Magne Hov

Design and Implementation of
Hardware and Software Interfaces for
a Hyperspectral Payload in a Small
Satellite

Master’s thesis in Engineering Cybernetics
Supervisor: Tor Arne Johansen

June 2019

2
4
[
4

>
>
L
o
c
<
o
'_
o
c
@©
)
o
c
@
)
wn
—
S)
>
=
)
j-
)
=
c
-]
c
.o
o
9]
2
[
o
Pz

_
o
©
O£
s o
o o
@ <
TTCY
C
S uw
©
>
(=2}
[}
S
o
C
e
(8]
(0]
'_
C
o
b=
©
—
o
o
C
=
o
>
=
=}
(S}
®
i

9]
8]
=
]
c
[
]
Q
>
o
o
c
[
[
(]
c
o
c
L
“—
o
=
c
]
£
o
@©
o
[}
[m]

@NTNU &

Kunnskap for en bedre verden

Magne Hov

Design and Implementation of Hardware
and Software Interfaces for a
Hyperspectral Payload in a Small
Satellite

Master’s thesis in Engineering Cybernetics
Supervisor: Tor Arne Johansen
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@NTNU

Norwegian University of
Science and Technology

Abstract

This thesis details the design and implementation of a file transfer system for a hyperspectral
imager payload on a small satellite. The payload produces large amounts of imaging data that
must be downloaded to produce ocean colour forecasts and to provide researchers with hyper-
spectral data. A small satellite platform from NanoAvionics supports the payload with a radio
link that provides connectivity through a network based on the CubeSat Space Protocol.

Several file transfer protocols are described and used as input to the design process. The
satellite platform and communication architecture is detailed, and a Breakout Board for the
imager payload is designed.

Mission requirements are mapped and used as input in the design process of the file transfer
system. An implementation of the complete file transfer system is tested.

The implemented file transfer system is shown capable of transferring files across an unreliable
network. A store and forward feature is used to circumvent a communication bottleneck between
payload and satellite platform. This capability is demonstrated.

ii

il

Sammendrag

Denne oppgaven beskriver design og implementasjon av et filoverfgringssystem for en nytte-
last pa en liten satellitt med et hyperspektralt kamera. Nyttelasten produserer store mengder
bildedata som mé& lastes ned for & lage havfargeprognoser, og for & forsyne forskere med hyper-
spektral data. En platform for smasatellitter fra NanoAvionics gir radioforbindelse til bakken
gjennom et nettverk som er basert pa CubeSat Space Protocol.

Flere filoverforingsprotokoller er beskrevet og brukt som grunnlag i designprosessen. Satel-
littplatformen og kommunikasjonsarkitekturen er presentert, og et grensesnittskort til nyttelasten
har blitt designet.

Oppgragskrav er kartlagt og brukt i designprosessen til filoverferingssystemet. En komplett
implementasjon av filoverfgringssystemet har blitt testet.

Det blir demonstrert at det implementerte filoverforingssystemet er i stand til & overfere filer
over et upalitelig nettverk. En funksjon som lagrer og videresender filer er brukt for & omga en
flaskehals mellom nyttelasten og satellittplatformen.

v

To Eva, Arne and Anna

vi

Preface

This text is the results of a five months thesis project during the spring of 2019 following a
four months specialisation project on the same topic during the autumn of 2018. The work was
performed at the Department of Engineering Cybernetics at the Norwegian University of Science
and Technology (NTNU).

This thesis details the design, implementation, and testing of a file transfer system for a
hyperspectral imager payload that is being developed by NTNU SmallSat Lab. The inspiration
to do this project stems from a three year long adventure volunteering for the student satellite
project NTNU Orbit (formerly NUTS). It is my hope that the NTNU SmallSat Lab is able to use
and build on the products of this thesis, ultimately achieving success with our HYPSO mission.

NTNU SmallSat Lab has provided me with a place to work, computer monitors and tools
that were required to perform my tasks. They have made available the satellite subsystems that
were required to develop and test my work. Cooperation between NTNU SmallSat Lab and
NanoAvionics gave me access to the necessary information about the satellite subsystems. I had
to seek out the documentation on the use of the network protocols, and experiment with ways
of integrating them into the payload.

I would like to thank my co-supervisors Milica Orlandic and Roger Birkeland for answering
questions, steering me in the right direction, and for reading my drafts while guiding me through
the writing process. I am grateful to Amund Gjersvik for helping me design and manufacture
payload hardware. Some of my results are thanks to Rimantas Zi¢kus from NanoAvionics, who
has answered questions and assisted me with technical issues. I would like to thank my supervi-
sor Tor Arne Johansen for giving me the opportunity to work with this project. Last, but not
least, I would like to thank NTNU SmallSat Lab and Evelyn Honoré-Livermore for providing me
with a wonderful team and work environment in which to do my thesis.

MAGNE Hov
Trondheim, June 3, 2019

vil

viii PREFACE

Contents

[Preface]

|List of Figures|

lList of Tables|
Acronyms

I Introduction & Background|

(1 Introduction|

(1.1.1 Hyperspectral Imager Payload).
(1.1.2 Software Defined Radio Payload|

2 Background|
2.1 Communication Theory|

2.1.1 Flow Controll

2.2 Automatic Repeat Query|
[2.2.1 Stop-and-Wait|

[2.2.2 Shiding Window|
[2.2.3 Hybrid ARQ)

2.3 Network Stack Modell

[2.5 Cubebat Space Protocol
[2.5.1 Network Layer|

[2.5.2 "Transport Layer|
[2.5.3 CSP Options|
File Systems|
P61 Tl =)

PG

1X

vii

xi

xiv

xXVvii

O ~J O U i~ W W f—

© o o ©

Il Design & Implementation|

3

Requirements|

3.1 Satellite Bus Requirements|
13.2 Downlink Requirements|
3.3 Uplink Requirements|
13-4 Quality Requirements|

|4

Payloads & Communication Architecture|

4.1 Onboard Processing Unit|
[4.1.1 Imagers|
[4.1.2 PicoZed System-On-Module|
[4.1.3 ZedBoard Development Kit|

[4.1.5 Operating System|

4.2 Software Defined Radio Payload|.

4.3 Communication Architecturel
[4.3.1 Space Segment|
[4.3.2 Ground segment|

File Transfer System|

.1 Service and Client Architecturel

5.2 File Organisation|
0.2.1 File Formatl
[>.2.2 File System Modulef
[>.2.3 File Mapping Module]
[>.2.4 Proposed Directory Hierarchy]|

0.3 File Transfer|

[5.3.7 Buftering]

Testing & Results|

6.2 Hardware Test Setup|
6.3 Automated Module Testing|

536 Direct Upload|.

CONTENTS

CONTENTS

/ Bufi

D T
7.5 Memory Footprint ot Formatted Files[.,
(.6 Ontheuseof Linuxl e
.7 _Future Workl

IB Breakout Board Design Files|

C HYPSO CLI

X1

82
84
84
85
86

89
89
90
91
91
91
92
92
93

97
97
98
99
99
99
100
100
101

103
115

119

xi1i

CONTENTS

List of Figures

[1.1 Mlustration of push broom scanning.| 5
[1.2 Illustration of hyperspectral data.|. 6
1.3 Relations between the subsystems of the HYPSO satellite| 7
2.1 The stop-and-wait ARQ strategy.| 0. 12
2.2 The Go-back-N ARQ strategy.| 14
[2.3 The Selective Repeat ARQ strategy|., 16
[2.4 OS5I reterence model for network protocols.|. 17
2.5 HYPSO communication protocol stack.|. 17
2.6 The extended CAN protocol frame|. 18
2.7 CSP packet format.|. 20
2.8 Usage of CSP in Linux.|, 21
2.9 A file allocation tablel] oL 22
[2.10 A journaled file system.| 23
2.11 Packet formats in TFTP as defined in RFFC-1350. 27
2.12 Connection architecture of REC-959 FTP| 28
2.13 Contents of a CEFDP NACK. 31
[2.14 Tllustration of the store and forward concept. 32
[2.15 Format of a stream packet.| o oo o 34
4.1 Engineering model of HSI camera.| 0. 43
4.2 PicoZed System-on-Module from AVNET| 44
4.3 ZedBoard development kit used for testing OPU software.| 45
4.4 High level architecture of communication network.| 50
4.5 Architecture of the CSP network with flatsat) 52
b.1 Service and client architecturel Lo 54
b.2 Comparison of formatted file layouts.| 55
5.3 Memory layout of a formatted file with interleaved metadata. 56
b.4 Functions provided by the fs module.| Y
b.5 AfileIDmap.. 57
[>.6 Functions provided by the fs_idmap module.| 58
5.7 Proposed directory tree for the OPU payload.| 58
B8 Afilestreaml Lo 59
.9 ARQ strategy of the F'I' system.| 60
B.I10 Cmodules for the FTCl 61
.11 C modules for the F'I'SS 0o 62
[5.12 Data path of the direct download transter mode.| 64
[5.13 The download request service procedure.| 65
[p.14 The send range service procedure.|o o 66

xiil

Xiv LIST OF FIGURES

b.15 The download file id procedure. 67
[5.16 The download file formatted procedure| 68
[5.17 The download arqg procedure.|. 69
[5.18 The download range procedure.| 70
b.19 The receive stream procedure.| 71
[5.20 Data path of the direct upload transter mode.| 72
[b.21 The upload file formatted procedure|. 73
[5.22 The upload arq procedure.| L L 74
[5.23 The upload range procedure.|. 75
.24 Buffered download model o oo oo 75
[5.25 Sequence of buftering data on the PC.| 76
[6.1 A rendering of the Breakout Board PCB.| 78
[6.2 Hardware setup used in testing.| L. 79
6.3 Block diagram of the hardware setup.| 79
6.4 Example use of the hypso-cli program. 82
6.5 Remote shell sequence.| o o 83
6.6 Setup for pertorming system tests on development workstation. 83
6.7 Setup for measuring communication delays.| L. 84
6.8 Setup for testing the reliability of the F'I' system 86
6.9 Effective data rates for various packet drop rates.| 87
[6.10 Setup for testing the buftering service on the PC| 87
[A.1 MG6P satellite bus mechanical frame and solar panels.| 97

[A.2 EPS operating modes.| 99

List of Tables

6.1 Round trip delay times for the subsystems in the test setup.| 84
6.2 Effective data rates in the network stackl. 85
[7.1 Summary of the design requirements.. 0oL, 89

XV

xXvi LIST OF TABLES

Acronyms

ACK Acknowledgement. 31]
ADCS Attitude Determination and Control System. [6] [7]

AMOS Centre for Autonomous Marine Operations and Systems. [3] []

ARQ Automatic Repeat Query. 60]
BOB Breakout Board. [7], 37}, E3H46], [77] [78} 92} 03]

CAN Controller Area Network. [49
CBOR Concise Binary Object Representation. [29]

CCSDS The Consultative Comittee for Space Data Systems.

CFDP CCSDS File Delivery Protocol.

CIDR Classless Inter-Domain Routing. [20]

CLI Command Line Interface.

CoE Centre of Excellence. [

COTS Commercial off-the-Shelf. [3] [43]

CPU Central Processing Unit.

CRC Cyclic Redundant Check. 25 B4, [2

CSP Cubesat Space Protocol. [17] [I9H21] 25| B2 33} 39} (A1} (A6} (A9} 51} 53] 54 B8] 59} [62} [64]
[72, [74] [76, [B0H82, B4} B3] BIHO2 98, [10T]

DSP Digital Signal Processing.
ECC Error Correcting Code. [T} [I5] [#4] [48]

EM Electromagnetic.
eMMC Embedded MultiMediaCard. [44] [46]

EOF End of File. 22| 29} 1]
EPS Electrical Power System. [6] [7]

FAT File Allocation Table. 22} [4§]

XVvil

xviil Acronyms

FC Flight Computer. [6] [7], [£9] 09} [L00]
FEC Forward Error Correction.

FPS Frames Per Second. [i4]
FSBL First Stage Boot Loader. [A7]

FT File Transfer. 8} [19 37, BO-AT} B9}, (3} 4 (6, 57, 59} [60} [72} [77}, B3} BIH3

FTC File Transfer Client. 53] [54] [60} [62H65] 67} [78 [85], [86l, [90], [92]
FTP File Transfer Protocol.

FTS File Transfer Service. [78
FUSE Filesystem in Userspace.

GPIO General-Purpose I0.
GPS Global Positioning System. [7]

HMAC Hash-Based Message Authentication Code.

HSI Hyperspectral Imaging. [} [6l BIHAT] E3HAT], [77] 02

HYPSO Hyperspectral SmallSat for Ocean Observation. BH8| [I5] [I7] [I8] 2022 B9H4T] [43] (4]
M8} 19} 53} B4, 59 P11 B3, [100]

I2C Inter-Integrated Circuit.
iDS Imaging Development Systems. [43] [44] [46]
IP Internet Protocol. [49]

JSON JavaScript Object Notation.

LEO Low Earth Orbit. [4] [97]

LOS Line of Sight. [4] [10] [49]
LUT Look-Up-Table.

M6P M6P Multi-Purpose Nano-Satellite Bus. [6] [7}, [25] [26] 32 B9} (45}, (49} [51} 53} B4} (9] [60] [62]
[77, [78} [B0L [82} 85} [B6}, B9} P13} P7]

MCS Mission Control Software.
MIO Multiplexed I0. [46]

MPPT Maximum Power Point Tracking. [98]

MTU Maximum Transfer Unit.

NA NanoAvionics. [6] [7] B9
NACK Negative Acknowledgement. [T} [30] [31]

Acronyms Xix

NASA National Acronautics and Space Administration. [39]

NNG NanoMsg-Next-Generation.

NTNU Norwegian University of Science and Technology. [3] [}
NTP Network Time Protocol. [45]

NUTS NTNU Test Satellite.

OBC On-board Computer. [29] 09
OCM On Chip Memory. [4§]

OPU On-board Processing Unit. [[77
OSI Open Systems Interconnect.

PC Payload controller. [7] [70]
PCB Printed Circuit Board. o7

PDU Protocol Data Unit. [T7HI9 27], 29} 1]

PL Programmable Logic. [44]

PPS Pulse-Per-Second. [45] [77}

PS Processing System.

PZ PicoZed. [7] [A3H46]
QSPI Quad-SPI. [, [i6, i

RAM Random Access Memory. [44]
REPL Read-eval-print loop.

RFC Request for Comments.
RGB Red-Green-Blue. [5 @3H45] [77]
ROM Read-Only Memory.

RTOS Real-Time Operating System. [A7]

RTT Round Trip Time. [12} 84} [85]

SD Secure Digital. [22] [44] [46] [48] [77]

SDR Software Defined Radio. [4] [6] [§ [49,
SNR Signal-to-Noise Ratio.

SoC System on Chip.

SoM System on Module. [43}46] 8] [78] 02|

XX Acronyms

SPI Serial Peripheral Interface. 9] 59} [75] [L0]]
SSBL Second Stage Boot Loader. [47] [48]

TCP Transmission Control Protocol. [9]

TFTP Trivial File Transfer Protocol.
TM Telemetry.

TT&C Telemetry, Tracking and Command. [4]]

UART Universal asynchronous Receiver-Transmitter. [101

UHF Ultra-High Frequency. [6] [7], 9]
UNIS The University Centre in Svalbard.

USB Universal Serial Bus. [3H45] 51} [77]

WDT Watchdog Timer.

XTEA Extended Tiny Encryption Algorithm.

Part 1

Introduction & Background

Chapter 1

Introduction

Technological advances are allowing electrical and mechanical systems to be miniaturised. This is
apparent in many of the products that are being used every day, like laptops and mobile phones,
and satellites are going through the same process.

A CubeSat is a small satellite that is made up of one or more units. Each unit has a 10cm X
10cm x 10 em form factor. They are associated with low-cost [Commercial off-the-Shelf (COTS)|
components and are used as a cost effective platform to get small payloads into space. The
CubeSat satellite must adhere to the design rules defined in the CubeSat standard in order to
qualify for integration into a launch vehicle [I].

Since the first wave of CubeSats in the early 2000’s there has been a steady growth of small
satellites being launched for scientific and commercial purposes. Over a thousand CubeSats have
been launched to this date, and three thousand more are predicted to be launched during the
next six years [2].

Companies that supply components for small satellites are offering matured systems, and
launch service providers are benefiting from catering to small satellites. A CubeSat is increasingly
seen as a platform to solve real world problems.

1.1 The HYPSO Mission

The SmallSat Lab at the [Norwegian University of Science and Technology (NTNU)|is a loosely
structured organisation and team consisting of professors, postdocs, Phd. candidates, Msc.
students, BSc. students and volunteers. The team is supported by the [Centre of Excellence]
[(CoE)[|Centre for Autonomous Marine Operations and Systems (AMOS)| which administrates
multiple research projects related to maritime operations and systems in Norway.

The SmallSat Lab was created in 2017 and has since been working to develop a mission plan
and systems for a small satellite mission in association with[AMOS] The mission has had several
names, and is currently named [Hyperspectral SmallSat for Ocean Observation (HYPSO)| The
[HYPSO] mission is designed with consideration to the needs of several users and beneficiaries.

The [HYPSO| mission is in itself an instrument used by the SmallSat Lab to develop and build
competence. The SmallSat Lab is associated with [NTNUJs small satellite strategy.

The SmallSat Lab aims to promote space technology at [NTNU] but is not the only project
to do so. Previous efforts at include INTNU Test Satellite (NUTS), a student driven
CubeSat project that ran from 2013 to 2017. The [NUTS| organisation has since been rebranded
as Orbit NTNU, which still develops CubeSat projects. Propulse NTNU is a new addition to
the space related activities at [NTNU] This project is also student driven, and aims to develop
and manufacture rockets for participation in Spaceport America Cup, an international student
competition for rocketry.

4 CHAPTER 1. INTRODUCTION

The needs of the Norwegian maritime industries are communicated via collaborated projects
that are managed through [AMOS| The technological advances that the [HYPSO| mission aims
to enable are particularly applicable to aquaculture. For this reason, many of the requirements
that set the basis for the mission design are derived from the needs of this area of industry.

The fishing industry is naturally concerned about the wellness of its livestock. A common
cause of concern for fish farmers is the effect that algal blooms can have on the fish farming
environments. Certain algae are toxic to fish, and can reduce the quality of the fish or even kill
it. Therefore, the fishing industry has a need for good methods of detecting and monitoring such
blooms. If a bloom is detected before it reaches a farm, the farmers can carry out preventive
measures before their livestock is damaged. The algae usually floats in the top layers of the
ocean, which is also where the fish resides while being fed. By not feeding the fish when a bloom
is detected, the fish will remain deeper within the fish enclosure and avoid contact with the
damaging algae. Recent events saw 3000 tonnes of salmon being wiped out by algal blooms in
Norway [3].

The technologies that the [IYPSO] mission seeks to demonstrate will be able to provide
detection of these algal blooms. A hyperspectral imager will be able to record images which can
be analysed to identify algal blooms. The requirements of the fish farmers are included in the
mission design. The mission is designed for the ability to provide early signs of bloom detection.
By being in [Low Earth Orbit (LEO)| the satellite gains a large field of view and a short revisit
period. These two properties will enable the satellite to detect blooms in a large area. It can
therefore provide warnings in a relatively short time frame.

Another goal which is collaborated through [AMOS]is the development of a network of sensory
entities for surveillance of the oceans. This long term goal is what the [HYPSO] mission draws
inspiration from for its name. In this project, the [HYPSO] satellite plays several roles. One
role is to be a producer of coastal and oceanic imagery, which can be used for a wide range of
monitoring and tracking purposes.

A secondary mission objective for the [HYPSO)| mission is to test communication services for
remote sensor nodes. Small satellites are being envisioned as communication nodes for a network
of sensors [4]. These nodes are normally out of reach of conventional networks. Example are the
sensory buoys that regularly collect environmental climate data from the arctic oceans. With
conventional methods, the collected data is retrieved by visiting the buoy, which is only possible
during certain periods of the year. A space borne network node such as the [HYPSO] satellite
would be in [Line of Sight (LOS)| to the buoy on a daily basis, and would not be limited to
seasonal periods of access.

The [HYPSO| mission carries two scientific payloads: an imaging system with an
[Processing Unit (OPU)| and a|Software Defined Radio (SDR)[system. Both systems are designed
to carry out tasks and experiments that are of interest to the [NTNU] SmallSat Lab and its
collaborators.

1.1.1 Hyperspectral Imager Payload

The primary payload of the HYPSO]mission is a camera. It is capable of capturing hyperspectral
images, which contain spectral (colour) information over a sampled range of wavelengths.

The camera works like a push broom scanner [5], as illustrated in Figure Light is
received through a slit and diffracted to distribute the spectral bands in the direction normal to
the direction of the slit and the direction of travel. The image sensor captures a two dimensional
frame where one of the two dimension corresponds to the spatial dimension along the slit, and
the other dimension corresponds to the distribution of colour.

Multiple frames are merged to create a hyperspectral cube with three dimension. Two of the
dimensions are spatial, and the last one is spectral, as illustrated in Figure [[.2] The last spatial

1.1. THE HYPSO MISSION)

Diffraction of Linear Array

Figure 1.1: Illustration of push broom scanning. A slit of light is refracted onto a plane.
One dimension of the plane corresponds to the spatial dimension of the linear array, while
the other dimension of the plane corresponds to the spectral content of the linear array.
The linear array covers new ground as the satellite moves.

dimension is governed by the pointing of the satellite as it progresses through time.
Image capture is controlled by an [DPU] The [OPU]is responsible for processing the images
that it receives from the [Hyperspectral Imaging (HSI)|sensor.

The image files produced by the [HSI must be downloaded to the ground to be analysed and
distributed to researchers. The files are compressed before transmission to reduce the required
transfer time.

There are also systems being developed that will perform on-board analysis of the images.
This will allow useful information to be extracted from the images without having to first down-
load them to a ground station.

Regardless of whether the images are analysed on-board or on the ground, the captured
information will be useful for a range of applications. The fishing industry can use the data to
produce algae forecasts. The ocean colour community benefits from getting more hyperspectral
data that can be used to monitor new areas and to develop new analytic methods.

An auxiliary, conventional [Red-Green-Blue (RGB)| camera is also included in the mission.
This camera provides wide-angle imagery along the same direction as the [HS]| camera. The
image data can be used to validate the [HSI| imager, to provide geographical data that is used
for geo-referencing the [HS]| images, and to enable super-resolution techniques. The camera also
serves the purpose of producing traditional images of the earth, which is in itself an interesting
product.

Although the [HS]] is the primary function of the payload, the term [OPU]is used to refer to
the whole payload, including [HSI| [RGB| and other constituent components.

1.1.2 Software Defined Radio Payload

The second payload of the [HYPSO| mission is a Software Defined Radio (SDR) system. This is
an experimental radio.

6 CHAPTER 1. INTRODUCTION

z, Spatial

y, Spectral

X, Spatial

Figure 1.2: Hlustration of hyperspectral data. Two dimensions are spatial, while the last
dimension contains spectral information. Each plane represents a captured frame.

A[SDR]is a category of radio modules that has moved the functionality that was convention-
ally performed by analogue components into to the software domain. The components that have
been replaced by software would previously perform processing on the signal after or before the
signal would have been passed to the power amplifiers and antennas. Examples of processes that
are replaced are mixers, filters, modulators/demodulators and detectors.

The [SDR] system is intended to carry out tests and experiments for the envisioned commu-
nication network that is required to operate remote sensor nodes. The fact that the radio is
software programmable means that it can test different operating configurations.

1.2 MG6P Satellite Platform

The mission payloads depend on a number of resources and capabilities from a supporting plat-
form. Both payloads must be supplied with electrical power to operate. The[HSI|payload requires
a radio link to transmit images to the ground, and depends on the satellite being able to con-
trol its attitude and point towards specifics locations on Earth. The [SDR] payload requires an
external antenna.

The[HYPSO]mission procures satellite components from the Lithuanian company [NanoAvion]
This company specialises in developing and manufacturing subsystems and platforms
for CubeSat missions. [NA] offers a series of satellite buses, with variants for the most common
sizes: 2-unit, 3-unit and 6-unit CubeSats.

The project is using the [M6P Multi-Purpose Nano-Satellite Bus (M6P)] [NA]s 6-unit
CubeSat platform. It provides the following components:

e Mechanical frame and solar panels.

e [Electrical Power System (EPS)|module.

e [Flight Computer (FC)| which contains:

— |Attitude Determination and Control System (ADCS)|
— |Ultra-High Frequency (UHF)|radio module.

1.3. PROBLEM STATEMENT 7

— |Global Positioning System (GPS)[module.

e S-Band radio module.

e [Payload controller (PC)|

e Room to install payloads.

An architectural diagram is provided in Figure to illustrate the relations between the
satellite subsystems. The [Breakout Board (BOB)| and [PicoZed (PZ)| components are described
later in Chapter [4]

L M6P oo« orU |
I I | |
: 2 | res |
I I f Pz |
| | | \\ |
: : | HSI |
| | EC PC |+— | |
| | L ____]
I I

| L TSR T

' | EPS |- |S-Band| ! | |

| | | TOTEM |

I | I |

I I | I

Figure 1.3: Relations between the subsystems of the HYPSO satellite.

The[EPS|subsystems collects energy from the solar panels, stores it in batteries, and provides
regulated power to the other subsystems. The [FC|subsystem performs [ADCS| related activities
such as pointing and slew manoeuvring, as well as collecting sensor and [GPS|data. The[UHF|radio
and S-Band radio communicates with ground stations. The [PC| handles all interfaces between
the payloads and the satellite platform, including a communication bus and power connections.

The [MGP] satellite platform is created with a reliable and redundant design in mind. At all
times, except when lacking electrical power, all subsystems can operate independently of each
other. The [EPS]is equipped with several fail-safe mechanisms to avoid electrical damage to itself
and other subsystems. The [PC|is able to perform some of the [FCJs tasks in case of system
failure. The [ADCS| has a redundant pair of actuators available, based on different technologies,
and two radios operating on different frequency bands are installed. Accelerated lifetime tests,
such as high radiation dosing, have been performed by to guarantee a minimum lifetime of
5 years in low earth orbit.

More details about the subsystems have been summarised in Appendix [A]

1.3 Problem Statement

The student shall develop, implement and test solutions for file transfers for the [IYPSO| mis-
sion payloads. The task includes developing or applying derived components such as electronic
hardware and an operating system for the payload processor system. The file transfer implemen-
tations shall make use of and integrate with the existing communication architecture provided
by the satellite bus provider.

8 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

This thesis is concerned with the work of designing, implementing and testing a
system for the mission. The [OPU]and [SDR] payloads both depend on file transfer
capabilities to perform their responsibilities. The [OPU]| payload must downlink captured image
data, and the [SDR] payload must downlink experimental measurement data. The [F'T] system is
focused on software design, but some hardware was also designed as part of this thesis.

Part [I| provides information about the satellite project and background theory, while Part [[]
is concerned with the contributions of the thesis.

Chapter [2] explores background material that is relevant for the design process of the [FT]
system, which is the primary product of Part [[I}

Relevant mission requirements are mapped in Chapter 3] The [HYPSO]| payloads and com-
munication architecture is described in Chapter [4 together with design considerations for the
hardware.

Chapter [f] presents the design and implementation details of the [F'T] system. The [FT]system
is tested, and results presented in Chapter [Results are discussed in Chapter [7] before a final
conclusion is presented.

Chapter 2

Background

This chapter introduces theory that is relevant in order to understand the work performed in
this thesis.

2.1 Communication Theory

The topics of this thesis deal with the communication between a satellite and a ground station.
A few communication concepts are discussed to provide some background.

2.1.1 Flow Control

Regardless of which technology is being used to transfer a message, there will always be some
maximum speed at which the communication channel can transfer messages. The speed at which
a channel can transfer messages is referred to as its data rate.

In the case of peer-to-peer communication through a direct channel, the data rate of the
channel will create a self-regulating bottleneck which limits how quickly the sender will be able
to dispatch messages. If the recipient is not able to receive messages at the same frequency,
messages will be dropped.

Another problem appears when dealing with indirect communication. If there is more than
one node that takes part in the communication chain, then each message must be buffered
while it is processed and passed forward. A system will always have a limited amount of buffer
space available. If a node receives messages faster than it is able to send them (mismatched
sending frequency on total of input and output channels), then the buffer space will eventually
be exhausted and messages will be dropped.

If there are multiple users on a network, congestion becomes a problem. When there are
multiple users, they must either share the data rate of the network, or find that their packets
are dropped due to congestion.

Packet loss can be prevented by measuring the loss rate and feeding it back to the sender
which can adjust the sending rate.

2.1.2 Communication Errors

Errors manifest themselves on a communication channel in a number of different ways. The space
environment introduces new sources of errors for electronic systems [6]. Strong radiation in the
form of ionising particles (ions, electrons, photons) can deposit or disturb charges present in elec-
trical components. The foreign charges can cause transient errors in communication equipment.
An error that is caused by such an effect is called a single event upset.

10 CHAPTER 2. BACKGROUND

A charge that is present in a capacitive storage device can be displaced as a result of radiation.
The bit that was represented by that charge is then altered, resulting in data corruption.

The telecommunication technologies that are used in spacecrafts are inherently noisy. The
transmission and reception of [Electromagnetic (EM){waves is dependent on a number of analogue
components that pick up noise, such as antennas, amplifiers, modulators and filters [6].

The atmosphere degrades an [EM] wave signal via effects such as absorption and reflection
[6]. Through a full pass of a satellite, the degrading effect is most prominent when the ground
station and the spacecraft has a low [LOS| on the horizon. At this point the radio waves must
pass through the longest distance of the signal-degrading atmosphere. This and other effects will
reduce the [Signal-to-Noise Ratio (SNR)| If the signal is degraded beyond the capability of the
receiver to decode the signal, it will result in loss of messages. A low also makes it more
probable to incorrectly interpret a symbol, causing data corruption.

2.1.3 Error Detection and Correction

In the general case of data corruption, error detection and correction methods can be used to
mitigate the effects.

Other communication errors such as total loss of message, duplication of message and reorder-
ing of messages must also be considered when discussing error mitigation techniques. Duplication
and reordering of messages can be solved by employing a sequence number. A number is added
to each message, and is increased by one for each successive message. The number is examined at
the receiving node to determine what order the messages should be received in. Additionally, if
two messages with the same sequence number are received, a duplication is detected and only one
of the messages is kept. Depending on the application, to mitigate reordering by using sequence
numbering, extra buffer space might have to be utilised to store reordered messages while wait-
ing for delayed messages. Some applications do not care about the ordering of packets, and can
also be unaffected by duplication of packets. The loss of a message necessitates retransmission
techniques, like those detailed in Section 2.2

The general idea of detecting data corruption is to append redundant information to the
data. The additional data is added in such a way that the message fulfils a specific property.
The property is checked when the message is received, and will indicate whether the message
has maintained its integrity.

The simplest way to provide error detection is to add a 0 or 1 parity bit, which is calculated
from the message. The receiver performs the same calculation and compares. This method is
weak, however, because it can only detect an odd number of bit flips.

Checksum

A more robust technique is to use a checksum, a code that is computed by using the message
as input to a hashing function. A hashing function takes data of arbitrary length as input
and produces a fixed length output. Hash functions are characterised by being able to produce
seemingly random and distinct output from similar inputs.

Polynomial codes have proved to be good checksum generators. A polynomial code is defined
as the polynomial remainder R of a polynomial long division, where the input data is used as the
dividend A and a static polynomial (a number) is used as the divisor B [7]. The natural number
(integer) quotient of the division is discarded, and the remainder R is used as the checksum. The
resultant quotient and remainder fulfil equation . The size of the remainder R is governed
by the size of the static divisor B, which is also called the generator polynomial, and which must
be known by both sender and receiver. The choice of the generator polynomial directly affects
the error detection performance of the checksum.

2.2. AUTOMATIC REPEAT QUERY 11

A=B-Q+R (2.1)

Polynomial codes used as checksum are more commonly referred to as [Cyclic Redundant]

(Check (CRC)| codes. There are different variants of depending on how long of a checksum

is wanted. Popular variants include CRC16 and CRC32, which produce 16 and 32 bits long codes,
respectively.

Like other error detection methods, [CRC|can only prove corruptness of data, not that the data
is valid. The performance of a checksum is therefore reliant on the hashing function producing
vastly different output for small differences in input. Then it becomes highly improbable for a
checksum to be verified when it is in fact corrupt.

An important factor to the performance of [CRCis that it is also very easy to implement in
software or hardware, requiring few instructions to compute. Additionally, parts of the algorithm
can be implemented through memoisation, meaning that the intermediary results from expensive
operations can be stored and looked up cheaply from memory.

Forward Error Correction

In addition to error detection schemes, there are methods of [Forward Error Correction (FEC)|
Given specific situation, these [FEC| methods can not only detect data corruption, but also correct
for it. For certain applications, this type of error mitigation can be preferred over methods that
are based on retransmission, like those later detailed in Section It is especially useful for
applications that cannot keep data stored, in order to enable retransmission of lost messages. It
is also useful for applications where the delay that results from a retransmission would render
the data unusable because of real time requirements.

In a similar fashion to error detection, redundant data is appended to the message to create a
[Error Correcting Code (ECC)| The additional information is used to recover the original message.

All come with a performance cost. The additional data required to perform error
correction increases a constant message overhead. Therefore, if a channel exhibits a low symbol
corruption rate, the presence of [ECC| may ultimately decrease the overall performance.

2.2 Automatic Repeat Query

In Section 2.1.3] [FEC| was shown as an error mitigation technique, and here [Automatic Repeaf]
is detailed as an alternative approach of error mitigation.

There are two ways in which the successful delivery of a message can be expressed and
communicated. One way is for the receiver of the data to send an |[Acknowledgement (ACK)|for
data that has been received. Upon receiving an [ACK] the sender of the data will know that a
specific piece of data was successfully received.

The other way is for the sender of the data to implicitly assume that all data that is sent
will be received successfully. If the receiver of the data detects that it did not receive some piece
of data that is should have received, it will issue a [Negative Acknowledgement (NACK)| for that
specific data. Upon receiving a [NACK], the sender of the data will resend the missing data.

The different strategies for sending [ACKs and [NACK4 are referred to as regardless of
whether the query is a positive or negative acknowledgement. Several of these retransmission
strategies are explained in the following sections.

12 CHAPTER 2. BACKGROUND

2.2.1 Stop-and-Wait

The stop-and-wait strategy is one of the simplest communication schemes that also can provide
some amount of reliability on channels with message loss.

For comparison, a strategy is imagined, where a sender is sending successive messages as
quickly as it is able to send. The receiver accepts any valid message and interprets it as the next
message in the stream of messages.

The stop-and-wait strategy improves on this unrestricted strategy by having the receiver
respond with an for every received message [§8]. The sender must wait for an of

the previous message before sending the next one. A stop-and-wait exchange is illustrated in

Figure 2.1}

Sender Receiver

Message 1_ 1

|
Message g : :| Message 2 is lost. H

Timeout

I
I
I
I
< :
A retransmission of :
Message 2 is issued Ij %

Sender Receiver

Figure 2.1: The stop-and-wait strategy. The sender waits for an ACK of the previous
message before sending the next message. Message 2 is lost in transmission, and the
sender times out because of a lacking ACK. As a result, Message 2 is retransmitted.

The act of waiting on an [ACK] before sending the next message has the effect of limiting the
sending frequency. The sending period will roughly be the |[Round Trip Time (RTT)| between
sender and receiver, plus additional processing times at each node, and the transmission time of
the data packet.

Sending Period = RTT + Data Transmission Time + Processing Time (2.2)

The stop-and-wait strategy does not survive the loss of a message. The strategy is extended
by adding a timeout on receiving If the sender does not receive a [ACK] within a certain
time period, it will assume that the previous message was lost, and will retransmit it. This can
be repeated a number of times until the sender gives up after reaching a configurable threshold.

The extension with timeout on [ACK] can handle data message loss, but not the loss of [ACK]
messages. If an [ACK]is lost, then the sender will time out and retransmit the previous message.
The receiver, however, has successfully received the previous message, and has no mechanism in
place to detect whether the [ACK]|was received successfully by the sender. Therefore, the receiver

2.2. AUTOMATIC REPEAT QUERY 13

is not able to distinguish between the next or previous message. The receiver will incorrectly
accept a retransmitted message as the next message.

The solution to this duplication problem is to include a sequence bit with each message. The
sequence bit is toggled for each successive message. Since there are only two possible messages
that the recipient can receive, namely the previously retransmitted and the next one, the receiver
can examine the sequence bit to determine whether the message is a new one, or a retransmission
of the previous one.

2.2.2 Sliding Window

The extended stop-and-wait strategy is reliable, but not very efficient. While waiting for the data
message to be processed by the receiver, and for the[ACK]to reach the sender, the communication
channel is not being utilised.

In order to improve performance, the notion of a sliding window is introduced. The idea is
to let the sender transmit multiple data messages before waiting for A sequence number
is added to each data message, and a corresponding sequence number is added to every [ACK]
message. This way an [ACK] can be linked to a specific data message.

The window length decides how many data messages can be in transmit at once. The stop-
and-wait strategy is a special case of the sliding window class of strategies, where the window has
a length of n = 1. The upper and lower bound of the sender window determines which messages
are allowed to be sent, while the upper and lower bound on the receiver window determines
which messages the receiver is ready to accept.

The windows are said to be sliding because the lower and upper bounds grow when message
are received and successfully acknowledged. The exact way in which they are advanced is different
for each variant of sliding window protocol.

The length of the windows affects performance. Increasing the sending window length n up
from zero will initially increase throughput. However, at some point the sending frequency will
be greater than the channel or receiver is able to handle. This could be because of congestion,
mismatched interface speeds or other more complex issues. At this point, raising the sending
window length might decrease the throughput because messages are dropped and will have
to be retransmitted. There will be a specific window length which gives the highest effective
throughput, but it might change over time along with a changing environment. The window can
be regulated to achieve the highest throughput, or to avoid loss of packets.

Go-back-N

The Go-back-N protocol uses a sender window length of N 4+ 1 and is based on the idea of
resetting the transfer back to the last message that was lost.

The sending node dispatches all the messages in its sending window. Then it waits for
for the transmitted messages. The sender never progresses further than N messages ahead of the
previously acknowledged messages. A timer keeps track of every transmitted data message, and
if any of them times out, retransmission is performed from the beginning of the sending window.
An example of Go-back-N with a window length of three is illustrated in Figure 2.2]

The receiver has a window of length one, and will therefore only accept the next message
in the sequence. Any message that arrives and that is not the next message in the sequence is
discarded. This means that messages that arrive out of order will also be discarded. This is an
advantage as it does not require the receiver to buffer messages that are stored out of order, but
it is also a disadvantage in that it results in a greater number of retransmission.

14 CHAPTER 2. BACKGROUND

| Sender| | Receiver|
L 1
Sender window in the beginning: Message 1
[1]2]3] >
Message 2 : ‘ Message 2 lost in transmission. %

Message 3 ‘ Message 3 is not saved. 'l]
Cad

Transmiésion delay for messéages 1-3
ACK 1 returned as soon as Still waiting Message 2,
Message 1 is received. ACK 1 so no ACK for Message 3.

Transmission delay for ACK 1

ACK 1 advances sender window: N Message 4
AN

ACK 2 finally times out, such
that the sender goes 2 back ACK 2 Timeout
from Message 4 to Message 2. Z

Message 2

Message 3

Message 4

Transm

ssion delay for messages 2-4

ACK 2

ACK 3

ACK 4
| |
| Sender| | Receiver|

Figure 2.2: The Go-back-N strategy with a sender window of length 3. Message number 2
is lost in transmission, such that the sender times out on ACK 2. The second transmission
of Message 2 succeeds, as does all subsequent messages. However, Message 3 and 4 are
retransmitted even though they were successfully received the first time.

2.3. NETWORK STACK MODEL 15

Selective Repeat

The selective repeat protocol attempts to improve performance by allowing the receiver to store
out of order messages while waiting for earlier messages. An example of the selective repeat
strategy is shown in Figure [2.3

The idea is to let the receiver have a window length of more than one. The receiver may
store any messages that are within its window. The window is moved one to the right whenever
the earliest message (left-most in window) is received. If there are messages stored right after
the earliest message, then the window is moved straight up to the first earliest message that is
not received yet. The sender window is restrained such that only messages that are within the
receivers window will be sent in the first place.

The sender window is anchored by the earliest message that has not yet been acknowledged.
Whenever the sender receives an [ACK] it can automatically assume that all messages earlier
than the [ACK] are also received. An [ACK] therefore moves the sender window to one past the
sequence number of the [ACK]

The selective-repeat strategy will typically outperform the go-back-n strategy when there are
frequent message losses. The cost is increased buffer space at the receiver side, and a greater
number of states that increase the complexity of the implementation.

2.2.3 Hybrid ARQ

Instead of relying solely on [FEC]| or for error mitigation, it is possible to combine the two
approaches. This is especially helpful when a channel has multiple failure modes that produce
different kinds of errors.

If on a constantly noisy channel there happens to be a single bit error in a large amount of
messages, then a [ECC]|is the best approach. A pure approach would end up having to
retransmit almost every message. However, if the channel has periods of disruption, such that a
sequence of messages is completely lost, then an [ARQ] approach is better. An[ECC|is of no use
if the whole message is lost.

When a channel exhibits the failure characteristics of both, corrupted bits are frequently
encountered and full messages are being sporadically lost, then the best approach is a combination
of [FEC| and [ARQ)]

The two approaches must not necessarily be applied to the same technology or even placed
on the same level in the network stack. It is entirely possible, and even widely adopted, to
utilise [FEC] in lower level protocols, while relying on higher level protocols or even applications
to perform [ARQ]

A 2001 study looks at Incremental Redundancy, a retransmission scheme where additional
parity bits are transmitted if the original message could not be decoded [9]. This combines the
idea of retransmission and [FEC|into the same protocol. The study found that for many situations
the hybrid solution performed better than retransmission of the whole original message.

2.3 Network Stack Model

The [HYPSO] satellite is comprised of a number of subsystems. These subsystems communicate
between each other and form a network. Multiple technologies and protocols are stacked on top
of each other to create the network.

In order to talk efficiently about the mission network, the protocols that are relevant to the
[HYPSO] mission payloads will be discussed in the following sections. To arrange the protocols
into a structure, the |Open Systems Interconnect (OSI)| reference model for network systems is
used to organise the protocols into layers [8]. The lower level layers perform low level functions

16 CHAPTER 2. BACKGROUND

Sender Receiver
1 L
Sender window in beginning: Receiver window in beginning:

[172]3] Message1 _| [[[21213]

Ve
Message 2 N ‘ Message 2 lost in transmission ... %
Message 3 Message 3 stored. Receiver window:
> ([[2]3]4]
Transmiésion delay for messgages 1-3
Sender window after receiving ACK 1: ACK 3 is not sent because
ACK 1 Message 2 is missing.
Tranfsmission delay for AECK 1
ACK 1 advances sender window, Ij Message 4 stored. Receiver window: j
so that Message 4 is sent. 3
9 Message 4 (2 [3[4|
Transrﬁission delay for Mesgsage 4
ACK 2 eventually times out. Now ACK 2 Timeout
the sender retransmits Message 2.

Message 2
d

Transmission delay for Message 2

Sender window after receiving ACK: Now everything up to Message 4
[5]6]7] ACK 4 is received, so ACK 4 is sent.

Tranfsmission delay for AfCK 4

Message5 OW: j
>
Message 6
Vel
Message 7
L I
Sender Receiver

Figure 2.3: The Selective Repeat strategy with a sender and receiver window of length
3. Message 2 is lost in transmission, but Message 3 is still stored at the receiver. ACK
1 advances the sender window, such that Message 4 is sent. No ACK 2 is sent, so that
Message 2 times out, issuing a retransmit of Message 2. When Message 2 arrives, ACK
4 can immediately be sent instead of ACK 2 because both Message 3 and 4 have already
been stored. The ACK 4 is an implicit acknowledgement for also Message 2 and Message
3.

2.3. NETWORK STACK MODEL 17

such as electrical signalling, while higher level layers perform higher level functions such as session
handling and reliable message delivery. Figure [2.4] presents all the original layers, their usual
functions and the corresponding names of their data units.

Layers Protocol Data Unit Function Examples
Application Services, file access, database access
Presentation Packet Data Data encoding, compression
Host Layers
Session Handling of connections
Transport Datagram Retransmission, fragmentation, acking
Network Packet Addressing, routing, traffic control
Media Layers Link Frame Transmission of data frames
Physical Symbol Transmission of single symbols

Figure 2.4: OSI reference model for network protocols. Layers are stacked with increasing
levels of abstraction.

Each layer has its own [Protocol Data Unit (PDU)| as shown in Figure Most
contain a small amount of auxiliary metadata which is used by the protocol to deliver the
message. Metadata placed at the start of a message is called a header, while metadata placed at
the end is called a tail.

There are primarily two specifications that define the protocols used in the [HYPSO] mission
network stack. The two specification are the [Controller Area Network (CAN)|specification and
the [Cubesat Space Protocol (CSP)|specification. The [CAN]specification defines protocols for the
physical layer and the link layer, while the [CSP| specification defines protocols for the network
layer and the transport layer, as illustrated in Figure [2.5

Layer Provided by
Application Payload Service
Transport Layer CSP Datagrams

Network Layer | CSP Core | CSP Router

Link Layer Linux SocketCAN Driver

Physical Layer High speed CAN-bus

Figure 2.5: HYPSO communication protocol stack. The CAN specification defines
protocols that perform the responsibilities of the physical layer and the link layer. The
CSP specification defines protocols and mechanisms that perform the responsibilities of
the network layer and the transport layer.

18 CHAPTER 2. BACKGROUND

2.4 Controller Area Network Bus

This section describes the protocol. The ISO11898 specification series was originally de-
veloped for the automotive industry. It is used in the [IYPSO| mission to connect the satellite
payloads to the satellite platform.

The physical bus is made up of a pair of twisted wires: CAN High and CAN Low, and is
driven by differential signalling, which provides some protection against noise [10]. This
linear bus must be terminated with 1202 resistors to provide a drain path for the differential
signal, and also to prevent signal reflections.

Link Layer

The ISO11898-3 specification defines the link layer of the protocol [11].

The [CAN|[PDU] the extended frame, is illustrated in Figure A length field encodes how
many bytes are present in the variable length data field. A [CRC]|checksum is used for the receiver
to verify frame integrity. The remaining fields are primarily concerned with flow control, such as
acknowledgement and frame boundaries.

1b 11b b 1b 18b 1b 2b 4b 0-64b 15b 1b 1b 1b 7b
Elo|E
- ol 02|32 =5 =
3y EERE 2713 5|23
= é Identifier A | 2 % '*E—i Identifier B % 2| 5 Data Data field CRCField [R|% 1|2 End
3£ L858k g S| 2 |length O | | | of Frame
»n = Az H oo | o/ ~ Q|0
- ol<|<

Figure 2.6: The extended CAN protocol frame, with various header fields.

A 29-bit identifier field is used for addressing (or 11-bit in the case of a regular frame).
For more details on bus, see report on integrating the network stack with the payloads [12].

Transfer Rate

Although the ISO11898-2 [CAN}bus is able to operate at signalling speeds up to 1Mbps, the
effective data transfer rate is significantly lower.

In the best case, the extended frame (shown in Figure can hold 8 bytes of data.
The remaining bits are used for addressing, [CRC|and control. Between each frame, an interframe
space consisting of at least three recessive bits must be inserted. Additional data bits may be
inserted by a bit stuffing rule, further lowering the effective data rate. In the worst case, 64
successive identical data bits causes 12 extra bits to be inserted. In the best case, no extra bits
are required.

At full bus utilisation, the theoretical upper limit for effective data rate becomes 48.85 % or
488.5kbps, as calculated in equation . At the worst case with 12 bits being stuffed, the
effective data rate drops to 44.76 % or 447.6 kbps, as calculated in equation .

Max utilisatio er limit Data
x utilisation, upper limit =
» UPP Data + Overhead + Interframe (2.3)
64 '
= 48.85%

T 6416443

2.5. CUBESAT SPACE PROTOCOL 19

Data
M tilisati t =
o HHISAbon, WOTSt €45¢ = 1 ta + Overhead + Interframe + Stuffing (2.4)
64 ’
= 44.76%

T 64+ 6413412

It is unlikely, however, that the controller is able to fully utilise the bus for extended
periods of time. The controllers would need a constant feed of data.

It is also unlikely to experience long sequences of identical data bits during transfers of large
files because they are compressed. The compression eliminates long sequences of identical bits.
The bit stuffing is therefore not expected to cause a significant decrease in effective data rate for

the [F'T] system.

SocketCAN Driver

As part of the Linux kernel modules, SocketCAN provides a link layer interface to [CAN] de-
vices. The programming interface is identical to that of the [Transmission Control Protocoll
[(TCP)|/[Internet Protocol (IP)| network interface. The driver code initialises a Linux socket ob-
ject from the networking protocol family PF_CAN, after which the Linux system calls read and
write can be used to communicate data with the lower level controller.

2.5 CubeSat Space Protocol

This section describes the mechanisms defined by the [CSP] specification.

CSP|is a network library developed by GomSpace for use in CubeSats [13]. It performs the
functions of the network layer (layer 3) and transport layer (layer 4). The protocol has been
adopted by several small satellite designers and has flight heritage. CubeSats such as GOMX-3
and AAUSATS3 have flown successful missions with [13].

2.5.1 Network Layer

When discussing [CSP}, the terms /D and address are used interchangeably.

The [CSP] protocol performs similar functions as[[P} but offers a smaller implementation that
is suitable for resource limited systems like those found in small satellites. It allows any node
in the [CSP| network to send packets to any other node in the network. Every node in a [CSP]
network has its own unique [CSP] address.

Packet Format

The format of the [CSP|[PDU] is shown in Figure 2.7 Each packet is fronted by a 2 byte data
length field that encodes the number of bytes in the data field. The destination ID and source
ID fields encode the address of receiver and sender. The destination port and source port fields
encode which service port that the packet is sent to and from. Eight flag bits encode [CSP|options
that can be enabled for the packet.

Buffer Management

The [CSP| stack maintains a bank of buffer memory for internal routing of [CSP] packets. Before
creating a[CSP|packet, a packet buffer pointer must be acquired with csp_buffer_get (). Packet
buffers must be manually released with csp_buffer_free() when they are no longer needed.

20 CHAPTER 2. BACKGROUND

16b 2b 5b 5b 6b 6b 8b n Bytes 32b
2|8 |E | 5
Packetlengthin |'€| o |EA| & & . CRC32 Field
bytes g § . g a g S g Flags Data Field (Optional)
Al o S 4 2
“ A A A

Figure 2.7: CSP packet format. The length field indicates the number of bytes in the
data field. ID and port fields encode the address of sender and recipient.

When sending the packet, the pointer to the buffer is passed down the protocol stack, without
having to copy the buffer contents. This zero-copy technique reduces unnecessary duplication of
packet data.

Routing

Interfaces provide channels between [CSP| nodes. A node may receive and send [CSP] packets on
an interface.

The [CSP] protocol maintains a single queue for incoming packets. All interfaces will feed
packets to this queue. The [CSP|library provides a csp_route_work() function, which is usually
run in its own thread (csp_route_start_task()). This function reads packets from the input
queue and routes them to the correct interface. Packets that are addressed to the receiving node
are appended to the [CSP]socket that is bound to the appropriate port number. If no such port
has been bound, the packet is rightfully dropped.

The router refers to a routing table to resolve which interface it must send a packet to. This
routing table uses the [Classless Inter-Domain Routing (CIDR)|method to specify address ranges.
This method allows a range of addresses to be specified in a single entry, instead of having to
specify every static address that is available on an interface.

CAN interface

The[CAN]protocol frame length is limited to a maximum of eight bytes. In order to fit larger [CSP]
packets over a[CAN]|interface, some kind of packet fragmenting must be implemented. The [CSP]
code includes a [CAN] interface implementation with automatic fragmentation of [CSP] packets
into [CAN}bus frames. The [Maximum Transfer Unit (MTU)| over this interface is limited to 256
bytes.

2.5.2 Transport Layer

The network layer delivers the[CSP]packets to the correct node, while the transport layer provides
ports that let an application address specific services.

The standard [CSP| transport unit is called Unreliable Datagram Protocol, reflecting the fact
that it does not offer a mechanism to deliver the packet reliably. A reliable transport unit called
Reliable Datagram Protocol is available, but is not used in the [HYPSO)| network because it has
previously been reported as glitchy [14].

2.5.3 CSP Options

Confidentiality, integrity, and authenticity (CIA-triad) forms the foundation of a secure service
[10]. The library offers mechanisms to support each of these concepts.

2.5. CUBESAT SPACE PROTOCOL 21

Cyclic Redundancy Check

If compiling the library with the option enabled, packets can be flagged to use 32-bit
to protect their integrity. The packet feature is enabled by creating a socket or connection while
passing a CSP_0_CRC32 flag as a function parameter.

Hashed Message Authentication Code

When compiling with the [Hash-Based Message Authentication Code (HMAC)| option enabled,
packets can be protected with a message authentication code field. Packets can then be verified
to have been signed with the correct key, proving the authenticity of the packet. The key which
is used to verify the packets must be distributed to the satellite in a safe manner, for example by
installing the key before launch. This option is not employed in the [HYPSO] network because,
authentication is provided in the radio link layer protocol.

Extended Tiny Encryption Algorithm

When compiling with the [Extended Tiny Encryption Algorithm (XTEA)| block cipher option
enabled, packets may be encrypted using a symmetric key. The satellite must have the shared
key installed in order to decipher the encrypted packets. Used together with [HMAC] it allows
new security keys to be safely uploaded. This option is not used or tested in this work, but could
be included at a later point.

2.5.4 CSP in Linux

When using [CSP| with Linux, the compiled library is linked into a userspace process. Conse-
quently, only threads that are spawned by that process are able to access the [CSP| stack.

This means that all services that want to communicate on the same[CSP|network are required
to be part of the same program, as illustrated in Figure [2.§

OPU Payload - CSP ID=12

Monolithic Process

Service 1 Serivce 2
Port=13 Port=15
A A
\ Y

CSP Instance

SocketCAN interface

Linux Kernel

Figure 2.8: Usage of CSP in Linux. The CSP library is linked into the private memory
space of the process. All services must be threads spawned from the same process.

Alternatives using various forms of inter-process communication to link multiple [CSP| pro-
cesses have been explored [I2]. The alternatives were found to cause new problems during
implementation, and were dismissed as too expensive in terms of development effort.

22 CHAPTER 2. BACKGROUND

2.6 File Systems

A file is an abstraction of information, a container of data. Computers use files to store and
organise data. Various aspects of file management is touched upon in this section. Linux is used
for most of the examples throughout the section because it is the operating system being used
for the [HYPSO] mission.

Files are organised in a file system. These have a number of responsibilities, including how
the file data is stored in the underlying memory technology, how the file operations are carried
out, how the files are organised logically, and what set of metadata is stored along side the file.

Most often it is the computer operating system that implements and manages the file systems,
although systems such as Unix’s|Filesystem in Userspace (FUSE)|interface also allows userspace
applications to implement file systems.

In addition to storing the content of a file, the file system must also store metadata. The
location of the file in underlying medium must always be stored. Additional meta information
that can be stored is filenames, ownership of the file and the time of creation or modification.

The |[File Allocation Table (FAT)|file system is popular in multimedia card technologies such
as [Secure Digital (SD)| cards, and is also used as internal storage in embedded devices. The
[FAT] file system implements a table of entries that each represents a continuous length of storage
called a cluster. A file is constructed as a linked list of entries, with each entry indicating which
entry is the next fragment in the file, as illustrated in Figure A special value is used to
indicate [End of File (EOF)|

Index | Next

File Start—»|

<«—TFile End—]

NOoOO~WNREL O
1
[

Figure 2.9: A file allocation table. Each entry indicates either the index of the next
entry in the file, or the end of the file (-1). A file is shown to consist of the following
entries: {2, 4, 5, 7}.

Memory technologies place limitations on how data can be stored. For example, a conse-
quence of each [FAT|entry only being able to hold a single address is that the maximum file size is
limited by the maximum number of bytes addressable with a single address length. For example,
the 32-bit version of [EAT] can at maximum hold a 4 GB file.

The ext4 file system is a popular file system that is used in lots of modern Linux based
operating systems. It offers multiple advanced file system features such as extents, journaling
and checksum on metadata [I5].

An extent is a long, contiguous length of storage that is defined by a starting index and
a length (or end index). Compared to block allocation maps such as which are required
to store the index of each constituent cluster, a scheme using extents can keep track of larger
files while storing a minimal amount of metadata. While extents are suitable for tracking long
contiguous files, they do not perform well for files that have a heavily fragmented layout.

2.6. FILE SYSTEMS 23

A journaled file system aims to prevent file system corruption that results from unexpected
shutdowns or system failures during file writes. The general concept is illustrated in Figure [2.10]
Whenever the file system intends to modify a stored file it first records the changes that it intends
to make in a structure called the journal. After recording the intended changes, the write of the
actual file takes place. If a file is corrupted as a result of an unexpected shutdown or system
failure during a write, the file system can refer to the journal to see what changes were suppose
to be made. The changes can then be finalised, and the file system is returned to a consistent
state. If a system failure occurs while the journal is being written, then the file is still consistent,
and the corrupt journal entry can be discarded.

System boot

Y

Check journal
entries
Write to file
Corrupt journal entry?
Write file data to % Discard corrupt
R R es X .
on-disk journal journal entries

No

| {

Check file data on

Write data to file disk
on disk

No Finalise file write
from journal data
Yes /
Figure 2.10: A journaled file system. Every file write is first recorded in a journal before

actually writing to the file. In the event of an unexpected system failure, the journal is
used to finish file transactions and restore the file system to a consistent state.

Disk matches journal?

When file content data that is stored on disk becomes corrupted, only the single file is affect.
When the metadata of a file is corrupted, it can affect other files and the file system itself. For
example, a corrupted data allocation structure can cause a file to suddenly point inside another
file. Writing to the corrupt file can then start corrupting other files. Therefore it is important
to keep the metadata consistent. The file system can store a checksum for each file computed
from the metadata. When corrupted, the checksum will not match the metadata. In this way,
the file system can prevent itself from corrupting further files.

24 CHAPTER 2. BACKGROUND

2.6.1 File Directories

File directories are used to organise files in a hierarchical way, like a tree. In Linux and other
Unix-like operating systems, a file directory is usually represented as a path, a sequence of
directory names, such as this/is/a/directory/path/ and another/directory/path.

A file system will typically have a top level directory called the root directory. Every file in the
file system must be placed directly in the root directory, or in some sub directory under the root
directory. The root directory is indicated by a file or directory path starting with a / character,
such as /images where images is a directory directly under or inside the root directory.

Operating systems usually enforce a standard layout on the root file system, which is where
all the operating system files reside. The Unix directory layout has been extended and adopted
by many operating systems. Linux defines root directories such as /usr/bin/, /usr/1lib/ and
/usr/include as program, library and header file directories, and /home/<username>/ as home
directories for user files.

2.6.2 File Operations

Since files can store data, it is natural that they can be created, deleted, read from and written
to. File system implementations are normally contained within the kernel, meaning that file
operations must be communicated with the kernel. Low level file operations are implemented as
kernel system calls.

Some operating systems require the user to explicitly open the file before reading or writing,
and to close the file after reading or writing is finished. Opening a file allows the file system to
allocate resources that are required during reading and writing. Linux will return a file descriptor
number for the process to use as a handle to the opened file structure. These resources can also be
allocated when a file is requested to be read or written, but it is expensive to do so for every read
or write. For example, the contents of a file that is stored on a persistent medium will have to be
copied into the computers working memory and cache before it can be used by an application.
Explicitly telling the operating system to open and close a file limits these expensive setup and
teardown operations to the start and end of the usage of the file.

The read and write operations transfers data between file and process memory by passing
a buffer and a length to the kernel via system calls.

An internal file position state works as a cursor within the file, and is the point at which
data will be read or written. Linux implements the 1seek system call for manipulating the file
position.

File streams

The low level system calls that operate on files are often sufficient to implement an application,
but they are not always the most efficient. A source to their inefficiency is the fact that for every
read and write the computer must perform a system call which can be an expensive operation.
System calls are expensive because they cause the computer to do a context switch to and from
a kernel thread, as well as switching the privilege mode of the machine. If the file that is being
operated on must access memory on disk there will also be blocking delays while waiting for data
to be fetched.

File operations can be bundled together and performed in a fewer amount of write and read
calls. The implementation of file streams in the C programming language can do this.

A file stream provides an abstraction on top of a file descriptor. The C standard library
implements a family of file stream functions for operating on file streams:

e fopen and fclose for creating, opening and closing files.

2.6. FILE SYSTEMS 25

e fread and fwrite for writing from and reading to files.

e fseek and ftell to adjust and examine the file position of the stream.
e fflush to push stream buffer content from user-space to kernel.

e fsync to push kernel buffer content to the underlying storage medium.

When a file stream is created a chunk of memory is allocated as buffering space. When
data is written to the stream, it is copied to the buffer instead of being passed to the write
system call. When data is read from a stream, the operating system requests more data than
is actually requested and copies it all into the stream buffer. For most applications this will
improve performance because data is often accessed in a continuous or spatially close pattern.
Since the buffers reside in the process’ memory space, the operations are cheap to perform.

Certain conditions causes the stream to pass the buffer with its modified content to the
operating system. This is called flushing, and happens when the buffer is full or file position
jumps to a region outside the buffered region.

Memory Mapped Files

Another approach to reducing the number of system calls when reading and writing files is to
utilise the memory mapped file mechanism provided by Linux. A file can be memory mapped by
using the mmap system call.

Memory mapped files are mapped directly to the private address space of the process that
requests the mapping. This is achieved by configuring a memory subsystem (which consists of
software and hardware) to link the contents of a file to a specific address region in main memory.
The first access to the memory mapped address will cause the corresponding section of the file
to be paged into main memory. Every subsequent access to that region will then access the main
memory instead of having to go back to the file via some system call. If a region is being accessed
that has not been paged in to main memory yet, a context switch is still necessary for the kernel
to fetch the new page.

File streams allocate memory in their own private memory space, which in turn is copied to
kernel buffers before being written to disk. Memory mapped files, on the other side, depends on
the memory subsystem to fetch and link parts of files directly into the process’ memory space.

The performance of fwrite and mmap depends on the specific usage patterns. Ultimately,
both fwrite and mmap end up having to switch to kernel mode, either to perform passing of
buffered data, or to set up the memory controller and fetch new pages on page faults. The
number of system calls depend on the buffer and page sizes. A large buffer or page size would
result in wasteful copies if only accessing a small region of the file.

2.6.3 MG6P File System

Original subsystems in the [MGP] bus employ a common, custom file system. The file system is
accessible to other subsystems via a [CSP| service.

Each subsystem has a file store, where each file is listed with an unique identifier. The IDs
are assigned starting at zero, and are increased by one for each additional file.

Files have an internal layout consisting of equally sized entries. The size of the entries is
specified when formatting the file. When reformatting a file, the entry size can be changed,
allowing the file to be repurposed. Within each file, each entry has an 1D, which is incremented
by one for each successive entry.

Each entry is internally composed of a header and a data field. The header contains a 32-bit
[CRC] value and an entry length value. The [CRC]| value encodes a checksum calculated from the

26 CHAPTER 2. BACKGROUND

length field and the data field. When discussing the entry as a memory region, or when including
the entry header, the term cell is used to refer to the entry as a whole. Each entry is stored in
a cell. The structure is shown in Listing [l The two header values occupy 6 bytes. The entry
data occupies the remaining space in the cell.

struct cell {

uint32_t CRC32;

uintl6_t entry_length;

uint8_t entry_data[l..cell_size - 6];
}

Listing 1: Memory structure of an entry. The whole structure is referred to as a cell.

The file system supports file types. Log files are used to store telemetry, debug and error
output, and configuration files. Static files are used as containers for larger files, and are used
for uploads.

The files on the [MGP] subsystems are allocated on various physical storage mediums, which
will affect how quickly they can be read or written. This must be taken into consideration when
requesting a download or uploading a file.

2.7 File Transfer Protocols

This thesis is concerned with transferring files to and from satellite payloads. The primary
function of a |File Transfer Protocol (FTP)|is to transfer files from one file host to another.
Other functions may include the explicit creation and deletion of files, moving files and copying
files. It is also useful to be able to manipulate directories, with operations such as for example
create, delete and list available files.

The term file store is used to mean the medium in which files are stored. In some cases, it
will be synonymous to a file system.

A number of [FTP)| specifications have been studied and are used as inspiration to the work
in this thesis. The following systems will be detailed:

e [Trivial File Transfer Protocol (TFTP)|

e The File Transfer Protocol (RFC-959).

e KubOS File Transfers.

e [The Consultative Comittee for Space Data Systems (CCSDS)| File Delivery Protocol.

e [MGP| File Transfer System

2.7.1 Trivial File Transfer Protocol

One of simplest implementations of a[F'TP]is the TFTP} This protocol was defined by K. Sollins
in [Request for Comments (RFC)F1350 in 1992 [I6]. The describes a simple [FTP| The
protocol is defined as an application layer protocol, and depends on a functioning transport layer
to deliver the [TFTD)| packets to a specific host. The transport layer protocol being used is not
required to be reliable, as [TF'TP| handles retransmission of lost packets.

The protocol defines a set of packet types that are differentiated with unique opcodes. The
packet formats are illustrated in Figure 2.11]

2.7. FILE TRANSFER PROTOCOLS 27

RRQ & WRQ, file read and file write requests.

DATA, containing data fragments of files.

ACK, acknowledgement of a data fragment.

ERROR, containing a situational error code.

2 bytes string 1 byte string 1 byte
RRQ / WRQ Opcode Filename 0 Mode 0]
2 bytes 2 bytes n bytes
DATA Opcode Block # Data
2 bytes 2 bytes
ACK Opcode Block #

2 bytes 2 bytes string 1 byte

ERROR Opcode |ErrorCode ErrMsg 0

Figure 2.11: Packet formats in TFTP as defined in RFC-1350.

A transfer is initiated by sending a RRQ or WRQ. The RRQ and WRQ packets contain a string
encoding the file name of the file that is being requested to be read from or written to. As seen in
Figure , there is also a mode field. The mode field must contain one of the following strings
{netascii, octet, mail}. The modes netascii and octet both indicate that the filename field
indicates an actual file to be read from or written to. The netascii mode demands that the
transferred data be translated from network byte order to host byte order upon reception. This
is necessary when a host operates with a different character encoding from the network. The
octet mode tells the recipient to send the data in the same encoding as it is stored, regardless
of which character encoding is being used. The data should be consistent if it is transferred
back using octet mode. The mail mode is only valid for the WRQ opcode, and indicates that the
received data should be sent as an e-mail from the receiving host, with the filename field used
as an e-mail address.

A successful RRQ is immediately followed by a DATA response, while a WRQ is immediately
followed by a ACK response. When transferring the file, [TETP| uses the stop-and-wait strategy
described in Section Each DATA packet is acknowledged with a ACK packet before sending
the next DATA packet.

In the case of a lost DATA packet, the sender will timeout because no ACK packet is received,
issuing a retransmission of the lost DATA packet. If a ACK packet is lost, then the sender will
also time out and resend the previous DATA packet. The duplicate DATA packet is detected by
examining the sequence number, which calls a Block number.

Each packet can be up to 512 bytes long, and any DATA packet which is short of 512
bytes is interpreted as the last block in the transfer. This protocol effectively has a sending and
receiving window of length one, meaning that it should not be possible to mistake one DATA
packet for another.

Error packets are used to indicate status when requesting RRQ and WRQ. A missing file, or
incorrect permissions will result in an ERROR packet with an appropriate error message and error
code. Errors are also returned during transmission if the sender repeatedly times out.

28 CHAPTER 2. BACKGROUND

2.7.2 The File Transfer Protocol RFC-959
The generically named File Transfer Protocol is defined in 959 [17]. The name RFC-959

is used to refer to the protocol, to avoid confusion with the acronym for a general file transfer
protocol.

The RFC-959 protocol is normally hosted on internet servers and allows multiple users to
store and retrieve files.

RFC-959 is a connection oriented protocol, meaning that a connection to the server has to be
established before making a file request. A reliable connection is assumed, such that the protocol
does not need to worry about retransmission of individual packets.

A connection is first established between client and server. This connection is called a control
communication connection, and handles requests and responses. On this connection, a range of
operations may be requested. Some examples of commands are:

e RETR and STOR for retrieving and storing files.

e RNFR, RNTO and DELE for renaming (moving) and deleting files.
e CWD and CDUP for changing the current directory.

e MKD, RMD and LIST for making, deleting and listing directories.

e PORT, TYPE and MODE to change data port and type, and transfer modes.

When establishing the connection one can also prompt the user for a user name and pass-
word. Alternatively, user and account details can be configured with dedicated commands after
connecting.

When a file transfer is requested, a separate data connection is established. All file data
is moved over this connection, while protocol commands may still be exchanged on the control
connection. This architecture is illustrated in Figure [2.12

User
Interface [User
|
Control FTP Requests Control
Connection [FTP Respones Connection
| |
Server File Data . Data Server File
system Connection [File Data P | Connection system
FTP Server FTP Client

Figure 2.12: Connection architecture of RFC-959 FTP. A control connection is first
established between client and server. All file data is transfered over a separate data
connection. Illustration taken from RFC-956 [17].

In a similar way to [I'F'TP] different data types can be specified. In ASCII mode, the data
is translated from the host’s representation of characters to a standardised 8-bit ASCII format.

2.7. FILE TRANSFER PROTOCOLS 29

In Image mode, each byte is sent unmodified, so as not to mangle image or program files. There
are also other modes that take into account the byte alignment in data words of different length.
There are also several data transfer modes that are allowed in RFC-959. Stream mode is
the simplest of the transfer modes, and is lacking in terms of reliability. The block mode breaks
the file into block segments that are prepended with a segment header. The compressed mode
employs a simple compression algorithm to compress the file on-the-fly before sending it.

In stream mode, the file data content is sent directly over a[TCP| connection, with the [TCP]
implementation using the sliding window go-back-N as its [ARQ]strategy. In this way, the stream
mode achieves reliable, in-order transfer on a packet to packet basis. The [EOF]is implicitly indi-
cated by the termination of the data connection. The stream mode can therefore not differentiate
between a successful termination initiated by the sender and an unexpected termination.

In block mode each file segment is prepended with a header. The header encodes special
codes for indicating transfer status, such as[EOF] In this way, if a data connection is terminated,
the receiver will know that it has not yet received the [EOF]indicator, and can issue a RESTART
command to resume an unfinished transfer. The RESTART mechanism is only available for block
mode and compression mode.

The compressed mode can decrease the file size before transmission. It implements a lossless
run-length encoding. This means that long repetitions of bytes are replaced by a structure
defining the byte to be repeated, and a number defining how many times the byte should be
repeated.

Since RFC-959 depends on [TCP] it automatically gains the congestion control mechanisms
of [TCP| Packet loss is monitored via[ACK] timeouts, and is used as a control input to adjust the
sending characteristic of the protocol. The sending frequency is strongly linked to the sending
window size. Generally, packet loss will reduce the sending window and successful tend to
increase the sending window. Several algorithms can be used in tandem to improve the channel
utilisation.

2.7.3 Kubos File Transfer

KubOS is a flight software framework for small satellites. It implements a number of protocols
and service modules that can be integrated into an [On-board Computer (OBC)l All protocol
details described in this section are obtained and compiled from public KubOS documentation
[18]. KubOS features include:

e A File protocol and service.

A Shell protocol and service.

e A Communication service.

A Telemetry Database.

A Mission Application service.

The KubOS file protocol encodes all of its command messages in the [Concise Binary Object|
Representation (CBOR)| format. This format encodes name-value pairs, in the same way as
JavaScript Object Notation (JSON)| but with a smaller footprint which makes it suitable for
resources limited space applications.

The file protocol prepares a file for transfer by splitting it into chunks whenever an export
command or import message is received. Each chunk is then transferred as individual
The file is reassembled at the receiver side when all chunks are received.

30 CHAPTER 2. BACKGROUND

Automatic Repeat Query

Initially, all chunks are transmitted. When no more chunks have been received for some period of
time, the receiver will send a status message back to the sender. If all chunks have been received,
an [ACK]is sent to indicate that all chunks have been received. In the case that a chunk has been
lost in the unreliable network, a [NACK] will be sent.

The message includes a list of ranges that indicates which chunks are still missing.
Upon reception of a the sender retransmits the indicated missing ranges. This repeats
until no more chunks are missing and an [ACK] is successfully sent and received.

KubOS maintains a session state for each transfer by creating a file directory for each transfer.
The hashsum of the file being transfered is used as the name of the directory. This way two
files with the same name but different content can be sent without interfering with each other’s
transfers. On the sender side, the directory is populated with the chunks to be transferred.
Chunks are saved to the directory as they are received. The chunks are named with the same
index as their position in the file.

2.7.4 CCSDS File Delivery Protocol

|CCSDS File Delivery Protocol (CFDP)|is a massive specification for file transfer systems intended
for space applications. It was first defined by [CCSDS]|in 2002, and has since been superseded by
the latest edition from 2007 [19].

The specification assumes a single underlying communication layer, which it refers to as the
Unitdata Transfer (UT) layer. This layer may or may not be reliable.

Protocol Classes

The specification defines several classes of file transfer systems:
e (Class 1 - Unreliable Transfer.
e (lass 2 - Reliable Transfer.
e (lass 3 - Unreliabel Transfer Via One Or More Waypoints In Series.
e (lass 4 - Reliable Transfer Via One Or More Waypoints In Series.

The specification does not attempt to define a single [F'TP|system that should be used in all
missions, but rather a clear and concise definition of components that can be used to construct a
system that fulfils the mission needs. Reliable transmission is a component that can be included
in such a system, but as Class I indicates, it is not a requirement to do so in order to be [CFDP]
compliant.

File Store Operations

The specification also defines a set of file store operations, and assumes that the underlying
storage medium is able to provide them:

e (Create and Delete files.
e Rename files (including move functionality).
o Append and Replace files.

e (Create and Remowve directories.

2.7. FILE TRANSFER PROTOCOLS 31

Unacknowledged File Transfer

Before a file can be transferred, a Metadata [PDU] must be exchanged with the receiving entity.
This packet contains the length of the file, the source and destination file name and various flow
control options.

In Unacknowledged Mode the sending entity will simply dispatch the whole file as file seg-
ments. The arrival of the last segment is indicated by an [EOF|[PDU] that is dispatched by the
sending entity. The reception of the [EOF|[PDUJ at the receiving side indicates the end of the
transfer. The receiving entity offers no response as to whether all segments have been received,
or whether the [EOF] has been received.

Automatic Repeat Query

If the underlying transport layer is not reliable, then [CFDP)| can be run in Acknowledged Mode.
Multiple m strategies (or retransmission strategies as the specification names them) are de-
fined and can be chosen from or even switched between to fit the exact need of the mission.

In Acknowledged Mode, Lost Segment Detection procedures monitor the as they arrive
and are stored. Different detection modes are defined, but the main distinction is whether NACKS|
are sent immediately upon detection of a missing [PDU] or whether they are accumulated and
deferred until a later moment.

Every [NACK][PDU] contains a file scope defined by a starting and ending offset. Following
this scope declaration is an array of ranges that indicate which segments of the file are missing,
as illustrated in Figure [2.13] Upon reception of a[NACK] the sending entity can retransmit the
indicated ranges.

32 bits 32 bits 32 bits 32 bits 32 bits 32 bits

NACK |Start of scope| End of scope | Start offset | End offset | Start offset | End offset

S Al J
Y Y

Missing Segment 1 Missing Segment 2

Figure 2.13: Contents of a CFDP NACK. The NACK includes a set of ranges that
indicate which segments of the file are still missing.

Store and Forward

Class 8 and Class 4 describes protocols where waypoints collaborate to perform file delivery. This
is necessary when the source and destination entities can not communicate directly. This could
be because the communication chain depends on multiple links that are available at different
times.

Delivery via waypoints is achieved by using a store and forward strategy. An example is
shown in Figure The original source entity will first transfer a file to a proxy entity. It will
then request that the proxy entity transfers the file to the destination entity. The proxy entity
will transfer the file to the destination entity. In acknowledged mode, the destination entity will
respond with a to the file transfer, and the proxy (or multiple proxies in a chain) will
propagate this indication of completion back to the original source entity.

32 CHAPTER 2. BACKGROUND

Source Waypoint Destination
User Entity Proxy Entity Entity

"Copy file to destination."
Ve

Put (File) -

Ve

| ACK (File Finished)

Put (Request) g

- =

Waiting for Destinaftion Entity to be reachable frorﬁ Proxy Entity

N, |
>

| put (File)

Waiting for Source Entity to be reachable from Proxy Entity

Put (Request Finished)

"Copy finished."
< Py

__ T
User Source Waypoint Destination
Entity Proxy Entity Entity

Figure 2.14: TIllustration of the store and forward concept. A proxy entity stores a file
and is requested to forward it to a destination entity.

An important property of this system is that the chain of waypoints is not required to be
connected all the way from end to end at any moment. Files can be stored for a period of time
and forwarded when a connection to the next waypoint has been established. This may be after
the connection to the previous waypoint has disappeared. This is also illustrated in Figure [2.14]
where the proxy entity must wait for the destination entity to be reachable, and then wait for
the source entity to be reachable once again.

2.7.5 MG6P File Transfer

provides file transfer capabilities for their [MG6P] platform, based on the file system described
in Section

Each [MGP] subsystem hosts a file transfer service that listens for [CSP| packets on [CSP] port
10. The services respond to a number of file requests. The available commands are described in
the following sections.

file info

A file info request returns file metadata. The file is specified by a file ID. The following informa-
tion is returned on a successful response.

e File ID: ID number of file being requested.

Last entry ID: most recently written entry (log file).

Total entries: number of entries available to be requested.

Cell size: byte size of the memory region holding one entry.

Used cells: number of cells that are being used.

2.7. FILE TRANSFER PROTOCOLS 33

Maz cells: total number of cells available.

Sector quantity: number of sectors allocated for the file.

Sector size: byte size of each sector.

File type: Can be a LOG or STATIC type.
o File name: ASCII file name.

A file listing can be constructed by requesting file info for a range of file IDs.

file clear

A file clear request removes the contents of existing entries. It will reset a LOG file, and discard
the data of a STATIC file.

file format

A file format request prepares a STATIC file for writing. It will allocate a specified number of
entries with a specified entry data size.

The entries are allocated in the memory region of the file specified by its file ID. The specified
file must have enough space to hold the specified number of entries. The 6 byte entry overhead
must be considered when requesting a format.

When uploading, the entry size is limited by the size of the data field in a [CSP| packet.

file check

A file check request provides information about the condition and progress of a STATIC file.
A file can be checked for data integrity or for presence of data. The former can detect data
corruption, and the latter is useful for checking which parts of a file still need to be written to
or be transferred.

The response contains a bitmap that encodes the status of the requested entry range. Each
bit corresponds to one entry. A bit value of 0 indicates bad integrity or no data presence, while
a bit value of 1 indicates good data integrity or data presence. Checks on large files must be
split into multiple requests in order to fit the returned bitmaps into individual [CSP| packets.

file download

A file download request initiates a download of a range of entries from a specified file. The
request specifies a period which determines the sending frequency. A maximum duration for the
whole transfer is also specified. Additionally, the maximum data size of the data packets must
be specified, and is limited to the [MTU] of the [CSP| network.

A successful request is acknowledged with a response that confirms the requested file ID.
After a one second delay, a stream of data packets is sent. The stream of packets stops when the
whole range of requested entries has been sent, or when the specified duration has timed out, or
when a cancel request is received.

The file stream is made up of a series of stream packets, which contain a header and data
blocks, as illustrated in Figure 2.5

The header encodes which file that the stream originates from, the ID of the first entry in
the stream packet, and optionally the byte offset of the first entry in the stream packet.

The data field of the stream packet is constructed from blocks that contain entries. Each
block has a length field that encodes the length of the block. The block data field contains an

34 CHAPTER 2. BACKGROUND

1B 1B 4B 2B 1B 1-254B 1B 1-255B
=T — - — - - — A
e |3 Y |
2 |2 | First Entry £5 %D %D I |
S| D Eﬂ_) e I Block 1 Data = Block 2 Data P
O£ é ©) i o |
M E L - — = -

Figure 2.15: Format of a stream packet. The header encodes which entries are being
sent and which file that they come from.

entry cell, complete with [CRC|field, length field and data. The data field of the stream packet is
completely filled with blocks as long as there are more entries to be transferred. This results in
entries being fragmented, and blocks containing partial entries. When an entry is fragmented,
the remainder of the entry is sent as the first block of the next stream packet. The first entry
byte offset field is then set appropriately to indicate that the first block is the remainder of a
fragmented entry.

Entries that fail to be read are indicated with error blocks. These blocks have a fixed size
and are distinguish from ordinary blocks by their length field being set to 0xFF. The error blocks
contain a single byte error code.

The received packets are not acknowledged, meaning that this is an unreliable form of transfer.
After having received a stream of packets, it is recommended to inspect the integrity of the
received data. Corrupt and missing entries can then be requested with a new file download
request for the appropriate range.

This form of [ARQ) is similar to the the ones used in KubOS and [CEFDP]

file cancel

A file cancel request aborts an ongoing download. This request is useful for situations where
an incorrect download has been requested. Whole satellite passes could go wasted if a wrong
download was unable to be cancelled.

file upload

A file upload can only be performed for a STATIC file.

The target file must be formatted with the exact entry size and amount of entries of the
source file. When a file has been formatted it will readily accept uploaded data, there is no need
to explicitly request an upload.

File data is sent in stream packets, like in Figure[2.15] In contrast to the download procedure,
the data block in the upload stream packets may only contain the data field of the entry cell.
Only one entry block may be put in each stream packet, and the blocks may not be fragmented.
This means that the target file must be formatted with an entry size that can fit within a single
stream packet.

After having transmitted all entries, file check requests can be used to determine whether
any entries were lost. Lost entries can then be transmitted.

Part 11

Design & Implementation

35

37

This part contains details of the design and implementation of the [OPU] payload and of a

[E'T] system.

Contributions

The work contributing to this thesis is listed below:

e Specification and design of hardware for the payload (Section |4.1.4)).
Design and complete implementation of a system (Chapter [5)).

Design and implementation of a |[Command Line Interface (CLI)| program for payload in-

terfacing (Section [6.4)).
Design and implementation of a shell service for the payloads (Section [6.4.2)).

Design and implementation of [TE'TP| module, which is used in comparison to measure the
performance of the [FT] system in Section [6.6]

Proposed designs are presented in the following sections. Software implementations are kept
within a Git repository [20]. The software implementation amounts to 10308 lines of C code
produced for this thesis. Specification and design files for hardware are included as appendices.

38

Chapter 3

Requirements

This chapter outlines the main design requirements relevant for this work. The requirements are
sourced from [HYPSO)| mission design documents.

The [HYPSO] project maintains a central requirements document titled Requirements HSI
SmallSat |2I]. This document contains mission objectives, mission requirements and system
requirements for the [OPU]| payload.

Data budgets for the [SDR] payload are acquired from a SDR-DR-001 System Design Report
document [22].

3.1 Satellite Bus Requirements

The [HYPSQ| project is committed to using the [M6P|] CubeSat platform from The mission

requirements state:
IF-001: The payload shall comply with NanoAvionics mechanical and software ICD.

This requirement necessitates the use of the [CSP| network stack and [CAN}bus protocol on
the [HYPSO] payloads. A result of this is that the [F'T]system must be implemented on top of the
ICSPl network stack.

3.2 Downlink Requirements

The [HYPSO] mission requires downlink capabilities for different types of files. The
|Aeronautics and Space Administration (NASA)| model for data products in remote sensing is
used to denote different types of data sets [23]. The mission requirements state:

MS-0-011: Shall downlink 1 hyperspectral image in L1A data format containing
detectable optical signatures (Chl-a, CDOM etc.) to be processed on ground.

MS-0-012: Should downlink 1 operational hyperspectral images in less than 3 hrs
after successful onboard dimensionality reduction, classification and target detection
with certainty of 10 % of positive optical signatures (Chl-a, CDOM etc.) to be
ground truthed.

M-2-018: L1A data shall have no more than 2234 frames and be less than 422.15 MB.

M-2-019: Operational data should be less than 34.27 MB.

39

40 CHAPTER 3. REQUIREMENTS

The two types of [HSI| data that are mentioned are:

e L1A data, which consists of image data. The image may have had its pixels binned to
produce a lower resolution, and may be compressed. Timing and attitude data are also
appended. According to requirement M-2-018, the L1A data set may not be larger than
422.15 MB.

e Operational data, which corresponds to L4 data. These data sets are heavily processed and
compressed, and will only contain the information that is most relevant to the operational
situation. According to requirement M-2-019, the operational data set may not be larger
than 34.27 MB.

Other files such as telemetry data and output logs from services must also be downloaded.
The mission requirements state:

MS-0-014: Shall downlink house-keeping telemetry data for at least 1 pass per day.

M-2-026: S/C shall communicate to ground and downlink house-keeping telemetry
data of up to 200 kb for at least 1 pass per day.

From the perspective of a[F'T|system, the transfer of an image file is the same as the transfer
of a telemetry file or log. The image files are likely to be of a larger size and therefore take longer
to transfer. Requirement M-2-026 suggests a size for telemetry data that is significantly smaller
than any of the image data sets. By designing the file transfer system to handle image files it
should also be able to handle smaller files.

The payload performs radio measurements. The System Design Report [22] states

a secondary mission objective:
SDR-SMO-1: To measure downlink channel in UHF using sensor node antennas.

These measurements produce relatively large amounts of data. The data must be downlinked
in order to be analysed. The [SDR] data budget estimates the size of various measurement files
[22], the largest of which is a global heatmap. Two examples of files are:

e Same band heatmap and stats in Arctic: 22.75 MB

e Same band global heatmap and stats: 136.37 MB

3.3 Uplink Requirements
The [HYPSO] mission also requires uplink capabilities. Mission requirements state:

MS-0-013: Shall enable flexible mission planning & scheduling and subsystem up-
dates through successfully integrated uplinked mission data, FPGA programming
logic and codes.

M-1-012: Shall incorporate uploaded mission data prior to imaging/operations that
includes updated commands (TT&C), reprogrammed code, FPGA programming
logic, schedulers, parameters, radiometric and geometric coefficients

M-2-015: Mission plan data and TT&C shall be updated on-board through up-
linked data in the same pass in minimum 5 min prior to the observations are made

3.4. QUALITY REQUIREMENTS 41

SBUS-3-017: S/C software & scheduling (including payload code) shall be open for
updates (mission operations; change in objectives; bug fixes) and upgraded (func-
tionality and efficiency) after launch.

Requirements MS-0-013, M-1-012 and M-2-015 state that mission plan and operations
scheduling information must be uploaded to the satellite. Requirements MS-0-013, M-1-012,
and SBUS-3-017 indicate that it must be possible to deploy software upgrades to the [HS]|
payload, which means that new software must be uploaded to the satellite.

These requirements specify that a [F'T] system must have the capability to transfer files from
the ground to the satellite.

M-2-014: Nominal ground station for uplink and downlink shall be NTNU Trond-
heim and 2 additional ground stations for downlink shall be KSAT Tromsg and
Svalbard

Requirement M-2-014 states that multiple ground stations should be able to downlink data
from the satellite. This is requirement for the [IYPSO| communication network. As long as the
communication network is maintained as a single [CSP|network, the requirement should not affect
the design or functioning of the [F'T] system.

The [SDR] System Design Report lists a secondary mission objective:

SDR-SMO-4: The system shall allow for update in flight.

In addition to SDR-SMO-4 requiring the [SDR] payload to be able to receive software up-
grades, it must also be able to receive python scripts for each new GnuRadio experiment.

3.4 Quality Requirements

In order to meet all top level mission objectives, time restrictions are introduced. The mission
requirements state:

M-1-015: L1A data product shall be downlinked in less than 24 hrs and be ground
truthed

M-1-016: Operational data shall be downlinked and ground truthed in less than 3
hrs

The requirements M-1-015 and M-1-016 are fulfilled by designing a file[F'T]that can transfer
files at a sufficient data rate. The primary factors are the data rates of the individual commu-
nication links in the [CSP| network. Packet overhead introduced in the [F'T] system will further
decrease the effective data rate.

There are no lower bounds on how fast the upload routines for software upgrades are required
to be. Requirement M-2-015 suggests that mission plans and [lelemetry, Tracking and Com-|
must be uploaded in the same pass. The required effective uplink speed therefore
depends on the size of the mission plan data and [TT&C|

The mission documents do not place any restrictions on downlink or uplink time [22].

42

CHAPTER 3. REQUIREMENTS

Chapter 4

Payloads & Communication
Architecture

This chapter details the HYPSO| payloads and supporting communication architecture. Some of
the details are results of work performed in this thesis, such as the [BOB]in Section and
configuration of PetaLinux in Section [4.1.5

4.1 Onboard Processing Unit

A part of the work for this thesis has consisted of configuring and installing the [OPU]system, as
well as specifying and designing hardware for the [OPU] As illustrated in Figure [I.3] the [OPU]
payload encompasses the [HS]| and [RGB| imagers, as well as and a [PZ][System on Module¢]

(from AVNET) [24].

4.1.1 Imagers

The hyperspectral imager is constructed from optical parts from Thorlabs and Edmund Optics
[5], and digital parts from [Imaging Development Systems (iDS)| The[RGB|imager is an integrated
camera from

The [HS]] camera is developed by Prof. Fred Sigernes at [The University Centre in Svalbard]
and is produced with sensor and optics. Some of the mechanical parts are man-
ufactured by the SmallSat Lab. The image sensor is an UI-5260CP-M-GL system from A
prototype of the [HSI| imager is depicted in Figure [£.1]

Figure 4.1: Engineering model of HSI camera. The gray box to the very left is a CMOS
image sensor from iDS. The optical parts include lenses and a diffraction grating from
Edmund Optics, and adaptors, mounting parts and a slit from Thorlabs [5].

The [HS] imager has been selected to have a Gigabit Ethernet interface. Development and
testing were carried out on a variant that had an |Universal Serial Bus (USB)|interface, but was

43

44 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

found to be too slow to transfer sufficient amounts of data. The image resolution in the direction
of the push broom sweep is directly linked to the |[Frames Per Second (FPS)| captured. In order
to achieve a high enough [FPS] the [USB| camera was changed to one with a Gigabit Ethernet
interface, but still using the same image sensor.

The decision to change the [HS]I| camera impacted the design of the as detailed in
Section .14

The auxiliary [RGB]| camera consists of a UI-1250LE unit from [[DS] The selected RGB|camera
has an interface.

4.1.2 PicoZed System-On-Module

Upon joining the project, the AVNET [PZ|[SoM] had already been selected as a computing unit
for the [OPU] This unit is a so called meaning that it is a partially integrated hardware
system that is intended to be used as a module in a larger system.

The is based on a Zynqg-7000|System on Chip (SoC)|from Xilinx. This combines
a part with a [Programmable Logic (PL)| part. The part contains a
dual ARM core. The part contains a generous amount of [Look-Up-Tables (LUTs)|, Flip-Flops,
adder circuits, block [Random Access Memory (RAM)| units and [Digital Signal Processing (DSP)|
blocks.

The [PL] on the Zyng-7000 [SoC]is an instrumental part in implementing the image processing
techniques that the [HIYPSO]| mission requires. Without the hardware acceleration that the [PL]
provides, the [HS]] data can not be processed and compressed at a fast enough speed to fulfil the
mission requirements.

¥ /a4

Figure 4.2: PicoZed System-on-Module from AVNET.

Memories

The [PZ|[SoM| has two non-volatile memories. It is equipped with a Cypress S25FL128S chip and
a Micron MTFCAGMDEA-4M chip [24].

The S25FL128S chip is a 128 Mb NOR flash device, while the MTFCAGMDEA-4M is a 4 GB
NAND |Embedded MultiMediaCard (eMMC)| flash device. The smaller NOR flash is interfaced

with [Quad-SPI (QSPI)| while the NAND flash is interfaced with a standard [SD|controller.
Both of these have internally managed [ECC]| that can correct single bit errors.

4.1.3 ZedBoard Development Kit

Development of [OPU] software has primarily been carried out by testing on a ZedBoard devel-
opment kit from AVNET. This kit contains a Zynq chip, similar to the one on the [PZ|[SoM]

4.1. ONBOARD PROCESSING UNIT 45

with only a few differences. It offers the same interfaces as the [PZ|[SoM] but makes them more
available by having connectors for every interface. The ZedBoard development setup is depicted

in Figure [£.3]

Figure 4.3: ZedBoard development kit used for testing OPU software.

4.1.4 Breakout Board

When building a system with [SoM| components, it is necessary to have a or carrier card
which provides a mechanical and electrical connection to the[SoM] The[BOB|must provide power
to the

The work performed for this thesis includes the specification and design of functions and
interfaces that the requires, as well as coordination of the implementation and production
of the The specification and design is considered a contribution of this thesis, while im-
plementation of the [Printed Circuit Board (PCB)| and logistics of manufacturing was handled
together with NTNU] SmallSat Lab staff.

A previous version of the was used as a baseline, and only the differences from the
baseline version are outlined in this thesis. The specification and design documents for the new

BOB] are included in Appendix

Interfaces

As illustrated in Figure the [OPU]requires a[BOB]to connect the [PZ|[SoM]to the two imagers,
and to the rest of the satellite via the [PC| The [PZ][SoM]| has three Micro Headers that carry all

interfaces. These headers slot into a corresponding set of connectors on the

The [HS]| camera requires the to have an Ethernet connection, and the [RGB| camera
requires the to have an [USB]| connection. Both of these were added in the new design.

A [CAN] bus transceiver had to be added to facilitate the connection to the [M6P| payload
[CAN}bus, cAN2. A few [CAN] transceiver chips were assessed. The chip MCP2562 was chosen
because it is able to interface the Zyng-7000 [SoCJs 1.8 V logic pins directly.

The |[Pulse-Per-Second (PPS)| timing signal that is provided by the module on the [M6P,
platform is required to achieve time synchronisation of high accuracy. A [General-Purpose 10|

(GPIO)| header was added to the to connect to the signal to the[SoC| The signal
can be used by the [Network Time Protocol (NTP)|in Linux to perform the clock synchronisation.

46 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

The [BOB] also holds a [SD}card which provides additional long-term storage memory. A [SD]
controller chip was present on the previous version, and is kept unchanged. Together with
the [PZ|[SoM] the [OPU] contains three different non-volatile memories:

e 128 Mb NOR Flash over [QSP]|

e 4GB NAND Flash, over [SD]

e A[SD}card, with 32 GB storage.

Removing Integrated Image Sensor

The previous version of the had the additional responsibility of housing the image sensor
of a previous version of the [HS]| camera. Since the decision to use the [HSI V6 camera, the image
sensor is integrated into the camera structure, so the next version of the is not required to
house the image sensor.

By removing the image sensor, a sizeable area of the [PCB| was freed up, and two voltage
regulators could be retired, since their only purpose was to supply voltage levels that were only
needed by the image sensor.

Power Supplies

Various components on the [PZ][SoM] require a voltage level of 5.0V, and the [Multiplexed 10|
banks in the Zyng-7000 require voltages of 3.3V, 1.8 V.

The receives unregulated battery voltage VBAT from the [EPS| This voltage depends
on the level of charge in the battery bank, and varies between 6.0V and 8.4V [25]. The
voltage is regulated down to a stable 5V, which in turn is used to synthesise the required 3.3V
and 1.8 V.

With the new version, the addition of using the Gigabit Ethernet transceiver on board the
[PZ] adds a requirement of supplying 1.2V and 1.0V to the [PZ][SoM] The two voltage regulators
that were made obsolete by removing the old image sensor have been repurposed to produce the
voltages for the Gigabit Ethernet transceiver instead.

The [HS]| camera requires a input supply of 12V - 24 V. Since this is higher than the main
input voltage to the m (VBAT), it must either be boost regulated from the VBAT, or acquired
from the [EPS| In order to avoid another power synthesis chain on the an additional input
connector for a 12V supply was added. The [EPS|is then configured to output a 12V channel,
which is also used for the

4.1.5 Operating System

The Zyng-7000 [SoC| has dual ARM cores that can run a conventional operating system. This is
necessary to run the [CSP| network stack.

The[OPU]payload will run a Linux based operating system. The operating system was chosen
during spring 2018, during a time when much of the initial work with the ZedBoard development
setup was being performed.

There are a few reasons why a Linux based operating system was chosen. The cameras
that are a part of the [HS] payload require a proprietary driver, which is only available for
Windows, Linux ©86 and Embedded Linux ARM.

4.1. ONBOARD PROCESSING UNIT 47

Benefits of Using Linux

In an enquiry into the current use of Linux in spacecraft flight software, Leppinen outlines a few
benefits and drawbacks [26]:

e The Linux code base is considered very reliable because of its wide adoption and high level
of revision.

e There is a large community of developers for Linux, making it easier to find developers to
recruit for the project.

e Parts of the testing can be carried out inside the development environment, as long as the
development machines run Linux.

e Ready made libraries, protocols and applications can be selected from a large collection of
free software and quickly integrated into the system.

Drawbacks of Using Linux

Since the Linux system is being used for so many different applications, it has grown to become
a relatively complex system with a large number of customisation parameters. The large number
of customisation options is what allows Linux to be used for so many different applications, but
can also cause problems because there are more components to be tested, certified and debugged.

Leppinen also mentions a few drawbacks [26]. Linux has not been designed to be a
[Time Operating System (RTOS)| However, the system does not have any hard real time
requirements.

The closest thing to a real time requirement for the [OPU]is the timing and control of the
[HS]) imager, which is necessary to achieve a desired [FPS| when capturing frames. This task is
not considered in this thesis.

With [CL]] access to a Linux system, and because of the large number of customisation
parameters, it is possible to put the system into an unrecoverable state. It is difficult to freeze,
lock or remove all of the extensive Linux features that makes this possible, but different strategies
can be put in place to mitigate the risk and effect. Fallback boot images can be installed to allow
the system to boot into a safe mode if the working copy of the boot image becomes misconfigured.

Linux System

A few variants of Embedded Linux for the Zyng-7000 series were assessed before PetaLinux was
chosen. PetaLinuz is not a Linux distribution in itself, it is a framework for customising and
building a distribution. The framework is maintained by Xilinx and provides Linux support for
several of their architectures, including the Zyng-7000 [SoC| Zynq UltraScale and MicroBlaze
[27].

The PetaLinuz framework provides the following components for the [OPU] system:

o A |First Stage Boot Loader (FSBL)|for the Zynq architecture.

e The popular [Second Stage Boot Loader (SSBL)| U-BOOT.

e Scripts for configuring and cross-compiling the Linux Kernel.

e Libraries and applications for Linux, such as busybox and canutils.

48 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

PetaLinux is based on the Yocto framework. The Yocto project maintains a library of recipes
for configuring and building kernels, libraries and applications. These recipes are combined into
a project, which is interpreted by the build tool BitBake to perform the configuration, compiling
and integration of the components into boot images and root file systems. PetaLinux works as
a wrapper around Yocto, adding additional recipes that are required by the Xilinx architectures.
For more information on PetaLinuz, and how to use it, see [27].

Boot sequence

The Zynq holds a small section of on-chip [Read-Only Memory (ROM)| that contains startup
code. The code initialises [Central Processing Unit (CPU)|states, and searches for and loads the
initial boot image. The boot image is usually a [FSBL] which performs board-specific peripheral
initialisation, before handing over execution to a[SSBI]

The [FSBI] can be executed directly from flash if it is located on a flash device, such
as an [SD}card. Otherwise, the image is first loaded into the [On Chip Memory (OCM)| before it
can be executed [2§].

When using PetaLinux, the [FSBI]is automatically generated, and U-BOOT is used as[SSBL]
The [SSBL] loads the Linux kernel into main memory and initiates its execution. The [FSBI] is
compiled into a BOOT.BIN file, while the [SSBI] and Linux kernel image is compiled into a single
image.ub file. Further details on booting the ZedBoard and can be found in [27].

File systems

The Zynq BootROM code is hard coded to read the first partition on the selected boot device
as[FAT] The boot images are therefore required to reside on a[FAT] file system. The boot device
can be selected by setting a hardware switch on the [PZ][SoM]

Because the [OPU] payload runs Embedded Linux, a Linux compatible file system is being
used to store the root file system.

In the current configuration, the Linux root file system resides on a ext4 partition on the
[SD}card, while the Linux kernel is stored in a FAT32 partition on the [SDfcard. The [SDfcard
provides a large amount of storage for program files and image files. The ext4 file system is
being used because it is the default file system in the petalinux build system.

The primary reason for choosing the default file system was to avoid complications. Features
such as journaling and metadata checksums suggest that ext4 is a good choice for reliable
operation. The choice of file system could be further justified by comparing more file systems
features.

An additional feature that may be desirable is increased redundancy in the form of[ECC| The
ext4 file system does not offer the ability to store files with [ECC| but the underlying memory
technologies do. The and the NOR Flash chips have integrated [ECC| providing some
level of protection against bit flip errors.

The file system configuration is subject to change, as the on the [PZ] and integrated
memories in the Zynq offer storage that is so far not utilised.

Redundant boot images on separate memory technologies will reduce the risk of critical
failures. Boot image management and fall-back mechanisms have not been studied for this
report, but is a point of interest that the [IYPSO] project will look into.

4.2 Software Defined Radio Payload

No work has been performed on the SDR]system in this thesis. A short description of the system
is still included because the system is intended to use the same [F'T] system.

4.3. COMMUNICATION ARCHITECTURE 49

The [SDR] payload is comprised of a TOTEM module and an [UHF] antenna system. The
TOTEM [SDR]system from Alén Space combines an [UHF|frontend with a[SDR] processing system
[29]. Tt is acquired as a complete hardware unit.

The [UHF] frontend card can be tuned to operate between 70 MHz and 6 GHZ. The [UHEF]
radio consumes 160 mW when receiving, and up to 3W when transmitting [29].

The processing system is equipped with a similar Xilinx Zynq-7000 [SoC]| as the one used in
the [QPUl This also runs Embedded Linux. The TOTEM uses [CANFbus to connect to the
CAN2 bus, and must also use the [CSP| network stack on top of the protocol.

The sampled, digital radio signals are internally processed by GnuRadio, which is a [SDR]
framework. It is implemented in C++, but can interpret Python scripts to create and configure
flow graphs.

The [FT] system that is produced in this thesis can be used to upload these GnuRadio files,
letting the [SDR] system be upgraded as new experiments are designed.

4.3 Communication Architecture

The [HYPSO| mission employs a communication architecture based on the [CSP| network stack.
In this section, a high level model of the network is described. A top level representation of the
network is illustrated in Figure [£.4]

The[HYPSO|communication architecture uses[CSP|for the space segment and ground segment
in order to interface with [NA] components.

The space segment and the ground segment connect to the same conceptual [CSP| network.
The subsystems inside the spacecraft are connected via various data interfaces, allowing any two
of the satellite subsystems to communicate with each other. The ground segment components
are primarily connected via various protocols running on top of The space segment and
the ground segment are connected via a radio link that is established by one of several ground
stations.

A radio link can only be active while the satellite is within [LOS|of a ground station, meaning
that the space segment and the ground segment are only periodically and temporarily connected.

During an active pass, the two networks connect and allow the whole network to be treated
as a single uniform network. This distributed topology allows any node to communicate with
any other node that is connected to the network, even when one node is in space and another is
on the ground.

4.3.1 Space Segment

As mentioned, the [M6P]subsystems and [HYPSO] payloads are connected via a[CSP|network. As
illustrated in Figure [£.4] the subsystems are physically connected via two separate [CAN}buses.
One bus (CAN1) connects all the original subsystems: , and The
second one (CAN2) connects the payloads to the [PC| The S-Band radio is connected directly to
the over a [Serial Peripheral Interface (SPI)| interface. The roles of the subsystems are
described in Section [I.2] and more details can be found in Appendix [A]

The partition of the space segment network into two[CAN}buses is justified with the following
reasoning. From [NAJs perspective, having a dedicated [CAN}bus for the payloads allows them to
isolate their subsystems from whatever system the customer connects to the satellite. Instead
of having to connect the payload to multiple of their systems, they only have to customise and
maintain the interfaces between the [PC| and the payloads. Additionally, it may prevent the
original [M6P] subsystems and the payload subsystems from blocking each other with data traffic.
For example, the imaging payloads will have large amounts of data that must be transferred to

50 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

i_H?PSB Spacecraft T _i

| OPU SDR |

| |

l PC CAN2 |

| CAN1 |

| sPI |

| |

| S-Band UHF FC EPS |

| |

T _I

RF RF
Mg smiom T T T T T T
- NTNU |
-KSAT
|- GS GS |
I S-Band UHF | _____
Cloud - Internet 1

| [[| |
I NA Mission Control Software —|—|> %;éil:f;fg |
| | |
L A _ _ 4 |
'NTNU SmaliSacTab § L B ~e—
I Direct CSP l l Database l
I Access | | |
I ¢ | |
I | |
I SmallSat Lab Operators 4—|> Database API |
I | |
L = .| Lo 1

Figure 4.4: High level architecture of the communication network inside the satellite,
and between the satellite and ground operators.

4.3. COMMUNICATION ARCHITECTURE 51

the [PC| which thereafter is forwarded directly via the S-Band radio. If the two [CAN}buses were
merged, the transfer of the image data would cause congestion between the [M6P] subsystems.
With this configuration, the payload may sustain a high data rate via S-Band, while other
subsystems may still communicate over CAN1 without obstruction.

4.3.2 Ground segment

The ground segment consists of one or more ground stations, a database, and one or more
operators.

There may be several ground stations in the ground network. The operator must direct
telecommands to the currently active ground station such that network traffic can be forwarded
to the space network. [NTNU| SmallSat Lab intends to operate a ground station from [NTNU]
Additionally, there are plans to utilise ground stations from KSAT.

Each ground station must be equipped with antennas and transceivers for a [UHF] link and
a S-Band link. provides [Mission Control Software (MCS)|which acts as a gateway by main-
taining network connections to operators and a telemetry database. The precise details of this
architecture are still not available at the time of writing.

A satellite operator may be a human operating a network connected computer, or a computer
program running automatic procedures. Either way, an operator node must connect to the [MCS]|
gateway. The operator node can communicate [CSP] packets directly on the network through the
gateway, allowing TM/TC to be exchanged. Since the operators can connect to the over
the internet, they do not need to be geographically present at the ground station.

A database is included in this network to store all [Telemetry (TM)|received from the satellite.
All downlinked [TM] will be forwarded to the database, even when it was intended for an operator
node. Consequently, all payload data that is downlinked will be stored in a database.

The database provides operational safety by backing up all downlinked data. Storing all data
in a database allows the operator and end user to query historical data, and to replay stored
records. By being stored in a cloud storage service, the data can be distributed to multiple
end-users.

4.3.3 nanoMCS and Flatsat

[NA] provides a[CLI| application for the Windows operating system called nanoMCS. This program
acts as a[CSP|node and can connect to the [CSP|network in several ways. It can connect directly
to a [CAN] bus by using a [CAN}o{USB| adaptor. It can connect to [MCS| servers over a [TCP)
connection using the [NanoMsg-Next-Generation (NNG)| protocol El

The nanoMCS software can also be used to connect to an engineering model of the [MGP]
platform which is hosted by [NA] This engineering model is called a flatsat and is used for early
development of payloads. The intention of having a flatsat available for development is that
software can be tested at a much earlier phase. The architecture when connected to the flatsat
is illustrated in Figure [4.5]

Thttps://github.com /nanomsg/nng

52 CHAPTER 4. PAYLOADS & COMMUNICATION ARCHITECTURE

rNa:OA_ViOECS_Flaat ________ 1
| |
: S-Band UHF FC EPS :
|
| I CAN1 l |
| ' |
| SPI PC |
| |
| CA:NZ |
| |
| Flatsat |
Server
| |
G TI_ .
TCP/nng
FNTNESEHS_M b | [T 'i
| CSP nano |
| Bridge MCS |
|
| CAN2 |
| L] |
| OPU SDR I
| |
| |
L e e e o e e e e e -

Figure 4.5: Architecture of the CSP network that connects the flatsat engineering model
to payloads and nanoMCS at SmallSat Lab.

Chapter 5

File Transfer System

This chapter details the design and implementation of a file transfer system for the [HYPSO]
payloads.

The file transfer system that has been designed and implemented for this thesis is referred to
as the[FT] system. It should not be confused with the M6P file transfer system, which is installed
on the M6P subsystems and provided as a specification.

M6P Foundation

The[FT]system which is detailed in this chapter is designed by the author and the implementation
is entirely produced by the author.

However, the [M6P]file transfer system is used as an inspiration and foundation for designing
the [F'T] system. This is done for a number of reasons:

e Using an existing specification as a basis rather than creating a new one saves development
time.

e By being compliant with the [NA] file transfer specification, the same file transfer utilities
can be used for the subsystems.

e The [MG6P) file transfer system can be used to verify the [F'T] system that is made for the
[HYPSO] payloads to some degree.

e The file transfer specification has flight heritage.

Consequently, the [F'T] system borrows from concepts described in Section and imple-
ments the procedures described in Section [2.7.5

Although the[FT]system is separate from the M6P file transfer system, the two are compatible
to a certain degree. The [F'T]system is able to interface the MGP file transfer services, but does
also provide some features that are not supported by the [MGP]file transfer system.

5.1 Service and Client Architecture

The request-response pattern is used to implement the [F'T] system, as is typical for [CSP| appli-
cations. A service receives requests from clients, performs the requested tasks, and returns a
reply with data or a status indication. A |File Transfer Service (F'TS)|is intended to run on each
payload, while a [File Transfer Client (F1C)|is integrated on the ground operation nodes.

The term [FTS] is used to refer to the service that continually runs on then payload, while
the term [F'TC|is used to refer to an application that requests file operations and file transfers.

93

54 CHAPTER 5. FILE TRANSFER SYSTEM

The architecture depends on the [CSP| network described in Section The underlying
network layers are transparent to the system, so the architecture can be simplified to the
architecture shown in Figure 5.1

" Cround Omermar T S| s T TIPSO Prvicad .
Ground Operator		HYPSO Payload	
	File Transfer [_	File Transfer	
Client		Service	
L — — — — — — 4 L - — — — 4

Figure 5.1: Service and client architecture. The underlying CSP network is transparent
to the service and client.

The [FT] system is implemented such that the [F'TS] stores as few states as possible. This is
done to limit the complexity of the code that goes into the payload, in an effort to minimise bugs
that are difficult to debug and correct. It is achieved by having the transfer state being stored
in formatted files, and by making the perform as much decision making as possible.

5.2 File Organisation

File management on the payloads include the formats in which files are transferred, and
the organisation of different types of files.

5.2.1 File Format

During transmission, a file is fragmented into segments that are reassembled at the receiving
node. Segments that arrive in-order can be reconstructed into the original file by concatenating
one segment’s data to the previous. If the segments do not arrive in-order, then the segments
must be stored until enough information has arrived to use them in the reconstruction.

The approach taken here adds a sequence number to each segment. The sequence number is
used to place the segment at the correct offset in a destination file. A custom file format is used
to store the incoming segments during a transfer.

Scope

A formatted file is only intended to be used by the system. Other modules will not and can
not use the formatting metadata. A file should only be transformed into a formatted file when
it is to be transferred over the system.

The metadata that is added to create a formatted file encodes the information that is neces-
sary for keeping track of a transfer.

The [MGP] file system defines the entry structure in Listing [I] as a file segment. The entry
data, [CRC| and length fields combined are defined as a cell. These cells are used as segments
when sending file data in the [M6P] file transfer system, and this is adopted for the system.

The [CRC] field and length field in the cell indicate whether an entry is present and valid.

5.2. FILE ORGANISATION 25

Layout

Regardless of which layout is used, the formatted files can be created by modifying the original
file in-place, or by creating a new file with copied data.

Two memory layouts, (1) and (2), are considered for the formatted file.

The first layout has entry metadata interleaved with the entry data (1). It is then easy to
extract an entry with data and metadata, as the memory region of the cell can be copied directly
into a packed C structure.

When interleaving the metadata (1), the data offsets in the original file do not match the
data offset in the formatted file. Every entry is shifted some amount to the right. A consequence
of this is that if the formatted file (1) is created in-place, a large amount of copy operations is
required to perform all the shifting. This must also be done if converting from a formatted file
back to the original file in-place.

The alternative is to combine all of the metadata and append it at the end of the original file
(2). The file can be converted back by truncating the end of the file. The layout with appended
metadata (2) is therefore not required to shift the entry data.

A drawback of modifying the original file in-place is that the original file can be corrupted if
an unexpected interruption occurs while it is being formatted. To prevent this, the contents of
the original file should be copied to a new, separate formatted file. This requires more storage
space, as two copies of the original data must be stored, but it is safer.

See Figure for a visual comparison of the two.

Original file
Interleaved
metadata O
Appended
metadata 2)

Figure 5.2: Comparison of layout and footprint of interleaved metadata and appended
metadata. The first grey field represents a file header, while the thin grey fields represent
metadata for each successive entry.

The formatted file with interleaved metadata (1) is chosen because it provides a simpler
implementation of reading and writing entries when metadata and corresponding data is chunked
together into a struct. The data is copied to a new file to avoid corrupting the original file,
meaning that the appended format (2) would also need to copy each of the entries. Shifting
the data at the same time as copying it (1), does therefore not cause a performance loss when
compared with the alternative (2). The chosen layout (1) is shown in Figure

For the remainder of this report, the term formaitted file will mean a formatted file with
interleaved metadata (1).

5.2.2 File System Module

The C module fs has been implemented to provide functions for handling formatted files. The
implemented functions are shown in Figure

o6

CHAPTER 5. FILE TRANSFER SYSTEM

Formatted File

File Header Cell 1 Cell 2 Cell 3
o
o
N a o
o o) 0)
ocwn| > | H b ol |q0| ¢ NS
dHo | ~ x| os | sd| ™ |h,
oL [0} > [RS S YR o (&) c Entry 2 Data
ST > o — > |l=s| A5 |oe| 9 |$
=@ | —~ - 5 c|luE|Fe| 9 S |9
- w 2 fm S w| 2
L wi

Figure 5.3: Memory layout of a formatted file with interleaved metadata (1). A file
header stores information about the size and number of entries.

The function fs_format_file() handles creation of a formatted file.

The functions fs_get_file_header() and fs_write_file_header() retrieves and writes
the header section of a formatted file.

The functions fs_write_cell(), fs_write_entry() and fs_clear_file() handle writing
and clearing of data in formatted files.

Entries and cells are read with fs_read_cell() and fs_read_entry().

Transformations between original file and formatted file is handled by fs_prepare_file()
and fs_extract_file().

The presence and integrity of entries is checked with fs_check_cell(), fs_check_entry(),
fs_check_file() and fs_print_bitmap().

The modules use the fstream class of functions to modify the formatted files. If the layout of
the formatted file is ever changed this module can be reimplemented without significant changes
to its interface.

5.2.3 File Mapping Module

In order to provide a compatible interface for the file download and file upload procedures that
are defined in Section [5.3.5] and Section [5.3.6, a file mapping structure is defined for the
system. The structure is illustrated in Figure 5.5

The file ID map is stored in a configuration file, such that the mappings persist across reboots
and unexpected shutdowns. The methods in the implemented module are shown in Figure [5.6]

The functions fs_idmap_init (), fs_idmap_close() and fs_idmap_format () are used to
load, close or create a new mapping file.

The mappings can be modified with fs_idmap_add_file() and fs_idmap_remove_file().
File path can be queried from file ID with fs_idmap_get_file_path().

Helper functions fs_idmap_open_r() and fs_idmap_open_rw() are provided for opening
a fstream to a mapped file by providing a file ID.

5.3. FILE TRANSFER

@ «module»
fs

fs_get entry offset()
fs_write_file_header()
fs_get file_header()
fs_format_file()
fs_clear_file()
fs_check_cell()
fs_check _entry()
fs_check file()
fs_write_cell()
fs_read_cell_header()
fs_read_cell_data()
fs_read_cell()
fs_write_entry()
fs_read_entry()
fs_prepare_file()
fs_extract file()
fs_print_bitmap()

@«modu/e»
crc32

calculate_crc32()

o7

Figure 5.4: The fs module provides functions for creating, reading and writing formatted

files.

Application or Look up

Y

I~ file ID

formatted

AZERN

File 0

: Non-
File ID Map existant
o | file [

path

file | t——"]
1| path

- File 2
2 g;%ﬁ —r» Static

file
3 path [T

File 3
Static

Linux file system

N

5.2.4 Proposed Directory Hierarchy

Figure 5.5: A file ID map that contains mappings from file ID to file path.

A file path has to be registered to a file ID before it can be used for transfers. File paths should
be kept short to avoid long registration and deregistering command packets.

The example directory tree in Figure is proposed as a baseline for the [OPU]| payload. It
contains various mission data, as well as a directory for upgrade files.

As mentioned in the Flight Results from the Aalto-1 Mission [30], it is recommended to
separate the file system that contains mission data from the file system that contains Linux
system files. The Linux system files should be read only, so as not to accidentally overwrite them
while modifying mission data.

5.3 File Transfer

This section describes file transfers in the [F'T] system. The following topics are covered in order:

o8 CHAPTER 5. FILE TRANSFER SYSTEM

«module»
fs_idmap

fs_idmap_init()
fs_idmap_close()
fs_idmap_format()
fs_idmap_add_file()
fs_idmap_remove_file()
fs_idmap_get file_path()
fs_idmap_get free_id()
fs_idmap_open _r()
fs_idmap_open_rw()

Figure 5.6: The fs_idmap module provides functions to get file path from file ID, and
to register new file ID mappings.

/
| home
Lhypso
=T of T o P Often used script files
cap-hsi-buf Capture HSI image and buffer on PC
CaAP-TED .« Capture and store RGB image
RS Captured HSI images
t2019-05—25. 12:30:45.dat ... cooiii Example HSI file
2019-05-25.12:40:00.dat
o= o PP Captured RGB images
t2019—05—25.12:30:45.png Example RGB file
2019-05-25.12:40:00.png
| log
fts oot Debug and error output from File Transfer Service
hsioooiiiii Debug and error output from HSI Service
o= Debug and error output from RGB Service
L UPETAde. .. File patches and boot images
BOOT . BIN ..ottt e e e et Example upgrade file

hypso-service.patch

Figure 5.7: Proposed directory tree for organising files on the OPU payload.

The concept of a file stream (Section [5.3.1)).

The [ARQ] strategy being used (Section [5.3.2)).
Implementation details of modules (Section [5.3.3)).

Details of the transfer procedures (Sections to [5.3.7)).

5.3.1 File Stream

A file stream is a sequence of [CSP| packets that make up data in a file transfer. These stream
packets contain entries from a formatted file.

5.3. FILE TRANSFER 29

When transferring a file, the original data is first fragmented into entries. The entries are
prepended with a checksum and length value to produce a cell, and then packed into a
formatted file. These entries are inserted into stream packets, as shown in Figure [5.8

Data 1 Data 2 Data 3
File « F‘cgb = & :‘:5;0
Header éé 2 Entry 1 éﬁ) 5 Entry 2 éé 2 Entry 3
o A @) o |-
a 9 First 5 | & Cell a e First 5 |5 Cell &
=4 I g | P Celll | X S| g | X 2 cell 3
v Cell 2 Y Cell 2
Stream Packet Header Field continued
Cell 1 Field Stream Packet Header Cell 3 Field

Figure 5.8: A file stream. The data of an original file is fragmented into the entries of a
formatted file. The cells of the formatted file are inserted into stream packets.

In the specification, a single stream packet may contain multiple (and even fragmented)
entries when downloading a file, but only a single entry when uploading a file. In order to be
compliant, the [HYPSO| implementation is able to receive stream packets containing multiple
(and even fragmented) entries. However, it is advised to keep the entry lengths equal to the
stream packet lengths, as to not make the fragmentation of the original file redundant.

The first entry ID field in the stream packet header serves as sequence number. Together
with the first entry ID field in the formatted file header, the sequence number can be used to
determine where in the destination file the cell should be inserted. The inclusion of a sequence
number allows entries to arrive out-of-order.

The offset field in the stream packet header is used in the case that the first entry in the
packet contains a fragmented cell which must be placed at an offset.

5.3.2 Automatic Repeat Query

The mission requirements state that file transfer must be possible (MS-0-011, MS-0-12, MS-
0-013) over the communication network provided by (IF-001).
The [CSP] network is unreliable. [CSP| packets can be lost for a number of reasons:

e Communication errors in the lower layer protocols (CAN] UHF and S-Band radio).

e Congestion on links that are used by multiple users. The [SDR] and [OPU] payloads could
try to communicate at the same time.

e Buffer exhaustion, which could happen because of congestion, or because of an excessive
sending rate.

e Link disruptions, such as the sudden loss of ADCY| pointing accuracy, causing the S-band
radio connection to drop out.

Retransmission procedures are therefore implemented by the system. The strategy
for the [F'T] system is inspired by the [M6P]file transfer system.

60 CHAPTER 5. FILE TRANSFER SYSTEM

Control Message Loss

The loss of control messages, such as requests to transmit a file, is handled by timeouts that
issue retransmission of requests.

File Segment Loss

The [NA] documentation suggests that can be achieved by alternating between two phases.
Figure illustrates the concept. In one phase entries are being transferred in unacknowledged
mode, while in the other phase the completeness of the file is checked. If packets were lost, it is
detected, and the missing data can be retransmitted by requesting a new file stream for a range
of entries.

-
Transfer a file stream
-
* File is missing entries
-
Check file for
completeness
-

|
File 1s complete

Figure 5.9: ARQ strategy of the F'T system, with alternating phases of transfering data
and checking file for missing entries.

This is the general strategy that is being used in the [F'T] system.

The download and upload procedures automatically request the sending node to repeat the
entries of the file that are still missing. The download and upload procedures are similar, but
not identical since the and are implemented differently. The will perform most
related tasks in order to keep the implementation as simple as possible.

5.3.3 File Transfer Modules

The file system module from Section is the basis for the modules. In order to limit
the scope of each module, separate modules for download and upload procedures have been
implemented.

Client

Client modules are shown in Figure [5.10}
The modules implement procedures for all of the original file requests, which are
also used in the system:

e ft_client_info() requests metadata for a specified file ID.

5.3. FILE TRANSFER 61

«module»

«module» ft_client_download

ft_client

ft_client_download_file_id()
ft_client_download_file_formatted()
ft_client_download_arq()
ft_client_download_range()
ft_client_receive_stream()
ft_client_receive_stream_packet()
ft_client_cancel_download()
ft_client_buffer_request()
ft_client_buffer_file_id()
ft_client_buffer_file_path()

ft_client_info()
ft_client_list()
ft_client_format() >—
ft_client_check()
ft_client_clear()
ft_client_register()
ft_client_deregister()
ft_client_prepare()
ft_client_extract()

«module»
ft_client_upload

ft_client_upload_file_formatted()
ft_client_upload_arq()
ft_client_upload_range()

Figure 5.10: C modules for the FTC.

ft_client_list() requests metadata for a range of file IDs.

ft_client_format () requests a file to be reformatted to a new or different number or size
of entries.

ft_client_check() requests a bitmap encoded with the integrity of the file.
ft_client_clear() requests a file to have its entries cleared of data.

ft_client_cancel_download() requests an ongoing file transfer to be aborted.

File ID mappings are handled by a dedicated pair of requests:

ft_client_register () requests a mapping from a specified file ID to a specified file path.

ft_client_deregister () requests the removal of an existing file ID mapping, if it exists.

Transformations between original and formatted files are handled by a pair of requests:

ft_client_prepare() requests the creation of a formatted file from an original file.

ft_client_extract() requests the restoration of an original file from a formatted file.

The following upload and download client procedures are detailed in Sections to

ft_client_upload_file_formatted()
ft_client_upload_arq()
ft_client_upload_range()

ft_client_download_file_id()

62

CHAPTER 5. FILE TRANSFER SYSTEM

ft_client_download_file_formatted()
ft_client_download_arq()
ft_client_download_range ()
ft_client_receive_stream()
ft_client_receive_stream_packet ()

ft_client_buffer_request()

Service

Service modules are shown in Figure [5.11

«module»
ft_service
- «module»
ft_service_task() ft_service_download

ft_service_cancel_received()
ft_service_info()
ft_service_format()
ft_service_check()
ft_service_clear()
ft_service_register()
ft_service_deregister()
ft_service_prepare()
ft_service_extract()

l®—| ft service_download_request()
ft_service_fill_from_formatted()
ft_service_fill_from_unformatted()
ft_service_send_range()
ft_service_buffer_file()

«module»
«module» @ pcbuf
ft_service_upload

pcbuf _send_buffer_packet()

ft_service_receive_upload() pcbuf_buffer_memory()
ft_service_receive_stream_packet() pcbuf_buffer_file()
ft_service_missing_range() pcbuf_clear_buffer()

pcbuf _format_buffer()

Figure 5.11: C modules for the FTS.

On the top level, the[F'TS|is implemented as the pthread task ft_service_task(). It listens
to a socket that accepts [CSP] connections, and responds to the requests received from [FTCs
All the original [M6P] requests are answered:

ft_service_info() replies with metadata of a specified file, if it exists.
ft_service_format () attempts to reformat a specified file and replies with a result code.

ft_service_check() checks a specified range of entries in a file, and replies with a bitmap
that encodes the result of the checking.

ft_service_clear() clears every entry in a specified file, and replies with a result code.

ft_service_cancel_received() replies with an error code when there is no ongoing trans-
fer. Cancel requests are handled internally in the download procedure.

5.3. FILE TRANSFER 63

File ID mappings requests are handled:

e ft_service_register() performs a mapping of a specified file ID to file path and replies
with a result code.

e ft_service_deregister() removes an existing file ID mapping, if it exists, and replies
with a result code.

Transformations between original and formatted files are handled:

e ft_service_prepare() creates a formatted file from an original file.
e ft_service_extract() restores an original file from a formatted file.
The following upload and download service procedures are detailed in Sections to[5.3.7}
e ft_service_receive_upload()

e ft_service_receive_stream_packet()

e ft_service_missing_range()

e ft_service_download_request()

e ft_service_send_range()

o ft_service_fill_from_formatted()

e ft_service_fill_from_unformatted()

e ft_service_buffer_file()

e pcbuf_buffer_file()

5.3.4 Transfer Modes

The following sections go into detail on the procedures that are used in the different transfer
modes.

e Direct download mode (Section |5.3.5)).
e Direct upload mode (Section [5.3.6)).

e Buffered download mode (Section |5.3.7)).

5.3.5 Direct Download

The data path of a direct download is shown in Figure [5.12] The stream packets are addressed
directly to the [FTC|in the operator node. The file data is sent from the [F'TS|and routed through
the [PC| before being transferred over the S-Band link. The [MCY] distributes the packets to the
operator node as well as backing up the traffic in the database.

The [FTY is referred to as the source, and the [FTC|is the destination. The [FTS| holds the
source file, and the [FTC]| holds the destination file.

64 CHAPTER 5. FILE TRANSFER SYSTEM

FOPU/ISDRT _i i_SmTHS; Lab _i
i — r— — 1
| v Download 1 | F aTCF’_LI |
Request | Database User |
| [) | C__ _J | L T— _ |
| ! | A | |
r -
PC
el e
CAN csP SPI|S-Band |RF| Gs Mission frcp
FTS	Routing	Radio Radio > So?t?;/is"e
Lo		Log
file		file
L - — — — L — — —

Figure 5.12: Data path of the direct download transfer mode. A file download command

initates a file transfer from the [F'TS] The data is routed through the [PC] S-Band radio
and ground station before reaching the [F'TC]

Service

The replies to download requests with file streams.
A few procedures are used together to answer each request:

e ft_service_download_request(), which validates the download request.
e ft_service_send_range(), which sends the file stream.

o ft_service_fill_from_formatted(), which creates stream packets.

e ft_service_fill_from_unformatted(), which creates stream packets.

There is only a single type of download request, and it is answered with the download
request procedure. This procedure is illustrated in Figure

Each download request must specify the file ID of the file that should be downloaded. The
queries the fs_idmap module to check whether the file exists. An error is returned if it does
not.

The request must also include the start and end of the range of entries that should be
downloaded from the file. The [F'TS| checks whether the specified range exists in the file, and
replies with an error code if it does not.

Once validated, the requested range of entries will be passed to the send range procedure,
which is illustrated in Figure [5.14]

The send range procedure will first fetch a [CSP| packet buffer. If no buffers are available,
it will sleep for a duration of time and try again. Once a packet buffer has been acquired, it
will fill it with entry data by using different procedures depending on whether the source file is
formatted or not.

The £i11 from formatted procedure is used to create stream packets from formatted source
files. It uses the fs module to fetch cells, and inserts them into the stream packets.

The £il1ll from unformatted procedure is used to create stream packets from source files
that are not formatted. This function copies data directly into the stream packets, without

5.3. FILE TRANSFER 65

download request is
received

Source flllc exists

Y

No
Yes

Fetch source file
metadata

Requested range of entries exists?

No
Yes

Run send range
procedure

‘Successf‘ul

No

Yes '
Return error
response

Figure 5.13: The download request service procedure. It validates the request before
sending a range of entires.

creating a formatted file. The procedure requires an extra parameter to determine the entry
size since the source file does not have a file header. The entry size is used to calculate the
data offsets for entries in the unformatted file. The procedure uses the pkt_sz parameter of the
download request to calculate the entry size. When inserting data into the stream packets, the
procedure simultaneously inserts a calculated [CRC| code and length field.

The send range procedure terminates once it has sent the last entry in the specified range.

Client

The [F'TC| conducts the download by sending download requests and receiving the resulting file
streams.
Several nested procedures are called to perform the transfer:

e ft_client_download_file_id(), which creates a formatted destination file.
e ft_client_download_file_formatted(), which validates the formatted destination file.

e ft_client_download_arq(), which performs retransmission.

66 CHAPTER 5. FILE TRANSFER SYSTEM

- A

.—» send range is issucd
(.

Y

J

\
—— | Fetch packet buffer Retry delay
Buffer acquired‘ Max T
retries? N
No ><\ 0
O /

Yes

v Yes
N

| o 1
File is Formatted N File is not Formatted

Y

Create stream packet Create stream packet
with fill from with fill from
formatted unformatted

v

Send stream packet

|
Last entry sent?

No
Yes '
4—[Log error

Figure 5.14: The send range service procedure. It creates stream packets from the
specified range of entries. It uses one of two different procedures to fill the data field of
the stream packet, depending on whether the file is formatted or not.

e ft_client_download_range(), which downloads individual ranges.
e ft_client_receive_stream(), which handles an incoming file stream.
e ft_client_receive_stream_packet (), which handles individual stream packets.

The top level download file id procedure, illustrated in Figure will first request in-
formation about a specified source file at the source node. The requested information is used to
create a formatted destination file that the source file can be downloaded into. If the destination
file already exists, and has the correct format, it will be used as it is. This way, a transfer
that was interrupted can be continued by downloading to the incomplete formatted file. If the

destination file exists, but is not correctly formatted, the user is given a choice to reformat the
file.

5.3. FILE TRANSFER 67

The source file can be formatted or not formatted. If the source file is formatted, an identical
formatting is performed on the destination file. If the source file is not formatted, a formatted
destination file of type STATIC is created, and the entry size is decided by the [F'TC| The entry
size is then communicated via the pkt_sz parameter in the subsequent download requests.

When a formatted destination file has been created or validated, the download file formatted
procedure is called to perform the next stage in the transfer.

\
download file id
Command is
issued

Y

Request file
information from
source node

_/

_J
Destination file exists?

Make new formatted
No file with parameters
from source
Yes

Destination file format
parameters match source file?

No Reformat
< hoice —No
Yes Yes

Reformat
destination file
with source
parameters

Run download file
formatted

L]
Success?

Y

liNo_Q

Yes

B Report error }»@

Figure 5.15: The download file id procedure prepares a formatted destination file
before requesting a download.

The download file formatted procedure is illustrated in Figure[5.16] The procedure down-
loads a formatted file from a and assumes that a corresponding formatted destination file
exists at the [FTC| node.

First, the requests information about the formatted source file. If the formatted desti-
nation file matches the format parameters (file ID, entry size, entry number), then the download
arq procedure is run. Otherwise, the formatted destination file cannot be used to download that
formatted source file, and an error is reported.

68 CHAPTER 5. FILE TRANSFER SYSTEM

The download file formatted procedure is similar to the download file id procedure,
but will not create or reformat a formatted destination file, it will only verify that one exists.
The function is included as a separate procedure to be integrated into automatic procedures that
do not ask the user for input in the way that download file id does.

download file
formatted is issued

— T -
Destination file exists

Y

No
Yes

Request file
information from
source node

Source file and destination file is
formatted with matching parameters?
b4

No
Yes

Run download
arq procedure

Successful

No

Yes

Return error

Figure 5.16: The download file formatted procedure verifies that a valid formatted
destination file exists before starting the actual download procedure.

The download arq procedure, as illustrated in Figure is responsible for performing the
reliable transfer. It will find the first occurrence of a range of missing entries in the formatted
destination file, and send a download request for that range with the download range procedure.
For a new transfer, this will first be a request to download the whole file. After one iteration,
any entries that have been lost or corrupted in transmission will be detected as the procedure
again seeks out the first occurrence of a range of missing entries. This repeats until all entries
are transferred successfully.

The download range procedure, as illustrated in Figure [5.18| sends a download request to
a and waits for a response acknowledging the request. If a successful [ACK]is received, the
connection is passed to the receive stream procedure.

There are two scenarios that require extra attention. The request packet and the response
packet that acknowledges the request may both get lost in transmission. In the first case, a
response will not get sent, so the client will time out and resend the download request. This

5.3. FILE TRANSFER 69

donwload arq 1s
1ssued

Look up ranges of
missing entries in
local destination file

=T
All entries present?

Y

Q—Ye §—

No
Y

Run download
range on a missing
range

Successful?

Y

>

No

Y

Return error

Figure 5.17: The download arq procedure requests transmission of missing entries until
a complete file has been downloaded.

repeats until a maximum number of retries have been exhausted. In the second case, the [ACK]
response is lost, such that the client receives one of the subsequent stream packets instead. The
client must therefore check whether it has instead received a stream packet for the file range it
just requested. If so, it can assume that the [ACK]response was lost, and will carry on receiving
the stream as normal.

The receive stream procedure, as illustrated in Figure waits for the arrival of stream
packets and stores their entries into a formatted destination file. If the procedure times out while
waiting for a stream packet, or if the final stream packet in the requested range arrives, it will
terminate successfully.

Together, the described download procedures are able to reliably transfer a formatted file
from the [FTS to the [FTCl

70 CHAPTER 5. FILE TRANSFER SYSTEM

4 A

download range
procedure 1s issued
. * J
4 N
Send download
request with range

. /

T
.)
Received successtul response? No

) ‘

* Received correct

stream packet?
No

Yes Yes Yes

Y '

Assume response

Max
Retries?

Run receive lost. Pass packet to
stream procedure. receive stream
packet

| '
@4 [Return error

Figure 5.18: The download range procedure, which downloads a specified range of a
formatted file.

5.3.6 Direct Upload

The data path of a direct upload is shown in Figure [5.200 The stream packets are addressed
directly to the in the payload. The file data is sent from the [F'TC|via a ground station that
routes the packets to the satellite over a connected radio link. The [PC|receives the packets from
the S-Band radio, and routes them to the on the payload.

The upload procedures are similar to the download procedures. The [F'TC|is now referred to

as the source, and the is the destination. The holds the source file, and the holds
the destination file.

Service

The following procedures are used for receiving uploads:
e ft_service_receive_upload(), which validates stream packets.
e ft_service_receive_stream_packet (), which stores the contents of stream packets.
e ft_service_missing range(), which responds to missing range requests.

When the receives a stream packet it is interpreted as part of an upload procedure. The
[F'TS)is always ready to accept file entries, but it will only store them if there is a valid, formatted

5.3. FILE TRANSFER 71

receive stream
procedure 1s issued

Y

~
Wait for stream
packet <<
T - M :
Timed out? ore entries
f
Pass stream packet to
No—p»] .
© receive stream packet
.
Yes
Last entry

Figure 5.19: The receive stream procedure, which stores the entry data from incoming
stream packets into a formatted destination file.

file prepared to accept them. Therefore, before uploading a file, a formatted file must be created
at the

File streams are directed to the ft_service_upload() procedure, which examines the stream
packets to determine whether a formatted destination file exists.

After verifying that a formatted destination file exists, the stream packets are passed to
the ft_service_receive_stream_packet () procedure. This procedure examines the formatted
destination file to check whether it already contains the received entries. Missing entries are
inserted into the formatted destination file.

The ft_service_missing_range() procedure responds to the missing range requests, which
is a part of the upload strategy. The response returns a list of ranges that indicate which
entries of a formatted destination file are still missing. The list is used by the to determine
which ranges of entries it should upload.

Client

The also conducts the upload procedures.
The following nested procedures are used to upload a file:

e ft_client_upload file_formatted(), which verifies that a formatted destination file
exists.

e ft_client_upload_arq(), which performs retransmission of missing entries.
e ft_client_upload_range(), which uploads individual ranges of entries.

The is responsible for making sure that there is a valid formatted destination file at the
[F'TS] before attempting to send file entries.

72 CHAPTER 5. FILE TRANSFER SYSTEM

MSmallSat Lab | fopUu/sDR. !
lr———1| I I
Boot
[| User | I Images I
[o |
Iy P |
I " I I
| FTC TRl Comol o] 3 [RES-Band|SPIL | csp CAN o E1s |
o Software Radio Radio |' Routing | ™
: il
I I
I I
I I

I
I
I
I
I
I
I
I
I
I
.|

Figure 5.20: Data path of the direct upload transfer mode. The user transmits file data
to the payload. The data packets are routed through the MCS and S-Band radio. The
PC performs the final routing before the data is received at the payload and stored into
a formatted file.

The top level procedure upload file formatted, illustrated in Figure will attempt to
upload a formatted source file. It will first request information from the [F'TS| to check whether
a valid, formatted destination file exists. If a matching formatted destination file (file ID, entry
size, entry number) exists, the upload arq procedure is called, otherwise an error is reported.

The upload arq procedure, illustrated in Figure will attempt to reliably upload a
formatted source file. It will alternate between requesting ranges of missing entries from the
[FTS| and issuing the upload range procedure on the returned ranges. Initially, the request for
missing ranges will yield a single range indicating that the whole file is missing. If packets are
lost or corrupted in transmission, several requests for missing ranges must be sent. The upload
arq procedure terminates once the response to missing ranges yields an empty list, or if an error
occurs.

The upload range procedure, illustrated in Figure will send a specified range of entries
as a file stream. It will pack exactly one entry in each stream packet, without or length
fields. After sending the last entry, it will successfully terminate.

5.3.7 Buffering

Similar to [CFDP[s store-and-forward capabilities, the [PC| can be used to store a file before
forwarding it. The datapath for this operation is shown in Figure [5.24]

Instead of sending a data stream directly to the intended recipient, the payload sends the
file contents to a[CSP|service on the [PC| The [PC|stores the data in a buffer file, which can then
be transferred using the file transfer facilities provided by [NA] or with the [F'T] system that is
described in this Chapter.

The can be requested to act as a buffering client to the buffering service on the [PC|
The following procedures are used for buffering files:

e ft_client_buffer_request(), which sends the buffering requests.
e ft_service_buffer_file(), which validates the buffering request.

e pcbuf_buffer_file(), which performs the actual buffering.

5.3. FILE TRANSFER 73

upload file
formatted
Command is issued

Y

Request file
information from
destination node

Timed out? No

Max
retries?
Y054><>
No

Yes
(File info received]

L .
Destination file exists?

Y

QNC

Yes

Destination ﬁle is formatted
with matching parameters?

No
Yes

v v

Run upload arq
procedure

v

®-

Figure 5.21: The upload file formatted procedure, which upon verifying that a valid,
formatted destination file exists, will attempt to upload data to it.

Return error

Upon receiving a buffering request sent with ft_client_buffer_request(), the ft_service_-
buffer_file() checks that the specified file exists. A valid request is passed to the pcbuf_-
buffer_file() procedure which uses the pcbuf module to send the file contents to the
buffering service.

When buffering a new file, the buffer file must be cleared before sending data to it. The
whole procedure, with clearing, buffering and subsequent direct downloading is illustrated in
Figure 5.2

When buffering, the file format that is outlined in Section is not used. The raw file

74 CHAPTER 5. FILE TRANSFER SYSTEM

upload arq
Command 1s
issued

v

Request ranges of

——»| missing entries from |[«——No
destination node

Timeld out
Y
O—Yes— Max Yes
retries
No

Empty response

Yes

No
Y

Run upload range
on a missing range

|
N Successful

Last

—Yes
range

o
¢

Y
1\io

Return error Return error

Figure 5.22: The upload arq procedure, which attempts to reliably send a formatted
file by requesting missing entries.

data is inserted directly into [CSP| packets without any metadata. The buffering service in the
accepts and appends the data of each packet at the end of the buffer file.

Reliability

The buffering procedure employs a stop-and-wait strategy. Each packet of raw file data is ac-
knowledged with an [ACK] packet. There is no sequence number, meaning that the transmission
may theoretically suffer from the problem described in Section If the data packet is lost,
then no [ACK]is generated, such that the buffering client can retransmit the data packet. How-
ever, if an packet is lost and a retransmission of the data is issued, then the buffering
service may incorrectly interpret the retransmitted data as the next data.

5.3. FILE TRANSFER

upload range

Command 1s

1ssued

v

Send a Stream
Packet with File

Entry

Last entry in range

_NOQ

Yes

75

Figure 5.23: The upload range procedure, which sends a range of entries as a file stream.

OPU/SDR I i_
| r Buffer 7 |
Request
- — 1
oy
| | CAN |
| FTS e
I I I
I I I
I I I
I I I
I I I
L — — 1 L

Buffering
Service #1

Buffer

File#1

Request
 J

!

rDownload7

File Transfer
Service

CSP
ctwork

MSmallSat Lab
I r— = =1
I | User
I C_
v
I
i FTC
I

I

I

I

I

L —

— 5
I
I
a
I
I
I
I
I
I
I
I

—_—

Figure 5.24: Buffered download mode. A file is buffered on the PC before being down-

loaded.

Store and Forward

Buffering is not used to solve the same problem as in [CEFDP] Whenever the radios have an
established connection to the ground, the payloads also have a connection to the ground, so the
feature is not being used to work around a partially connected network. The issue it solves is the
[CAN}bus being a bottle neck in communication chain. By storing the file in the [PC| the faster
[SP]| interface becomes the slowest link during a direct download from the [PC]

76 CHAPTER 5. FILE TRANSFER SYSTEM

Buffering Payload Ground
Client Controller Operator
L I I
pcbuf_clear_buffer() - | :
Vad I
I
osuccess . i !
pcbuf_send_buffer_packet_ | :
Vad I
: ACK |
S T |
pcbuf_send_buffer_packet_ | \
g |
: ACK '
B v '
} . _ Download Request
1
| Success >
1
| |_IFile Stream . 5
| | I
Buffering Payload Ground
Client Controller Operator

Figure 5.25: Sequence of buffering data on the PC, and then downloading it with a direct
download procedure.

Transfer Speed

The transfer speed from the [PC| to the ground is fully dependent on the radio link quality. The
effective data rate of the S-band link is approximately 0.8 Mbps [21], almost double the effective

rate of over the bus [12].

Chapter 6

Testing & Results

A has been designed for the [OPU] payload, and a [FT] system has been designed and
implemented.

This chapter presents the achieved results. The is presented before the hardware test
setup is outlined.

Tests are performed to check or measure:

e Correctness of fs and £t modules (Section [6.3)).

Correctness of service and client interactions (Section [6.4)).

e Communication delays between subsystems (Section [6.5)).

Effective data rates in the network stack (Section .

Reliability of the system (Section [6.7)).

Buffering capability of the (Section .

6.1 Breakout Board

The design process has resulted in an implementation that should be able to fulfil the
requirements of all connected components.
The achieved features of the implemented are listed as results.

e The[PZ]is provided a connection to the [MGP|[CAN}bus.
e The BOB]is supplied with VBAT and 12V power from the [EPS]

. distributes regulated power to [PZ] [HSI] and [RGB]
e The [HS] camera is provided a data and control interface over Gigabit Ethernet.
e The [RGB camera is provided a data, control and power interface over [USB]

e The flash signal of the [HS]| camera is provided a connection, which is used to timestamp
the captured images.

e The [PPYS]| signal from the [PC| is provided a connection, which will allow the [OPU] to

synchronise its local real time clock.

e The[PZ]is provided with a [SD]storage device to store image data.

77

78 CHAPTER 6. TESTING & RESULTS

Figure 6.1: A rendering of front side and back side of the final Breakout Board PCB.
A model of the PicoZed SoM is included on the back side render to illustrate how the
Breakout Board and PicoZed will look like when they are connected.

A render of the final implementation is shown in Figure
The [BOB] was not manufactured in time to be tested for this thesis. The was also
not tested because it depends on the

6.2 Hardware Test Setup

All tests that include payload hardware were performed using the ZedBoard development kit
(see Section [4.1.3).

The [PC| and [EPS| subsystems that were used during testing were pre-programmed with a
125 kbps [CAN}bus rate. New firmware that enables a 1000 kbps [CAN}bus rate was eventually
provided by but not in time for the testing for this thesis. In order to connect to the [MGD]
subsystems, the [OPU| payload has therefore been tested at 125kbps instead of the full [CAN}bus
rate of 1000 kbps.

A photo of the hardware setup that is used for testing is given in Figure[6.2] A block diagram
of the same setup is provided in Figure [6.3]

The [PC| is in the top left corner. The [EPS is in the top right corner. The ZedBoard
development kit, which runs the [OPU] services, including the [FTS] is in the bottom left corner.
The bus, CAN1, is annotated as (1). CAN1 connects to the development workstation
via a [CAN}bus adaptor. The development workstation runs the [FTC| CAN1 also connects to
the and The payload bus, CAN2, is annotated as (2). CAN2 connects the
to the Zedboard. The ZedBoard is connected to CAN2 via a logic level shifter circuit and [CAN|
transceiver circuit shown as (3). The ZedBoard is provided 12 V power from a wall socket adaptor
(4). The is provided 3.3V power from output channel 5 on the m (5). The is being
charged at 12V from a wall socket adaptor (6).

6.3 Automated Module Testing

The modules created for this thesis are implemented for payloads that run Linux on an ARM ar-
chitecture. Since the modules are implemented for Linux, they can be tested on the development
workstation (x86_64 Linux) with no change to the source code. This allows the modules to be

6.3. AUTOMATED MODULE TESTING 79

Figure 6.2: Hardware setup used for all tests that were performed on the ZedBoard.
(1) shows CAN1. (2) shows CAN2. (3) shows CAN transceiver. (4) shows lab power for
ZedBoard. (5) shows PC power from EPS. (6) shows charger cable for EPS.

PC EPS
12 V
Charger
CA+N2 T CAN1 I
ZedBoard A%ﬁ;)lt\g)r ﬁ» Workstation
+
12 VvV
Lab Supply

Figure 6.3: Block diagram of the hardware setup in Figure [6.2]

80 CHAPTER 6. TESTING & RESULTS

frequently tested during development, even automatically. This way, regressions can quickly be
detected.

The CMake build systenﬂ is used to compile and link the applications, and the CTest subsys-
tem of CMake is utilised to run tests [31]. CTest is CMake’s test driver program, and is instructed
via CMakeLists.txt configuration files to run specified programs as a test suite. Results are col-
lected from the tests and presented on the command line. Jenkinﬁ was used throughout parts
of the thesis work to run the test suite automatically whenever new code was pushed to the Git
repository.

Unit Tests

Some of the C modules, like fs, fs_idmap and fs_log (implemented to test the logging capabil-
ities of the subsystems) can be functionally tested with a limited amount of dependencies
to other modules. The only dependency of fs is to crc32, and fs_idmap and fs_log is only
dependent on fs. Unit tests have been created for these.

The unit testing framework Checkﬂ is used to create unit tests for the low level modules.
The tests are compiled and then run with CTest.

Automated System tests

The client and service modules are challenging to automatically test because they have many
interdependencies. Both the client node and the service node must be initialised and run concur-
rently in order to exchange [CSP] packets and perform meaningful tasks. This requires the test
code to initialise the nodes and place them into a known state before initiating the actual test
case. Consequently, it takes more time to write tests for these.

Despite the challenges, some of the [FTC| and [FTS| functionality has been given automatic
test coverage. These cover basic request/response transactions and basic download functionality
over a lossless channel. Most client and service functionality, however, does not have automatic
test coverage.

Automatic tests for the flatsat have been created. These are not run to verify the correctness
of the [M6P| subsystems, but rather to verify the communication between payload and flatsat.
The tests are used to diagnose connectivity issues, which have proved to be a frequent occurrence.

Automated Test Results

The functionality that was given automated test coverage has been continuously tested through-
out the thesis work. All tests are passing successfully. The CTest report is presented in Listing[2]
as a result.

6.4 HYPSO CLI

The majority of system level functionality has been tested manually. A [CLI| program has been
created to perform this testing.

The hypso-cli program is implemented as a|[Read—eval-print loop (REPL)| it takes readable
text commands as input from a human operator, executes them, and presents the results or
output.

Thttps://cmake.org/
Zhttps://jenkins.io/
3https://libcheck.github.io/check/

6.4. HYPSO CLI 81

make -C build/x86 CTEST_OUTPUT_ON_FAILURE=1 test
make [1]: Entering directory '/home/magne/repos/hypso/build/x86"
Running tests...
Test project /home/magne/repos/hypso/build/x86
Start 1: test_fs

1/5 Test #1: test_fs iiiinn... Passed 0.44 sec
Start 2: test_fs_idmap

2/5 Test #2: test_fs_idmap Passed 0.17 sec
Start 3: test_log

3/5 Test #3: test_log i Passed 0.02 sec
Start 4: test_ft_service

4/5 Test #4: test_ft_service Passed 4.59 sec
Start 5: test_shell_service

5/5 Test #5: test_shell_service Passed 0.33 sec

100% tests passed, O tests failed out of 5

Total Test time (real) = 5.56 sec
make [1]: Leaving directory '/home/magne/repos/hypso/build/x86"'

Listing 2: Reported results from automated tests run with CTest.

In most situations, the hypso-cli program acts as a client that sends requests and receives
replies from services. It does this by connecting to a [CSP| network via a interface or a
interface. The interface can be connected to the engineering model of the
satellite, or directly to a payload. The interface can connect to the flatsat.

The capabilities of the hypso-cli program are summarised in Appendix[C] A terminal dump
is provided for the help command which prints the available commands, their arguments and a
corresponding help text.

6.4.1 File Transfer Client

An example of a[CL]|interaction is illustrated in Figure [6.4] where a user downloads a file from
a[FTS] After starting the [CLI| program, the user can insert a text command. If the parser can
deduce a valid command from the input, it is promptly executed with the provided arguments.
A download command results in a series of £t_client module functions to be executed. A file
info request is first exchanged to verify that the source file exists, and that the destination file
is correctly formatted. Then a file download request is exchanged to initiate the download
stream. All output from the ft_client module is printed for the user to see, and the final
return code is reported.

6.4.2 Remote Shell

A remote shell module was implemented to aid development. The remote shell enables an user
to execute arbitrary shell commands on a remote [CSP| node.

A shell service module runs as a task on the payload, listening for shell command packets.
A corresponding shell client module accepts text strings which it transmits as commands to the
shell service. An example where the shell command uname -a is executed is shown in Figure[6.5]

When executing a command, the shell service wraps the command in a timeout command.
This prevents the shell service from locking up when waiting for a command that does not
terminate in a reasonable amount of time.

82 CHAPTER 6. TESTING & RESULTS

User File Transfer Service

I I
[} 1
| |
Text Command Input ! :
ft download id 12 ! I
2 dst_file o :
~ 1
file info request > X

JSeinfo
I
file download request_ !

Fositive notification

(Stream packet

(Stream packet
I

R rt
< eportsuccess o |
| | |
User hypso-cli File Transfer Service

Figure 6.4: Example use of the hypso-cli program. A file transfer request is sent to a
FTS, and the result is reported back to the user.

The implementation of the shell client module is made compatible with the remote shell
capabilities of the [M6P] subsystems. This is useful for system integration because it lets the
developer access the [MGP| subsystem shells over the [CSP| network, without having to attach an
extra serial cable to each subsystem.

Although it is not a listed requirement, the author suggests that the service be included in
the flight version of the payloads. Access to a shell on the payload can be a powerful tool for
in-orbit debugging and development.

6.4.3 Loopback Services

In addition to performing the role of a client, the hypso-cli program can also run payload
services locally. The payload services can be run concurrently with the command interpreter, and
by utilising the loopback capabilities of the [CSP]library, the client and service can communicate
with each other within the same Linux process. The concept is illustrated is Figure

The primary reason for running the services locally in the [CLI| program is that the services
can be tested quicker than if the client and service had to be deployed to different machines. If
deploying on different machines, either the source code or the compiled program binaries need
to be distributed before the client or service can be executed.

A downside to running the services in the same program as the [CLI]is that the service being
tested is not the same program as would be run on the payload, and it is not compiled for the
same architecture. It has other threads running concurrently, contesting for resources such as
[CSP] packet buffers.

An alternative to running services in the same program is to run them in a standalone
program, but still on the same computer. Just like the [CSP] enabled payload program must
be able to connect to an external [CAN}bus, it can connect to a virtual [CAN}bus. A wvirtual
[CAN}bus is interfaced just like a regular Linux [CAN] device, but acts as a loopback interface. It
does not represent an external [CAN}bus, and only processes on the same machine can connect

6.4. HYPSO CLI

Shell Service

shell_send_command(uname -a)

Start hypso-cli
shell remote 12

HYPSO CLI ||
Shell Client

I
I _Userinput: uname -a

l

shell_service_execute_command(uname -a)

Output, 1 Linux avnet-di

ilent-zedboard-

Shell Service

Figure 6.5: Remote shell sequence. An user inputs a command that is sent to the shell
service and executed. The output from the shell command is returned to the shell client
and printed for the user.

Human
Operator

Figure 6.6: Setup for performing system tests on development workstation.

HYPSO CLI
Shell Client

ot HYPSO CLI Process
Keyboard : File Transfer
Input ol CLI Module Command‘ Filec"{irear?tsfer Fﬂg;l;ﬁ?esfer
I
I
| Requests“ “Replies
| v Y
: CSP Loopback
L— — . — —— e — — — e —— e — — — —_— — —— =

83

84 CHAPTER 6. TESTING & RESULTS

to it.
The [CSP] loopback feature and virtual [CAN] devices have both been leveraged to perform
manual and automatic functional system testing on a single development machine.

6.5 Communication Delays

Communication delays between satellite subsystems are measured on the hardware setup. The
listed delays are averages of measured [RT'TS, The[RTT|includes the time it takes for the interfaces
to receive and transmit packets (transmission time), as well the time it takes to exchange
packets with service and client code (processing time), as summarised in equation .

Communication Delay = Transmission Time + Processing Time (6.1)

The setup for measuring the communication delays is shown in Figure

<——1 Hop > 1 Hop——»
| | |
<<CAN2»> OPU

Y
<
@)

CLI |«CAN1 i |

EPS

Y

Figure 6.7: Setup for measuring communication delays.

The[RTT]is measured by sending [CSP|ping packets. The ping packets have empty data fields,
but still contain six bytes worth of [CSP|identifier and length information. The transmission time
of these six bytes is directly proportional to the baud rate. For this reason, different results
are expected when using the full [CAN] baud rate of 1000 kbps.

The measured communication delays for 125 kbps baud rate are listed in Table as average
RTTH

Table 6.1: Round trip delay times for the subsystems in the test setup.
Node Repetitions Averaged RTT [ms| Distance [Hops]

IPC 1000 2.58 1
[EPS 1000 2.78 1
OPU 1000 4.73 2

6.6 Effective Data Rates

The data rate at each level in the network model is measured. The setup from Figure[6.7]is used.
All [CAN}buses are run at 125 kbps.

e Link layer [CAN}bus: data rate is measured with the canbusload Linux utility program.

6.7. PACKET LOSS TEST 85
e Network and Transport Layer [CSP} raw data rate over [CSP]is measured by using [TFTP]
in unacknowledged mode, and subtracting [TFTP| overhead.
e Application layer [F'T] system: effective data rate is measured by transferring a file.

e Application layer [TF TP} effective data rate is measured by transferring a file with the
send-and-wasil strategy.

The measured data rates are summarised in Table [6.2]

Table 6.2: Effective data rates of different layers and protocols in the network stack.

Layer Protocol Data rate [kbps| Ratio of [CAN] %]
Link [CAN 57.87 100.00
Network /Transport CSP 56.50 97.63
Application F'T| system 52.00 89.86
Application TFTD| 25.95 44.84
Application |TFTP|, no |PC| 51.87 89.63

The measured effective data rate of the [CAN}lbus is 46.29 % of the signalling speed, and
94.77 % of the theoretical upper limit on maximum utilisation (equation)

Table shows that the effective data rate over [CSP|is 97.63 % of the measured data
rate. The combined overhead of [CSP| and the [F'T] system puts the effective data rate of the
system at 89.86 % of the measured data rate. This suggests an average overhead of
10.14 % when transferring files, although this does not account for the communication delays for
the requests.

The data rate of [TE'TP|is included to compare the [F'T]system with a stop-and-wait strategy.
The significant decrease in data rate for [TFTP]is caused by the large [RTT] that is caused by
having to go through the [PC| For a stop-and-wait protocol such as [TETP] the data rate is
directly proportional to the [RT'T] This was confirmed by repeating the experiment without the
[PC| which halved the [RTT] and doubled the effective data rate.

6.7 Packet Loss Test

The reliability of the [F'T] system must be tested and demonstrated. This section details a setup
for testing the [F'I] system over an unreliable channel.

Setup

The test setup is illustrated in Figure The hypso-cli program is designated as the [FTC]
while a ZedBoard is configured with a[F'TS To simulate a situation with a more realistic [CSP)|
network, the MGP|[PC|is included as an intermediary [CSP|node that acts as a packet router. The
[PC] connects to the ZedBoard payload via CAN2 and to the development workstation that runs
the hypso-cli program via CAN1. Additionally, a [CSP]bridge that drops packets at random is
included in the communication chain. This bridge program connects to the external CAN1 bus,
and to the hypso-cli program via a virtual [CAN}bus.

Test parameters

The packet dropper bridge can be configured to drop a certain percentage of packets. It can
also be configured to drop bursts of packets instead of dropping packets evenly. The bridge can

86 CHAPTER 6. TESTING & RESULTS

i_ Development Workstation —i i_ ZedBoard —i
cLEle	y Packet	Pavload		opUFile	
Transfer 1 Dropper [«—LCAN1—»] C y oau «—CAN2L»	Transfer				
Client CAN Bridge . ontrotier	Service				
[
Lo o o a A Lo a
] Power
E r— —l—— A
eeces| EPS |
S |

Figure 6.8: Setup for testing the reliability of the FT system. A CLI program acts as a
FTC which sends file transfer requests to a FTS on the ZedBoard. A CSP bridge drops
packets to mimick an unreliable radio channel.

decide to only drop packets in a single direction to simulate an asymmetric radio link, but for
this test it does not discriminate between space-bound and Earth-bound packets.

Combinations of channel configurations are tested to characterise the system. A number of
drop rates are tested and compared to equivalent drop rates with bursts.

Test results

The same 769.541 KB image, is transferred in all configurations. The transfer duration is
recorded, and the effective data rate calculated.
The test results are shown in Figure [6.9 The collected measurement data is included in

Appendix D]

6.8 Payload Controller Buffering

The buffering capabilities of the [PC|are tested. The typical use case for buffering is to download
a large file.

The hardware setup from Figure [6.2] is used for testing the buffering capabilities. The data
path is illustrated in Figure [6.10}

The payload (ZedBoard) is connected to the via CAN2, and the is connected to
the ground (workstation) via CAN1. The hosts a buffering service, a buffer file, and a
[MG6P file transfer service.

The test is carried out by moving a file through the entire data path, from [FTS| on the
ZedBoard to the [FTC] on the workstation.

A buffering request is first sent to the [F'TS| The [FTS| then starts the buffering procedure, in
which the file is fragmented and sent to the buffering service on the [PC| using the stop-and-wait
strategy. When the whole file is buffered on the [PC] it is downloaded from the [PC] file transfer
service using the reliable direct transfer mode.

Functional testing shows that a 769.541 KB file could be buffered and then downloaded
successfully. For the 125kbps[CAN| bus, the data rate was 52.17 kbps when buffering from [OPU]
to[PC] and 47.50 kbps when downloading from [PC| to the [CLI node.

6.8. PAYLOAD CONTROLLER BUFFERING 87

<X Evenly distri
— y distributed
501 *W A%N 308 X packet drops.
i W= 3 w =10 Burst packet drops,
S)ﬁ& 5‘ T A \ith window length: w.
~ =
% 40 AXX A= 15 I
— W =
2 X A
©
30 - s Aw = 20
}'é A AP=2
c
g X
© 20 X
< A =‘ﬁ/ =30
) A= 30
5 X
2 101 X
£ *X
L
0 T T T T T T
0 5 10 15 20 25 30

Average packet drop rate [%]

Figure 6.9: Effective data rates of the file transfer system for various packet drop rates.
Configurations with packets dropped evenly are shown as crosses and configurations with
packets dropped in bursts are shown as triangles.

r~_. 3. .- A

| Development F—_———— - — — ——— - F—— —— — — -
Workstation		Payload Controller		ZedBoard	
	CLIFile		'l PC File Buffer PCFile	! OPU File	
Transfer [<-CAN 1-»! Transfer Eile Buffering le-CcAN2-b	Transfer				
Client I	Service Service		Service !		
I					
L —— —— — 4 b = 4 L — —— —— -
i Power
i r— ==
S GGRGCEETEEEEEEEEES > EPS |
L—— —— 1

Figure 6.10: Setup for testing the buffering service on the PC.

88

CHAPTER 6. TESTING & RESULTS

Chapter 7

Discussion & Conclusion

In this chapter, the initial requirements are reviewed in order to discuss the achieved results.
Concluding remarks are made.

7.1 Fulfilment of Requirements

The requirements from Chapter [3|are reviewed to determine whether the implemented system
fulfils them. A summary of the requirements and their level of fulfilment is provided in Table[7.1]

Table 7.1: Summary of the design requirements, and the level to which they were fulfilled.

Requirement Relevance for ’ﬁ‘ system Level of fulfilment
IF-001 Compatibility with M Full
MS-0-011 Downlink 1 image of L1A data. Full
MS-0-012 Downlink .4 data in 3 hours. Partial
MS-0-14 Downlink telemetry in 1 pass. Full
M-2-026 Downlink telemetry less than 200 kb. Full
SDR-SMO-1 Downlink measurement data. Full
MS-0-013 Uplink mission data and code. Full
M-1-012 Uplink mission data and code. Full
M-2-015 Uplink mission data 5 min before. Partial
SBUS-3-017 Ability to upgrade software. Full
M-2-014 Up/downlink from multiple stations. Out of scope
SDR-SMO-4 Ability to upgrade software. Full
M-1-015 Downlink L1A data in 24 hours. Partial
M-1-016 Downlink .4 data in 3 hours. Partial

The requirement of being compatible with the bus (IF-001) is fully fulfilled by employ-
ing the protocol and [CSP| protocol in the communication stack.

All requirements that state an ability to download or upload files, without specifying a time
limit, have been satisfied as a result of producing a [FT] system capable of up downloading and
uploading files. This includes MS-0-011, SDR-SMO-1, MS-0-013, M-1-012, SBUS-3-017
and SDR-SMO-4.

89

90 CHAPTER 7. DISCUSSION & CONCLUSION

The requirements MS-0-12, M-2-015, M-1-015 and M-1-016 state a time limit. The [F'T]
system was tested with a[CAN}bus rate of 125 kbps, and achieved an effective data rate of 52 kbps
when downloading over a perfect channel. The timing requirements have been created with the
assumption that the files could be downloaded at the full 1 Mbps non-effective data rate of the
S-Band radio [32]. The achieved effective data rate of 52kbps (or even a projected 416 kbps if
assuming a 1000 kbps bus) does not suggest that the timing requirements would be fulfilled
if using the direct transfer mode.

If using the store and forward capabilities of the [PC| where files are stored on the [PC| in
advance of downlinking them, the full data rate of the S-Band radio can be used. In this case
the timing requirements would be satisfied, but they are still listed as partially fulfilled because
the S-Band radio was not available to demonstrate an effective data rate.

The requirements MS-0-14 and M-2-026 are timing requirements and have been listed as
fully fulfilled. These timing requirements assume an [UHF] radio link with a 9.6 kbps data rate,
which is within the data rates that the [F'T] system is able to handle with the 125kbps [CAN}bus
rate.

The requirement M-2-014 is considered out of scope for the [F'I]system. The ground station
network is handled by the [MCS| that is provided by [NA] The [F'T] system will work as intended
as long as there is [CSP| connectivity throughout the whole mission network.

7.2 Channel Utilisation

The effective data rate of the [F'T] system is approximately 52kbps, as shown in Table If
assuming a proportional increase in effective data rate when switching to a[CAN]rate of 1000 kbps,
one can expect an effective data rate of 416 kbps. This is 85.2 % of the theoretical limit on the
effective data rate that was established in Section 2.4

The communication delay between [FTC| and [FTS|is demonstrated to be the primary driver
of the effective data rate in protocols using stop-and-wait strategies, such as [TFTP} as shown
in Table This effect would be further increased by the communication delays added by the
radio links and ground station processing. The [F'T] system is less prone to these delays, as it
attempts to transfer large ranges of entries without acknowledgement. However, the effect is
apparent in the [F'T] system during the final stages of a transfer. Lost packets or ranges must be
requested individually, causing the [F'TC| to experience delays while waiting for replies.

Reliability

The results of the packet loss test (Figure show that the system is able to deal with
packet loss rates of up towards 30 %. A significant drop in effective data rate is experienced as
the packet drop rates increases. The plot suggests that the [F'T] system will struggle with packet
drop rates of 30 % or above.

The system seems to achieve higher effective data rates for channels that exhibit bursts of
packet drops rather than evenly distributed packet drops. This was expected from the design
of the [FT] system. A burst causes a continuous range of entries to be dropped, all of which can
be requested with a single download request. Since evenly distributed packet drops are unlikely
to be neighbouring, the majority of them must be requested with individual download requests.
A large number of download requests results in a large accumulation of transmission delays,
during which no data is being transferred. Therefore, it can be expected that the [F'T] system will
perform worse if the packet drops are evenly distributed.

The drop rate in the packet drop test is specified in terms of [CSP] packets, and not in terms of
link layer drop rates. The effect of various drop rates for the S-Band radio should be investigated.
If a[CSP| packet is fragmented into multiple frames at the S-Band link layer, a [CSP| packet could

7.3. CSP BUFFER EXHAUSTION 91

be dropped as a result of a single link layer frame being dropped. In this case the [F'T] system
might benefit from sending smaller file segments, even though it increases the overhead of each
packet.

Congestion Monitoring

The traffic on a CAN bus be measured by any node that is connected directly to it. This means
that congestion on CAN2 can be directly measured by the payloads. However, the payloads do
not have direct access to CAN1 and so can not measure traffic on CAN1. When transferring files
with the S-Band radio, the payloads have no way of directly measuring the traffic from [PC]| to

S-Band radio.
Congestion must therefore be estimated by monitoring packet loss.

7.3 CSP Buffer Exhaustion

The[CSP|library allocates a bank of packet buffers. If an application is unable to process packets
at the same rate that they arrive in, the buffer bank will be exhausted and incoming packets will
be dropped.

This situation can occur under erroneous circumstances such as a task deadlocking, or a
blocking system call that stalls a task for an unexpectedly long time.

The buffer bank was monitored during multiple file transfers. The bank was never found
to drop below a few percent. These transfers were carried out on a 125 kbps [CAN] rate, which
places an unrealistically low limit on the received data rate. Buffer exhaustion could be more

likely on a 1000 kbps [CAN}bus.

7.4 Buffering

An added benefit of the [PC| buffering capability is that it can be used to extend the effective
storage space of the payloads. The[MGP|file transfer system also has a higher technology readiness
level than the [IYPSO)] payloads, demonstrated through flight heritage. If the direct download
mode for any reason stops functioning, the buffering capability can be used as a redundant
system for downloading files, provided that the buffering procedure on the payload still works.

The reliability concern that was described in Section [5.3.7] was monitored by checking the
integrity of buffered files while testing the buffering capabilities . However, no attempt was made
to provoke a fault.

Throughout the work of this thesis, a duplication of data as a result of a lost [ACK| was
never detected. The problem was therefore not proven to exist. There is only a single [CAN}bus
between the payloads which send the data and the [PC| which receives the data. It is therefore
thought to be unlikely, but not impossible, for buffered data to be lost.

7.5 Memory Footprint of Formatted Files

As mentioned in Section the file format that is used in the [F'T] system can be changed to
append the metadata instead of interleaving it. The benefit of doing so is that a formatted file
could be created in-place in the original file without moving the original data. This could be
advantageous if storage space appears to be a scarce resource.

Such a change should only be made after an assessment has been carried out on the risk of
corrupting the original file when modifying it in-place.

92 CHAPTER 7. DISCUSSION & CONCLUSION

7.6 On the use of Linux

Some benefits and drawbacks of using Linux have already been discussed in Section

M6P FreeRTOS

The [M6P] subsystems use FreeRTOS. This operating system is significantly less complex than
Linux. In fact, it has been designed to be small and simple [33]. Consequently, the system has
fewer states and is generally easier to verify.

The fact that the MGP|subsystems and the payloads do not run same operating system means
that they also cannot share source code that uses operating system primitives.

CubeSat Space Protocol

By using[CSP} one ends up with ad-hoc protocol solutions, because[CSP|does not readily interface
with standard Linux networking systems. One way of justifying the use of [CSP] is that small
satellites require a smaller footprint than the machines that use the Linux networking system,
which are designed for the requirements of the global internet. The [M6P] subsystems that use
FreeRTOS are examples of such resource limited systems.

Some of the benefits of using Linux are therefore not leveraged. The [OPU] has available the
Linux networking system, which is robust and dependable from having been heavily scrutinised
and reviewed. Despite this, a custom networking solution had to be made to fit the [M6P]
compatibility requirement IF-001.

7.7 Future Work

Breakout Board

The manufactured must be tested. The voltage regulators must be verified to be providing
the correct voltages. All interfaces must be tested after connecting the [PZ][SoM] to the

Integration testing should verify that the can successfully interface the [HSI| camera, the
camera and the [MEPI[CANlbus at the same time.

Channel Utilisation

Further work on the[FT|system could incorporate a mechanism to prevent congestion by adjusting
the sending speed based on reported packet loss.

Communication Network

A few assumptions have been made about the ground station network. Since it is not fully
defined or implemented yet, the [F'T] system has been designed with the expectation that the
can connect directly to the network (Figure that is automatically routed through
ground stations and to the space segment.

The integration of the [F'T] system into the ground station network must be performed once
documentation for the ground stations and [MCS|is available.

Operations

Higher level procedures that can automatically prepare and extract formatted files should be
created, and must be integrated with procedures for capturing images. A scheduler is required
to execute mission plans.

7.8. CONCLUSION 93

7.8 Conclusion

The work in this thesis documents the implementation of hardware and software that is required
to integrate the [IYPSO] payloads with the [M6P] satellite platform. This includes integration of
an operating system, hardware design for a and design, implementation and testing of a

[ET] system.

Specific contributions:

e A[BOB]for the[OPU]payload has been specified, designed and manufactured with the help
of NTNU SmallSat staff (Section |4.1.4).

Configuration and application of an operating system for the m payload (Section [4.1.5]).

A functioning [F'T]system has been designed and implemented, while keeping compatibility

to in mind (Chapter [5).
A system has been implemented and tested with hardware (Chapter [6]).

A program for interfacing the payloads has been implemented (Section .

e A shell service for interfacing the payloads has been implemented (Section [6.4.2)).

Test results show that the implementation of the [F'T] system is capable of transferring files.
Files can be transferred with effective data rates comparable to the data rates of the underlying
protocols, and even over an unreliable network. The [F'T]|system should therefore be able to carry
out the tasks necessary to achieve at least partial mission success.

The quality requirements in Section have not been fully verified. The ultimate effective
downlink data rate depends on the effective data rate of the S-Band radio, which was not available
for testing. The [F'T] system needs to be tested again when a more complete setup is available.

Further work remains to test and verify the and to fully integrate the [F'T] system into
the ground station network.

94

CHAPTER 7. DISCUSSION & CONCLUSION

Bibliography

1]
2]

3]

4]

[5]

(6]

7]
8]

19]

[10]

[11]

[12]

[13]

[14]

California Polytechnic State University, 6U CubeSat Design Specification, 7 2018.

Nanosats Database, “Nanosatellite cubesat database,” 2019. https://www.nanosats.eu/
#info.

"Andreas Budalen, Markus Thonhaugen, Andreas Nilsen Trygstad, “Oppdretter fortviler:
— Algene har drept laks for opp mot 200 millioner,” NRK, 2019.

R. Birkeland, On the Use of Micro Satellites as Communication Nodes - in an Arctic Sensor
Network. PhD thesis, Norwegian University of Science and Technology, 1 2019.

Fred Sigernes, Mariusz Eiving Grgtte, Julian Veisdal, Evelyn Honore-Livermore, Joao For-
tuna, Elizabeth Frances Prentice, Mikko Syrjdsuo, Kanna Rajan, Tor Arne Johansen, “Push-
broom Hyper Spectral Imager version 6 (HSI v6) part list - Final prototype,” tech. rep.,
University Centre in Svalbard (UNIS), Norwegian University of Science and Technology
(NTNU), 2018.

J. Wertz, Space mission engineering : the new SMAD. Hawthorne, CA: Microcosm Press
Sold and distributed worldwide by Microcosm Astronautics Books, 2011.

A. J. Menezes, Handbook of applied cryptography. Boca Raton: CRC Press, 1997.
A. Tanenbaum, Computer Networks. Upper Saddle River, N.J: Prentice Hall PTR, 1996.

E. D. Pal Frenger, Stefan Parkvall, “Performance Comparison of HARQ with Chase Com-
bining and Incremental Redundancy for HSDPA” in IEEE 54th Vehicular Technology Con-
ference. VT'C Fall 2001. Proceedings, pp. 1829-1833, 2001.

C. Doerr, Network Security in Theory and Practice. Christian Doerr, 2018.

International Organization for Standardization (ISO), ISO11898-3 Road vehicles — Con-
troller area network (CAN) — Part 3: Low-speed, fault-tolerant, medium-dependent interface,
2006.

Magne Hov, “Project Thesis: Integration of a Network Stack on a Nano-Satellite Payload,”
2018.

H. D. Ledet-Pedersen J., Christiansen J.D.C, “Cubesat Space Protocol.” https://github.
com/GomSpace/1libcsp, 2018.

E. R. Jahren, “Design and implementation of a reliable transport layer protocol for nuts,”
Master’s thesis, NTNU, 2015.

95

https://www.nanosats.eu/#info
https://www.nanosats.eu/#info
https://github.com/GomSpace/libcsp
https://github.com/GomSpace/libcsp

96

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

23]

[24]
[25]
[26]

[27]

28]
[29]
[30]

[31]
[32]
[33]

[34]
[35]
[36]

BIBLIOGRAPHY

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas,
Laurent Vivier, “The new ext4 filesystem: current status and future plans,” in Proceedings
of the Linux Symposium, pp. 21-34, June 2007.

K. Sollins, “Rec 1350 - the tftp protocol (revision 2).” https://tools.ietf.org/html/rfc1350,
1992.

J. Postel, “Rec 959 - file transfer protocol.” https://tools.ietf.org/html/rfc959, 1985.
“KubOS.” https://www.kubos.com/kubos/, 2017.

The Consultative Committee for Sapce Data Systems, CCSDS File Delivery Protocol
(CCSDS 727.0-B-4), 1 2007.

D. L. Magne Hov, “HYPSO Software - Git Repository.” https://github.com/
NTNU-SmallSat-Lab/hypso-sw/, 2019.

HYPSO Project Team, “Requirements HSI SmallSat,” tech. rep., NTNU SmallSat Lab,
2019.

HYPSO Project Team, “SDR System Design Report,” tech. rep., NTNU SmallSat Lab,
2019.

Liping Di, Ben Kobler, “NASA Standards for Earth Remote Sensing Data,” in International
Archives of Photogrammetry and Remote Sensing, vol. XXXIII, pp. 147-155, 2000.

Avnet, PicoZed 77015 / 72030 SOM - Hardware User guide, 2018.
NanoAvionics, EPS Electrical Power System, Data Sheet, NA-EPS-G0-R0, 2018.

H. Leppinen, “Current use of linux in spacecraft flight software,” in IEEE Aerospace and
Electronic Systems Magazine, vol. 32, pp. 4-13, 2017.

Xilinx, Inc., PetaLinux Tools Documentation Reference Guide, UG1144, 2018.2 ed., June
2018.

Xilinx, Inc., Zyng-7000 SoC' Technical Reference Manual, UG585, 1.12.2 ed., July 2018.
Alén Space, TOTEM Nanosatellite SDR Platform - Motherboard UHF Front end.

H. Leppinen, P. Niemela, N. Silva, H. Sanmark, H. Forsten, A. Yanes, R. Modrzewski,
A. Kestila, and J. Praks, “Developing a Linux-based nanosatellite on-board computer: Flight
results from the Aalto-1 mission,” in IEEE Aerospace and FElectronic Systems Magazine,
pp- 4-14, 2019.

Kitware, Inc, CTest Command-Line Reference, 3.14.3 ed., 2019.
Grgtte, Mariusz et.al, “HYPSO Mission Budgets,” tech. rep., NTNU SmallSat Lab, 2018.

Real Time Engineers Ltd., “The FreeRTOS™ Kernel.” https://freertos.org/RT0S.html,
2017.

NanoAvionics, SSTR6U 6U Structure, Data Sheet, NA-SSTR6U-G0-R0, 2018.
NanoAvionics, Option Sheet, EPS Electrical Power System, NA-OS-EPS-R0, 2018.
NanoAvionics, SatBus 3C2, Data Sheet, NA-OS-EPS-R0, 2018.

https://www.kubos.com/kubos/
https://github.com/NTNU-SmallSat-Lab/hypso-sw/
https://github.com/NTNU-SmallSat-Lab/hypso-sw/
https://freertos.org/RTOS.html

Appendix A

MG6P Satellite Platform

This appendix contains details about the [M6P] satellite platform subsystems.

A.1 Mechanical Frame

The satellite frame is compliant with the 6U CubeSat Design Specification, with only a few
differences from the reference design [34]. The frame is geometrically constructed from a single
rectangular cuboid and two cylinders protruding from one of the smaller faces, see figure

Figure A.1: MG6P satellite bus mechanical frame and solar panels. The two cylindrical
protrusions are nicknamed tuna cans by NanoAvionics.

The satellite frame holds all the subsystems together. It provides mechanical stability that
is important to the survivability of the satellite during launch. The lack of thermal convection
in space means that thermal connections to the frame are important in avoiding overheating
problems. The payload computer(s) may have to be thermally coupled to the satellite frame to
avoid overheating.

The frame also provide a mechanical interface for connecting the payload components. The
components can be fixed to the frame using a grid of countersunk holes. The grid is organised
to be compatibly with PC/104 stacks, which will be useful in the design of the payload
computer hardware. In terms of volume, approximately 4 CubeSat units of space are available
for payload integration.

Each face of the satellite frame is covered by a solar panel carrying triple junction solar cells
from AzurSpace. These cells are rated to an efficiency of 29.3 %. The maximum power output

from a single panel (only one panel is illuminated at the optimal attitude) is rated to 19.4 W in
LEO!

97

98 APPENDIX A. M6P SATELLITE PLATFORM

A.2 Electrical Power System

In many ways, the[EPS|is the most critical subsystem in the satellite, if it fails all other subsystems
fail as well. The [EPS|is responsible for providing electrical power to the remaining subsystems,
and for storing the electrical power supplied by the solar panels in lithium-ion batteries.

Many of the [EPS] features are managed via software by the [EPS| computer.

The design can be organised into three sections: input, output, and storage [25].

The input section is primarily concerned with loading the solar panel outputs in the most
efficient manner. Because of an internal impedance in the solar panel, there exists a certain
load impedance that will extract the maximum amount of power from the solar panel. The
input section achieves this by utilising [Maximum Power Point Tracking (MPPT)| circuits that
continuously adjust their impedance while loading the solar panels. The [MPPT]chips also house
converter circuits that regulate the output to a target voltage that is configurable by software.
The six solar panels are distributed between four [MPPT] converter modules. Two panels can
connected in parallel to the input of each [MPPT]| converter. This allows panels that are placed
on opposite faces of the satellite to use the same [MPPT] circuit, since only one will be sufficiently
illuminated at any time. Ideal diodes are placed in series with each solar panel to avoid reverse
currents between parallel panels.

The output section regulate a battery voltage to stable operating voltages that the subsystems
can use. Four buck-boost converter circuits are employed to supply output channels with four
distinct operating voltages. Two of the output converters are fixed at 3.3V and 5.0V, while
the last two can be configured to any voltage in the range 3.0V to 18V by selecting hardware
components. The regulated supplies can be individually routed to any of the ten output channels.
There are two additional channels that provide always on 3.3V and 5.0V.

Each output channel has two types of overcurrent protection. One is hardware based and is
typically triggered at 3.12 A, but can be customised to any value in the range O mA to 3130 mA
by changing hardware components [35]. The other type is software enabled and run-time con-
figurable, and switches the channel off when the current exceeds a specified value in the range
1mA to 3000 mA. Additionally, the output converters (that feed the channels) perform internal
current limiting.

The storage section implements the battery itself, and additional protection mechanisms
to maintain the health of the lithium-ion battery and the [EPS| Further overcurrent protection
monitors the battery current and disconnects the battery completely if it detects currents that
exceed the safe operating condition of the battery.

Undervoltage protection is implemented as different operating modes that are activated by a
state machine in the [EPS| computer. At decreasing battery voltage levels, a decreasing number
of output channels and features are enabled. The voltage threshold for each mode, and the
organisation of output channels are configurable via software. Only the lowest and most critical
mode is hardware triggered and will disconnect the battery even from the [EPS| computer. At
this point only the [MPPT] outputs are connected to the battery. A smaller external circuit will
then periodically monitor the battery voltage and reconnect the [EPS| computer when it reaches
a safe voltage level. The mode transitions are illustrated in figure

Overvoltage protection ensures that the battery is never charged past its maximum capacity.
The overvoltage mechanism is implemented in the [MPPT] converter circuits, which will adjust
their impedance to change their output. When the battery reaches 8.33 V the MPPT] converters
shift their power points downwards until the battery voltage is perceived as stable.

There is also an external charging port which is connected directly to the battery assembly
and bypasses the overvoltage protection of the MPPT] circuits. Care must be taken to only use
compatible chargers when using this port.

Extra features include a watchdog timer that is only reset when receiving [CSP| packets from

A.3. FLIGHT COMPUTER 99

W oY o 6.4V 65V 72V 7.4V 8.4V
”gﬂa ode Critical Mode Critical Mode Safe Mode Normal Mode Full Mode

Figure A.2: EPS operating modes .Each mode has a software configurable vector describ-
ing which output channels will be turned on .Transitions are based on battery voltage.
[lustration taken from [25].

a ground station. Upon expiration, the [EPS|disconnects the battery from the output converters
and even itself, long enough to let all systems power completely down. This [Watchdog Timer]
(WDT)|is especially useful when testing new radio configurations. In the case that the satellite
enters a state where communication can not be established, the dedicated WDT] will power cycle
the entire satellite to restore it to a default configuration.

The [EPS] is the only subsystem that has circuits that are powered even during launch, a
period when all subsystems are technically require to be off [1]. One of the always-on circuits is
an RTC.

After the satellite has been deployed from the its launch vehicle, it must refrain from deploying
antennas for a duration of 30 minutes, and it must keep all radios silent for a duration of 45
minutes. The [EPS| performs the timekeeping necessary to fulfil these requirements, and switches
on power to the appropriate subsystems when the deployment period has expired.

A.3 Flight computer

The flight computer subsystem hosts multiple modules: an[OBC|, an[ADCS|and a set of redundant
UHF| radio modules (COMM) [36]. The and the are implemented one the same
physical computer, meaning that they share computing resources. Additionally, the [FC| directly
connects to an external module.

A.3.1 On-board Computer

The responsibilities of the [OBC] are few; most tasks are performed by dedicated modules and
subsystems. However, it is able to collect telemetry about the [FC| and other subsystems, it can
run uploaded script files, and it can store data for other subsystems. It can also receive firmware
updates while in orbit, providing capabilities for bug fixes and software upgrades to the [ADCS]
Thus, it can also be reprogrammed to take over computational tasks from failing subsystems.

A.3.2 Attitude Determination and Control System

The software module collects sensor data which is used to estimate the attitude of the
satellite, and can run a variety of control modes to manipulate the satellite attitude with actua-
tors. Sensor data from magnetometers, gyroscopes, sun sensors and a star tracker are fused in a
kalman filter to produce the attitude estimate.

Attitude control is achieved by using two redundant actuators. A set of reaction wheels
are able to produce a torque by accelerating the spin of a mass. The reaction torque of the
accelerated spinning mass acts on the satellite, producing an angular acceleration. Three of the
reaction wheels are oriented orthogonally relative to each other, such that a combination of the

100 APPENDIX A. M6P SATELLITE PLATFORM

three are able to produce an angular acceleration in any direction. Redudancy is achieved by
installing a fourth reaction wheel at an angle relative to the three orthogonal reaction wheels.
When combining the slanted backup wheel with any two of the orthogonal wheels, an arbitrary
angular acceleration can still be achieved.

The [ADCS]| software allows the satellite to be put into one of several mission control mode:
e Velocity direction pointing mode: Pointing in the direction of flight.
e Nadir mode: satellite points to nadir (towards centre of the earth).

e Sun maximum power tracking: Keeps one of the largest solar panels pointing towards the
sun.

e Earth target tracking: Keeps pointing to a geographical point on earth.
e No mode: the [ADCS|system performs no control.

The satellite tumble rate is continuously monitored by the [ADCS| If the satellite is found
to have an angular velocity that exceeds a configurable threshold, the [ADCS| automatically
transitions to a detumbling mode. In this mode, the computes (with B-dot algorithm)
and applies a control vector that counteracts the tumbling motion. This action is typically
performed until the unwanted angular velocity has been eliminated. In this mode, only the
magnetometers are used to estimate the tumble rate, and only the magnetorquers are used to
create the counter torque.

A.3.3 GPS Module

A [GPS| module provides the [FC|] with accurate information about time and date. The [GPY is
connected to the [FC| via a serial interface and an analogue [PPS| signal.

When receiving a new timestamp over the serial interface, there is a communication delay
rendering the received timestamp invalid by the time it can be merged with the local [FC| clock in
software. One could attempt to correct the timestamp by adding a delay offset, but communica-
tion jitter makes it difficult to find a good estimate of the offset. Despite the error, the deviation
from true time is significantly smaller than one second. The auxiliary [PPS|input is intended to
solve this issue. The [PPS signal exhibits a pulse with a rising edge that is precisely fixed to a
period of 1s, with an accuracy of 10ns. This hardware signal is installed as an interrupt in the
[FC] computer, and can therefore be handled with much smaller delay and jitter effects.

The typical initialisation time for the [GPS| module is 30s, and it cannot provide a valid
timestamp before it is initialised. The [GPS module can also provide positional data and velocity
data.

A.3.4 UHF Radio

The [FC| board can hold up to two [UHF]| radios, where one is usually used as backup. The [UHF]
radio establish a radio link connection to a ground station, and relays network packets between
the subsystems in space and the ground station.

In the M6P configuration that the [IYPSO] mission will use, there is only one [UHF] radio
present on the [FC| This [UHF]is connected to a four monopole antennae system.

A.4. PAYLOAD CONTROLLER 101

A.4 Payload Controller

The [PC| subsystem is intended to provide an interface that any payload can be connected to.
It offers a interface, 2x RS422 interfaces, 3x [Inter-Integrated Circuit (I2C)| interfaces, 3x
SPI| interfaces, and 2x [Universal asynchronous Receiver-Transmitter (UART)|interfaces. Any of
these can be used to connect to communicate with payload systems, but only the [CAN]interface
and the RS422 interfaces support [CSP} The remaining interfaces all require custom modification
to the [PC| software, and would have to be implemented in collaboration with [NA]

The [PC|is running FreeRTOS.

102 APPENDIX A. M6P SATELLITE PLATFORM

Appendix B

Breakout Board Design Files

The included specification files have been created while defining the required interfaces of the
Breakout Board.

The included design files show the final design of the Breakout Board. A few of the schematic
pages that contain unimportant details have been removed to reduce page count.

103

PicoZed Default MIO Assignment

Function
eMMC 4GB NAND Flash
128Mb NOR Flash
RGB Camera
HSI Camera

Protocol
SDIO
QSPI
USB 2.0
Gigabit Ethernet

Zynq Interface
SD1
QSPI
USBO
Enet0

Breakout Board Specific MIO Assignment

Function
SD Card Storage
UART Terminal
Can-bus
PPS, HSI Flash

SD Card [SDO0] Pinout
Function

clk

cmd

data[0]

data[1]

data[2]

data[3]

card detect

UART [UART1] Pinout
Function

tx

rx

CAN [CANO] Pinout
Function

rx

tx

Various Pinout
Function

PPS

HSI Flash

Connectors

Hirose HSI Connector:

Function

GND

Flash optocoupled output negative (-)
GPIO 1

Trigger input with optocoupler (-)
Flash optocoupled output positive (+)
GPI02

Trigger input with optocoupler (+)
Input power supply (VCC) 12-24 V DC

Gigabit Ethernet RJ-45:

Protocol
SDIO
UART
CAN
GPIO

MIO Pin

MIO Pin

MIO Pin

MIO Pin

HR25-7TR-8PA
Connector Pin

L829-1J1T-43

104

Zynq Interface
SDO
UART1
CANO
N/A

40
41
42
43
44
45
46

48
49

50
51

47

Connects to (all to a header?)
1 GND
2 GND
3
4
5 MIO 47, 1V8 pull up
6
7
8 Power from EPS or lab,

MIO Pins
0, 10-15
1-6, 8
7,28-39
16-27, 52-53

MIO Pins

40-45, 46
48-49
50-51
9,47

Function Connector Pin
TRCT3

TRD3-

TRD3+

TRD2+

TRD2-

TRCT2

TRCT4

TRD4+

TRD4-

TRD1-

TRD1+

TRCT1

LED1 Yellow Negative
LED1 Yellow Positive
LED2 Orange Negative
LED2 Common Positive
LED2 Green Negative

105

©® N O O b~ WODN =

_ A A A A A A A
N o g WON -2 O 0

Connects to

0.1uF in series to GND
ETH_MD3 N
ETH_MD3 P
ETH_MD2_P
ETH_MD2_N

0.1uF in series to GND
0.1uF in series to GND
ETH_MD4_P
ETH_MD4_N
ETH_MD1_N
ETH_MD1_P

0.1uF in series to GND
ETH_PHY_LEDO

3V3

N/C

3Vv3

ETH_PHY_LED1

NINSZ L 'SOd8 ¥3AVIH YOLOANNOD a¥vOg-IHIM 96v61L1¢C 1/80-19¢€S suoIouNy SNOLIEA “J0JOBUUOD [euld)X3

106

agal agal ovir

l SjoejuoQ pajeld ploo ‘Aojly joddo) ‘sjoejuo) g ‘s OO ‘seusS 025205 19300S Aloway 1€20902 £680-025¢05 jos pieD dS
} JUNO 8|0H yBnouyl ‘8GieD ‘08d8 ‘Hod | X | OB Gy ‘10josuuo) Jeinpoj 1665792 er-LLIrL-6281 Sy ‘H13 619 ‘ISH
L Uld 90d 'SPEJU0) g ‘o[oejdedsy peaying SoHdS GedH (¢Z)S8-d1Z-GZdH UM SSfely 0¥86262 €2)Vd8-d1/-GZdH J0j08UU0D Jejnold |SH
l lw 00| uid g 10}09Uu0d |eusd)xad uld-g |ISH
} w00} uid g [eubls Sdd
l I'w 0oL ud g 109|8s Hoys [enuew XN 1HVN
L Ilw 0oL ud Z aunjesadwa] 10} OAVYX
l lw QoL ud ¢ 10J09[8S JOYS |enuew 824n0s JeaMod |SH
l Ilw ool uid ¢ 10}09|9S LOYS [BNUBW 82JN0S SISBYJUAS Jomod
l 8|oH ybnodyy ‘Wunol 8joH Yybnoayl ‘ww L'z ‘v Z ‘Yoer ‘4ojoauuo) Jeamod Od 9670512 8/¥189D04 soel [auieq ‘Jemod ge
L 1070-1G0¥0S UM Seleiy 7652652 16%0-050%0S uid 1 3007001d ‘|SH Sd3 Jemod
L 1001-1G0¥0S UM SSJelN ON-LO8E LOLIAM 1601-050%0S uid Q1 3007001d ‘1VEA Sd3 Jemod
! 1070-1G0¥0S UM Sejleiy 7652652 16%0-050%0S uid ¢ 3%007021d ‘snq NVO
l a|Buy ubry Junojy eoeung ‘skep vz ‘eoeldesay ‘| 'g gsn ‘O #dAL asn 970%25C 1010-05%S0F D gsn “sidepe [¥VN
} a|Buy Jubry Junojy soeuns ‘skep vz ‘epedesay ‘| 'g gsn ‘O #dAL asn 9/0v2se T010-0S7S0F 0 dsn ‘g9d asn
S$10}08uuU0)

L AL'LAOL ‘WYo | ‘A 09 ‘YW OZE ‘[duueyd N ‘loisisuel] | I4SON 9€8€50C GLIMME8ELSSH 19§sow Q37 euop-yOdd
L Ly"N4D 'V 9 INO A G'G 0} A Z'L ‘ZHY 08/ ong ‘s|geisnipy ‘Jepsauod T0d 0a/0a 8GGe/EC TONYHY0SFEZNT NG Jojenbau somod Buiyonms
z Meys yos sjqewwesboud ‘(AQ'E 0} Ag'0) 8lqessnipe uojeinBas 0Q1 YWOOS Indino-s|buls IvIv9ic ¥0dal0/vZSdL ZAL OAL Joje|nbas semod OQT
z Wejs yos sjqewwesboud (A9'€ 0} A8'0) dlgessnipe ‘Joyeinbas 0T v | indino-s|buig £E8Y9/C "0dal08vZSdL €AE 8AL Joyeinbai semod 00T
L ¥2-NJOM ‘A9'E 0} ALl ‘ZHINO9 ‘18zIS8Ujuks Aousnbaiy 7195¢€€C YMILYZI9Z0SXL J8jjo)u00 pied as
L 0L-dOSSA Ol Youms anbojeuy ON-1-71612-96¢ 6GI72VESL XN LYVN
L diyo JepeAUOD gsn 0} Jen ¥zer80e g-OX0¢geIdLd Jeydepe gsn o) 1vN
4 uonosyoid ds3 pejelbeiul 0z gsn lend 6299051 970022vdl uonosjold gsn
l Jandosuely |eaisAyd B6£829¢¢2 NS/3-29G2dDIN JaAl@ouel) snq ue)d
uonduosaq (4o3nquisip) aweu Jed sued

Jequinu pJed

O

FID1 FID2 FID3 FID4 FID5 FID6 FID7 FID8

SoM (c) SD card
Fricozed pinouts ntnu-hsi-proto art-c. ntnu-hsi-prototype-sd-card-interface.SchDoc
PS_MIO40 D
MIO: PS_MIO41 D_CMD
0: (unassigned) USB (UART + RGB) DEbg
ntnu-hsi-prototype-usb.SchDoc 0D
8:QSPI FBCLK USB_OTG_P | D_D
9: (unassigned) USB_OTG_N PS_MI0O46 D_CD
10..11: CANO
12..13: (unassigned)
4SWARTY HSI (power + com/GigE)
28..39: USBO ntnu-hsi-prototype-ethernet.SchDoc
Vit UART switch ETH MDL P D
40..45: SDO . ’ _MD1_| R
46..49; Camera Timing MIO ntnu-hsi-prototype-uart-switch.SchDoc RD
50: SDO CD RD
51: (unassigned) RD
52..53: Enet0 PS_MI048 RD
PS_MIO49 RD
RD4
RD4
PS MIOAT D
CAN
SoM (b) ntnu-hsi-prototype-can.SchDoc
ntnu-hsi-protof
SchDoc
“vio 0, 9-15 are connected to
eMMC.
They can be used as long as ADCS (PPS, RTC, etc.)
ShMClElneC ninu-hsi-prototype-adcs. SchDoc
External connector
ot g tor.SchDoc @8 \CCIO_EN
{LDO_3v3 @ PG_CARRIER
SoM (a)
ntnu-hsi-protof
CARRIER_SRST#
PWR _ENABLE v
VCCIO_EN BWRIENABLE Thermal sensor (placeholder)
-temp.SchDoc
ITAG
ntnu-hsi-prototype-jtag.SchDoc
JTAG_TCK
JTAG_TMS
JTAG_TDO
JTAG_TDI
GNDY
Title: Avrchitecture Overview
AMicmheauersfnrthe system-on-module (PicoZed) Project HSI Prototype Engineer: A, Gjersvik
peb# NTNU-SSL-001 | Date 28.03.2019
Revision 2.0 Sheet 1 of 17
1 2 3 4
1 ‘ 2 3 4
oo somsa ZYNQ BANK 34/35
MOUNT [
JTAG_TMS JIAC THS X2 | JTAG_TMS ITAG_TCK - S Teh JTAG_TCK |
h
JTAG TDI_ereeiZnarsiie] JTAG_TDI JTAG_TDO = SWRENABLE JTAG_TDO
CARRIER SRSTOE56 A BONE 15| CARRIER_SRST# PWR_ENABLE = PWR_ENABLE |
“To~| FPGA_DONE FPGA_VBATT =
o IX1_SE_1 IX1_SE_0
JX1_LVDS_1_P JX1_LVDS_0_P
<=3 JX1_LVDS_1_N IX1_LVDS_O_N
GND.
*— JX1_LVDS_3 P JX1_LVDS_2_P
=22 IX1_LVDS 3 N JX1_LVDS 2 N
GND
— JX1_LVDS 5_P JX1_LVDS 4 |
D JX1_LVDS 5 N JX1_LVDS_4_N
— JIX1_LVDS_7_P JX1_LVDS_6_P
— JIX1_LVDS_7_N IX1_LVDS_6_N
— IX1_LVDS_9_P JX1_LVDS_8_P
— JX1_LVDS_ 9 N JX1LVDS 8 N
GND GND
JX1_LVDS_11 | JX1_LVDS_10_P
JX1_LVDS_11_N JX1_LVDS10_N
Gl GND.
— JX1_LVDS_13_P IX1_LVDS_12_P
— JX1_LVDS_13_N JIX1LVDS 12N
p
— JX1_LVDS_15_P IX1_LVDS_14.P [
— JX1_LVDS_15_N JX1_LVDS14 N (- —
3 VIN_HDR VIN_HDR 555
SMPS_5V} VIN_HDR VIN_HDR = -E——hmps_sv
JX1_LVDS_17_P IX1_LVDS_16_P [
— JX1_LVDS_17_N JIX1LVDS_16_N LDQ 1V8 1y
[VCCo 34
— JX1_LVDS_19_P JX1_LVDS_18_P T_-T
5 IX1_LVDS_19_N IX1LVDS 18 N 742792609 70 7
5 L0uF | 100nF
JX1_LVDS_21 P JX1_LVDS_20_P
£~ IXI_LVDS 21N JIX1_LVDS 20N B
veco s oot veco o
JX1_LVDS_23 P JX1_LVDS_22 P LDO 18 GND
JIX1_LVDS 23 N IX1LVDS 22 N FB2
D) VCCO 34
BANK13 LVDS 1 P BANK13_LVDS 0_P 23
BANK13_LVDS_1_N BANK13_LVDS_0_N To0E | 100nF —
BANK13_LVDS 3 P BANK13_LVDS_2_P sev | 257
BANK13_LVDS_3_N BANK13_LVDS_2 N
GND GND
DXP_0_P VP_O_P
DXN_O_N VN_O_N
PicoZed
Title: PicoZed FPGA Part A
Project HSI Prototype | Engineer: A, Gjersvik
pobi NTNU-SSL-001 | Date 28.03.2019
Revision 2.0 Sheet 2 of 17
1 2 ‘ 3 4

Pins MI09 through MIO15 (inclusive) and MIOO
must be kept free so the onboard eMMC on the
ZYNQ BANK 34/35 PicoZED can be utilized. Al signals currently
employing M109-15 and MIO0 must be place on
other available pins.

SOM4B
IX2- . Alternatively, MI09-15 can have dual use by
PS_MIO13 oo MIO13 MIO10 = PS_MIO10 ﬁ routing them to a connector on the breakout board.
[_PS_mi015 o5] MIO1s MIO14 n PS_MIO14 NB! MIOO is enable/disable for the eMMC and
PS_MIOLL o5 Mo MI012 - PS MIO12 | must not be used for signaling. It can be routed to a
[_Ps miog 210 M09 MIOO - PS MIOO0 | pad on the carrier board for manual enable/disable.
VCCIO EN o] PG_1V8 INIT# T
SMPS_5v} Fotr] VIN_HDR PG_CARRIER s PG CARRIER
e IX2SE_1 IX2_SE_0 =
o1e] GND GND =t
520 IX2LVDS 1P IX2_LVDS_0_P =)
IX2_LVDS_1_N IX2_LVDS_0_N
oo (2321
*— IX2_LVDS_2 P =55 5e—>C
=55 JX2_LVDS
x5 JX2_LVDS_5_P JX2_LVDS_4_P %
*—5 JX2_LVDS_5_N IX2_LVDS 4 N (25—
GND ND (X233
2 IX2_LVDS_7_P IX2_LVDS 6 P X
— IX2_LVDS_7_N IX2_LVDS 6N (5525
=-VOo [VS TIX2-39
GND GND 22—
IX2_LVDS_9_P IX2_LVDS_8_P LDQ 1V8 g3 Veeo 35
JX2_LVDS_9_N JX2_LVDS_8_N
GND 742792609 L7, 75
= JX2_LVDS_11_P JX2_LVDS_10_P TooF T 100nF
5 JX2_LVDS_11_N JX2_LVDS_10_N 25\“/ 25V
GND (—5
= JX2_LVDS_13 P IX2_LVDS_12_ P |-
. X555 JX2_LVDS_13_N X2 LVDS 12 N =572 -
SMPS_5v} VIN_HDR VIN_HDR [_j—|SMPSjV N
L VIN_HDR VIN_HDR X259 GND
JX2_LVDS_15_P IX2_LVDS_14_ P |-
JX2_LVDS_15_N IX2_LVDS_14 N | 100 3V
OND 0 i VCCo 138
= JX2_LVDS_17_P JX2_LVDS_16_P —5
~— IX2_LVDS_17_N JX2_LVDS_16_N | 742792609 L7 c79
=74 | Jx2_LvDS_19 P IX2_LVDS_18_P lzg{f 12%0\5":
JX2_LVDS_19_N IX2_LVDS_18_N
=12 VCCO_35 GND
VCCO 35 VCCo 38 veeo 3 VCCO 35 1
2 IX2_LVDS_21_P ax2_LvDs 20 p -PEBL ¢ GND
s IX2_LVDS_21_N IX2LVDS 20 N =57ee—x
3 IX2_LVDS_23_P ax2_LvDS 22 p 2B
3 IX2_LVDS_23_N IX2_LVDS 22 N 355707—X
*— BANK13_LVDS 5 P BANK13_LVDS_4_P —jé—gH
VCCo 138 s BANK13 LVDS 5 N BANKI13 LVDS 4 N =28 2—<
3 VCCo_13 BANK13_LVDS_6_P —525700—x
o BANK13_SE_0 BANK13_LVDS 6_N 22—
Picozed Title PicoZed FPGA Part B
Project HSI Prototype Engineer: A, Gjersvik
Pebs NTNU-SSL-001 | Dat 28.03.2019
Revision 2.0 3 of 17
1 2 3 4
1 ‘ 2 3 4
ZYNQ BANK 13, 501
SOM4C
X3 a1 [“USB Connector should be connected to:
4| MGTREFCLK1 P MGTREFCLKO_P 25~
6| MGTREFCLKIN MGTREFCLKO N 5= -USB_OTG_N
s © MGTAVCC = ot -USB_OTG_P
X310 MGTRX0_P MGTAVCC - 1 -USB_ID
IX3-12 gﬁngo_N mg:x‘ég 5 1 mcTAavee - USB_OTG_CPEN
XL MGTRXILP MGTTX0_P -
15| MGTRXLN MGTTX0_N = USB_OTG_CPEN signal allows the user to control
X320] CND. GND = an external power source for USB VBUS on the
MGTRX2_P MGTTX1_P _carrier board and is only used when USB operates
22 IX3-21 in host mode.
51 MGTRX2_N MGTTX1N —=E5—x
GND GND
26 IX3-25
5 MGTRX3 P MGTTX2 P —EE55—> ™ ;
MGTAVTT 50 MGTRX3 N MGTTX2_N W JX3 connector used for microSD Card, UART,
' 5 MGTAVTT GND —5s-sr——9 USB2.0 and bank 13 PL 1/0
MGTAVTT MGTTX3 P (o
PS_MIO4L gg PS_MIO41 MGTTX3_N %
PS_MIO43 55— PS_MI043 GND [-Z530——
PS_MIO45 0] PS_MIo4s PS_MI042 (s —— PS_MI042
PS_MIO4T PS_MIO47 PS_MIO44 XS0 PS_MIO44
PS_MI048 :ﬁ PS_MI048 PS_MIO46 PS_MIO46
PS_MIO49 CCO_13C 26 \";s&?fj'of; F:'fé'&"(')oig VCCO 13C PS_MIO40 LDQ_IVO g,
ETH_PAY_LEDT -8 | ETH_PHY_LEDL ETH_PHY_LEDO ETH_PAY_LEDO METAVCC
ETH VD2 P Zvml O e LA B | ETH_MDL P 742192609 ==co5_ ==c26
54 ey T LOUF | 100nF
ETH MD2 N —2:— ETH_MD2N ETH_MDL N =525 ETH MD1 N sov | 257
GND GND (5
ETH MD4 P e :gg ETH_MD4_P ETH_MD3_P 55 ETH MD3 P
ETH MD4 N ETH_MD4_N ETH_MD3_N =5 ETH MD3 N LD0 1v2 =
FB7 o
:23 GND oND |- %—‘ — GND_, MGTAVTT
PS_MIO51 85| PS_MIOs1 USB_ID et —X 742792609 —L_p7 —cog
PS_MIO50 =51 PS_MIOS0 GND 55— -~ T our T 100k
VBUS| 2~ USB_VBUS_OTG USB_OTG_P —8=3—— USB OTG P v 250
-Lcea >~ USB_OTG_CPEN USBOTG N (55— USB OTG N
100nF 74| SND GND) 73
"2 BANKI3_LVDS_8 P BANKI3_LVDS_7_P o
=+ L2 BANKI3_LVDS 8 N BANK13_LVDS 7_N =2 LDO 3v3
GND N GND 79] veeo 13c
BANK13_LVDS_10_P BANK13_LVDS_9_P)
742792609 L -
o BANK13_LVDS_10_N BANK13_LVDS 9 N |-X3:8L Sce0_S=Cal
Gy D Y 5ND | Ix383 | LOUF | 100nF
e BANKI3 LVDS 12 P BANKI3 LVDS 11 P 3385 5 V| BV
s BANKI3_LVDS 12N BANK13 LVDS 11 N (=220
O o1
BANK13_ LVDS 14 P BANKI3_LVDS_13 P —res—
X BANK13_LVDS_14_N BANK13_LVDS_13 N —=25=0e—x
CND X307 1
2% BANK13_LVDS_16_P BANK13_LVDS_15_P —2ar—>
222D | BANK13_LVDS_16_N BANK13_LVDS_15_N —===2C
PicozZed Title Picozed FPGA part C
Project HSI Prototype Engineer: A, Gjersvik
Pebs NTNU-SSL-001 | Dat 28.03.2019
Revision 20 Sheet 4 of 17
1 2 ‘ 3 4

1 2 3 4
n
UART is connected to UART1
A MIO48(tx)-MIOA49(rx).
USB OTG Device
VBUS
UsB1
A9
VBUS TXL+ =
é: VBUS TXI- Net Class Net Class The USB device is setup to act like a
5 VBUS X2+ USB Device. See Chapter 15 of the
VBUS TX2- TR i —bewey Zyng7000 for USB implementation
A | i
o A7 ' USB OTG N1 R2L 1 27R| USB N .- 5 details
- ! ! 5
3 D- %I : UsB OTG P RL::UR : UsB P D+ CPEN is not used (used to control
% SBUL D+ E_J ------ wE' || Tt U _SE‘ external pwe supplies in Host mode).
SBU2 Db (—r—(i 1D i left floating according to USB-B.
D1 VBUS 5
CCL 5 COoA " 5 device standard.
cc2 S o3 v
01 1102
AL | Gnp R (1 5 o4 GND -
BL ono Rx B0
12| 0 1P4220CZ6
12 N 1
GND RX1+ Add TUSB320 for USB-C CC role
USBC detection etc.
GND IN UART C desing use two 5.1K pull
down resistors on CC1 and CC2
VBUS_2
1
‘LCGS _l_CGA
veelo 100nF | 100nF
Net Class
usB2
A9 9 = I A
A JBUS XL Net Class i e GND . !
B] VBUS X 8 15 |__UARTTX |
o VBUS TXer }—— 3V30UT G O TXD P —UART R — x>
VBUS TX2- omm=Temen | S 3 ;512(5?: $ " T _RX
<= - | S TV P 2
o AT !_USB UART N RI7 27R| 7| yeprm cren A UART
o. 871 - | !
% Ut v (S 1 USB UARTP , o | RI8 - 27R15 6. yseDP cBUSO fat2 veeio
sBU2 D+ _]AS ccie |ttt lsBuART CBUSL
oo
ool —E2—E o 29 = cBuS2 <m§
cc2 $—| RESET# OOW CBUS3 [« LgD2
A 1 NESRIOS —ce3 ~
5] GND RK2+ o >'*2e 1102 1/01 T 1oone fenfr) us
5 G\ RX2- o GND 1/04 FT230X 270R LED3
GND RXL- QR
2| B 1 1P4220CZ6 1
USBC GND itle: USB Manager
oD oND oND Project HSI Prototype | Engineer: A. Gjersvik
P NTNU-SSL-001 | Dat 28.03.2019
Revision 2.0 5 of 17
1 2 3 4
1 2 3 4
*Manual selector short
circuit:
Center (Pin 2) is
common
Pin 1is GND
Pin 3 is VCC (3V3?) LDO 3v3
Add text to silk screen ADefault path is
to explain options 86 COM1/NC1 and
_ 100nF COM2/NC2 with In1
b7 LDO 3v3 and In2 pulled low.
GND
U1l
V+
INL
= 5 UART TX1
~ IN2 NC1 TX1
GND NG2 [LUART RXII—5r——]
TXIN 3 | comt
[RXIN_}
RXIN com2 o 2___UART TX2
01 I —UART Rx2] 2]
NO2 F
&1 onp
TS3A24159
GND
itle Digital UART Switch
Project HSI Prototype | Engineer: A. Gjersvik
P NTNU-SSL-001 | Dat 28.03.2019
Revision 2.0 Sheet 6 of 17
1 2 ‘ 3 4

109

Power supply sequencing is done on
the PicoZed board and is not
neccessary for the bank/camera power
supplies.

[ENABLE
fg&?gf_g;ﬁﬁ U_ntnu-hsi-smps 1A
PL ntnu-hsi-¢ SchDoc SMPS 5V ntnu-hsi-power-Ido-500mA.SchDoc
C L — AR VDDIN VN —— JVIN vouT [1LDO_1Ves
3 NB! Voltage regulators for 10 and 1V2 have been
> EN changed from 500 mA rating (part number
DC-Jack TPS74701) in revision 1, to 1500 mA rating (part
— FB C} number TPS74801) in revision 2 due to uncertain
GND requirements. To preserve designators, the regulator
R6 itself was replaced within the sub-schematic, but the|
4R53 name of the schematic was kept the same. This is
- -4 the reason for the difference in schematic name and
hinu-hsi-power-Ido-500mA SchDoc 5 current rating for the regulator within.
1 VIN vouT [} LDO_1v2
*Insert jumper TS EN
to select
either lab FB
. 8-504050-1091
Y M10138DKR-ND
supply the | Heagers 26
breakout 2A
board ntnu-hsi-power-ldo-1500mA.SchDoc

=D
"% 10-pin PicoLock to

—— | VIN
{ > EN

VouT [}

B

2B
ntnu-hsi-power-ldo-1500mA.SchDoc

power the breakout ——JVIN VOUT [}
board from the
Nano-Avionics EPS. { > EN
FB (¢
insertjumper | e
o et 3 LAB PWR HSI_PWR
ower o1 B 2392592 HSI_PWR is routed to a HIROSE connector on separate sheet HSI (power + com/GigE) =
EPS o 1 M10137DKR-ND GND
(12v‘)) o 38-504050-0491
supply the Header 3 37 -
HSI ‘Camera power
from N-Avionics
EPS. 12V
2Pn PicoLock itl Main Power Section
oRD Project HSI Prototype Engineer: A. Gjersvik
Pc NTNU-SSL-001 | Dat 28.03.2019
Revision 20 Sheet 7 of 17
1 2 3 4
1 2 3 4
Part Number 1: 296-37032-1-ND
[owievesvesn 1 =y
VOUT 5V @6A
AVoul =5V 22 SMES 5V
Rset = 1960hm VIN ’ ? VIN
Rt= 86_.6k0hm -I'CA -I'CS _I-CB -I-C7
Switching frequency fsw: 780kHz +c1 +co Egm 470F 470F 470F 270F
Undervoltage lockout at 5V: 4 PVIN =L =L = =L
RuvlL = 68.1kOhm £ INH_UVLO GND GND GND GND
Ruvl2 = 21.5kOhm GND GND { INH_UVLO
UVL Hysterisis: 400mV ISHARE
<8l 55 TR
& RT_CLK
T525D476MO16ATE035 16V 47uF 3
i VADJ
T521D107M025ATE040 25V 100uF 7 24
{ STSEL SENSE+ S
R1 3 RLED value changed from 580R
'86K6 PA DNC to 270R because 270 was what
4= DN PWRGD RLED | was listed as purchased in the
35 DNC 270R | BOM for revision 1, and that
5| DNC 1 seemed to work.
: o SH B e
Connecting the STSEL pin to AGND A DNC AGND 25
and leaving SS/TR pin open enables the 3 DNC AGND —
internal SS capacitor with a slow start 0 DNC 3% GED
interval of approximately 1.1 ms. Adding T DNC PGND 37 AGND
additional capacitance between the SS 7 DNC PGND 38
pin and AGND increases the slow start DNC PGND
time.
LMZ31506 GND
itle: Switch Mode Power Supply
Project HS! Prototype Engineer: A. Gjersvik
P NTNU-SSL-001 | Dat: 28.03.2019
Revision 2.0 Sheet 8 of 17
1 2 ‘ 3 4

110

The SD Card Interface is connected to

"SDIOO on MIO 4

0-45 on Bank 501

Logic Level Translator

LDO 1v8 LDO 3V3 ceg
1 [1+enp LDO 3v3
100nF T
C66 =—C67 |
100nF | 100nF
= . C69
GND i S 100nF]R14 . d
Net Class P — Net Class yrred Micro SD Car
[o -
§ SRS GND
> > a1
b_D b DATOA DAT280 (<23 D DATA2
[sbDL } 55 DATIA DAT3BO (<52 2B CDIDATA3
D_D DAT2A CMDBO CMD
DD
DD DAT3A 1 D1 CLK VDD
SD_CMD CLKBO CLK
SD_CMD SO CLK R 3°] GMDA 8 SD1 DO o
[CsbcLk S CLKA DATOBO izt TR DATAO
SHEARD 40R2 DAT1BO DATAL
SDCARDCON 'LDQ_1v8 SD D G4 61
A G5 DET GND (—&5
% s parier e L]
zg’ e DAT2BI |25 R15 R16 5025700893
- GND DAT3BL (<3 KT ohm
GND CMDB1 <%
CLKB1 p==—<
SD_CD
GND U9 =
TXS02612 GND
Title SD Card Interface
Project HSI Prototype Engineer: A, Gjersvik
Peb NTNU-SSL-001 | Dt 28.03.2019
Revision 2.0 13 of 17
1 2 3 4
1 2 3 4
LDOQ 3v3
Parameter Set 4
[LEDO 13 { by p3 -4
TROT DIRDLP C19 1 TROL+
ALy A T
TO0RF TRP1+[RJ-1
[TrRDZE RDZ P £20 2 TRO2+ s
ZCATRD2 N 5] IRCT2 TRP2- [RJ-4
TRDZ- T TRD2-
[TRD3+ RDS P 21 i TRD3+ IEE? Ejg
RO ESTR N pu| L9 TRP4+[R1-7
T00NF TRP4- |RJ-8
[TRoaT HEIRDA P C 57’ TRD4+
N Y o s £ 54
[LEDL SIX D2 o |18
D1
GND | Shield Guide I&
Shield Guide
RI45
SH_GND2
LDQ_1v8
R26 P3
10K 5
101
TRIGGER- %
GND_TFLASH®
(FLASH* } L 690
HSI_PWR TRIGGER
T 12-24V
Il HIROSE-8PIN
Header 8
HSI_PWR comes from sheet "...-power-section.SchDoc"
Title HSI power and Comms
Project HSI Prototype Engineer: A, Gjersvik
Peb NTNU-SSL-001 | Dat 28.03.2019
Revision 20 Sheet 14 of 17
1 2 ‘ 3 4

111

LDO 1v8

Parameter Set

=
=i

u4 =

©
>,
(S]

Txd STBY
Vss CANH
Vdd CANL
Rxd Vio
CAN transceiver
n
The internal pull-up in the
MCP2562 is 4.4M Ohm
according to the datasheet, ==
s0a low value pull down
resistor should be used.
Place 0 Ohm resistor here

R23
| 120R

o [cofrof =

CAN_RXTX

| [~foo

4-Pin PicoLock

il
Il

@
z
[S]

Title: CAN transceiver

Project HSI Prototype | Engineer: A. Gjersvik

Pcby NTNU-SSL-001 | Dat: 28.03.2019

Revision 20 Sheet 15 of 17
2

4

e «

= o) o CERCICRT

A9
0

112

1 abedq

[enuapyUOD PaNIWIT WNN|Y

6T02°'€0'8C
TET SS10N Pan0Iddy|
z T 1UaU0dW0D80d| o8sn T0T0-05750T XoI0N o-8sn|vs
T 65Tv2VESL 65TH2VESL| YOHQ6STYZVESL SiBWINISU) SexaL 65Tv2vesL[es
T MLYND) 21920SX1] YMLHZTIZOSXL| SWaWNISU] Sexa 219205X1|25
T 9T-N40 N"9T-N0 R e e 4-OX08214 4-OX08214 1014 4-Ox08214 (TS
T W8-SLTX009d.2TOI0S 2952 JaNRISUBA NV 2952dIN J2NB9SUE NVO)| NS/3-2952dON Ao 2952doW|0s
v d10S9TX007Z-0TOHA A dL0S9TX00vZ-0TOA-LL o e v tnthis aibae O¥ATO8YLSdL ¥O¥ATO8YLSdL SluaWINASU| Sexa L UOYATO8YLSdL|6¥
T 90STEZWT 90STEZNT 10 1 Swawnsul sexdL| 905TEZW 8%
T WOSPaZ0dd| 1udi004 Ja1eD WOS PazZodld paz0dld WOS Pazodld 1t
T HOLSIS3Y £090) 00T, ATOTCA3OECHT ooseued| Joisisay |9y
v HOLSIS3Y £090) IS ATOTSAMIECHT owoseued Joisisau [sy
T HOLSIS3Y £090) >0t ASOTCAIOECHT oseued| Joisisa [py
T HOLSISIA €090, LWY VIANCOLWPEOI0MOUD afeq AeysiA| Joisisay [ev
T HOLSIS3Y £090) HozT, A00ZT>3ECHT ooseued| Joisisay|zy
v HOLSIS3Y £090) ¥0LZ A00LZANIECHT owoseued Joisisa [T
v HOLSIS3Y £090) aLeg P ECE] oseued| Joisisa oy
€ HOLSISIY £090) wiyo 0| /AOOHOAIOE-C¥3 ouoseuRd Joisisan [6e
z HOLSISIY £090) Liv| ATOLY33ECH3 owoseueq| Jo1sisay |ge
T HOLSISIY £090) 280V AZHOv33ECH3 oluoseued Joisisay e
T HOLSIS3Y £090) ST, ATSTIYE-C83) oseued| Joistsa[9e
T HOLSIS3Y £090) 8T ATL8Z43E-CH3 ooseued Joistsan[se
z HOLSISY £090) L5 ATLSESN3ECHI owoseueq| 10151533 | vE
T HOLSISFY £090) 664y TOB6YY£0903d0 wyoaN AuAn%auuod 31 Joisisay[ee
T HOLSIS3H £090) 6vaig| TO6YHZAE0904dD wyoaN AinioauuoD 31 | Joisisay|ze
T HOLSISIY £090) 5| £53Y14E09040W S0A19913 Jjocbpoels| Joisisau [T
T IS3Y €090/ ETHT 6] aeq Aeysi| i
T HOLSISFY £090) SHITZ AZSTeA3ecy3 ooseueq 1015152362
T HOLSIS3H £090) 189 AZT89ANIE-CHI ooseued| Joisisay |82
T HOLSIS3Y £090) 4961 A096TAMIE-CHI owoseued Joistsad[22
T IS34_£090 9%98] e Keusin| Joisisay[oz
T £2810S NIE2EL0S XN | S A e S e R it et T STT 8 STT'ME8ETSSE SI01INPUOAWAS JXN! STT'MXEBETS!
€ EXTHOH| Uid-§ 'J9pesH € Jopeat] STLO-E0T-MSL S3ES £ 1apeaH vz
T 8XTHAH Uid-g 'J9peaH 8 JopeaH TZTT1800€T9 SOW019313 YUNM| 8 JopeaH ez
z ZXTHaH uid-Z lapeat] 2 Jopeat] Q-5-20-TOT-MS1] Saues] 2 1opeaH|cz
T *ef-1amod-op| #9er-0a HVZ00-Cd =) #er-0ate
T 0315080 0315080 MI0594780 #o6ug-LO a315080[02
B Q315080 0315080 IIAN0LTO-LSL] uo-a117 AeusiA a3150806T
T 3pe|godld Uid-g| ape|godld Uid-8| TL80-192€5) XoI0N apeigodd uid-8[8T
T 607050705 | I SRR e A et T60T-050705 T60T-050705 X3IOW! #007091d uid-0T [2T
T 39pIoYR%Rd ISOUIH| 1) 1ovc0e 2t 00 Wb Uit e NId8-3SO¥IH (e4)Vd8-HLL-S2HH asouH Nid8-3S0¥IH|oT
T £PLTCT6Z81 Svey £r-LTCT-6281 [svey|st
z T6v0-050%0| 007001 XSIOW Uid-p| 007001 Uld-p| T6v0-050005| X3I0N #007001d Uid-r|pT
T ozvTeesse ovic ud-pT 0zvT-€€8.8 X3I0N OVLC Ud-pT[ET
T [e680025205 es80025205 £680-0.5205 X3l pred gsonuwzt
L Pe3g aued £090 60926.27L 60926202 S91U0R2313 YU peag aua4 £090|TT
T £2-10S| N €2-10S| T 4T1v8 3poiq TYSLH.ZE93LTLVE LT1v8 3poid|oT
z 9dOSL 920022l 521'920022vd 9z002zvdl |6
L ¥OLIOVAVO £090) 40T VZLYXIS0TAEE090) Joyoedeo |
8 ¥OLIOVAVO £090) 4not GETINIOTOTONBSTLYO Joyoeded [,
v HOLIOVAYD €090 JuT OLNVOVHENZOTOE000) Jouoeded |9
v ¥OLIOVdVO £090) 4nt OV080YS0TOTH.XTIEVOD Joyaeded
v Joyoedes”G080) dnzy) TETINILYCOOUETZLYD) Joyoeded |
9z HOLIOVdYO £090 4u00T VVO0BONPOTITHLXZIEVDD Joyoeded e
T £reL-quneIe] Anz| SE03LVITONILYASZSL] SE03LVOTONILYASZSL[Z
£pEL-Q-WneIe 4n00T 0v03LYSZ0NL0TATZSL 0v03L¥S20NL0TATZSL[T
Kinuend souasajeyabeNIRd 1uLd1004 uonduosag adALied T JBQUINN 1ed JaInIoRINUEIN 1 jaunioejnuen Joyan #
Wd T2:80:L 6T-1eN-8C eregiuld
ErpRREr Bied a1 80:61 6102'€0°82 1eq vodoy
wim
q2dl1d'2dA10101d-ISH-NNLN :108l01d

20qwog'adA10101d-ISH-NNLN

[00qwog-adA10101d-ISH-NNLN] 1UaWN20a WO 10} S[eLBTEN JO lig

‘wou ereg 991n0s

1s1] Jusuodwo)

113

114 APPENDIX B. BREAKOUT BOARD DESIGN FILES

Appendix C
HYPSO CLI

Following is a terminal dump from the hypos-cli program. The help command is executed to
show the available commands.

Welcome to: HYPSO CLI

Model: GS Linux CLI

Revision: May 21 2019

Type help for all commands.

Type help <command> for specific help.

$ help

help [Command] - Print help for all
— functions, or a subset of functions.

exit - Exit the CLI.

q - Exit the CLI.

csp init can [<canX>] - Initialise CAN bus for
— CSP.

csp init flatsat [<Address> <Port>] - FlatSat for CSP over NNG
— interface.

csp init service all - Initialise all payload
— services locally with loopback.

csp init service ft - Initialise the FT service
— locally with loopback.

csp init service shell - Initialise the shell
— services locally with loopback.

csp init usart - Initialise USART
— interface over KISS.

csp ping <CSP ID> - Send a CSP ping and wait
— for reply.

csp ping all - Send CSP ping to all

— subsystems.
csp ping rtt <CSP ID> <Number of pings>
— with Pings.

Estimate round trip time

csp hello <CSP ID> <CSP Port> - Send hello world over CSP
—

csp mem <CSP ID> - request free memory from
— CSP node.

csp buf <CSP ID> - request free buffers from

115

116

<~ CSP node.
csp up <CSP ID>
<~ node.
csp route
— for this node.
csp conn
— table for this node.
csp if
<~ this this.
csp debug [<Debug Level >]
csp reboot <CSP ID>
— reboot.
csp shutdown <CSP ID>

APPENDIX C. HYPSO CLI

request uptime from CSP
Print CSP routing table
Print CSP connection
Print CSP interfaces for

Toggle CSP debug level.
Request a CSP node to

Request a CSP node to

< shutdown.

ft info <CSP ID> <File ID> - Request file info from a
<~ node.
ft list <CSP ID> - Request file listing from

ft

ft

— a node.
check <ALL|PRESENCE|INTEGRITY> <CSP ID> <File ID> <First Entry
— ID> <Last Entry ID>
- Request a check of

— 1integrity or presence

— of file entries.
check local <ALL|PRESENCE|INTEGRITY> <File Path> <First Entry ID
— > <Last Entry ID>

Check integrity or
— presence of local
— file entries.

ft clear <CSP ID> <File ID> - Request a file to be
— cleared.
ft clear local <File Path> - Clear a local file.
ft format <CSP ID> <File ID> <Entry Size> <Entry Count>
- Request file formatting
— from a node.
ft format local <Filename> <LOG|STATIC> <File ID> <Entry Size> <

ft

ft

ft

ft

— Entry Count>
- Format a local file.
download cancel <CSP ID> - Send request to cancel
— ongoing download to CSP node.
download range <CSP ID> <SRC ID> <Start> <End> <DST Path> <
< Period[ms]> <Duration([s]> <MTU>
- Download range of entries
— from file.
download id <CSP ID> <File ID> <DST Path> <Period[ms]> <Duration
— [s]>
- Download complete
— formatted file with
— ARQ. Auto-create
— formatted file.
upload <CSP ID> <Filename> <Period (ms)>

117

- Upload a formatted file,
— without
— acknowledgement.
ft upload range <CSP ID> <Filename> <Start> <End> <Period>
- Upload a range of a
— formatted file.
ft upload arq <CSP ID> <Filename> <Period>
- Upload complete formatted
— file, with ARQ.
ft register <CSP ID> <File Path> <File ID>
- Register a link for a
— file path to a file

— ID.
ft deregister <CSP ID> <File ID> - Deregister link for a
— file 1ID.
ft prepare <CSP ID> <Source File> <Destination File ID> <Entry Size
— >

- Create new formatted file
— with data from
— existing file.
ft prepare local <Source File> <Destination File> <Destination File
<~ ID> <Entry Size>
- Create new 1local
— formatted file from
<~ data from existing
— local file.
ft extract <CSP ID> <Source File ID> <Destination File Path>
- Create new file with data
— from existing
— formatted file.
ft extract local <Source File> <Destination File>
- Create new local file
— with data from
— existing local
— formatted file.
ft buffer file <CSP ID> <Buffer Port> <Period (us)> <File ID | File
— Path>
- Request a file to be
<~ buffered on the PC.
rgb init <config file path> - Initialise RGB camera
— with config file.
rgb capture <HW trigger {y, n}> <file type {raw, bmp, png, jpg}> <
— file name>
- Initiates one RGB image
— capture
rgb configure <exposure time (double)> <gamma (int)> <color
— temperature (int)> <pixel clock (int)>
- Set new parameters values
— . Negative values are
<~ ignored

118

rgb deinit

rgb configfile <config file path>

<~ configuration
rgb print
— configuration
eps tm
— telemetry.
clear
1s
shell <Command >
— locally. Ex, "l1ls -1"
shell remote <CSP ID> <Timeout

(ms) >

— a node. Enter "exit" to quit.

APPENDIX C. HYPSO CLI

Uninitialize the camera.
Load a different camera

Print current parameter
Request and print EPS
Clear the terminal

ls -1 --color=always

Run any shell command

Enter remote CLI mode for

Appendix D

Packet Loss Test

The measurements from the packet loss test are included on the next page.

119

LYOvLL6L'G9 19028251 6565209181 6ce €1z 6€ S ‘L9ze 9ez L¥569. Sl o¢
9'G 266700°76€ ¥29052 6% szl a4 S F4 192€ 9ez 1¥G69. og S
¥9/99/6G°S9 1628285 €Vl €18/v816°LL £ve vZ e S L9z¢ 9ez L¥G69. og or
LLYSSY.6'69 6£5961€'G2L ¥/956¥99°S) £6€ G'Ze I3 9 19z¢ 9ez L¥G69. og 0S
S0806£81°2€ 2£956Y0°€82 ¥56118€°GE vLL €Ll S z 192€ 9ez L¥G69. o¢ o¢
9vLzL8LL oF 1 ¥69888' 2T 9/980L11°82 612 6'Gl 6¢ € 192€ 9ez L¥G69. o4 T4
80691566'ZY 861.526'LEC 86Y1.L0V.'62 102 691 1z I3 L9z¢ 9ez L¥G69. 0z 0z
155%91€°6Z L0L8ZLLLLE 12101L¥96°8€ 851 S0l 8¢ z 192¢ 9ez L¥G69. Sl Gl
L9€16.0L°GL 9€012€" ¢ G6Z106Z vt 6el €8 6L F4 192¢ 9ez 1¥G69. oL oL
9'G 266700 76€ ¥290G2 6V szl L'S S z L9z¢ 9ez L¥569. 8 8
120120.2°02 S98YY.LZEE 18018965 Lt 8yl 'S 8z z 192¢ 9ez L¥G69. S S
190909090} 61810L1°€LE 818788€9°9Y zel 8¢ zL z 192¢ 9ez L¥G69. € €
G90%0590'+ 2LLSLLY 00V SLL¥YLS0°0S €zl z € 4 192€ 9ez L¥G69. 4 z
z1212121'28 85.61229'vL 16969..2€'6 099 6'5C 0 L 192€ 9ez L¥G69. L 14
9685.18.°08 192¥.212°08 £8265920°0) 719 L've vl oL 192€ 9ez L¥G69. L 14
6E6162° 1. ¥v€8662 L0} €6.LVZLIEL 657 0z 6¢ i L9z¢ 9ez L¥569. L 0z
6911£889'19 Y£29106'65 | 26..0886'6) 80¢€ 8'sl 8 S 19z¢ 9ez 1¥569. L Gl
60606060°S Z8.1€60°6L1 121%998¢€°22 6Lz X Ge 4 192¢ 9ez L¥G69. L Sl
110£2692°€Y 29v818L'9€2 110€1165°62 802 v'ol 8z € 192€ 9ez 1¥G69. L oL
89GZ1615°SE 6260621692 1991 L¥9'EE €8l 6 I3 I3 192¢ 9ez L¥G69. L 6
5025 1¥66°0€ S¥€510°882 €18161009€ LLL 1’8 LS z 192¢ 9ez 1¥G69. L 8
€5¥2080L°92 6967706'G0€ 112908€Z'8€ L9l 69 Ly 4 192€ 9ez LG69. L L
¥11960.8°€Z €1965YL LLE 915¥281.L'6€ GsL 6'S Ge z L9z¢ 9ez L¥G69. L 9
YIY0EYSS'LZ 82.0€91°92¢ LLY8E0LL O LSL 8'G Le z 192€ 9ez L¥G69. L 9
612808LL°61 LLP0EEE LEE ¥10£9991°2¢ orl 1'g 9z z 192¢ 9ez LG69. L S
95555550'8) 2222810°2¥E 8111225.°CY il SY vz z L9z¢ 9ez 15692 L 14
€8/1€1125°8 6281/81'L8E 1821v€TL LY 62l 8Z 6 z L9z¢ 9ez L¥G69. L €
190909090} 61810L1°€LE 818788€9°9Y zel 1'g zL z 192¢ 9ez L¥G69. L €
9'G 266700°76€ ¥29052 6% szl gl S F4 192€ 9ez 1¥G69. L z
199999999 | 19981Z¥ 0Ly €E£€/20€°LS ozl ! 0 z L9z¢ 9ez L¥569. L L
0 G6918.E /LY 611222.1°25 8Ll 0 8 L 19z¢ 9ez L¥G69. 0 0
0 G6918.€ /LY 611222125 8Ll 0 8 L 192€ 9ez 1¥G69. 0 0
[%] e1eserep [sdax] a1 [sda¥] [s] uoneing [%] eye1 doip M s [#] semug [g] ozis Anuz [g] eziS 9114 [# wbue [%] o1y
9AI}08YS Ul aSEal09q () djelejep pajewnsy 8jeleje 9A109Y3 J9ysuel] | abelaAe |sUUBYD SPUODSS BINUIN MOPUIAA 1sing douq Indu|
paAuaQq papiooay si9joweled

120

Design and Implementation of Hardware and Software Interfaces for a Hyperspectral Payload in a Small Satellite

Kunnskap for en bedre verden

@NTNU

	Preface
	List of Figures
	List of Tables
	Acronyms
	I Introduction & Background
	Introduction
	The HYPSO Mission
	Hyperspectral Imager Payload
	Software Defined Radio Payload

	M6P Satellite Platform
	Problem Statement
	Thesis Outline

	Background
	Communication Theory
	Flow Control
	Communication Errors
	Error Detection and Correction

	Automatic Repeat Query
	Stop-and-Wait
	Sliding Window
	Hybrid ARQ

	Network Stack Model
	Controller Area Network Bus
	CubeSat Space Protocol
	Network Layer
	Transport Layer
	CSP Options
	CSP in Linux

	File Systems
	File Directories
	File Operations
	M6P File System

	File Transfer Protocols
	Trivial File Transfer Protocol
	The File Transfer Protocol RFC-959
	Kubos File Transfer
	CCSDS File Delivery Protocol
	M6P File Transfer

	II Design & Implementation
	Requirements
	Satellite Bus Requirements
	Downlink Requirements
	Uplink Requirements
	Quality Requirements

	Payloads & Communication Architecture
	Onboard Processing Unit
	Imagers
	PicoZed System-On-Module
	ZedBoard Development Kit
	Breakout Board
	Operating System

	Software Defined Radio Payload
	Communication Architecture
	Space Segment
	Ground segment
	nanoMCS and Flatsat

	File Transfer System
	Service and Client Architecture
	File Organisation
	File Format
	File System Module
	File Mapping Module
	Proposed Directory Hierarchy

	File Transfer
	File Stream
	Automatic Repeat Query
	File Transfer Modules
	Transfer Modes
	Direct Download
	Direct Upload
	Buffering

	Testing & Results
	Breakout Board
	Hardware Test Setup
	Automated Module Testing
	HYPSO CLI
	File Transfer Client
	Remote Shell
	Loopback Services

	Communication Delays
	Effective Data Rates
	Packet Loss Test
	Payload Controller Buffering

	Discussion & Conclusion
	Fulfilment of Requirements
	Channel Utilisation
	CSP Buffer Exhaustion
	Buffering
	Memory Footprint of Formatted Files
	On the use of Linux
	Future Work
	Conclusion

	M6P Satellite Platform
	Mechanical Frame
	Electrical Power System
	Flight computer
	On-board Computer
	Attitude Determination and Control System
	GPS Module
	UHF Radio

	Payload Controller

	Breakout Board Design Files
	HYPSO CLI
	Packet Loss Test

