

COLED3

PIR1701 PIR1702
COR17

PIR1801 PIR1802
COR18

PIR1901 PIR1902

COR19

PIR2001 PIR2002
COR20

PIR2101 PIR2102
COR21

PIR2201 PIR2202
COR22

PIR2901

PIR2902
COR29

PIR3001

PIR3002
COR30

PIR3101

PIR3102 COR31
PIR3201

PIR3202 COR32

PIU801
PIU802

PIU803

PIU804

PIU805

PIU806

PIU807

PIU808

PIU809

PIU8010

PIU8011

PIU8012

PIU8013
PIU8014

PIU8015

PIU8016

PIU8017 COU8

PIUSB10A1

PIUSB10A2

PIUSB10A3 PIUSB10A4

PIUSB10A5

PIUSB10A6

PIUSB10A7

PIUSB10A8

PIUSB10A9

PIUSB10A10

PIUSB10A11

PIUSB10A12

PIUSB10B1

PIUSB10B2

PIUSB10B3

PIUSB10B4

PIUSB10B5

PIUSB10B6

PIUSB10B7

PIUSB10B8

PIUSB10B9

PIUSB10B10

PIUSB10B11 PIUSB10B12

COUSB1

PIUSB20A1

PIUSB20A2

PIUSB20A3 PIUSB20A4

PIUSB20A5

PIUSB20A6

PIUSB20A7

PIUSB20A8

PIUSB20A9

PIUSB20A10

PIUSB20A11

PIUSB20A12

PIUSB20B1

PIUSB20B2

PIUSB20B3

PIUSB20B4

PIUSB20B5

PIUSB20B6

PIUSB20B7

PIUSB20B8

PIUSB20B9

PIUSB20B10

PIUSB20B11 PIUSB20B12

COUSB2

PIR3202

PIUSB10A5
NLCC1A

PIR3002

PIUSB20A5
NLCC1B

PIR3102

PIUSB10B5
NLCC2A

PIR2902

PIUSB20B5
NLCC2B

PIC6301

PIC6401 PIC6502

PID102

PID202
PIR2901 PIR3001

PIR3101 PIR3201

PIU803 PIU8013 PIU8017

PIUSB10A1

PIUSB10A12

PIUSB10B1

PIUSB10B12

PIUSB20A1

PIUSB20A12

PIUSB20B1

PIUSB20B12

PID103

PID104

PID203

PID204

PILED20K PIR1902

PILED30K PIR2002

PIR1702 PIU807

PIR1802 PIU806

PIR1901

PIU8012

PIR2001

PIU8011

PIU804

PIU805

PIU8014

PIU8016

PIUSB10A2

PIUSB10A3

PIUSB10A8

PIUSB10A10

PIUSB10A11

PIUSB10B2

PIUSB10B3

PIUSB10B8

PIUSB10B10

PIUSB10B11

PIUSB20A2

PIUSB20A3

PIUSB20A8

PIUSB20A10

PIUSB20A11

PIUSB20B2

PIUSB20B3

PIUSB20B8

PIUSB20B10

PIUSB20B11

PIU802
NLUART0RX PORX

PIU8015
NLUART0TX

POTX

PIR2102
NLUSB0N POD0

PID101

PIR2101 PIUSB10A7

PIUSB10B7

NLUSB0OTG0N

PID106

PIR2201

PIUSB10A6

PIUSB10B6

NLUSB0OTG0P
PIR2202

NLUSB0P POD0

PID206

PIR1701 PIUSB20A7

PIUSB20B7

NLUSB0UART0N

PID201

PIR1801 PIUSB20A6

PIUSB20B6

NLUSB0UART0P

PID105

PIUSB10A4

PIUSB10A9

PIUSB10B4

PIUSB10B9

PIC6402 PIC6501

PID205

PIU8010
PIUSB20A4

PIUSB20A9

PIUSB20B4

PIUSB20B9

PIC6302
PILED20A

PILED30A

PIU801
PIU808

PIU809

NLVCCIO

POD0

PORX
POTX

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Digital UART SwitchTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

6 172.0

V+1

NO1 2

COM13

IN14

NC1 5

GND6

NC2 7IN28

COM29

NO2 10

U11

TS3A24159

C86
100nF

GND

LDO_3V3

GND

TXIN
RXIN

TX1
RX1

TX2
RX2

UART_TX1
UART_RX1

UART_TX2
UART_RX2

1
2
3

P7

Header 3
GND

LDO_3V3

R25
4M7

GND

Manual selector short
circuit:
Center (Pin 2) is
common
Pin 1 is GND
Pin 3 is VCC (3V3?)

Add text to silk screen
to explain options

Default path is
COM1/NC1 and
COM2/NC2 with In1
and In2 pulled low.

PIC8601
PIC8602

COC86

PIP701

PIP702

PIP703

COP7

PIR2501

PIR2502 COR25
PIU1101

PIU1102

PIU1103

PIU1104

PIU1105

PIU1106

PIU1107

PIU1108

PIU1109

PIU11010

COU11

PIC8601

PIP701

PIR2501

PIU1106

PIC8602

PIP703

PIU1101

PIP702

PIR2502

PIU1104

PIU1108

PIU1103 POTXIN
PIU1109 PORXIN

PIU1107
NLUART0RX1 PORX1

PIU11010
NLUART0RX2 PORX2

PIU1105
NLUART0TX1 POTX1

PIU1102
NLUART0TX2 POTX2

PORX1

PORX2

PORXIN

POTX1

POTX2

POTXIN

109

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Main Power SectionTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

7 172.0

EN

FB

VOUTVIN

1A
ntnu-hsi-power-ldo-500mA.SchDoc

EN

FB

VIN VOUT

1B
ntnu-hsi-power-ldo-500mA.SchDoc

EN

FB

VOUTVIN

2A
ntnu-hsi-power-ldo-1500mA.SchDoc

VIN

U_ntnu-hsi-smps
ntnu-hsi-smps.SchDoc

EN

FB

VIN VOUT

2B
ntnu-hsi-power-ldo-1500mA.SchDoc

ENABLE

GND

R6
4R53

R5
1R13

LDO_1V0

GND

R8
4R99

R7
2R49

GND

R10
2.87K

R9
3K57

GND

R12
1K15

R11
3K57

LDO_1V2

LDO_1V8

LDO_3V3

1 1

2 23 3

490-PJ-002AH
CP-002AH-ND

P1

DC-Jack

GND

VDDIN

TP

TP1

TP

TP2

TP

TP3

TP

TP4

SMPS_5V

TP

TP5

1
2
3

P4

Header 3

1
2
3

P5

Header 3

HSI_PWR

LAB_PWR

LAB_PWR

1
2
3
4

538-504050-0491
WM10137DKR-ND
2392592

J7

4-Pin PicoLock

9
10

1
2
3
4
5
6
7
8

WM10138DKR-ND
538-504050-1091

J6

504050-1091

GND

GND

HSI_PWR is routed to a HIROSE connector on separate sheet HSI (power + com/GigE)

Power supply sequencing is done on
the PicoZed board and is not
neccessary for the bank/camera power
supplies.

10-pin PicoLock to
power the breakout
board from the
Nano-Avionics EPS.

Insert jumper
to select
either lab
power or
EPS power to
supply the
breakout
board.

Camera power
from N-Avionics
EPS. 12V

Insert jumper
to select
either lab
power or
EPS power
(12V) to
supply the
HSI.

NB! Voltage regulators for 1V0 and 1V2 have been
changed from 500 mA rating (part number
TPS74701) in revision 1, to 1500 mA rating (part
number TPS74801) in revision 2 due to uncertain
requirements. To preserve designators, the regulator
itself was replaced within the sub-schematic, but the
name of the schematic was kept the same. This is
the reason for the difference in schematic name and
current rating for the regulator within.

PIJ601

PIJ602

PIJ603

PIJ604

PIJ605

PIJ606

PIJ607

PIJ608

PIJ609

PIJ6010

COJ6

PIJ701

PIJ702

PIJ703

PIJ704

COJ7

PIP101

PIP102

PIP103

COP1

PIP401

PIP402

PIP403

COP4

PIP501

PIP502

PIP503

COP5

PIR501

PIR502 COR5

PIR601

PIR602
COR6

PIR701

PIR702
COR7

PIR801

PIR802
COR8

PIR901

PIR902
COR9

PIR1001

PIR1002
COR10

PIR1101

PIR1102
COR11

PIR1201

PIR1202
COR12

PITP101

COTP1

PITP201

COTP2

PITP301

COTP3

PITP401

COTP4

PITP501

COTP5

PIJ606

PIJ607

PIJ608

PIJ609

PIJ6010

PIJ703

PIJ704

PIP102

PIP103

PIR601

PIR801

PIR1001

PIR1201

PIP502

PIP101

PIP403

PIP503

NLLAB0PWR

PIR502
PITP101

PIR702
PITP201

PIR902
PITP301

PIR1102
PITP401

POENABLE

PIJ601

PIJ602

PIJ603

PIJ604

PIJ605

PIP401

PIJ701

PIJ702

PIP501

PIR501

PIR602

PIR701

PIR802

PIR901

PIR1002

PIR1101

PIR1202

PITP501

PIP402

NLVDDIN

POENABLE

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Switch Mode Power SupplyTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

8 172.0

AGND 1

AGND 2

DNC3

DNC4

ISHARE5

SS_TR6

STSEL7

INH_UVLO8

INH_UVLO9

PH 10

PH 11

PH 12

PH 13

PH 14

DNC15

DNC16

PH 17

DNC18

DNC19

DNC20

VO 21

DNC22

DNC23

VO 24

VO 25

VO 26

VO 27

VO 28

VO 29

DNC30

DNC31

DNC32

PWRGD 33

AGND 34

RT_CLK35

PGND 36

PGND 37

PGND 38

PVIN39

PVIN40

PVIN41

VIN42

VADJ43

SENSE+ 44

AGND 45

PH 46

VO 47

Supplier 1: Digi-Key
Supplier Part Number 1: 296-37032-1-ND

U1

LMZ31506

VIN

AGND

GND

AGND

C4
47uF

C5
47uF

GND GND

C6
47uF

GND

R1
86K6

R2
196R

AGNDAGND

PH

C7
47uF

GND
R3
68K1

R4
21K5

AGND

GND

RLED
270R

25V

C1
100uF

16V

C2
47uF

GND GND

LED1
0805 LED

SMPS_5V

VIN 4.5V - 14.5V @6A
VOUT 5V @6A

Vout = 5V
Rset = 196Ohm
Rt = 86.6kOhm
Switching frequency fsw: 780kHz

Undervoltage lockout at 5V:

Ruvl1 = 68.1kOhm
Ruvl2 = 21.5kOhm

UVL Hysterisis: 400mV

T525D476M016ATE035 16V 47uF

T521D107M025ATE040 25V 100uF

Connecting the STSEL pin to AGND
and leaving SS/TR pin open enables the
internal SS capacitor with a slow start
interval of approximately 1.1 ms. Adding
additional capacitance between the SS
pin and AGND increases the slow start
time.

RLED value changed from 580R
to 270R because 270 was what
was listed as purchased in the
BOM for revision 1, and that
seemed to work.

PIC101

PIC102
COC1 PIC201

PIC202
COC2 PIC401

PIC402
COC4

PIC501
PIC502

COC5
PIC601
PIC602

COC6
PIC701
PIC702

COC7

PILED10A
PILED10K COLED1

PIR101

PIR102
COR1

PIR201

PIR202
COR2

PIR301

PIR302
COR3

PIR401

PIR402
COR4

PIRLED01

PIRLED02 CORLED

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108

PIU109

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

PIU1017

PIU1018

PIU1019

PIU1020

PIU1021

PIU1022

PIU1023

PIU1024

PIU1025

PIU1026

PIU1027

PIU1028

PIU1029

PIU1030

PIU1031

PIU1032

PIU1033

PIU1034

PIU1035

PIU1036

PIU1037

PIU1038

PIU1039

PIU1040

PIU1041

PIU1042

PIU1043

PIU1044

PIU1045

PIU1046

PIU1047

COU1

PIR101 PIR201

PIR401

PIU101

PIU102

PIU107

PIU1034

PIU1045

PIC102 PIC202

PIC401 PIC501 PIC601 PIC701

PILED10K

PIU1036

PIU1037

PIU1038

PIC101 PIC201
PIR302

PIU1039

PIU1040

PIU1041

PIU1042 POVIN

PILED10A
PIRLED01

PIR102

PIU1035

PIR202

PIU1043

PIR301

PIR402

PIU108

PIU109

PIU103

PIU104

PIU105

PIU106

PIU1015

PIU1016

PIU1018

PIU1019

PIU1020

PIU1022

PIU1023

PIU1030

PIU1031

PIU1032

PIU1033

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1017

PIU1046

NLPH

PIC402 PIC502 PIC602 PIC702

PIRLED02

PIU1021

PIU1024

PIU1025

PIU1026

PIU1027

PIU1028

PIU1029

PIU1044

PIU1047

POVIN

110

1

1

2

2

3

3

4

4

D D

C C

B B

A A

SD Card InterfaceTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

13 172.0

DAT2A1

GND2

DAT3A3

CMDA4

V
C

C
A

5

DAT0A6

DAT1A7

DAT2B1 8

CLKA9

DAT3B1 10

GND11 CMDB1 12

CLKB1 13

DAT0B1 14

DAT1B1 15

DAT1B0 16

V
C

C
B

1
17

DAT0B0 18

CLKB0 19

CMDB0 20

V
C

C
B

0
21

DAT3B0 22DAT2B0 23

SEL24

EPAD25

U9
TXS02612

SD_D2

SD_D0
SD_D1

SD_D3

SD_CMD
SD_CLK

SD_D0
SD_D1

SD_D3
SD_D2

SD_CMD
SD_CLK R13

40R2

GND

C68

100nF
C66
100nF

C67
100nF

GND

GND

LDO_1V8 LDO_3V3

Logic Level Translator

SD1_D2
SD1_D3
SD1_CMD

SD1_CLK

SD1_D0
SD1_D1

SD_CD

DATA2P1

CD/DATA3P2

CMDP3

VDDP4

CLKP5

VSSP6

DATA0P7

DATA1P8

DETG4

POLG3 GND G1

GND G2

J1

5025700893

GND

R14
4K7

C69
100nF

GND

LDO_3V3

R15
4K7

LDO_1V8 SD_CD

R16
0 ohm

GND

Micro SD Card
i

Net Class

SDCARD

i
Net Class

SDCARDCON

The SD Card Interface is connected to
SDIO0 on MIO 40-45 on Bank 501

Data lines and clock must be
impedance matched.

PIC6601
PIC6602

COC66
PIC6701
PIC6702

COC67

PIC6801 PIC6802

COC68

PIC6901
PIC6902

COC69

PIJ10G1

PIJ10G2 PIJ10G3

PIJ10G4

PIJ10P1

PIJ10P2

PIJ10P3

PIJ10P4

PIJ10P5

PIJ10P6

PIJ10P7

PIJ10P8

COJ1

PIR1301 PIR1302

COR13

PIR1401

PIR1402
COR14

PIR1501

PIR1502
COR15

PIR1601

PIR1602
COR16

PIU901

PIU902

PIU903

PIU904

PIU905

PIU906

PIU907

PIU908

PIU909

PIU9010

PIU9011 PIU9012

PIU9013

PIU9014

PIU9015

PIU9016

PIU9017

PIU9018

PIU9019

PIU9020

PIU9021

PIU9022

PIU9023

PIU9024

PIU9025

COU9

PIC6601 PIC6702

PIC6802

PIC6901

PIJ10G1

PIJ10G2

PIJ10P6

PIR1601 PIU902

PIU9011

PIU9024

PIU9025

PIC6602 PIC6701

PIR1502

PIU905

PIC6801

PIC6902

PIJ10P4

PIR1402 PIU9017 PIU9021

PIJ10G3

PIR1602

PIR1302 PIU909

PIU908

PIU9010

PIU9012

PIU9013

PIU9014

PIU9015

PIJ10P5 PIU9019
NLSD10CLK

PIJ10P3

PIR1401

PIU9020
NLSD10CMD

PIJ10P7 PIU9018
NLSD10D0

PIJ10P8 PIU9016
NLSD10D1

PIJ10P1 PIU9023
NLSD10D2

PIJ10P2 PIU9022
NLSD10D3

PIJ10G4

PIR1501

NLSD0CD

POSD0CD

PIR1301
NLSD0CLK POSD0CLK

PIU904
NLSD0CMD POSD0CMD

PIU906
NLSD0D0 POSD0D0

PIU907
NLSD0D1 POSD0D1

PIU901
NLSD0D2 POSD0D2

PIU903
NLSD0D3

POSD0D3

POSD0CD

POSD0CLK
POSD0CMD

POSD0D0
POSD0D1
POSD0D2
POSD0D3

1

1

2

2

3

3

4

4

D D

C C

B B

A A

HSI power and CommsTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

14 172.0

TRD2+

TRD4+

TRD3+

TRD3-

LED1

TRD1-

TRD2-

TRD4-

TRD1+

LED0

TRCT31

TRD3-2

TRD3+3

TRD2+4

TRD2-5 TRCT26

TRCT47 TRD4+8

TRD4-9

TRD1-10

TRD1+11

TRCT112

D413 D3 14

D115 D0 16D217

ShieldMH1 ShieldMH2 Guide MH3

Guide MH4

TRP1+ RJ-1
TRP1- RJ-2
TRP2+ RJ-3
TRP2- RJ-4

TRP3+ RJ-5
TRP3- RJ-6
TRP4+ RJ-7
TRP4- RJ-8

J4

RJ45

C19

100nF
C20

100nF
C21

100nF
C22

100nF
GND

GND

SH_GND2

R27

0 ohm

1
2
3
4
5
6
7
8

P3

Header 8

GND
FLASH-
GPIO1
TRIGGER-

TRIGGER+
GPIO2
FLASH+

12-24V

FLASH+

R26
10K

HSI_PWR

HSI_PWR comes from sheet "...-power-section.SchDoc"

1
2
3
4
5
6
7
8

J5

HIROSE-8PIN

LDO_1V8

LDO_3V3

GND

i
Parameter Set

GTX

TRD1_N

TRD1_P

TRD2_P

TRD3_P

TRD4_P

TRD4_N

TRD3_N

TRD2_N

PIC1901 PIC1902

COC19

PIC2001 PIC2002

COC20

PIC2101 PIC2102

COC21

PIC2201 PIC2202

COC22

PIJ401

PIJ402

PIJ403

PIJ404

PIJ405

PIJ406

PIJ407

PIJ408

PIJ409

PIJ4010

PIJ4011

PIJ4012

PIJ4013 PIJ4014

PIJ4015

PIJ4016 PIJ4017

PIJ40MH1

PIJ40MH2 PIJ40MH3

PIJ40MH4

COJ4

PIJ501

PIJ502

PIJ503

PIJ504

PIJ505

PIJ506

PIJ507

PIJ508

COJ5
PIP301

PIP302

PIP303

PIP304

PIP305

PIP306

PIP307

PIP308

COP3
PIR2601

PIR2602
COR26

PIR2701 PIR2702

COR27

PIJ505 PIP305

PIR2601

NLFLASH0 POFLASH0

PIC1901

PIC2001

PIC2101

PIC2201

PIJ501

PIJ502

PIP301

PIP302

PIR2701

NLFLASH0
NLGND

PIJ503 PIP303
NLGPIO1

PIJ506 PIP306
NLGPIO2

PIJ508 PIP308
NL12024V

PIR2602

PIJ4014

PIJ4016

PIC1902 PIJ4012

PIC2002 PIJ406

PIC2102 PIJ401

PIC2202 PIJ407

PIJ4013 POLED0

PIJ4015

PIJ4017 POLED1

PIJ40MH2 PIJ40MH3

PIJ40MH4 PIJ40MH1

PIR2702

PIJ4010
NLTRD10N

POTRD10

PIJ4011
NLTRD10P POTRD10

PIJ405
NLTRD20N

POTRD20

PIJ404
NLTRD20P POTRD20

PIJ402
NLTRD30N POTRD30

PIJ403
NLTRD30P POTRD30

PIJ409
NLTRD40N POTRD40

PIJ408
NLTRD40P

POTRD40

PIJ507 PIP307
NLTRIGGER0

PIJ504 PIP304
NLTRIGGER0

POFLASH0

POLED0

POLED1

POTRD10

POTRD20

POTRD30

POTRD40

111

1

1

2

2

3

3

4

4

D D

C C

B B

A A

CAN transceiverTitle:

Project.

Pcb#

Revision

HSI Prototype

NTNU-SSL-001

Engineer:

Date:

Sheet of

A. Gjersvik

28.03.2019

15 172.0

TX

RX

GND

Txd1

Vss2

Vdd3

Rxd4 Vio 5CANL 6CANH 7STBY 8
U4

CAN transceiver

SMPS_5V LDO_1V8

1
2
3
4

J3

4-Pin PicoLock

CANH
CANH
CANL
CANL

R24
0 ohm

GND

C18
100nF

C3
100nF

R23
120R

GNDGND

i
Parameter Set

CAN_RXTX

CAN_RX

CAN_TX

The internal pull-up in the
MCP2562 is 4.4M Ohm
according to the datasheet,
so a low value pull down
resistor should be used.
Place 0 Ohm resistor here.

PIC301
PIC302

COC3
PIC1801
PIC1802

COC18

PIJ301

PIJ302

PIJ303

PIJ304

COJ3

PIR2301

PIR2302
COR23

PIR2401

PIR2402
COR24

PIU401

PIU402

PIU403

PIU404 PIU405

PIU406

PIU407

PIU408

COU4

PIU404

NLCAN0RX PORX

PIU401
NLCAN0TX

POTX

PIJ303

PIJ304

PIR2301
PIU407

NLCANH

PIJ301

PIJ302

PIR2302

PIU406

NLCANL

PIC302 PIC1802

PIR2401

PIU402

PIC1801

PIU405

PIR2402

PIU408

PIC301

PIU403

PORX

POTX

PAC102 PAC101 COC1

PAC202 PAC201 COC2

PAC301

PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC602 PAC601
COC6

PAC702 PAC701
COC7

PAC801A01
PAC801A02 COC801A
PAC801B01

PAC801B02 COC801B

PAC901A01

PAC901A02 COC901A

PAC901B01

PAC901B02 COC901B

PAC1001A01

PAC1001A02

COC1001A

PAC1001B01

PAC1001B02

COC1001B
PAC1101A01

PAC1101A02

COC1101A

PAC1101B01

PAC1101B02

COC1101B
PAC1201A01 PAC1201A02

COC1201A

PAC1201B01 PAC1201B02

COC1201B

PAC1302A01

PAC1302A02 COC1302A

PAC1302B01

PAC1302B02 COC1302B

PAC1402A01 PAC1402A02 COC1402A

PAC1402B01

PAC1402B02 COC1402B

PAC1502A01

PAC1502A02

COC1502A

PAC1502B01

PAC1502B02

COC1502B
PAC1602A01 PAC1602A02

COC1602A

PAC1602B01 PAC1602B02

COC1602B

PAC1702A01

PAC1702A02

COC1702A

PAC1702B01

PAC1702B02
COC1702B

PAC1801

PAC1802

COC18

PAC1901

PAC1902 COC19 PAC2001

PAC2002 COC20 PAC2101

PAC2102 COC21 PAC2201

PAC2202 COC22

PAC2502

PAC2501 COC25
PAC2602

PAC2601

COC26

PAC2701

PAC2702

COC27
PAC2801

PAC2802

COC28

PAC6301 PAC6302 COC63

PAC6401

PAC6402

COC64
PAC6501

PAC6502

COC65
PAC6601

PAC6602

COC66
PAC6701
PAC6702

COC67

PAC6801 PAC6802 COC68

PAC6901

PAC6902 COC69

PAC7002 PAC7001 COC70
PAC7102 PAC7101 COC71 PAC7202 PAC7201 COC72

PAC7302 PAC7301 COC73

PAC7402

PAC7401

COC74

PAC7502

PAC7501

COC75

PAC7802

PAC7801

COC78

PAC7902

PAC7901

COC79

PAC8002

PAC8001

COC80

PAC8102

PAC8101 COC81

PAC8601

PAC8602
COC86

PAC8801 PAC8802
COC88

PAD101 PAD102 PAD103

PAD104 PAD105 PAD106

COD1
PAD201

PAD202

PAD203 PAD204

PAD205

PAD206 COD2

PAD301 PAD302

PAD303
COD3

PAFB101 PAFB102 COFB1 PAFB201 PAFB202 COFB2

PAFB301

PAFB302

COFB3

PAFB401

PAFB402 COFB4

PAFB501
PAFB502

COFB5

PAFB601

PAFB602
COFB6

PAFB702

PAFB701

COFB7

PAFID10
COFID1

PAFID20
COFID2

PAFID30
COFID3

PAFID40

COFID4

PAFID50
COFID5

PAFID60
COFID6

PAFID70
COFID7

PAFID80

COFID8
PAJ10G2 PAJ10G4

PAJ10P8 PAJ10P7 PAJ10P6 PAJ10P5 PAJ10P4 PAJ10P3 PAJ10P2 PAJ10P1

PAJ10G1

PAJ10G3

COJ1

PAJ208
PAJ2010
PAJ2012
PAJ2014

PAJ202
PAJ204
PAJ206

PAJ209
PAJ2011
PAJ2013

PAJ201
PAJ203
PAJ205
PAJ207

COJ2

PAJ306

PAJ305

PAJ304

PAJ303

PAJ302

PAJ301

COJ3

PAJ401 PAJ402 PAJ403 PAJ404 PAJ405 PAJ406

PAJ407 PAJ408 PAJ409 PAJ4010 PAJ4011 PAJ4012

PAJ4013
PAJ4014

PAJ4015
PAJ4016
PAJ4017

PAJ40MH1 PAJ40MH2 PAJ40MH3 PAJ40MH4

COJ4

PAJ508
PAJ507
PAJ506
PAJ505

PAJ504
PAJ503

PAJ502
PAJ501

COJ5

PAJ6010

PAJ609

PAJ608

PAJ607

PAJ606

PAJ605

PAJ604

PAJ603

PAJ602

PAJ601

PAJ6012

PAJ6011
COJ6

PAJ701

PAJ702

PAJ703

PAJ704

PAJ705

PAJ706

COJ7

PAJT200

PAJT203

PAJT202
PAJT201

PAJT208
PAJT207

PAJT206

PAJT205
PAJT204

COJT2

PALED10A PALED10K

COLED1

PALED20A

PALED20K

COLED2

PALED30A

PALED30K

COLED3

PALED40A

PALED40K

COLED4

PAMH10MOUNT
COMH1

PAMH20MOUNT
COMH2

PAMH30MOUNT
COMH3

PAMH40MOUNT
COMH4

PAMH50MOUNT
COMH5

PAMH60MOUNT
COMH6

PAMH70MOUNT
COMH7

PAMH80MOUNT
COMH8

PAP103
PAP102

PAP101

COP1

PAP202 PAP201

COP2

PAP308 PAP307 PAP306 PAP305 PAP304 PAP303 PAP302 PAP301
COP3

PAP401

PAP403

PAP402

COP4

PAP501

PAP502
PAP503

COP5

PAP602
PAP601

COP6

PAP703
PAP702

PAP701

COP7

PAQ103

PAQ102 PAQ101

COQ1

PAR102

PAR101

COR1

PAR202 PAR201 COR2

PAR302

PAR301

COR3

PAR402

PAR401

COR4

PAR502

PAR501 COR5

PAR602

PAR601 COR6

PAR702

PAR701 COR7

PAR802

PAR801 COR8

PAR902

PAR901 COR9

PAR1002

PAR1001 COR10

PAR1102

PAR1101 COR11

PAR1202

PAR1201 COR12

PAR1302 PAR1301
COR13

PAR1402 PAR1401 COR14
PAR1502 PAR1501 COR15

PAR1602

PAR1601 COR16 PAR1702

PAR1701 COR17
PAR1802

PAR1801
COR18 PAR1902

PAR1901

COR19

PAR2002

PAR2001

COR20

PAR2102 PAR2101

COR21

PAR2202 PAR2201

COR22

PAR2301

PAR2302

COR23

PAR2401 PAR2402

COR24

PAR2501

PAR2502
COR25

PAR2602

PAR2601 COR26

PAR2701

PAR2702

COR27

PAR2802

PAR2801

COR28

PAR2902

PAR2901

COR29
PAR3002

PAR3001 COR30
PAR3102 PAR3101

COR31

PAR3202 PAR3201
COR32

PAR3301

PAR3302 COR33

PARLED02 PARLED01

CORLED

PASOM400

PASOM40MOUNT
PASOM40JX3012 PASOM40JX308 PASOM40JX302

PASOM40JX3011 PASOM40JX307 PASOM40JX301

PASOM40JX3034 PASOM40JX3028 PASOM40JX3018

PASOM40JX3033 PASOM40JX3027 PASOM40JX3017

PASOM40JX3054 PASOM40JX3048 PASOM40JX3044 PASOM40JX3038

PASOM40JX3053 PASOM40JX3047 PASOM40JX3043 PASOM40JX3037

PASOM40JX3074 PASOM40JX3068 PASOM40JX3064 PASOM40JX3058

PASOM40JX3073 PASOM40JX3067 PASOM40JX3063 PASOM40JX3057

PASOM40JX3094 PASOM40JX3084 PASOM40JX3078

PASOM40JX3093 PASOM40JX3083 PASOM40JX3077

PASOM40JX30100

PASOM40JX3099

PASOM40JX306 PASOM40JX304

PASOM40JX305 PASOM40JX303

PASOM40JX3010

PASOM40JX309

PASOM40JX3016 PASOM40JX3014

PASOM40JX3015 PASOM40JX3013

PASOM40JX3022 PASOM40JX3020

PASOM40JX3021 PASOM40JX3019

PASOM40JX3026 PASOM40JX3024

PASOM40JX3025 PASOM40JX3023

PASOM40JX3032 PASOM40JX3030

PASOM40JX3031 PASOM40JX3029

PASOM40JX3036

PASOM40JX3035

PASOM40JX3042 PASOM40JX3040

PASOM40JX3041 PASOM40JX3039

PASOM40JX3046

PASOM40JX3045

PASOM40JX3052 PASOM40JX3050

PASOM40JX3051 PASOM40JX3049

PASOM40JX3056

PASOM40JX3055

PASOM40JX3062 PASOM40JX3060

PASOM40JX3061 PASOM40JX3059

PASOM40JX3066

PASOM40JX3065

PASOM40JX3072 PASOM40JX3070

PASOM40JX3071 PASOM40JX3069

PASOM40JX3076

PASOM40JX3075

PASOM40JX3082 PASOM40JX3080

PASOM40JX3081 PASOM40JX3079

PASOM40JX3088 PASOM40JX3086

PASOM40JX3087 PASOM40JX3085

PASOM40JX3092 PASOM40JX3090

PASOM40JX3091 PASOM40JX3089

PASOM40JX3098 PASOM40JX3096

PASOM40JX3097 PASOM40JX3095

PASOM40JX1095

PASOM40JX1097

PASOM40JX1096

PASOM40JX1098

PASOM40JX1089

PASOM40JX1091

PASOM40JX1090

PASOM40JX1092

PASOM40JX1085

PASOM40JX1087

PASOM40JX1086

PASOM40JX1088

PASOM40JX1079

PASOM40JX1081

PASOM40JX1080

PASOM40JX1082

PASOM40JX1075 PASOM40JX1076

PASOM40JX1069

PASOM40JX1071

PASOM40JX1070

PASOM40JX1072

PASOM40JX1065 PASOM40JX1066

PASOM40JX1059
PASOM40JX1061

PASOM40JX1060
PASOM40JX1062

PASOM40JX1055 PASOM40JX1056

PASOM40JX1049
PASOM40JX1051

PASOM40JX1050
PASOM40JX1052

PASOM40JX1045 PASOM40JX1046

PASOM40JX1039
PASOM40JX1041

PASOM40JX1040
PASOM40JX1042

PASOM40JX1035 PASOM40JX1036

PASOM40JX1029
PASOM40JX1031

PASOM40JX1030
PASOM40JX1032

PASOM40JX1023
PASOM40JX1025

PASOM40JX1024
PASOM40JX1026

PASOM40JX1019
PASOM40JX1021

PASOM40JX1020
PASOM40JX1022

PASOM40JX1013
PASOM40JX1015

PASOM40JX1014
PASOM40JX1016

PASOM40JX109 PASOM40JX1010

PASOM40JX103
PASOM40JX105

PASOM40JX104
PASOM40JX106

PASOM40JX1099 PASOM40JX10100

PASOM40JX1077

PASOM40JX1083

PASOM40JX1093

PASOM40JX1078

PASOM40JX1084

PASOM40JX1094

PASOM40JX1057

PASOM40JX1063

PASOM40JX1067

PASOM40JX1073

PASOM40JX1058

PASOM40JX1064

PASOM40JX1068

PASOM40JX1074

PASOM40JX1037

PASOM40JX1043

PASOM40JX1047

PASOM40JX1053

PASOM40JX1038

PASOM40JX1044

PASOM40JX1048

PASOM40JX1054

PASOM40JX1017

PASOM40JX1027

PASOM40JX1033

PASOM40JX1018

PASOM40JX1028

PASOM40JX1034

PASOM40JX101

PASOM40JX107

PASOM40JX1011

PASOM40JX102

PASOM40JX108

PASOM40JX1012 PASOM40JX2012

PASOM40JX208

PASOM40JX202

PASOM40JX2011

PASOM40JX207

PASOM40JX201

PASOM40JX2034

PASOM40JX2028

PASOM40JX2018

PASOM40JX2033

PASOM40JX2027

PASOM40JX2017

PASOM40JX2054

PASOM40JX2048

PASOM40JX2044

PASOM40JX2038

PASOM40JX2053

PASOM40JX2047

PASOM40JX2043

PASOM40JX2037

PASOM40JX2074

PASOM40JX2068

PASOM40JX2064

PASOM40JX2058

PASOM40JX2073

PASOM40JX2067

PASOM40JX2063

PASOM40JX2057

PASOM40JX2094

PASOM40JX2084

PASOM40JX2078

PASOM40JX2093

PASOM40JX2083

PASOM40JX2077

PASOM40JX20100 PASOM40JX2099

PASOM40JX206
PASOM40JX204

PASOM40JX205
PASOM40JX203

PASOM40JX2010 PASOM40JX209

PASOM40JX2016
PASOM40JX2014

PASOM40JX2015
PASOM40JX2013

PASOM40JX2022
PASOM40JX2020

PASOM40JX2021
PASOM40JX2019

PASOM40JX2026
PASOM40JX2024

PASOM40JX2025
PASOM40JX2023

PASOM40JX2032
PASOM40JX2030

PASOM40JX2031
PASOM40JX2029

PASOM40JX2036 PASOM40JX2035

PASOM40JX2042
PASOM40JX2040

PASOM40JX2041
PASOM40JX2039

PASOM40JX2046 PASOM40JX2045

PASOM40JX2052
PASOM40JX2050

PASOM40JX2051
PASOM40JX2049

PASOM40JX2056 PASOM40JX2055

PASOM40JX2062
PASOM40JX2060

PASOM40JX2061
PASOM40JX2059

PASOM40JX2066 PASOM40JX2065

PASOM40JX2072

PASOM40JX2070

PASOM40JX2071

PASOM40JX2069

PASOM40JX2076 PASOM40JX2075

PASOM40JX2082

PASOM40JX2080

PASOM40JX2081

PASOM40JX2079

PASOM40JX2088

PASOM40JX2086

PASOM40JX2087

PASOM40JX2085

PASOM40JX2092

PASOM40JX2090

PASOM40JX2091

PASOM40JX2089

PASOM40JX2098

PASOM40JX2096

PASOM40JX2097

PASOM40JX2095

COSOM4

PATP101 COTP1

PATP201 COTP2

PATP301 COTP3

PATP401 COTP4

PATP501

COTP5

PAU1047 PAU1046

PAU1045

PAU1044 PAU1043 PAU1042 PAU1041 PAU1040 PAU1039 PAU1038 PAU1037
PAU1036

PAU1035

PAU1034

PAU1033

PAU1032

PAU1031

PAU1030
PAU1029

PAU1028

PAU1027

PAU1026

PAU1025

PAU1024

PAU1023 PAU1022 PAU1021 PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015
PAU1014

PAU1013

PAU1012

PAU1011

PAU1010

PAU109

PAU108
PAU107

PAU106

PAU105

PAU104

PAU103

PAU102

PAU101

COU1

PAU202A011
PAU202A06
PAU202A07
PAU202A08

PAU202A09
PAU202A010

PAU202A05
PAU202A04
PAU202A03

PAU202A02
PAU202A01

COU202A
PAU202B011

PAU202B06
PAU202B07
PAU202B08

PAU202B09
PAU202B010

PAU202B05
PAU202B04
PAU202B03

PAU202B02
PAU202B01

COU202B

PAU301A011
PAU301A06
PAU301A07
PAU301A08

PAU301A09
PAU301A010

PAU301A05
PAU301A04
PAU301A03

PAU301A02
PAU301A01

COU301A
PAU301B01

PAU301B02
PAU301B03
PAU301B04

PAU301B05

PAU301B010

PAU301B09
PAU301B08
PAU301B07

PAU301B06

PAU301B011

COU301B

PAU401

PAU402

PAU403

PAU404

PAU408

PAU407

PAU406

PAU405

COU4

PAU8017
PAU8016 PAU8015 PAU8014 PAU8013

PAU8012
PAU8011
PAU8010

PAU809

PAU808 PAU807 PAU806 PAU805

PAU804

PAU803
PAU802
PAU801

COU8

PAU9025
PAU9024 PAU9023 PAU9022 PAU9021 PAU9020 PAU9019

PAU9018

PAU9017
PAU9016
PAU9015
PAU9014

PAU9013
PAU9012 PAU9011 PAU9010 PAU909 PAU908 PAU907

PAU906

PAU905
PAU904
PAU903
PAU902

PAU901

COU9

PAU1101
PAU1102
PAU1103

PAU1104
PAU1105 PAU1106

PAU1107

PAU1108
PAU1109
PAU11010

COU11

PAUSB100 PAUSB10A12 PAUSB10A8 PAUSB10A9 PAUSB10A11 PAUSB10A10 PAUSB10A3 PAUSB10A2 PAUSB10A4 PAUSB10A5 PAUSB10A1 PAUSB10A7 PAUSB10A6

PAUSB101
PAUSB10B7 PAUSB10B6 PAUSB10B8 PAUSB10B10 PAUSB10B9 PAUSB10B11 PAUSB10B2 PAUSB10B4 PAUSB10B3 PAUSB10B5 PAUSB10B12 PAUSB10B1

COUSB1

PAUSB200

PAUSB20A12 PAUSB20A8 PAUSB20A9 PAUSB20A11 PAUSB20A10 PAUSB20A3 PAUSB20A2 PAUSB20A4 PAUSB20A5 PAUSB20A1 PAUSB20A7 PAUSB20A6

PAUSB201
PAUSB20B7 PAUSB20B6 PAUSB20B8 PAUSB20B10 PAUSB20B9 PAUSB20B11 PAUSB20B2 PAUSB20B4 PAUSB20B3 PAUSB20B5 PAUSB20B12 PAUSB20B1

COUSB2

PAR101

PAR201

PAR401

PAU101
PAU102

PAU107

PAU1034 PAU1045

PASOM40JX3066

PAU404

PASOM40JX3064

PAU401

PAJ303

PAJ304

PAR2301 PAU407

PAJ301

PAJ302 PAR2302 PAU406

PAJT205

PAR3302
PASOM40JX106

PAR3202
PAUSB10A5

PAR3002

PAUSB20A5

PAR3102

PAUSB10B5

PAR2902

PAUSB20B5

PAJ505

PAP305
PAR2601

PASOM40JX3040

PAQ101

PASOM40JX108

PAC102

PAC202

PAC302

PAC401

PAC501

PAC601

PAC701

PAC801A02

PAC801B02

PAC901A02

PAC901B02

PAC1001A02

PAC1001B02

PAC1101A02

PAC1101B02

PAC1201A02

PAC1201B02

PAC1302A02

PAC1302B02

PAC1402A02

PAC1402B02

PAC1502A02

PAC1502B02

PAC1602A02

PAC1602B02

PAC1702A02

PAC1702B02

PAC1802

PAC1901 PAC2001 PAC2101 PAC2201

PAC2501 PAC2601

PAC2701 PAC2801

PAC6301

PAC6401 PAC6502

PAC6601 PAC6702
PAC6802

PAC6901

PAC7001
PAC7101 PAC7201

PAC7301

PAC7401 PAC7501

PAC7801 PAC7901

PAC8001 PAC8101

PAC8601

PAC8802

PAD102

PAD202

PAJ10G1

PAJ10G2

PAJ10P6

PAJ201
PAJ203
PAJ205
PAJ207
PAJ209
PAJ2011
PAJ2013

PAJ501
PAJ502

PAJ606

PAJ607

PAJ608

PAJ609

PAJ6010

PAJ703

PAJ704

PAJT208

PALED10K

PAMH10MOUNT

PAMH20MOUNT PAMH30MOUNT

PAMH40MOUNT

PAMH50MOUNT

PAMH60MOUNT

PAMH70MOUNT

PAMH80MOUNT
PAP102

PAP103

PAP301 PAP302

PAP701

PAQ102

PAR601

PAR801

PAR1001

PAR1201
PAR1601

PAR2401

PAR2501

PAR2701

PAR2901 PAR3001

PAR3101

PAR3201

PASOM40JX1015 PASOM40JX1016

PASOM40JX1021 PASOM40JX1022

PASOM40JX1027 PASOM40JX1028

PASOM40JX1033 PASOM40JX1034

PASOM40JX1039 PASOM40JX1040

PASOM40JX1045 PASOM40JX1046

PASOM40JX1051 PASOM40JX1052

PASOM40JX1065 PASOM40JX1066

PASOM40JX1071 PASOM40JX1072

PASOM40JX1077

PASOM40JX1085 PASOM40JX1086

PASOM40JX1095 PASOM40JX1096

PASOM40JX1098
PASOM40JX10100

PASOM40JX2015 PASOM40JX2016

PASOM40JX2021 PASOM40JX2022

PASOM40JX2027 PASOM40JX2028

PASOM40JX2033 PASOM40JX2034

PASOM40JX2039 PASOM40JX2040

PASOM40JX2045 PASOM40JX2046

PASOM40JX2051 PASOM40JX2052

PASOM40JX2065 PASOM40JX2066

PASOM40JX2071 PASOM40JX2072

PASOM40JX2077

PASOM40JX2085 PASOM40JX2086

PASOM40JX2091 PASOM40JX2092

PASOM40JX306 PASOM40JX308 PASOM40JX3010 PASOM40JX3012 PASOM40JX3014 PASOM40JX3016

PASOM40JX3017

PASOM40JX3018 PASOM40JX3020 PASOM40JX3022

PASOM40JX3023

PASOM40JX3024 PASOM40JX3026 PASOM40JX3028

PASOM40JX3029 PASOM40JX3035 PASOM40JX3049

PASOM40JX3050

PASOM40JX3055

PASOM40JX3056

PASOM40JX3061

PASOM40JX3062

PASOM40JX3065 PASOM40JX3071

PASOM40JX3072

PASOM40JX3077

PASOM40JX3078

PASOM40JX3083

PASOM40JX3084

PASOM40JX3089

PASOM40JX3090

PASOM40JX3095

PASOM40JX3096

PASOM40MOUNT

PAU1036

PAU1037 PAU1038

PAU202A06

PAU202A011

PAU202B06

PAU202B011

PAU301A06

PAU301A011

PAU301B06

PAU301B011

PAU402

PAU803

PAU8013

PAU8017
PAU902

PAU9011

PAU9024

PAU9025

PAU1106

PAUSB10A1 PAUSB10A12

PAUSB10B1 PAUSB10B12

PAUSB20A1 PAUSB20A12

PAUSB20B1 PAUSB20B12

PAJ503

PAP303

PAJ506

PAP306

PAJ508

PAP308
PAP502

PAJ2014 PAR3301

PAJ206

PASOM40JX101

PAJ2010

PASOM40JX104

PAJ208

PASOM40JX103

PAJ204

PASOM40JX102

PAP101

PAP403

PAP503

PAC1101A01 PAC1201A01

PAFB401

PAR502

PATP101

PAU301A09
PAU301A010

PAC1101B01 PAC1201B01

PAFB701

PAR702

PATP201

PAU301B09
PAU301B010

PAC1602A01 PAC1702A01

PAC1801

PAC6602 PAC6701

PAFB101 PAFB201

PAFB301

PAR902 PAR1502

PAR2602

PATP301

PAU202A09
PAU202A010

PAU405

PAU905

PAC1602B01 PAC1702B01

PAC6801

PAC6902

PAC8602

PAD301

PAFB501

PAFB601

PAJ10P4

PAJ4014
PAJ4016

PAJT201

PAP703

PAR1102

PAR1402

PAR2802

PATP401

PAU202B09
PAU202B010

PAU9017

PAU9021

PAU1101

PAC2502 PAC2602 PAFB402

PASOM40JX305 PASOM40JX307 PASOM40JX309 PASOM40JX3011

PAC2702 PAC2802 PAFB702

PASOM40JX3030 PASOM40JX3032

PAC1001A01
PAU301A07

PAC1001B01
PAU301B07

PAC1502A01
PAU202A07

PAC1502B01
PAU202B07

PAC1902

PAJ4012

PAC2002

PAJ406

PAC2102

PAJ401

PAC2202

PAJ407 PAD303

PAJ202

PAJ10G3 PAR1602

PAJ4013

PASOM40JX3047

PAJ4017

PASOM40JX3048

PAJ601

PAJ602

PAJ603

PAJ604

PAJ605

PAP401

PAJ701

PAJ702

PAP501

PAJT202

PASOM40JX2011

PALED10A PARLED01

PALED20K

PAR1902

PALED30K

PAR2002

PALED40A

PAR2801

PALED40K

PAQ103

PAP201 PAP202

PASOM40JX208

PAP601

PASOM40JX1097

PAP602

PASOM40JX1099

PAP702

PAR2502

PAU1104

PAU1108

PAR102 PAU1035

PAR202

PAU1043

PAR301

PAR402 PAU108
PAU109

PAR501

PAR602
PAU301A08

PAR701

PAR802
PAU301B08

PAR901

PAR1002
PAU202A08

PAR1101

PAR1202
PAU202B08

PAR1302

PAU909

PAR1702

PAU807

PAR1802

PAU806

PAR1901

PAU8012

PAR2001

PAU8011

PAR2402

PAU408

PASOM40JX201 PASOM40JX202
PASOM40JX203 PASOM40JX204
PASOM40JX205 PASOM40JX206

PASOM40JX207

PASOM40JX3042

PAU1103

PASOM40JX3044

PAU1109

PAU1010

PAU1011

PAU1012

PAU1013

PAU1014

PAU1017

PAU1046

PAJT206

PASOM40JX105

PAJ10P5

PAU9019

PAJ10P3

PAR1401 PAU9020

PAJ10P7

PAU9018

PAJ10P8

PAU9016

PAJ10P1

PAU9023

PAJ10P2

PAU9022

PAJ10G4
PAR1501

PASOM40JX3041

PAR1301

PASOM40JX3043

PASOM40JX3034

PAU904

PASOM40JX3037

PAU906

PASOM40JX3036

PAU907

PASOM40JX3039

PAU901

PASOM40JX3038

PAU903

PAJ40MH1

PAR2702

PAC301

PAC402

PAC502

PAC602

PAC702

PAC801A01

PAC801B01

PAC901A01

PAC901B01

PAC1302A01

PAC1302B01

PAC1402A01

PAC1402B01

PARLED02

PASOM40JX1057 PASOM40JX1058

PASOM40JX1059 PASOM40JX1060

PASOM40JX2012

PASOM40JX2057 PASOM40JX2058

PASOM40JX2059 PASOM40JX2060

PATP501

PAU1021

PAU1024

PAU1025

PAU1026

PAU1027

PAU1028

PAU1029

PAU1044

PAU1047

PAU202A01
PAU202A02

PAU202A04

PAU202B01
PAU202B02

PAU202B04

PAU301A01
PAU301A02

PAU301A04

PAU301B01

PAU301B02

PAU301B04

PAU403

PAJ4010

PASOM40JX3053

PAJ4011

PASOM40JX3051

PAJ405

PASOM40JX3054

PAJ404

PASOM40JX3052

PAJ402

PASOM40JX3059

PAJ403

PASOM40JX3057

PAJ409

PASOM40JX3060

PAJ408

PASOM40JX3058

PAJ507

PAP307

PAJ504

PAP304

PAU802

PAU1107

PAJT203

PAU11010

PAU8015

PAU1105

PAJT204

PAU1102

PAR2102

PASOM40JX3069

PAD101
PAR2101

PAUSB10A7

PAUSB10B7

PAD106 PAR2201

PAUSB10A6

PAUSB10B6

PAR2202

PASOM40JX3067

PAD206

PAR1701

PAUSB20A7

PAUSB20B7

PAD201

PAR1801

PAUSB20A6

PAUSB20B6

PAC8801

PAD105

PASOM40JX3068

PAUSB10A4 PAUSB10A9

PAUSB10B4 PAUSB10B9

PAC6402 PAC6501

PAD205

PAU8010

PAUSB20A4 PAUSB20A9

PAUSB20B4 PAUSB20B9

PAC6302

PALED20A PALED30A

PAU801

PAU808

PAU809

PAJT207

PASOM40JX2010

PAU202A05

PAU202B05

PAU301A05

PAU301B05

PAC7802 PAC7902 PAFB502
PASOM40JX2098

PAC8002 PAC8102 PAFB602

PASOM40JX3045

PASOM40JX3046

PAC7002
PAC7102 PAC7202

PAC7302

PAFB102 PAFB202

PASOM40JX1078

PASOM40JX1079 PASOM40JX1080 PAC7402 PAC7502 PAFB302
PASOM40JX2078

PASOM40JX2079 PASOM40JX2080

PAC101

PAC201
PAP402

PAR302

PAU1039 PAU1040 PAU1041 PAU1042

112

C
o

m
p

o
n

e
n

t
li
s

t
B

il
l
o

f
M

a
te

ri
a
ls

 f
o

r
B

O
M

 D
o

c
u

m
e
n

t
[N

T
N

U
-H

S
I-

P
ro

to
ty

p
e
.B

o
m

D
o

c
]

S
o

u
rc

e
 D

a
ta

 F
ro

m
:

N
T

N
U

-H
S

I-
P

ro
to

ty
p

e
.B

o
m

D
o

c

P
ro

je
c

t:
N

T
N

U
-H

S
I-

P
ro

to
ty

p
e

.P
rj

P
c

b

V
a

ri
a

n
t:

N
o

n
e

R
e
p
o
rt

 D
a
te

:
2

8
.0

3
.2

0
1

9
1

9
:0

8

P
ri

n
t

D
a

te
:

2
8

-M
a

r-
1

9
7

:0
8

:2
1

 P
M

#
L

ib
R

e
f

M
a

n
u

fa
c

tu
re

r
1

M
a

n
u

fa
c

tu
re

r
P

a
rt

 N
u

m
b

e
r

1
P

a
rt

T
y

p
e

D
e

s
c

ri
p

ti
o

n
F

o
o

tP
ri

n
t

P
a

c
k

a
g

e
R

e
fe

re
n

c
e

Q
u

a
n

ti
ty

1
T

5
2

1
D

1
0

7
M

0
2

5
A

T
E

0
4

0
K

E
M

E
T

T
5

2
1

D
1

0
7

M
0

2
5

A
T

E
0

4
0

1
0

0
u

F
T

a
n

ta
lu

m
-D

-7
3

4
3

1

2
T

5
2

5
D

4
7

6
M

0
1

6
A

T
E

0
3

5
K

E
M

E
T

T
5

2
5

D
4

7
6

M
0

1
6

A
T

E
0

3
5

4
7

u
F

T
a
n

ta
lu

m
-D

-7
3

4
3

1

3
C

a
p
a
c
it
o
r

T
D

K
C

G
A

3
E

2
X

7
R

1
E

1
0

4
K

0
8

0
A

A
1

0
0

n
F

0
6

0
3

_
C

A
P

A
C

IT
O

R
2

6

4
C

a
p
a
c
it
o
r

M
u

ra
ta

G
R

T
2

1
B

R
6

0
J
4

7
6

M
E

1
3

L
4

7
u

F
0

8
0

5
_

c
a
p
a
c
it
o
r

4

5
C

a
p
a
c
it
o
r

T
D

K
C

G
A

3
E

1
X

7
R

1
C

1
0

5
K

0
8

0
A

C
1

u
F

0
6

0
3

_
C

A
P

A
C

IT
O

R
4

6
C

a
p
a
c
it
o
r

K
E

M
E

T
C

0
6

0
3

C
1

0
2

K
3

R
A

C
A

U
T

O
1

n
F

0
6

0
3

_
C

A
P

A
C

IT
O

R
4

7
C

a
p
a
c
it
o
r

M
u

ra
ta

G
R

T
1

8
8

R
6

1
C

1
0

6
K

E
1

3
D

1
0

u
F

0
6

0
3

_
C

A
P

A
C

IT
O

R
8

8
C

a
p
a
c
it
o
r

K
y
o
c
e
ra

 A
V

X
0

6
0

3
3

D
1

0
5

K
A

T
2

A
1

.0
u

F
0

6
0

3
_

C
A

P
A

C
IT

O
R

7

9
IP

4
2

2
0

C
Z

6
P

h
ili

p
s

IP
4

2
2

0
C

Z
6

,1
2

5
IP

4
2

2
0

C
Z

6
T

S
O

P
6

2

1
0

D
io

d
e
 B

A
T

1
7

In
fi
n

e
o
n

B
A

T
1

7
E

6
3

2
7

H
T

S
A

1
D

io
d
e
 B

A
T

1
7

S
ili

c
o
n

 R
F

 S
c
h

o
tt
k
y
 D

io
d
e
 f

o
r

M
ix

e
r

A
p
p
lic

a
ti
o
n

s

in
 t
h

e
 V

H
F

/U
H

F
 R

a
n

g
e

S
O

T
-2

3
_

N
S

O
T

-2
3

1

1
1

0
6

0
3

 F
e
rr

it
e
 B

e
a
d

W
u

rt
h

 E
le

c
tr

o
n

ic
s

7
4

2
7

9
2

6
0

9
7

4
2

7
9

2
6

0
9

0
6

0
3

 F
e
rr

it
e
 B

E
a
d

7

1
2

m
ic

ro
S

D
 C

a
rd

M
o
le

x
5

0
2

5
7

0
-0

8
9

3
5

0
2

5
7

0
0

8
9

3
5

0
2

5
7

0
0

8
9

3
1

1
3

1
4

-p
in

 J
T

A
G

M
o
le

x
8

7
8

3
3

-1
4

2
0

1
4

-p
in

 J
T

A
G

8
7

8
3

3
1

4
2

0
1

1
4

4
-P

in
 P

ic
o
L

o
c
k

M
o
le

x
5

0
4

0
5

0
-0

4
9

1
4

-P
in

 P
ic

o
L

o
c
k

4
-P

in
 M

o
le

x
 P

ic
o
L

o
c
k

5
0

4
0

5
0

-0
4

9
1

2

1
5

R
J
4

5
B

e
l

L
8

2
9

-1
J
1

T
-4

3
R

J
4

5
L

8
2

9
1

J
1

T
4

3
1

1
6

H
IR

O
S

E
-8

P
IN

H
ir
o
s
e

H
R

2
5

-7
T

R
-8

P
A

(7
3

)
H

IR
O

S
E

-8
P

IN
8

 P
in

 T
h

ro
u

g
h

 H
o
le

 H
IR

O
S

E
 S

o
c
k
e
t
(H

R
2

5
-

7
T

R
-8

P
A

(7
3

))
H

IR
O

S
E

_
p
la

c
e
h

o
ld

e
r

1

1
7

1
0

-p
in

 P
ic

o
L

o
c
k

M
o
le

x
5

0
4

0
5

0
-1

0
9

1
5

0
4

0
5

0
-1

0
9

1
P

ic
o
-L

o
c
k
 S

M
T

 W
ir
e
-t

o
-B

o
a
rd

 H
e
a
d
e
r

1
0

w
a
y

M
o
le

x
 5

0
4

0
5

0
 S

e
ri
e
s
,
1

.5
m

m
 P

it
c
h

 1
0

 W
a
y
 1

5

0
4

0
5

0
-1

0
9

1
1

1
8

8
-P

in
 P

ic
o
B

la
d
e

M
o
le

x
5

3
2

6
1

-0
8

7
1

8
-P

in
 P

ic
o
B

la
d
e

8
-P

in
 P

ic
o
B

la
d
e

1

1
9

0
8

0
5

 L
E

D
V

is
h

a
y
 L

it
e
-O

n
L

T
S

T
-C

1
7

0
K

F
K

T
0

8
0

5
 L

E
D

0
8

0
5

-L
E

D
3

2
0

0
8

0
5

 L
E

D
Q

T
-B

ri
g
h

te
k

Q
B

L
P

6
5

0
-I

W
0

8
0

5
 L

E
D

0
8

0
5

-L
E

D
1

2
1

D
C

-J
a
c
k

C
U

I
P

J
-0

0
2

A
H

D
C

-J
a
c
k

d
c
-p

o
w

e
r-

ja
c
k

1

2
2

H
e
a
d
e
r

2
S

a
m

te
c

T
S

W
-1

0
1

-0
7

-G
-D

H
e
a
d
e
r

2
H

e
a
d
e
r,

 2
-P

in
H

D
R

1
X

2
2

2
3

H
e
a
d
e
r

8
W

u
rt

h
 E

le
c
tr

o
n

ic
s

6
1

3
0

0
8

1
1

1
2

1
H

e
a
d
e
r

8
H

e
a
d
e
r,

 8
-P

in
H

D
R

1
X

8
1

2
4

H
e
a
d
e
r

3
S

a
m

te
c

T
S

W
-1

0
3

-0
7

-L
-S

H
e
a
d
e
r

3
H

e
a
d
e
r,

 3
-P

in
H

D
R

1
X

3
3

2
5

B
S

S
1

3
8

B
K

W
,1

1
5

N
X

P
 S

e
m

ic
o
n

d
u

c
to

rs
B

S
S

1
3

8
B

K
W

,1
1

5
B

S
S

1
3

8
B

K
W

,1
1

5
N

-C
h

a
n

n
e
l
T

re
n

c
h

 M
O

S
F

E
T

,
6

0
 V

,
0

.3
2

 A
,
-5

5

to
 1

5
0

 d
e
g
C

,
3

-P
in

 S
O

T
3

2
3

,
T

a
p
e
 a

n
d
 R

e
e
l

N
X

P
-S

O
T

3
2

3
_

N
S

O
T

3
2

3
1

2
6

R
e
s
is

to
r

V
is

h
a
y

C
R

C
W

0
6

0
3

8
6

K
6

F
K

E
A

8
6

K
6

0
6

0
3

_
R

E
S

IS
T

O
R

1

2
7

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
-3

E
K

F
1

9
6

0
V

1
9

6
R

0
6

0
3

_
R

E
S

IS
T

O
R

1

2
8

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
-3

E
K

F
6

8
1

2
V

6
8

K
1

0
6

0
3

_
R

E
S

IS
T

O
R

1

2
9

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

E
K

F
2

1
5

2
V

2
1

K
5

0
6

0
3

_
R

E
S

IS
T

O
R

1

3
0

R
e
s
is

to
r

V
is

h
a
y
 D

a
le

C
R

C
W

0
6

0
3

1
R

1
3

F
K

E
A

1
R

1
3

0
6

0
3

_
R

E
S

IS
T

O
R

1

3
1

R
e
s
is

to
r

S
ta

c
k
p
o
le

 E
le

c
tr

o
n

ic
s

R
M

C
F

0
6

0
3

F
T

4
R

5
3

4
R

5
3

0
6

0
3

_
R

E
S

IS
T

O
R

1

3
2

R
e
s
is

to
r

T
E

 C
o
n

n
e
c
ti
v
it
y
 N

e
o
h

m
C

P
F

0
6

0
3

F
2

R
4

9
C

1
2

R
4

9
0

6
0

3
_

R
E

S
IS

T
O

R
1

3
3

R
e
s
is

to
r

T
E

 C
o
n

n
e
c
ti
v
it
y
 N

e
o
h

m
C

P
F

0
6

0
3

F
4

R
9

9
C

1
4

R
9

9
0

6
0

3
_

R
E

S
IS

T
O

R
1

3
4

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
-3

E
K

F
3

5
7

1
V

3
K

5
7

0
6

0
3

_
R

E
S

IS
T

O
R

2

3
5

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
-3

E
K

F
2

8
7

1
V

2
.8

7
K

0
6

0
3

_
R

E
S

IS
T

O
R

1

3
6

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
-3

E
K

F
1

1
5

1
V

1
K

1
5

0
6

0
3

_
R

E
S

IS
T

O
R

1

3
7

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

E
K

F
4

0
R

2
V

4
0

R
2

0
6

0
3

_
R

E
S

IS
T

O
R

1

3
8

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

E
K

F
4

7
0

1
V

4
K

7
0

6
0

3
_

R
E

S
IS

T
O

R
2

3
9

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
-3

G
E

Y
0

R
0

0
V

0
 o

h
m

0
6

0
3

_
R

E
S

IS
T

O
R

3

4
0

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

E
K

F
2

7
R

0
V

2
7

R
0

6
0

3
_

R
E

S
IS

T
O

R
4

4
1

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

E
K

F
2

7
0

0
V

2
7

0
R

0
6

0
3

_
R

E
S

IS
T

O
R

4

4
2

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

E
K

F
1

2
0

0
V

1
2

0
R

0
6

0
3

_
R

E
S

IS
T

O
R

1

4
3

R
e
s
is

to
r

V
is

h
a
y
 D

a
le

C
R

C
W

0
6

0
3

4
M

7
0

J
N

E
A

4
M

7
0

6
0

3
_

R
E

S
IS

T
O

R
1

4
4

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

G
E

Y
J
1

0
3

V
1

0
K

0
6

0
3

_
R

E
S

IS
T

O
R

1

4
5

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

E
K

F
5

1
0

1
V

5
K

1
0

6
0

3
_

R
E

S
IS

T
O

R
4

4
6

R
e
s
is

to
r

P
a
n

a
s
o
n

ic
E

R
J
3

G
E

Y
J
1

0
1

V
1

0
0

R
0

6
0

3
_

R
E

S
IS

T
O

R
1

4
7

P
ic

o
Z

e
d
_

S
O

M
P

ic
o
Z

e
d

P
ic

o
Z

e
d
 S

O
M

 C
a
rr

ie
r

F
o
o
tp

ri
n

t
P

ic
o
Z

e
d
S

O
M

1

4
8

L
M

Z
3

1
5

0
6

T
e
x
a
s
 I
n

s
tr

u
m

e
n

ts
L

M
Z

3
1

5
0

6
R

U
Q

T
L

M
Z

3
1

5
0

6
L

M
Z

3
1

5
0

6
1

4
9

T
P

S
7

4
8

0
1

D
R

C
R

T
e
x
a
s
 I
n

s
tr

u
m

e
n

ts
T

P
S

7
4

8
0

1
D

R
C

R
T

P
S

7
4

8
0

1
D

R
C

R
S

in
g
le

 O
u

tp
u

t
L

D
O

,
1

.5
 A

,
A

d
ju

s
ta

b
le

 0
.8

 t
o
 3

.6

V
 O

u
tp

u
t,
 0

.8
 t
o
 5

.5
 V

 I
n

p
u

t,
 w

it
h

 P
ro

g
ra

m
m

a
b
le

T

I-
D

R
C

1
0

-2
4

0
0

X
1

6
5

0
T

P
_

V
D

R
C

1
0

-2
4

0
0

X
1

6
5

0
T

P
4

5
0

M
C

P
2

5
6

2
M

ic
ro

c
h

ip
M

C
P

2
5

6
2

-E
/S

N
C

A
N

 t
ra

n
s
c
e
iv

e
r

M
C

P
2

5
6

2
 C

A
N

 t
ra

n
s
c
e
iv

e
r

M
C

P
2

5
6

2
-S

O
IC

1
2

7
P

6
0

0
X

1
7

5
-8

M
1

5
1

F
T

2
3

0
X

Q
-R

F
T

D
I

F
T

2
3

0
X

Q
-R

F
T

2
3

0
X

Q
-R

U
S

B
 t
o
 B

a
s
ic

 U
A

R
T

 I
n

te
rf

a
c
e
 C

h
ip

,

U
H

C
I/
O

H
C

I/
E

H
C

I
C

o
m

p
a
ti
b
le

,
U

S
B

 2
.0

Q

F
N

-1
6

_
N

Q
F

N
-1

6
1

5
2

T
X

S
0

2
6

1
2

T
e
x
a
s
 I
n

s
tr

u
m

e
n

ts
T

X
S

0
2

6
1

2
R

T
W

R
T

X
S

0
2

6
1

2
Q

F
N

-R
T

W
1

5
3

T
S

3
A

2
4

1
5

9
T

e
x
a
s
 I
n

s
tr

u
m

e
n

ts
T

S
3

A
2

4
1

5
9

D
R

C
R

T
S

3
A

2
4

1
5

9
T

S
3

A
2

4
1

5
9

1

5
4

U
S

B
-C

M
o
le

x
1

0
5

4
5

0
-0

1
0

1
U

S
B

-C
P

C
B

C
o
m

p
o
n

e
n

t_
1

2

N
o

te
s

1
3

1

A
p

p
ro

v
e

d

A
lt

iu
m

 L
im

it
e

d
 C

o
n

fi
d

e
n

ti
a

l
2

8
.0

3
.2

0
1

9
P

a
g

e
 1

113

114 APPENDIX B. BREAKOUT BOARD DESIGN FILES

Appendix C

HYPSO CLI

Following is a terminal dump from the hypos-cli program. The help command is executed to
show the available commands.

Welcome to: HYPSO CLI
Model: GS Linux CLI
Revision: May 21 2019
Type help for all commands.
Type help <command > for specific help.
$ help
help [Command] - Print help for all

↪→ functions , or a subset of functions.
exit - Exit the CLI.
q - Exit the CLI.
csp init can [<canX >] - Initialise CAN bus for

↪→ CSP.
csp init flatsat [<Address > <Port >] - FlatSat for CSP over NNG

↪→ interface.
csp init service all - Initialise all payload

↪→ services locally with loopback.
csp init service ft - Initialise the FT service

↪→ locally with loopback.
csp init service shell - Initialise the shell

↪→ services locally with loopback.
csp init usart - Initialise USART

↪→ interface over KISS.
csp ping <CSP ID> - Send a CSP ping and wait

↪→ for reply.
csp ping all - Send CSP ping to all

↪→ subsystems.
csp ping rtt <CSP ID> <Number of pings > - Estimate round trip time

↪→ with Pings.
csp hello <CSP ID> <CSP Port > - Send hello world over CSP

↪→ .
csp mem <CSP ID> - request free memory from

↪→ CSP node.
csp buf <CSP ID> - request free buffers from

115

116 APPENDIX C. HYPSO CLI

↪→ CSP node.
csp up <CSP ID> - request uptime from CSP

↪→ node.
csp route - Print CSP routing table

↪→ for this node.
csp conn - Print CSP connection

↪→ table for this node.
csp if - Print CSP interfaces for

↪→ this this.
csp debug [<Debug Level >] - Toggle CSP debug level.
csp reboot <CSP ID> - Request a CSP node to

↪→ reboot.
csp shutdown <CSP ID> - Request a CSP node to

↪→ shutdown.
ft info <CSP ID> <File ID> - Request file info from a

↪→ node.
ft list <CSP ID> - Request file listing from

↪→ a node.
ft check <ALL|PRESENCE|INTEGRITY > <CSP ID> <File ID> <First Entry

↪→ ID> <Last Entry ID>
- Request a check of

↪→ integrity or presence
↪→ of file entries.

ft check local <ALL|PRESENCE|INTEGRITY > <File Path > <First Entry ID
↪→ > <Last Entry ID >

- Check integrity or
↪→ presence of local
↪→ file entries.

ft clear <CSP ID> <File ID> - Request a file to be
↪→ cleared.

ft clear local <File Path > - Clear a local file.
ft format <CSP ID> <File ID> <Entry Size > <Entry Count >

- Request file formatting
↪→ from a node.

ft format local <Filename > <LOG|STATIC > <File ID> <Entry Size > <
↪→ Entry Count >

- Format a local file.
ft download cancel <CSP ID> - Send request to cancel

↪→ ongoing download to CSP node.
ft download range <CSP ID > <SRC ID > <Start > <End > <DST Path > <

↪→ Period[ms]> <Duration[s]> <MTU >
- Download range of entries

↪→ from file.
ft download id <CSP ID> <File ID> <DST Path > <Period[ms]> <Duration

↪→ [s]>
- Download complete

↪→ formatted file with
↪→ ARQ. Auto -create
↪→ formatted file.

ft upload <CSP ID> <Filename > <Period (ms)>

117

- Upload a formatted file ,
↪→ without
↪→ acknowledgement.

ft upload range <CSP ID> <Filename > <Start > <End > <Period >
- Upload a range of a

↪→ formatted file.
ft upload arq <CSP ID> <Filename > <Period >

- Upload complete formatted
↪→ file , with ARQ.

ft register <CSP ID> <File Path > <File ID>
- Register a link for a

↪→ file path to a file
↪→ ID.

ft deregister <CSP ID> <File ID> - Deregister link for a
↪→ file ID.

ft prepare <CSP ID> <Source File > <Destination File ID> <Entry Size
↪→ >

- Create new formatted file
↪→ with data from
↪→ existing file.

ft prepare local <Source File > <Destination File > <Destination File
↪→ ID> <Entry Size >

- Create new local
↪→ formatted file from
↪→ data from existing
↪→ local file.

ft extract <CSP ID> <Source File ID> <Destination File Path >
- Create new file with data

↪→ from existing
↪→ formatted file.

ft extract local <Source File > <Destination File >
- Create new local file

↪→ with data from
↪→ existing local
↪→ formatted file.

ft buffer file <CSP ID> <Buffer Port > <Period (us)> <File ID | File
↪→ Path >

- Request a file to be
↪→ buffered on the PC.

rgb init <config file path > - Initialise RGB camera
↪→ with config file.

rgb capture <HW trigger {y, n}> <file type {raw , bmp , png , jpg}> <
↪→ file name >

- Initiates one RGB image
↪→ capture

rgb configure <exposure time (double)> <gamma (int)> <color
↪→ temperature (int)> <pixel clock (int)>

- Set new parameters values
↪→ . Negative values are
↪→ ignored

118 APPENDIX C. HYPSO CLI

rgb deinit - Uninitialize the camera.
rgb configfile <config file path > - Load a different camera

↪→ configuration
rgb print - Print current parameter

↪→ configuration
eps tm - Request and print EPS

↪→ telemetry.
clear - Clear the terminal
ls - ls -l --color=always
shell <Command > - Run any shell command

↪→ locally. Ex, "ls -l"
shell remote <CSP ID> <Timeout (ms)> - Enter remote CLI mode for

↪→ a node. Enter "exit" to quit.

Appendix D

Packet Loss Test

The measurements from the packet loss test are included on the next page.

119

Pa
ra
m
et
er
s

R
ec
or
de
d

D
er
iv
ed

In
pu

t D
ro

p
R

at
e

[%
]

B
ur

st
 W

in
do

w

Le
ng

th
 [#

]
Fi

le
 S

iz
e

[B
]

E
nt

ry
 s

iz
e

[B
]

E
nt

rie
s

[#
]

M
in

ut
e

s
[#

]
S

ec
on

ds

[#
]

C
ha

nn
el

 a
ve

ra
ge

dr

op
 ra

te
 [%

]
Tr

an
sf

er

D
ur

at
io

n
[s

]
E

ffe
ct

iv
e

D
at

ar
at

e
[k

bp
s]

E
st

im
at

ed
 d

at
ar

at
e

@

1M
b

[k
bp

s]
D

ec
re

as
e

in
 e

ffe
ct

iv
e

da
ta

ra
te

 [%
]

0
0

76
95

41
23

6
32

61
1

58
0

11
8

52
.1

72
27

11
9

41
7.

37
81

69
5

0
0

0
76

95
41

23
6

32
61

1
58

0
11

8
52

.1
72

27
11

9
41

7.
37

81
69

5
0

1
1

76
95

41
23

6
32

61
2

0
1

12
0

51
.3

02
73

33
3

41
0.

42
18

66
7

1.
66

66
66

66
7

2
1

76
95

41
23

6
32

61
2

5
1.

8
12

5
49

.2
50

62
4

39
4.

00
49

92
5.

6
3

1
76

95
41

23
6

32
61

2
12

3.
1

13
2

46
.6

38
84

84
8

37
3.

11
07

87
9

10
.6

06
06

06
1

3
1

76
95

41
23

6
32

61
2

9
2.

8
12

9
47

.7
23

47
28

7
38

1.
78

77
82

9
8.

52
71

31
78

3
4

1
76

95
41

23
6

32
61

2
24

4.
5

14
4

42
.7

52
27

77
8

34
2.

01
82

22
2

18
.0

55
55

55
6

5
1

76
95

41
23

6
32

61
2

26
5.

1
14

6
42

.1
66

63
01

4
33

7.
33

30
41

1
19

.1
78

08
21

9
6

1
76

95
41

23
6

32
61

2
31

5.
8

15
1

40
.7

70
38

41
1

32
6.

16
30

72
8

21
.8

54
30

46
4

6
1

76
95

41
23

6
32

61
2

35
5.

9
15

5
39

.7
18

24
51

6
31

7.
74

59
61

3
23

.8
70

96
77

4
7

1
76

95
41

23
6

32
61

2
41

6.
9

16
1

38
.2

38
06

21
1

30
5.

90
44

96
9

26
.7

08
07

45
3

8
1

76
95

41
23

6
32

61
2

51
8.

1
17

1
36

.0
01

91
81

3
28

8.
01

53
45

30
.9

94
15

20
5

9
1

76
95

41
23

6
32

61
3

3
9

18
3

33
.6

41
13

66
1

26
9.

12
90

92
9

35
.5

19
12

56
8

10
1

76
95

41
23

6
32

61
3

28
10

.4
20

8
29

.5
97

73
07

7
23

6.
78

18
46

2
43

.2
69

23
07

7
15

1
76

95
41

23
6

32
61

4
35

13
.9

27
5

22
.3

86
64

72
7

17
9.

09
31

78
2

57
.0

90
90

90
9

15
1

76
95

41
23

6
32

61
5

8
15

.8
30

8
19

.9
88

07
79

2
15

9.
90

46
23

4
61

.6
88

31
16

9
20

1
76

95
41

23
6

32
61

7
39

20
45

9
13

.4
12

47
93

10
7.

29
98

34
4

74
.2

91
93

9
25

1
76

95
41

23
6

32
61

10
14

24
.7

61
4

10
.0

26
59

28
3

80
.2

12
74

26
7

80
.7

81
75

89
6

25
1

76
95

41
23

6
32

61
11

0
25

.9
66

0
9.

32
77

69
69

7
74

.6
22

15
75

8
82

.1
21

21
21

2

2
2

76
95

41
23

6
32

61
2

3
2

12
3

50
.0

51
44

71
5

40
0.

41
15

77
2

4.
06

50
40

65
3

3
76

95
41

23
6

32
61

2
12

3.
8

13
2

46
.6

38
84

84
8

37
3.

11
07

87
9

10
.6

06
06

06
1

5
5

76
95

41
23

6
32

61
2

28
5.

1
14

8
41

.5
96

81
08

1
33

2.
77

44
86

5
20

.2
70

27
02

7
8

8
76

95
41

23
6

32
61

2
5

5.
7

12
5

49
.2

50
62

4
39

4.
00

49
92

5.
6

10
10

76
95

41
23

6
32

61
2

19
8.

3
13

9
44

.2
90

12
95

35
4.

32
10

36
15

.1
07

91
36

7
15

15
76

95
41

23
6

32
61

2
38

10
.5

15
8

38
.9

64
10

12
7

31
1.

71
28

10
1

25
.3

16
45

57
20

20
76

95
41

23
6

32
61

3
27

16
.9

20
7

29
.7

40
71

49
8

23
7.

92
57

19
8

42
.9

95
16

90
8

25
25

76
95

41
23

6
32

61
3

39
15

.9
21

9
28

.1
11

08
67

6
22

4.
88

86
94

1
46

.1
18

72
14

6
30

30
76

95
41

23
6

32
61

2
54

17
.3

17
4

35
.3

81
19

54
28

3.
04

95
63

2
32

.1
83

90
80

5
50

30
76

95
41

23
6

32
61

6
33

32
.5

39
3

15
.6

64
95

67
4

12
5.

31
96

53
9

69
.9

74
55

47
1

40
30

76
95

41
23

6
32

61
5

43
24

34
3

17
.9

48
47

81
3

14
3.

58
78

25
1

65
.5

97
66

76
4

5
30

76
95

41
23

6
32

61
2

5
4.

4
12

5
49

.2
50

62
4

39
4.

00
49

92
5.

6
30

15
76

95
41

23
6

32
61

5
39

21
.3

33
9

18
.1

60
25

95
9

14
5.

28
20

76
7

65
.1

91
74

04
1

120

M
agne H

ov
D

esign and Im
plem

entation of H
ardw

are and Softw
are Interfaces for a H

yperspectral P
ayload in a Sm

all Satellite

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Magne Hov

Design and Implementation of
Hardware and Software Interfaces for
a Hyperspectral Payload in a Small
Satellite

Master’s thesis in Engineering Cybernetics
Supervisor: Tor Arne Johansen

June 2019

	Preface
	List of Figures
	List of Tables
	Acronyms
	I Introduction & Background
	Introduction
	The HYPSO Mission
	Hyperspectral Imager Payload
	Software Defined Radio Payload

	M6P Satellite Platform
	Problem Statement
	Thesis Outline

	Background
	Communication Theory
	Flow Control
	Communication Errors
	Error Detection and Correction

	Automatic Repeat Query
	Stop-and-Wait
	Sliding Window
	Hybrid ARQ

	Network Stack Model
	Controller Area Network Bus
	CubeSat Space Protocol
	Network Layer
	Transport Layer
	CSP Options
	CSP in Linux

	File Systems
	File Directories
	File Operations
	M6P File System

	File Transfer Protocols
	Trivial File Transfer Protocol
	The File Transfer Protocol RFC-959
	Kubos File Transfer
	CCSDS File Delivery Protocol
	M6P File Transfer

	II Design & Implementation
	Requirements
	Satellite Bus Requirements
	Downlink Requirements
	Uplink Requirements
	Quality Requirements

	Payloads & Communication Architecture
	Onboard Processing Unit
	Imagers
	PicoZed System-On-Module
	ZedBoard Development Kit
	Breakout Board
	Operating System

	Software Defined Radio Payload
	Communication Architecture
	Space Segment
	Ground segment
	nanoMCS and Flatsat

	File Transfer System
	Service and Client Architecture
	File Organisation
	File Format
	File System Module
	File Mapping Module
	Proposed Directory Hierarchy

	File Transfer
	File Stream
	Automatic Repeat Query
	File Transfer Modules
	Transfer Modes
	Direct Download
	Direct Upload
	Buffering

	Testing & Results
	Breakout Board
	Hardware Test Setup
	Automated Module Testing
	HYPSO CLI
	File Transfer Client
	Remote Shell
	Loopback Services

	Communication Delays
	Effective Data Rates
	Packet Loss Test
	Payload Controller Buffering

	Discussion & Conclusion
	Fulfilment of Requirements
	Channel Utilisation
	CSP Buffer Exhaustion
	Buffering
	Memory Footprint of Formatted Files
	On the use of Linux
	Future Work
	Conclusion

	M6P Satellite Platform
	Mechanical Frame
	Electrical Power System
	Flight computer
	On-board Computer
	Attitude Determination and Control System
	GPS Module
	UHF Radio

	Payload Controller

	Breakout Board Design Files
	HYPSO CLI
	Packet Loss Test

