
Hash Functions and Gröbner
Bases Cryptanalysis

Thesis for the degree of Philosophiae Doctor

Trondheim, April 2012

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

Rune Steinsmo Ødegård

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

© Rune Steinsmo Ødegård

ISBN 978-82-471-3501-3 (printed ver.)
ISBN 978-82-471-3502-0 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2012:111

Printed by NTNU-trykk

Abstract

Hash functions are being used as building blocks in such diverse primitives
as commitment schemes, message authentication codes and digital signatures.
These primitives have important applications by themselves, and they are also
used in the construction of more complex protocols such as electronic voting
systems, online auctions, public-key distribution, mutual authentication hand-
shakes and more. Part of the work presented in this thesis has contributed to
the “SHA-3 contest” for developing the new standard for hash functions orga-
nized by the National Institute of Standards and Technology. We constructed
the candidate Edon-R, which is a hash function based on quasigroup string
transformation. Edon-R was designed to be much more efficient than SHA-2
cryptographic hash functions, while at the same time offering same or better
security. Most notably Edon-R was the most efficient hash function submit-
ted to the contest.

Another contribution to the contest was our cryptanalysis of the second
round SHA-3 candidate Hamsi. In our work we studied Hamsi’s resistance
to differential and higher-order differential cryptanalysis, with focus on the
256-bit version of Hamsi. Our main results are efficient distinguishers and
near-collisions for its full (3-round) compression function, and distinguishers
for its full (6-round) finalization function, indicating that Hamsi’s building
blocks do not behave ideally.

Another important part of this thesis is the application of Gröbner bases. In
the last decade, Gröbner bases have shown to be a valuable tool for algebraic
cryptanalysis. The idea is to set up a system of multivariate equations such
that the solution of the system reveals some secret information of the crypto-
graphic primitive. The system is then solved with Gröbner bases computation.
Staying close to the topic of hash functions, we have applied this tool for crypt-
analysis and construction of multivariate digital signature schemes, which is a
major hash function application. The result of this is our cryptanalysis of the
public-key cryptosystem MQQ, where we show exactly why the multivariate
quadratic equation system is so easy to solve in practice. The knowledge we

iv HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

gained from finding the underlying weakness of the MQQ scheme was used
to construct a digital signature scheme. The resulting scheme, MQQ-SIG,
is a provably CMA resistant multivariate quadratic digital signature scheme
based on multivariate quadratic quasigroups. The scheme is designed to be
very fast both in hardware and in software. Compared to some other multivari-
ate quadratic digital signature schemes, MQQ-SIG is much better in signing
and private key size, while worse in key generation, verification and public key
size. This means that MQQ-SIG is a good alternative for protocols where the
constrained environment is on the side of the signer.

Preface

This thesis is submitted in partial fulfillment of the requirements for the de-
gree of philosophiae doctor (PhD) at the Norwegian University of Science and
Technology (NTNU). The work was performed at the Centre for Quantifiable
Quality of Service in Communication Systems (Q2S), Centre of Excellence
(CoE), during 2007-2011, and has been supervised by Professor Svein Johan
Knapskog and Professor Bjarne Emil Helvik.

The document has been formatted in LATEX using a modified version of the
document class kapproc.cls provided by Kluwer Academic Publishers.

vi HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Acknowledgements

First, I would like to thank my supervisor Professor Svein Johan Knapskog
for his support throughout my work on this thesis. A particular thanks also
goes out to Professor Danilo Gligoroski who, in addition to have coauthored
most of my papers, has in practice been my co-supervisor for this thesis.

I would also like to thank Research Director Jean-Charles Faugère, Assistant
Professor Ludovic Perret and the rest of the SALSA-team for hosting me for
7 months. I learned a lot during my stay at the Pierre and Marie Curie
University.

I also learnt a lot from collaborating with all my coauthors. In addition
to the four people mentioned so far I would like to thank Jean-Philippe Au-
masson, Aleš Drápal, Rune Erlend Jensen, Emilia Käsper, Vlastimil Klima,
Lars Ramkilde Knudsen, Ljupco Kocarev, Smile Markovski, Marija Mihova
and Thomas Peyrin for our joint papers.

I have made good friends and met a lot of very interesting people during
my four years at Q2S. I would like to thank my colleagues for making Q2S a
very pleasant environment to work in.

Finally, I would like to thank my friends and family. Their continued sup-
port has meant a lot to me.

viii HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Contents

Abstract iii

Preface v

Acknowledgements vii

List of Papers xiii

Abbreviations xv

Part I Thesis Introduction
1 Introduction 3
2 Background 3
3 Research Goals 31
4 Research Methodology 33
5 Contributions 34
6 Results and Discussion 38
7 Summary and Conclusion 42

Part II Included Papers

PAPER A: On Some Properties of Boolean Matrices from Latin Squares 49
Rune Steinsmo Ødeg̊ard, Marija Mihova, Danilo Gligoroski

1 Introduction 49
2 Preliminaries 50
3 Concrete example 52
4 Results 53
5 Open questions 55
6 Conclusion 55
References 55

PAPER B: Cryptographic Hash Function Edon-R 59
Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan Knapskog,
Ljupco Kocarev, Aleš Drápal, Vlastimil Klima

1 Algorithm Specifics 61

2 Description of the Hash Algorithm Edon-R 69
3 Design Rationale 82
4 Estimated Computational Efficiency and Memory Requirements 117

x HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

References 121

PAPER C: On the Randomness and Regularity of Reduced Edon-R Compression
Function 127

Rune Steinsmo Ødeg̊ard, Danilo Gligoroski
1 Introduction 127
2 Background 128
3 Analysis of 8-bit Edon-R 130
4 Analysis of 16-bit Edon-R 134
5 Conclusion 136
References 136

PAPER D: Distinguishers for the Compression Function and Output Transforma-
tion of Hamsi-256 141

Jean-Philippe Aumasson , Emilia Käsper , Lars Ramkilde Knudsen, Krystian Ma-
tusiewicz, Rune Steinsmo Ødeg̊ard, Thomas Peyrin, Martin Schläffer

1 Introduction 142
2 Description of Hamsi-256 143
3 Higher-order differential analysis 146
4 First order differential analysis 151
5 Non-randomness of the ouput transformation 155
6 Conclusion 158
7 Acknowledgements 159
References 159
Appendix: The Sbox of Hamsi 162
Appendix: Conforming Message Pairs 163
Appendix: Truncated differential path 164

PAPER E: Analysis of the MQQ Public Key Cryptosystem 167
Jean-Charles Faugère, Rune Steinsmo Ødeg̊ard, Ludovic Perret, Danilo Gligoroski

1 Introduction 168
2 Description of the MQQ public key cryptosystem 169
3 Gröbner bases 172
4 Why MQQ is Susceptible to Algebraic Cryptanalysis 175
5 Weaknesses of MQQ 177
6 Conclusion 179
References 180
Appendix: Algorithm for generating random MQQ 184

PAPER F: MQQ-SIG An Ultra-fast and Provably CMA Resistant Digital Signature
Scheme 187

Danilo Gligoroski , Rune Steinsmo Ødeg̊ard , Rune Erlend Jensen , Ludovic Perret ,
Jean-Charles Faugère, Svein Johan Knapskog, Smile Markovski

1 Introduction 188
2 Preliminaries - Quasigroups and Multivariate Quadratic Quasigroups 190
3 Description of the MQQ-SIG Digital Signature Scheme 192
4 Design Rationale 194
5 Security analysis of the algorithm 199
6 Operating characteristics 207

Contents xi

7 Conclusions 209
References 209

Bibliography 213

List of Papers

Publications Included in the Thesis

The following are the papers included in Part II of the thesis. All papers
have been subjected to minor editorial changes before their inclusion.

PAPER A:
Rune Steinsmo Ødeg̊ard, Marija Mihova and Danilo Gligoroski. On
Some Properties of Boolean Matrices from Latin Squares. In Proceed-
ings of the 1st International Workshop on Security and Communication
Networks (IWSCN 2009). Trondheim, Norway. May 20-22, 2009

PAPER B:
Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Jo-
han Knapskog, Ljupco Kocarev, Aleš Dràpal, Vlastimil Klima. Crypto-
graphic Hash Function Edon-R. Submission to NIST 2008.

PAPER C:
Rune Steinsmo Ødeg̊ard and Danilo Gligoroski On the Randomness and
Regularity of Reduced Edon-R Compression Function. In Proceedings
of the 2009 International Conference on Security & Management (SAM
2009). Las Vegas, Nevada, USA. July 13-16, 2009.

PAPER D:
Jean-Philippe Aumasson, Emilia Käsper, Lars Ramkilde Knudsen, Krys-
tian Matusiewicz, Rune Steinsmo Ødeg̊ard, Thomas Peyrin and Mar-
tin Schläffer. Distinguishers for the Compression Function and Output
Transformation of Hamsi-256. In Proceedings of the 15th Australian
Conference on Information Security and Privacy (ACISP 2010). Syd-
ney, Australia. July 5-7, 2010.

PAPER E:
Jean-Charles Faugère, Rune Steinsmo Ødeg̊ard, Ludovic Perret and
Danilo Gligoroski. Analysis of the MQQ Public Key Cryptosystem. In

xiv HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Proceedings of the 9th International Conference on Cryptology and
Network Security (CANS 2010). Kuala Lumpur, Malaysia. December
12-14, 2010.

PAPER F:
Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Rune Erlend Jensen, Lu-
dovic Perret, Jean-Charles Faugère, Svein Johan Knapskog and Smile
Markovski. MQQ-SIG. An Ultra-fast and provably CMA Resistant Digi-
tal Signature Scheme. In Proceedings of the 3rd International Conference
on Trusted Systems, INTRUST 2011. Beijing, China. November 27-29,
2011.

Other Papers by the Author

The following papers were also prepared while working with this thesis.

Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan
Knapskog, Aleš Drápal, Vlastimil Klima, Jørn Amundsen and Mohamed
El-Hadedy Cryptographic Hash Function Edon-R′. In Proceedings of
the 1st International Workshop on Security and Communication Net-
works (IWSCN 2009). Trondheim, Norway. May 20-22, 2009
–This paper presents a tweak on the hash function Edon-R of Paper B.
This tweak was our planned improvment if we were selected for round
two of the NIST SHA-3 competition.

Danilo Gligoroski and Rune Steinsmo Ødeg̊ard On the Complexity of
Khovratovich et al.’s Preimage Attack on Edon-R. NIST mailing list.
http://eprint.iacr.org/2009/120

Rune Steinsmo Ødeg̊ard, Ludovic Perret, Jean-Charles Faugère and
Danilo Gligoroski. Analysis of the MQQ Public Key Cryptosystem. In
Proceedings of the Second International Conference on Symbolic Com-
putation and Cryptography. Royal Holloway, United Kingdom. June
20-25 2010
–An earlier version of Paper E.

Danilo Gligoroski, Rune Steinsmo Ødeg̊ard and Rune Erlend Jensen.
OBSERVATION: An explicit form for a class of second preimages for
any message M for the SHA-3 candidate Keccak. NIST mailing list.
http://eprint.iacr.org/2011/261

Abbreviations

ACISP Australian Conference on Information Security and
Privacy

AES Advanced Encryption Standard

ANF Algebraic Normal Form

BSI Bundesamt für Sicherheit in der Informationstechnik

CANS Conference on Cryptology and Network Security

CMA Chosen Message Attack

CPU Central Processing Unit

DES Data Encryption Standard

DDT Differential Distribution Table

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

HFE Hidden Field Equations

HMAC Hash function based Message Authentication Code

HW Hamming Weight

IV Initial Value

INSTRUST International Conference on Trusted Systems

IWSCN International Workshop on Security and
Communication Networks

LSB Least Significant Bits

xvi HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

MAC Message Authentication Code

MCU MicroController Unit

MD Merkle-Damg̊ard

MQ Multivariate Quadratic

MQPKC Multivariate Quadratic Public Key Cryptosystem

MQQ Multivariate Quadratic Quasigroup

NESSIE New European Schemes for Signatures, Integrity and
Encryption

NIST National Institute of Standards and Technology

NSA National Security Agency

OV Oil and Vinegar

RACE Reseach and development in Advanced
Communications technologies in Europe

RAM Random Access Memory

RFID Radio Frequency IDentification

RIPE RACE Integrity Primitives Evaluation

SAT Boolean SATisfiability

SAM International Conference on Security & Management

Sbox Substitution box

SHA Secure Hash Algorithm

STS Stepwise Triangular System

UOV Unbalanced Oil and Vinegar

XL eXtended Linearisation

XOR eXclusive OR

XSL eXtended Sparse Linearization

Part I

THESIS INTRODUCTION

1. Introduction

Ever since the Arab scholars invented cryptanalysis by breaking the monoal-
phabetic substitution cipher with frequency analysis around year 750 A.D.
[Sin99], the science of cryptography has existed in duality with the science of
cryptanalysis. In this thesis both sides of this duality are explored in two dif-
ferent ways. First, in the effort to contribute to the development of a new stan-
dard for cryptographic hash functions, we both construct our own candidate
for this standard, and we cryptanalyse other candidates. Second, using the
mathematical tool of Gröbner bases we cryptanalyse a multivariate public-key
cryptosystem. We then use the knowledge we gain from this analysis together
with other Gröbner bases computations to construct a multivariate quadratic
digital signature scheme.

The result of this work is presented as a collection of six papers in Part II,
which is the main part of this thesis. Here in Part I an introduction to the
material covered in those papers is given. This part is organized as follows. In
Section 2 I give the required background material. Then in Section 3 I present
my research goals, before I in Section 4 discuss the research methodology we
used to reach these goals. In Section 5 I present the main results of the papers
included in Part II together with the my contribution to each paper. The
papers are further discussed in Section 6, where the results are compared to
contemporary work on the same subject. Finally, in Section 7 I conclude Part
I of this thesis.

2. Background

In this section I will present the required background material for this thesis.
I will give an introduction to hash functions, multivariate quadratic digital
signature schemes, and the theory of Gröbner bases.

2.1 Hash Functions

2.1.1 General

A cryptographic hash function, H : {0, 1}∗ → {0, 1}n, maps bit strings of
arbitrary length1 to bit strings of fixed length n. The output of the hash func-
tion is called hash value, or just hash. The input strings are called messages,
and it should be easy to compute the hash of a message. Since the number
of possible messages is much larger than the number of possible hashes, it is

1In most realizations of cryptographic hash functions the input length is actually bounded from
above by a large constant. This constant is typically 2r − 1 with r = 64 or r = 128.

4 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

clear that there exist many messages that hash to the same output. Finding a
pair of messages that hash to the same value is called finding a collision. Even
though many such pairs exist, it is a requirement for a secure hash function
that finding such a pair should be hard. Below we have formally defined this
requirement together with two other characteristics that are required from
a secure hash function. The definitions can for instance be found in “The
Handbook of Applied Cryptography” [MVO96].

Definition 1 A hash function H is said to be preimage resistant if it in-
feasible to find a message that maps to a given string. That is, given h it is
infeasible to find M such that H(M) = h.

Definition 2 A hash function H is said to be 2nd preimage resistant if it is
infeasible to find any second input which has the same output as any specific
input. That is, given M it is infeasible to find M ′ such that H(M) = H(M ′).

Definition 3 A hash function H is said to be collision resistant if it is in-
feasible to find two distinct messages that hash to the same output. That is, it
is infeasible to find a pair (M,M ′) with M 6= M ′ such that H(M) = H(M ′).

A Random Oracle, R : {0, 1}∗ → {0, 1}n, is a deterministic entity that on
input M outputs a bitstring h of length n, where h is chosen uniformly from
the output domain and independently of M . This theoretical black box is
very useful in cryptographic theory where it is used to model hash functions
in proofs of the security of cryptographic protocols [BG81, BR93, FS86]. A
particularly desirable property of a random oracle is that even if you know
the hash of many different messages, you know nothing about the hash of a
new message, even if the new message is related to the set of messages with
known hash. This is a property which is hard to define properly. However,
the random oracle model gives us an idealized way of describing this property,
and how a good hash function should behave in general.

Since we want hash functions to come close to this ideal model, the security
against preimage, 2nd preimage and collision attacks are required to be the
same as a brute-force attack on a random oracle. This means a preimage and
2nd preimage attack should require O(2n) operations, while a collision attack
should require O(2

n
2). The reason for this much lower complexity for collision

attacks is due to the birthday attack [Yuv79]. The attack can best be explained
by an analogy. In a group of 23 people most people intuitively assume that
the chance that two people in that group share a birthday is quite low. The
chance is however approximately 50%. The reason is that you have to consider
each pair of people, and in a group of 23 there are 253 pairs. Applying this
to a collision attack on a hash function, each call to the function increases the

Background 5

number of pairs for possible collision drastically. It can be proven that you on
average only need 1.25

√
2n hash function calls to find a collision.

2.1.2 NIST Hash Competition

In 2005, Wang et al. [WYY05a] presented cryptanalysis of SHA-1, the
hash function that at that time was recommended by the National Institute
of Standards and Technology (NIST). The theoretical collision attack required
269 calculations, which is about 2000 times faster then brute-force2. Wang et
al.’s result, together with even better collision attacks on other popular hash
functions [WY05], forced NIST to take action. In addition to recommending
transition to the SHA-2 family of hash functions, NIST held two public work-
shops to assess the status of its approved hash algorithms and to solicit public
input on its cryptographic hash algorithm policy and standard. As a result
of these workshops, NIST decided to develop one or more additional hash al-
gorithms through a public competition, similar to the development process of
the Advanced Encryption Standard (AES) [NIS]. On 2nd of November 2007
NIST issued a public call for a new cryptographic hash algorithm [NIS07], and
launched the “SHA-3” competition. The deadline for submission of candidates
was 31st of October 2008.

2.1.3 Designing Hash Functions

In this section some of the aspects of designing a secure cryptographic hash
function will be discussed. Almost all hash functions are of an iterated struc-
ture built around a compression function.

Definition 4 A compression function, f : {0, 1}r × {0, 1}n → {0, 1}n, is a
function that transforms two fixed length inputs into the same size as one of
the inputs.

Note that compression functions are usually required to be one-way, meaning
that given a particular output it should be hard to find an input that com-
presses to that output. The most well-known construction method for hash
functions is the Merkle-Damg̊ard construction.

Merkle-Damg̊ard Construction. The Merkle-Damg̊ard (MD) construc-
tion is named after Ralph Merkle and Ivan Damg̊ard, who independently
[Mer89, Dam89] proved the soundness of the structure. By sound we mean

2Since then the attacks have gotten better and better. The current best result is 251 operations by
Manuel [Man11].

6 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

that a collision in the hash function implies a collision in the compression
function. This is restated in Theorem 5 below.

fh0

m0

fh1

m1

h2

m2

fht

mt

ght+1 h

Figure 1. The Merkle-Damg̊ard construction with initial value h0, compression function
f , optional finalization function g, padded message M = m0 . . .mt and output h.

The MD-construction is depicted in Figure 1. A message M of arbitrary
finite length b is divided into t blocks of length r, M = m0m1 . . .mt−1. To the
last block a 1 followed by the appropriate number of 0-bits are appended to
make it r bits long. Then an extra block mt is appended to M , where mt is
the right-justified binary representation of b, the length of the message. This
process is called padding, or Merkle-Damg̊ard strengthening, and is a crucial
part of the MD-construction. After padding, the iteration process starts from
a fixed Initial Value, IV = h0. The hash is computed iteratively using a
compression function f .

hi = f(hi−1,mi−1) i = 1, . . . t+ 1 (1)

After the iteration an optional finalization function g may be applied. The
final hash is then H(M) = g(ht+1). It is important for the soundness of the
construction that g is a permutation in the output bits.

Theorem 5 Let H be a hash function based on the Merkle-Damg̊ard construc-
tion, where the message is padded as described above, let f be the compression
function, and let g be the finalization function. Then a collision of H implies
a collision of f .

Proof Let M = m0 . . .mt−1 and M ′ = m′0 . . .m
′
t−1 be two distinct messages

that give a collision in the hash function, and let mt and m′t be the correspond-
ing blocks that are appended in padding process. A collision in H means that
the output of g is the same for both messages, but since g is a permutation
in the output bits, we must have ht+1 = f(ht,mt) = f(h′t,m

′
t) = h′t+1. If

the length of M is different then the length of M ′ then mt 6= m′t by the

Background 7

padding rule, which means f(ht,mt) = f(h′t,m
′
t) is a collision of f . Assume

the lengths of M and M ′ are equal. This means we either have a collision
in f , or that ht = h′t and mt = m′t. Assume the latter. Then we have
ht = f(ht−1,mt−1) = f(h′t−1,m

′
t−1) = h′t, which means we either have a col-

lision in f , or that ht−1 = h′t−1 and mt−1 = m′t−1. Continuing like this, we
get by reverse induction that either we have a collision in f , or mi = m′i for
0 ≤ i ≤ t. Since M and M ′ are distinct messages we must have a collision in
f . �

In the last decade generic attacks have been published which show some
weaknesses of the MD-construction. All the following results are on hash
functions with MD-strengthening. Joux [Jou04] showed how given a func-
tion which finds collisions in a hash function, it is easy to find sets of messages
that all have the same hash value. Kelsey and Schneier [KS05] showed how one
could find 2nd preimages of n-bit hash functions for much less than 2n work
using very long messages. Kelsey and Kohno [KK06] published the herding
attack, in which an attacker who can find many collisions on the hash function
by brute force can first provide the hash of a message, and later “herd” any
given starting part of a message to that hash value by the choice of an ap-
propriate suffix. There is also the well-known length-extension attack, where
given H(M) and the length of M , the attacker can calculate H(M ||M ′) for a
suitable M ′ without knowing M .

To counter these inherit weaknesses of the MD-construction a lot of tweaks
and improvements have been proposed. Lucks proposed increasing the inter-
nal state of the hash functions [Luc05]. Instead of using compression functions
with the same size as the n-bit hash output, Lucks proposed using compres-
sion functions with output size w for iteration, and then another compression
function f ′ : {0, 1}w → {0, 1}n as a finalization function. With w > n, this is
called the wide-pipe construction, and double-pipe if w = 2n. Conversely, con-
structions with w = n are called narrow-pipe. Nandi and Paul proposed fast
wide-pipe construction as a more efficient version of Lucks’ design [NP10a].

Coron et al. proposed the prefix-free Merkle-Damg̊ard construction
[CDMP05]. They showed that if the underlying compression function is
viewed as a random oracle or an ideal block-cipher, then any crypto-system
proven secure in the random oracle model, remains secure if one instead
plugs in the Prefix-free MD construction. This is a nice property, since most
crypto-systems that use hash functions are proven secure in the random oracle
model.

Another notable MD-based iterated constructions is HAIFA [BD06] pro-
posed by Biham and Dunkelman. Their proposed framework fixes many of
the found flaws of the MD-construction while supporting several additional

8 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

properties such as randomized hashing and variable hash size. The SHA-3
finalist Blake [AHMP08] uses this construction.

Cryptographic Sponges. An interesting and relatively new method of
designing hash functions is the sponge construction developed by Bertoni et al.
[BDPA07]. The sponge construction is an iterated construction for building a
function F : {0, 1}∗ → {0, 1}∗ with variable input length and arbitrary output
length based on a fixed-length transformation (or permutation) f : {0, 1}b →
{0, 1}b operating on b bits. Here b is referred to as the width of the sponge
function. Fixing the output size of the sponge construction F to n bits gives
us an n-bit hash function.

Figure 2. The sponge construction [BDPA07].

The construction is depicted in Figure 2. The sponge function operates on
a state of b = r + c bits, where c is called the capacity, and r is called the
bitrate. The input message is divided into blocks of r bits, where the last
message block is appropriately padded to reach the desired length. All the
bits of the state are initialized to zero, before the two stages of the sponge
function begins. First, in the absorbing phase, the r-bit message blocks are
XORed into the first r-bits of the state, interleaved with applications of the
function f . After all message blocks are absorbed the sponge construction
switches to the squeezing phase. In this phase the first r-bits are returned as
output blocks, interleaved with applications of the function f . For n-bit hash
functions the number of output blocks is n

r .
Unlike the MD-construction, the security of the hash functions using the

sponge construction does not depend on the number of output bits, but in-

Background 9

stead of the capacity of the permutation f . For a random transformation (or
permutation) f , Bertoni et al. [BDPA07] have proved that the sponge only
differs from a random oracle by existence of inner collisions. They use this
together with some other observations on the sponge construction to define
the flat sponge claim.

Definition 6 Given a capacity cclaim, the success probability of any attack
should be not higher than the sum of that for a random oracle and

1− e−N22−(cclaim+1)
, (2)

with the workload of the attack having the computational equivalent of N calls
to f (or its inverse).

For collision resistance the above security claim translates into 2
n
2 if the output

length is n ≤ cclaim, and 2
cclaim

2 if the output length is n ≥ cclaim. For preimage
and 2nd preimage attacks the resistance is 2n if n ≤ cclaim, and 2cclaim if
n ≥ cclaim.

Dedicated Hash Functions. Dedicated hash functions are algorithms
that are designed specifically for hashing. Looking at the hash functions that
have been and are used in practice, this is the most commonly employed type
of hash functions. The reason for this is that these functions are usually much
more efficient then hash functions based on block ciphers, or those based on
some hard problem. Most dedicated hash functions are based on variants of
the Merkle-Damg̊ard construction. Examples include two of the first published
dedicated hash functions, namely was Merkle’s Snefru [Mer90b] and Rivest’s
MD2 [Kal92]. MD2 was later superseded by two improved algorithms. First
MD4 [Riv90] and later MD5 [Riv92]. MD5 was for many years one of the
most used hash functions, and is still widely employed today, even though it
is broken [dBB93, WY05, SLdW07]. Another interesting proposal around this
time is Zhen et al.’s HAVAL [ZPS93], which has variable output length and a
parameter that controls the level of security by changing the number of passes
per message block.

In 1992, under the European RACE Integrity Primitives Evaluation (RIPE)
project, den Boer and others developed RIPEMD [BP95]. The construction
was a strengthened version of MD4 designed to counter known attacks. Later
Dobbertin et al. developed RIPEMD-160 [DBP96] because of concern about
both possible attacks and the inherent limitation of 128-bit output digest.

In 1993, NIST proposed SHA [NIS93b] (now called SHA-0) as the U.S gov-
ernment standard for cryptographic hash functions. The hash function was
later withdrawn by the NSA because of unspecified weaknesses, and super-

10 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

seded by SHA-1 [NIS95] in 1995. The only difference between SHA-0 and SHA-
1 is the inclusion of a 1-bit rotation in the block expansion part of the algo-
rithm. The design of SHA-1 is based on the Merkle-Damg̊ard construction and
was partially inspired by MD5. Similarly to MD5, the SHA-1 hash function
is still widely employed today, even though it is broken [WYY05a, CMR07].
Unlike MD5 all breaks published so far are only theoretical. Most experts
believe, however, that a collision for SHA-1 will be found in the near future.
The life cycles of some popular employed hash functions is depicted in Figure
3.

Life cycles of popular cryptographic hashes
Function 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11
Snefru
MD2
MD4
MD5
RIPEMD
HAVAL-128
SHA-0
SHA-1
RIPEMD-128
RIPEMD-160
SHA-2 family

Figure 3. Life cycle of popular cryptographic hash functions [Aur09]. Green square in-
dicates the hash function is unbroken, orange indicates the function is weakened, while red
indicates the function is broken.

Among the SHA-3 finalists, Blake [AHMP08] and Grøstl [GKM+08] are
examples of dedicated hash functions which use variants of the MD construc-
tion. While Keccak [BDPA08] and JH [Wu09] are examples of dedicated hash
functions which use the sponge construction.

Block Cipher Based Hash Functions. The construction of hash func-
tions based on block ciphers is a well-known approach dating back to when
DES [NIS93a] was used as the underlying block cipher in the Davies-Meier
construction. This construction was later proven secure in the ideal cipher
model [Win84]. The general construction of block cipher based hash con-
structions was studied by Preneel, Govaerts and Vandewalle [PGV93], from
here on referred to as PGV. They considered turning a block cipher E :
{0, 1}n × {0, 1}n → {0, 1}n into a hash function H : {0, 1}∗ → {0, 1}n us-
ing a compression function f : {0, 1}n×{0, 1}n → {0, 1}n derived from E. For
a fixed n bit constant v, PGV considers all 64 compressions functions of the
form f(hi−1,mi−1) = Ea(b) ⊕ c, where a, b, c ∈ {hi−1,mi−1, hi−1 ⊕mi−1, v}.
This description of PGVs work is by Black et al. [BRS02], and is depicted in

Background 11

Figure 4. The iterated hash of m is then defined as

hi = f(hi−1,mi−1) i = 1, . . . t (3)

Here m0, . . . ,mt−1 are the message blocks of size n where the last block is
appropriately padded. The constant h0 is some specified initial value, and
ht is the final output of the hash function. PGV found that 12 of the 64
possible compression function constructions are secure using an attack based
approach. Later Black et.al [BRS02] proved the same 12 schemes to be secure
in the ideal cipher model. In addition, when stepping outside the MD approach
to analysis, they found 8 other PGV schemes that are just as just as collision
resistant as those 12 schemes.

E
b

a

c

f

Figure 4. A compression function f based on a block cipher E. The plaintext b, key a and
feed forward c can all be from the set {hi−1,mi−1, hi−1 ⊕mi−1, v}.

Even though the security of block cipher based hash functions is well stud-
ied, the approach has been less widely used. The reasons for this include
export restrictions on block ciphers, a preponderance of 64-bit block lengths,
problems attributable to “weak keys”, and the lack of popular block ciphers
with per-byte speeds comparable to that of dedicated hash functions [BRS02].

An example of a block cipher based hash function is the SHA-3 finalist
Skein [FLS+08], which is built on the block cipher Treefish using Unique Block
Iteration, a variant of the Matyas-Meyer-Oseas hash mode [MMO85]. This is
one of the twelve modes found secure by PGV.

Provably Secure Cryptographic Hash Functions. This class of cryp-
tographic hash functions is based on some hard mathematical problem. A hash
function is said to be provably secure if breaking it is as difficult as breaking
the hard problem on which they are based. There are many different examples
of such functions. Breaking FSB [AFG+08] is at least as difficult as solving the

12 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

NP-complete problem of regular syndrome decoding. VHS [CLS06] is based
on the problem of finding nontrivial modular square roots modulo a composite
number. Damg̊ard considered hash functions based on the knapsack problem
[Dam89].

The downside of this construction is that most provably secure hash func-
tions are too inefficient to be used in practice. FSB was for instance one of
the slowest submissions to the SHA-3 competition [Be11b].

2.1.4 Hash Function Cryptanalysis

A hash function is said to be broken if there exists an attack with shorter
expected running time than the security claim of the hash function. For in-
stance, a hash function with claimed collision resistance level of 2

n
2 is said to

be broken if there exists a collision attack with expected running time 2
n
2
−t

with t ≥ 1. Attacks are called practical if the computation necessary to break
the hash function is feasible for a high resource attacker. If not, the attack
is called theoretical. Today, an attack needs to be at least under 260 to be
considered practical. Most new hash functions have a claimed security against
collision attacks of 2128 or higher. Since it is hard to find an attack on a
well designed function that is 270 times faster then the security claim, almost
all cryptanalytical results starts out as theoretical, pseudo attacks, attack on
reduced functions, or some combination of these three.

Pseudo Attack. A pseudo attack is an attack that uses more degrees
of freedom then what is given by the hash function. A common example of
this are attacks where the attacker is free to choose the initial value of the
hash function. This type of attacks is also referred to as free start attacks.
Even though pseudo attacks (usually) do not violate the security claims of
the hash function, they are still considered interesting cryptanalytical results.
The reason for this is that they give a better understanding of the attacked
hash function, and its security margin.

Cryptanalysis of Reduced Functions. Cryptanalysis of hash functions
often starts by looking at some reduced version of the hash function, and if
there are any results, see if these can be extended to the full version. Most
hash functions come with some security parameter which is natural to reduce.
This can for instance be the number of rounds the compression function does
per message block iteration. Other types of reductions can be reducing the
size of the state in a natural way, or removing a small part of the compression
function.

Background 13

Similar to pseudo attacks, cryptanalytical results on reduced hash functions
are considered interesting, even if they cannot be extended to the full version,
since they give a better understanding of the attacked hash function, and its
security margin.

Differential Cryptanalysis. Differential cryptanalysis is the main tech-
nique used to attack hash functions. The concept was first introduced by
Biham and Shamir [BS91], and used to attack the block cipher DES and DES
like crypto-systems.

fm

m m

f*(m)

Figure 5. Example of a differential path on a compression function f leading to an output
difference of zero. Here f∗ represents some intermediate evaluation of f .

The main idea when applied to hash functions is to look at input differences,
∆m = m ⊕m′, trying to find one that leads to an output difference of zero
of the compression function, ∆f(m) = f(m) ⊕ f(m′) = 0, in other words
a collision. A symbolism of this is depicted in Figure 5. The process of
differential cryptanalysis is to analyze the internal structure of the compression
function, trying to trace a path of highly probable differences through various
stages of compression. A sequence of input and output difference so that
the output difference from one stage of compression corresponds to the input
difference for the next stage is called differential characteristic, or a differential
path. A good differential path for hash functions is one that optimizes the
probability of the path while minimizing the effort to find m. A differential
path with probability p > 2−

n
2 on an n-bit hash function can be used to find a

collision by trying (on average) 1
p random message pairs (m,m⊕∆m) checking

if ∆f(m) = 0. This collision attack has complexity less then 2
n
2 .

A well-known differential cryptanalytical results of hash functions is Wang
et al.’s on SHA-1 [WYY05a] and other well known hash functions [WY05].

14 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Truncated Differential Cryptanalysis. Truncated differential crypt-
analysis can be seen as a generalization of differential cryptanalysis. Instead
of predicting the output difference between two input states of the compres-
sion function, a truncated differential path predicts only part of the difference
in the output.

By not considering all bits in the state it is possible to find (truncated)
differential paths with higher probability. Such paths can be used for key
recovery attacks (on keyed hash functions), statistical distinguishers, or they
might even be extended to collision attacks.

Truncated differential cryptanalysis was introduced by Knudsen [Knu95],
and has for instance been used by Peyrin [Pey07] to attack the hash function
Grindahl [KRT07].

Higher-Order Differential Cryptanalysis. Higher-order differential
cryptanalysis was introduced by Lai [Lai92], and first applied to hash func-
tions by Knudsen [Knu94]. The difference between differential and higher-
order differential cryptanalysis is that instead of looking at the propagation
of input differences, higher-order differential cryptanalysis exploits the prop-
agation of the difference between differences. This technique has for instance
been applied to reduced SHA-256 [LM11] and Keccak and Luffa [BCC10].
The recently proposed cube attacks [DS09] and cube testers [ADMS09] are
also forms of higher-order differential cryptanalysis techniques.

k-Sum and Zero-Sum Distinguishers. Another form of higher order
differential cryptanalysis are k-sums and zero-sums. The k-sum problem, ap-
plied to a hash function H, is to find k distinct messages such that their image
sum to zero.

k⊕
i=1

H(Mi) = 0 (4)

With k = 2 this is essentially the collision problem. If we also require that the
messages sum to zero,

⊕k
i=1Mi = 0, we have the zero-sum problem. Finding

k-sums and zero-sum is hard for an ideal random function, so the finding of
such sets can be seen as a distinguisher for the hash function.

The notion was first introduced by Aumasson and Meier in [AM09], where
they applied it to Keccak, Luffa and Hamsi.

Meet-in-the-Middle Attack. A meet-in-the-middle attack is a time-
memory tradeoff originally proposed by Diffie and Helman [DH77] to at-
tack double DES, a proposed security improvement of the Data Encryption
Standard [NIS93a]. We will describe the general idea with a preimage at-

Background 15

tack on BadHash-n, a narrow pipe Merkle-Damg̊ard iterated hash function
with invertible compression function f and n-bit output. To find a preim-
age for h the attacker computes (h1)i = f(IV,mi) in forward direction, and
(h2)j = f−1(mj , h) in backward direction, for 2

n
2 random message blocks mi

and mj . Then, by the birthday paradox in two groups [NS90], there will with
high probability be a match (h1)i = (h2)j for some i, j. The corresponding

mimj is a preimage for h. This attack requires O(2
n
2

+1) time and O(2
n
2

+1)
memory, as opposed to O(2n) time and O(1) memory of a generic attack.

Even though the attack on this toy example cannot be extended to most
hash functions, the general idea is the same; i.e. to decompose the hash
or compression function into two (or more) parts, and compute with random
inputs in forward and backward direction trying to find a match in the middle.
The best choices for how and where to make the decomposition vary from
hash function to hash function. Successful meet-in-the-middle attacks have
for instance been applied to reduced round SHA-0 and SHA-1 [AS09] and
MD4, Tiger and reduced SHA-2 [GLRW10].

Rebound Attack. The rebound attack is a state-of-the-art technique for
cryptanalysis of hash functions. The technique can be described as a combina-
tion between differential cryptanalysis and the meet-in-the-middle attack, and
was introduced by Mendel et al. [MRST09]. The technique can be applied to
both block cipher based and permutation based compression functions. Let E
be a block cipher, for permutation based functions just replace E with P . The
idea is to decompose the cipher into three smaller parts E = Ebw ◦ Ein ◦ Efw
as shown in Figure 6. The attack is then a two step process with a possible
third step.

Ebw Ein Efw

inboundoutbound outbound

Figure 6. Rebound attack on a cipher E = Ebw ◦ Ein ◦ Efw [MRST09].

1 Inbound phase: This phase is a meet-in-the-middle phase in Ein, which
is aided by the degrees of freedom that are available to a hash function
cryptanalyst.

16 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

2 Outbound phase: In this phase, truncated differentials are used in both
forward- and backward direction through Efw and Ebw to obtain desired
collisions or near-collisions

3 If the truncated differentials have a low probability in Efw and Ebw, the
inbound phase can be repeated to obtained more starting points for the
outbound phase.

The rebound attack was first applied to reduced Whirpool and reduced round
version of SHA-3 finalist Grøstl [MRST09]. Since then it has for instance been
used to attack reduced round version of SHA-3 finalists Skein [KNR10] and
JH [RTV10, NP10b], and full compression function of Lane [MNPN+09].

Algebraic Cryptanalysis. The basic principle of algebraic cryptanalysis
is to model a cryptographic primitive by a set of algebraic equations. The sys-
tem of equations is constructed in such a way that there is a correspondence
between the solution of the system and some secret information of the cryp-
tographic primitive [Fau09]. For block ciphers the solution can for instance
reveal the secret key, for hash functions the solutions can give a collision, or a
preimage. After the equation system is constructed, some method for finding
a solution is applied. The current state-of-the-art is the Gröbner bases ap-
proach (see Section 2.3), eXtended Linearisation (XL) approach3 [CKPS00],
and Boolean SATisfiability (SAT) solvers [ZM02].

There are not many published results on algebraic cryptanalysis of hash
functions. Sugita et al. [SKPI07] have applied a combination of differential
and algebraic cryptanalysis to SHA-1, while Morawiecki and Srebrny [MS10]
applied a SAT based preimage attack on Keccak. One of the reasons there
are so few results is that when applying algebraic techniques to hash functions
the corresponding algebraic systems are so huge (thousands of variables and
equations) that nobody is able to predict correctly the complexity of solving
such polynomial systems [Fau09].

Statistical Cryptanalysis. Statistical cryptanalysis is the process of look-
ing at the output distribution of the hash function and trying to distinguish it
from the distribution of an ideal random function. Although being a pseudo
random function is not always in the security claim of the hash function, it
is often considered an important property. The reason for this is that hash
functions are often employed as a heuristic substitute for random oracles in

3XL has been shown to be equivalent to Gröbner bases by Ars et al. [AFI+04]. However, the XL
approach is still the preferred choice in some research communities.

Background 17

cryptographic protocols proven secure in the random oracle model, and the
output of random oracles are by definition uniform in the image and indepen-
dent of the input.

The main process of statistical cryptanalysis is applying a wide range of sta-
tistical tools to the hash function (see for instance [RSN+01, Fil02, BJV04])
trying to find some statistical anomaly. This anomaly might then be used to
construct a distinguisher for the hash function. Given two possible distribu-
tions, a distinguisher is an algorithm which takes a sequence of realization of
a distribution and determines which of the two possible distributions the se-
quence is from. When applied to hash functions the two possible distributions
are the output hash under evaluation and the output of a random oracle.

2.1.5 Application of Hash Functions

Hash functions are often referred to as the swiss army knife of cryptographic
tools. The reason for this is, of course, that hash functions are a versatile
primitive which are used in many very different cryptographic systems. I will
here mention some of the more common uses of cryptographic hash functions.

Commitment Scheme. A Commitment scheme is a protocol between to
players A and B where player A chooses a value v from some (usually) finite
set V and commits to this choice. Later, player A may choose to reveals his
choice to player B.

Commitments are used to bind participants of cryptographic protocols to a
value, such that they later cannot change that value in order to gain some un-
fair advantage. This has applications in for example interactive proof systems,
verifiable secret sharing and auctions.

Given a cryptographic hash function H, player A can commit to a value
v ∈ V by generating a random string r and then compute c = H(v||r). He
then sends the commitment c to player B. To reveal the value v player A

send (r, v) to player B, and B checks if c
?
= H(v||r). Note that after sending

c to player B, player A can no longer change the value v without the change
being detectable by B, because this implies finding a collision of the hash
function H(v||r) = c = H(v′||r′). This is called the binding property of the
commitment scheme. On the other hand, player B cannot guess the value v
before player A reveals (v, r) since there are infinite combinations of v and r
that hash to c.4 This is called the hiding property of the commitment scheme.

4Note that this is only true for most hash functions. It is possible to construct a hash function where
H(v||r) is not hiding. A more complex hash function based commitment scheme that is hiding for
all hash functions can be found in [DPP98].

18 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

The example above is based on Damg̊ard et al. [DPP98], who proved
that if collision-intractable hash functions exist, then there exist commitment
schemes with unconditional hiding and computational binding. This was an
extension of the bit-commitment result of Naor and Yung [NY89].

Password Protection. System providers should not store their users
passwords in plaintext. The main reason for this is that if someone hacks the
systems database they should not gain access to the login and passwords of
all users. An easy solution to this is to instead store the hash of the password
together with a salt and the user identification, H(salt, UID,password). When
the user logs in, this hash is computed and compared to the hash stored in
the database. The idea of storing the encryption of the password was first
described by Wilkes [Wil75].

Key Derivation. In situations where two parties share a symmetric key it
is often wise for them to generate session keys, and instead use these session
keys when communicating. One of the reasons for this is that if a session key
is compromised the adversary will only be able to read the communication
for that particular session. Another reason is that it is a good cryptographic
principle to use different keys for different cryptographic purposes. Using key
derivation one can easily obtain separate keys for encryption and integrity
protection from one master key. This principle is for instance used in 3G
Partnership Project [NN03]. The user and the phone company share a key
stored in the SIM card of the user, and this key is used to derive new cipher
keys, integrity keys and anonymity keys each time the user wants to make
a call. See for instance [Che09] for how hash functions may be used for key
derivation.

Key Stretching. In many real-world applications there may be a need to
increase the entropy of the key-space to avoid the possibility of brute force
attacks. The reason for this can be poorly chosen passwords, or that the
system is outdated and only accepts keys of 40-bits. Kelsey et al. [KSHW98]
explain how hash functions can be used to stretch s bit keys such that the
complexity required to brute-force search a s+ t-bit key-space is the same as
the time required to brute-force search a s-bit key stretched by t bits.

Message Authentication. In cryptography it is often important to check
the authenticity and integrity of information transmitted over, or stored on,
an unreliable medium. That is, when Alice receives a message from Bob, she
wants to be sure both that the message is indeed from Bob, and that the
message received is exactly as sent. For this purpose Message Authentication

Background 19

Codes (MAC) are used. One way to construct a MAC from a hash function
H was proposed by Bellare et al. [BCK96]:

HMAC(K,M) = H(K ⊕OP ||H(K ⊕ IP ||M)) (5)

Where K is the key, ⊕ is bitwise XOR, OP = 0x5C repeated B times, IP =
0x36 repeated B times, M is the message and B is the block length of the
hash function. Note that hash function based MACs are also called keyed hash
functions.

Digital Signatures. Loosely speaking, digital signatures can be thought
of as the electronic equivalent of hand written signatures. They can be used
to give evidence of both the provenance of the document, and the intention of
an individual with regards to that document. However, digital signatures offer
much stronger security guarantees. For instance, forging a handwritten signa-
ture is relatively easy with a bit of practice, while forging a digital signature
requires solving a hard mathematical problem. In addition, digital signatures
offer desirable properties such as non-repudiation and public verifiability.

Today, digital signatures are accepted as legally binding in many countries,
where they can be used for certifying contracts or notarizing documents, and
for authentication of individuals or cooperations [Kat10]. Across the internet
digital signatures are for instance used to issue software patches and updates
in an authenticated manner. Another important online application is the
secure distribution and transmission of public-keys. Because of this, digital
signatures can be thought of as the foundation of all public-key cryptography
[Kat10].

The concept of digital signatures was introduced by Diffie and Hellman
[DH76a, DH76b] in 1976. However, in their papers they only conjectured
that such a scheme existed. The first concrete realization came two years
later with the design of the RSA public key algorithm by Rivest, Shamir
and Adleman [RSA78]. This algorithm, together with the ElGamal signature
scheme [EG84], are the two most widely used signature schemes today. A
more thorough history of digital signatures can be found in [MVO96], while
Katz [Kat10] has written a good introductory book on the concept.

Following the informal description by Katz [Kat10], a digital signature
scheme is typically used by a signer and a set of verifiers. The scheme starts
with the signer using a key-generating algorithm to produce a set of keys
(pk, sk) The key pk is called the public key and is published by the signer
through some publicly authenticated channel. We assume that any potential
verifiers can get hold of the signers public key. The key sk is called the secret
key or private key. To sign a message M the signer uses a signature algorithm
together with his private key to produce a signature σ = Signsk(M). This is

20 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

done in such a way that any other party who knows pk can verify that the
message originated from the signer and has not been modified in any way. To
do this the verifier inputs the public key, message and signature into a verifi-
cation algorithm Vrfypk(M,σ) = b. The verifier accepts the signature if b = 1,
and rejects if b = 0.

Most digital signature schemes can only sign messages of some fixed short
length. A natural way of handling longer messages is to hash all messages
before signing them. Given a keyed hash function Hs this can be done in the
following way [Kat10]: Generate a fresh k bit key s. The signature σ is then
computed as

σ = (s, Signsk(s||Hs(M))). (6)

The downside of such a construction is that an adversary who can find colli-
sions in the hash function easily can forge signatures. It is therefore important
to use a cryptographically secure hash function.

There exist some digital signatures schemes that are considered both effi-
cient and provably secure. These include schemes based on the RSA assump-
tion [DN94, CD96, HW09], strong RSA assumption [CS00, Fis03, GHR99],
and on bilinear maps [BB04, Wat05]. However, these schemes are not widely
used. The reason for this is that they are less efficient than heuristically se-
cure digital signature schemes. The construction of such schemes uses the
random oracle model (see Section 2.1.1). This means that they are proven
secure assuming the existence of a random oracle, while in practice the oracle
is replaced with a hash function. Example of such schemes includes variants of
the Full Domain Hash Signature Scheme ([BR93, BLSS04, RDS98, KW03]),
and variants of identification scheme based signature schemes ([FS86, KR00,
GMR89, GQ88, OS90, NIS09]),

2.2 Multivariate Quadratic Digital Signature Schemes

Ever since the first published realization of a public-key cryptosystem by
Rivest, Shamir and Adelman [RSA78], a lot of research has been put into
public-key primitives based on different hard mathematical problems. The
reason for this is that cryptography is a forever evolving cycle of cryptanalysis
followed by new or improved constructions. Even though RSA is currently
not broken we want to make sure we have an alternative if somebody breaks
it. This concept became even more important when Shor [Sho97] showed that
there exist polynomial time quantum algorithms for factoring numbers and
solving the discrete logarithm problem. These are the two hard problems on
which most public-key cryptosystems are based on today. As a consequence,
the search for post-quantum public-key cryptosystems is currently an impor-
tant line of research.

Background 21

At a first glance, public-key cryptosystems based on multivariate quadratic
equations (MQPKC) are very appealing. One reason for this is that the en-
cryption and decryption procedures are very efficient, and can also be per-
formed in constrained environments [BERW08, CCC+09]. Another reason is
that solving systems of multivariate equations is a know NP-complete prob-
lem [GJ79], and it is a problem which is likely to be hard even assuming
the existence of quantum computers [BBBV97]. Solving a system of random
multivariate quadratic (MQ) equations with the tools we have today has ex-
ponential complexity, both in theory and practice. However, as soon as we
introduce some structure into the equation system the complexity is much
harder to predict. Algebraic tools, such as Gröbner bases, seem to be very
good at exploiting such underlying structures, and thereby solving the equa-
tion system in much less than expected time. Because of this, the history
of MQPKC is full of broken proposals, and new cryptosystems constructed
to counter the attacks on these broken proposals. We will now give a short
overview of this history based on the following three surveys [WP05, ?, BD09].
Note that we will mention both public-key encryption systems and signature
schemes, since they are often closely related.

Let K be a field. Generally, a multivariate quadratic public-key cryptosys-
tem is a system of multivariate quadratic equations over K[x1, . . . , xn],

y1 = p1(x1, . . . , xn) =
∑

1≤j≤k≤n
a1,j,kxjxk +

n∑
j=1

b1,jxi + c1

...

yi = pi(x1, . . . , xn) =
∑

1≤j≤k≤n
ai,j,kxjxk +

n∑
j=1

bi,jxi + ci (7)

...

ym = pm(x1, . . . , xn) =
∑

1≤j≤k≤n
am,j,kxjxk +

n∑
j=1

bm,jxi + cm

where (y1, . . . , ym) is the message digest bits to be signed (or the encryption of
a message), and (x1, . . . , xm) is the signature (or decryption of a ciphertext).
Hidden in the equation system is some kind of trapdoor such that solving the
system is very easy if you know the private key. However, if you do not have
access to the private key, solving the system should be as hard as solving a
random system of equations with the same size.

The construction of the trapdoor consist of finding an easily invertible map-
ping over an extension field L that can be described as a system of polynomials

22 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

over the ground field K: P ′ : Kn → Km. The structure of this system is hidden
from the attacker by two linear invertible affine transformations, S : Kn → Kn

and T : Km → Km, as follows

(x1, . . . , xn) = x
S7−→ x′

P ′7−→ y′
T7−→︸ ︷︷ ︸

P

y = (y1, . . . , ym). (8)

Since we only consider multivariate quadratic equations this trapdoor is the
only one possible [WP05]. The equation system P is the public key, while
the triple (P ′, S, T) is the private key. To sign a message (y1, . . . , yn) the
signer uses his knowledge of the private key to solve the equation system
P(x1, . . . , xn) = (y1, . . . , yn) for (x1, . . . , xn). Any person who know the public

key of the signer can then verify if P(x1, . . . , xn)
?
= (y1, . . . , yn).

The first MQPKC called MIA (and C∗) was proposed by Matsumoto and
Imai [MI88]. The scheme was broken by Patarin [Pat95] who then proposed the
Hidden Field Equations (HFE) scheme [Pat96] and the Oil and Vinegar (OV)
scheme [Pat97]. Both these schemes were broken by Kipnis and Shamir [KS98,
KS99]. Kipnis et al. then proposed Unbalanced Oil and Vinegar (UOV) as
an improvement of OV [KHPG99]. Cryptanalysis by Braeken et al. [BWP05]
and Faugère and Perret [FP09] show that not all parameters of UOV are
secure. Another family of trapdoors is the Stepwise Triangular Scheme (STS)
introduced in [WBP04]. STS can be considered a generalization of the Tame
Transformation Method [Moh99] and the Triangle Plus Minus [GC00]; and is
also related to early work by Shamir [Sha93]. This whole family is considered
broken [WBP04]. Gligoroski et al. proposed using Multivariate Quadratic
Quasigroups (MQQ) as the trapdoor [GMK08b]. This scheme was broken by
Mohamed et al. [MDBW09].

Many modifiers have been proposed to improve the security of the differ-
ent MQPKCs. The minus modifier, which consists of removing one or more
equations from the public key, was originally proposed by Shamir [Sha93].
Patarin suggested to use the method to strengthen HFE in the context of sig-
natures. A variant of this is called Quartz [PCG01b]. The method has also
been applied to MIA [PGC98]. A variation of this scheme called SFLASH
[PCG01a] which was selected in 2003 by the NESSIE European Consortium
as one of the three recommended public key signature schemes. SFLASH has
been successfully cryptanalyzed taking advantage of the underlying monomial
structure [DFSS07]. However, the minus modifier is still considered secure
against algebraic cryptanalysis.

An overview of other modifiers is presented in Table 1 from [Wol06]. A
detailed description of the modifiers can be found in [WP05] .

Background 23

Table 1. An overview over generic modifications of MQ schemes.

Symbol Long name Security

- Minus secure
+ Plus mostly no effect
/ Subfield insecure
⊥ Branching insecure
f fixing open
h homogenizing no effect
i internal open
m masking open
s sparse open
v vinegar slightly more secure

2.3 Gröbner bases

2.3.1 General Theory

In this section I will give an introduction to Gröbner bases aligned with
the presentation in “Using Algebraic Geometry” by Cox, Little and O’Shea
[CLO05]. Let K be a field and K[x1, . . . , xn] be the polynomial ring over K in
the variables x1, . . . , xn. A monomial in a collection of variables is a product
xα = xα1

1 · · ·xαnn where αi ≥ 0. The total degree of a monomial xα is the
sum of its exponents |α| = α1 + · · · + αn. A polynomial, f , is a finite linear
combination of monomials with coefficients in K. That is,

f =
∑
α

cαx
α, (9)

where cα ∈ K for each α and there are finitely many terms cαx
α with cα 6= 0.

We are now ready to define an ideal.

Definition 7 ([CLO05]) Let I ⊂ K[x1, . . . , xn] be a non-empty subset. I is
said to be an ideal if

1 f + g ∈ I whenever f ∈ I and g ∈ I, and

2 pf ∈ I whenever f ∈ I and p ∈ K[x1, . . . , xn] is an arbitrary polynomial.

Proposition 8 ([CLO05]) Let f1, . . . fs ∈ K[x1, . . . , xn]. Then the collection

〈f1, . . . fs〉 = {p1f1 + · · ·+ psfs | pi ∈ K[x1, . . . , xn] ∀ i = 1, . . . s}, (10)

is an ideal and it is called the ideal generated by f1, . . . fs

24 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Recall the division algorithm for polynomials f, g ∈ K[x] in one variable, with
f, g 6= 0. Let the degree of f be larger than the degree of g. Then there exists
unique q and r in K[x] such that f = qg+r and either r = 0 or the degree of r is
less than the degree of g [BJN94]. In addition, r = 0 if and only if f ∈ 〈g〉. We
wish to find a similar algorithm for polynomials in more than one variable. To
do this we need some way to determine which monomial is largerst of x2y2z2

and xy4z for instance. This is where the concept of monomial order comes in.

Definition 9 ([CLO05]) A monomial order on K[x1, . . . , xn] is any relation
> on the set of monomials xα in K[x1, . . . , xn] satisfying:

1 > is a total (linear) ordering relation,

2 > is compatible with multiplication in K[x1, . . . , xn], in the sense that if
xα > xβ and xγ is a monomial, then xαxγ = xα+γ > xβ+γ = xβxγ, and

3 > is a well-ordering. That is, every nonempty collection of monomials
has a smallest element under >.

Lexicographic ordering and graded reverse lexicographic ordering are two well
known and frequently used monomial orders.

Definition 10 ([CLO05]) Let xα and xβ be monomials in K[x1, . . . , xn]. We
say xα >lex x

β if in the difference α − β ∈ Zn, the leftmost nonzero entry is
positive. This is called lexicographic ordering.

Definition 11 ([CLO05]) Let xα and xβ be monomials in K[x1, . . . , xn]. We
say xα >grevlex x

β if
∑n

i=1 αi >
∑n

i=1 βi, or if
∑n

i=1 αi =
∑n

i=1, and in the
difference α− β ∈ Zn, the rightmost nonzero entry is negative. This is called
the graded reverse lexicographic ordering.

Example 12 From the definitions we see that x2y2z2 >lex xy4z, and
x2y4z >lex x

2y2z2, since in both examples the leftmost nonzero entry of α− β
is positive. In this case α− β is equal to (1,-2,1) and (0,2,-1) respectively.

For the graded reverse ordering we have that x2y2z3 >grevlex xy4z, and
xy4z >grevlex x

2y2z2. This is because in the first example the sum of exponents
is bigger on the left side (7) than on the right (6). In the second example the
sum of exponents are equal, so the rightmost nonzero entry of α − β must be
negative. In this case the difference is (-1,2,-1).

Given a monomial order > we can define the leading term of a polynomial
f , denoted LT>(f) as the largest monomial of f under the ordering >. We
are now ready to state the division algorithm for polynomials in more than
one variable. Fix any monomial order > in K[x1, . . . , xn], and let F =

Background 25

(f1, . . . , fs) be an ordered s-tuple of polynomials in K[x1, . . . , xn]. Then every
f ∈ K[x1, . . . , xn] can be written as

f = q1f1 + · · ·+ qsfs + r, (11)

where qi, r ∈ K[x1, . . . , xn], for all i, qifi = 0 or LT>(f) ≥ LT>qifi, and either
r = 0, or r is a linear combination of monomials, none of which is divisible
by any of LT>(f1), . . . , LT>(fs). We call r a remainder of f on division by F

and is denoted f
F

[CLO05].
Unfortunately, the division algorithm for multivariate polynomials does not

have all the nice properties that the one variable version have. For instance,
for any f and F there are always different expressions of the form in equation
11 depending on the particular algorithm used for division. Reordering F ,
or changing the monomial order, may also produce different qi and r. A
particularly undesirable property is that r 6= 0 does not necessarily mean
that f /∈ 〈F 〉. The reason why this might happen is because the remainder
r may also be an element in the ideal 〈F 〉 = 〈f1, . . . , fs〉, and r 6= 0 because
it contains terms that cannot be removed by these particular generators of
〈F 〉. In order for a division to produce zero remainders for all elements of an
ideal, we need to be able to remove all leading terms of elements of that ideal
using the leading terms of the divisors [CLO05]. That is the motivation for
the definition of Gröbner bases.

Definition 13 ([CLO05]) Fix a monomial order > on K[x1, . . . , xn], and let
I ⊂ K[x1, . . . , xn] be an ideal. A Gröbner basis for I (with respect to >) is a
finite collection of polynomials G = {g1, . . . , gt} ⊂ I with the property that for
every nonzero f ∈ I, LT>(f) is divisible by LT>(gi) for some i.

Gröbner bases behave much more nicely with respect to the division algo-
rithm for multivariate polynomials. In particular we have the following two
results.

Proposition 14 ([CLO05]) Let G = {g1, . . . , gt} be a Gröbner basis for an
ideal I. Then I = 〈g1, . . . , gt〉, and for any f ∈ I the remainder on division of
f by G is zero.

Theorem 15 ([CLO05]) Fix a monomial order > and let I ⊂ K[x1, . . . , xn]
be an ideal. Division of f ∈ K[x1, . . . , xn] by a Gröbner basis for I produces an
expression f = g+ r where g ∈ I and no term in r is divisible by any element
of LT (I). If f = g′ + r′ is any other such expression then r = r′

We are interested in using Gröbner bases as a tool for solving systems of
polynomial equations. Let

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0 (12)

26 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

be a system of m polynomials in n unknowns over the field K. The set of
solutions in K, which is the algebraic variety, is defined as

V = {(z1, . . . , zn) ∈ Kn | fi(z1, . . . , zn) = 0 ∀ 1 ≤ i ≤ m}. (13)

For cryptographic applications we are often interested in multivariate
quadratic equations. For this purpose we have the following results.

Proposition 16 ([FJ03]) Let G be a Gröbner basis of 〈f1, . . . , fm, x
2
1 −

x1, . . . , x
2
n − xn〉 ⊂ GF (2)[x1, . . . , xn]. Then the following holds:

1 V = ∅ (no solution) iff G = {1}.

2 V has exactly one solution iff G = {x1 − a1, . . . , xn − an} where ai ∈
GF (2). Then (a1, . . . , an) is the solution in GF (2) of the algebraic sys-
tem f1 = · · · = fm = 0.

2.3.2 Algorithms for Computing Gröbner Bases

I will in this section describe three different algorithms for computing
Gröbner bases, starting with the classical algorithm by Buchberger, before
presenting two different improvements due to Faugère.

Buchberger’s Algorithm. The classical algorithm for computing
Gröbner bases was introduced by Bruno Buchberger in his PhD-thesis [Buc65].
In addition to providing the algorithm, he proved that the algorithm, which
takes an arbitrary generating set {f1, . . . , fs} for an ideal I as input, always
terminates and produces a Gröbner basis for I. Before we state the algorithm
we need to introduce the S-polynomial.

Definition 17 ([CLO05]) Let f, g ∈ K[x1, . . . , xn] be nonzero. Fix a mono-
mial order and let LT (f) = cxα and LT (g) = dxβ, where c, d ∈ K. Let xγ be
the least common multiple of xα and xβ. Then the S-polynomial of f and g,
denoted S(f, g), is the polynomial

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g. (14)

The algorithm works as a generalization of the Euclidean division of polynomi-
als in one variable, and is based on the following theorem called Buchberger’s
criterion.

Theorem 18 ([CLO05] A finite set G = {g1, . . . , gt} is a Gröbner basis of

I = 〈g1, . . . , gt〉 if and only if S(gi, gj)
G

= 0 for all pairs i 6= j.

Background 27

We are now ready to present the algorithm. We will use the description
found in [CLO05].

Algorithm Buchberger’s algorithm(F)
Input: F = {f1, . . . , fs}
Output: a Gröbner basis G = {g1, . . . , gt} for 〈F 〉
1. G←F ;
2. repeat
3. G′←G;
4. for each pair p 6= q ∈ G′

5. do S := S(p, q)
G′

;
6. if S 6= 0 then G← G ∪ {S};
7. until G = G′

8. return G;

The algorithm is easy to understand, and a direct implementation would
be fairly straightforward. Unfortunately, such an implementation would be
very inefficient in practice. The main reason for this is that, in general, more
than 90% of the computations in step 5 of the algorithm results in 0, and
the running time of the algorithm is highly correlated with the number of
such computations [Fau02]. The pairs considered in step 4 are called critical
pairs, and the computation of the remainder in step 5 is called the reduction
of that pair. If the reduction of a critical pair is 0, that pair is called useless,
since it provides no information about the Gröbner basis under computation.
Buchberger [Buc65, Buc79, Buc85], Gebauer and Möller [GM86], and Mora et
al. [MMT92] have all suggested improvements trying to diminish the number
of useless critical pairs. According to Faugère [Fau02], the efficiency of those
algorithms is not yet satisfactory in theory and in practice, because a lot of
useless critical pairs are not removed. Faugère has suggested two different
strategies for improving the computation of Gröbner bases. These will be
discussed in the next two paragraphs.

Faugère’s F4 Algorithm. The idea behind Faugère’s F4 Algorithm
[Fau99] can be described by first looking at Euclidean division of polynomials
in one variable (as done in [AACW08]). Let f = fdx

d + · · · + f1x + f0 and
gd′x

d′ + · · · + g1x + g0 be two polynomials in K[x] with d′ ≤ d. Consider the

28 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

following matrix.



xd xd−1 x0

f fd fd−1 . . . f0

xd−d
′
g gd′ gd′−1 . . . g0

xd−d
′−1g 0 gd′ gd′−1 . . . g0

xd−d
′−2g 0 0 gd′ gd′−1 . . . g0

...
...

. . .
. . .

g 0 0 0 0 gd′ gd′−1 . . . g0


(15)

The remainder of f on division by g can be computed by successive row echelon
reduction of the first row by the remaining rows. Similarly the multivariate
division algorithm can be described in a matrix fashion. The F4 algorithm
takes advantage of this. At each iteration of the F4 algorithm every critical
pair (under a selection strategy to remove pairs reducing to zero), together
with all already known polynomials, and the current basis G are multiplied by
fitting monomials and written in a global matrix MF4 . The multiplication with
fitting monomials is done in the same way as the polynomial g is shifted in
equation 15. The matrix MF4 is then reduced to row echelon form in one huge
computation. This corresponds to one iteration of the Buchberger algorithm,
so roughly speaking the F4 algorithm is the Buchberger algorithm in matrix
form.

It has been shown experimentally that the implementation of the F4 algo-
rithm is much faster then most other algorithms for computing Gröbner bases
(except F5) [Fau99]. An implementation of the F4 algorithm can for instance
be found in Magma [MAG].

Faugère’s F5 Algorithm. Loosely speaking, the strategy of the F5 al-
gorithm [Fau02] for computing the Gröbner basis of a set of polynomials
(f1, . . . , fs) is to only consider trivial combinations of the form fifj − fjfi.
This strategy implies two major differences from the Buchberger algorithm.
The first is that we need to iteratively compute all the Gröbner bases of the
following ideals (fs), (fs−1, fs), . . . , (f1, . . . , fs). The second difference is that
some reductions are not allowed. As a result of this, the reduction of one
polynomial by a list of polynomials may be several polynomials. Faugère has
proven that this strategy avoids all useless critical pairs if the input is a regular
sequence, and has shown experimentally that most examples have no reduc-
tions to zero in practice [Fau02]. This is also supported with experimental
results where the F5 algorithm is sometimes up to one order of magnitude
faster then F4. In addition to this, the algorithm was used to compute the
Gröbner basis of Cyclic 10 for the first time [Fau02]. A public implementa-

Background 29

tion has been done by Till Stegers [Ste06], however the implementation is not
designed for efficiency.

2.3.3 Complexity of Computing Gröbner Bases

For cryptanalysis it is often important to know the complexity of a compu-
tation. Often the computation may be way to big for all practical purposes,
but finding the expected running time for the computation is still interesting.
The reason for this is that the expected running time might be lower than a
brute-force attack on the cryptosystem on which the computational problem
is based. We would then have a theoretical break of that cryptosystem.

The complexity of computing a Gröbner basis of an ideal I depends on the
maximum degree of the polynomials appearing during the computation. This
degree, called degree of regularity, is the key parameter for understanding the
complexity of a Gröbner basis computation [BFS04]. Indeed, the complexity of
the computation is exponential in the degree of regularity Dreg, more precisely
the complexity is:

O(nωDreg), (16)

which basically correspond to the complexity of reducing a matrix of size
≈ nDreg . Here 2 < ω ≤ 3 is the “linear algebra constant”, and n the number
of variables of the system. Note that Dreg is also a function of the number
of variables, n, and the number of equations m. The relation between Dreg

and m,n depends on the specific system of equations. This relation is well
understood for regular (and semi-regular) systems of equations [Bar04, BFS04,
BFS02, BFSY05]. However, as soon as the system has some kind of structure,
this degree is much more difficult to predict. Since all cryptosystems have some
underlying structure, this means that all Gröbner bases based cryptanalysis
should try to find some bound on the degree of regularity. This has for instance
been done in the works on HFE ([FJ03, GJS06]).

2.3.4 Gröbner Bases Cryptanalysis

Since it is very natural to use Gröbner bases to attack cryptosystems based
on multivariate quadratic equations a lot of work has been done in this area.
According to [BD09] Dobbertin reported successfully solving instances of MIA
using Gebauer and Möller’s version of Buchberger’s algorithm for computing
Gröbner bases while working at the German federal office for information
security (BSI). However, the first published algebraic attack on MIA is due to
Patarin [Pat95]. The attack is very instructive in the sense that it shows that
there exist bilinear equations relating the input and the output of the system.

30 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

These low degree equations help explain why Gröbner bases can successfully
solve the equation system.

A lot of work has been done on Gröbner bases based cryptanalysis of differ-
ent instances of HFE. Faugère and Joux [FJ03] used Gröbner bases to solve
the 80-bit HFE challenge. They explained this by showing how the complexity
of computing Gröbner bases of HFE was bound only by the degree d of the
secret polynomial S, and not the size of the field F2n . In [FJ03] the degree
d is viewed as a constant, while later work by Granboulan et al. [GJS06]
on HFE considers instances where d increases with the size of the field. Set-
ting d = nα, α ≥ 1, they consider the complexity of Gröbner bases based
decryption attacks. By bounding the degree of regularity they showed this
has quasipolynomial complexity. Courtois et al. [CD03] used Gröbner bases
to analyze the security of different parameters of HFEv-. Using the Buch-
berger algorithm they looked at smaller instances of HFEv- and compared the
running time of the algorithm with the running time of the same algorithm on
a random system of equations. They used the results to analyze the security
of Quartz, and recommend parameters resulting in a higher degree of security.
In [BFJT09], Bouillaguet et al. showed that when the secret key was defined
in the base field instead of the extension field, the secret key can be recovered.
Bouillaguet et al. used Gröbner bases as part of this attack.

Studying the security of UOV, Braeken et al. [BWP05] looked at the run-
ning time of Magma implementation of Faugères F4 algorithm when fixing
some of the unknown variables to random bits. They found that some choices
of parameters are particularly vulnerable to this attack. Later work by Faugère
and Perret [FP09] extends on the analysis of [BWP05]. This is done by ana-
lyzing the effect of fixing r = 1, 2, 3 of the unknown variables to a bit chosen
at random on the degree of regularity. The conclusion is that UOV is insecure
when the parameter choice is as suggested by [KHPG99].

Gröbner bases have also been used to improve other types of attacks on
MQ schemes. In [FP06b], Perret and Faugère use Gröbner bases to improve
on the isomorphism of polynomials problem. This technique is subsequently
used to break several challenges in multivariate cryptography. In [FP06a]
Faugère and Perret use Gröbner bases in a new algorithm for solving the func-
tional decomposition problem, and in effect breaks the MQ signature scheme
2R−. In [FdVP08] Levy-dit-Vehel et al. uses Gröbner bases to improve on
Kipnis and Shamir’s MinRank attack [KS99]. The MinRank problem is NP-
complete, and is considered a very important problem in multivariate cryp-
tography [FdVP08]. In the paper, the improved attack is used to break a
multivariate authentication scheme.

Research Goals 31

According to a survey on block ciphers and algebraic cryptanalysis by Cid
and Weinmann [CW09], the first documented use of Gröbner bases in analysis
of symmetric-key cryptography was an improvement of the linear cryptanalysis
of DES [SK98]. In other works on block ciphers Cid et al. [CMR05] applied
Gröbner bases to the analysis of a scaled down version of AES to give some
insight into solving block ciphers with algebraic techniques. Buchmann et al.
[BPW06a] describe how to compute a Gröbner basis of a zero-dimensional ideal
describing the key-recovery problem from a single plaintext/ciphertext pair for
the full AES-128. However, the described method is not efficient enough for
successful cryptanalysis. Another paper by Buchman et al. [BPW06b] showed
how there exist block ciphers that are resistant to classical attacks, but are
susceptible to Gröbner bases cryptanalysis. This was done by constructing a
Feistel network based cipher Flurry, and a substitution-permutation network
based cipher Curry; both with the described characteristics5.

On the subject of stream ciphers, Ars and Faugère [AF03] used Gröbner
bases to successfully attack non-linear filter generators. In the paper they
take a closer look at ciphers satisfying Golic̀‘s design criteria. For these ciphers
they show how the algebraic degree is much lower then the theoretical bound.
Because of this, the secret key of many 80-bit stream ciphers can be recovered.
In another paper by the same authors they introduce a concept of algebraic
immunities and show how it can be used to attack stream and block ciphers
[AF05]. More information can be found in a survey of Gröbner bases and
stream ciphers written by Armknecht and Ars [AA09].

Work on Gröbner bases applied to other cryptographic primitives has for
instance been done by Faugère et al. [FOPT10]. In the paper they solved
variants of the McEliece public-key cryptosystem [McE78], which is based on
the difficulty of decoding linear code. We also recall that Sugita et al. [SKPI07]
have applied a combination of differential and algebraic cryptanalysis to 58-
round SHA-1, as mentioned in Section 2.1.4.

3. Research Goals

In Section 2.1.5 we saw how important secure cryptographic hash functions
are in the construction of cryptographic systems. Hash functions are being
used as a building block in such diverse primitives as commitment schemes,
message authentication codes and digital signatures. These primitives have
important applications by themselves, and they can also be used in the con-
struction of more complex protocols such as electronic voting systems, online
auctions, public-key distribution, mutual authentication handshakes and more.

5These two papers by Buchman et al. was also part of Pyshkins PhD thesis [Pys08].

32 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Because of the importance of hash functions in cryptography, and because of
the prestige of winning the SHA-3 competition organized by NIST, a lot of the
cryptographic communities focus is directed towards hash functions in the du-
ration of the contest. The writing of the research plan for this thesis coincided
with NIST’s public call for cryptographic hash functions. It was a natural
choice to have contributing to the SHA-3 competition, both with submission
of a candidate and with cryptanalysis of candidates, as one of the research
goals for this thesis.

In 2002 Courtois and Pieprzyk presented a new algebraic technique based
on the XL method [CP02]. The new method they called XSL uses the sparsity
of the equations and their specific structure to solve the equation system. In
the paper they suggest that the XSL attack might be able to break Rijndael
(AES) 256 bits [DR98] and Serpent [ABK98] for key lengths 192 and 256 bits.
Even though the XSL method today is widely recognized as being incorrect,
its publication can be considered as a key event that fueled the interest of
the cryptographic community in algebraic methods applied to cryptography
[CW09]. This interest, together with Faugère’s improved algorithms (F4 and
F5) for computing Gröbner bases, is probably one of the reasons for the nu-
merous and comprehensive results on Gröbner bases as a cryptanalytical tool
in the last decade (see Section 2.3.4). All these results, and the knowledge
of how powerful Gröbner bases are as a tool for solving systems of multivari-
ate equations, were the motivation for adding Gröbner bases cryptanalysis of
SHA-3 candidates as a research goal of this thesis.

During the work on this thesis, we learned that direct Gröbner bases crypt-
analysis of hash functions is difficult since the corresponding algebraic sys-
tems are so huge that it is very difficult to predict the complexity of solving
such polynomial systems. The current state of the art uses Gröbner bases
to improve on other cryptanalysis results, such as differential cryptanalysis.
Because of the nature of the SHA-3 competition, the existence of differential
cryptanalysis results on a candidate will most likely exclude it from the list
of viable contenders. Since the focus of the cryptographic community is (and
should be) on the remaining candidates, improvement of results of discarded
candidates is not a priority. Because of this, and because we still wanted
applications of Gröbner bases to be a research goal of this thesis, we found
it natural to extend this goal to include hash function applications. For this
purpose we decided to focus on cryptanalysis and construction of multivariate
quadratic signature schemes.

To summarize, the following are the research goals of this thesis.

Research Methodology 33

1 Contribute to the National Institute of Standards and Technologies pub-
lic competition to develop a new cryptographic hash algorithm; both
with submission of a candidate, and with cryptanalysis of candidates.

2 To apply Gröbner bases as a tool for cryptanalysis of hash functions and
hash function applications.

4. Research Methodology

To reach the research goals I have applied a combination of mathemati-
cal and experimental approach. In the experimental approaches I followed a
traditional scientific methodology starting with a hypothesis which is tested
before the results from the test are validated.

For our construction of a canditate for NIST’s hash competition we based
ourselves on the known theory of hash function design presented in Section
2.1.3. Using this and quasigroup theory we were able to construct a hash
function that is provably resistant to differential cryptanalysis. However, by
the nature of hash functions (that are not based on some hard problem), we
were not able to generally prove mathematically the security of the proposed
hash function. Because of this we also chose an experimental approach. In one
of the experiments we hypotesized that our hash function is an ideal random
function, and then we performed statistical experiments to test this hypothesis.

For our cryptanalysis of other SHA-3 candidates we chose a mathematical
approach based on the theory presented in Section 2.1.4. In particular we
constructed a search algorithm for finding differential paths based on some
mathematical observations we made when analyzing the internal structure of
one of the canditates.

For our cryptanalysis of a multivariate quadratic signature scheme we
started with the hypothesis that the equation system behaved as a set of
random quadratic equations. This hypothesis was proven wrong by using
experiments measuring the degree of regularity when solving the system with
Gröbner bases. Using this method we found that the degree of regularity did
not behave as expected. We then used a mathematical approach to explain
this observed degree of regularity.

For our construction of a multivariate quadratic signature scheme we based
our work on the theory presented in Section 2.2 and the theory of quasigroups.
We also performed experiments with Gröbner bases. In these experiments we
measured the degree of regularity when solving different systems with Gröbner
bases. For these experiments we wanted to find the best choice of quasigroups
with respect to Gröbner bases analysis, and we wanted to show that our result-

34 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

ing system behaved as a random system of equations with respect to Gröbner
bases.

5. Contributions

This section presents the main results of each of the six papers included in
Part II of this thesis. The author’s contribution to each paper is specified.

5.1 Paper A

On Some Properties of Boolean Matrices from Latin Squares

The paper presents an interesting class of Boolean matrices we found during
construction and cryptanalysis of the hash function Edon-R. Let 1 be the all
1 Boolean matrix of appropriate size. We found that under a special map we
defined from Latin squares to a pair of Boolean matrices (A1,A2), A1 is non-
singular if and only if A2 is non-singular. In addition they have the property
that A1 + A2 = 1, and if the matrices are non-singular the same holds for the
inverse matrices as well A−1

1 + A−1
2 = 1. Note that this is not necessarily true

if we randomly produce a non-singular matrix A1 and set A2 = A1 + 1.
The author’s contribution to Paper A, in addition to writing the paper,

was mathematically proving both lemmas and the theorem presented under
results. Danilo Gligoroski presented the problem to the author. Both Danilo
Gligoroski and Marija Mihova provided valuable feedback during the author’s
work on the paper.

5.2 Paper B

Cryptographic Hash Function Edon-R

The paper is the supporting document for the cryptographic hash function
Edon-R which was submitted as a candidate for SHA-3 hash competition
organized by NIST, according to the public call [NIS07].

Edon-R is a dedicated wide piped Merkle-Damg̊ard iterated hash function.
The compression function is based on a form for quasigroup string transfor-
mation, where the underlying quasigroup operation is a permutation based on
the three basic operations addition, rotation and eXclusive OR.

Edon-R is a cryptographic hash function with output size of n bits where
n = 224, 256, 384 or 512. Its conjectured cryptographic security is: 2

n
2

hash computations for finding collisions, 2n hash computations for finding
preimages, 2n−k hash computations for finding second preimages for messages
shorter than 2k bits. Additionally, it is resistant against length-extension

Contributions 35

attacks, resistant against multicollision attacks and it is provably resistant
against differential cryptanalysis.

Edon-R was designed to be much more efficient than SHA-2 cryptographic
hash functions, while at the same time offering the same or better security.

The author’s contributions to Paper B are listed below.

Helped in the preparation and writing of the paper.

Provided insight and analysis to some of the underlying mathematical
properties, including the part also presented in paper A.

Performed experiments on the effect on the choice different Latin
squares.

Performed experiments on the avalanche properties of the hash function.

Performed statistical analysis which provided confidence in the random-
ness of the hash function, including the analysis presented in paper C.

Performed experiments and mathematical analysis on a special class of
the compression function of Edon-R, where for some initial values the
compression function behaved like a one-way permutation. This prop-
erty was only found in scaled down versions of the compression function.

5.3 Paper C

On the Randomness and Regularity of Reduced Edon-R Compression
Function

The paper presents results from statistical analysis performed on the com-
pression function of Edon-R, where the underlying quasigroup operations are
reduced to sizes 28 and 216. The results show that the reduced compression
function R8 is regular and that its output distribution is similar to that of an
ideal random function. We also show that distribution of the output of R16 is
very similar to an ideal random function, and that the Bellare-Khono balance
of R16 is high.

The author’s contribution to this paper was writing the paper, coding and
performing the experiments, and the statistical analysis. Danilo Gligoroski
presented valuable feedback throughout the work on this paper.

5.4 Paper D

Distinguishers for the Compression Function and Output Transformation of
Hamsi-256

36 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

The paper presents a study of Hamsi’s resistance to differential and higher-
order differential cryptanalysis, with focus on the 256-bit version of Hamsi.
The main results are efficient distinguishers and near-collisions for its full
(3-round) compression function, and distinguishers for its full (6-round) fi-
nalization function, indicating that Hamsi’s building blocks do not behave
ideally. Note that when the paper was presented at ACISP 2010, Hamsi was
one of 14 remaining candidates in NIST’s Hash Competition for the future
hash standard SHA-3.

The author was part of a group that started to work on differential crypt-
analysis of Hamsi and the randomized search algorithm at a hash workshop in
Graz, Austria. In preparation of this paper the author independently wrote a
program that confirmed the differential path, found the 4 messages satisfying
the relaxed first round differential, and computed the corresponding chaining
values which satisfy the differential path up to four rounds. The author also
presented the paper at ACISP 2010.

5.5 Paper E

Analysis of the MQQ Public Key Cryptosystem

The initial motivation for this paper was our desire to design a fast and
secure public key cryptosystem based on multivariate quadratic quasigroups.
To achieve this we first needed to understand why Gligoroski et al.’s previous
attempt [GMK08b] was so easy to solve in practice [MDBW09].

The paper presents an algebraic cryptanalysis of the MQQ Public Key Cryp-
tosystem. Using a Gröbner bases based approach we explain why systems
arising in MQQ are so easy to solve in practice. To do so, we consider the
so-called degree of regularity; which is the exponent in the complexity of a
Gröbner basis computation. For MQQ systems, we show that this degree is
bounded from above by a small constant. This is due to the fact that the
complexity of solving the MQQ system is the minimum complexity of solving
just one quasigroup block or solving the Dobbertin transformation. Further-
more, we show that the degree of regularity of the Dobbertin transformation
is bounded from above by the same constant as the bound observed on MQQ
system. We then investigate the strength of a tweaked MQQ system where the
input of the Dobbertin transformation is replaced with random linear equa-
tions. It appears that the degree of regularity of this tweaked system varies
both with the size of the quasigroups and the number of variables. We con-
clude that if a suitable replacement for the Dobbertin transformation is found,
MQQ can possibly be made strong enough to resist pure Gröbner attacks for
adequate choices of quasigroup size and number of variables.

Contributions 37

The author’s contribution to this paper was constructing the quasigroups,
constructing the various MQQ systems, and performing all experiments with
Gröbner bases. Faugère contributed with his expertise on Gröbner bases,
and suggested various approaches and experiments. Perret contributed signif-
icantly during the writing of the paper. He also contributed with knowledge
on Gröbner bases computation and coding in Magma. Gligoroski contributed
with his knowledge of quasigroups and the MQQ cryptosystem.

5.6 Paper F

MQQ-SIG. An Ultra-fast and provably CMA Resistant Digital Signature
Scheme

The paper presents a digital signature scheme based on multivariate
quadratic quasigroups. The signature scheme is designed to be very fast in
both software and hardware. Signing can be performed in about 1100 cycles
on a modern Intel processor. This is three orders of magnitude faster then
RSA and ECDSA.

From a security point of view the signature schemes offers a conjectured n
2

bits of security, with n = 160, 192, 224, 256. To ensure this security the well-
known minus modifier for multivariate quadratic schemes is used. In addition,
the paper presents the results of extensive set of experiments investigating the
properties of systems of n−k, 0 ≤ k ≤ n

2 , MQQ equations in n variables. These
results give confidence that the equation system behaves as random multivari-
ate equations when enough equations is removed. The signature scheme is
proven to be secure under a chosen message attack based on this assumption.

The author’s contribution to this paper was extensive research and experi-
ments with Gröbner bases. This research is summarized below:

Analysis of the broken MQQ public key cryptosystem finding the under-
lying weaknesses of the old scheme. This work was presented in Paper
E.

Analysis of many different MQQ systems. In these systems the effects of
using different types and size of MQQs, and different numbers of unique
MQQs was tested. The conclusion was that after removing enough equa-
tions, these choices had no impact on the security of the schemes with
respect to Gröbner bases cryptanalysis.

The experiments which give confidence in the signature scheme’s re-
silience to Gröbner bases attacks when removing half of the equations.
These results are presented in Table 5 in the paper.

38 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

In addition the author wrote the proof showing that MQQ-SIG is secure under
chosen message attack in the random oracle model assuming that solving n

2
MQQ equations with n variables is as hard as solving systems of n

2 random
multivariate quadratic equations.

Danilo Gligoroski was the main designer of both the old MQQ scheme, and
this signature scheme. Rune Erlend Jensen wrote the implementation of MQQ-
SIG in C. He also contributed to the design phase with ideas on how to keep
public-key size low and software speed high. Ludovic Perret and Jean-Charles
Faugère both contributed with their knowledge of Gröbner bases computation.
Svein Johan Knapskog and Smile Markovski where both contributors to the
old MQQ scheme.

6. Results and Discussion

I will in this section further discuss this thesis contribution.

6.1 Boolean Matrices from Latin Squares

For our construction of Edon-R, the relationship presented in Paper A was
important. The reason for this is that the maps are used to define the under-
lying quasigroup operation in Edon-R’s compression function. The property
that A1 + A2 = 1 plays an important role in the diffusion of bit differences in
the compression function. Having A−1

1 +A−1
2 = 1 as well means that we would

have the same desirable diffusion properties for the inverse quasigroup oper-
ation no matter what Latin squares we chose for the compression function.
This made our search for the best possible latin square easier.

This interesting class of Boolean matrices might have applications in other
areas of cryptography or applied mathematics in general. To our knowledge
there has been no published work on the relationship between Latin squares
and Boolean matrices.

6.2 Dedicated Hash Function Edon-R
Most of the aspects of hash functions design has been discussed in Section

2.1.3. A nice overview of the general history of hash function design can for
instance be found in Section 9.8 of [MVO96]. We will here discuss Edon-R
and some contemporary work on dedicated hash functions.

As discussed in Section 2.1.2, NIST has recommended transition to the
SHA-2 family [NIS02] of hash functions because of the reported weaknesses
of SHA-1. In addition, they are currently holding a competition, called the
“SHA-3 contest,” to develop the new hash function standard. Comparing with
the thesis author’s contribution Edon-R we see that of the 51 submission ac-

Results and Discussion 39

cepted for round 1 of the contest, NaSHA [MM08] is the only other hash func-
tion based on quasigroup operations. BLAKE [AHMP08], Blender [Bra08],
Blue Midnight Wish [GKK+08], CubeHash [Ber08b], Dynamic SHA2 [Xu08],
EnRUPT [ONH08], Sgáil [Max08], Skein [FLS+08] and Tangle [AMZ08] are
the only other submissions based on the three basic operations addition, rota-
tion and eXclusive OR. A nice overview of all submission can be found at the
“SHA-3 zoo” [sha]. An overall classification of all candidates has been done
by Fleischmann et al. [FFG08].

In addition to the standard security requirements of cryptographic hash
functions, NIST wanted the SHA-3 candidates to be significantly faster then
SHA-2 [NIS07]. This requirement was added to ease the transition from the
currently used hash functions to the winner of the SHA-3 contest. It is spec-
ulated that the industry’s unwillingness to move away from the respectively
broken and weakened hash functions MD5 and SHA-1 is the much slower speed
of SHA-2 (see for instance [GKAJ11, GKS11]). If we take a closer look at the
implementation of all SHA-3 candidate hash functions from round 1, Edon-
R is the fastest hash function submitted to the contest (on most platforms)
[Be11b]. This is shown in Table 2 where speed of Edon-R in cycles/byte
is compared to the SHA-3 finalists6. Other round 1 candidates where ei-
ther the 32-bit or 64-bit implementation is significantly faster then SHA-2 are
ARIRANG [CHK+08], Blue Midnight Wish, EnRUPT, Luffa [CSW08], Lux
[NBK08] and MeshHash [Fay08].

Of the 51 submissions accepted to round 1 of the competition Blue Mid-
night Wish, CubeHash, ECHO [BBG+08], Fugue [HHJ08], Hamsi [K0̈8], Luffa,
Shabal [BCCM+08], SHAvite-3 [BD08] and SIMD [LBF08] were the nine hash
functions accepted for round 2 of the contest that did not make it to round 3.
At the time of writing of this thesis, BLAKE, Grøstl [GKM+08], JH [Wu09],
Keccak and Skein are the five remaining candidates in the contest. NIST
made this selection primarily based on the following three criteria: Security,
cost and performance, and algorithm and implementation characteristics. A
detailed report on the selection of round 3 candidates has been published by
NIST [NIS11].

6.3 Cryptanalysis of Edon-R
The work presented in Paper C is the only published statistical analysis of

Edon-R. For this paper we chose to work on reduced versions of the hash

6Note that the implementation of Edon-R is pure C-code, while the implementation all others in
the table are heavily optimized assemblers. We could expect up to 50% speed gains for an optimized
assembler code of Edon-R.

40 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Table 2. Speed comparison Edon-R and the SHA-3 finalists in cycles/byte. The compu-
tations was performed on the following computer: amd64; Sandy Bridge (206a7); 2011 Intel
Core i7-2600K; 4 x 3400MHz [Be11b].

Hash function cycles/byte

Edon-R-512 2.70
Edon-R-256 5.22
Skein-512 7.83
Blake-256 7.87
Blake-512 7.94
Skein-256 9.65
Grøstl-256 11.51
Keccak-256 12.84
JH-512 13.70
JH-256 13.71
Grøstl-512 15.59
Keccak-512 23.98

function. The reason for this is that we wanted a better understanding of the
general structure of the design and the complete output distribution of the
construction.

In other work on Edon-R, Khovratovic et al. [KNW08] presented various
free-start attacks together with a meet-in-the-middle preimage attack requir-

ing O(2
2n
3) time and O(2

2n
3) memory. The validity of the model in which

Khovratovic’s meet-in-the-middle attack is compared to generic attacks was
later disputed by Gligoroski and the author [GØ09]. In another work, which
partially overlaps Khovratovic et al.’s cryptanalysis, Klima [Kli08] presented
a multi-collision attack together with some other observation on Edon-R.
Leurent [Leu09] showed how the secret key leaks if Edon-R is used in an
outdated secret-prefix MAC construction. In [NF09] Novotney and Ferguson
used differential cryptanalysis to produce detectable output bit biases.

6.4 Cryptanalysis of Hamsi

All techniques used in our cryptanalysis of the Hamsi compression function
have been discussed in Section 2.1.4. This paper is the only published work on
Hamsi’s resistance to differential cryptanalysis, and played a partial role why
Hamsi was not selected for round three of the SHA-3 competition [NIS11].
Below we mention other cryptanalytical results on Hamsi that also influenced
this results.

Summary and Conclusion 41

Starting with results closely related to our work Nikolić [Nik09], Turan
and Uyan [TU10], and Wang et al. [WWJW09] have all presented results
on pseudo-near-collisions of Hamsi, while Aumasson and Meier [AM09] and
Boura and Canteau[CB10] have presented results on Zero-Sum distinguishers
of the algorithm.

In other work on Hamsi, Çalik and Turan [ÇT10] presented message recov-
ery and pseudo-preimage attacks on the compression function of Hamsi-256.
Other work on second preimage attacks of Hamsi-256 was presented by Fuhr
in [Fuh10], where he showed how to find second preimages for short messages.
Dinur and Shamir [DS10] exploited the low algebraic degree of Hamsi-256
in an algebraic second preimage attack. In [Gli10], Gligoroski showed how all
narrow-pipe SHA-3 candidates, including Hamsi, differ significantly from ideal
random functions defined over big domains.

6.5 Gröbner Bases Based Cryptanalysis of MQQ

The MQQ [GMK08b] cryptosystem had already been shown weak by Mo-
hamed et al. [MDBW09]. However [MDBW09] only solved the MQQ equation
system using both XL and Gröbner bases approach, and did not explain why
the system was so easy to solve in practice. The results presented in Paper E
shows exactly why the system is susceptible to algebraic cryptanalysis. This
result is crucial in our attempt to construct a secure digital signature scheme
based on MQQ, which is the work presented in Paper F.

We know of no other published results on cryptanalysis of the MQQ cryp-
tosystem. Gröbner bases based cryptanalysis of MQ systems in general was
discussed in Section 2.3.4.

6.6 Multivariate Quadratic Signature Scheme MQQ-SIG

Most aspects of MQ signature schemes have been discussed in Section 2.2.
The proposed signature scheme in Paper F is the first published security im-
provement in the MQQ family of MQPKC. The improvements are partially
based on the security problems we found during our cryptanalysis of the old
MQQ cryptosystem [GMK08b], which is the work presented in Paper E.

In Table 3 we compare MQQ-SIG to the MQ schemes enhanced TTS [YC05]
and 3ICP [DWY07]. We see that MQQ-SIG is much better in signing and
private key size, while worse in key generation, verification and public key
size. This means that MQQ-SIG is a good alternative for protocols where the
constrained environment is on the side of the signer.

42 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Table 3. Comparison of selected MQ schemes with security level 2128. Signing and veri-
fication is in CPU cycles for a 59 byte message. Private and public key represent size in
bytes.

Algorithm Key Generation Signing Verification Private key Public key

MQQSIG256 4,839,469,440 4,948 138,324 593 526,368
TTS6440 60,827,704 84,892 76,224 16,608 57,600
3ICP 15,520,100 1,641,032 60,856 12,768 35,712

7. Summary and Conclusion

Recall that the research goals for this thesis were to contribute to the SHA-
3 competition, and to use Gröbner bases as a tool for cryptanalysis of hash
function applications. An overview of all papers included in this thesis, and
how they relate to each other and the research goals, is presented in Fig-
ure 7. The hash function presented in Paper B was our candidate for the
SHA-3 competition, and both Paper A and Paper C are strongly connected
to this construction. Paper D presents our cryptanalysis of Hamsi, and as
mentioned, the paper played a partial role for why Hamsi was not selected for
round three of the SHA-3 competition. Both Paper E and Paper F present
work strongly connected with Gröbner bases cryptanalysis of digital signa-
ture schemes, which we recall is one of the more common and important hash
function applications. Paper E presents Gröbner bases based cryptanalysis
of the public-key encryption and signature scheme MQQ. The work in Paper
E, together with more experiments with Gröbner bases, resulted in the signa-
ture scheme presented in Paper F. The dashed line in Figure 7 indicates that
Edon-R′ [GØM+09a], which is an improved version of the hash function in
Paper B, can be used as the underlying hash function in the signature scheme
of Paper F.

I have shown how each paper have helped me reach the research goals. In
addition, all papers presented in Part II of this thesis, except Paper B, have
been accepted to peer reviewed conferences. Paper B was submitted to NIST
for the SHA-3 competition. Note that a paper closely related to Paper B was
also accepted to a peer reviewed conference [GØM+09a]. In conclusion I have
reached the reseach goals of this thesis as they are described in Section 3.

Summary and Conclusion 43

Contribute to SHA-3 competition Gröbner bases cryptanalysis

Paper D

Paper A Paper B

Paper C

Paper F

Paper E

Figure 7. Overview of the papers included in this thesis. A line between two papers
indicates a strong connection, while a dashed line indicates a weak connection.

Part II

INCLUDED PAPERS

PAPER A

On Some Properties of Boolean Matrices from Latin
Squares

Rune Steinsmo Ødeg̊ard, Marija Mihova and Danilo Gligoroski

In Proceedings of the 1st International Workshop on Security and Communi-
cation Networks

Trondheim, Norway. May 20-22, 2009

ON SOME PROPERTIES OF BOOLEAN MATRICES FROM

LATIN SQUARES

Rune Steinsmo Ødeg̊ard
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

rune.odegard@q2s.ntnu.no

Marija Mihova
Institute of Informatics
Faculty of Natural Sciences and Mathematics
Ss Cyril and Methodius University in Skopje, Macedonia

marija@ii.edu.mk

Danilo Gligoroski
Department of Telematics
Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and Technology

danilog@item.ntnu.no

Abstract Edon-R is one of the candidate hash functions for the ongoing NIST competi-
tion for the next cryptographic hash standard called SHA-3. Its construction is
based on algebraic properties of non-commutative and non-associative quasi-
groups of orders 2256 and 2512. In this paper we present some results from
our investigation of the mathematical properties of the quasigroups used in
Edon-R.

Keywords: Quasigroups, Boolean matrices, Edon-R, SHA-3

1. Introduction

Recently Gligoroski et.al submitted the hash function Edon-R [GØM+09b]
to the NIST hash competition [NIS07]. The conjectured one-wayness of Edon-
R is based on the problem of solving a system of quasigroup equations in

50 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

quasigroups of order 2256 and 2512. The underlying binary operation of these
quasigroups are constructed using a map from Latin squares to Boolean ma-
trices. As a part of our cryptanalysis of the Edon-R hash function we present
here several interesting mathematical properties for these Boolean matrices.
We want to stress here that we are not aware that any of these properties can
be used for launching some concrete attack on the hash function Edon-R.

This paper is organized as follows. We first give the required mathematical
background in Section 2, and then show the connection to Edon-R in Section
3. In Section 4 we present our results. Then we discuss some open questions
in Section 5, before Section 6 concludes the paper.

2. Preliminaries

In this section we give the required mathematical background. We first give
a definition of quasigroups. The modern cryptography started actually with
a strong connection to quasigroups trough the fundamental work of Shannon
[Sha49] almost 60 years ago. Then, many cryptographic primitives were de-
signed by the use of quasigroups. For example an authentication scheme has
been proposed by Dénes and Keedwell [DK92], a secret sharing scheme was
proposed by Cooper et al. [CDS94], and a version of the block cipher DES
defined by Latin squares was proposed by Carter et al. [CDN95]. Moreover,
different constructions of hash functions using quasigroups have been proposed
by several authors [SV94, GØM+09b]. For a good introduction to quasigroups
the reader is adviced to see [Bel67, Smi07] and [MR95].

Definition 1 A quasigroup (Q, ∗) is an algebraic structure consisting of a
nonempty set Q and a binary operation ∗ : Q2 → Q with the property that
each of the equations

a ∗ x = b
y ∗ a = b

(1)

has unique solutions x and y in Q.

Closely related to quasigroups are Latin squares. The reason for this is that
the multiplication table of a quasigroup is just a Latin square.

Definition 2 A Latin square of size n is an n×n-matrix whose elements are
the numbers 0, . . . , n − 1 and each number appears exactly one time in each
row and each column.

The map used to construct the underlying binary operation of the quasi-
groups in Edon-R is the following map from the set of Latin squares to the
set of Boolean matrices.

PAPER A: On Some Properties of Boolean Matrices from Latin Squares 51

4 7 2 3 1 6 0 5
2 4 1 0 6 3 5 7
1 3 7 5 0 4 6 2
5 2 4 2 3 0 7 6
6 1 0 1 7 5 4 3
3 0 6 7 5 2 1 4
0 6 5 4 2 7 3 1
7 5 3 6 4 1 2 0





0 1 1 0 1 1 1 0
0 1 1 1 1 0 0 1
1 1 1 0 1 0 0 1
1 1 1 1 0 1 0 0
1 1 0 1 0 0 1 1
1 0 0 1 1 1 1 0
1 0 0 0 1 1 1 1
0 0 1 1 0 1 1 1


L A1

Figure 1. Example of how the map works. We see that the 3rd element of row 4 of A1 is 1
because the number 3 is above the line in column 4 of L. Note that we start the enumerating
of the rows and columns of the matrices from 0.

Definition 3 Let Ln be the set of Latin squares of size n, and let M(Z2) be
the set of Boolean matrices. We define the map

Fnk : Ln → M(Z2)×M(Z2)
L 7→ (A1,A2)

(2)

where

(A1)ij =

{
1 if j ∈ {L1i, . . . , Lki}
0 else

(3)

and

(A2)ij =

{
1 if j ∈ {Lk+1,i, . . . , Lni}
0 else

(4)

To easier see how the map works imagine drawing a line between row k and
k + 1 of the Latin square as shown in Figure 1. Then the j-th element of row
i of A1 equals 1 if the number j is above the drawn line in the i-th column of
the Latin square, otherwise it is zero.

From the definition of Latin squares we see that the weight of every row
and column of A1 is k, and that A2 = A1 + 1, where 1 is the all 1 matrix of
appropriate size. Notice that for each pair (L, k) such that Fnk (L) = (A1,A2),
there exists a Latin square, L′, such that Fnn−k(L

′) = (A2,A1). The Latin
square L′ is just the square L where the top k-rows and the bottom (n− k)-
rows has exchanged place. This fact will be used to prove some of the results
this paper.

52 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

L1 =



0 7 1 3 2 4 6 5
4 1 7 6 3 0 5 2
7 0 4 2 5 3 1 6
1 4 0 5 6 2 7 3
2 3 6 7 1 5 0 4
5 2 3 1 7 6 4 0
3 6 5 0 4 7 2 1
6 5 2 4 0 1 3 7


L2 =



0 4 2 3 1 6 5 7
7 6 3 2 5 4 1 0
5 3 1 6 0 2 7 4
1 0 5 4 3 7 2 6
2 1 0 7 4 5 6 3
3 5 7 0 6 1 4 2
4 7 6 1 2 0 3 5
6 2 4 5 7 3 0 1



Figure 2. Two mutually orthogonal Latin squares used to define the permutations π2 and
π3

3. Concrete example

We will now give a short description of the connection to Edon-R. The
operation ∗ of the quasigroups (Q, ∗) used in Edon-R is defined by three
permutations by the following formula:

X ∗Y ≡ π1(π2(X) +8 π3(Y)) (5)

The permutations π2 and π3 are defined using the two orthogonal Latin squares
of order 8 given in Figure 2. This is done by computing

F 5
8 (L1) = F 5

8 (


0 7 1 3 2 4 6 5
4 1 7 6 3 0 5 2
7 0 4 2 5 3 1 6
1 4 0 5 6 2 7 3
2 3 6 7 1 5 0 4
5 2 3 1 7 6 4 0
3 6 5 0 4 7 2 1
6 5 2 4 0 1 3 7

)

= (


1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 1
0 0 1 1 1 1 1 0

 ,


0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0
1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1

) (6)

= (A1,A2)

and

F 5
8 (L2) = F 5

8 (


0 4 2 3 1 6 5 7
7 6 3 2 5 4 1 0
5 3 1 6 0 2 7 4
1 0 5 4 3 7 2 6
2 1 0 7 4 5 6 3
3 5 7 0 6 1 4 2
4 7 6 1 2 0 3 5
6 2 4 5 7 3 0 1

)

= (


1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1

 ,


0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1
1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0

) (7)

= (A3,A4)

PAPER A: On Some Properties of Boolean Matrices from Latin Squares 53

.
The Boolean matrices A1,A2 are then used to define the permutation π2,

while A3,A4 are used to define the permutation π3. For more detail of the
construction of these permutation we refer the reader to [GØM+09b].

As mentioned, from the definition of the map F kn , it is obvious that

A1 + A2 = 1 (8)

and

A3 + A4 = 1. (9)

We also find that it is an interesting fact that similar properties hold for their
inverse matrices:

A−1
1 + A−1

2 =


1 1 1 0 0 1 1 0
0 0 1 1 0 1 0 0
0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1
0 0 1 1 1 1 0 1
0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 1
0 0 1 0 1 1 0 0

+


0 0 0 1 1 0 0 1
1 1 0 0 1 0 1 1
1 0 1 1 1 1 0 0
0 1 1 1 1 1 0 0
1 1 0 0 0 0 1 0
1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 1 0 1 0 0 1 1

 = 1 (10)

and

A−1
3 + A−1

4 =


0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1
1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0

+


1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1

 = 1. (11)

In what follows, we prove that this complementary property is true for every
pair of Boolean matrices obtained from Latin squares if certain preconditions
are fulfilled.

4. Results

In this section we show that if both n and n−k is odd, the map from Section
2 defines an interesting class of Boolean matrices where both A2 = A1 +1 and,
if the matrices are non-singular, A−1

2 = A−1
1 + 1 as well. To do this we first

need to prove the following two Lemmas.

Lemma 4 Let L be a Latin square, let n−k be odd, and let Fnk (L) = (A1,A2).
Then det(A1) = 1 mod 2 if and only if det(A2) = 1 mod 2.

Proof Let det(A1) = 1 mod 2. This means that the vector columns v1, . . . , vn
of A1 are linearly independent. Let ṽ1, . . . , ṽ2 be the corresponding vector
columns of A2, i.e. ṽi = vi + 1. Assume det(A2) = 0 mod 2. This means that

54 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

there exists some ṽl and b1, . . . bn ∈ {0, 1} such that

1 + vl = ṽl =
∑
i 6=l

biṽi =
∑
i 6=l

bi(1 + vi)

=

{
1 +

∑
i 6=l bivi if

∑
bi = 1∑

i 6=l bivi if
∑
bi = 0

(12)

The first case implies that 1 + vl = 1 +
∑

i 6=l bivi ⇒ vl =
∑

i 6=l bivi, which is
not possible since the vectors v1, . . . , vn of A1 are linearly independent. The
second case, 1 + vl =

∑
i 6=l bivi, is not possible either. The reason for this is

that a sum of an even number of vectors with the same weight must have even
weight. This means that the vector on right side of the equation has even
weight, while the vector on the left side of the equation has odd weight since
n− k is odd. Since neither of the two cases in the equation above is possible,
the assumption that det(A2) = 0 mod 2 must be wrong.

This means det(A1) = 1 mod 2⇒ det(A2) = 1 mod 2. To prove det(A2) = 1
mod 2 ⇒ det(A1) = 1 mod 2 notice that for every pair (L, k) such that
Fnk (L) = (A1,A2) there exists a pair (L′, k′) such that Fnk′(L

′) = (A2,A1). �

Lemma 5 Let L be a Latin square, let k and n − k be odd and let Fnk (L) =

(A1,A2). If A1 is non-singular then the weight of any row and column of A−1
1

or A−1
2 is odd.

Proof Let the li,1, . . . li,k be the k indexes where row i of A1 is different from
zero. Assume A1 (and therefore also A2 by Lemma 4) is non-singular and let
bij be the elements of A−1

1 . Since A1A−1
1 = I we have the following equations

for any column j of A−1
1

bl1,1j + · · ·+ bl1kj = 0

...

blj−1,1j + · · ·+ blj−1,kj = 0

blj,1j + · · ·+ blj,kj = 1 (13)

blj+1,1j + · · ·+ blj+1,kj = 0

...

bln,1j + · · ·+ bln,kj = 0

By the property of the Latin square, we know that for each i the index bij must
appear in the above equations exactly k times. Using this fact and summing
the above equation together we get k(b1j + · · ·+ bnj) = 1. Since k is odd this

PAPER A: On Some Properties of Boolean Matrices from Latin Squares 55

means that the weight of every column of A−1
1 must be 1. The proof for the

rows of A−1
1 is similar, starting with the equation A−1

1 A1 = I.
The proof for any row or column of A2 follows by the fact that for every

pair (L, k) such that Fnk (L) = (A1,A2) there exists a pair (L′, k′) such that
Fnk′(L

′) = (A2,A1). �

We are now ready to prove the main result in this paper.

Theorem 6 Let L be a Latin square, let Fnk = (A1,A2), where k and n − k
is odd. If det(A1) = 1 mod 2, then

A−1
2 = A−1

1 + 1 (14)

Proof First we know that A2 is non-singular by Lemma 4. We then use this
fact in the following equations.

A1 = 1 + A2 (15)

A1A−1
1 = 1A−1

1 + A2A−1
1 (16)

I = 1A−1
1 + A2A−1

1 (17)

A−1
2 = A−1

2 1A−1
1 + A−1

1 (18)

A−1
2 = 1 + A−1

1 (19)

Where equality 15 follows from the definition of Latin squares, and the step
from equality 18 to equality 19 follows from Lemma 5. �

5. Open questions

The quasigroups used in Edon-R are obtained from Latin Squares, which
by themselves also can be considered as quasigroups. It would be interesting
to extend our analysis to investigate similar object that are obtained by the
principles defined in Edon-R, but on algebraic objects such as left or right
quasigroups, loops and groups.

6. Conclusion

We have shown that when k and n − k is odd the map from Definition 3
defines an interesting class of Boolean matrices where both A2 = A1 + 1 and,
if the matrices are non-singular, A−1

2 = A−1
1 + 1 as well.

References

[Bel67] V. D. Belousov. Osnovi teorii kvazigrup i lup (in russian), 1967. Nauka,
Moscow.

56 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[CDN95] G. Carter, E. Dawson, and L. Nielsen. A latin square variation of DES. In
Proc. Workshop of Selected Areas in Cryptography, Ottawa, Canada, 1995.

[CDS94] J. Cooper, D. Donovan, and J. Seberry. Secret sharing schemes arising from
latin squares. Bulletin of the Institute of Combinatorics and its Applications,
12(4):33–43, 1994.

[DK92] J. Dénes and A. D. Keedwell. A new authentication scheme based on latin
squares. Discrete Math., 106-107:157–161, 1992.

[GØM+09] Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan
Knapskog, Ljupco Kocarev, Aleš Drápal, and Vlastimil Klima. Cryptographic
hash function EDON-R. Submission to NIST, 2009.

[MR95] B.D. McKay and E. Rogoyski. Latin squares of order 10. Electronic J. Comb.,
2(3), 1995. http://ejc.math.gatech.edu:8080/Journal/journalhome.html.

[NIS07] NIST. Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA-3) family. Federal Register No-
tice, 72(112), November 2007. http://csrc.nist.govgroups/ST/hash/

documents/FR_Notice_Nov07.pdf.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656—715, 1949.

[Smi07] J. D. H. Smith. An introduction to quasigroups and their representations.
Chapman & Hall/CRC, 2007.

[SV94] C.-P. Schnorr and S. Vaudenay. Black Box Cryptoanalysis of Hash Networks
Based on Multipermutations. In Proceedings of EUROCRYPT 1994, volume
950 of LNCS, pages 47–57. Springer, 1994.

PAPER B

Cryptographic Hash Function Edon-R

Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan
Knapskog, Ljupco Kocarev, Aleš Dràpal, Vlastimil Klima

Submission to NIST 2008

CRYPTOGRAPHIC HASH FUNCTION Edon-R

Danilo Gligoroski
Department of Telematics
Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and Technology

danilog@item.ntnu.no

Rune Steinsmo Ødeg̊ard
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

rune.odegard@q2s.ntnu.no

Marija Mihova
Institute of Informatics
Faculty of Natural Sciences and Mathematics
Ss Cyril and Methodius University in Skopje, Macedonia

marija@ii.edu.mk

Svein Johan Knapskog
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

svein.knapsjog@q2s.ntnu.no

Ljupco Kocarev
University of California
San Diego, USA and
Macedonian Academy of Sciences and Arts

lkocarev@ucsd.edu

60 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Aleš Drápal
Charles University, Czech Republic

drapal@karlin.mff.cuni.cz

Vlastimil Klima
Independent cryptologist - consultant, Czech Republic

v.klima@volny.cz

Abstract This is the version 02 of the supporting documentation that describes in details
the cryptographic hash function Edon-R which was submitted as a candidate
for SHA-3 hash competition organized by National Institute of Standards and
Technology (NIST), according to the public call [NIS07].

The difference between version 01 and version 02 of the documentation is
in the produced test vectors for HMAC. That is due to the fact that there
was mismatch between rotation values defined in the documentation and im-
plemented C code. Accordingly, C source code (in the accompanied CD) has
been changed with the correct rotation values. So, in this documentation we
do not change anything in the originally submitted algorithm, but just give
the correct HMAC test values. In this version a minor change in the perfor-
mance has been measured with Microsoft Visual Studio 2005, but we add new
measurements performed by Intel C++ v 11.0.066 (that are slightly better
than those obtained by Microsoft Visual Studio 2005). Additionally, we put a
remark that our claims about free-start collisions in the Section 3.14 are not
correct.

Edon-R is a cryptographic hash function with output size of n bits where
n = 224, 256, 384 or 512. Its conjectured cryptographic security is: O(2

n
2)

hash computations for finding collisions, O(2n) hash computations for find-
ing preimages, O(2n−k) hash computations for finding second preimages for
messages shorter than 2k bits. Additionally, it is resistant against length-
extension attacks, resistant against multicollision attacks and it is provably
resistant against differential cryptanalysis.

Edon-R has been designed to be much more efficient than SHA-2 crypto-
graphic hash functions, while in the same time offering same or better security.
The speed of the optimized 32-bit version on defined reference platform with
Intel C++ v 11.0.066 is 6.26 cycles/byte for n = 224, 256 and 9.99 cycles/byte
for n = 384, 512. The speed of the optimized 64-bit version on defined refer-
ence platform with Intel C++ v 11.0.066 is 4.40 cycles/byte for n = 224, 256
and 2.29 cycles/byte for n = 384, 512.

Keywords: Hash function, SHA-3, quasigroup string transformation

PAPER B: Cryptographic Hash Function Edon-R 61

Address in memory Byte value
H 23

H+1 FE

H+2 03

H+3 A1

Table 1. Little-endian representation of the 32–bit integer value: ”0xA103FE23.

Address in memory Byte value
H 1A

H+1 30

H+2 EF

H+3 32

H+4 23

H+5 FE

H+6 03

H+7 A1

Table 2. Little-endian representation of the 64–bit integer value: ”0xA103FE2332EF301A.

1. Algorithm Specifics

1.1 Bit Strings and Integers

The following terminology related to bit strings, byte strings and integers
will be used:

1 A hex digit is an element of the set {0, 1,..., 9, A, ..., F}. A hex
digit is the representation of a 4–bit string. For example, the hex digit
”7” represents the 4–bit string ”0111”, and the hex digit ”A” represents
the 4–bit string ”1010”.

2 The ”little-endian” convention is used when expressing string of bytes
stored in memory. That means that beginning from some address ”H” if
the content of the memory is represented as a 1-byte address increment,
then 32–bit and 64–bit integers are expressed as in the example given
in Table 1 and Table 2 respectivly. The prefix ”0x” is used to annotate
that the integer is expressed in hex digit notation.

3 The ”big-endian” convention is used when expressing the ”internal bit
endianness” for both 32–bit and 64–bit words as integers. That means
that within each word, the most significant bit is stored in the left-most

62 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

bit position. More concretely, a word is a w–bit string that may be
represented as a sequence of hex digits. To convert a word to hex digits,
each 4–bit string is converted to its hex digit equivalent. For example,
the 32–bit string ”1010 0001 0000 0011 1111 1110 0010 0011” has
a hexadecimal representation ”0xA103FE23” and its value as unsigned
long integer is 2701393443. The 64–bit string ”1010 0001 0000 0011

1111 1110 0010 0011 0011 0010 1110 1111 0011 0000 0001 1010” has
a hexadecimal representation ”0xA103FE2332EF301A” and its value as
unsigned long long integer is 11602396492168376346.

4 For Edon-R hash algorithm, the size of m bits of the message block, de-
pends on the variant of the algorithm (Edon-R224, Edon-R256, Edon-
R384 or Edon-R512).

(a) For Edon-R224 and Edon-R256, each message block has 512 bits,
which are represented as a sequence of sixteen 32–bit words.

(b) For Edon-R384 and Edon-R512, each message block has 1024
bits, which are represented as a sequence of sixteen 64–bit words.

1.2 Parameters, variables and constants

The following parameters and variables are used in the specification of
Edon-R:

n = 224, 256, 384, 512 The size of the hash digest.

Edon-Rn Hash algorithm that maps messages into hash values
of size n bits.

w = 32 or w = 64
w is the size of binary words that are used in Edon-
R. In Edon-R224 and Edon-R256 w = 32 and in
Edon-R384 and Edon-R512 w = 64.

M A message of arbitrary length less than 264 bits.

l Length of a message.

k
Number of zeroes appended to a message during the
padding step.

M ′
Padded message with length equal to a multiple of m.
M ′ = (M (1), . . . ,M (N))

PAPER B: Cryptographic Hash Function Edon-R 63

N Number of blocks in the padded message.

m = 512 or m = 1024 Number of bits in the message block M (i).

M (i)

i-th message block. Every message block M (i) is rep-
resented as a 16 dimensional vector of w-bit words i.e.
as M (i) = (M

(i)
0 , . . . ,M

(i)
15) or correspondingly as a pair

of two vectors of length 8,

M (i) ≡ (M
(i)
0 ,M

(i)
1).

M
(i)
j

The j-th word of the i-th message block M (i) =

(M
(i)
0 , . . . ,M

(i)
15).

P (i)

The i-th double pipe value. P (0) is the initial double
pipe value. P (N) is the final double pipe value and is
used to determine the message digest of n bits. Every
double pipe P (i) is represented as a 16 dimensional

vector of w-bit words i.e. as P (i) = (P
(i)
0 , . . . , P

(i)
15) or

correspondingly as a pair of two vectors of length 8,

P (i) ≡ (P
(i)
0 ,P

(i)
1).

(Q, ∗) A quasigroup with binary operation ∗.

q = 256 or q = 512
The exponent q determines the order of the quasigroup,
i.e. |Q| = 2q.

Q256, Q512

Quasigroups isotopic to
((

Z2w
)8
,+8

)
where +8, is

the operation of componentwise addition of two 8–

dimensional vectors in
(
Z2w

)8
.

R Quasigroup reverse string transformation.

Zw2 The set of binary words of length w ∈ {32, 64}.

π1, π2, π3 Permutations of the sets {0, 1}256, {0, 1}512.

64 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

⊕w Addition in Zw2 (bitwise XOR of two w–bit words).

X Elements of Q256, Q512.

H(M) Hash of message M .

Algorithm
abbreviation

Message size
l (in bits)

Block size
m (in bits)

Word size w
(in bits) Endianess

Digest size
n (in bits)

Support of
”one-pass”

streaming mode

Edon-R224 < 264 512 32 Little-endian 224 Yes
Edon-R256 < 264 512 32 Little-endian 256 Yes
Edon-R384 < 264 1024 64 Little-endian 384 Yes
Edon-R512 < 264 1024 64 Little-endian 512 Yes

Table 3. Basic properties of all four variants of the Edon-R

1.3 General design properties of Edon-R
Edon-R follows the general design pattern that is common for most of the

known hash functions. It means that it has two stages (and several sub-stages
within every stage):

1 Preprocessing

(a) padding a message,

(b) parsing the padded message into m–bit blocks, and

(c) setting initialization values to be used in the hash computation.

2 Hash computation

(a) using a conjectured one-way operation with huge quasigroups iter-
atively generates series of double pipe values,

(b) The n Least Significant Bits (LSB) of the final double pipe value
generated by the hash computation are used to determine the mes-
sage digest.

Depending on the context we will sometimes refer to the hash function as
Edon-R and sometimes as Edon-R224, Edon-R256, Edon-R384 or Edon-
R512.

PAPER B: Cryptographic Hash Function Edon-R 65

In Table 3, we give the basic properties of all four variants of the Edon-R
hash algorithms.

The following operations are applied in Edon-R:

1 Bitwise logic word operations ⊕ – XOR.

2 Addition + modulo 232 or modulo 264.

3 Rotate left (circular left shift) operation, ROTLr(x), where x is a 32–bit
or 64–bit word and r is an integer with 0 ≤ r < 32 (resp. 0 ≤ r < 64).

1.4 Preprocessing

Preprocessing consists of three steps:

1 padding the message M,

2 parsing the padded message into message blocks, and

3 setting the initial double pipe value, P (0).

1.4.1 Padding the message

The message M , shall be padded before hash computation begins. The
purpose of this padding is to ensure that the padded message is a multiple of
512 or 1024 bits, depending on the size of the message digest n.

Edon-R224 and Edon-R256. Suppose that the length of the message
M is l bits. Append the bit ”1” to the end of the message, followed by
k zero bits, where k is the smallest, non-negative solution to the equation
l + 1 + k ≡ 448 mod 512. Then append the 64–bit block that is equal to the
number l expressed using a binary representation. For example, the (8–bit
ASCII) message ”abc” has length 8 × 3 = 24, so the message is padded with
the bit ”1”, then 448 − (24 + 1) = 423 zero bits, and then the 64–bit binary
representation of the number 24, to become the 512–bit padded message.

01100001︸ ︷︷ ︸
”a”

01100010︸ ︷︷ ︸
”b”

01100011︸ ︷︷ ︸
”c”

1

423︷ ︸︸ ︷
00 . . . 00

64︷ ︸︸ ︷
00 . . . 011000︸ ︷︷ ︸

l=24

Edon-R384 and Edon-R512. Suppose that the length of the message
M is l bits. Append the bit ”1” to the end of the message, followed by
k zero bits, where k is the smallest, non-negative solution to the equation
l + 1 + k ≡ 960 mod 1024. Then append the 64–bit block that is equal to the
number l expressed using a binary representation. For example, the (8–bit

66 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

ASCII) message ”abc” has length 8 × 3 = 24, so the message is padded with
the bit ”1”, then 960 − (24 + 1) = 935 zero bits, and then the 64–bit binary
representation of the number 24, to become the 1024–bit padded message.

01100001︸ ︷︷ ︸
”a”

01100010︸ ︷︷ ︸
”b”

01100011︸ ︷︷ ︸
”c”

1

935︷ ︸︸ ︷
00 . . . 00

64︷ ︸︸ ︷
00 . . . 011000︸ ︷︷ ︸

l=24

1.4.2 Parsing the message

After a message has been padded, it must be parsed into N m–bit blocks
before the hash computation can begin.

Edon-R224 and Edon-R256. For Edon-R224 and Edon-R256, the
padded message is parsed into N 512–bit blocks, M (1), M (2), . . ., M (N). Since
the 512 bits of the input block may be expressed as sixteen 32–bit words, the

first 32 bits of message block i are denoted M
(i)
0 , the next 32 bits are M

(i)
1 ,

and so on up to M
(i)
15 .

Edon-R384 and Edon-R512. For Edon-R384 and Edon-R512, the
padded message is parsed into N 1024–bit blocks, M (1), M (2), . . ., M (N).
Since the 1024 bits of the input block may be expressed as sixteen 64–bit

words, the first 64 bits of message block i are denoted M
(i)
0 , the next 64 bits

are M
(i)
1 , and so on up to M

(i)
15 .

1.4.3 Setting the initial double pipe value P (0)

Before the hash computation begins for each of the hash algorithms, the
initial double pipe value P (0) must be set. The size and the value of words
in P (0) depend on the message digest size n. As it is shown in the following
subsubsections the constants consist of a concatenation of the consecutive 8-
bit natural numbers. Since EdonR224 is the same as EdonR256 except for the
final truncation, they have to have different initial values. Thus, the initial
double pipe of EdonR224 starts from the byte value 0x00 and takes all 64
successive byte values up to the value 0x3F. Then, the initial double pipe of
EdonR256 starts from the byte value 0x40 and takes all 64 successive byte
values up to the value 0x7F. The situation is the same with EdonR384 and
EdonR512, but since now the variables are 64-bit long, the initial double pipe
of EdonR384 starts from the byte value 0x00 and takes all 128 successive byte
values up to the value 0x7F and the initial double pipe of EdonR512 starts
from the byte value 0x80 and takes all 128 successive byte values up to the
value 0xFF.

PAPER B: Cryptographic Hash Function Edon-R 67

P
(0)
0 = 0x00010203 P

(0)
1 = 0x04050607

P
(0)
2 = 0x08090A0B P

(0)
3 = 0x0C0D0E0F

P
(0)
4 = 0x10111213 P

(0)
5 = 0x14151617

P
(0)
6 = 0x18191A1B P

(0)
7 = 0x1C1D1E1F

P
(0)
8 = 0x20212223 P

(0)
9 = 0x24252627

P
(0)
10 = 0x28292A2B P

(0)
11 = 0x2C2D2E2F

P
(0)
12 = 0x30313233 P

(0)
13 = 0x24353637

P
(0)
14 = 0x38393A3B P

(0)
15 = 0x3C3D3E3F

Table 4. Initial double pipe P (0) for Edon-R224

P
(0)
0 = 0x40414243 P

(0)
1 = 0x44454647

P
(0)
2 = 0x48494A4B P

(0)
3 = 0x4C4D4E4F

P
(0)
4 = 0x50515253 P

(0)
5 = 0x54555657

P
(0)
6 = 0x58595A5B P

(0)
7 = 0x5C5D5E5F

P
(0)
8 = 0x60616263 P

(0)
9 = 0x64656667

P
(0)
10 = 0x68696A6B P

(0)
11 = 0x6C6D6E6F

P
(0)
12 = 0x70717273 P

(0)
13 = 0x74757677

P
(0)
14 = 0x78797A7B P

(0)
15 = 0x7C7D7E7F

Table 5. Initial double pipe P (0) for Edon-R256

Edon-R224. For Edon-R224, the initial double pipe value P (0) shall
consist of sixteen 32–bit words given in Table 4.

Edon-R256. For Edon-R256, the initial double pipe value P (0) shall
consist of sixteen 32–bit words given in Table 5.

Edon-R384. For Edon-R384, the initial double pipe value P (0) shall
consist of sixteen 64–bit words given in Table 6.

Edon-R512. For Edon-R512, the initial double pipe value P (0) shall
consist of sixteen 64–bit words given in Table 7.

68 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

P
(0)
0 = 0x0001020304050607 P

(0)
1 = 0x08090A0B0C0D0E0F

P
(0)
2 = 0x1011121314151617 P

(0)
3 = 0x18191A1B1C1D1E1F

P
(0)
4 = 0x2021222324252627 P

(0)
5 = 0x28292A2B2C2D2E2F

P
(0)
6 = 0x3031323324353637 P

(0)
7 = 0x38393A3B3C3D3E3F

P
(0)
8 = 0x4041424344454647 P

(0)
9 = 0x48494A4B4C4D4E4F

P
(0)
10 = 0x5051525354555657 P

(0)
11 = 0x58595A5B5C5D5E5F

P
(0)
12 = 0x6061626364656667 P

(0)
13 = 0x68696A6B6C6D6E6F

P
(0)
14 = 0x7071727374757677 P

(0)
15 = 0x78797A7B7C7D7E7F

Table 6. Initial double pipe P (0) for Edon-R384

P
(0)
0 = 0x8081828384858687 P

(0)
1 = 0x88898A8B8C8D8E8F

P
(0)
2 = 0x9091929394959697 P

(0)
3 = 0x98999A9B9C9D9E9F

P
(0)
4 = 0xA0A1A2A3A4A5A6A7 P

(0)
5 = 0xA8A9AAABACADAEAF

P
(0)
6 = 0xB0B1B2B3B4B5B6B7 P

(0)
7 = 0xB8B9BABBBCBDBEBF

P
(0)
8 = 0xC0C1C2C3C4C5C6C7 P

(0)
9 = 0xC8C9CACBCCCDCECF

P
(0)
10 = 0xD0D1D2D3D4D5D6D7 P

(0)
11 = 0xD8D9DADBDCDDDEDF

P
(0)
12 = 0xE0E1E2E3E4E5E6E7 P

(0)
13 = 0xE8E9EAEBECEDEEEF

P
(0)
14 = 0xF0F1F2F3F4F5F6F7 P

(0)
15 = 0xF8F9FAFBFCFDFEFF

Table 7. Initial double pipe P (0) for Edon-R512

PAPER B: Cryptographic Hash Function Edon-R 69

2. Description of the Hash Algorithm Edon-R
2.1 Mathematical preliminaries and notation

In this section we need to repeat some parts of the definition of the class
of one-way candidate functions recently defined in [GMK06, Gli09]. For that
purpose we need also several brief definitions for quasigroups and quasigroup
string transformations.

Definition 1 A quasigroup (Q, ∗) is an algebraic structure consisting of a
nonempty set Q and a binary operation ∗ : Q2 → Q with the property that
each of the equations

a ∗ x = b
y ∗ a = b

(1)

has unique solutions x and y in Q.

Closely related combinatorial structures to finite quasigroups are Latin
squares, since the main body of the multiplication table of a quasigroup is
just a Latin square.

Definition 2 A Latin square is an n× n table filled with n different symbols
in such a way that each symbol occurs exactly once in each row and exactly
once in each column.

Definition 3 A pair of Latin squares is said to be orthogonal if the n2 pairs
formed by juxtaposing the two squares are all distinct.

More detailed information about theory of quasigroups, quasigroup string
processing, Latin squares and hash functions can be found in [Bel67, DK92,
Smi07, MR95, MGB99].

2.1.1 Algorithmic definition of quasigroups of orders 2256 and
2512

First we give an algorithmic description of an operation that takes two eight-
component vectors X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7) where
Xi and Yi are either 32–bit or 64–bit variables, and computes a new eight-
component vector Z = (Z0, Z1, . . . , Z7). Operation ”+” denotes addition
modulo 232 or modulo 264, the operation ⊕ is the logical operation of bitwise
exclusive or and the operation ROTLr(Xi) is the operation of bit rotation of
the 32–bit or 64–bit variable Xi, to the left for r positions.

70 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Quasigroup operation of order 2256

Input: X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7)
where Xi and Yi are 32–bit variables.
Output: Z = (Z0, Z1, . . . , Z7) where Zi are 32–bit variables.
Temporary 32–bit variables: T0, . . . , T15.

1

T0 ← ROTL0(0xAAAAAAAA + X0 + X1 + X2 + X4 + X7);
T1 ← ROTL4(X0 + X1 + X3 + X4 + X7);
T2 ← ROTL8(X0 + X1 + X4 + X6 + X7);
T3 ← ROTL13(X2 + X3 + X5 + X6 + X7);
T4 ← ROTL17(X1 + X2 + X3 + X5 + X6);
T5 ← ROTL22(X0 + X2 + X3 + X4 + X5);
T6 ← ROTL24(X0 + X1 + X5 + X6 + X7);
T7 ← ROTL29(X2 + X3 + X4 + X5 + X6);

2

T8 ← T3 ⊕ T5 ⊕ T6;
T9 ← T2 ⊕ T5 ⊕ T6;
T10 ← T2 ⊕ T3 ⊕ T5;
T11 ← T0 ⊕ T1 ⊕ T4;
T12 ← T0 ⊕ T4 ⊕ T7;
T13 ← T1 ⊕ T6 ⊕ T7;
T14 ← T2 ⊕ T3 ⊕ T4;
T15 ← T0 ⊕ T1 ⊕ T7;

3

T0 ← ROTL0(0x55555555 + Y0 + Y1 + Y2 + Y5 + Y7);
T1 ← ROTL5(Y0 + Y1 + Y3 + Y4 + Y6);
T2 ← ROTL9(Y0 + Y1 + Y2 + Y3 + Y5);
T3 ← ROTL11(Y2 + Y3 + Y4 + Y6 + Y7);
T4 ← ROTL15(Y0 + Y1 + Y3 + Y4 + Y5);
T5 ← ROTL20(Y2 + Y4 + Y5 + Y6 + Y7);
T6 ← ROTL25(Y1 + Y2 + Y5 + Y6 + Y7);
T7 ← ROTL27(Y0 + Y3 + Y4 + Y6 + Y7);

4

Z5 ← T8 + (T3 ⊕ T4 ⊕ T6);
Z6 ← T9 + (T2 ⊕ T5 ⊕ T7);
Z7 ← T10 + (T4 ⊕ T6 ⊕ T7);
Z0 ← T11 + (T0 ⊕ T1 ⊕ T5);
Z1 ← T12 + (T2 ⊕ T6 ⊕ T7);
Z2 ← T13 + (T0 ⊕ T1 ⊕ T3);
Z3 ← T14 + (T0 ⊕ T3 ⊕ T4);
Z4 ← T15 + (T1 ⊕ T2 ⊕ T5);

Table 8. An algorithmic description of a quasigroup of order 2256.

PAPER B: Cryptographic Hash Function Edon-R 71

Quasigroup operation of order 2512

Input: X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7)
where Xi and Yi are 64–bit variables.
Output: Z = (Z0, Z1, . . . , Z7) where Zi are 64–bit variables.
Temporary 64–bit variables: T0, . . . , T15.

1

T0 ← ROTL0(0xAAAAAAAAAAAAAAAA + X0 + X1 + X2 + X4 + X7);
T1 ← ROTL5(X0 + X1 + X3 + X4 + X7);
T2 ← ROTL15(X0 + X1 + X4 + X6 + X7);
T3 ← ROTL22(X2 + X3 + X5 + X6 + X7);
T4 ← ROTL31(X1 + X2 + X3 + X5 + X6);
T5 ← ROTL40(X0 + X2 + X3 + X4 + X5);
T6 ← ROTL50(X0 + X1 + X5 + X6 + X7);
T7 ← ROTL59(X2 + X3 + X4 + X5 + X6);

2

T8 ← T3 ⊕ T5 ⊕ T6;
T9 ← T2 ⊕ T5 ⊕ T6;
T10 ← T2 ⊕ T3 ⊕ T5;
T11 ← T0 ⊕ T1 ⊕ T4;
T12 ← T0 ⊕ T4 ⊕ T7;
T13 ← T1 ⊕ T6 ⊕ T7;
T14 ← T2 ⊕ T3 ⊕ T4;
T15 ← T0 ⊕ T1 ⊕ T7;

3

T0 ← ROTL0(0x5555555555555555 + Y0 + Y1 + Y2 + Y5 + Y7);
T1 ← ROTL10(Y0 + Y1 + Y3 + Y4 + Y6);
T2 ← ROTL19(Y0 + Y1 + Y2 + Y3 + Y5);
T3 ← ROTL29(Y2 + Y3 + Y4 + Y6 + Y7);
T4 ← ROTL36(Y0 + Y1 + Y3 + Y4 + Y5);
T5 ← ROTL44(Y2 + Y4 + Y5 + Y6 + Y7);
T6 ← ROTL48(Y1 + Y2 + Y5 + Y6 + Y7);
T7 ← ROTL55(Y0 + Y3 + Y4 + Y6 + Y7);

4

Z5 ← T8 + (T3 ⊕ T4 ⊕ T6);
Z6 ← T9 + (T2 ⊕ T5 ⊕ T7);
Z7 ← T10 + (T4 ⊕ T6 ⊕ T7);
Z0 ← T11 + (T0 ⊕ T1 ⊕ T5);
Z1 ← T12 + (T2 ⊕ T6 ⊕ T7);
Z2 ← T13 + (T0 ⊕ T1 ⊕ T3);
Z3 ← T14 + (T0 ⊕ T3 ⊕ T4);
Z4 ← T15 + (T1 ⊕ T2 ⊕ T5);

Table 9. An algorithmic description of a quasigroup of order 2512.

72 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

2.1.2 Algebraic definition of quasigroups of orders 2256 and 2512

In this subsection we will present the same quasigroups that have been
described in the previous subsection in an algebraic way.

For that purpose we use the following notation: we identify Q as a set of
cardinality 2q, q = 256, 512, and elements x ∈ Q are represented in their
bitwise form as q-bit words

X ≡ (x̃0, x̃1, . . . , x̃q−2, x̃q−1) ≡ x̃0 · 2q−1 + x̃1 · 2q−2 + . . .+ x̃q−2 · 2 + x̃q−1

where x̃i ∈ {0, 1}, but also as the set
(
Z2w

)8
, w = 32, 64.

Actually, we shall be constructing quasigroups (Q, ∗) as isotopes of((
Z2w

)8
,+8

)
, w = 32, 64,

where +8, is the operation of componentwise addition of two 8–dimensional

vectors in
(
Z2w

)8
. We shall thus define three permutations πi : Zq2 → Zq2,

1 ≤ i ≤ 3 so that
X ∗Y ≡ π1(π2(X) +8 π3(Y))

for all X,Y ∈
(
Z2w

)8
.

Let us denote by Q256 = {0, 1}256 and Q512 = {0, 1}512 the corresponding
sets of 256–bit and 512–bit words. Our intention is to define Edon-R by the
following bitwise operations on w–bit values (where w = 32 or w = 64):

1 Addition between w–bit words modulo 2w,

2 Rotation of w–bits to the left for r positions,

3 Bitwise XOR operations ⊕ on w–bit words.

Further, we introduce the following convention:

Elements X ∈ Q256 are represented as X = (X0, X1, . . . , X7), where Xi

are 32–bit words,

Elements X ∈ Q512 are represented as X = (X0, X1, . . . , X7) where Xi

are 64–bit words.

The left rotation of a w–bit word Y by r positions will be denoted by
ROTLr(Y). Note that this operation can be expressed as a linear matrix–
vector multiplication over the ring (Z2,+,×) i.e. ROTLr(Y) = Er · Y where
Er ∈ Zw2 × Zw2 is a matrix obtained from the identity matrix by rotating its
columns by r positions in the direction top to bottom. Further on, if we have a

PAPER B: Cryptographic Hash Function Edon-R 73

vector X ∈ Qq where q = 256, 512 represented as X = (X0, X1, . . . , X7) and we
want to rotate all Xi by ri (0 ≤ i ≤ 7) positions to the left, then we denote that
operation by ROTLr(X), where r = (r0, . . . , r7) ∈ {0, 1, . . . , w − 1}7 is called
the rotation vector. The operation ROTLr(X) can also be represented as a
linear matrix–vector multiplication over the ring (Z2,+,×) i.e. ROTLr(X) =
Dr ·X where Dr ∈ Zq2 × Zq2,

Dr =



Er0 0 0 0 0 0 0 0
0 Er1 0 0 0 0 0 0
0 0 Er2 0 0 0 0 0
0 0 0 Er3 0 0 0 0
0 0 0 0 Er4 0 0 0
0 0 0 0 0 Er5 0 0
0 0 0 0 0 0 Er6 0
0 0 0 0 0 0 0 Er7


,

submatrices Eri ∈ Zw2 × Zw2 , 0 ≤ i ≤ 7 are obtained from the identity matrix
by rotating its columns by ri positions in the direction top to bottom, and the
submatrices 0 ∈ Zw2 × Zw2 are the zero matrix.

Further on, we use the following notation:

Â1, Â3 :
(
Z2w

)8
→
(
Z2w

)8
are two bijective transformations in

(
Z2w

)8

over the ring (Z2w ,+,×) where w = 32 or w = 64. The mappings

Âi, i = 1, 3 can be described as:

Âi(X) = Ci + Ai ·X,

where Ci ∈
(
Z2w

)8
, i = 1, 2 are two constant vectors and A1 and

A3 are two 8 × 8 invertible matrices over the ring (Z2w ,+,×). Since
they look like affine transformations in vector fields, sometimes we will
call these two transformations also ”affine bijective transformations” al-
though strictly speaking we are not working in any vector field. All
elements in those two matrices are either 0 or 1, since we want to avoid
the operations of multiplication (as more costly microprocessor opera-
tions) in the ring (Z2w ,+,×), and stay only with operations of addition.

A2,A4 :
(
Z2w

)8
→
(
Z2w

)8
are two linear bijective transformations of Qq

that are described by two invertible matrices (we use the same notation:
A2,A4) of order q × q over the ring (Z2,+,×) (q = 256 or q = 512).
Since we want to apply XOR operations on w–bit registers, the matrices

74 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

q r1,q r2,q

256 (0, 4, 8, 13, 17, 22, 24, 29) (0, 5, 9, 11, 15, 20, 25, 27)
512 (0, 5, 15, 22, 31, 40, 50, 59) (0, 10, 19, 29, 36, 44, 48, 55)

Table 10. Rotation vectors for definition of π2 and π3.

A2 and A4 will be of the form
B1,1 B1,2 . . . B1,8

B2,1 B2,2 . . . B2,8
...

...
. . .

...
B8,1 B8,2 . . . B8,8

 ,

where Bi,j ∈ Zw2 ×Zw2 , 1 ≤ i, j ≤ 8 are either the identity matrix or the
zero matrix i.e. Bi,j ∈ {0,1}.

Now we give the formal definitions for the permutations: π1, π2 and π3.

Definition 4 Transformations π1 : Qq → Qq (q = 256, 512) are defined as:

π1(X0, X1, X2, X3, X4, X5, X6, X7) = (X5, X6, X7, X0, X1, X2, X3, X4)

Lemma 5 Transformations π1 are permutations. �

Definition 6 Transformations π2 : Qq → Qq and π3 : Qq → Qq are defined
as:

π2 ≡ Â1 ◦ROTLr1,q ◦ A2

π3 ≡ Â3 ◦ROTLr2,q ◦ A4

where the rotation vectors ri,q, i = 1, 2, q = 256, 512 are given in Table 10,

and the information about Â1, A2, Â3 and A4 is given in Table 11. There, the
symbols 1,0 ∈ Zw2 × Zw2 are the identity matrix and the zero matrix, and the
constants consti,q, i = 1, 2, q = 256, 512 have the following values (given in
hexadecimal notation): const1,256 = 0xAAAAAAAA, const2,256 = 0x55555555,
const1,512 = 0xAAAAAAAAAAAAAAAA and const2,512 = 0x5555555555555555.
The rationale for choosing these constants is in Section 3.12.

Lemma 7 Transformations π2 and π3 are permutations on Qq, q = 256, 512.

Proof The proof follows immediately from the fact that all transformations
Ai, i = 1, 2, 3, 4 and ROTLri,q , i = 1, 2, q = 256, 512 are expressed by invert-
ible matrices over the rings (Z2w ,+,×), w = 32, 64 or over the ring (Z2,+,×).

PAPER B: Cryptographic Hash Function Edon-R 75

Â1 A2
const1,q

0
0
0
0
0
0
0

 ,


1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 1
0 0 1 1 1 1 1 0




0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0
1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1


Â3 A4

const2,q
0
0
0
0
0
0
0

 ,


1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1




0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1
1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0


Table 11. Matrices Â1, A2, Â3 and A4.

Theorem 8 Operations ∗q : Q2
q → Qq defined as:

X ∗q Y = π1(π2(X) +8 π3(Y))

are non-commutative quasigroup operations that are not loops.

Proof We give a proof for q = 256 and the other case for q = 512 is similar.
To show that ∗256 is not a loop we have to show that there is no unit element

E ∈ Q256 such that for every A ∈ Q256, A ∗256 E = A = E ∗256 A. Let us
suppose that there is a neutral element E ∈ Q256. Let us first put

π2(E)−8 π3(E) = ConstE

where ConstE ∈ Q256 is a constant element and the operation −8 is the
componentwise subtraction modulo 232.

From the concrete definition of the quasigroup operation ∗256 for the neutral
element E we get:

π1(π2(E) +8 π3(A)) = π1(π2(A) +8 π3(E))

Since π1 is a permutation we can remove it from the last equation and we get:

π2(E) +8 π3(A) = π2(A) +8 π3(E)

and if we rearrange the last equation we get:

π2(A)−8 π3(A) = π2(E)−8 π3(E) = ConstE

76 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

The last equation states that for every A ∈ Q256 the expression π2(A) −8

π3(A) is a constant. This is not true. For example π2(1)−8 π3(1) 6= π2(2)−8

π3(2). Thus we conclude that ∗256 is not a loop.

Note that the quasigroups cannot be associative since every associative
quasigroup is a group and every group possesses a unit element.

Having defined two quasigroup operations ∗256 and ∗512 we define two one-
way functions R256 and R512 as follows:

Definition 9

1 R256 : Q4
256 → Q2

256 ≡ R where R is defined as in Definition 11 over
Q256 with the quasigroup operation ∗256.

2 R512 : Q4
512 → Q2

512 ≡ R where R is defined as in Definition 11 over
Q512 with the quasigroup operation ∗512.

2.1.3 The one-way function R: A reverse quasigroup string
transformation

The reverse quasigroup string transformation as a candidate one-way func-
tion has been introduced in [Gli05], and a generic hash function with reverse
quasigroup string transformation has been described in [GMK06, Gli09]. A
concrete hash function with similar name: Edon-R(n) for n = 256, 384, 512 has
been described in [GK08]. Many properties from that function are present in
the design of Edon-R, but we can say that without loosing security properties
of the hash function, the design of Edon-R is now simplified and performance
is much better compared to the older Edon-R(n). Additionally, we can say
that the concept of reverse quasigroup string transformation is present also
in another cryptographic primitive - the stream cipher Edon80 [GMK08a].
Edon80 IV Setup procedure is a conjectured one-way function and so far no
cryptographic weaknesses have been found for the Edon80 IV Setup, although
Edon80 have been under the public scrutiny from the cryptographic commu-
nity for more than 3 years.

Definition 10 For a given X ∈ Qq, q = 256, 512, which can be represented

as an eight component vector X = (X0, X1, . . . , X7) ∈
(
Z2w

)8
, w = 32, 54, the

reversed vector X is defined as:

X = (X7, X6, . . . , X0)

Definition 11 For a given quasigroup ∗q, q = 256, 512, (shortly denoted as ∗
i.e. without the index q) the one-way function R : Q4

q → Q2
q used in Edon-R

PAPER B: Cryptographic Hash Function Edon-R 77

hash function is defined as:

R(C0,C1,A0,A1) = (B0,B1)

where

B0 = A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗C1

B1 =(A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗C1) ∗ ((C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1)

∗ (C0 ∗ (A1 ∗A0)) ∗C1).

The reasons why the expressions for B0 and B1 are as they are given in
Definition 11 can be easily understood by looking at Figure 1a. The diagonal
arrows can be interpreted as quasigroup operations between the source and
the destination, and the vertical or the horizontal arrows as equality signs
”=”.

Figure 1. a. Schematic representation of the function R, b. Conjectured one-wayness of
R comes from the difficulty to solve a system of two equations where B0, B1, C0 and C1

are given, and A0 = X0 and A1 = X1 are indeterminate variables.

The conjectured one-wayness of R can be explained by Figure 1b. Let us
assume that only the values B0, B1, C0 and C1 are given. In order to find
pre-image values A0 = X0 and A1 = X1 we can use Definition 11 and obtain
the following relations for the elements of Figure 1b:

78 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

X
(1)
0 = A1 ∗A0

X
(1)
1 = X

(1)
0 ∗A1 = (A1 ∗A0) ∗A1

X
(2)
0 = C0 ∗X

(1)
0 = C0 ∗ (A1 ∗A0)

X
(2)
1 = X

(2)
0 ∗X

(1)
1 = (C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1)

X
(3)
0 = X

(2)
0 ∗C1 = (C0 ∗ (A1 ∗A0)) ∗C1

X
(3)
1 = X

(2)
1 ∗X

(3)
0

= ((C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1)) ∗ ((C0 ∗ (A1 ∗A0)) ∗C1)

B0 = A0 ∗X
(3)
0 = A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗C1)

B1 = B0 ∗X
(3)
1 = (A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗C1))∗

(((C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1)) ∗ ((C0 ∗ (A1 ∗A0)) ∗C1)).

From them, we can obtain the following system of quasigroup equations with
indeterminates X0,X1:

B0 = X0 ∗ ((C0 ∗ (X1 ∗X0)) ∗C1)

B1 = (X0 ∗ ((C0 ∗ (X1 ∗X0)) ∗C1))∗
(((C0 ∗ (X1 ∗X0)) ∗ ((X1 ∗X0) ∗X1)) ∗ ((C0 ∗ (X1 ∗X0)) ∗C1)).

One can show that for any given A0 = X0 ∈ Q either there are values of A1 =
X1 as a solution or there is no solution. However, if the quasigroup operation
is non-commutative, non-associative, the quasigroup operations are not linear
in the underlying algebraic structure, and if the size of the quasigroup is very
big (for example 2256 or 2512) then solving this simple system of just two
quasigroup equations is hard. Actually there is no known efficient method for
solving such systems of quasigroup equations.

Of course, one inefficient method for solving that system would be to try
every possible value for A0 = X0 ∈ Q until obtaining the other indeterminate
A1 = X1. That brute force method would require in average 1

2 |Q| attempts
to guess A0 = X0 ∈ Q before solving the system.

2.2 Generic description for all variants of the Edon-R
First we are giving a generic description for all variants of the Edon-R hash

algorithm. Then, in the following subsections we are giving some concrete
specifics for four different message digest sizes: n = 224, n = 256, n = 384
and n = 512. The generic description of Edon-R hash algorithm is given in
Table 12.

PAPER B: Cryptographic Hash Function Edon-R 79

Algorithm: Edon-R
Input: Message M of length l bits, and the message digest size
n.
Output: A message digest Hash, that is long n bits.

1 Preprocessing

(a) Pad the message M .

(b) Parse the padded message into N , m-bit message
blocks, M (1), M (2), . . . , M (N).

(c) Set the initial value of the double pipe P (0).

2 Hash computation

For i = 1 to N

P (i) = R(P (i−1),M (i));

3 Hash =Take n Least Significant Bits(P (N)).

Table 12. A generic description of the Edon-R hash algorithm

In the generic description the words of the initial double pipe P
(i−1)
0 , P

(i−1)
1 ,

. . . , P
(i−1)
15 are represented as two vectors of length 8 i.e.

(P
(i−1)
0 , P

(i−1)
1 , . . . , P

(i−1)
15) ≡ (P

(0)
0 ,P

(0)
1) ≡ P (0).

Then, by each iteration, they are replaced by intermediate double pipe

value, P (i) = (P
(i)
0 ,P

(i)
1), ending with the final double pipe value P (N) =

(P
(N)
0 ,P

(N)
1). The final result of Edon-R is a n–bit message digest that are

the least significant n bits from the final double pipe.
Similar notation is used for the values of the padded message

M ′ = (M (1),M (2), . . . ,M (N)).

Namely, every message block M (i) is represented as a pair of two vectors of

length 8, M (i) ≡ (M
(i)
0 ,M

(i)
1). A graphic representation of the Edon-R hash

algorithm is given in Figure 2.

2.2.1 Edon-R224 and Edon-R256

Edon-R224 and Edon-R256 may be used to hash a message M , having a
length of l bits, where 0 ≤ l < 264. The algorithms use:

80 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Figure 2. A graphic representation of the Edon-R hash algorithm.

1 A double pipe of sixteen 32–bit working variables represented as a pair
of two vectors of length eight, and

2 in every iteration it needs additional sixteen 32–bit working variables
that come from the message (represented as a pair of two vectors of
length eight).

Edon-R224 and Edon-R256 preprocessing.

1 Pad the message M .

2 Parse the padded message into N 512–bit blocks, M (1), M (2),. . . , M (N).

3 Set the initial double pipe value P (0) as defined in Table 4 for BWM224,
or as defined in Table 5 for BWM256.

2.2.2 Edon-R384 and Edon-R512

Edon-R384 and Edon-R512 may be used to hash a message M , having a
length of l bits, where 0 ≤ l < 264. The algorithms use

1 A double pipe of sixteen 64–bit working variables represented as a pair
of two vectors of length eight, and

PAPER B: Cryptographic Hash Function Edon-R 81

2 in every iteration it needs additional sixteen 64–bit working variables
that come from the message (represented as a pair of two vectors of
length eight).

Edon-R384 and Edon-R512 preprocessing.

1 Pad the message M .

2 Parse the padded message into N 1024–bit blocks, M (1), M (2),. . . , M (N).

3 Set the initial double pipe value P (0) as defined in Table 6 for BWM384,
or as defined in Table 7 for BWM512.

82 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

3. Design Rationale

3.1 Choosing 32–bit and 64–bit operations

We have decided to choose just three types of operations: addition modulo
232 or modulo 264, XOR-ing and left rotations. This is an optimum choice that
can be efficiently implemented both on low-end 8–bit and 16–bit processors,
as well as on modern 32–bit and 64–bit CPUs. In the past, several other cryp-
tographic primitives have been designed following the same rationale such as:
Salsa20 [Ber08a], The Tiny Encryption Algorithm [WN94], IDEA [LMM91],
SHA-1 and SHA-2 - to name a few.

3.2 Reasons for default little-endian design

Previous versions of Edon-R(n) as well as the earliest version of Edon-R
were designed to be big-endian by default. However, as the designing phase
was coming to its end, and we started the optimization phase, we changed
the default design to be little-endian since an overwhelming majority of CPU
platforms in the world are little-endian.

3.3 Choosing permutations π1, π2 and π3

Our goal was to design a structure that is a non-commutative, non-
associative, highly nonlinear quasigroup of order 2256 (or 2512) in order to
apply the principles of the hash family Edon–R first presented on the second
NIST cryptographic hash workshop [GMK06]. We have found a way to
construct such structures by applying some basic permutations π1, π2 and π3

on the sets {0, 1}256 and {0, 1}512.
The permutation π1 is simple rotation on 256 or 512–bit words. It can be

effectively realized just by appropriate referencing of the 32–bit (resp. 64–bit)
variables. The role of the permutation π1 is to do the componentwise mixing
(diffusion) on the whole q–bit word. That diffusion then have influence on
the next application of the quasigroup operation ∗q (since we apply two such
operations in every row). The decision to define π1 as:

π1(X0, X1, X2, X3, X4, X5, X6, X7) = (X5, X6, X7, X0, X1, X2, X3, X4),

i.e., as a rotation to the right for 3 positions was done because 3 is relatively
prime to 8.

The permutations π2 and π3 do the work of diffusion and nonlinear mixing
separately on the first and the second argument of the quasigroup operations.
That nonlinear mixing is achieved because we perform operations in two dif-
ferent rings: (Z2w ,+,×), w = 32, 64 and (Z2,+,×). For the choice of the
permutations π2 and π3 we had plenty of possibilities. However, since our

PAPER B: Cryptographic Hash Function Edon-R 83

L1 =



0 7 1 3 2 4 6 5
4 1 7 6 3 0 5 2
7 0 4 2 5 3 1 6
1 4 0 5 6 2 7 3
2 3 6 7 1 5 0 4
5 2 3 1 7 6 4 0
3 6 5 0 4 7 2 1
6 5 2 4 0 1 3 7


=

[
L1,1

L1,2

]

L2 =



0 4 2 3 1 6 5 7
7 6 3 2 5 4 1 0
5 3 1 6 0 2 7 4
1 0 5 4 3 7 2 6
2 1 0 7 4 5 6 3
3 5 7 0 6 1 4 2
4 7 6 1 2 0 3 5
6 2 4 5 7 3 0 1


=

[
L2,1

L2,2

]

Table 13. Two mutually orthogonal Latin squares used to define the permutations π2 and
π3

design is based on quasigroups, it was natural choice to use Latin squares
in the construction of those permutations. Actually there is a long history
of using Latin squares in the randomized experimental design as well as in
cryptography [CDN95, CDS94, DK92, SV94, Sha49].

3.4 Criteria for choosing the Latin squares - part one

For permutations π2 and π3 we used two orthogonal Latin squares of order
8 given in Table 13.

By splitting L1 and L2 in two (upper and lower) Latin rectangles L1,1,
L1,2, L2,1 and L2,2 and taking columns of those rectangles as sets, we actually
constructed four symmetric non-balanced block designs (for an excellent brief
introduction on block designs see for example [RMG+00]). The non-balanced
symmetric block designs corresponding to L1,1 and L2,1 are with parameters
(v, k, λ) = (8, 5, λ) where λ ∈ {2, 3, 4}, and those corresponding to L1,2 and
L2,2 are with parameters (v, k, λ) = (8, 3, λ) where λ ∈ {0, 1, 2}. We used

84 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

the incidence matrix obtained by L1,1 to bijectively transform the variables
by addition modulo 2w, w = 32, 64 (work in the ring (Z2w ,+,×)) and the
incidence matrix obtained by L1,2 to bijectively transform the variables by
XORing of w–bit variables (work in the ring (Z2,+,×)).

As we mentioned in Section 2.1.2, the matrix A1 is an 8×8 invertible matrix
in the ring (Z2w ,+,×), w = 32, 64 and the matrix A2 is a q× q, (q = 256, 512)
invertible matrix in the ring (Z2,+,×). Similarly, from the Latin rectangles
L2,1 and L2,2 we got the invertible incidence matrices A3 and A4.

It is an interesting observation that we split the Latin rectangles in 5:3 ratio,
not in 4:4 ratio. It comes from the fact that the symmetry of the corresponding
formulas for calculation of the determinant of the incidence matrices when the
splitting is 4:4, always gives the result 0 (singular value) in the ring (Z2,+,×).

3.5 Edon-R is provably resistant against differential
cryptanalysis

In this section we will prove the resistance of Edon-R against differential
cryptanalysis. We will achieve that by examining the differential characteris-
tics of the permutations π2 and π3. More specifically we will trace how one bit
difference is diffused by π2 and π3. Additionally, this will explain our rationale
for choosing permutations π2 and π3.

Let us first recall the algebraic definition of π2 and π3:

π2 ≡ Â1 ◦ROTLr1,q ◦ A2,

π3 ≡ Â3 ◦ROTLr2,q ◦ A4,

where the rotation vectors ri,q, i = 1, 2, q = 256, 512 are given in Table 10,

and the information about Â1, A2, Â3 and A4 is given in Table 11.
Although the matrices A2 and A4 are q×q matrices, because of their special

form which is composed just from the block matrices 0 and 1 (i.e. the zero
matrix and the identity matrix) we are abusing the notation and in this section
we are annotating with A2 and A4 also as 8× 8 matrices.

Additionally, let us recall that the matrices A1 and A2 are obtained from
the Latin square L1 defined in Table 13 (A1 is obtained as an incident matrix
from the upper 5 × 8 Latin rectangle L1,1 and A2 is obtained as an incident
matrix from the lower 3×8 Latin rectangle L1,2), and that the matrices A3 and
A4 are obtained from the Latin square L2 defined in Table 13 (A3 is obtained
as an incident matrix from the upper 5 × 8 Latin rectangle L2,1 and A4 is
obtained as an incident matrix from the lower 3× 8 Latin rectangle L2,2).

PAPER B: Cryptographic Hash Function Edon-R 85

Definition 12 For a given Boolean matrix M8×8 = (mi,j),mi,j ∈ {0, 1} and
for every column j ∈ {0, 7} we define the set of non-zero elements of the j-th
column as RM,j = {i|mi,j = 1}.

Note that indexing of the columns and rows in the matrix M is from 0 to 7
and that for matrices A1 and A3 in every column there are exactly 5 ones i.e.,
|RAi,j | = 5, i = 1, 3, ∀j ∈ {0, . . . , 7}.

Definition 13 For the Latin rectangles L1,2 = (l
(1)
i,j), L2,2 = (l

(2)
i,j) i =

0, 1, 2, j = 0, 1, . . . 7, we denote the sets of elements of their j-th column

as L
(j)
1,2 = {l(1)

0,j , l
(1)
1,j , l

(1)
2,j} and as L

(j)
2,2 = {l(2)

0,j , l
(2)
1,j , l

(2)
2,j}.

Definition 14 For the permutation π2 : Qq → Qq, q = 256, 512 defined as:

π2 ≡ Â1◦ROTLr1,q ◦A2 the diffusion matrix Diffπ2 = (di,j) is a square matrix
of order 8× 8 where

di,j = |RA1,i ∩ L
(j)
1,2|.

For the permutation π3 : Qq → Qq, q = 256, 512 defined as: π3 ≡ Â3 ◦
ROTLr2,q ◦A4 the diffusion matrix Diffπ3 = (di,j) is a square matrix of order
8× 8 where

di,j = |RA3,i ∩ L
(j)
2,2|.

Diffusion matrices for π2 and π3 are given in Table 14.

Diffπ2 Diffπ3
2 3 2 2 1 2 1 2
1 2 1 3 2 2 2 2
2 1 2 2 3 1 2 2
2 1 2 2 2 2 2 2
1 2 2 2 2 2 1 3
3 2 2 1 2 2 2 1
2 2 2 1 2 2 3 1
2 2 2 2 1 2 2 2




1 2 2 2 2 2 2 2
2 1 2 2 2 2 2 2
2 2 1 2 2 2 2 2
2 2 2 1 2 2 2 2
2 2 2 2 1 2 2 2
2 2 2 2 2 1 2 2
2 2 2 2 2 2 1 2
2 2 2 2 2 2 2 1


Table 14. Diffusion matrices Diffπ2 and Diffπ3 .

Based on the definition of the diffusion matrices for π2 and π3 it is relatively
straightforward to prove the following proposition:

Proposition 15 Diffπ2 =
(
A1 ·A2

)T
and Diffπ3 =

(
A3 ·A4

)T
, where Ai, i =

1, 2, 3, 4 are the matrices given in Table 11 and ”T” is a transposition of a
matrix. �

In Table 15 we give the absolute value of the eigenvalues and the corre-
sponding eigenvectors for both diffusion matrices Diffπ2 and Diffπ3 . Notice

86 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

|λ1| |λ2| |λ3| |λ4|
Eigenvalues 15.0 1.55603 1.55603 1.0

s1 s2 s3 s4

and
eigenvectors
for Diffπ2


1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0



−1.50411 − 1.22685i
1.74693 − 2.46378i

−1.0
1.50411 + 1.22685i
−0.104877 − 1.55249i
−1.74693 + 2.46378i
0.104877 + 1.55249i

1.0



−1.50411 + 1.22685i
1.74693 + 2.46378i

−1.0
1.50411 − 1.22685i
−0.104877 + 1.55249i
−1.74693 − 2.46378i
0.104877 − 1.55249i

1.0




5.0
−1.0
−7.0
−1.0
3.0
−3.0
1.0
3.0


|λ5| |λ6| |λ7| |λ8|

Eigenvalues 1.0 1.0 0.642661 0.642661
s5 s6 s7 s8

and
eigenvectors
for Diffπ2


2.0
1.0
−4.0
−1.0
−1.0
2.0
0.0
1.0



−1.0
0.0
1.0
0.0
0.0
−1.0
1.0
0.0




0.504108 − 0.106312i
0.253069 + 0.213498i

−1.0
−0.504108 + 0.106312i
−0.395123 − 0.506844i
−0.253069 − 0.213498i
0.395123 + 0.506844i

1.0




0.504108 + 0.106312i
0.253069 − 0.213498i

−1.0
−0.504108 − 0.106312i
−0.395123 + 0.506844i
−0.253069 + 0.213498i
0.395123 − 0.506844i

1.0


|λ1| |λ2| |λ3| |λ4|

Eigenvalues 15.0 1.0 1.0 1.0
s1 s2 s3 s4

and
eigenvectors
for Diffπ3


1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0



−1.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0



−1.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0



−1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0


|λ5| |λ6| |λ7| |λ8|

Eigenvalues 1.0 1.0 1.0 1.0
s5 s6 s7 s8

and
eigenvectors
for Diffπ3


−1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0



−1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0



−1.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0



−1.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0


Table 15. Eigenvalues and the eigenvectors for the diffusion matrices Diffπ2 and Diffπ3 .

the interesting property that both matrices have: For the biggest eigenvalue
λ1 its corresponding eigenvector is s1 = (1, 1, 1, 1, 1, 1, 1, 1). This property, as
we will show in this and in the following sections, is the crucial one for proving
that Edon-R hash function is resistant against differential cryptanalysis.

In what follows, when X and Y are two w-bit words, the notation
Hamming(X,Y) = δ denotes that X and Y differs in exactly δ bits.

Theorem 16 Let X,X′ ∈ Qq be represented as X = (X0, . . . , X7) and X′ =
(X ′0, . . . , X

′
7), and let Y = πa(X), Y′ = πa(X

′), a = 2, 3. If X and X′ differ in
one bit, i.e. the Hamming distance Hamming(X,X′) = 1, and if that one-bit

PAPER B: Cryptographic Hash Function Edon-R 87

distance is in the i-th word i.e. Hamming(Xi, X
′
i) = 1, i = 0, . . . , 7, then

Hamming(Yj , Y
′
j) ≥ di,j , j = 0, . . . , 7

where di,j are values in the matrix Diffπa.

Proof We will prove the theorem for the case a = 2 i.e., for the permutation
π2, and the other case for the permutation π3 is similar.

Let us recall that π2 = Â1 ◦ROTLr1,q ◦ A2 i.e. for X ∈ Qq,

π2(X) = A2(ROTLr1,q(Â1(X))).

Further let us denote by ∆ the difference vector between X and X′ i.e.

∆ = X⊕X′.

Moreover, since from the conditions in the theorem we have that one-bit dis-
tance is in the i-th word i.e. Hamming(Xi, X

′
i) = 1, i = 0, . . . , 7, we can say

that
∆ = (0, . . . , 0︸ ︷︷ ︸

i−1

,∆i, 0, . . . , 0︸ ︷︷ ︸
7−i

),

where 0 ∈ Z2w and ∆i = Xi ⊕X ′i. Now, instead of using two direct transfor-
mations π2(X) and π2(X′) in order to trace the differences we will work with
π2(∆).

Having in mind that the operation addition modulo 2w of two variables
X,X ′ ∈ Z2w , w = 32, 64 that differ in one bit i.e. when Hamming(X,X ′) = 1,
with any constant C ∈ Z2w , does not decrease the Hamming distance, i.e.

Hamming(X + C,X ′ + C) ≥ 1, ∀C ∈ Z2w ,

we have that
∆1 = Â1(∆) = (δ

(1)
0 , δ

(1)
1 , . . . , δ

(1)
7)

where

δ
(1)
j =

{
0, if j 6∈ RA1,i

∆j , if j ∈ RA1,i.

So, ∆1 has exactly 5 nonzero elements since |RA1,i| = 5, ∀i ∈ {0, 7}. However,
the rightmost position of bit differences in every ∆j , j ∈ RA1,i is the same since
the difference actually comes from the original difference ∆i = Xi ⊕X ′i. The
situation changes after applying rotation transformation ROTLr1,q on ∆1.
Let

∆2 = ROTLr1,q(∆1) = (δ
(2)
0 , δ

(2)
1 , . . . , δ

(2)
7),

88 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

where

δ
(2)
j =

{
0, if j 6∈ RA1,i

ROTLrj (∆j), if j ∈ RA1,i.

Now ∆2 has also exactly 5 nonzero elements, but the rightmost position of

differences in every δ
(2)
0 , j ∈ RA1,i is different. And having in mind the def-

inition of the rotation values in Table 10 we can conclude that there are no
neighbors in the rightmost positions of differences in every ∆j , j ∈ RA1,i.

Finally the transformation A2 is applied on ∆2 and we have

∆3 = A2(∆2) = (δ
(3)
0 , δ

(3)
1 , . . . , δ

(3)
7),

where
δ

(3)
j = δ(2)

µ1 ⊕ δ
(2)
µ2 ⊕ δ

(2)
µ3 , µ1, µ2, µ3 ∈ L(j)

1,2.

Bearing in mind that Hamming(Yj , Y
′
j) = |δ(3)

j |, j = 0, . . . , 7 the conclusion
that

Hamming(Yj , Y
′
j) ≥ di,j , j = 0, . . . , 7

where di,j are values in the matrix Diffπ2 follows directly.

Lemma 17 Let X and X ′ be two w-bit variables with a Hamming distance of
two bits. If the two difference bits of X and X ′ are not neighboring bits, then
for all w-bit constants C, Hamming(X +C,X ′ +C) ≥ 2 where the operation
+ denotes addition modulo 2w.

Proof It is enough to exhaustively search all situations when the length of
the word is w = 4. In that case, when the two difference bits of X and X ′ are
not neighboring bits, the relation

Hamming(X + C,X ′ + C) ≥ 2

always holds for all 4-bit values of C. For the bigger values of w, we can always
treat the 4-bit cases as an included substring.

We will need the conclusions from Lemma 17 for proving the following
properties of the differential characteristics of the quasigroup operation ∗q.

Corollary 18 Let X,X′,Y ∈ Qq be represented as X = (X0, . . . , X7), X′ =
(X ′0, . . . , X

′
7), Y = (Y0, . . . , Y7) and let Z = X∗qY, Z′ = X′∗qY. If X and X′

differ in one bit, i.e. the Hamming distance Hamming(X,X′) = 1, and if that
one-bit difference is in the i-th word i.e. Hamming(Xi, X

′
i) = 1, i = 0, . . . , 7,

then
Hamming(Zj , Z

′
j) ≥ di,j , j = 0, . . . , 7

PAPER B: Cryptographic Hash Function Edon-R 89

where di,j are values in the matrix Diffπ2.

Proof (sketch) The proof follows from the definition of the quasigroup oper-
ation

X ∗q Y = π1(π2(X) +8 π3(Y)),

Theorem 16, the fact that the minimal difference among any two values in the
rotation vectors r1,q and r2,q is bigger than 2 and Lemma 17.

Corollary 19 Let X,Y,Y′ ∈ Qq be represented as X = (X0, . . . , X7), Y =
(Y0, . . . , Y7), Y′ = (Y ′0 , . . . , Y

′
7), and let Z = X∗qY, Z′ = X∗qY′. If Y and Y′

differ in one bit, i.e. the Hamming distance Hamming(Y,Y′) = 1, and if that
one-bit difference is in the i-th word i.e. Hamming(Yi, Y

′
i) = 1, i = 0, . . . , 7,

then

Hamming(Zj , Z
′
j) ≥ di,j , j = 0, . . . , 7

where di,j are values in the matrix Diffπ3. �

Definition 20 Let X,X′,Y,Y′ ∈ Qq and let ∆X = X ⊕ X′ and ∆Y =
Y⊕Y′ be two difference vectors. Let Z = X∗qY and Z′ = X′∗qY′. The vector

D(∆X,∆Y) = (δ0, . . . , δ7) ∈
(
Z
)8

is called bit flip counter for the quasigroup
operation ∗q, if every δi, i = 0, . . . , 7 is a counter of the minimal number of
bit flips that the quasigroup operation ∗q performs to transfer the value Z to
the value Z′.

For the D(∆X,∆Y) we have the following Theorem:

Theorem 21

D(∆X,∆Y) = Diffπ2 ·∆X + Diffπ3 ·∆Y.

Proof (Sketch) We just need to represent ∆X and ∆Y as a sum of one-bit
difference vectors and apply Theorem 16, Corollary 18 and Corollary 19.

For given constant values C0 and C1 let us define the intermediate values
Di obtained by the functionR(C0,C1,X,Y) (as they are represented in Table
16a). If we have two differentials ∆X and ∆Y in order to trace all differentials
for Di instead of the complex notation D(∆X,∆Y) we will use the notation Di
for the corresponding Di and the initial differentials ∆X and ∆Y.

The relations between ∆X, ∆Y and Di, i = 1, . . . , 8 are shown in the Table
16 and in Table 17.

In Table 18 we give an example for the difference vectors: ∆X =
(1, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (0, 0, 0, 0, 0, 0, 0, 0), while in the Table 19

90 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

X Y

Y D1 D2

C0 D3 D4

C1 D5 D6

X D7 D8

a.

∆X ∆Y

∆Y D1 = Diffπ2 ·∆Y + Diffπ3 ·∆X D2 = Diffπ2 · D1 + Diffπ3 ·∆Y

0 D3 = Diffπ2 · 0 + Diffπ3 · D1 D4 = Diffπ2 · D3 + Diffπ3 · D2

0 D5 = Diffπ2 · D3 + Diffπ3 · 0 D6 = Diffπ2 · D4 + Diffπ3 · D5

∆X D7 = Diffπ2 ·∆X + Diffπ3 · D5 D8 = Diffπ2 · D7 + Diffπ3 · D6

b.

Table 16. a. General scheme for computing the one-way function R(C0,C1,X,Y) and
the intermediate values Di, i = 1, . . . , 8. b. Counting the minimal number of bit flips
Di, i = 1, . . . , 8 when applying the quasigroup operation ∗q on X and Y that differ by
difference vectors ∆X and ∆Y. Corresponding difference vectors for the fixed values C0

and C1 are the zero vector 0.

PAPER B: Cryptographic Hash Function Edon-R 91

D1 = Diffπ2 ·∆Y + Diffπ3 ·∆X

D2 = Diffπ2 ·
(
Diffπ2 ·∆Y + Diffπ3 ·∆X

)
+ Diffπ3 ·∆Y

D3 = Diffπ3 ·
(
Diffπ2 ·∆Y + Diffπ3 ·∆X

)
D4 = Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 ·∆Y + Diffπ3 ·∆X

))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ2 ·∆Y + Diffπ3 ·

∆X

)
+ Diffπ3 ·∆Y

)
D5 = Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 ·∆Y + Diffπ3 ·∆X

))
D6 = Diffπ2 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 ·∆Y + Diffπ3 ·∆X

))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ2 ·∆Y +

Diffπ3 ·∆X

)
+ Diffπ3 ·∆Y

))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 ·∆Y + Diffπ3 ·∆X

)))
D7 = Diffπ2 ·∆X + Diffπ3 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 ·∆Y + Diffπ3 ·∆X

)))
D8 = Diffπ2 ·

(
Diffπ2 · ∆X + Diffπ3 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

))))
+

Diffπ3 ·
(

Diffπ2 ·
(

Diffπ2 ·
(
Diffπ3 ·

(
Diffπ2 ·∆Y + Diffπ3 ·∆X

))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ2 ·

∆Y +Diffπ3 ·∆X

)
+Diffπ3 ·∆Y

))
+Diffπ3 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 ·∆Y +Diffπ3 ·∆X

))))

Table 17. The relations between the vectors of minimal number of bit flips for the function
R when the initial difference vectors are ∆X and ∆Y.

∆X = (1, 0, 0, 0, 0, 0, 0, 0) ∆Y = (0, 0, 0, 0, 0, 0, 0, 0)

∆Y (1, 2, 2, 2, 2, 2, 2, 2) (28, 29, 28, 28, 29, 27, 28, 28)

0 (29, 28, 28, 28, 28, 28, 28, 28) (844, 842, 844, 844, 842, 846, 844, 844)

0 (422, 421, 422, 422, 421, 423, 422, 422) (18984, 18985, 18982, 18986, 18985, 18983, 18984, 18986)

∆X (6330, 6331, 6330, 6330, 6332, 6328, 6329, 6330) (379716, 379715, 379721, 379713, 379716, 379717, 379715, 379712)

Table 18. Vectors of minimal number of bit flips for the function R when the initial differ-
ence vectors are ∆X = (1, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (0, 0, 0, 0, 0, 0, 0, 0).

∆X = (0, 0, 0, 0, 0, 0, 0, 0) ∆Y = (1, 0, 0, 0, 0, 0, 0, 0)

∆Y (2, 2, 2, 2, 3, 1, 1, 2) (29, 30, 32, 30, 31, 30, 29, 29)

0 (28, 28, 28, 28, 27, 29, 29, 28) (873, 872, 868, 872, 870, 872, 874, 874)

0 (422, 422, 420, 422, 421, 422, 423, 423) (19406, 19409, 19406, 19406, 19406, 19405, 19405, 19407)

∆X (6328, 6328, 6330, 6328, 6329, 6328, 6327, 6327) (386016, 386011, 386017, 386016, 386016, 386018, 386017, 386014)

Table 19. Vectors of minimal number of bit flips for the function R when the initial differ-
ence vectors are ∆X = (0, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (1, 0, 0, 0, 0, 0, 0, 0).

92 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

we give an example for the difference vectors: ∆X = (0, 0, 0, 0, 0, 0, 0, 0) and
∆Y = (1, 0, 0, 0, 0, 0, 0, 0).

Notice the small variance between the values of the vectors Di, i = 1, . . . , 8
in Table 18 and Table 19. That is not by accident. Actually it is a consequence
of the basic property of the diffusion matrices Diffπ2 and Diffπ3 and that
property is one of the most important properties that guarantee that Edon-R
is resistant against differential cryptanalysis attacks. That property is proved
in the following subsection.

3.5.1 The variance of the elements of Di

Let λ1, λ2, . . . , λn be the eigenvalues of some matrix M, arranged such that
|λ1| ≥ |λ2| ≥ . . . ≥ |λn|, where |x + iy| =

√
x2 + y2. The eigenvector corre-

sponding to the eigenvalue λi is denoted by si = [s1i, s2i, . . . , sni]
T . Let S be

the matrix formed by letting the i-th column of S be equal to the i-th eigen-
vector of M, i.e. S = [s1, s2, . . . , sn]. Let the i-th vector-row of the matrix
S−1 be denoted by s′i = [s′1i, s

′
2i, . . . , s

′
ni]

T , such that (S−1)T = [s′1, s
′
2, . . . , s

′
n].

Let Λn be defined as a diagonal matrix with Λii = λi. We know from linear
algebra that the matrix M can be written as M = SΛS−1. This gives us the
following,

Mn = SΛnS−1 = S
n∑
i=1

(Λ(i))nS−1 =
n∑
i=1

λni


s1is

′
i

s2is
′
i

...
snis

′
i

 , (2)

where Λ(i) is a square matrix with all elements equal to 0, except Λ
(i)
ii which

is equal to λi, i.e.

Λ
(i)
jk =

{
λi, i = j = k
0, other

Proposition 22 Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be the eigenvalues of M. If the
vector 1 = (1, 1, . . . , 1) is the eigenvector for the greatest eigenvalue, λ1. Then
for each vector a

lim
n→∞

(Mna)i
λn1

= (s′1)Ta, ∀i = 1, . . . , n, (3)

PAPER B: Cryptographic Hash Function Edon-R 93

Proof From (2) we have,

Mna =

n∑
i=1

λni


s1is

′
i

s2is
′
i

...
sniv

′
i

a = λn1


s′1
s′1
...
s′1

a +
n∑
i=2

λni


s1is

′
i

s2is
′
i

...
snis

′
i

a

= λn1


s′1a
s′1a

...
s′1a

+
n∑
i=2

λni


s1is

′
ia

s2is
′
ia

...
snis

′
ia

 .
Directly from this holds (3).

Proposition 23 Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be the eigenvalues of M. If the
vector 1 is the eigenvector for the greatest eigenvalue, λ1 and |λ1| > |(λ2)2|.
Then for each vector a

lim
n→∞

V ar(Mna)

min
i

(Mna)i
= 0. (4)

Proof Let b
(n)
j = (Mna)j . Then from (2) we have that

b
(n)
j = λn1s′1a +

n∑
i=2

λni sjis
′
ia,

and

Avr(b(n)) =
1

n

n∑
j=1

b
(n)
j = λn1s′1a +

1

n

n∑
j=1

n∑
i=2

λni sjis
′
ia

= λn1s′1a +

n∑
i=2

λni

 1

n

∑
j=1

sji

 s′ia

= λn1s′1a +

n∑
i=2

λni Avr(si)s
′
ia.

Now,

b
(n)
j −Avr(b

(n)) =
n∑
i=2

λni sjis
′
ia−

n∑
i=2

λni Avr(si)s
′
ia =

n∑
i=2

λni (sji−Avr(si))s′ia.

94 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

From this and the Proposition 22 we have that

lim
n→∞

V ar(Mna)

min
i

(Mna)i
= lim

n→∞

V ar(Mna)

λn1
mini(Mna)i

λn1

= lim
n→∞

∑n
j=1 (

∑n
i=2 λ

n
i (sji −Avr(si))s′ia)2

λn1
mini(Mna)i

λn1

=
1

s′1a
lim
n→∞

∑n
j=1 (

∑n
i=2 λ

n
i (sji −Avr(si))s′ia)2

λn1

=
1

s′1a
· 0 = 0.

Proposition 24 Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be the eigenvectors either for
Diffπ2 or for Diffπ3. Then the vector 1 is the eigenvector for the greatest
eigenvalue, λ1 and moreover |λ1| > |λ2

2|.

Proof The absolute values of the eigenvalues with their corresponding eigen-
vectors are given in Table 15.

Finally, from all previous claims in this subsection the following theorem fol-
lows:

Theorem 25 The variance of the elements of the Di, i = 1, . . . , 8 decreases
(relative to the minimal element in the vectors Di, i = 1, . . . , 8), with every
row of quasigroup string transformations in the compression function R. �

3.5.2 Differential characteristics of the compression function R

As the values δ
(i)
j , j = 0, . . . , 7 in every vector of minimal number of bit

flips Di = (δ
(i)
0 , δ

(i)
1 , . . . , δ

(i)
7), i = 1, . . . , 8 tend to have very small variance, we

have reasons to assume that the number of bit flips for every single bit is also
equally distributed i.e. with very small variance. Having this assumption, we
can prove the following theorem:

Theorem 26 Let Di = (δ
(i)
0 , δ

(i)
1 , . . . , δ

(i)
7), i = 1, . . . , 8 be a vector of

minimal number of bit flips for the function R where the size of the

word is w bits (w = 32, 64), and let ∆Di
= (∆

(i)
D0
,∆

(i)
D1
, . . . ,∆

(i)
D7

) =

PAPER B: Cryptographic Hash Function Edon-R 95

(∆
(i)
0 , . . . ,∆

(i)
w−1,∆

(i)
w , . . . ,∆

(i)
2w−1,∆

(i)
2w, . . . , . . . ,∆

(i)
7w−1,∆

(i)
7w, . . . ,∆

(i)
8w−1), i =

1, . . . , 8 (where ∆
(i)
j ∈ {0, 1}, j = 0, . . . , 8w−1) are the corresponding differen-

tials in the intermediate variables ∆Di
for some initially chosen differentials

∆X and ∆Y (where at least one of them is a non-zero differential). If
the number of bit flips for every single bit is equally distributed then the

probabilities that every difference bit ∆
(i)
j is 0 or 1 are given as:

Pr
(
∆

(i)
j = 0|∆X,∆Y

)
= 0.5 + ε

δ
(i)
µ
,

P r
(
∆

(i)
j = 1|∆X,∆Y

)
= 0.5− ε

δ
(i)
µ
,

where µ =
⌊
j
w

⌋
and ε

δ
(i)
µ
≤ 0.5

(
w−2
w

)δ(i)µ .

Proof From the conditions of the Theorem we have that the minimal number
of bit flips for the ∆

(i)
Dµ

is δ
(i)
µ where µ = 0, . . . , 7. Note that ∆

(i)
Dµ

is a w-bit

word. The probability that the value of any difference bit ∆
(i)
j is equal to 0

is the probability that the number of bit flips for that particular bit is even.
Taking into the consideration the assumption that the number of bit flips for

every bit in ∆
(i)
Dµ

is equally distributed, we can conclude that in one experiment

the probability that the bit is flipped is 1
w and the probability that it is not

flipped is
(
1− 1

w

)
. Then if we have δ

(i)
µ experiments, the probability that the

number of bit flips for that particular bit is even can be computed as:

Pr
(
∆

(i)
j = 0

)
=

δ
(i)
µ∑
r=0

r is even

(
δ

(i)
µ

r

)(
1

w

)r (
1− 1

w

)δ(i)µ −r
.

Similarly we can compute the probability:

Pr
(
∆

(i)
j = 1

)
=

δ
(i)
µ∑
r=1

r is odd

(
δ

(i)
µ

r

)(
1

w

)r (
1− 1

w

)δ(i)µ −r
.

Now if take into account that

Pr
(
∆

(i)
j = 0

)
+ Pr

(
∆

(i)
j = 1

)
= 1

and
lim

δ
(i)
µ →∞

|Pr
(
∆

(i)
j = 0

)
− Pr

(
∆

(i)
j = 1

)
| = 0

96 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

then we can rewrite the last limit as:

Pr
(
∆

(i)
j = 0|∆X,∆Y

)
= 0.5 + ε

0,δ
(i)
µ
,

P r
(
∆

(i)
j = 1|∆X,∆Y

)
= 0.5− ε

1,δ
(i)
µ

.

Finding explicit expressions for ε
0,δ

(i)
µ

and ε
1,δ

(i)
µ

is hard, but having concrete

numerical values δ
(i)
µ we can compute them as:

ε
0,δ

(i)
µ

=

δ
(i)
µ∑
r=0

r is even

(
δ

(i)
µ

r

)(
1

w

)r (
1− 1

w

)δ(i)µ −r
− 0.5,

ε
1,δ

(i)
µ

= 0.5−
δ
(i)
µ∑
r=1

r is odd

(
δ

(i)
µ

r

)(
1

w

)r (
1− 1

w

)δ(i)µ −r
.

or we can consider them as approximately the same value that is upper
bounded by:

ε
δ
(i)
µ
≈ ε

0,δ
(i)
µ
≈ ε

1,δ
(i)
µ
≤ 0.5

(
w − 2

w

)δ(i)µ
.

∆X = (1, 0, 0, 0, 0, 0, 0, 0) ∆Y = (0, 0, 0, 0, 0, 0, 0, 0)

w = 32 w = 64 w = 32 w = 64

ε ≤ 2−1.09 ε ≤ 2−1.05 ε ≤ 2−3.51 ε ≤ 2−2.24

ε ≤ 2−3.61 ε ≤ 2−2.28 ε ≤ 2−79.40 ε ≤ 2−39.57

ε ≤ 2−40.20 ε ≤ 2−20.28 ε ≤ 2−1768.4 ε ≤ 2−870.45

ε ≤ 2−590.20 ε ≤ 2−290.85 ε ≤ 2−35356 ε ≤ 2−17393

Table 20. Upper bounds for the deviations ε. The probability that a bit will have a differ-
ential ∆ = 1 is 0.5− ε, and the probability that a bit will have a differential ∆ = 0 is 0.5 + ε.
The initial difference vectors are ∆X = (1, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (0, 0, 0, 0, 0, 0, 0, 0).

For one of the smallest differentials,

(∆X,∆Y) =
(
(1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)

)
,

the values for the corresponding ε
δ
(i)
µ

both for w = 32 and w = 64 are given

in Table 20. The values for the other one-bit differences are similar, and the
values of ε

δ
(i)
µ

for the differentials with initial difference in more then one bit

are even smaller.
We consider that Theorem 26 is the proof of the Edon-R’s resistance

against differential cryptanalysis.

PAPER B: Cryptographic Hash Function Edon-R 97

3.6 Criteria for choosing the Latin squares - part two

Having described in detail the differential characteristics of the defined
quasigroup operations ∗q, we can describe the reasons and the criteria by
which we have chosen the Latin squares L1 and L2 by which we are defining
the quasigroup operation ∗q. The criteria are descibed in Table 21.

For complying with the first criterion we took all 2165 main classes of or-
thogonal Latin squares of order 8 that are listed on Brendan McKay’s web
page [McK]. For every one of them, first by permuting their rows and then
their columns we produced (8!)2 ≈ 230.6 orthogonal isotopes. Permutations
were ordered by the lexicographic ordering. Next, we filtered that number of
orthogonal Latin squares by the Criterion 2: Latin squares that give diffusion
matrices Diffπ2 and Diffπ3 that do not have zeroes. We further filtered the
number of Latin squares by selecting those Latin squares that have a maxi-
mum variance computed on all 64 elements of the matrix Diffπ2 and minimum
variance computed on all 64 elements of the matrix Diffπ2 (Criterion 3).

By exhaustive search we found that Latin squares that comply with all 4
criteria give matrices Diffπ2 with maximum variance of 19

63 and matrices Diffπ3

with minimum variance of 1
9 . The first such pair of Latin squares was chosen

for Edon-R.

3.7 On some properties of the matrices Ai

For the readability of the thesis we have removed this section which had a
lot of similarities with Paper A.

3.8 Edon-R is a double-pipe iterated compression
function

The design of Edon-R is a double-pipe iterated compression function. Al-
though it is similar to the classic Merkle-Damg̊ard iterated design [Dam87,
Dam89, Mer90a], in the light of the latest attacks with multi-collisions, it
is also essentially different from it. In the design of Edon-R we have de-
cided to incorporate the suggestions of Lucks [Luc04, Luc05] and Coron et
al. [CDMP05] by setting the size of the internal memory of the iterated com-
pression function to be twice as large as the output length required. This
design avoids the weaknesses against the generic attacks of Joux [Jou04] and
Kelsey and Schneier [KS05], thereby guaranteeing resistance against a generic
multicollision attack and length extension attacks.

Doubling of the internal memory in our design is a result of the fact that in
every iterative step of the compression function, the strings of length 4n bits
(2n bits from the double pipe and 2n bits from the message) are mapped to

98 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

strings of length 2n bits which are becoming the actual value of the double
pipe for the next iterative step.

3.9 Natural resistance of Edon-R against generic length
extension attacks

Generic length extension attacks on iterated hash function based upon
Merkle-Damg̊ard iterative design principles [Dam89, Mer90a] works as follows:

Let M = M1||M2|| . . . ||MN be a message consisting of exactly N blocks that
will be iteratively digested by some compression function C(A,B) according
to the Merkle-Damg̊ard iterative design principles, and where A and B are
messages (input parameters for the compression function) that have the same
length as the final message digest. Let PM be the padding block of M obtained
according to the Merkle-Damg̊ard strengthening. Then, the digest H of the
message M , is computed as

H(M) = C(. . . C(C(IV,M1),M2) . . . , PM),

Criteria Reasons
1. L1 and L2 are or-
thogonal Latin squares.

8 w-bit variables belonging to X are to be
mixed with 8 w-bit variables belonging to Y
in such a way that all pairs are combined by
some operation (addition, or XORing).

2. Diffπ2 and Diffπ3

do not have zeroes.
The situation where X ∗q Y = Z and some
difference either in X or in Y will not affect
some of the eight words of Z are to be avoided.

3. Elements of the
matrix Diffπ2 have the
biggest possible vari-
ance.

This is an analogy to the ”confusion” princi-
ple in cryptology. Choosing Diffπ2 with the
biggest possible variance improves the resis-
tance against cryptanalysis because there is no
regular pattern how the computations are per-
formed.

4. Elements of the
matrix Diffπ3 have the
smallest possible vari-
ance.

This is an analogy to the ”diffusion” principle
in cryptology. Choosing Diffπ3 with the small-
est possible variance increases the diffusion of
the bit differences in the greatest possible way,
with the smallest possible variances in the pat-
tern of the computations that are performed.

Table 21. Criteria for choosing the Latin squares

PAPER B: Cryptographic Hash Function Edon-R 99

where IV is the initial fixed value for the hash function.
Now suppose that the attacker does not know the message M , but knows (or

can easily guess) the length of the messageM . The attacker knows the padding
block PM . Now, the attacker can construct a new message M ′ = PM ||M ′1 such
that he knows the hash digest of the message M ||M ′, i.e.,

H(M ||M ′) = C(C(H(M),M ′1), PM ′),

where PM ′ is the padding (Merkle-Damg̊ard strengthening) of the message
M ||M ′.

Edon-R has a natural resistance against this generic attack due to the fact
that it is iterated with the chaining variables that has a length that is two
times greater than the final digest value (see also the work of Lucks [Luc04]).

3.10 Testing avalanche properties of Edon-R
We show the avalanche propagation of the initial one bit differences of the

compression function ofR during their evolution in all 8 quasigroup operations
∗q, (q = 256, 512).

We have used two experimental settings:

1 Examining the propagation of the initial 1–bit difference in a message
consisting of all zeroes

2 Examining the propagation of the initial 1–bit difference in 100 randomly
generated messages of n–bits.

The results for n = 256 are shown in Table 22. Notice that a Hamming
distance equal to 1

2n = 128 which would be expected in theoretical models of
ideal random functions is achieved after applying quasigroup operations in the
third row (in bold). Similar results are obtained for n = 512 and are shown
in Table 23. There also a Hamming distance equal to 1

2n = 256 which would
be expected in theoretical models of ideal random functions is achieved after
applying quasigroup operations from the third row (in bold).

3.11 All collision paths of R and local collisions

The design of the compression function R in Edon-R is pretty different
from the design of compression functions of known hash functions that are
designed from scratch. While other compression functions have 64, 80 or even
more iterating steps, R has 8 steps. So far, all successful attacks against
the MDx and SHA families of hash functions exploited local collisions in the
processing of the data block. Local collisions are collisions that can be found
within a few steps of the compression function.

100 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Min = 15
Avr = 28.86
Max = 50

Min = 92
Avr = 117.66
Max = 139

Min = 96
Avr = 120.06
Max = 143

Min = 99
Avr = 127.72
Max = 152

Min = 106
Avr=128.69
Max = 150

Min = 105
Avr=127.91
Max = 152

Min = 108
Avr=127.79
Max = 150

Min = 98
Avr=128.05
Max = 150

Min = 16
Avr = 34.71
Max = 72

Min = 66
Avr = 119.98
Max = 157

Min = 66
Avr = 118.63
Max = 156

Min = 91
Avr=128.00
Max = 160

Min = 95
Avr=128.00
Max = 160

Min = 95
Avr=128.04
Max = 162

Min = 96
Avr=128.01
Max = 158

Min = 94
Avr=127.94
Max = 161

a. b.

Table 22. a. Avalanche propagation of the Hamming distance between two 256–bit words
M1 and M2 that initially differs in one bit and where M1 = 0 (minimum, average and
maximum) b. Avalanche propagation of the Hamming distance between two 256–bit words
M1 and M2 that initially differs in one bit (minimum, average and maximum)

Min = 15
Avr = 24.10
Max = 51

Min = 91
Avr = 140.31
Max = 181

Min = 125
Avr = 85.39
Max = 231

Min = 220
Avr = 255.51
Max = 295

Min = 213
Avr = 255.69
Max = 295

Min = 218
Avr = 256.03
Max = 292

Min = 216
Avr = 255.31
Max = 294

Min = 221
Avr = 255.83
Max = 288

Min = 16
Avr = 35.62
Max = 77

Min = 88
Avr = 167.20
Max = 254

Min = 70
Avr = 156.55
Max = 260

Min = 205
Avr = 255.94
Max = 303

Min = 192
Avr = 252.41
Max = 304

Min = 207
Avr = 256.01
Max = 302

Min = 205
Avr = 256.02
Max = 310

Min = 206
Avr = 256.02
Max = 305

a. b.

Table 23. a. Avalanche propagation of the Hamming distance between two 512–bit words
M1 and M2 that initially differs in one bit and where M1 = 0 (minimum, average and
maximum) b. Avalanche propagation of the Hamming distance between two 512–bit words
M1 and M2 that initially differs in one bit (minimum, average and maximum)

In what follows we find local collisions for Edon-R and discuss difficulties
how these local collisions can lead to collisions of the whole function.

PAPER B: Cryptographic Hash Function Edon-R 101

∗q B1 = {B1} B2 = {B1,B2}

A1 = {A1}
C1 = {C1}

where A1 ∗q B1 = C1

C2 = {C1,C2}
where A1 ∗q B1 = C1

and A1 ∗q B2 = C2

A2 = {A1,A2}
C2 = {C1,C2}

where A1 ∗q B1 = C1

and A2 ∗q B1 = C2

C2 = {C1,C2}
where A1 ∗q B1 = C1

and A2 ∗q B2 = C2

or
C1 = {C1}

where A1 ∗q B1 = C1

and A2 ∗q B2 = C1

Table 24. Definition of quasigroup operation between one or two-element sets.

The small number of steps in the compression function R as well as the
algebraic properties of quasigroup operations allow us to describe all possible
collision paths within the compression function which, we emphasize again,
is a unique property among all known hash functions that are designed from
scratch.

In order to track the collision paths for the compression function R we
introduce a definition for quasigroup operation between sets of cardinality one
and two.

Definition 27 Let A1 = {A1}, A2 = {A1,A2}, B1 = {B1}, B2 = {B1,B2},
C1 = {C1}, C2 = {C1,C2} be sets of cardinality one or two and where Ai,Bi

and Ci ∈ Qq(q = 256, 512). The operation of quasigroup multiplication ∗q
between these sets is defined by Table 24.

Following directly from the properties of the unique solutions of equations of
type (1) it is easy to prove the following two propositions:

Proposition 28 If B1 6= B2 then {A1} ∗q {B1,B2} = {C1,C2} such that
C1 6= C2. �

Proposition 29 If A1 6= A2 then {A1,A2} ∗q {B1} = {C1,C2} such that
C1 6= C2. �

However if both A1 6= A2 and B1 6= B2 then {A1,A2} ∗q {B1,B2} can be
either {C1,C2} or {C1} and this is formulated in the following proposition:

Proposition 30 If A1 6= A2 and B1 6= B2 then {A1,A2} ∗q {B1,B2} can
be either {C1,C2} (where C1 6= C2) or {C1}. �

102 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

We formalize the notion of collisions for the compression function R by the
following definition:

Definition 31 Let (C0,C1,X1,X2), (C0,C1,X3,X4) ∈ Q4 where C0 and
C1 are initial constants defined in Subsection 1.4.3, and (X1,X2) 6= (X3,X4).
If R(C0,C1,X1,X2) = (D,Y) and R(C0,C1,X3,X4) = (E,Y) then the
quintette (X1,X2,X3,X4) is a collision for R.

Using the Definition 27 and Definition 31 we can trace all possible paths
that can produce collisions in the compression function R. That is formulated
in the following theorem:

Theorem 32 If (X1,X2) 6= (X3,X4) are two pairs of values in Qq. Then
all possible differential paths starting with the set {X1,X2,X3,X4} that can
produce collisions in the compression function R are described in Table 25 and
Table 26. �

{X1} {X2,X3}
{X2,X3} {D1,D2} {D3}
{C0} {D4,D5} {D6,D7}
{C1} {D8,D9} {D10,D11}
{X1} {D12,D13} {D14}

{X1} {X2,X3}
{X2,X3} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7}
{C1} {D8,D9} {D10,D11}
{X1} {D12,D13} {D14}

a. b.

{X1} {X2,X3}
{X2,X3} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7,D8}
{C1} {D9,D10} {D11,D12}
{X1} {D13,D14} {D15}

{X1,X2} {X3}
{X3} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7}
{C1} {D8,D9} {D10,D11}
{X1,X2} {D12,D13} {D14}

c. d.

{X1,X2} {X3}
{X3} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7,D8}
{C1} {D9,D10} {D11}
{X1,X2} {D12} {D13}

{X1,X2} {X3}
{X3} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7,D8}
{C1} {D9,D10} {D11,D12}
{X1,X2} {D13,D14} {D15}

e. f.

Table 25. First part of the description of all possible differential paths in the compression
function R that can give collisions. Cases a. – f.

The corresponding quasigroup equations for all these cases are given in
Table 27, Table 28, Table 29 and Table 30.

PAPER B: Cryptographic Hash Function Edon-R 103

{X1,X2} {X3,X4}
{X3,X4} {D1} {D2,D3}
{C0} {D4} {D5,D6}
{C1} {D7} {D8,D9}
{X1,X2} {D10,D11} {D12}

{X1,X2} {X3,X4}
{X3,X4} {D1,D2} {D3}
{C0} {D4,D5} {D6,D7}
{C1} {D8,D9} {D10}
{X1,X2} {D11} {D12}

g. h.

{X1,X2} {X3,X4}
{X3,X4} {D1,D2} {D3}
{C0} {D4,D5} {D6,D7}
{C1} {D8,D9} {D10,D11}
{X1,X2} {D12,D13} {D14}

{X1,X2} {X3,X4}
{X3,X4} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7}
{C1} {D8,D9} {D10,D11}
{X1,X2} {D12,D13} {D14}

i. j.

{X1,X2} {X3,X4}
{X3,X4} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7,D8}
{C1} {D9,D10} {D11}
{X1,X2} {D12} {D13}

{X1,X2} {X3,X4}
{X3,X4} {D1,D2} {D3,D4}
{C0} {D5,D6} {D7,D8}
{C1} {D9,D10} {D11,D12}
{X1,X2} {D13,D14} {D15}

k. l.

Table 26. Second part of the description of all possible differential paths in the compression
function R that can give collisions. Cases g. – l.

In what follows we need the notation of left conjugates (left parastrophes)
of a given quasigroup operation ∗ i.e.

X ∗Y = Z ⇔ X \ Z = Y.

Generally, we can divide the problem of finding local collisions in two cases.
The first case is the local collisions described in Table 25. For those collisions,
we find that solving corresponding quasigroup equations is hard. For exam-
ple, let us discuss the case described in Table 25a., with the corresponding
equations given in Table 27a. We apply the following attack:

1 Choose some arbitrary value for D3.

2 Choose two distinct values D1 and D2.

3 Compute X2 = D1 \D3.

4 Compute X3 = D2 \D3.

104 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

5 If (X2 \D1) = (X3 \D2), then set X1 = (X2 \D1) else Go to Step 1.

The difficulty for solving local collision cases described in Table 25 lies in the
fact that we are faced with a feedback information (Step 5. in the previous
attack) that is coming from the reversed strings according to the definition of
the compression function R.

On the other hand, for some of the local collisions described in the cases g.,
h., i., j., and k., (Table 26) there is no need to use the feedback information
in the computations. We use that fact in order to find local collisions with
complexity O(1). However, we want to stress the fact that in the complete
computation of the compression function R the feedback information of the
processed message bits is the essential part of its definition. In such a way the
usefulness of these local collisions in attacks for finding collisions or free start
collisions for the compression function R is diminished.

We can elaborate further the non-applicability of the attacks that use local
collisions on Edon-R by the following discussion. The attacks that use local
collisions are applied on hash functions that have many steps in the phase of
their initial message expansion (see for example [JP07]) and have generally
the following two phases:

First: Some perturbation is introduced and it is corrected (i.e. the local
collision is found).

Second: Perturbation and correction vectors are found, such that the overall
difference mask satisfies the message expansion.

Edon-R hash function does not have a message expansion part, and does not
have many steps where attacker can find perturbation and correction vectors.

In what follows we are describing the algorithms with complexity O(1) for
finding local collisions for the cases g., h., i., j., and k.

PAPER B: Cryptographic Hash Function Edon-R 105

Case g. Finding local collisions for D1:

1 Choose some arbitrary value for
D1.

2 Choose two distinct values X3 and
X4.

3 Compute X1 = X3 \D1.

4 Compute X2 = X4 \D1.

Case h. Finding local collisions for D3:

1 Choose some arbitrary value for
D3.

2 Choose two distinct values D1 and
D2.

3 Compute X3 = D1 \D3.

4 Compute X4 = D2 \D3.

5 Compute X1 = X3 \D1.

6 Compute X2 = X4 \D2.

Case i. Finding local collisions for D3:

1 Choose some arbitrary value for
D3.

2 Choose two distinct values D1 and
D2.

3 Compute X3 = D1 \D3.

4 Compute X4 = D2 \D3.

5 Compute X1 = X3 \D1.

6 Compute X2 = X4 \D2.

Case j. Finding local collisions for D7:

1 Choose some arbitrary value for
D7.

2 Choose two distinct values D5 and
D6.

3 Compute D3 = D5 \D7.

4 Compute D4 = D6 \D7.

5 Compute D1 = C0 \D5.

6 Compute D2 = C0 \D6.

7 Compute X3 = D1 \D3.

8 Compute X4 = D2 \D4.

9 Compute X1 = X3 \D1.

10 Compute X2 = D4 \D2.

106 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Case k. Finding local collisions for D11:

1 Choose some arbitrary value for D11.

2 Choose two distinct values D9 and D10.

3 Compute D8 = D10 \D11.

4 Compute D7 = D9 \D11.

5 Compute D5 = C1 \D9.

6 Compute D6 = C1 \D10.

7 Compute D4 = D6 \D8.

8 Compute D3 = D5 \D7.

9 Compute D2 = C0 \D6.

10 Compute D1 = C0 \D5.

11 Compute X4 = D2 \D4.

12 Compute X3 = D1 \D3.

13 Compute X1 = X3 \D1.

14 Compute X2 = D4 \D2.



D14 = D13 ∗D11
D14 = D12 ∗D10

D13 = X1 ∗D9

D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D6 ∗D8
D9 = D5 ∗C1
D8 = D4 ∗C1
D7 = D5 ∗D3
D6 = D4 ∗D3
D5 = C0 ∗D2
D4 = C0 ∗D1
D3 = D2 ∗X3
D3 = D1 ∗X2

D2 = X3 ∗X1

D1 = X2 ∗X1



D14 = D13 ∗D11
D14 = D12 ∗D10

D13 = X1 ∗D9

D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D7 ∗D8
D9 = D6 ∗C1
D8 = D5 ∗C1
D7 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X3
D3 = D1 ∗X2

D2 = X3 ∗X1

D1 = X2 ∗X1



D15 = D14 ∗D12
D15 = D13 ∗D11

D14 = X1 ∗D10

D13 = X1 ∗D9
D12 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗C1
D9 = D5 ∗C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X3
D3 = D1 ∗X2

D2 = X3 ∗X1

D1 = X2 ∗X1

a. b. c.

Table 27. Concrete systems (a. – c.) of quasigroup equations that can give collisions in the
compression function R

PAPER B: Cryptographic Hash Function Edon-R 107



D14 = D13 ∗D11
D14 = D12 ∗D10

D13 = X2 ∗D9

D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D7 ∗D8
D9 = D6 ∗C1
D8 = D5 ∗C1
D7 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X3
D3 = D1 ∗X3

D2 = X3 ∗X2

D1 = X3 ∗X1



D13 = D12 ∗D11

D12 = X2 ∗D10

D12 = X1 ∗D9
D11 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗C1
D9 = D5 ∗C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X3
D3 = D1 ∗X2

D2 = X3 ∗X2

D1 = X3 ∗X1



D15 = D14 ∗D12
D15 = D13 ∗D11

D14 = X2 ∗D10

D13 = X1 ∗D9
D12 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗C1
D9 = D5 ∗C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X3
D3 = D1 ∗X3

D2 = X3 ∗X2

D1 = X3 ∗X1

d. e. f.

Table 28. Concrete systems (d. – f.) of quasigroup equations that can give collisions in the
compression function R



D12 = D11 ∗D9
D12 = D10 ∗D8

D11 = X2 ∗D7

D10 = X1 ∗D7
D9 = D6 ∗D7
D8 = D5 ∗D7
D7 = D4 ∗C1
D6 = D4 ∗D3
D5 = D4 ∗D2
D4 = C0 ∗D1
D3 = D1 ∗X4
D2 = D1 ∗X3

D1 = X4 ∗X2

D1 = X3 ∗X1



D12 = D11 ∗D10

D11 = X2 ∗D9

D11 = X1 ∗D8
D10 = D7 ∗D9
D10 = D6 ∗D8
D9 = D5 ∗C1
D8 = D4 ∗C1
D7 = D5 ∗D3
D6 = D4 ∗D3
D5 = C0 ∗X2
D4 = C0 ∗D1
D3 = D2 ∗X4
D3 = D1 ∗X3

D2 = X4 ∗X2

D1 = X3 ∗X1



D14 = D13 ∗D11
D14 = D12 ∗D10

D13 = X2 ∗D9

D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D6 ∗D8
D9 = D5 ∗C1
D8 = D4 ∗C1
D7 = D5 ∗D3
D6 = D4 ∗D3
D5 = C0 ∗D2
D4 = C0 ∗D1
D3 = D2 ∗X4
D3 = D1 ∗X3

D2 = X4 ∗X2

D1 = X3 ∗X1

g. h. i.

Table 29. Concrete systems (g. – i.) of quasigroup equations that can give collisions in the
compression function R

108 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

D14 = D13 ∗D11
D14 = D12 ∗D10

D13 = X2 ∗D9

D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D7 ∗D8
D9 = D6 ∗C1
D8 = D5 ∗C1
D7 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X4
D3 = D1 ∗X3

D2 = X4 ∗X2

D1 = X3 ∗X1



D13 = D12 ∗D11

D12 = X2 ∗D10

D12 = X1 ∗D9
D11 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗C1
D9 = D5 ∗C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X4
D3 = D1 ∗X3

D2 = X4 ∗X2

D1 = X3 ∗X1



D15 = D14 ∗D12
D15 = D13 ∗D11

D14 = X2 ∗D10

D13 = X1 ∗D9
D12 = D8 ∗D10
D11 = D7 ∗D9
D10 = d6 ∗C1
D9 = D5 ∗C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗X4
D3 = D1 ∗X3

D2 = X4 ∗X2

D1 = X3 ∗X1

j. k. l.

Table 30. Concrete systems (j. – l.) of quasigroup equations that can give collisions in the
compression function R

3.12 Used constants in Edon-R - avoiding fixed points for
the compression function R

The compression function of the earlier hash function Edon-R(n) had one
known fixed point, since it was true that R1(0) = 0, where 0 is the vector of
all zero elements.

In order to avoid the existence of some trivial fixed points, in Edon-R we are
using the constants 0x55555555 and 0xAAAAAAAA for the 224/256 version, and
the constants 0x5555555555555555 and 0xAAAAAAAAAAAAAAAA for the 384/512

version in the affine bijective transformations Â1 and Â3. The reason why we
chose these constants is that they are represented as sequences of alternating

0s and 1s. Having this constants in the affine bijective transformations Â1 and

Â3 we are not aware of any point X such that

R(X) = X.

Moreover, examining one way functions R defined with words of much
smaller size w = 2, 3, 4, 5, lead us to the conclusion that finding fixed points
either for the quasigroups of orders 2256 and 2512 (the case X ∗q X = X) or
for the compression function R is infeasible.

PAPER B: Cryptographic Hash Function Edon-R 109

3.13 Getting all the additions to behave as XORs

Having a compression function R defined only by additions modulo 232 or
modulo 264, XORs and left rotations, it is a natural idea to try to find values
for which additions in R behave as XORs [Tho07].

In such a case, one would have a completely linear system in the ring
(Zn2 ,+,×) for which collisions, preimages and second preimages can easily be
found. However, getting all the additions to behave as XORs is a challenge.

Here we can point out several significant works that are related with analysis
of differential probabilities of operations that combine additions modulo 232,
XORs and left rotations. In 1993 Berson has made a differential cryptanal-
ysis of addition modulo 232 and applied it on MD5 [Ber92]. In 2001 Lipmaa
and Moriai have constructed efficient algorithms for computing differential
properties of addition modulo 2w (for general values of w) [LM02], and in
2004 Lipmaa, Wallén and Dumas have constructed a linear-time algorithm for
computing the additive differential probability of exclusive-or [LWD04].

All of these works are determining the additive differential probability of
exclusive-or:

Pr[((x+ α)⊕ (y + β))− (x⊕ y) = γ]

and the exclusive-or differential probability of addition:

Pr[((x⊕ α) + (y ⊕ β))⊕ (x+ y) = γ]

where probability is computed for all pairs (x, y) ∈ Z2w × Z2w and for any
predetermined triplet (α, β, γ) ∈ Z2w × Z2w × Z2w .

In the case of Edon-R, instead of simple combination of two w-bit variables
(w = 32 or w = 64) once by additions modulo 2w then by xoring, we have a lin-
ear transformation of 8, w-bit variables described by transformations defined
in Definition 6. Additionally, bearing in mind that R : {0, 1}32w → {0, 1}16w,
in this moment we do not see how the results in [LWD04] will help in finding
concrete values of arguments for the function R for which additions behave as
XORs.

3.14 Infeasibility of going backward and infeasibility of
finding free start collisions

Claims in this Subsection were present in the original documenta-
tion, but are not correct. Khovratovich et al. have found free-start
collisions for Edon-R in [KNW08].

According to the conjectured one-wayness of the function R, iterating
Edon-R backward is infeasible. The conjecture is again based on the infea-
sibility of solving nonlinear quasigroup equations in non-commutative and

110 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

A0 A1

A1 X
(1)
0 X

(1)
1

C0 X
(2)
0 X

(2)
1

C1 X
(3)
0 X

(3)
1

A0 B0 B1

X0 X1

X1 X
(1)
0 X

(1)
1

C0 X
(2)
0 X

(2)
1

C1 X
(2)
0 X

(2)
1

X0 B0 B1

a. b.

Table 31. Situations a. and b. give a free start collision.

non-associative quasigroups. From this it follows that the workload for finding
preimages and second-preimages for any hash function of the family Edon-R
is 2n hash computations.

Moreover, inverting the one-way function R would imply that finding free
start collisions is feasible for the whole function Edon-R. Consequently, we
base our conjecture that it is infeasible to find free start collisions for Edon-R
on the infeasibility of inverting the one-way function R.

We elaborate our claims more concretely by the following discussion:

Definition 33 Let (A0,A1,X1,X2), (B0,B1,X3,X4) ∈ Qq×Qq×Qq×Qq.
If R(A0,A1,X1,X2) = (D0,Y) and R(B0,B1,X3,X4) = (E0,Y) then the
pair ((A0,A1,X1,X2), (B0,B1,X3,X4)) is a free start collision for Edon-
R.

The free start collision situation is described in the Table 31. In this moment
we can only see two ways to find free start collisions for Edon-R:

1 Generate a random Y ∈ Qq. Construct vectors (D0,Y) and (E0,Y)
where D0,E0 ∈ Qq are randomly chosen. Chose randomly A0, A1, B0,
B1 ∈ Qq. Try to find R−1(D0,Y) with the respect of chosen A0,A1,
i.e., find X0 and X1 such that

R(A0,A1,X0,X1) = (D0,Y)

and find R−1(E0,Y) with the respect of chosen B0,B1 i.e., find X2 and
X3 such that

R(B0,B1,X2,X3) = (E0,Y).

PAPER B: Cryptographic Hash Function Edon-R 111

2 Generate a random (A0,A1,X0,X1) and computeR(A0,A1,X0,X1) =
(D0,Y). Construct vector (E0,Y) where E0 ∈ Qq is randomly chosen.
Chose randomly B0, B1 ∈ Qq. Try to find R−1(E0,Y) with the respect
of chosen B0, B1 i.e., find X2 and X3 such that

R(B0,B1,X2,X3) = (E0,Y).

Both ways need inversion of R and as we already said we see that as an
infeasible task.

3.15 Statement about the cryptographic strength of
Edon-R

In summary, we can say that the design of Edon-R heavily uses combina-
tions of bitwise operations of XORing, rotating and operations of addition in
Z232 or in Z264 (which are mutually nonlinear operations). This strategy, com-
bined with the conjectured one-wayness of the function R (reverse quasigroup
string transformation) and the good differential properties of the underlying
quasigroup operations used inR are the cornerstones of the Edon-R strength.

According to all this, we give a statement of the cryptographic strength of
Edon-R against attacks for finding collisions, preimages and second preimages
which is summarized in Table 32. We also formally state that any m-bit
hash function specified by taking a fixed subset of the Edon-Rs output bits
meets the properties summarized in Table 32 when n is replaced by m. In
addition we formally state that all 4 algorithms in Table 32 are resistante to
length-extension attacks, resistante to multicollision attacks and the provable
resistante to differential cryptanalysis.

Algorithm Digest size n
(in bits)

Work factor for
finding collision

Work factor for
finding a preimage

Word factor for
finding a 2nd
preimage of a
message ≤ 2k bits

Edon-R224 224 ≈ 2112 ≈ 2224 ≈ 2224−k

Edon-R256 256 ≈ 2128 ≈ 2256 ≈ 2256−k

Edon-R384 384 ≈ 2192 ≈ 2384 ≈ 2384−k

Edon-R512 512 ≈ 2256 ≈ 2512 ≈ 2512−k

Table 32. Cryptographic strength of the Edon-R.

112 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

3.16 Edon-R support of HMAC

Edon-R is an iterative cryptographic hash function. Thus, in combination
with a shared secret key it can be used in the HMAC standard as it is defined
in [HKC97, Ass00, NIS08b].

As the cryptographic strength of HMAC depends on the properties of
the underlying hash function, and the conjectured cryptographic strength of
Edon-R is claimed in the Section 3.15 here we give a formal statement that
Edon-R can be securely used with the HMAC.

In what follows we are giving 4 examples for every digest size of 224, 256,
384 and 512 bits.

PAPER B: Cryptographic Hash Function Edon-R 113

Edon-R224-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

71C8F2BF D3CCF225 69FC93F7 9F48750E E48620F0 003F6BEB 2A3CE6AC

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

8B40C47F A7FBCE0E 6BF303A8 5F37FDD0 B48B2B9E 55F5F6FB F41BE6DF

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

E16AC9B5 4B998A93 4A39C27A A48EE2A4 95661062 CAA03DBE CDA70D21

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

92E297FF 91BB08B9 B2C68F6D 2DA82F33 353CA617 C721DA0B FC03D801

114 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Edon-R256-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

3673D502 83A2D52D FC0BB839 27D30386 2AC52BB9 707199D8 9A481125 6604D76B

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

B9B58E62 5AF9E85D 46DDCC77 70341B32 8FD85619 3A4EAA20 E8F2D02F FE81FCEE

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

FC4B7A90 A8F5326F EADE94C5 5581AB5F 138B57DF 93B89A09 4D684C1D 76240C43

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

7CADF7EC F31BB57E 75030676 D1B38877 89CFDF1B E2DBECDC 75FE32E1 3982789D

PAPER B: Cryptographic Hash Function Edon-R 115

Edon-R384-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

0CB056EE9989BF7D 0EA50F1402992521 0683B5753965ABC6 F2C9353492234BF7

FF68D7F45AAD286F 5360E5BA091DA415

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

5F49AF0398A7B853 A3EC7BAB13CD003E E6D6540A0B8BC5B6 6AAEE3893396D046

BA6C1290DC5DD1B2 9394E0993E2512EB

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

5B964E967CC77A65 5649A13193C72D36 E15E5D61E3171695 2FD29E265E33A1DE

AF0D7BFEB3B27557 C09FCF450FF5E4BD

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

46DF6287B91B433E 421F8594D41F8501 BA074BC4C64CE0D4 8D19A5D18EE823AD

7DF488C780D54C31 20B86CD728C20A16

116 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Edon-R512-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

B07398A705AFF818 E332E03C788CF8C7 A5BD347CB5ED2728 1B73977716952745

CB25CFDEA9D0AD43 201160E2E96BB42D 91DA7544B2D83D64 6259DBABE3DAFC69

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

CEDC261D9B89C31F C84B7C66C7137F96 1622FFDE2B5715B9 D3B85FFD919F4A05

4D0BBA7F6F68CE2E 7D66150DC30B5002 2B308F89BABACDDD 14680E59991E2D9A

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

1F1A500781AD0D6F 0EE5862713459C3D 06A9CB2E5750D834 E82B07900F5D1253

558E527DF778DF74 D0819CB727343D34 50DFB4D037921D56 7874E098459325FE

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

A69CA444D01E741C B7683A66C060D8C0 3F33A57E62BA50B8 80DF0A63900C6C36

BEE535444C6EBB31 78F48F551D5F2447 87AD07F07E96A4B3 781A9E5EFB625F28

3.17 Edon-R support of randomized hashing

Edon-R can be used in the randomizing scheme proposed in [HK06,
NIS08a].

3.18 Resistance to SHA-2 attacks

Edon-R is designed to have a security strength that is at least as good as the
hash algorithms currently specified in FIPS 180-2, and this security strength
is achieved with significantly improved efficiency. Having in mind the fact that
Edon-R design differs completely from the design of SHA-2 family of hash
functions, we claim that any possibly successful attack on SHA-2 family of
hash functions is unlikely to be applicable to Edon-R.

PAPER B: Cryptographic Hash Function Edon-R 117

4. Estimated Computational Efficiency and Memory
Requirements

4.1 Speed of Edon-R on NIST SHA-3 Reference
Platform

We have developed and measured the performances of Edon-R on a plat-
form with the following characteristics:

CPU: Intel Core 2 Duo,

Clock speed: 2.4 GHz,

Memory: 4GB RAM,

Operating system: Windows Vista Enterprise 64-bit (x64) Edition with
Service Pack 1,

Compiler: ANSI C compiler in the Microsoft Visual Studio 2005 Professional
Edition.

Compiler: ANSI C compiler in the Intel C++ v 11.0.066.

For measuring the speed of the hash function expressed as cycles/byte we have
used the rdtsc() function and a modified version of a source code that was
given to us by Dr. Brian Gladman from his optimized realization of SHA-2
hash function [Gla].

4.1.1 Speed of the Optimized 32–bit version of Edon-R

In the Table 33 we are giving the speed of all four instances of Edon-R
for the optimized 32–bit version obtained by Microsoft Visual Studio 2005
Professional Edition.

In the Table 34 we are giving the speed of all four instances of Edon-R for
the optimized 32–bit version obtained by Intel C++ v 11.0.066.

4.1.2 Speed of the Optimized 64–bit version of Edon-R

In the Table 35 we are giving the speed of all four instances of Edon-R for
the optimized 64–bit version.

In the Table 36 we are giving the speed of all four instances of Edon-R for
the optimized 64–bit version.

118 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Speed in cycles/byte for different lengths
(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000
224 2497.00 249.70 43.21 9.01 8.66 8.64
256 781.00 76.90 13.45 9.01 8.66 8.64
384 2161.00 214.90 21.85 19.16 15.12 14.63
512 2161.00 216.10 21.97 19.19 15.13 14.63

Table 33. The performance of optimized 32–bit version of Edon-R in machine cycles per
data byte on Intel Core 2 Duo for different hash data lengths, obtained by Microsoft Visual
Studio 2005 Professional Edition.

Speed in cycles/byte for different lengths
(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000
224 637.00 63.70 11.41 7.19 6.34 6.26
256 589.00 58.90 10.69 6.64 6.33 6.27
384 1465.00 147.70 14.77 11.59 10.18 9.99
512 1501.00 148.90 14.89 12.57 10.25 10.04

Table 34. The performance of optimized 32–bit version of Edon-R in machine cycles per
data byte on Intel Core 2 Duo for different hash data lengths, obtained by Intel C++ v
11.0.066.

Speed in cycles/byte for different lengths
(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000
224 1729.00 172.90 8.89 5.71 5.54 5.52
256 541.00 54.10 8.89 5.79 5.55 5.37
384 601.00 55.30 5.65 2.98 2.78 2.71
512 601.00 55.30 5.77 2.98 2.78 2.71

Table 35. The performance of optimized 64–bit version of Edon-R in machine cycles per
data byte on Intel Core 2 Duo for different hash data lengths, obtained by Microsoft Visual
Studio 2005 Professional Edition.

PAPER B: Cryptographic Hash Function Edon-R 119

Speed in cycles/byte for different lengths
(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000
224 469.00 46.90 8.05 4.86 4.69 4.40
256 457.00 45.70 7.69 4.90 4.69 4.40
384 493.00 49.30 4.93 2.47 2.30 2.29
512 493.00 49.30 4.93 2.52 2.30 2.29

Table 36. The performance of optimized 64–bit version of Edon-R in machine cycles per
data byte on Intel Core 2 Duo for different hash data lengths, obtained by Intel C++ v
11.0.066.

4.2 Memory requirements of Edon-R on NIST SHA-3
Reference Platform

When processing the message block M (i) = (M
(i)
0 ,M

(i)
1 , . . . ,M

(i)
15), we need

the current value of the double pipe P (i−1) = (P
(i−1)
0 , P

(i−1)
1 , . . . , P

(i−1)
15), the

values of the new double pipe – in the reference source code indexed as P (i) =

(P
(i)
16 , P

(i)
17 , . . . , P

(i)
31) and 16 temporary variables (in the reference source code

denoted as t0, . . . , t15).
The need of memory is thus:

16 words of M (i),

32 words of P (i).

16 temporary words t0, . . . , t15.

which is in total 64 words. That means that Edon-R224 and Edon-R256
use 256 bytes and Edon-R384 and Edon-R512 use 512 bytes.

4.3 Estimates for efficiency and memory requirements on
8-bit processors

We have used 8-bit Atmel processors ATmega16 and ATmega406 to test the
implementation and performance of the compression function of the two main
representatives of the Edon-R hash function: Edon-R256 and Edon-R512.
We have used WinAVR – an open source software development tools for the
Atmel AVR series of RISC microprocessors and for simulation we have used
the AVR Studio v 4.14. In Table 37 we are giving the length of the produced
executable code and the speed in number of cycles per byte.

From the analysis of the produced executable code we can project that
by direct assembler programming Edon-R can be implemented in less than

120 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Name
Code size

(.text + .data +
.bootloader)

in bytes

Speed
(cycles/byte)

8–bit MCU

Edon-R224/256 6002 616 ATmega16
Edon-R384/512 38798 1857 ATmega406

Table 37. The size and the speed of code for the compression functions for Edon-R224/256
and Edon-R384/512

3 Kbytes (Edon-R256) and in less than 16 KBytes (Edon-R512) but this
claim will have to be confirmed in the forthcoming period during the NIST
competition.

4.4 Estimates for a Compact Hardware Implementation

We are giving the estimates for the compact hardware implementation of
the compression function of Edon-R in Table 38 having in mind the minimal
memory requirements described in Section 4.2. Namely, since for

Name Estimated gate count for
the needed memory

Estimated gate
count for the

algorithm logic

Estimated minimal
total gate count

Edon-R224/256 12,288 ≈1,000 ≈13,288
Edon-R384/512 24,576 ≈2,000 ≈26,576

Table 38. Estimated number of logic gates for realization of the compression functions for
Edon-R224/256 and Edon-R384/512

4.5 Internal Parallelizability of Edon-R
The design of Edon-R allows very high level of parallelization in compu-

tation of its compression function. This parallelism can be achieved by using
specifically designed hardware, and indeed with the advent of multicore CPUs,
those parts can be computed in different cores in parallel. From the specifica-
tion given below, we claim that Edon-R can be computed after 5 ”parallel”
steps. Of course those 5 ”parallel” steps have different hardware specification
and different complexity, but can serve as a general measure of the paralleliz-
ability of Edon-R. The high level parallel specification of Edon-R according
to the specification of R given in Figure 1 is as follows:

Computing R(C0,C1,A0,A1)

Step 1: Compute X
(1)
0 = A1 ∗A0

PAPER B: Cryptographic Hash Function Edon-R 121

Step 2: Compute in parallel:

X
(1)
1 = X

(1)
0 ∗A1

X
(2)
0 = C0 ∗X

(1)
0

Step 3: Compute in parallel:

X
(2)
1 = X

(2)
0 ∗X

(1)
1

X
(3)
0 = X

(2)
0 ∗C1

Step 4: Compute in parallel:

X
(3)
1 = X

(2)
1 ∗X

(3)
0

B0 = A0 ∗X
(3)
0

Step 5: Compute B1 = B0 ∗X
(3)
1

Internally, every quasigroup operation X∗Y can be further parallelized and
computed in 4 parallel steps. The two permutations π2 ≡ Â1 ◦ROTLr1,m ◦A2

and π3 ≡ Â3 ◦ROTLr2,m ◦A4 where m = 32, 64 can be computed in 3 parallel
steps, and one step is needed for the mutual xoring. Those steps are:

Computing Z = X ∗Y

Step 1: Compute in parallel:

Temp1 ← Â1(X)

Temp2 ← Â3(Y)

Step 2: Compute in parallel:

Temp3 ← ROTLr1,q(Temp1)

Temp4 ← ROTLr2,q(Temp2)

Step 3: Compute in parallel:

Temp5 ← A2(Temp3)

Temp6 ← A4(Temp4)

Step 4: Compute Z = Temp5 ⊕Temp6

Thus, theoretically we can digest one message block by the compression
function of Edon-R in 20 parallel steps.

References

[Ass00] American Bankers Association. Keyed Hash Message Authentication Code.
ANSI X9.71, Washington, D.C., 2000.

[Bel67] V. D. Belousov. Osnovi teorii kvazigrup i lup (in russian), 1967. Nauka,
Moscow.

122 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[Ber92] T. A. Berson. Differential Cryptanalysis Mod 232 with Applications to MD5.
In Advances in Cryptology - EUROCRYPT ’92, volume 658 of LNCS, pages
71–80, 1992.

[Ber08] D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In M. Robshaw and
O. Billet, editors, New Stream Cipher Designs, volume 4986 of LNCS, pages
84–97. Springer-Verlag, 2008.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard Revisited: How to Construct a Hash Function. In Advances
in Cryptology: CRYPTO’05, volume 3621 of LNCS, pages 430–448. Springer
Berlin / Heidelberg, 2005.

[CDN95] G. Carter, E. Dawson, and L. Nielsen. A latin square variation of DES. In
Proc. Workshop of Selected Areas in Cryptography, Ottawa, Canada, 1995.

[CDS94] J. Cooper, D. Donovan, and J. Seberry. Secret sharing schemes arising from
latin squares. Bulletin of the Institute of Combinatorics and its Applications,
12(4):33–43, 1994.

[Dam87] I. B. Damg̊ard. Collision free hash functions and public key signature schemes.
In Advances in Cryptology–EUROCRYPT ’87, volume 304 of LNCS, pages
203–216. Springer-Verlag, 1987.

[Dam89] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard,
editor, CRYPTO, volume 435 of LNCS, pages 416–427. Springer, 1989.

[DK92] J. Dénes and A. D. Keedwell. A new authentication scheme based on latin
squares. Discrete Math., 106-107:157–161, 1992.

[GK08] D. Gligoroski and S. J. Knapskog. Edon–R(256, 384, 512) – an efficient
implementation of Edon–R family of cryptographic hash functions. Com-
ment.Math.Univ.Carolin., 49,2:219–239, 2008.

[Gla] B. Gladman. SHA1, SHA2, HMAC and Key Derivation in C. url:http://fp.
gladman.plus.com/cryptography_technology/sha/index.htm.

[Gli05] D. Gligoroski. Candidate one-way functions and one-way permutations based
on quasigroup string transformations. Cryptology ePrint Archive, Report
2005/352, 2005.

[Gli09] D. Gligoroski. On a family of minimal candidate one-way functions and one-
way permutations. International Journal of Network Security, in print 2009.

[GMK06] D. Gligoroski, S. Markovski, and L. Kocarev. Edon–R, an infinite family of
cryptographic hash functions. In Second NIST Cryptographic Hash Workshop,
August 2006.

[GMK08] D. Gligoroski, S. Markovski, and S. J. Knapskog. The Stream Cipher Edon80.
In M. Robshaw and O. Billet, editors, New Stream Cipher Designs, volume
4986 of LNCS, pages 152–169. Springer-Verlag, 2008.

[HK06] S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized
hashing. In Proceedings of CRYPTO 2006, volume 4117 of LNCS, pages 41–59,
2006.

[HKC97] M. Bellare H. Krawczyk and R. Canetti. RFC2104 - HMAC: Keyed-Hashing
for Message Authentication. Internet Engineering Task Force, 1997. url:http:
//www.faqs.org/rfcs/rfc2104.html.

PAPER B: Cryptographic Hash Function Edon-R 123

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to cas-
caded constructions. In Advances in Cryptology - CRYPTO 2004, 24th Annual
International Cryptology Conference, Santa Barbara, California, USA, volume
3152 of LNCS, pages 306–316. Springer, August 2004.

[JP07] A. Joux and T. Peyrin. Hash functions and the (amplified) boomerang attack.
In Advances in cryptology: CRYPTO 2007, volume 4622 of LNCS, pages 244–
263. Springer-Verlag, 2007.

[KNW08] Dmitry Khovratovich, Ivica Nikolić, and Ralf-Philipp Weinmann. Cryptanal-
ysis of EDON-R. Available online, 2008. url:http://ehash.iaik.tugraz.at/
uploads/7/74/Edon.pdf.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2n work. In Advances in Cryptology - EUROCRYPT 2005,
volume 3494 of LNCS, pages 474–490. Springer, 2005.

[LM02] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential prop-
erties of addition. In Proceedings of FSE 2001, volume 2355 of LNCS, pages
336–350. Springer-Verlag, 2002.

[LMM91] X. Lai, J. L. Massey, and S. Murphy. Markov ciphers and differential crypt-
analysis. In Advances in Cryptology, CRYPTO ’91, volume 576 of LNCS, pages
17–38. Springer-Verlag, 1991.

[Luc04] S. Lucks. Design principles for iterated hash functions. Cryptology ePrint
Archive, Report 2004/253, 2004.

[Luc05] Stefan Lucks. A failure-friendly design principle for hash functions. In Pro-
ceeding of ASIACRYPT 2005, volume 3788 of LNCS, pages 474–494. Springer-
Verlag, 2005.

[LWD04] H. Lipmaa, J. Wallèn, and P. Dumas. On the Additive Differential Proba-
bility of Exclusive-Or. In Bimal Roy and Willi Meier, editors, Fast Software
Encryption 2004, volume 3017 of LNCS, pages 317–331. Springer-Verlag, 2004.

[McK] B. McKay. Web page: Latin squares - main classes of graeco-latin squares.
http://cs.anu.edu.au/people/bdm/data/latin.html.

[Mer90] R. C. Merkle. One way hash functions and DES, 1990. Based on an unpublished
paper from 1979 and his PhD thesis, Stanford, 1979.

[MGB99] S. Markovski, D. Gligoroski, and V. Bakeva. Quasigroup string processing.
In Part 1, Contributions, Sec. Math. Tech. Sci., MANU, volume XX, pages
13–28, 1999.

[MR95] B.D. McKay and E. Rogoyski. Latin squares of order 10. Electronic J. Comb.,
2(3), 1995. http://ejc.math.gatech.edu:8080/Journal/journalhome.html.

[NIS07] NIST. Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA-3) family. Federal Register No-
tice, 72(112), November 2007. http://csrc.nist.govgroups/ST/hash/

documents/FR_Notice_Nov07.pdf.

[NIS08a] NIST. Randomized Hashing for Digital Signatures - Draft NIST Special
Publication 800-106. Federal Information Processing Standards Publica-
tion, August, 2008. http://csrc.nist.gov/publications/drafts/800-106/

2nd-Draft_SP800-106_July2008.pdf.

124 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[NIS08b] NIST. The Keyed-Hash Message Authentication Code (HMAC), FIPS
PUB 198-1. Federal Information Processing Standards Publication, July,
2008. http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_

final.pdf.

[RMG+00] K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, and D. R. Shier.
Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Ra-
ton, Florida, 2000.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell Systems Tech-
nical Journal, 28(4):656—715, 1949.

[Smi07] J. D. H. Smith. An introduction to quasigroups and their representations.
Chapman & Hall/CRC, 2007.

[SV94] C.-P. Schnorr and S. Vaudenay. Black Box Cryptoanalysis of Hash Networks
Based on Multipermutations. In Proceedings of EUROCRYPT 1994, volume
950 of LNCS, pages 47–57. Springer, 1994.

[Tho07] S. S. Thomsen, May 2007. Personal communication with S. S. Thomsen.

[WN94] D. J. Wheeler and R. M. Needham. TEA, a Tiny Encryption Algorithm. In
Bart Preneel, editor, FSE, volume 1008 of LNCS, pages 363–366. Springer,
1994.

PAPER C

On the Randomness and Regularity of Reduced Edon-R
Compression Function

Rune Steinsmo Ødeg̊ard and Danilo Gligoroski

In Proceedings of the 2009 International Conference on Security & Manage-
ment

Las Vegas, Nevada, USA. July 13-16, 2009.

ON THE RANDOMNESS AND REGULARITY
OF REDUCED EDON-R COMPRESSION
FUNCTION

Rune Steinsmo Ødeg̊ard
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

rune.odegard@q2s.ntnu.no

Danilo Gligoroski
Department of Telematics
Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and Technology

danilog@item.ntnu.no

Abstract Edon-R is one of the candidate hash functions for the ongoing NIST competi-
tion for the next cryptographic hash standard called SHA-3. Its construction
is based on algebraic properties of non-commutative and non-associative quasi-
groups of orders 2256 and 2512. In this paper we are giving some of our results
in investigation of the randomness and regularity of reduced Edon-R compres-
sion functions over quasigroups of order 28 and 216. Our experiments show that
the Bellare-Khono balance of Edon-R compression function is high. Actually,
for the reduced Edon-R with quasigroups of order 28 we show that the com-
pression function is perfectly balanced, while with quasigroups of order 216 the
Belare-Khono balance is µ(R16) = 0.99985.

Keywords: hash function, randomness, regularity, balance, SHA-3, Edon-R

1. Introduction

Recently Gligoroski et.al submitted the hash function Edon-R [GØM+09b]
to the NIST hash competition [NIS07]. With speeds of 5.77 cycles/byte and
3.15 cycles/byte on amd64 1401MHz Intel Core 2 Duo for Edon-R256 and
Edon-R512 respectively, Edon-R is the fastest hash function submitted to

128 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

the competition [Be11b]. This has generated a lot of attention in the cryp-
tographic community and much effort has therefore been put into breaking
Edon-R. So far there have been various limited results. Klima [Kli08] showed
the possibility of 2K multicollisions requiring K∗2n/2 computations and access
to 2n/2 units of memory. Khovratovich et.al [KNW08] noted the possibility
of free-start collisions and used this to launch a preimage attack on Edon-R
requiring 22n/3 computations and access to 22n/3 units of memory. Later Glig-
oroski and Ødeg̊ard [GØ09] disputed the validity of the model in which the
attack of Khovratovich et. al is compared to generic attacks. The latest result
on Edon-R by Leurent [Leu09] showed the possibility of key recovery using
25n/8 operations when Edon-R is used as a special secret prefix MAC. Note
that all identified weaknesses of Edon-R are only present in the free start
collision case. In general, the problem of free start collisions can be addressed
for instance by the Davies-Meier method for feed-forwarding of the chaining
value.

The design of Edon-R is a double piped iterated compression function.
As part of our cryptanalysis of the Edon-R hash function we present here
results from tests of randomness performed on Edon-R compression functions
reduced in size.

Using the same theory as [GØM+09b], we constructed an 8-bit Edon-R
compression function. This construction is small enough that we can test all
232 possible inputs of messages and chaining values. The distribution of the
output was then compared to what is expected from an ideal random function.
In addition we tested to see if the function is regular.

Similarly, we also constructed a 16-bit Edon-R compression function. For
300 different chaining values chosen at random, we tested all 232 possible
message inputs. The distribution of the output was then compared to what is
expected from an ideal random function. We also used the results to compute
the balance of the 16-bit compression function.

This paper is organized as follows. We first give the required background
in Section 2. In Section 3 and Section 4 we construct and analyze 8-bit and
16-bit Edon-R respectively. Finally Section 6 concludes the paper.

2. Background

In this section we give the required mathematical background for this paper.
The underlying structure of Edon-R are quasigroups of order 2kw where kw =
256 and 512 for Edon-R-256 and Edon-R-512 respectively.

Definition 1 A quasigroup (Q, ∗) is an algebraic structure consisting of a
nonempty set Q and a binary operation ∗ : Q2 → Q with the property that

PAPER C: Cryptanalysis of Reduced Edon-R Compression Function 129

each of the equations
a ∗ x = b
y ∗ a = b

(1)

has unique solutions x and y in Q.

The compression function Rkw of Edon-R is a series of quasigroup opera-
tions of the form

X ∗kw Y = π1,kw(π2,kw(X) + π3,kw(Y)), (2)

where the permutations πi,kw treat X,Y as vectors of k = 8 words of size w =
32, 64 bits. The permutation π1,kw is a simple reordering of the variables. The
permutations π2,kw and π3,kw are defined from two orthogonal Latin squares
of size k = 8 (the same size as the vectors). For a detailed explanation of how
these permutations are defined from the Latin squares we refer the reader to
[GØM+09b].

Definition 2 A Latin square of size k is an k×k-matrix whose elements are
the numbers 0, . . . , k − 1 and each number appears exactly one time in each
row and each column.

The compression function is defined by repeated use of the quasigroup op-
eration as shown in Figure 1. This gives the following formula for the chaining
values (B0,B1)

Rkw(C0,C1,A0,A1) = (B0,B1) (3)

where

B0 = A0 ∗ ((C1 ∗ (A1 ∗A0)) ∗C0)

B1 = (A0 ∗ ((C1 ∗ (A1 ∗A0)) ∗C0))∗
(((C1 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1))∗
((C1 ∗ (A1 ∗A0)) ∗C0)). (4)

Definition 3 A function is said to be regular if every possible output has 2m

preimages for some m.

In [BK04] Bellare and Kohno looked at the connection between the “amount
of regularity” of a hash function and the general 2n/2 bound for birthday at-
tacks on hash functions of size n. Their conclusion was that 2n/2 was the lower
bound only if the hash function was regular, and that the actual lower bound
can be significantly less depending on the regularity of the hash function. Bel-
lare and Khono introduced balance as a measure of regularity and used its

130 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Figure 1. Schematic representation of the function Rkw. The diagonal arrows can be
interpreted as quasigroup operations between the source and the destination, and the vertical
or the horizontal arrows as equality signs ”=”.

properties to prove the relation between balance and the expected number of
trials in the birthday attack.

Definition 4 Let h : R → D be a function whose domain D and range
R = {R1, . . . , Rr} have sizes d, r ≥ 2, respectively. For i ∈ {1, . . . , r} let
di = |h−1(Ri)| denote the size of the pre-image of Ri under h. The balance of
h, denoted µ(h), is defined as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]
(5)

where logr(·) denotes the logarithm in base r.

Note that Bellare and Khono showed that a Merkle-Damgrd transform does
not necessarily preserve balance. This means that in addition to the balance
of the compression function, the balance of the whole hash function should
also be investigated [BK04].

3. Analysis of 8-bit Edon-R
To test some of the properties of the function Rkw we constructed a small

version using the same theory. Setting the size of the vectors to w = 4 and

PAPER C: Cryptanalysis of Reduced Edon-R Compression Function 131

L1 =


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

 L2 =


0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2


Table 1. Two mutually orthogonal Latin squares used to define the permutations π2,8 and
π3,8

Quasigroup operation of order 28

Input: X = (X0, X1, X2, X3) and Y = (Y0, Y1, Y2, Y3)
where Xi and Yi are 2–bit variables.
Output: Z = (Z0, Z1, Z2, Z3) where Zi are 2–bit variables.
Temporary 2–bit variables: T0, . . . , T7.

1
T4 ← ROTL0(0x1 + X0 + X1 + X2);
T5 ← ROTL1(X0 + X1 + X3);
T6 ← ROTL0(X0 + X2 + X3);
T7 ← ROTL1(X1 + X2 + X3);

2
T0 ← ROTL0(0x2 + Y0 + Y2 + Y3);
T1 ← ROTL1(Y1 + Y2 + Y3);
T2 ← ROTL0(Y0 + Y1 + Y2);
T3 ← ROTL1(Y0 + Y1 + Y3);

3
Z3 ← T7 + T1;
Z2 ← T6 + T0;
Z0 ← T5 + T2;
Z1 ← T4 + T3;

Table 2. An algorithmic description of the quasigroup operation of order 28.

the size of the words to k = 2, an 8-bit version was constructed using the two
orthogonal Latin squares in Table 1. Alternating between left rotation of 0
and 1 we arrived at the quasigroup operation in Table 2

One notable difference between this quasigroup operation and the ones de-
fined in [GØM+09b] is the missing XOR parts. The reason for this difference
is that here there is only one row below the line in the Latin squares used
to define the permutations. So instead of XORing the variables, they are
permuted according to the rows (3, 2, 1, 0) and (1, 0, 2, 3).

3.1 Experiments and results for 8-bit Edon-R
We have now constructed a reduced Edon-R compression function R8 :

232 → 216 which is small enough to exhaustively go trough all possible input

132 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

values. To test some of the properties of this function we performed the
following two experiments.

Experiment 1 The first test we performed was on the number of collisions
of the compression function. Holding the chaining values (C0,C1) constant,
we used all possible pairs (M0,M1) of messages as input to the compression
function.

R8(C0,C1,M0,M1) = (B0,B1) (6)

The output (B0,B1) represented as a number between 0 and 216 − 1 was then
tallied with respect to collisions. That is, we counted the number of elements
mapped to 0 times, the number of elements mapped to 1 times and so on.
This was done for all possible pairs of chaining values. The result was then
compared to what is expected for an ideal random function (IRF).

If R8 is an IRF each element in the image should be mapped to by the
probability p = 2−16. This means that the an element will be mapped to l
times out of n with probability

P (l) =

(
n

l

)
pk(1− p)n−l, (7)

where n = 216. This means that expected number of elements mapped to l
times is nP (l).

Result 1 The result from this experiment is listed in Table 3 and shown
in Figure 2. From the table we see that even the very reduced R8 function
has a distribution similar to an IRF. For l = 0, 1, 2, 3 the results are good
with at most 2% difference from an IRF. However the difference rapidly grows
for bigger l. For all l the 95% confidence interval for the mean was outside
what is expected for an IRF. This means that the difference between R8 and
an IRF is statistically significant. We also noticed some other non-random
behavior. Sorting the result according to the first chaining value C0 we see
that all occurrences of 9 and 10 collisions are centered around certain values
of C0. The same is not true if we sort with respect to C1. This means the
first chaining value has bigger influence on the final output then the second.
Looking at the construction of the compression function in Figure 1 this result
is of course expected since the first chaining value is introduced earlier in the
computation.

Experiment 2 The second test we performed was on the number of pre-
images each element has under the compression function. We exhaustively

PAPER C: Cryptanalysis of Reduced Edon-R Compression Function 133

l Min Max Mean IRF Difference %
0 23285 24108 23694,53 24109.16 1.72%
1 24007 25102 24538.69 24109.53 -1.78 %
2 11902 12624 12251.78 12054.77 -1.63 %
3 3704 4142 3936.85 4018.19 2.02 %
4 792 1046 919.00 1004.52 8.51 %
5 117 224 167.37 200.89 16.69 %
6 9 47 24,46 33.48 26.94 %
7 0 12 2.99 4.78 37.51 %
8 0 4 0.30 0.60 50.17 %
9 0 3 0.027 0.066 59.56 %
10 0 1 0.0015 0.0066 77.94 %
≥ 11 0 0 0 0.00066 100.00 %

Table 3. The distribution of the image of R8 for all possible pairs of chaining values. The
second last columns show what is expected for an ideal random function (IRF), while the
first 3 columns show the result for R8. The last column show the difference in percent
between the IRF and the mean of R8.

0 1 2 3 4 5 6 7 8 9 10
l

-5

0

5

10

Log of Mappings

Figure 2. A bar chart comparing the binomial distribution of an IRF with R8. The x-axis
is how many times, l, an element is mapped to, while the y-axis is the logarithm of how
many elements is mapped to l times. The first bar is the IRF, the second bar is the mean of
R8, while the third and fourth bar are the minimum and maximum of R8 respectively.

134 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

went trough all 232 possible input values and looked at how many times each
element in the image was mapped to.

Result 2 The result from this experiment was that each element was mapped
to exactly 216 times. This means that the function R8 is regular according to
Definition 3.

4. Analysis of 16-bit Edon-R
We also constructed a 16-bit version ofRkw by setting the size of the vectors

to k = 8 and the wordsize to w = 2. For this construction we used the same
Latin squares as in the construction of Edon-R256 and 512. This means
that the algorithmic description of the quasigroup operation of order 216 are
very similar to the ones found in [GØM+09b]. The only difference is that we
alternated between rotation of 0 and 1 instead of the rotations described for
Edon-R256 and 512.

4.1 Experiment and results for 16-bit Edon-R
The compression function R16 : 264 → 232 is to big to go trough all possible

input values. However we can still perform an experiment on the distribution
of the output similar to Experiment 1 in Section 3.

Experiment 3 Holding the chaining values (C0,C1) constant we used all
possible pairs (M0,M1) of messages as input to the compression function.

R16(C0,C1,M0,M1) = (B0,B1) (8)

The output (B0,B1) represented as a number between 0 and 232 − 1 was then
tallied with respect to collisions. This test was performed for 300 different
pairs of chaining values chosen at random.

If R16 is an ideal random function, each element in the image should be
mapped to by the probability p = 2−32. This means that the an element will be
mapped to l times out of n with probability

P (l) =

(
n

l

)
pk(1− p)n−l, (9)

where n = 232. Which means that expected number of elements mapped to l
times is nP (l).

Result 3 The result from this experiment is listed in Table 4. Note that,
because of some inaccuracy1 in the computation of the distribution of the ideal

1The number (1− 2−32)2
32−l could only be approximated using Mathematica 6.0.

PAPER C: Cryptanalysis of Reduced Edon-R Compression Function 135

l Min Max Mean IRF Diff %
0 1579952990 1580105601 1580014613 1580030157 0.00098 %
1 1579915274 1580140186 1580047057 1580030350 -0.0011 %
2 789949319 790105082 790021531 790016352 -0.00066 %
3 263295979 263371739 263335106 263337413 0.00088%
4 65813150 65860809 65831618.77 65834545.53 0.0044%
5 13154784 13174678 13165622.68 13166934.63 0.010%
6 2190432 2198973 2194306.50 2194480.82 0.0079%
7 312150 314757 313445.75 313498.08 0.017%
8 38656 39803 39169.01 39187.43 0.047%
9 4139 4563 4349.83 4354.11 0.098%
10 361 491 433.45 435.41 0.45%
11 23 57 39.09 39.58 1.24%
12 0 10 3.46 3.30 -4.99%
13 0 3 0.26 0.25 -3.78%
14 0 1 0.017 0.018 8.041%
≥ 15 0 0 0 NA NA

Table 4. The distribution of the image of R16 for all possible pairs of chaining values. The
second last columns show what is expected for an ideal random function (IRF), while the
first 3 columns show the result for R16. The last column show the difference in percent
between the IRF and the mean of R16.

random function, the sum of the expected results for 0 to 14 is slightly more
then 232. The expected number of collisions larger then 15 is therefor listed as
not available. Other approximations show this number to be in the order of
10−3.

From the table we see that the compression function of 16-bit Edon-R
has an output distribution very similar to an IRF. For most values of l the
difference between R16 and an IRF is much less then 1%. For l = 11, 12, 13
and 14 the difference is larger. Some of the reason for this difference is that the
probability for 11 or more mappings colliding is very small and the variance for
such collisions is therefor higher. This is also reflected in the 95% confidence
intervals for the mean. For l = 1, . . . , 6 the computed confidence intervals is
outside what is expected for an IRF, while for l = 7, . . . , 14 the confidence
intervals for the mean contains what is expected for an IRF. This means that
altough the output distribution of R16 is very similar to an IRF they are still
significantly different.

Experiment 4 Because of the size of R16 we were not able to test wether
the function is regular. We did however tally how many times of the 300 ∗ 232

136 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

different input values each element was mapped to. The tally was used to
compute the Bellare-Khono balance of R16 as defined in Definition 4.

Result 4 Computing the sum of the square of the number of preimages for
each of the 232 possible output values we got the number 387835522366350.
This gives the following result for the balance.

µ(R16) = log232

[
(300 ∗ 232)2

387835522366350

]
= 0.99985 (10)

We will also quickly mention some other possibly interesting numbers from
this experiment. The least amount of times a number was mapped to was 194,
while 413 was the most amount of times a number was mapped to (300 of
course being the average). The variance was σ2 = 299.9943.

The results for the regularity of R8 and the balance of R16 together with
the analysis for delta deviations in our documentation of Edon-R [GØM+09b]
are strong evidence that the balance is very high for Rkw in general. An open
and interesting question is for what k and w the function Rkw is completely
regular.

5. Conclusion

We have shown that the reduced compression function R8 is regular and
that its output distribution is similar to that of an ideal random function. We
have also shown that distribution of the output of R16 is very similar to an
ideal random function, and that the balance of R16 is high.

Comparing Table 3 and Table 4 we see that the amount of randomness
drastically increases as we increase the size of the range and the domain of the
compression function. Intuitively we expect this trend to follow as we increase
the size of the range and the domain of the compression function even more.

Based on the results of this paper it is difficult to give a general prediction
for the correlation between the size of the compression function and its balance.
It is possible that also R16 is completely regular, but unfortunately we do not
have the computer power to test this. Doing some tests on the balance of R256

and R512 would be quite interesting in this regard.
Additionally, it is clear that our methodology of analyzing Edon-R by

reducing the size of the variables and then investigating the properties of such
severely reduced function can be applied to all hash functions.

References

[Be11] Daniel J. Bernstein and Tanja Lange (editors). eBASH:ECRYPT Benchmark-
ing of All Submitted Hashes. measurements of hash functions, 2011. Accessed

PAPER C: Cryptanalysis of Reduced Edon-R Compression Function 137

May 2011.

[BK04] Mihir Bellare and Tadayoshi Kohno. Hash function balance and its impact on
birthday attacks. In Advances in Cryptology - EUROCRYPT 04, volume 3027
of LNCS, pages 401–418. Springer-Verlag, 2004.

[GØ09] Danilo Gligoroski and Rune Steinsmo Ødeg̊ard. On the complexity of Khovra-
tovich et al.’s preimage attack on EDON-R. Available online, 2009. url:http:
//eprint.iacr.org/2009/120.pdf.

[GØM+09] Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan
Knapskog, Ljupco Kocarev, Aleš Drápal, and Vlastimil Klima. Cryptographic
hash function EDON-R. Submission to NIST, 2009.

[Kli08] Vlastimil Klima. Multicollisions of EDON-R hash function and other observa-
tions. Available online, 2008. url:http://cryptography.hyperlink.cz/BMW/
EDONR_analysis_vk.pdf.

[KNW08] Dmitry Khovratovich, Ivica Nikolić, and Ralf-Philipp Weinmann. Cryptanal-
ysis of EDON-R. Available online, 2008. url:http://ehash.iaik.tugraz.at/
uploads/7/74/Edon.pdf.

[Leu09] Gaëtan Leurent. Key recovery attack against secret-prefix EDON-R. Cryp-
tology ePrint Archive, Report 2009/135, 2009.

[NIS07] NIST. Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA-3) family. Federal Register No-
tice, 72(112), November 2007. http://csrc.nist.govgroups/ST/hash/

documents/FR_Notice_Nov07.pdf.

138 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

PAPER D

Distinguishers for the Compression Function and Output
Transformation of Hamsi-256

Jean-Philippe Aumasson, Emilia Käsper, Lars Ramkilde Knudsen, Krystian
Matusiewicz, Rune Steinsmo Ødeg̊ard, Thomas Peyrin and Martin Schläffer.

In Proceedings of the 15th Australian Conference on Information Security and
Privacy

Sydney, Australia. July 5-7, 2010.

DISTINGUISHERS FOR THE COMPRESSION
FUNCTION AND OUTPUT TRANSFORMATION
OF HAMSI-256

Jean-Philippe Aumasson
Nagravision SA
Cheseaux, Switzerland

jeanphilippe.aumasson@gmail.com

Emilia Käsper
K.U.
Leuven, Belgium

Emilia.Kasper@esat.kuleuven.be

Lars Ramkilde Knudsen, Krystian Matusiewicz
Department of Mathematics,
Technical University of Denmark

{Lars.R.Knudsen,K.Matusiewicz}@mat.dtu.dk

Rune Steinsmo Ødeg̊ard
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

rune.odegard@q2s.ntnu.no

Thomas Peyrin
Ingenico,
France

thomas.peyrin@gmail.com

142 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Martin Schläffer
IAIK, TU
Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract Hamsi is one of 14 remaining candidates in NIST’s Hash Competition for the
future hash standard SHA-3. Until now, little analysis has been published on
its resistance to differential cryptanalysis, the main technique used to attack
hash functions. We present a study of Hamsi’s resistance to differential and
higher-order differential cryptanalysis, with focus on the 256-bit version of
Hamsi. Our main results are efficient distinguishers and near-collisions for its
full (3-round) compression function, and distinguishers for its full (6-round)
finalization function, indicating that Hamsi’s building blocks do not behave
ideally.

Keywords: hash functions, differential cryptanalysis, SHA-3

1. Introduction

Hash functions are one of the most ubiquitous primitives in cryptography,
with digital signatures and integrity checks as their main applications. Col-
lision attacks on the deployed standards MD5 and SHA-1 [WLF+05, WY05,
WYY05b, WYY05a] have weakened the confidence in the MD family of hash
functions. Hence, the US Institute of Standards and Technology (NIST)
launched a public competition to develop a future SHA-3 standard [NIS07].

The hash function Hamsi [K0̈9a] is one of 64 designs submitted to NIST in
fall 2008. Hamsi is also one of the 14 submissions selected for the second round
of the competition in July 2009 as one of the few submissions with no major
weaknesses detected thus far. While Hamsi reuses the round components of
the Serpent block cipher [BAK98], its larger block size and different round
structure make existing cryptanalytic results on Serpent hardly useful in its
security analysis.

So far, little research has been published on the resistance of Hamsi to
common cryptanalytic attacks: in a work independent from ours, Çalık and
Turan studied differential properties of Hamsi-256, and presented message-
recovery and pseudo-second-preimage attacks. Near collisions were studied by
Nikolić [Nik09] and Wang et al. [WWJW09], as discussed in Section 4.3.

We study the resistance of Hamsi to differential and higher-order differential
cryptanalysis, with focus on the 256-bit version Hamsi-256. In Section 3, we
show by higher-order analysis that the 3-round compression function of Hamsi-
256 does not achieve maximal degree. This is demonstrated by showing that

PAPER D: Distinguishers for Hamsi-256 143

the output of certain related chaining values (with fixed message word) or
related message words (with fixed chaining value) sums to zero with a high
probability.

In Sections 4 and 5, we focus on differential cryptanalysis and construct
high-probability differential paths for the 3-round compression function as well
as the full 6-round output transformation. The former gives near-collisions
on (256 − 25) bits of the compression function output, with only six differ-
ences in the input chaining value. Section 4 describes a technique for building
low-weight, high-probability differential paths for Hamsi. Finally, Section 5
presents differential paths for six rounds of Hamsi-256 that show that the
output transformation of Hamsi-256 does not behave ideally.

2. Description of Hamsi-256

This section describes the hash function Hamsi-256, henceforth just called
Hamsi. We refer to [K0̈9a] for a complete specification.

2.1 High-level structure

Like most hash functions, Hamsi builds on a finite-domain compression
function, which is used to process arbitrary-length messages through the use
of a domain extender (or operation mode). The compression function of Hamsi
can be divided into four operations:

Message expansion E : {0, 1}32 → {0, 1}256

Concatenation C : {0, 1}256 × {0, 1}256 → {0, 1}512

Non-linear permutations P, Pf : {0, 1}512 → {0, 1}512

Truncation T : {0, 1}512 → {0, 1}256

The message M to hash is appropriately padded and split into ` blocks of
32 bits: M1, . . . ,M`. Each block is iteratively processed by the compression
function, which operates on a 512-bit internal state viewed as a 4×4 matrix
of 32-bit words.

Figure 1 depicts an iteration of the compression function H (or Hf). Start-
ing from the predefined initial value (IV) h0, Hamsi iteratively computes the
digest h of M as follows:

hi = H(hi−1,Mi) = (T ◦ P ◦ C(E(Mi), hi−1))⊕ hi−1 for 0 < i < `

h = Hf (h`−1,M`) = (T ◦ Pf ◦ C(E(M`), h`−1))⊕ h`−1

144 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

concatenation C

message expansion

truncation T

non-linear permutation P /Pf

Mi hi

hi+1

E(Mi)

Figure 1. Domain extension algorithm of Hamsi.

2.2 Internals of the compression function of Hamsi

2.2.1 Message expansion.

The message expansion of Hamsi uses a linear code to expand a 32-bit word
into eight words (that is, 256 bits). We write an expanded Mi as (m0, . . . ,m7).
Thus, themj ’s are defined as the product of a multiplication with the generator
matrix of the code:

E(Mi) = (m0, . . . ,m7) = (Mi ×G) ,

where G can be found in [K0̈9a].

2.2.2 Concatenation.

The concatenation function C forms a 512-bit internal state from the 256-
bit expanded message (m0, . . . ,m7) and the 256-bit incoming chaining value
hi = (c0, . . . , c7) (Figure 2):

C(m0,m1, . . . ,m7, c0, c1, . . . , c7)

= (m0,m1, c0, c1, c2, c3,m2,m3,m4,m5, c4, c5, c6, c7,m6,m7) .

2.2.3 Truncation.

The truncation function T selects eight 32-bit words among the 16 from the
internal state to form the new chaining value after feedforward (Figure 3):

T (s0, s1, s2, . . . , s14, s15) = (s0, s1, s2, s3, s8, s9, s10, s11) .

PAPER D: Distinguishers for Hamsi-256 145

m3

m0 m1 c0 c1

c2 c3 m2

m4 m5 c4 c5

c6 c7 m6 m7

concatenation C
(m0, m1, . . . , m7, c0, c1, . . . , c7)

Figure 2. Concatenation of expanded message words m0, . . . ,m7 and chaining value words
c0, . . . , c7 in Hamsi.

truncation T

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

s0 s1 s2 s3

s8 s9 s10 s11

Figure 3. Truncation selects eight out of 16 words of the internal state.

2.2.4 Permutations.

Finally, we describe the permutations P and Pf . They only differ in the
number of rounds (three for P and six for Pf)1 and in the round constants. The
round function is composed of three layers. First, constants and a counter are
XORed to the whole internal state. Then there is a substitution layer, followed
by a linear layer.

The substitution layer uses one 4-bit Sbox of the block cipher Serpent
[BAK98], in a bitsliced way. That is, four bits, one from each of the four
32-words of the same column in the 4×4 internal state matrix are first ex-
tracted and then replaced after application of the Sbox. We denote sji the
j-th bit of the internal state word si. The substitution layer can be described
as follows, for 0 ≤ j ≤ 31 and 0 ≤ i ≤ 3:

(sji , s
j
i+4, s

j
i+8, s

j
i+12) := S(sji , s

j
i+4, s

j
i+8, s

j
i+12) ,

where S is the 4×4 Sbox given in Table A.1 (Appendix 7).

1While 6 rounds remains the official parameter, the designer has suggested 8 rounds as a conservative
alternative. Our results indicate that moving to 8 rounds may be a necessary precaution.

146 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

The linear diffusion layer applies the Serpent linear transform L :
{0, 1}128 → {0, 1}128 to each of the four diagonals of the state, as follows:

(s0, s5, s10, s15) := L(s0, s5, s10, s15)

(s1, s6, s11, s12) := L(s1, s6, s11, s12)

(s2, s7, s8, s13) := L(s2, s7, s8, s13)

(s3, s4, s9, s14) := L(s3, s4, s9, s14) .

The algorithm below (read from top-left to bottom-right) describes the linear
transform L on input (a, b, c, d), with x≪ k denoting the left bit rotation of
k positions on the word x and x� k denoting the left bit shift of k positions
on the word x.

a := a≪ 13 d := d≪ 7
c := c≪ 3 a := a⊕ b⊕ d
b := a⊕ b⊕ c c := (b� 7)⊕ c⊕ d
d := (a� 3)⊕ c⊕ d a := a≪ 5
b := b≪ 1 c := c≪ 22

3. Higher-order differential analysis

This section reports on properties of Hamsi related to higher-order deriva-
tives. After some definitions, we present upper bounds on the algebraic degree
of Hamsi’s compression function and show how to exploit them to find “k-
sums” and “zero-sums”. This illustrates the fact that, due to its low algebraic
degree, the compression function of Hamsi does not behave ideally.

3.1 Definitions

3.1.1 Higher-order derivatives.

Higher-order differential analysis [Knu94, Lai92] of cryptographic algo-
rithms generalizes the notion of differential cryptanalysis by considering
derivatives of order two or more. It is based on the basic observation that for
a function f with algebraic degree s ≥ 1, the degree of a dth-order derivative
of f is at most (s− d), where s ≥ d. Consequently, an sth-order derivative of
f is a constant and an (s + 1)st-order derivative of f is zero, which directly
gives a 2s+1-sum for f .

In the following we consider derivatives of functions with domain {0, 1}n,
n ≥ 1 and range {0, 1}. Note that a (certain type of) d-th order derivative is
then the XOR of 2d values of the function for the 2d choices of d input bits.

PAPER D: Distinguishers for Hamsi-256 147

3.1.2 k-sums.

The k-sum problem is, given k lists of random n-bit values (for example,
k distinct instances of a compression function f1, . . . , fk) , to find one value
from each list such that the sum of the k values is zero. The case k = 2 is
essentially the collision problem.

The k-sum problem can be solved in polynomial time (using the XHASH
attack [BM97]) when k ≥ n. However, the problem is believed to be hard
for small k. The standard method for the k-sum problem with small k
is Wagner’s “generalized birthday” method, which requires time and space
O(k2n/(1+log k)) [Wag02] (see also [Ber07]).

Henceforth, we consider the problem of finding k values whose images by a
same function f sum to zero. Note that if f has degree s < (n − 1), then a
2s+1-sum can be found by returning the values corresponding to a (s + 1)st
order derivative.

An example of application of k-sums is to forge message authentication
codes (MACs). Let H he a hash function and consider the “prefix-MAC” con-
struction defined as MACK(m) = trunc (H(K‖m)), where trunc is a function
removing some bits of the hash output to combat length extension attacks.
Assume we know messages m1, . . . ,mk such that the probability

Pr
K

[
k⊕
i=1

H(K‖mi) = 0

]
= p

is nonzero. Then by querying MACK with m1, . . . ,mk−1 we can determine
MACK(mk) with probability p and thus break the existential forgery of MAC.

This can be generalized to messages whose MAC tags sum to any fixed
value, to other MAC constructions, etc. For example, one may fix a message
and forge the MAC HK(m) where K is the IV of H by making related-key
queries.

3.1.3 Zero-sums.

We define the zero-sum problem as a particular case of the k-sum problem:
given a function f , find distinct values that sum to zero such that their images
by f also sum to zero.

Both the XHASH attack [BM97] and Wagner’s generalized birthday [Wag02]
can be adapted to find zero-sums. These methods are generic, and are proba-
bilistic algorithms whose failure probability can be made exponentially small.

148 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

3.2 On the degree of the compression function

3.2.1 Simple bounds.

The only nonlinear component of Hamsi’s compression function is the layer
of 4×4 Sboxes. One round thus has degree three (see [SAB09] for explicit
expressions of the Sboxes used), so N rounds have degree at most 3N , with
respect to any choice of variables.

If variables are chosen in c0, . . . , c3 only, or in c4, . . . , c7 only, then they
are all in distinct slices and thus go into distinct Sboxes in the first round.
Hence, the first round is linear and after N rounds, the degree is at most
3N−1. This means that the degree is at most 81 after five rounds, and that
at least six rounds are necessary to reach maximal degree. In particular, the
3-round compression function has degree at most 9 with respect to choices of
128 variables in distinct slices, which distinguishes it from a randomly chosen
function (whose degree would be below 9 with negligible probability).

3.2.2 Case of four variables.

If four variables are chosen in the LSB’s of c0, . . . , c3, after the first applica-
tion of the Sbox, all the LSB’s of a given word depend on the bit varied in the
corresponding column. Since only one bit is varied per column, the degree of
equations corresponding to LSB’s are of degree 1. Then, the linear function
L(a, b, c, d) is applied to each column, and we can determine, for a given bit
of the state, whether it depends on the single variable of its diagonal. Based
on this, we can determine whether a given 4-bit slice depends on 1, 2, 3, or 4
of the variables.

A simple computer-assisted analysis revealed that each slice depends on
only one variable. Therefore, the (3-round) compression function of Hamsi
always has degree 3 with respect to four variables in the first four LSB’s, for
any values of the other bits. Ideally, the function should have degree 4 with
probability 1/2, over the choice of the other input bits.

3.3 Finding k-sums for the compression function

For randomly chosen 256-bit values, finding 4-sums for the compression
function of Hamsi requires an effort of complexity approximately 4 · 2256/3 ≈
287, using the generalized birthday method. Below we show efficient methods
to find 16-, 8-, and 4-sums.

PAPER D: Distinguishers for Hamsi-256 149

3.3.1 16-sums.

Recall the above observation that three rounds have degree at most 3 with
respect to a certain choice of four variables. This observation can directly be
used to find 16-sums, without any computation. Based on empirical observa-
tions, we discovered that we can do better, as presented below.

3.3.2 8-sums.

Choose a random value of one 256-bit chaining value, then select seven
other chaining values, which are different from the first one only in the LSB’s
of the first three 32-bit words. Denote these chaining values by h0, . . . , h7.
Choose a random 32-bit message block M , then compute

∑7
i=0H(hi,M), In

each of 1 000 000 such tests, the above sum was zero in 1458 cases (whereas for
a random mapping, the probability to obtain zero is negligible). This indicates
that there are 3rd-order derivatives with the value zero (or 8-sums) of a high
probability for the compression function of Hamsi. It is very likely that one
can identify other 3rd-order derivatives of higher probabilities (our search was
limited).

3.3.3 4-sums.

We found 2nd-order derivatives with value zero, that is, 4-sums. One ex-
ample is when one chaining value is the IV of Hamsi specified in [K0̈9b], and
where the three others differ only in two LSB’s of the second words; the XOR
of the four outputs is the all-zero string (note that the four inputs also sum
to zero, thus this is also a zero-sum).

Via an exhaustive search over all 232 message words, we identified 70 mes-
sages for which the above four chaining values lead to a 4-sum. We also found
4-sums for the IV given in [K0̈9a], for 86 values of the 32-bit message block.
Although complete analytical justification of these observations remains to be
found, the results of these observations strongly differ from what one obtains
for a random mapping (for which a 2nd-order derivative is zero with negligible
probability).

3.3.4 k-sums for fixed chaining value.

Here we report on the case where the chaining value is fixed and where only
the message block is varied. The outputs of the compression function in this
case has a much higher algebraic degree.

Consider h0, the IV specified in [K0̈9b], and 219 values of the 32-bit message
block obtained by varying the first and second bytes, and the three least
significant bits of the third byte. The remaining bits can be fixed to arbitrary

150 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

values. Denoting these message words by m0, . . . ,m219−1, we have:

219−1⊕
i=0

H(h0,mi) = 0 .

This observation holds for any initial chaining variable. Here we obtain zero
because we perform a 19th-order derivative of a function of degree 18 only.
Indeed, in the first round at most two bit variables enter a same Sbox, hence
the degree of the first round is 2. Since the two subsequent rounds have degree
3 each, the three rounds have degree 2× 3× 3 = 18.

Note that if Pf is replaced by P in Hamsi’s domain extender, then the
above observation can be used to forge MAC’s (cf. Section 3.1), which shows
that the extended 6-round output transformation is necessary, and cannot be
removed without compromising the security of Hamsi.

3.4 Finding zero-sums for the output permutation

We describe a dedicated method to find large zero-sums for the 6-round
permutation of the finalization function of Hamsi(we stress that it only applies
to the internal permutation and not to the finalization as a whole, for it puts
no restriction on the initial state). Contrary to Wagner’s and the XHASH
methods, it is deterministic rather than probabilistic, and needs to evaluate
(and to know) only half the function.

In the spirit of [Wag99, §9], we present an “inside-out” technique that ex-
ploits the fact that two halves of Hamsi’s permutation have low algebraic
degree. This differs from our method for finding k-sums which exploited the
low degree of the full permutation. The attack works as follows:

1 Choose an arbitrary value for the state of Hamsi’s permutation after
three rounds.

2 Choose 28 distinct bits of the state.

3 Compute the 228 initial states obtained by varying these bits and invert-
ing the first three rounds of the permutation.

We obtain 228 values that sum to zero, since their sum is the 28th-order
derivative with respect to three inverse rounds. Their images also sum to
zero, since they are the 28th-order derivative with respect to three forwards
rounds (although the images are unknown, and need not be computed).

The method works whenever a function can be written as the composition of
two low-degree functions. As explained in [BDPA10], the proposed technique
is slightly more efficient than previous methods, for finding (here) zero-sums
of 228 elements.

PAPER D: Distinguishers for Hamsi-256 151

4. First order differential analysis

In this section, we analyze the differential properties of the Hamsi round
transformations and show how to find high-probability differential paths for
up to six rounds. Since we use XOR differences in our analysis, the differential
propagation is deterministic in the message expansion and in the linear layer
based on the L transform. However, the propagation of differences through the
Sbox layer is probabilistic and depends on the actual values of the input. To
maximize the differential probability of a differential path, we try to minimize
the number of active Sboxes during the path search.

4.1 Differential properties of the Sbox

The differential distribution table (DDT) of the 4-bit Hamsi Sbox S is given
in Table A.2 (Appendix 7). Note that about half the differential transitions
are impossible. The probabilities of the non-zero differentials are either 2−2

or 2−3. In our approach, besides minimizing the number of active Sboxes, we
thus try to minimize the number of probability-2−3 differentials.

4.2 Differential properties of the linear transform L

The linear transform L has on average good diffusion properties, that is,
a few differences in the input lead to many differences in the output. Addi-
tionally, each bit of L contributes to one of the 128 Sboxes in each round. To
minimize the number of active Sboxes, we thus need to minimize number of
differences in L. The Hamming weight (HW) of a difference is a good heuristic
to measure the quality of a differential path. In the following, we first analyze
the difference propagation through the linear layer for differences with HW
one.

If we introduce a single input difference at bit position i in one input word,
the HW of the output differences depends on the position and word of the
input difference. In Table 1 and Table 2 give the HW of the output difference
for each of the 128 single bit input differences.

We observe that for some specific words and bit positions, the resulting HW
can be quite small. This happens if one or more differences are removed by the
shift operation. More specifically, the branch number of L is only 3, so certain
1-bit input differences lead to only a 2-bit output difference, and vice versa.
Table 1 and Table 2 show the worst case of diffusion, that is, the output
HW for a multiple-bit input difference can be upper bounded by summing
the corresponding table entries. However, when inserting many differences in
several input words, some bit differences might erase each other, thus lowering
the overall HW.

152 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Table 1. Hamming weight of output differences if a single difference is introduced at one
input word of the 128-bit linear transformation (a′, b′, c′, d′) = L(a, b, c, d) of Hamsi in for-
ward direction. The total and word-wise Hamming weight of the output difference is given
depending on the bit position i and input word of the input difference.

Difference in Position i of Total HW of HW of output diff. in
Conditions (mod 32)

input word input difference output diff. a′ b′ c′ d′

a

16,17 3 2 1 - - i + 13 > 28, i + 14 > 24
18 4 2 1 1 - i + 13 > 28, i + 14 ≤ 24

11. . . 15 6 3 1 1 1 i + 13 ≤ 28, i + 14 > 24
else 7 3 1 2 1 i + 13 ≤ 28, i + 14 ≤ 24

b
24. . . 30 2 1 1 - - i + 1 > 24

else 3 1 1 1 - i + 1 ≤ 24

c
21. . . 27 6 2 1 2 1 i + 4 > 24

else 7 2 1 3 1 i + 4 ≤ 24

d 3 1 - 1 1

Table 2. Hamming weight of input differences if a single difference is introduced at one
output word of the 128-bit linear transformation (a′, b′, c′, d′) = L(a, b, c, d) of Hamsi in
backward direction. The total and word-wise Hamming weight of the input difference is
given depending on the bit position i and output word of the output difference.

Difference in Position i of Total HW of HW of input diff. in
Conditions (mod 32)

output word output difference input diff. a b c d

a′
2. . . 4 2 1 1 - - i + 27 > 28
else 3 1 1 - 1 i + 27 ≤ 28

b′

28. . . 31 3 1 2 - - i > 28, i > 24
25. . . 28 4 1 2 - 1 i ≤ 28, i > 24
never 6 1 3 1 1 i > 28, i ≤ 24
else 7 1 3 1 2 i ≤ 28, i ≤ 24

c′ 3 - 1 1 1

d′
29. . . 31 4 1 - 1 2 i > 28

else 5 1 - 1 3 i ≤ 28

4.3 Near-collisions for the compression function

Using our observations on the differential properties of Hamsi’s Sbox and
linear transform, we first searched manually for high-probability paths leading
to near-collisions for the compression function, given some difference in the
chaining value.

Previous work by Nikolic reported near collisions [Nik09] on (256 − 25)
bits with 14 differences in the chaining value; work by Wang et al. re-
ported [WWJW09] near collisions on (256−23) bits with 16 differences. Below
we present near collisions on (256 − 25) bits with only six differences in the
chaining value, using the differential path in Table 3.

The differential path in Table 3 is followed with probability 2−26 under stan-
dard uniformity and independence assumptions. However, for the IV defined
in [K0̈9b] the path is followed with probability 2−23. This is because of the

PAPER D: Distinguishers for Hamsi-256 153

Table 3. Differential path for three rounds of Hamsi with probability 2−26.

It. Sbox input Sbox output Prob.

1

00000000 00000000 00020000 00000002
00004000 00000000 00000000 00000000
00000000 00000000 00020000 00000002
00004000 00000000 00000000 00000000

00000000 00000000 00000000 00000002
00004000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00020000 00000000

8

2

00000000 00000000 00000000 00080000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00080000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00080000

3

3

80000000 00000000 02000000 00000000
00000000 00000000 00000000 00100000
00020000 00000000 00010000 00000000
00000000 00000000 00000000 04000000

00000000 00000000 00000000 04100000
80020000 00000000 02010000 04100000
00020000 00000000 00000000 00000000
80000000 00000000 02010000 00000000

15

End

00000000 80400800 00000000 10C130C0
00040105 00000000 04020000 08000000
00020400 A040A0A2 00000000 10004000
00000040 08000000 00820801 00000000

condition put by the two fixed bits in each Sbox. These probabilities were
verified experimentally.

Finally, note that the near collisions also result in other 4-sums: for example,
for the IV h0 specified in [K0̈9b], the IV h1 obtained by applying the weight-
6 initial difference in Table 3, and the message M1 = C33BE456 and M2 =
C8D1B855, we have:

1 A near collision between H(h0,M1) and H(h1,M1).

2 A near collision between H(h0,M2) and H(h1,M2).

3 A 4-sum H(h0,M1)⊕H(h1,M1)⊕H(h0,M2)⊕H(h1,M2) = 0.

For random inputs of an “ideal” function, the latter equality is unlikely to
hold with probability 2−23, but rather with probability close to 2−256.

In the following, we automate our search for high-probability differential
paths. Our heuristic algorithm, described in the next section, produced good
differential paths for up to six rounds of Hamsi.

4.4 Automated differential path search

As before, we search for differential paths with some difference in the input
and output chaining value, and no difference in the input message. The result-
ing 6-round paths allow us to distinguish the output transform from random,
as shown in Sect. 5.4.

Our primary heuristic is to minimise the HW of the differences in each
round. To achieve that goal, we start with a very low HW (1 or 2 bit) difference
in the middle of the path (at the start of round 3 for a 6-round search) and let

154 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

the difference spread in both forward and backward directions. Additionally,
we try to maximise the transition probabilities and randomize the search.

More precisely, our automated differential path starts from the input of the
Sbox layer in round 3, forcing a 1-bit or 2-bit input difference on only one Sbox
position i (among the 128 possible bit positions). We then choose one of the
best differential transitions through the forward application of the Sbox and
apply the linear layer on this new internal state. By best Sbox transitions, we
mean the transitions that lead to a low HW after the application of the linear
layer. To keep the search complexity feasible, we apply the L-layer to each
active Sbox separately and use the sum of the HWs as an estimate of the total
output HW at the end of each round. Since the path is sparse, the sum of
HWs proves to be a good heuristic. We continue picking the best differential
transitions for all the active Sbox positions until the end of the fifth round of
the output function of Hamsi. As the final output HW of the difference does
not influence the path complexity, we optimise for transition probabilities in
the last round, and pick the most probable differential Sbox transitions (not
the ones minimizing the HW). Finally, we apply the very last linear layer to
obtain the full path.

The backward computation is done analogously in the middle rounds, ap-
plying the linear layer backward and picking the best backward differential
transitions for all active Sboxes. In the first round (the last round when
computing backward) we impose additional restrictions in order to fulfill con-
straints on the message expansion.

As we force no difference in the message input of the compression function,
we expect the 256-bit expanded message word to contain no difference at all.
Hence, in the first round we only allow Sbox transitions where the difference
in the expanded message bits is zero. Note that the probabilities of the first-
round transitions do not affect the complexity of the path, as long as they
are different from 0. Indeed, in the first round we can use the freedom of
the chaining input to fulfill the conditions on the Sboxes and we expect the
complexity cost of this first round to be negligible.

In order to increase our chances to obtain a good trail, we randomized
the search with several parameters. First, we randomized the first 1-bit or
2-bit perturbation introduction in the output of round 3, as well as its posi-
tion i among the 128 Sbox locations. Furthermore, we are also randomizing
the Sbox transitions when several candidates are equally good. Finally, an-
other improvement has been incorporated in our implementation: after having
found a potentially interesting 6-round candidate, we recompute the forward
search by allowing more differential transitions through the Sbox. Said in

PAPER D: Distinguishers for Hamsi-256 155

other words, after having placed ourselves in an interesting differential paths
subspace, we look in the neighborhood if better ones exist.

Our heuristic search revealed that after three rounds in both backward
and forward directions, the diffusion of Hamsi is not sufficient to avoid high-
probability differential paths and we can find a differential path with a rather
low total HW and good probability. We were able to construct a 6-round
differential path with a relatively high probability, which is used to distinguish
the the whole Hamsi output transformation in the following section.

5. Non-randomness of the ouput transformation

5.1 The differential path

The best 6-round path produced by our randomized search program is de-
picted in Table 4. We can find an input pair (chaining values and messages)
conforming to this path with a probability of 2−206. Note that in the first round
we have a probability of 2−58 for a random message and a random chaining
value. However, we can fix a suitable message (see below), and choose a valid
chaining value bit-by-bit such that the desired output difference is guaranteed.
This means that we can find a conforming input pair to the differential path
with a complexity of about 2148.

5.2 First round and message expansion

In the first iteration, active Sboxes impose conditions on the expanded
message: for a given non-zero Sbox differential, only one or two pairs of values
of the corresponding two expanded message bits are possible. Since we have
only 32 degrees of freedom in the message, we need to keep the number of
active Sboxes in the first round low. To improve the probability of finding a
suitable message candidate, we can vary the differences in the chaining values,
whenever several input differences lead to the same output difference of the
first Sbox layer. These relaxable differential Sbox transitions are listed in
Table 5. In our path, five of the 23 active Sboxes of the first iteration are
relaxable. In total, we have only nine Sboxes with two constraints on the
message bits; 12 Sboxes with one constraint on the message; and two S-Boxes
with a “half” constraint on the message (three of four bit pairs are possible).

Therefore, we expect to find 232−2×9−12 ·
(

3
4

)2 ≈ 2 messages satisfying the
relaxed first round differential. In practice, we found one such message using
the constants of permutation P and three messages using the constants of the
output permutation Pf . Table B.1 in Appendix A.2 lists these message words
together with example chaining values that satisfy the differential path for up
to four rounds. Note that finding conforming message words can be done in

156 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Table 4. Differential path for six rounds of Hamsi with probability 2−148.

It. Sbox input Sbox output Prob.

start

00000000 00000000 84004880 4081C400

2C020018 000045C0 00000000 00000000

00000000 00000000 84024880 4081C400

28020018 000045C0 00000000 00000000

1

00000000 00000000 84004880 4081C400 04000000 00000000 04000000 40818000

(58)
2C020018 000045C0 00000000 00000000 28020018 000040C0 04020000 00000000

00000000 00000000 84024880 4081C400 00000018 00004100 00000800 00804000

28020018 000045C0 00000000 00000000 04020000 000004C0 80024880 00004400

2

00000000 00000000 00000000 00010000 00000000 00000000 00000000 00010000

17
30000010 00000080 00000000 00000080 30000000 00000000 00000000 00000080

30000010 00000080 00000000 00010080 00000010 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000080 00000000 00000000

3

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

3
20000000 00000000 00000000 00000000 20000000 00000000 00000000 00000000

20000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

4

00000000 00000000 00000000 00000008 40000000 00000000 00000000 00000000

5
40000000 00000000 00000000 00000000 40000000 00000000 00000000 00000008

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

5

04038000 00000000 00000200 00000010 80000000 00001000 00000000 00200410

33
80000000 00001000 00000000 00000010 04038002 00001000 00000801 00000000

00000002 00000000 00000a01 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00200400 84038002 00000000 00000a01 00200400

6

08420002 F8022900 00000000 30821140 08830144 A0022100 0C051080 10C01000

90
0903000C 00000000 04001002 00000000 0181014C 58A04845 0C051082 22406340

00000000 A0A26145 00041080 12807200 01800148 58A04845 08011002 22406340

01C0014A 00000000 08051082 10420000 00400002 58000800 00040080 20020140

End

CD9F7546 362513EA 56FE147F 85F6B1E1

8D0682FD F100928A B44C3D06 18A0D101

B8871BEA 70315A82 4819C14B 26257026

A1DD0199 40072022 8329356A A744E830

232 by exhaustive search. The complexity to find chaining values such that
the first four rounds of the path are satisfied is about 225, since we can fulfill
the conditions in the first round deterministically.

5.3 Last round and truncation

In order to improve the probability of the differential path, we consider
truncated differentials in the last application of the Sbox. Namely, we relax

PAPER D: Distinguishers for Hamsi-256 157

Table 5. Relaxable differential transitions for the first round of the Hamsi Sbox. The first
table shows the possible input differences that give the same output if 1, 4 and 5 are the only
possible Sbox input differences. The second table shows the same possibilities if 2, 8, and
10 are the only possible Sbox input differences. For each underlined transition two message
pairs are possible, while for the other transitions only one message pair is possible.

Desired 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

output a b ab c ac bc abc d ad bd abd cd acd bcd abcd

Possible 1 4 1 1 1

input 5 5 4 4 5

Desired 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

output a b ab c ac bc abc d ad bd abd cd acd bcd abcd

Possible 2 2 2 2

input 8 8 8 8

the Sbox transitions by fixing some bits in the output difference, while letting
the remaining bits vary. Since the “a”-bits and “c” bits diffuse faster through
the linear layer (see Table 1), we chose to fix these bits in the output of each
Sbox. Amongst four different truncated output differences (?0?0, ?0?1, ?1?0
and ?1?1), we chose, for each input, the output difference with the highest
probability. Table 6 lists the relaxed input-output transitions for the Sbox.

In Appendix B.1, Table C.1 gives the truncated 6th round differential. Re-
laxing the Sbox transitions increases the probability of the last round to 2−61.8,
giving a total path complexity 2−120.8. At the same time, since the “wild card”
bits are chosen to have low diffusion, the difference is still fixed in 180 bits of
the chaining value. Thus, we obtain a distinguisher by observing the difference
in these output bits.

Table 6. Relaxed differential transitions for the last round of the Hamsi Sbox. The ta-
ble shows the chosen set of output differences for each given input difference. Underlined
transitions have probability 2−2, while the other transitions have probability 2−3.

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b ab c ac bc abc d ad bd abd cd acd bcd abcd

output 12 3 1 10 1 2 4 5 8 2 1 11 1 7 2

14 9 9 3 8 12 7 10 8 9 3 13 10

13 10

15

mask 11?0 ?0?1 ?001 1010 00?1 ?0?0 ?100 ?1?1 10?0 ?0?0 ?001 1011 00?1 ?1?1 ?010

158 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

5.4 Distinguishing the output transformation

To distinguish the output transformation of Hamsi we use the concept of
differential q-multicollision introduced by Biryukov et al. in the cryptanalysis
of AES-256 [KBN09] and applied to the SHA-3 candidate SIMD in [MN09].
Originally, differential q-multicollision have been applied to a block cipher but
can be easily adapted to a random function. A differential q-multicollision for
a random (compression) function f(H,M) is a set of two differences ∆H, ∆M
and q pairs (H1,M1), (H2,M2), . . . , (Hq,Mq) such that:

f(H1,M1)⊕ f(H1 ⊕∆H,M1 ⊕∆M) =

f(H2,M2)⊕ f(H2 ⊕∆H,M2 ⊕∆M) =

. . .

f(Hq,Mq)⊕ f(Hq ⊕∆H,Mq ⊕∆M)

The generic complexity to find differential q-multicollision for a random func-

tion f with output size n is at least q · 2
q−2
q+2
·n

evaluations of f .
In the case of Hamsi-256, the function f is the output transformation, the

message difference ∆M is zero and the output size is n = 256. The generic

complexity to find differential q-multicollision should be q · 2
q−2
q+2
·256

and we
get for q = 8 a generic complexity of 2156.1. Using our differential path of
Section 5.1, we get for q = 8 a complexity of 8 · 2148 = 2151. Hence, for q ≥ 8
we can distinguish the output transfomation of Hamsi from a random function,
since we expect to find a q-multicollision approximately 32 times faster than
for an ideal transform.

Due to the relaxed conditions, we only fix a truncated difference in 180
output bits and hence, we get n = 180. In this case, the generic complexity

for q = 11 is q · 2
q−2
q+2
·180

= 2128.1. Using the relaxed differential path, we get
q ·2120.8 = 2124.3 and hence, can distinguish the output transfomation of Hamsi
from a random function for q ≥ 11.

6. Conclusion

We investigated the resistance of the 256-bit version of the second round
SHA-3 candidate Hamsi against differential and higher-order differential at-
tacks.

Using higher-order analysis, we showed that the 3-round compression func-
tion of Hamsi has suboptimal algebraic degree. Using this observation, we
provided sets of four related IV’s such that the outputs of the compression
function obtained with a given fixed message sum to zero. We also presented
a set of 219 message words such that the output chaining values, using any

PAPER D: Distinguishers for Hamsi-256 159

fixed IV, sum to zero. The latter result indicates that the compression func-
tion of Hamsi, when seen as a function of message words, does not reach the
expected maximal degree 27. As an application, we note that the low de-
gree makes the standalone compression function existentially forgeable in the
message authentication setting.

Further, we constructed high-probability differential paths for the 3-round
compression function to demonstrate a near-collision on (256 − 25) bits with
only six differences in the input chaining value. We have also developed a
technique for building low-weight, high-probability differential paths for more
rounds of Hamsi. Our best differential path for six rounds has probability
2−148, much higher than expected for a random function. Additionally, we gave
a truncated differential on 180 output bits with probability 2−120.8. These are
the first results on six rounds of Hamsi, allowing us to distinguish the full out-
put transformation from a random function using differential q-multicollisions.

Although none of our findings directly leads to an attack on the hash al-
gorithm, they indicate that the buildings blocks of Hamsi exhibit nonrandom
behavior. We expect our work to serve as a starting point for future analysis
of Hamsi.

In order to prevent more serious attacks, we recommend increasing the num-
ber of rounds in the output transformation as a precaution. While the current
specification does not include performance figures for the 8-round alternative,
this change is only expected to noticeably affect the speed of hashing short
messages.

7. Acknowledgements

Emilia Käsper thanks the Computer Laboratory of the University of Cam-
bridge for hosting her.

This work was supported in part by the European Commission through the
ICT Programme under Contract ICT-2007-216646 ECRYPT II. Emilia Käsper
was also supported by the IAP–Belgian State–Belgian Science Policy BCRYPT
and the IBBT (Interdisciplinary institute for BroadBand Technology) of the
Flemish Government.

References

[BAK98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block
cipher proposal. In Serge Vaudenay, editor, FSE, volume 1372 of LNCS,
pages 222–238. Springer, 1998.

[BDPA10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Note on zero-sum
distinguishers of Keccak-f. NIST mailing list, 2010.

160 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[Ber07] Daniel J. Bernstein. Better price-performance ratios for generalized birthday
attacks. In SHARCS, 2007. http://cr.yp.to/papers.html#genbday.

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hash-
ing: Incrementality at reduced cost. In Walter Fumy, editor, EUROCRYPT,
volume 1233 of LNCS, pages 163–192. Springer, 1997.

[K0̈9a] Özgül Kücük. The hash function Hamsi. Submission to NIST (Round 2),
January 2009.

[K0̈9b] Özgül Kücük. Reference implementation of Hamsi (round 2). Submission to
NIST, January 2009.

[KBN09] Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolić. Distinguisher and
related-key attack on the full AES-256. In Shai Halevi, editor, CRYPTO
2009, volume 5677 of LNCS, pages 231–249. Springer, 2009.

[Knu94] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE, volume 1008 of LNCS, pages 196–211. Springer, 1994.

[Lai92] Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Richard
Blahut, Daniel Costello Jr., Ueli Maurer, and Thomas Mittelholzer, editors,
Communications and Cryptography, pages 227–233. Kluwer, 1992.

[MN09] Florian Mendel and Tomislav Nad. A Distinguisher for the Compression
Function of SIMD-512. In Bimal K. Roy and Nicolas Sendrier, editors, IN-
DOCRYPT, volume 5922 of LNCS, pages 219–232. Springer, 2009.

[Nik09] Ivica Nikolić. Near collisions for the compression function of Hamsi-256.
CRYPTO rump session, 2009.

[NIS07] NIST. Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA-3) family. Federal Register No-
tice, 72(112), November 2007. http://csrc.nist.govgroups/ST/hash/

documents/FR_Notice_Nov07.pdf.

[SAB09] Bhupendra Singh, Lexy Alexander, and Sanjay Burman. On algebraic re-
lations of Serpent S-boxes. Cryptology ePrint Archive, Report 2009/038,
2009.

[Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE,
volume 1636 of LNCS, pages 156–170. Springer, 1999.

[Wag02] David Wagner. A generalized birthday problem. In Proceedings of Ad-
vances in Cryptology - CRYPTO 2002, volume 2442 of LNCS, pages 288–303.
Springer, 2002.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu.
Cryptanalysis of the hash functions MD4 and RIPEMD. In Ronald Cramer,
editor, EUROCRYPT’05, volume 3494 of LNCS, pages 1–18. Springer, 2005.

[WWJW09] Meiqin Wang, Xiaoyun Wang, Keting Jia, and Wei Wang. New pseudo-near-
collision attack on reduced-round of Hamsi-256. Cryptology ePrint Archive,
Report 2009/484, 2009.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, EUROCRYPT’05, volume 3494 of LNCS, pages
19–35. Springer, 2005.

PAPER D: Distinguishers for Hamsi-256 161

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the
full SHA-1. In Victor Shoup, editor, Proceedings of CRYPTO 2005, volume
3621 of LNCS, pages 17–36. Springer, 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 1–16. Springer, 2005.

162 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Appendix: The Sbox of Hamsi

Table A.1. The Hamsi Sbox in decimal basis.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S[x] 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

Table A.2. The differential distribution table (DDT) of the Hamsi Sbox in decimal basis.

In \ Out 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 0 2 0 0 2 2 2 0 4 2

2 0 0 0 4 0 4 0 0 0 4 0 0 0 0 0 4

3 0 4 2 0 0 0 2 0 0 2 0 0 2 0 2 2

4 0 0 0 0 0 0 4 0 0 0 4 4 0 4 0 0

5 0 4 0 2 2 2 2 0 2 0 0 0 2 0 0 0

6 0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2

7 0 0 0 0 4 2 0 2 0 0 2 2 2 0 0 2

8 0 0 0 2 0 2 0 4 0 2 0 0 0 4 0 2

9 0 0 0 2 0 0 0 2 4 2 2 2 2 0 0 0

10 0 0 2 0 2 0 4 0 2 0 4 0 0 0 2 0

11 0 4 0 0 2 0 2 0 2 2 0 0 2 0 0 2

12 0 0 2 0 2 0 0 0 2 0 0 4 0 4 2 0

13 0 4 2 2 0 2 2 0 0 0 0 0 2 0 2 0

14 0 0 2 0 2 0 0 4 2 0 0 0 0 4 2 0

15 0 0 4 2 0 0 0 2 0 2 2 2 2 0 0 0

PAPER D: Distinguishers for Hamsi-256 163

Appendix: Conforming Message Pairs

Table B.1. The messages we found satisfying the relaxed first round differential for permu-
tation P and Pf together with the corresponding difference we put on the chaining value
before the application of the first Sbox. These differences vary over the five relaxable Sbox
transition. We also give example chaining values satisfying the differential path up to four
rounds. The chaining value and input difference should be read from top-left to top-right,
then bottom-left to bottom-right.

Permutation Message Difference on chaining value Chaining value

P FD 1A 35 83
84024880 4081C400 28020018 000045C0 0FE53B63 12DED071 D5A7C265 F886F53E
84004080 40818400 2C020018 000045C0 7F00EA2A F0F14CCC 0F6A6528 8E235B01

Pf 53 1C BD E2
84004880 4081C400 28020018 000045C0 B443BB07 149683BE DD71AD95 931F6D84
84024880 4081C400 2C020018 000045C0 4AFBF940 631CCFF0 576A371A 76618746

Pf 68 FF 2B 71
84004880 4081C400 2C020018 000045C0 1C03A81D 7155CABB BBF7EFC8 EE22F7CD
84024080 4001C400 28020018 000045C0 CAFBF940 231D8FF0 34457281 81A20735

Pf A6 ED 03 6C
84004880 4081C400 2C020018 000045C0 BB63500E B6E6863F FB3F6527 512A60DA
84024880 40818400 28020018 000045C0 4EF9B140 631C8BF0 323C56EC 012D9A36

164 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Appendix: Truncated differential path

Table C.1. Truncated differential for the last round of Hamsi with probability 2−61.8. The
state is printed column by column; “?” marks an unknown difference.

It. Sbox input Sbox output Prob.

00001000010000100000000000000010 00001000100000110000000101000100

61.8

6 00001001000000110000000000001100 0000000???00000?0000000?0?00???0

(col 0) 00000000000000000000000000000000 00000000100000000000000101000000

00000001110000000000000101001010 0000?00??10000??0000000?0?00??10

11111000000000100010100100000000 10100000000000100010000100000000

6 00000000000000000000000000000000 ?????000101000?001?0?00?01000101

(col 1) 10100000101000100110000101000101 01011000000000000000100000000000

00000000000000000000000000000000 01011000101000000100100001000101

00000000000000000000000000000000 00001100000001010001000010000000

6 00000100000000000001000000000010 0000??000000010?000?0000100000?0

(col 2) 00000000000001000001000010000000 00001000000000010001000000000000

00001000000001010001000010000010 0000??000000010?000?0000100000?0

00110000100000100001000101000000 00010000110000000001000000000000

6 00000000000000000000000000000000 00??0010??0000?0011?001?0?000000

(col 3) 00010010100000000111001000000000 00100000010000000000000101000000

00010000010000100000000000000000 001000100?0000100110001101000000

11001011?011?1?00?11000101?????0

7

(col 0) 0000100110??0001?0010?111?1?1010

00??01111?1?0?01??010010?11??1??

7

(col 1) ??11101??0??00001??110?01?0?11??

01??0010?1111?100?0?01001111??11

7

(col 2) 01?011000101?001?100?1?10?001101

1???010?0?0101001???10????110000

7

(col 3) ?010010?00??00011??10?1011?0?01?

PAPER E

Analysis of the MQQ Public Key Cryptosystem

Jean-Charles Faugère, Rune Steinsmo Ødeg̊ard, Ludovic Perret and Danilo
Gligoroski

In Proceedings of the 9th International Conference on Cryptology and Network Security

Kuala Lumpur, Malaysia. December 12-14, 2010.

ANALYSIS OF THE MQQ PUBLIC KEY CRYPTOSYSTEM

Jean-Charles Faugère
SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6
104, avenue du Président Kennedy 75016 Paris, France

jean-charles.faugere@inria.fr

Rune Steinsmo Ødeg̊ard
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

rune.odegard@q2s.ntnu.no

Ludovic Perret
SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6
104, avenue du Président Kennedy 75016 Paris, France

ludovic.perret@lip6.fr

Danilo Gligoroski
Department of Telematics at the Norwegian University of Science and Technology in Trond-
heim, Norway

danilog@item.ntnu.no

Abstract MQQ is a multivariate public key cryptosystem (MPKC) based on multivariate
quadratic quasigroups and a special transform called “Dobbertin transforma-
tion” [GMK08b]. The security of MQQ, as well as any MPKC, reduces to the
difficulty of solving a non-linear system of equations easily derived from the
public key. In [MDBW09], it has been observed that that the algebraic systems
obtained are much easier to solve that random non-linear systems of the same
size. In this paper we go one step further in the analysis of MQQ. We explain
why systems arising in MQQ are so easy to solve in practice. To do so, we
consider the so-called the degree of regularity; which is the exponent in the
complexity of a Gröbner basis computation. For MQQ systems, we show that

168 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

this degree is bounded from above by a small constant. This is due to the fact
that the complexity of solving the MQQ system is the minimum complexity
of solving just one quasigroup block or solving the Dobbertin transformation.
Furthermore, we show that the degree of regularity of the Dobbertin transfor-
mation is bounded from above by the same constant as the bound observed
on MQQ system. We then investigate the strength of a tweaked MQQ sys-
tem where the input of the Dobbertin transformation is replaced with random
linear equations. It appears that the degree of regularity of this tweaked sys-
tem varies both with the size of the quasigroups and the number of variables.
We conclude that if a suitable replacement for the Dobbertin transformation
is found, MQQ can possibly be made strong enough to resist pure Gröbner
attacks for adequate choices of quasigroup size and number of variables.

Keywords: multivariate cryptography, Gröbner bases , public-key, multivariate quadratic
quasigroups, algebraic cryptanalysis

1. Introduction

The use of polynomial systems in cryptography dates back to the mid eight-
ies with the design of Matsumoto and Imai [MI88], later followed by numerous
other proposals. Two excellent surveys on the current state of proposals for
multivariate asymmetric cryptosystems have been written by Wolf and Pre-
neel [WP05] as well as Billet and Ding [BD09]. Basically the current pro-
posals can be classified into four main categories, some of which combine fea-
tures from several categories: Matsumoto-Imai like schemes [Pat96, PGC98],
Oil and Vinegar like schemes [Pat97, KHPG99], Stepwise Triangular Schemes
[Sha93, GC00] and Polly Cracker Schemes [dVMPT09]. In addition Gligoroski
et al. have proposed a fifth class of trapdoor functions based on multivariate
quadratic quasigroups [GMK08b].

As pointed out in [BD09], it appears that most multivariate public-key
cryptosystems (MPKC) suffer from obvious to less obvious weaknesses. Some
attacks are specific and focus on one particular variation and breaks it due to
specific properties. One example is the attack of Kipnis and Shamir against the
Oil and Vinegar scheme [KS98]. However, most attacks use general purpose
algorithms that solve multivariate system of equations. Generic algorithms
to solve this problem are exponential in the worst case, and solving random
system of algebraic equations is also known to be difficult (i.e. exponential) in
the average case. However, in the case of multivariate public-key schemes the
designer has to embed some kind of trapdoor function to enable efficient de-
cryption and signing. To achieve this, the public-key equations are constructed
from a highly structured system of equations. Although the structure is hid-
den, it can be exploited for instance via differential or Gröbner basis based
techniques.

PAPER E: Analysis of the MQQ Public Key Cryptosystem 169

Using Gröbner basis [Buc65] is a well established and general method for
solving polynomial systems of equations. The complexity of a Gröbner basis
computation is exponential in the degree of regularity, which is the maximum
degree of polynomials occurring during the computation [BFS04]. The first
published attack on multivariate public-key cryptosystems using Gröbner basis
is the attack by Patarin on the Matsumoto-Imai scheme [Pat95]. In this paper
Patarin explains exactly why one is able to solve the system by using Gröbner
bases. The key aspect is that there exists bilinear equations relating the input
and output of the system [BD09]. This low degree relation between the input
and the output means that only polynomials of a low degree will appear during
the computation of the Gröbner basis. Consequently, the complexity of solving
the system is bounded by this low degree.

Another multivariate cryptosystem which has been broken by Gröbner bases
cryptanalysis is the MQQ public key block cipher [GMK08b]. The cipher was
broken both by Gröbner bases and MutantXL independently in [MDBW09].
Given a ciphertext encrypted using the public key, the authors of [MDBW09]
were able to compute the corresponding plaintext. However, the paper did
not theoretically explain why the algebraic systems of MQQ are easy to solve
in practice. In this paper we explain exactly why the MQQ cryptosystem
is susceptible to algebraic cryptanalysis. This is of course interesting from a
cryptanalysis perspective, but also from a design perspective. If we want to
construct strong multivariate cryptographic schemes we must understand why
the weak schemes have been broken.

1.1 Organisation of the paper

This paper is organized as follows. In Section 2 we give an introduction to
multivariate quadratic quasigroups. After that we describe the MQQ public
key cryptosystem. In Section 3 we give a short introduction to the theory of
Gröbner bases and reiterate the generic complexity of computing such bases.
In Section 4 we show that the degree of regularity of MQQ systems is bounded
from above by a small constant. We then explain this characteristic by looking
at the shape of the inner system. In Section 5 we further elaborate on the
weaknesses of MQQ, and investigate if some tweaks can make the system
stronger. Finally, Section 6 concludes the paper.

2. Description of the MQQ public key cryptosystem

In this section we give a description of the multivariate quadratic quasigroup
public key cryptosystem [GMK08b]. The system is based on previous work

170 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

by Gligoroski and Markovski who introduced the use of quasigroup string
processing in cryptography [Mar03, MGB99].

2.1 Multivariate quadratic quasigroups

We first introduce the key building block of the MQQ PKC, namely multi-
variate quadratic quasigroups. For a detailed introduction to quasigroups in
general, we refer the interested reader to [Smi07].

Definition 1 A quasigroup is a set Q together with a binary operation ∗ such
that for all a, b ∈ Q the equations ` ∗ a = b and a ∗ r = b have unique solutions
` and r in Q respectively. A quasigroup is said to be of order n if there are n
elements in the set Q.

Let (Q, ∗) be a quasigroup of order 2d, and β be a bijection from the quasigroup
to the set of binary strings of length d, i.e

β : Q → GF (2d)

a 7→ (x1, . . . , xd)
(1)

Given such a bijection, we can naturally define a vector valued Boolean func-
tion

∗vv : GF (2d)×GF (2d) → GF (2d)

(β(a), β(b)) 7→ β(a ∗ b)
(2)

Now let β(a∗b) = (x1, . . . , xd)∗vv(xd+1, . . . , x2d) = (z1, . . . , zd). Note that each
zi can be regarded as a 2d-ary Boolean function zi = fi(x1, . . . , x2d), where
each fi : GF (2d) → GF (2) is determined by ∗. This gives us the following
lemma [GMK08b].

Lemma 2 For every quasigroup (Q, ∗) of order 2d and for each bijection β :
Q → GF (2d) there is a unique vector valued Boolean function ∗vv and d
uniquely determined 2d-ary Boolean functions f1, f2, . . . , fd such that for each
a, b, c ∈ Q:

a ∗ b = c

m
(x1, . . . , xd) ∗vv (xd+1, . . . , x2d) = (f1(x1, . . . , x2d), . . . , fd(x1, . . . , x2d)).

(3)

This leads to the following definition for multivariate quadratic quasigroups.

Definition 3 ([GMK08b]) Let (Q, ∗) be a quasigroup of order 2d, and let
f1, . . . , fd be the uniquely determined Boolean functions under some bijection
β. We say that the quasigroup is a multivariate quadratic quasigroup (MQQ)

PAPER E: Analysis of the MQQ Public Key Cryptosystem 171

of type Quadd−kLink (under β) if exactly d−k of the corresponding polynomials
fi are of degree 2 and k of them are of degree 1, where 0 ≤ k ≤ d.

Gligoroski et al. [GMK08b] mention that quadratic terms might cancel each
other. By this we mean that some linear transformation of (fi)1≤i≤n might
result in polynomials where the number of linear polynomials is larger than k,
while the number of quadratic polynomials is less than d − k. Later Chen et
al. [CKG10] have shown that this is more common than previously expected.
In their paper they generalize the definition of MQQ above to a family which
is invariant by linear transformations, namely:

Definition 4 Let (Q, ∗) be a quasigroup of order 2d, and let f1, . . . , fd be the
unique Boolean functions under some bijection β. We say that the quasigroup
is a multivariate quadratic quasigroup (MQQ) of strict type Quadd−kLink (un-
der β), denoted by Quadsd−kLinsk, if there are at most d− k quadratic polyno-
mials in (fi)1≤i≤d whose linear combination do not result in a linear form.

Chen et al. also improved Theorem 2 from [GMK08b] which gives a sufficient
condition for a quasigroup to be MQQ. We restate this result below.

Theorem 5 Let A1 = [fij]d×d and A2 = [gij]d×d be two d × d matrices of
linear Boolean expressions with respect to x1, . . . , xd and xd+1, . . . , x2d respec-
tively. Let c be a binary column vector of d elements. If det(A1) = det(A2) = 1
and

A1 · (xd+1, . . . , x2d)
T + (x1, . . . , xd)

T = A2 · (x1, . . . , xd)
T + (xd+1, . . . , x2s)

T ,
(4)

then the vector valued Boolean operation (x1, . . . , xd) ∗vv (xd+1, . . . , x2d) =

B1A1 · (xd+1, . . . , x2d)
T + B2 · (x1, . . . , xd)

T + c (5)

defines a quasigroup (Q, ∗) of order 2d which is MQQ for any two non-singular
Boolean matrices B1 and B2

In addition Chen et al. [CKG10] proved that no MQQ as in Theorem 5 can
be of strict type QuadsdLins0. This result uncovered a possible weakness in
[GMK08b] as the proposed scheme used 6 quasigroups of type Quad5Lin0.

Notice that the vector valued Boolean function defining the MQQ in The-
orem 5 have no terms of the form xixj with i, j ≤ d or i, j > d. This means
that if we set the first or the last half of the variables to a constant, we end up
with only linear terms in the MQQ. It is still an open question if there exists
MQQ that are not as in Theorem 5.

The MQQs used in this paper have been produced using the algorithm pro-
vided in Appendix 6. The algorithm is based on the paper [CKG10], and
produces MQQs that are more suitable for encryption since they are guaran-
teed to be of strict type Quadsd−kLinsk for 0 < k ≤ d.

172 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

2.2 The Dobbertin bijection

In addition to MQQs, [GMK08b] also uses a bijection introduced by Dob-
bertin in [Dob98]. Dobbertin proved that the following function, in addition
to being multivariate quadratic over GF (2), is a bijection in GF (22r+1):

Dr : GF (22r+1) → GF (22r+1)

x 7→ x2r+1+1 + x3 + x
(6)

2.3 A Public Key Cryptosystem Based on MQQ

We are now ready to describe the public key cryptosystem presented by
Gligoroski et al. in [GMK08b]. Let N = nd be the desired number of vari-
ables (x1, . . . , xN), and let {∗1vv, . . . , ∗kvv} be a collection of MQQs of size 2d

represented as 2d-ary vector valued Boolean functions. The public key is con-
structed as follows.

Algorithm MQQ public key construction.
1. Set X = [x1, . . . , xN]T . Randomly generate an N × N non-singular

Boolean matrix S, and compute X←S ·X.
2. Randomly choose a n-tuple I = {i1, . . . , in}, where ij ∈ {1, . . . , k}. The

tuple I will decide which MQQ, ∗ijvv, to use at each point of the quasigroup
transformation.

3. Represent X as a collection of vectors of length d, X = [X1, . . . , Xn]T .
Compute Y = [Y1, . . . , Yn]T where Y1 = X1, Y2 = X1 ∗i1vv X2, and Yj+1 =

Xj ∗
ij
vv Xj+1 for j = 1, . . . , n− 1.

4. Set Z to be the vector of all the linear terms of Y1, . . . , Yn. Here Y1 will be
all linear terms, while each Yj has between 1 and k linear terms depending
on the type Quadsd−kLinsk of MQQ used. Transform Z with one or more
Dobbertin bijections of appropriate size. For example if Z is of size 27 we
can use one Dobbertin bijection of dimension 27, three of dimension 9, or
any other combination summing up to 27. Finally, set W ←Dob(Z).

5. Replace the linear terms of Y = [Y1, . . . , Yn]T with the terms in W. Ran-
domly generate an N ×N non-singular Boolean matrix T, and compute
Y←T ·Y

6. return the public key Y. The private key is S,T, {∗1vv, . . . , ∗kvv} and I.

3. Gröbner bases

This section introduces the concept of Gröbner bases as well as a complexity
bound to compute such bases. We refer to (for instance) [CLO05] for basic
definitions, and a more detailed description of the concepts.

PAPER E: Analysis of the MQQ Public Key Cryptosystem 173

Let K be a field and K[x1, . . . , xN] be the polynomial ring over K in the
variables x1, . . . , xN . Recall that a monomial in a collection of variables is a
product xα = xα1

1 · · ·x
αN
N where αi ≥ 0. Let > be an admissible monomial

order on K[x1, . . . , xn]. The most common example of such ordering is the
lexicographical order where xα > xβ if in the difference α−β ∈ ZN , the leftmost
nonzero entry is positive. Another frequently encountered order is the graded
reverse lexicographical order where xα > xβ iff

∑
i αi >

∑
i βi or

∑
i αi =

∑
i βi

and in the difference α− β ∈ ZN the rightmost nonzero entry is negative. For
different monomial orderings Gröbner bases hold specific theoretical properties
and show different practical behaviors. Given a monomial order >, the leading
term of a polynomial f =

∑
α cαx

α, denoted LT>(f), is the product cαx
α

where xα is the largest monomial appearing in f in the ordering >.

Definition 6 ([CLO05]) Fix a monomial order > on K[x1, . . . , xN], and let
I ⊂ K[x1, . . . , xN] be an ideal. A Gröbner basis for I (with respect to >) is a
finite collection of polynomials G = {g1, . . . , gt} ⊂ I with the property that for
every nonzero f ∈ I, LT>(f) is divisible by LT>(gi) for some i.

Let

f1(x1, . . . , xN) = · · · = fm(x1, . . . , xN) = 0 (7)

by a system of m polynomials in N unknowns over the field K. The set of
solutions in K, which is the algebraic variety, is defined as

V = {(z1, . . . , zN) ∈ k|fi(z1, . . . , zN) = 0∀1 ≤ i ≤ m} (8)

In our case we are interested in the solutions of the MQQ system, which are
defined over GF (2).

Proposition 7 ([FJ03]) Let G be a Gröbner basis of 〈f1, . . . , fm, x
2
1 −

x1, . . . , x
2
n − xn〉 ⊂ GF (2)[x1, . . . , xn]. Then the following holds:

1 V = ∅ (no solution) iff G = {1}.

2 V has exactly one solution iff G = {x1 − a1, . . . , xn − an} where ai ∈
GF (2). Then (a1, . . . , an) is the solution in GF (2) of the algebraic sys-
tem f1 = · · · = fm = 0.

It is clear that as we are solving systems over GF (2) we have to add the field
equations x2

i = xi for i = 1, . . . , N . This means that we have to compute
Gröbner bases of m + N polynomials and N variables. This is quite helpful,
since the more equations you have, the more able you are to compute Gröbner
bases [FJ03].

174 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

3.1 Complexity of Computing Gröbner Bases

Historically, the concept of Gröbner bases, together with an algorithm for
computing them, was introduced by Bruno Buchberger in his PhD-thesis
[Buc65]. Buchberger’s algorithm is implemented in many computer algebra
systems. However, in the last decade, more efficient algorithms for computing
Gröbner bases have been proposed. Most notable are Jean-Charles Faugère’s
F4[Fau99] and F5 [Fau02] algorithms. In this paper we have used the Magma
[MAG] 2.16-1 implementation of the F4 algorithm on a 4 core Intel Xeon
2.93GHz computer with 128GB of memory.

The complexity of computing a Gröbner basis of an ideal I depends on the
maximum degree of the polynomials appearing during the computation. This
degree, called degree of regularity, is the key parameter for understanding the
complexity of a Gröbner basis computation [BFS04]. Indeed, the complexity of
the computation is exponential in the degree of regularity Dreg, more precisely
the complexity is:

O(NωDreg), (9)

which basically correspond to the complexity of reducing a matrix of size
≈ NDreg . Here 2 < ω ≤ 3 is the “linear algebra constant”, and N the number
of variables of the system. Note that Dreg is also a function of N , where the
relation between Dreg and N depends on the specific system of equations. This
relation is well understood for regular (and semi-regular) systems of equations
[Bar04, BFS04, BFS02, BFSY05]. However, as soon as the system has some
kind of structure, this degree is much more difficult to predict. In some par-
ticular cases, it is actually possible to bound the degree of regularity (see the
works done on HFE [FJ03, GJS06]). But this is a hard task in general.

As already pointed out, the degree of regularity is abnormally small for
algebraic systems occuring in MQQ. This fact explains the weakness observed
in [MDBW09]. In this paper, we go one step further in the security analysis
by explaining why the degree of regularity is so small for MQQ.

Note that the degree of regularity is related to the ideal I = 〈f1, . . . , fm〉 and
not the equations f1, . . . , fm themselves. In particular, for any non-singular
matrix T , the degree of regularity of [f ′1, . . . , f

′
m]t = T · [f1, . . . , fm]t is simi-

lar to the degree of regularity of [f1, . . . , fm]. More generally, we can assume
that this degree is generically (i.e. with high probability) invariant for a ran-
dom (invertible) linear change of variables, and an (invertible) combination of
the polynomials. These are exactly the transformations performed to mask
the MQQ structure. Note that such a hypothesis has already been used for
instance in [GJS06].

PAPER E: Analysis of the MQQ Public Key Cryptosystem 175

Table 1. Results for MQQ-(30,60,120,180). Computed with Magma 2.16-1’s implementation
of the F4 algorithm on a Intel Xeon 2.93GHz quad core computer with 128GB of memory.

Variables Dreg Solving Time (s) Memory (b)

30 3 0,06 15,50

60 3 1,69 156,47

120 3 379,27 4662,00

180 3 4136,31 28630,00

4. Why MQQ is Susceptible to Algebraic
Cryptanalysis

In [MDBW09], MQQ systems with up to 160 variables was broken using
MutantXL (the same result has also been obtained independently with F4).
The most important point made by [MDBW09] is that the degree of regular-
ity is bounded from above by 3. This is much lower than a random system
of quadratic equations where the degree of regularity increases linearly with
the number of variables N . Indeed, for a random system it holds that Dreg

is asymptotically equivalent to N
11.114 [BFS02]. The authors of [MDBW09]

observed that this low degree is due to the occurrence of many new low de-
gree relations during the computation of a Gröbner basis. In Section 4.2, we
will explain in detail how the very structure of the MQQ system results in
the apparance of the low degree relations. First, however, we will show that
same upper bound on the degree of regularity is obtained using the improved
quasigroups described in Section 2.1.

4.1 Experimental Results on MQQ

To test how the complexity of Gröbner bases computation of MQQ sys-
tems is related to the number of variables, we constructed MQQ systems in
30, 60, 120 and 180 variables following the procedure described in Section 2.3.
In this construction we used 17 MQQs of strict type Quads8Lins2 and Dobbertin
bijections over different extension fields of dimension 7 and 9 respectively. We
then tried to compute the plaintext given a ciphertext encrypted with the pub-
lic key. The results of this test are presented in Table 1. From the table we see
that the degree of regularity does not increase with the number of variables,
but remains constant at 3. This means breaking the MQQ system is only
polynomial in the number of variables. Once again, this is not the behaviour
of a random system of equations, for which the degree of regularity increases

176 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Figure 1. Shape of 60 variable MQQ public key system without the use of S and T
transformations. The black color means that the corresponding variables is used in the
equation. The system was constructed using 4 MQQs of type Quads8Lins2, one MQQ of type
Quads7Lins3, and 3 Dobbertin bijections defined over 3 different extension fields of dimension
7.

linearly with the number of variables, and the solving time therefore increases
exponentially. We explain the reason of such difference in the next section.

4.2 Shape of the MQQ system

The non-random behavior described above can be explained by considering
the shape of the “unmasked” MQQ system. By unmasked we mean the MQQ
system without the linear transformations S and T . As already explained in
Section 3.1, the maximum degree of the polynomials occurring in the compu-
tation of a Gröbner basis is invariant under the linear transformation S and
T .

In Figure 1 we show which variables appear in each equation for an un-
masked MQQ system of 60 variables. The staircase shape comes from the cas-
cading use of quasigroups, while the three blocks of equations at the bottom
are from the Dobbertin bijection of size 7. Obviously, a random multivariate
system would use all 60 variables in all equations. For this instance of MQQ,

PAPER E: Analysis of the MQQ Public Key Cryptosystem 177

only 1
3 of the variables are used in each quasigroup and about 2

3 is used in
each block of the Dobbertin transformation.

Now assume that the Gröbner basis algorithm somewhere during the calcu-

lation has found the solution for one of the quasigroup blocks Yj = Xj∗
ij
vvXj+1.

Due to the cascading structure of the MQQ system, the variables of Xj are

used in the block Yj−1 = Xj−1 ∗
ij−1
vv Xj and the variables of Xj+1 are used in

the block Yj+1 = Xj+1 ∗
ij+1
vv Xj+2. In Section 2.1 we showed that if we set the

first or the last half of the variables of an MQQ to constant, all equations be-
come linear. This means that if we have solved the block Yj , the equations of
the blocks Yj−1 and Yj+1 becomes linear. The blocks Yj−1 and Yj+1 can then
be solved easily. This gives a solution for the variables Xj−1 and Xj+2, which
again makes the equations in the blocks Yj−2 and Yj+2 linear. Continuing like
this we have rapidly solved the whole system.

Similarly, assume the Gröbner basis has solved the Dobbertin blocks at some
step. This gives us the solution to all the variables in X1 which makes the first
quasigroup block Y1 = X1 ∗i1vv X2 linear. Solving this gives us the first half
of the equations of the block Y2 and so on. As a conclusion, solving a MQQ
system is reduced to either solving just one block of quasigroup equations,
or solving the Dobbertin transformation. The security of solving an MQQ
system is therefore the minimum complexity between solving the Dobbertin
transformation or one MQQ block.

5. Weaknesses of MQQ

The goal of this part is to determine the weakest part of the system; the
Dobbertin transformation or the quasigroup transformation. We first look
closer at the Dobbertin block of equations. Since these equations constitutes
a square system of equations, we expect them to be easier to solve then the
quasigroup block of equations, which is an undetermined system of equations.

5.1 The Dobbertin transformation

Recall that the Dobbertin transformation is a bijection over GF (22r+1)

defined by the function Dr(x) = x2r+1+1 + x3 + x. For any r, we can view
this function as 2r + 1 Boolean equations in 2r + 1 variables. Using Magma
2.16-1’s implementation of the F4 algorithm1, we experimentally computed
the degree of regularity for solving this system of equations for r = 2, . . . , 22.
We observed that the degree of regularity was 3 for all computed instances.

1The computer used was 4 processor Intel Xeon 2.93GHz computer with 128GB of memory

178 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Therefore the Dobbertin transformation can be easily solved by a Gröbner
basis computation. In addition we learn that tweaking the MQQ system by
increasing the size of the extension field, over which the transformation is
defined, will have no effect on strengthening the system.

Proving mathematically (if true) that the degree of regularity of Dr(x) is
constant at 3 for all r is difficult. We can, however, explain why the degree of
regularity is low for all practical r. Let K = Fq be a field of q elements, and
let L be an extension of degree n over K. Recall that an HFE polynomial f is
a low-degree polynomial over L with the following shape:

f(x) =
∑

0≤i,j≤n
qi+qj≤d

ai,jx
qi+qj +

∑
0≤k≤n
qk≤d

bkx
qk + c, (10)

where ai,j , bk and c all lie in L. The maximum degree d of the polynomial
has to be chosen such that factorization over L is efficient [BFJT09]. Setting
q = 2 and n = 2r+ 1 we notice that the Dobbertin transformation is actually
an HFE polynomial, Dr(x) = x2r+1+20 + x21+20 + x20 . This is very helpful
since a lot of work has been done on the degree of regularity for Gröbner basis
compuation of HFE polynomials [FJ03, BFJT09]. Indeed, it has been proved
that the degree of regularity for HFE polynomial of degree d is bounded from
above by log2(d) [FJ03, FMRS08]. For Dobbertin’s transformation this means
the degree of regularity is bounded from above by r + 1 at least.

However, since the coefficients of the Dobbertin transformation all lie in
GF (2), we can give an even tighter bound on the degree of regularity. Simi-
larly to the weak-key polynomials in [BFJT09], the Dobbertin transformation

commutes with the Frobenius automorphism and its iterates Fi(x) : x 7→ x2i

for 0 ≤ i ≤ n, namely
Dr ◦ Fi(x) = Fi ◦Dr(x). (11)

Thus Dr(x) = 0 implies that Fi ◦Dr(x) = 0. This means for each i we can add
the 2r+ 1 equations over GF (2) corresponding to the equation Dr ◦Fi(x) = 0
over GF (22r+1) to the ideal. However, many of these equations are similar.
Actually, we have that Fi and Fj are similar if and only if gcd(i, 2r + 1) =
gcd(j, 2r + 1) [BFJT09]. Worst case scenario is when 2r + 1 is prime. The
Frobenius automorphism then gives us (only) 2(2r + 1) equations in 2r +
1 variables. From [BFS03] we have the following formula for the degree of
regularity for a random system of multivariate equations over GF (2) when
the number of equations m is a multiple of the number of variables N . For
m = N(k + o(1)) with k > 1/4 the degree of regularity is

Dreg

N
=

1

2
− k +

1

2

√
2k2 − 10k − 1 + 2(k + 2)

√
k(k + 2) + o(1). (12)

PAPER E: Analysis of the MQQ Public Key Cryptosystem 179

Setting k = 2 we get Dreg = −3
2 + 1

2

√
−13 + 16

√
2 · (2r + 1) ≈ 0.051404 ·

(2r + 1) = 0.102808 · r + 0.051404. Note that the degree of regularity cannot
be smaller then 3. This means we have max(3, 0.102808 · r + 0.051404) as
an upper bound for a random multivariate system with the same number of
equations and variables as the Dobbertin transformation. This provides a good
indication that the degree of regularity for Dobbertin (which is not random at
all) should be small, as observed in the experiments, and even smaller than a
regular HFE polynomial.

5.2 The Quasigroup Transformation

To get an idea how strong the quasigroup transformation is, we performed
some experiments where we replaced the input of the Dobbertin transforma-
tion by random linear equations. This means that solving a Dobbertin trans-
formation block will no longer make all the equations in the first quasigroup
transformation linear. The result of our experiment on this special MQQ sys-
tem where the linear equations are perfectly masked is listed in Table 2. Note
that the degree of regularity of 5 is still too small to prevent Gröbner bases
attacks. What is important is how the degree of regularity increases when
we increase different parameters. From the table it appears that both the
quasigroup size and the number of variables have an effect on the degree of
regularity. This tells us that if we replace the Dobbertin transformation with
a stronger function, the MQQ system can possibly be made strong enough
to resist pure Gröbner attacks for adequate choices of quasigroup size and
number of variables.

6. Conclusion

We further explained the results of [MDBW09] by showing that the degree
of regularity for MQQ systems are bounded from above by a small constant.
Therefore even MQQ systems with large number of variables can easily be
broken with Gröbner bases cryptanalysis. The main result of this paper is an
explanation of the underlying reason for this abnormal degree of regularity.
We demonstrated how the complexity of solving MQQ systems with Gröbner
bases is equal to the minimum of the complexity of solving the Dobbertin
transformation and the complexity of solving one MQQ block. Furthermore,
our experimental data showed that the degree of regularity for solving the
Dobbertin transformation is bounded from above by 3, the same as the bound
on the MQQ system. These experimental results were also explained mathe-
matically. A natural interpretation of the results of our investigation is that

180 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Table 2. Effects of quasigroup size and the Dobbertin transformation on the observed degree
of regularity for different MQQ. Dreg is the observed degree of regularity of normal MQQ
systems, while D∗reg is the observed degree of regularity for the same system where the input
to Dobbertin has been replaced with random linear equations.

Variables Quasigroup size Quasigroups type Dobbertin Dreg D∗reg

30
25 4 Quads3Lins2 and 1 Quads2Lins3 7,9 3 3

210 2 Quads8Lins2 7,7 3 4

40

25 5 Quads3Lins2 and 2 Quads2Lins3 7,7,7 3 4

210 3 Quads8Lins2 7,9 3 4

220 1 Quads17Lins3 7,7,9 3 4

50
25 9 Quads3Lins2 7,7,9 3 3

210 4 Quads8Lins2 9,9 3 4

60

25 11 Quads3Lins2 9,9,9 3 3

210 4 Quads8Lins2 and 1 Quads7Lins3 7,7,7 3 5

220 1 Quads18Lins2 and 1 Quads17Lins3 7,9,9 3 5

the Dobbertin transformation employed is a serious weakness in the MQQ
system.

From a design point of view, we also showed that if Dobbertin’s transforma-
tion is replaced with an ideal function – which perfectly hides the linear parts
of the system – the degree of regularity varies with the size of the quasigroups
and the number of variables. We conclude that if a suitable replacement
for Dobbertin’s transformation is found, MQQ can possibly be made strong
enough to resist pure Gröbner attacsk for adequate choices of quasigroup size
and number of variables. This remains an interesting open problem.

References

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. PhD thesis, Université de Paris
VI, 2004.

[BD09] Olivier Billet and Jintai Ding. Overview of cryptanalysis techniques in mul-
tivariate public key cryptography. In Massimiliano Sala, Teo Mora, Ludovic
Perret, Shojiro Sakata, and Carlo Traverso, editors, Gröbner bases, coding
and cryptography, pages 263–283. Springer Verlag, 2009.

[BFJT09] Charles Bouillaguet, Pierre-Alain Fouque, Antoine Joux, and Joana Treger.
A family of weak keys in HFE (and the corresponding practical key-recovery).
Cryptology ePrint Archive, Report 2009/619, 2009.

[BFS02] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity study
of Gröbner basis computation. Technical report, INRIA, 2002. http://www.

PAPER E: Analysis of the MQQ Public Key Cryptosystem 181

inria.fr/rrrt/rr-5049.html.

[BFS03] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity of
Gröbner basis computation for semi-regular overdetermined sequences over
F2 with solutions in F2. Technical report, Institut national de recherche en
informatique et en automatique, 2003.

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complex-
ity of Gröbner basis computation of semi-regular overdetermined algebraic
equations. In Proc. International Conference on Polynomial System Solving
(ICPSS), pages 71–75, 2004.

[BFSY05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang.
Asymptotic behaviour of the degree of regularity of semi-regular polyno-
mial systems. In Proc. of MEGA 2005, Eighth International Symposium on
Effective Methods in Algebraic Geometry, 2005.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Leopold-Franzens University, 1965.

[CKG10] Yanling Chen, Svein Johan Knapskog, and Danilo Gligoroski. Multivariate
quadratic quasigroups (MQQs): Construction, bounds and complexity. In In-
scrypt, 6th International Conference on Information Security and Cryptology.
Science Press of China, October 2010.

[CLO05] David Cox, John Little, and Donal O’Shea. Using Algebraix Geometry.
Springer, 2005.

[Dob98] Hans Dobbertin. One-to-one highly nonlinear power functions on GF(2n).
Appl. Algebra Eng. Commun. Comput., 9(2):139–152, 1998.

[dVMPT09] Francoise Levy dit Vehel, Maria Grazia Marinari, Ludovic Perret, and Carlo
Traverso. A survey on polly cracker system. In Massimiliano Sala, Teo Mora,
Ludovic Perret, Shojiro Sakata, and Carlo Traverso, editors, Gröbner bases,
coding and cryptography, pages 263–283. Springer Verlag, 2009.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139(1-3):61–88, June 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, New York, 2002. ACM.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of Hidden
Field Equation (HFE) cryptosystems using Gröbner bases. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of LNCS, pages
44–60. Springer, 2003.

[FMRS08] Pierre-Alain Fouque, Gilles Macario-Rat, and Jacques Stern. Key Recovery
on Hidden Monomial Multivariate Schemes. In Advances in Cryptology -
EUROCRYPT 2008, volume 4965 of LNCS, pages 19–30. Springer, 2008.

[GC00] Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosys-
tem. In Advances of Cryptology, Asiacrypt 2000, volume 1976 of LNCS, pages
44–57. Springer, 2000.

182 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[GJS06] Louis Granboulan, Antoine Joux, and Jacques Stern. Inverting HFE Is
Quasipolynomial. In Advances in Cryptology - CRYPTO 2006, volume 4117
of LNCS, pages 345–356. Springer, 2006.

[GMK08] Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. Multivariate
quadratic trapdoor functions based on multivariate quadratic quasigroups. In
MATH’08: Proceedings of the American Conference on Applied Mathemat-
ics, pages 44–49, Stevens Point, Wisconsin, USA, 2008. World Scientific and
Engineering Academy and Society (WSEAS).

[KHPG99] Aviad Kipnis, Hamarpe St. Har Hotzvim, Jacques Patarin, and Louis Goubin.
Unbalanced Oil and Vinegar Signature Schemes. In Advances in Cryptology
- EUROCRYPT 1999, volume 5479 of LNCS, pages 206–222. Springer, 1999.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil & Vinegar Signa-
ture Scheme. In CRYPTO ’98: Proceedings of the 18th Annual International
Cryptology Conference on Advances in Cryptology, volume 1462 of LNCS,
pages 257–266, London, UK, 1998. Springer-Verlag.

[MAG] MAGMA. High performance software for algebra, number theory, and ge-
ometry — a large commercial software package. url:http://magma.maths.
usyd.edu.au.

[Mar03] Smile Markovski. Quasigroup string processing and applications in cryptog-
raphy. In Proc. 1-st Inter. Conf. Mathematics and Informatics for industry
MII 2003, 1416 April, Thessaloniki, pages 278–290, 2003.

[MDBW09] Mohamed Saied Mohamed, Jintai Ding, Johannes Buchmann, and Fabian
Werner. Algebraic attack on the MQQ public key cryptosystem. In CANS
’09: Proceedings of the 8th International Conference on Cryptology and Net-
work Security, pages 392–401, Berlin, Heidelberg, 2009. Springer-Verlag.

[MGB99] S. Markovski, D. Gligoroski, and V. Bakeva. Quasigroup string processing.
In Part 1, Contributions, Sec. Math. Tech. Sci., MANU, volume XX, pages
13–28, 1999.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples
for efficient signature-verification and message-encryption. In Advances in
Cryptology – EUROCRYPT 1988, volume 330 of LNCS, pages 419–453.
Springer–Verlag, 1988.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai Public Key
Scheme of Eurocrypt–88. In Don Coppersmith, editor, Advances in Cryp-
tology – CRYPT0’95, volume 963 of LNCS, pages 248–261. Springer Berlin
/ Heidelberg, 1995.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polyno-
mials (IP): Two new families of asymmetric algorithms. In EUROCRYPT’96,
volume 1070 of LNCS, pages 33–48. Springer-Verlag, 1996.

[Pat97] Jacques Patarin. The Oil & Vinegar signature scheme. In Proceedings of
Dagstuhl workshop on cryptography, 1997.

[PGC98] Jacques Patarin, Louis Goubin, and Nicolas Courtois. C∗−+ and HM : Vari-
ations Around Two Schemes of T. Matsumoto and H. Imai. In Kazuo Ohta
and Dingyi Pei, editors, Advances in Cryptology – ASIACRYPT’98, volume
1514 of LNCS, pages 35–50. Springer Berlin / Heidelberg, 1998.

PAPER E: Analysis of the MQQ Public Key Cryptosystem 183

[Sha93] Adi Shamir. Efficient signature schemes based on birational permutations.
In Proceedings of CRYPTO’93, volume 773 of LNCS, pages 1–12. Springer-
Verlag, 1993.

[Smi07] J. D. H. Smith. An introduction to quasigroups and their representations.
Chapman & Hall/CRC, 2007.

[WP05] Christopher Wolf and Bart Preneel. Taxonomy of Public Key Schemes based
on the problem of Multivariate Quadratic equations. IACR Eprint archive,
2005. url:http://eprint.iacr.org/2005/077.

184 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Appendix: Algorithm for generating random MQQ

In this section we present the pseudo-code for how the MQQs used in this paper have
been generated. The code was implemented in Magma.

Algorithm MQQ algorithm
1. n ←{size of quasigroup}
2. L ←{number of linear terms}
3. if L ≤ 2
4. then Q = n
5. else Q = n− L
6. CorrectDeg ←True
7. while CorrectDeg
8. do A1 ←IdentityMatrix(n) (∗ The identity matrix of size n ∗)
9. X1 ←[x1, . . . , xn]T

10. X2 ←[xn+1, . . . , x2n]T

11. for i ←1 to Q
12. do for j ←i+ 1 to n
13. do for k ←i+ 1 to (n)
14. r ∈R {0, 1} (∗ random element from the set {0,1} ∗)
15. A1(i,j) = A1(i,j) + r ∗X1k
16. B ←RandomNonSingularBooleanMatrix(n) (∗ Random non singular Boolean

matrix of size n ∗)
17. C ←RandomBooleanVector(n) (∗ Random Boolean vector of size n ∗)
18. A1 ←B ∗A1
19. X1 ←B ∗X1 + C
20. L1 ←RandomNonSingularBooleanMatrix(n) (∗ Random non singular Boolean

matrix of size n ∗)
21. L2 ←RandomNonSingularBooleanMatrix(n) (∗ Random non singular Boolean

matrix of size n ∗)
22. A1←LinTrans(A1, L1) (∗ Lineary transform the indeterminates of A1 according

to L1 ∗)
23. X1←LinTrans(X1, L1) (∗ Lineary transform the indeterminates of X1 according

to L1 ∗)
24. X2←LinTrans(X2, L2) (∗ Lineary transform the indeterminates of X2 according

to L2 ∗)
25. MQQ ←A1 ∗X2 +X1
26. GBMQQ ←Gröbner(MQQ,2) (∗ The truncated Gröbnerbasis of degree 2 under

graded reverse lexicographical ordering. ∗)
27. Deg ←{number of linear terms in GBMQQ}
28. if Deg= L
29. then CorrectDeg ←False
30. return GBMQQ

PAPER F

MQQ-SIG. An Ultra-fast and provably CMA Resistant
Digital Signature Scheme

Danilo Gligoroski,Rune Steinsmo Ødeg̊ard, Rune Erlend Jensen, Ludovic Per-
ret, Jean-Charles Faugère, Svein Johan Knapskog and Smile Markovski.

In Proceedings of the 3rd International Conference on Trusted Systems, INTRUST 2011.

Beijing, China. November 27-29, 2011.

MQQ-SIG AN ULTRA-FAST AND PROVABLY CMA

RESISTANT DIGITAL SIGNATURE SCHEME

Danilo Gligoroski
Department of Telematics at the Norwegian University of Science and Technology in Trond-
heim, Norway

danilog@item.ntnu.no

Rune Steinsmo Ødeg̊ard
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

rune.odegard@q2s.ntnu.no

Rune Erlend Jensen
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

runeerle@idi.ntnu.no

Ludovic Perret
SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6
104, avenue du Président Kennedy 75016 Paris, France

ludovic.perret@lip6.fr

Jean-Charles Faugère
SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6
104, avenue du Président Kennedy 75016 Paris, France

jean-charles.faugere@inria.fr

188 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Svein Johan Knapskog
Centre for Quantifiable Quality of Service in Communication Systems.
Norwegian University of Science and Technology
Trondheim, Norway

knapskog@q2s.ntnu.no

Smile Markovski
“Ss Cyril and Methodius” University, Faculty of Natural Sciences and Mathematics, Institute
of Informatics, P.O.Box 162, 1000 Skopje, MACEDONIA

smile@ii.edu.mk

Abstract We present MQQ-SIG, a signature scheme based on “Multivariate Quadratic
Quasigroups”. The MQQ-SIG signature scheme has a public key consisting of
n
2

quadratic polynomials in n variables where n = 160, 192, 224 or 256. Under
the assumption that solving systems of n

2
MQQ’s equations in n variables is as

hard as solving systems of random quadratic equations, we prove that in the
random oracle model our signature scheme is CMA (Chosen-Message Attack)
resistant.

From efficiency point of view, the signing and verification processes of MQQ-
SIG are three orders of magnitude faster than RSA or ECDSA. Compared with
other MQ signing schemes, MQQ-SIG has both advantages and disadvantages.
Advantages are that it has more than three times smaller private keys (from
401 to 593 bytes), and the signing process is an order of magnitude faster than
other MQ schemes. That makes it very suitable for implementation in smart
cards and other embedded systems. However, MQQ-SIG has a big public key
(from 125 to 512 Kb) and it is not suitable for systems where the size of the
public key has to be small.

Keywords: Public Key Cryptography, Ultra-Fast Public Key Cryptography, Multivari-
ate Quadratic Polynomials, Quasigroup String Transformations, Multivariate
Quadratic Quasigroup

1. Introduction

Multivariate quadratic schemes (MQ schemes) are an active research area
since their introduction more than 26 years ago in the papers of Matsumoto
and Imai [IM86, MI88]. They have a lot of performance advantages over
classical public key schemes based on integer factorization (RSA) and on the
discrete logarithm problem in the additive group of points defined by elliptic
curves over finite fields (ECC), but they have also one additional advantage:
there are no known quantum algorithms that would break MQ schemes faster
than generic brute force attacks.

PAPER F: MQQ-SIG 189

We can say that MQ schemes can be generally divided in five types of
schemes that conceptually differ in the construction of the nonlinear quadratic
part of the scheme. There is a nice (but a little bit older survey from 2005)
[WP05] that covers the first four classes of multivariate quadratic public key
cryptosystems: MIA [IM86], STS [Sha93, Moh99, GC00], HFE [Pat96] and
UOV [KHPG99].

The fifth scheme MQQ was introduced in [GMK08c, GMK08b] in 2008.
MQQ is based on the theory of quasigroups and quasigroup string transfor-
mations. Since it had interesting performance characteristics, it immediately
attracted the attention of cryptographers trying to attack it. It was first suc-
cessfully cryptanalysed independently by Perret [Per08] using Gröbner basis
approach, and Mohamed et al. using MutantXL [MDBW09]. Later, improved
cryptanalysis by Faugère et al. in [FØPG10] explained exactly why the MQQ
systems are so easy to solve in practice.

In this paper we describe a digital signature variant of MQQ (called MQQ-
SIG). To thwart previous successful attacks, we propose to use the minus
modifier, i.e. to remove some equations of the public key. More specifically, we
remove 1

2 of the public equations of the original MQQ public key algorithm.
We also present numerical (experimental) evidence that gives us arguments
to believe that Gröbner bases approach (and having in mind that MutantXL
approach is equivalent) is ineffective in solving the remaining known equations.

Thus, based on the assumption that solving n
2 quadratic MQQ’s equations

with n variables is as hard as solving systems of random quadratic equations,
we show that in the random oracle model our signature scheme is provably
CMA resistant.

The properties of MQQ-SIG digital signature scheme can be briefly sum-
marized as:

• In the random oracle model it is provably CMA resistant under the
assumption that solving n

2 MQQ’s quadratic equations with n variables
is as hard as solving systems of random equations;

• Its conjectured security level is at least 2
n
2 ;

• The length of the signature is 2n bits where (n = 160, 192, 224 or 256);

• The size of the private key is between 401 and 593 bytes.

• The size of the public key is between 125 and 512 Kb.

• In software, its signing speed is in the range of 300–3,500 times faster
than the most popular public key schemes, and 5 to 20 times faster than

190 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

other multivariate quadratic schemes with equivalent security parame-
ters;

• Its verification speed is comparable to the speed of other multivariate
quadratic PKCs;

• In hardware, its signing or verification speed can be more than 10,000
times faster than the most popular public key schemes;

• In 8-bit MCUs, smart cards and RFIDs, it is hundreds or thousands
times faster than the most popular public key signature schemes;

2. Preliminaries - Quasigroups and Multivariate
Quadratic Quasigroups

Here we give a brief overview of quasigroups and quasigroup string transfor-
mations. A more detailed explanation can be found in [Bel67, DK74, Smi07].

Definition 1 A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

This implies the cancelation laws x∗y = x∗z =⇒ y = z, y ∗x = z ∗x =⇒
y = z. Note also that the equations a ∗ x = b, y ∗ a = b have unique solutions
x, y for each a, b ∈ Q. Given a quasigroup (Q, ∗) five so called “parastrophes”
(or “conjugate operations”) can be adjoint to ∗. Here, we use only two of them
– denoted by \ and /, – defined by

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (2)

Then (Q, \) and (Q, /) are quasigroups too and the algebra (Q, ∗, \, /) satisfies
the identities

x \ (x ∗ y) = y, (x ∗ y)/y = x, x ∗ (x \ y) = y, (x/y) ∗ y = x (3)

Conversely, if an algebra (Q, ∗, \, /) with three binary operations satisfies the
identities (3), then (Q, ∗), (Q, \), (Q, /) are quasigroups and (2) holds.

In what follows we will work with finite quasigroups of order 2d i.e. where
|Q| = 2d. To define a multivariate quadratic PKC for our purpose, we will use
the following result.

Lemma 2 ([GMK08c, GMK08b]) For every quasigroup (Q, ∗) of order 2d

and for each bijection Q → {0, 1 . . . , 2d − 1} there are a uniquely determined

PAPER F: MQQ-SIG 191

vector valued Boolean functions ∗vv and d uniquely determined 2d-ary Boolean
functions f1, f2, . . . , fd such that for each a, b, c ∈ Q

a ∗ b = c⇐⇒
∗vv(x1, . . . , xd, y1, . . . , yd) =

(
f1(x1, . . . , xd, y1, . . . , yd), . . . , fd(x1, . . . , xd, y1, . . . , yd)

)
.

(4)

Recall that each k-ary Boolean function f(x1, . . . , xk) can be represented in
a unique way by its algebraic normal form (ANF), i.e., as a sum of products

ANF(f) = α0+
∑k

i=1 αixi+
∑

1≤i<j≤k αi,jxixj+
∑

1≤i<j<s≤k αi,j,sxixjxs+. . . ,

where the coefficients α0, αi, αi,j , . . . are in the set {0, 1} and the addition and
multiplication are in the field GF (2).

The ANFs of the functions fi defined in Lemma 2 give us information
about the complexity of the quasigroup (Q, ∗) via the degrees of the Boolean
functions fi. In general, for a randomly generated quasigroup of order 2d, d ≥
4, the degrees are higher than 2. Such quasigroups are not quadratic and thus
are not suitable for our construction of multivariate quadratic PKC.

Definition 3 A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polynomials
fi are of degree 2 (i.e., are quadratic) and k of them are of degree 1 (i.e., are
linear), where 0 ≤ k < d.

In [GMK08c, GMK08b] the authors give sufficient conditions a quasigroup to
be a MQQ as well as an algorithm for finding MQQs up to the order of 25.
That work was later extended in [CKG10] for constructing MQQs of order
2d for any d. The common characteristic of the MQQs produced by those
two methods is that the quasigroups are bilinear. Namely, the equations (4)
describing a multivariate quadratic quasigroup (Q, ∗) can be expressed in the
following form:

A1 · (y1, . . . , yd)
T + b1 ≡ A2 · (x1, . . . , xd)

T + b2 (5)

where A1 = [fij]d×d is a d × d matrix and b1 = [ui]d×1 is a d × 1 vector of
linear Boolean expressions of the variables x1, . . . , xd, while A2 = [gij]d×d is a
d × d matrix and b2 = [vi]d×1 is a d × 1 vector of linear Boolean expressions
of the variables y1, . . . , yd.

A Multivariate Quadratic Quasigroup (MQQ) ∗ of order 2d used in MQQ-
SIG can be described shortly by the following expression:

x ∗ y ≡ B ·U(x) ·A2 · y + B ·A1 · x + c (6)

where x = (x1, . . . , xd), y = (y1, . . . , yd), the matrices A1, A2 and B are
nonsingular of size d × d in GF (2), the vector c is a random d-dimensional

192 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

vector with elements in GF (2) and all of them are generated by a uniformly
random process. The matrix U(x) is an upper triangular matrix with all
diagonal elements equal to 1, and the elements above the main diagonal are
linear expressions of the variables of x = (x1, . . . , xd). It is computed by the
following expression:

U(x) = I +

d−1∑
i=1

Ui ·A1 · x, (7)

where the matrices Ui have all elements 0 except the elements in the rows
from {1, . . . , i} that are strictly above the main diagonal. Those elements can
be either 0 or 1 generated by a uniformly random process.

Additionally, we require the quasigroups to satisfy the following two condi-
tions:

∀i ∈ {1, . . . , d}, Rank(Bfi) ≥ 2d− 4, (8a)

∃j ∈ {1, . . . , d}, Rank(Bfj) = 2d− 2 (8b)

where the matrices Bfi are 2d× 2d Boolean matrices defined from the expres-
sions fi as

Bfi = [bj,k], bj,d+k = bd+k,j = 1, iff xjyk is a term in fi. (9)

The reasons why we need the additional conditions (8a) and (8b) will be
explained in the beginning of the Section 5.

Proposition 4 For d = 8, a multivariate quadratic quasigroup that satisfies
the conditions (6), . . . , (9) can be encoded in a unique way with 81 bytes. �

3. Description of the MQQ-SIG Digital Signature
Scheme

Our scheme can be expressed as a (1
2) truncation of a typical multivariate

quadratic system:
S ◦ P ′ ◦ S′ : {0, 1}n → {0, 1}n,

where S′ = S · x + v (i.e. S′ is a bijective affine transformation), S is a
nonsingular linear transformation, and P ′ : {0, 1}n → {0, 1}n is a central
bijective multivariate quadratic mapping defined in Table 1. It is graphically
presented in Fig. 1.

The graphical presentation of the construction of the central mapping P ′

using the quasigroup operation ∗ is shown in Fig. 2, and its inverse P ′−1

constructed with the parastrophe operations \ and / is shown in Fig. 3.

PAPER F: MQQ-SIG 193

x=(x1, x2, …, xn)Input

)(xxxP

’ ’ 1

Private: S’ S’ -1

Hidden part

D
),,,(

),,,(

21

211

n

n

xxxP

xxxP

n

!

Private: S S-1

Private: P’ P’ -1

Public Key

D

E

),,,(

),,,(

211

21

2

2

n

n

xxxP

xxx

n

n

!

Private: S S

Output y

Public Key E

),,,(21 nn
xxxP

!

Figure 1. A graphical presentation of our MQ “minus” scheme.

X
1

X
2

X
3

… X
n/8 - 1

X
n/8

* * * * *

Y
1

Y
2

Y
3

… Y
n/8 - 1

Y
n/8

Figure 2. A graphical presentation of the construction of the central bijective multivariate
quadratic mapping P ′.

…Y
1

Y
2

Y
3

Y
n/8 - 1

Y
n/8

\ / \ / \

X
1

X
2

X
3

X
n/8 - 1

X
n/8…

\ / \ / \

Figure 3. A graphical presentation of the construction of the inverse central mapping P ′−1

with parastrophe operations.

The algorithm for generating the public and private key is defined in Table
2.

Let us denote by D(y) the composition of inverse operations S−1, P ′−1 and

S′−1 on vector y i.e. D(y) ≡ S−1(P ′−1(S′−1(y))). Also, let us denote by E(x)
the mapping of a vector x with the public polynomials Pi(x1, . . . , xn) i = 1 +
n
2 , . . . , n. Both signing and verification for MQQ-SIG are graphically presented
on Fig. 4 while the algorithmic steps for the signing procedure are presented
in details in Table 3, and the verification steps in Table 4.

194 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

The central Bijective multivariate quadratic mapping P ′(x)

Input. A vector x = (f1, . . . , fn) of n linear Boolean functions of
n variables. We implicitly suppose that a multivariate quadratic
quasigroup ∗ is previously defined, and that n = 32 × k, with
k ∈ {5, 6, 7, 8} already fixed.

Output. 8 linear expressions P ′i (x1, . . . , xn), i = 1, . . . , 8 and n−
8 multivariate quadratic polynomials P ′i (x1, . . . , xn), i = 9, . . . , n

1. Represent a vector x = (f1, . . . , fn) of n linear Boolean func-
tions of n variables x1, . . . , xn, as a string x = X1 . . . Xn

8
where

Xi are vectors of dimension 8;

2. Compute y = Y1 . . . Yn
8

where: Y1 = X1, Yj+1 = Xj ∗Xj+1,
for even j = 2, 4, . . ., and Yj+1 = Xj+1 ∗Xj , for odd j = 3, 5, . . .

3. Output: y.

Table 1. Definition of the central bijective multivariate quadratic mapping P ′ : {0, 1}n →
{0, 1}n.

Generating Public and Private key for the MQQ-SIG scheme.

Input. Integer n, where n = 32× k and k ∈ {5, 6, 7, 8}.
Output. A public key P given by n

2
multivariate quadratic

polynomials Pi(x1, . . . , xn), i = 1 + n
2
, . . . , n, and a private key

given by two permutations σ0
0 and σ1

0 on {1, . . . , n}, and 81 bytes
for encoding a quasigroup ∗ .

1. Generate an MQQ ∗ according to equations (6) . . . (9).

2. Generate a nonsingular n× n Boolean matrix S and affine
transformation S′ according to equations (10), . . . , (13).

3. Compute y = S(P ′(S′(x))), where x = (x1, . . . , xn).

4. Output: The public key is y as n
2

multivariate quadratic
polynomials Pi(x1, . . . , xn) i = 1 + n

2
, . . . , n, and the private key

is the tuple (σ0
0 , σ

1
0 , ∗)

Table 2. Generating the public and private key

4. Design Rationale

In this section we will describe the reasons behind the choices we made
when designing MQQ-SIG. In the next subsection we explain why and how
we chose the nonsingular Boolean matrices, and in subsection 4.2 we explain
why and how we chose our quasigroups.

PAPER F: MQQ-SIG 195

M

M
Q
Q
|
S MQQ-SIG Verification

Hash(M)

h= h0 || h1

I
G E(x0) || E(x1)

M

Signature

0 || 1
s
i
g

h0 || h1
y1= r1 || h1y0= r0 || h0

n
i
n

Compare

x1=D(y1)x0=D(y0)
h= h || h

Hash(M)

Signature=(x0, x1)

g
h= h0 || h1

Figure 4. A graphical presentation of the signing and verification process with MQQ-SIG.

Signing with a private key (σ0
0 , σ

1
0 , ∗)

Input. A document M to be signed.

Output. A signature sig = (x0,x1).

1. Compute the pair h = h0||h1 ← Hash(M), where Hash() is
the standardized hash function. Here we assume that the output
of the hash function is n bits, and that h0 and h1 are n

2
bits long.

2. Set y0 = r0||h0 and y1 = r1||h1, where the values r0 and r1
are n

2
-bit values chosen uniformly at random.

3. Compute x0 = D(y0) and x1 = D(y1).

4. The MQQ-SIG digital signature of the document M is the
pair sig = (x0,x1).

Table 3. Digital signing

4.1 Nonsingular Boolean matrices in MQQ-SIG

The nonsingular Boolean matrices that are used in MQQ-SIG are generated
in a specific way. In general, we need n2 bits to store a randomly generated
nonsingular Boolean matrix of size n × n. In our case we need to store S−1

because we need it in the process of signing. With our proposed sizes for n =
160, 192, 224, 256, storing S−1 would require between 3.125 and 8.0 Kbytes.

The idea of reducing the size of the keys in MQ schemes by using circu-
lant matrices has been applied previously in several works [YCCC06, SBA09,
PBB10]. Instead of using one circulant matrix, we use two. The rationale why

196 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Signature verification with a public key

P = {Pi(x1, . . . , xn) | i = 1 + n
2
, . . . , n}

Input. A document M and its signature sig = (x0,x1).

Output. TRUE or FALSE.

1. Compute h = h0||h1 = Hash(M), where M is the signed
message, and Hash() is the standardized hash function.

2. Compute z0 = E(x0) and z1 = E(x1).

3. If z0 = h0 and z1 = h1 then return TRUE, else return FALSE.

Table 4. Digital verification

and how we construct the private linear (affine) transformations from them is
given in what follows.

In order to compress the private information for the linear and affine trans-
formations we define nonsingular matrices S by the following expression:

S−1 =

n
16⊕
i=0

Iσ0
i
⊕

n
16

+3⊕
i=0

Iσ1
i
, (10)

where Iσ0
i
, i = {0, 1, 2, . . . , n16} and Iσ1

i
, i = {0, 1, 2, . . . , n16 +1} are permutation

matrices of size n, the operation ⊕ is a “bitwise exclusive or” of the elements
in the permutation matrices and permutations σ0

i and σ1
i are permutations on

n elements. They are defined by the following expressions:
σ0

0 − random permutation on {1, 2, . . . n},
σ0
i = RotateLeft(σ0

i−1, 8), for i = 1, . . . , n16 ,

σ1
0 − random permutation on {1, 2, . . . n},
σ1
i = RotateLeft(σ1

i−1, 8), for i = 1, . . . , n16 + 1,

(11)

We chose the permutations σ0
0 and σ1

0 such that the expression (10) gives a
non-singular matrix S−1 (and S = (S−1)−1). From S we will obtain the affine
transformation

S′(x) = S · x + v, (12)

where the vector v = (v1, v2, . . . , vn) is an n–dimensional Boolean vector de-
fined from the values of the permutation σ1

0 = (s1, s2, . . . , sn) by the following
expression:

PAPER F: MQQ-SIG 197

vi =


((
s1+b i−1

8
c

)
mod 16

)
× 16

2(8−i) mod 8

+

(s65+b i−1
8
c

2(8−i) mod 8

) mod 2. (13)

In words: we construct the bits of the vector v by constructing two arrays.
The first array is constructed by taking the four least significant bits of the
values s1, . . . , sn

8
and each of them is shifted by four positions to the left. The

second array is just simple extraction of the values s65, . . . , s65+n
8
. Finally we

XOR respectively those two arrays of values in order to produce the vector v
of n bits. Although the expression (13) looks complex, it is chosen specifically
to be very fast in software and hardware.

Proposition 5 The linear transformation S−1 can be encoded in a unique
way with 2n bytes. �

The reasons why we decided to use two permutations σ0
0 and σ1

0 in order to
define the matrix S−1 as in (10) are due to the fact that the inverse matrix
of any circulant matrix is again circulant [Dav94]. Thus, if we would use a
circulant matrix S−1, its inverse S that is used in the production of the public
key would be also circulant. From a cryptographic point of view, we wanted to
avoid the circular property of S since its strong regularity. This strong regu-
larity might affect the randomness of the multivariate quadratic expressions in
the public key. We have made a tradeoff between the totaly non-circulant ma-
trix S generated completely by a uniformly distributed random process which
will cost a lot in terms of space, and the regular circulant matrices, by using
two circulant matrices that are combined as it is described in the expression
(10). The obtained S from S−1 is without the circulant regularity, and still
we can store it in just 2n bytes.

To illustrate our technique for producing non-circulant matrices S−1 and S
we give the following baby example with n = 16 and where rotations to the
left are performed by 2 positions.

Let σ0
0 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 6 2 5 15 8 11 12 1 9 14 3 10 7 4 13

)
and σ1

0 =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 5 14 2 6 7 9 0 10 11 8 4 1 15 13 3

)
.

Since this is a baby example, we have to adopt the expression (10) for this
smaller value of n. The adopted expression is: S−1 =

⊕2
i=0 Iσ0

i
⊕
⊕3

i=0 Iσ1
i

198 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

and we get

S−1 =



1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1
1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1
1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0
1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0
0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1
1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0
0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1
1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 0
0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0


and

S =



1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1
1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0
0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0
1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0
0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0
1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0
1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0
0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1
0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0
0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1
1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1
0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0


Note that S is not a circulant matrix.

4.2 Choosing the order and characteristics of quasigroups

In the original MQQ proposal [GMK08c, GMK08b], the authors used several
different multivariate quasigroups of order 25. That design decision was mainly
done because the authors did not know how to construct MQ quasigroups of
bigger order.

In the meantime, Chen et al., in [CKG10] and Samardjiska et al., in [SMG10]
have found ways how to construct MQQs of arbitrary order 2d. Thus, we have
decided to use quasigroups of order 28. That decision was made in order to
match the byte size of 8 bits. This enables efficient implementations of MQQ-
SIG even on tiny industrial 8-bit MCUs, as well as on high end systems (PCs
or workstations). The left and right parastrophes can be pre-computed each
taking 64KBytes. These pre-computed parastrophes can speedup the signing
phase at least 10 times, but using pre-computed parastrophes of size 2d where
d > 8 simply becomes too costly.

Without going into details of the different characteristics of MQQs produced
by methods described in [CKG10] and [SMG10] we can say that for encoding
MQQs as described in [SMG10] we need 256 bytes, while for MQQs from
[CKG10] we need just 81 bytes (see Proposition 4). This is due to the fact
that MQQs in [CKG10] have bi-linear nature, while MQQs constructed in
[SMG10] are based on T-functions and generally are not bi-linear.

PAPER F: MQQ-SIG 199

We have performed experiments with both types of MQQs and after re-
moving n

2 MQQ’s expressions from the public key, we have not observed any
security consequences of using the bi-linear MQQs from [CKG10]. That fact
combined with the fact that the knowledge of MQQ is a part of the private
key, and that the encoding of MQQs from [CKG10] needs just 81 bytes (ver-
sus 256 bytes for MQQs from [SMG10]), was the decisive argument in favor
of MQQs defined in [CKG10].

In our design we use affine transformation S′ instead of the linear one S, and
we also use a non-zero vector c in the quasigroup construction. The reasons
for this is that without S′ our scheme would have the zeroth vector as a fixed
point and the same is true for a quasigroup that has c = 0. We consider that
these properties are unnecessary and easily avoidable weaknesses.

5. Security analysis of the algorithm

In this section we will describe all the security analysis we have performed
during the design of MQQ-SIG. First we want to emphasize that MQQ-SIG
similarly as the original MQQ is still resistant against the well know attacks
such as: Patarin’s chosen plaintext attack on MIA scheme [Pat00], the attacks
with differential cryptanalysis that were proposed by Fouque, Granboulan and
Stern in [FGS05], solving the isomorphism of polynomials with one secret done
by Perret and others in [Per05, FP06b, BFFP11] and MinRank attacks. For
the resistance against MinRank attacks we want to note that the minimal rank
r of the matrices Bfi for the nonlinear part of our scheme have to fulfil the
conditions (8a, 8b), thus at least one of the ranks is 14 and all of the ranks are
at least 12. Additionally, it is not known how to extend the MinRank attack
to our scheme, since some equations of the public-key have been removed. In
[BFP11], it has been proved that the attack can be extended when 1 equation
is removed in HFE. However, the attack cannot be applied in our context when
n
2 equations are removed.

We suggest the reader to see [GMK08c, GMK08b] for the arguments why
MQQ-SIG is resistant against these attacks.

5.1 Experiments with Gröbner bases

The public key encryption algorithm MQQ introduced in [GMK08c,
GMK08b] was quickly shown to be weak against algebraic cryptanalysis.
It was broken both by Perret [Per08] using Gröbner basis approach, and
by Emam Mohamed et al [MDBW09] using MutantXL. Later Faugère et al
[FØPG10] explained why the MQQ systems are so easy to solve in practice.

200 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

To understand their results we must first introduce to concept of degree of
regularity.

As explained in [FØPG10], the complexity of computing a Gröbner basis
of an ideal depends on the maximum degree of the polynomials appearing
during the computation. This degree, called degree of regularity, is the key
parameter for understanding the complexity of a Gröbner basis computation
[BFS04]. Indeed, the complexity of the computation is exponential in the
degree of regularity Dreg, more precisely the complexity is:

O(nωDreg), (14)

which basically correspond to the complexity of reducing a matrix of size
≈ nDreg . Here 2 < ω ≤ 3 is the “linear algebra constant”, and n the number
of variables of the system. Note that Dreg is also a function of the number of
variables, n, and the number of equations m. The relation between Dreg, n and
m depends on the specific system of equations. This relation is well understood
for regular (and semi-regular) systems of equations [Bar04, BFS02, BFS04,
BFSY05]. However, as soon as the system has some kind of structure, this
degree is much more difficult to predict.

In [FØPG10], the authors showed that the degree of regularity of the original
public key algorithm MQQ was bounded from above by a small constant.
Having in mind the successful and very efficient way how Gröbner bases and
XL methods are solving the full systems of MQQ equations, we want to ensure
that MQQ-SIG does not have a similar small bound on the degree of regularity.
A classical way to avoid this is to remove some equations of the system. Indeed,
an under-defined system of equations (n > m) will have an exponential number
of solutions. This is an issue since the complexity of Gröbner bases is also
related to the number of solutions [FGLM93]. To circumvent this problem,
a solution is to fix n − m variables (or more [BFP09]). However, as soon
as sufficiently many variables were fixed, we observed that the new system
behaved as a “random” system of equations of the same size. This has been
also observed and used in the hybrid approach [BFP09].

To confirm this behavior in our context, we have performed experiments on
MQQ-SIG equations systems of reduced sizes. The observed degree of regular-
ity is compared to the expected degree of regularity for a random multivariate
system of the same size. The strategy for choosing S has changed during the
course of our experiments. The experiments where performed with random
Boolean matrices. However, from a security against Gröbner bases attack
point of view, the most important feature is that we ensure that the 8 linear
expressions are removed from the equations set. Below is our experimental
strategy for small-scale version of MQQ-SIG equation systems in n variables:

PAPER F: MQQ-SIG 201

1 Repeat:

2 Generate a bijective multivariate quadratic mapping P ′i (x1, . . . , xn), i =
1, . . . , n

3 Remove the 8 linear expressions P ′i (x1, . . . , xn), i = 1, . . . , 8

4 Multiply with random nonsingular Boolean matrices SR and TR, P =
SR ◦ P ′ ◦TR.

5 For j = 8 to j = n
2 do:

(a) Remove the last j − 8 equations from P.

(b) Set a random Boolean vector (xn−j+1, . . . , xn) ∈ {0, 1}j

(c) Obtain a system P1 = {Pi(x1, . . . , xn−j) | i = 1, . . . , n− j} of n− j
equations with n− j variables (x1, . . . , xn−j)

(d) Call F4(P1) algorithm from Magma, to find a Gröbner basis for the
system P1, and measure the degree of regularity.

6 Compute the average degree of regularity.

We have performed 100 experiments for 16, 24,32 and 40 variables. Due
to the complexity, the experiments have only been repeated 10 times for 48
variables and just once for 56 and 64 variables. For 56 and 64 variables many
of the instances either required more than the 1TB RAM our system has,
or did not finish after about 1 month of computation. These instances are
marked with a · in the table. We also experienced that 72 variables with 36
equations removed did not finish after about a month of computation. The
experiments were done with Magma 2.17-3’s implementation [MAG] of the F4

[Fau99] algorithm on a workstation with 32 cores based on Intel Xeon 2.27GHz,
with 1TB of RAM. The results of these experiments are listed in Table 5. In
the table the expected degree of regularity for a random system of equations
over GF (2) in V − R variables are also listed in parentheses. These numbers
have been calculated using the formula provided in [BFS02]. From the table
we see that the bigger percentage of equations we remove from the system, the
closer the measured degree of regularity is to a random system of equations.
The reason for this is that we are removing crucial relations among terms,
thus rendering the remaining sets of equations as random sets of multivariate
equations. It is then natural to formulate the following conjecture:

Conjecture 6 For every full set of public key equations produced by MQQ
as defined in steps 1–3 in Table 2, removing n

2 of the equations, makes the
remaining set of n2 multivariate quadratic equations to act as a set of n2 random
multivariate quadratic equations with n

2 variables in GF (2).

202 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

R/V 16 24 32 40 48 56 64

8 3, 00(3) 3,33 (5) 3,75 (6) 4,15 (6) 4,30 (7) 5 (8) 6 (9)

9 3,09 (4) 3,97 (5) 4,05 (6) 4,10 (7) 4 (8) 4 (9)

10 3,74 (4) 4,00 (5) 4,04 (6) 4,30 (7) 4 (8) 5 (9)

11 3,87 (4) 4,01 (5) 4,56 (6) 4,90 (7) 5 (8) 5 (9)

12 3, 93(4) 4,06 (5) 5,00 (6) 5,00 (7) 5 (8) 5 (9)

13 4,33 (5) 5,00 (6) 5,00 (7) 5 (8) · (9)

14 4,48 (5) 5,00 (6) 5,50 (7) 6 (8) · (9)

15 4,46 (5) 5,00 (6) 5,60 (7) 6 (8) · (8)

16 4, 21(5) 5,00 (6) 5,60 (6) 6 (7) · (8)

17 5,00 (5) 5,90 (6) · (7) · (8)

18 5,00 (5) 5,90 (6) · (7) · (8)

19 5,00 (5) 6,00 (6) · (7) · (8)

20 5, 00(5) 6,00 (6) · (7) · (8)

21 6,00 (6) · (7) · (8)

22 6,00 (6) · (7) · (8)

23 6,00 (6) · (7) · (8)

24 6, 00(6) 6 (6) · (7)

25 6 (6) · (7)

26 6 (6) · (7)

27 6 (6) · (7)

28 6(6) · (7)

29 · (7)

30 · (7)

31 · (7)

32 6(6)

Table 5. The average degree of regularity for a MQQ signature system in V variables with
R equations removed. In parentheses, the expected degree of regularity for a random system
of size V −R.

5.2 The size of the pool of MQQs of order 28

It is very important to address the question of the size of the set of MQQs of
order 28 that we use in our MQQ-SIG scheme. In [CKG10], Chen et al., gave
a lower bound on the number of MQQs of order 28. That number is projected
to 2273. However, we are using additional conditions (8). By a heuristical
measuring we have obtained that approximately one in 27 randomly generated
MQQs of order 28 complies with the conditions (8). That means that the lower
bound of the size of the pool of MQQs of order 28 is 2266.

5.3 Secret Key Leakage Scenarios

Originally this attack was presented to us by an anonymous reviewer of
an earlier variant of our scheme submitted to WCC 2011. We would like to
express big acknowledgement to that anonymous reviewer.

In a previous version of our scheme instead of y = r0||h0, the value y =
h obtained as the output of the hashing procedure is n bits long, and the

PAPER F: MQQ-SIG 203

signature part is x = D(y). The following Chosen Message Attack could then
be launched. An attacker asks for signatures of 1 + n +

(
n
2

)
+ O(1) messages

i.e. he will have the triplets (Mi,xi,yi ≡ Hash(Mi)). He will then attempt to
recover the missing n

2 equations in the public key. Given the missing equations
he can successfully launch an efficient Gröbner bases attack.

Consider the extraction of the first missing equation y1 = P1(x1, . . . , xn),
which can be expressed in a general form as:

y1 = d0 + d1x1 + d2x2 + . . .+ dnxn + dn+1x1x2 + . . .+ d2n+1x2x3 + . . .+ d1+n+(n2)
xn−1xn.

(15)
Since the attacker knows the values of 1 + n+

(
n
2

)
+O(1) triplets (Mi,xi,yi),

from the equation (15), with high probability, he can obtain a full rank linear
system of equations with 1 + n+

(
n
2

)
unknown variables dj . Additionally and

most importantly he knows the corresponding values y
(i)
1 for every of the values

yi = (y
(i)
1 , . . . , y

(i)
n). Thus, by solving the obtained linear system of equations

he can recover the values of the coefficients dj i.e. he can recover the first
missing equation. The extraction of other hidden equations is similar.

This attack is easily mitigated by our strategy to construct the values y0 =
r0||h0 and y1 = r1||h1 where r0 and r1 are strings of n

2 randomly generated
bits with every signing invocation, and h = h0||h1 is the hash output that is
digesting the message M .

We formulate the previous discussion about the leakage of the private key
in the non-randomized MQQ-SIG and its prevention by the following two
lemmas:

Lemma 7 For any MQQ signature scheme with K expressions removed, if
the signatures for the messages M are obtained as x = D(y), where y =
Hash(M), the extraction of the removed part has complexity of O(Kn2). �

Lemma 8 For the MQQ-SIG signature scheme as defined in steps 1–3 in Table
2, by removing n

2 of the expressions, an attack for extraction of the removed

part as in Lemma 7 has complexity of O(2n
3
).

Proof Since the signature for a message M has two parts x0 and x1 that
are computed as x0 = D(r0||h0) and x1 = D(r1||h1) where h = h0||h1 =
Hash(M), and the values r0 and r1 are n

2 -bit values chosen uniformly at ran-
dom for every particular procedure of signing, the extraction technique from
Lemma 7 can give the correct extraction of the hidden part if and only if for all
O(n2) queries, the random values r0 and r1 are known to the attacker. Having
in mind that for every produced signature the values r0 and r1 are unknown,
fresh, uniformly distributed random values, the probability of guessing their

204 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

values is 2−
n
2 × 2−

n
2 = 2−n. For all O(n2) queries this gives us a total proba-

bility of (2−n)n
2

= 2−n
3
, i.e. the complexity for extracting the hidden part is

O(2n
3
). �

5.4 MQQ-SIG is Provably CMA Resistant

We will use the following definition of security against chosen message attack
[Kat10]:

Definition 9 Signature scheme (Gen, Sign, Vrfy) is existentially unforge-
able under a chosen-message attack if for all probabilistic, polynomial-
time adversaries A, the success probability of A in the following experiment is
negligible (as a function of k):

1 The key-generation algorithm Gen(1k) is run to obtain a pair of keys
(pk, sk)

2 A is given pk and allowed to interact with a signing oracle Signsk(·),
requesting signatures on as many messages as it likes. Let M denote the
set of messages queried to the signing oracle by A.

3 Eventually, A outputs (m,σ)

4 A succeeds if Vrfypk(m,σ) = 1 and m /∈M

It is well known that solving multivariate quadratic polynomials is an NP-
complete problem (see for instance [GJ79]). This theorem is repeated below.

Theorem 10 ([GJ79]) Let Pi(x1, . . . , xn), 1 ≤ i ≤ m be a collection of
polynomials over GF [2]. The problem of finding u1, . . . , un such that
Pi(u1, . . . , un) = 0 for 1 ≤ i ≤ m remains NP-complete even if none of
the polynomials has a term involving more than two variables or if there is
just one polynomial.

Theorem 11 MQQ-SIG is CMA resistant in the random oracle model under
the assumptions that solving n

2 MQQ equations with n variables is as hard as
solving systems of n

2 random multivariate quadratic equations.

In what follows we give a sketch of the proof and the ideas how to use the
fact that the verification of the MQQ-SIG signatures depends on the values
h0 and h1 that are each n

2 bits long. This fact implies that a chosen message

attack on MQQ-SIG would need either at least 2
n
2 pairs of messages in order to

find a collision of the used hash function or to solve the system of n
2 random

multivariate quadratic equations with n variables. A formal proof showing

PAPER F: MQQ-SIG 205

the strict reduction from the CMA-resistance of the scheme to the assumption
that solving n

2 MQQ equations with n variables is as hard as solving systems
of n

2 random multivariate quadratic equations with n variables will be given
in the extended version of this paper.

Proof (sketch) The security parameter input to the generating algorithm is
k = n

2 , which controls the number of equations over GF (2) and is directly
connected with the value n: the output size of the hash function.

Given the assumption that solving n
2 MQQ equations with n variables is as

hard as solving systems of n
2 random multivariate quadratic equations, there

are no structural weaknesses of the MQQ equations that can be exploited to
solve the system faster then solving n

2 random multivariate quadratic equa-
tions. This means the adversary has basically three strategies of breaking
MQQ-SIG:

1 To find a collision in the hash digest (h0||h1) of length n = 2k.

2 To solve two systems of n
2 MQ equations with n Boolean variables.

3 Some combination of the two above.

Strategy 1: Breaking with the strategy 1 means finding a collision for a
random oracle with a n = 2k bit output. Interacting with the signing oracle
will not help the adversary for this instance, since he is only interested in the
output of the random oracle. By the generic birthday attack the adversary
needsO(2k) queries to the random oracle to find a collision for the whole digest.
The probability for a polynomial time adversary to break the signature scheme
by finding a collision in the digest is therefore negligible in k.

Strategy 2:Under the assumption that solving the n
2 MQQ equations in

n variables is as hard as solving k MQ equations in k variables, we know by
Theorem 10 that the probability the adversary solves either of the equations
with the strategy 2 is negligible in k. However, to prove that the signature
scheme is CMA, we must also show that querying the signing oracle gives the
adversary no significant advantage in solving the equations. There are two
ways the signing oracle might leak information.

1 Signing leaks information about the hidden equations:

In Lemma 8 we proved that extracting information about the removed
part has complexity O(2n

3
). With our security parameter of k = n

2 this
is out of reach for a polynomially bound adversary.

2 Signing leaks some other information that can help solve the equation
system:

206 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Consider the following game where the adversary does not have access
to the random oracle. The adversary asks for a signature for a chosen
message M . The signing oracle then flips a coin.

(a) If the coin land on heads the signing oracle outputs the digest
H(M) = (h0||h1), and the corresponding signature (x0,x1).

(b) If the coin lands on tails the signing oracle outputs the evaluation
of the encryption function in some random numbers (E(r0), E(r1)),
and the corresponding random numbers (r0, r1).

The adversary is then asked if the coin is heads or tails.

Since by the definition of random oracles the output of H(M) is in-
dependent of M , it should be clear that the adversary has no way of
winning the game above. This illustrates that from the adversary point
of view, there is no difference between querying the signing oracle and
evaluating the known equations on random inputs. The fact that the
adversary actually has access to the random oracle does not change this
conclusion because the adversary has no control over the output of the
random oracle.

To summarize this means that signing reveals no information about the hidden
equations, and leaks no other information that can be used to solve the equa-
tions. The signature scheme is therefore CMA with respect to the strategy
number 2.

Strategy 3: First note that finding a k − l, 1 ≤ l ≤ k, bit collision in, for
instance h0, will not help computing the corresponding x0. The reason for this
is the nature of the random MQ equations, where the solution to the system
will drastically change by just flipping one output bit. Namely, each output

bit depends on average on k(k−1)
2 combination of all pairs of variables. This

means that the best for the adversary in strategy attack number 3 is to find a
collision in either h0 or h1, and to solve the equation system for the part that

a solution is not known. This requires “just” O(2
k
2
−1) calls to the random

oracle. However, the adversary still needs to solve a system of k equations in
2k variables, proven to be CMA resistant by the arguments under the attack
strategy number 2. �

5.5 Non-applicability of successful attacks against STS on
MQQ-SIG

An anonymous reviewer for IMACC 2011 (to whom we express big acknowl-
edgement) has pointed out an interesting comment that MQQ-SIG scheme
looks similar as STS schemes and thus the successful attacks that have broken

PAPER F: MQQ-SIG 207

STS schemes may also break MQQ-SIG. Here we explain the crucial and essen-
tial differences between STS and MQQ-SIG schemes and the non-applicability
of successful attacks against STS on MQQ-SIG.

The Stepwise Triangular Scheme was introduced by Wolf et al., [WBP04]
as a generalization of earlier multivariate quadratic schemes, such as [Sha93,
Moh99, GC00, KS04]. The main purpose of the generalization in [WBP04]
was to show how all these schemes, and the whole STS family in general, is
either insecure or impractical. The general attacks presented exploit the chain
of kernels introduced by the triangular structure of the hidden polynomials.

There are at least two important reasons why this attack is not applicable on
MQQ-SIG. First, even tough the kernel of two adjacent sub-blocks share half of
each others variables, the triangular structure of the hidden polynomials does
not result in a chain of kernels. The production of the public key in MQQ-SIG
is essentially parallel and chained for the whole n-dimentional space, while the
production of the public key in STS is essentially sequential with increasingly
larger embedded subspaces. It is this structure that the attacks on STS exploit.

The second reason is that the attacks linearly combine the public key ex-
pressions in order to get ranks within certain values. Non-applicability of
these attacks against MQQ-SIG is due to the fact that half of the public key
expressions are removed, and linearly combining the remaining half in order
to obtain low ranks does not necessarily produce vectors from the kernel of
the transformation T−1.

6. Operating characteristics

In this section we discuss the sizes of the private and public key as well as
the number of operations for verification and signing.

6.1 The size of the public and the private key

Since the public key consists of n2 randomly generated multivariate quadratic
equations, the size of the public key follows the rules given in [WP05]. So,

for n bit blocks the size of the public key is 0.5 × n × (1 + n(n+1)
2) bits. The

private key of our scheme is the tuple (σ0
0, σ

1
0, ∗). The corresponding memory

size needed for storage of the private key is 2n+ 81 bytes.
In Table 6, there are two columns for the size of the private and pub-

lic key and as we can see for MQQ-SIG the size of the public key for n ∈
{160, 192, 224, 256} is in the range from 125 up to 521 KBytes.

We want to emphasize that recently Samardjiska and Chen in [SCG11]
have proposed extension of their algorithms for construction of MQQs over

208 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

Security
level
(power of
2)

Algorithm KeyGen Sign 59
bytes
(CPU
cycles)

Verify (CPU
cycles)

Private key
size (bytes)

Public key
size (bytes)

Signature
size (bytes)

RSA1024 102,869,553 2,213,112 60,084 1024 128 128
80 ECDSA160 1,201,188 944,364 1,083,060 60 40 40

MQQSIG160 799,501,482 6,534 92,232 401 137,408 40
RainbowBinary
256181212

30,311,648 38,784 43,800 23,408 30,240 42

RSA1536 322,324,721 5,452,076 87,516 1536 192 192
96 ECDSA192 1,799,284 1,390,560 1,662,664 72 48 48

MQQSIG192 800,724,096 7,938 138,972 465 222,360 48

RSA2048 786,466,598 11,020,696 125,776 2048 256 256
112 ECDSA224 2,022,896 1,555,740 1,821,348 84 56 56

MQQSIG224 1,107,486,126 9,492 184,392 529 352,828 56

RSA3072 2,719,353,538 31,941,760 230,536 3072 384 384
128 ECDSA256 2,296,976 1,780,524 2,085,588 96 64 64

MQQSIG256 1,501,955,022 9,138 218,700 593 526,368 64
TTS6440 60,827,704 84,892 76,224 16,608 57,600 43
3ICP 15,520,100 1,641,032 60,856 12,768 35,712 36

Table 6. Comparison between RSA, ECDSA, and several MQ schemes: MQQ-SIG, Rain-
bow, TTS and 3ICP. Operations have been performed in 64-bit mode of operation on Intel
Core i7 920X machine running at 2 GHz.

arbitrary finite fields and that by their construction it is possible to reduce
the huge public key size of MQQ-SIG to be in the range 2.3 – 8.8 Kbytes.

6.2 Performance of the software implementation of the
MQQ-SIG algorithm

We have implemented MQQ-SIG in C for the SUPERCOP benchmarking
system [Be11a] and tested it together with the corresponding RSA [RSA78]
and ECC [Mil86, Kob87] (actually ECDSA) and several other multivariate
quadratic systems such as: Rainbow [DYC+08], enhanced TTS [YC05] and
3ICP [DWY07]. In Table 6 we give the comparison of the mentioned signatures
schemes where the measurements were performed in 64-bit mode of operation
on Intel Core i7 920X machine running at 2 GHz. Although, our C code is not
yet optimized for the key generation part, we expect that the performance of
key generation part to be the most time consuming part of our algorithm.

From the Table 6 it is clear that in signing of 59 bytes MQQ-SIG is faster
than RSA in the range from 300 up to 3500 times, and is faster than ECDSA
in the range from 140 up to 200 times. If we exclude the time for hashing
the messages, signing operations in MQQ-SIG in Table 6 take from 2,500 up
to 5,000 cycles. MQQ-SIG is also significantly faster than other multivariate
methods such as Rainbow, TTS or 3ICP and that performance advantage in
the signing procedure is in the range from 5 to 20 times.

The verification speed in our code is not optimized so far. We expect the
optimized verification speed of MQQ-SIG to be in the range of Rainbow, TTS
and 3ICP.

PAPER F: MQQ-SIG 209

7. Conclusions

We have constructed a multivariate quadratic digital signature scheme
MQQ-SIG based on multivariate quadratic quasigroups.

By learning about the weaknesses of the previous attempt to design a mul-
tivariate quadratic scheme based on quasigroups - MQQ, by analyzing the
successful attacks on all existing MQ schemas, and by our experimentally
supported assumption that solving n

2 quadratic polynomials with n variables
is as hard as solving random systems of equations, we have designed a digital
signature scheme that in the random oracle model is provably CMA resistant
and that we believe is strong enough to attract the attention of the crypto-
graphic community.

The efficiency of producing digital signatures of our scheme outperforms
all the existing signature schemes (RSA, ECDSA and other MQ schemes) in
the range from 5 up to 3,500 times. The speed of verification of our scheme
is similar to the other MQ schemes. However the MQQ-SIG scheme that
was described in this paper has an unpractically big public key. The ongoing
research efforts are in this direction and soon we can expect MQQ-SIG variants
with significantly smaller public keys.

We believe that its superior performance will allow an employment of strong
and fast authentication protocols based on the paradigm of the public key
cryptography in many new areas of our modern society.

References

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. PhD thesis, Université de Paris
VI, 2004.

[Be11] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT benchmarking of
cryptographic systems, 2011. Accessed 12 January,2011.

[Bel67] V. D. Belousov. Osnovi teorii kvazigrup i lup (in russian), 1967. Nauka,
Moscow.

[BFFP11] C. Bouillaguet, J.-C. Faugère, P.A. Fouque, and L. Perret. Practical crypt-
analysis of the identification scheme based on the isomorphism of polynomial
with one secret problem. In Public Key Cryptography – PKC 2011, volume
6571 of LNCS, pages 441–458. Springer, 2011.

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach
for solving multivariate systems over finite fields. Journal of Mathematical
Cryptology, volume 3(issue 3):177–197, 2009.

[BFP11] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of
multivariate and odd-characteristic HFE variants. In Public Key Cryptography
– PKC 2011, volume 6571 of LNCS, pages 441–458. Springer, 2011.

210 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[BFS02] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity study
of Gröbner basis computation. Technical report, INRIA, 2002. http://www.

inria.fr/rrrt/rr-5049.html.

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complex-
ity of Gröbner basis computation of semi-regular overdetermined algebraic
equations. In Proc. International Conference on Polynomial System Solving
(ICPSS), pages 71–75, 2004.

[BFSY05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang.
Asymptotic behaviour of the degree of regularity of semi-regular polynomial
systems. In Proc. of MEGA 2005, Eighth International Symposium on Effec-
tive Methods in Algebraic Geometry, 2005.

[CKG10] Yanling Chen, Svein Johan Knapskog, and Danilo Gligoroski. Multivariate
quadratic quasigroups (MQQs): Construction, bounds and complexity. In In-
scrypt, 6th International Conference on Information Security and Cryptology.
Science Press of China, October 2010.

[Dav94] Philip J. Davis. Circulant Matrices. AMS Chelsea Publishing, 1994.

[DK74] J. Denes and A. D. Keedwell. Latin squares and their applications. Academic
Press, New York :, 1974.

[DWY07] Jintai Ding, Christopher Wolf, and Bo-Yin Yang. l-Invertible Cycles for Mul-
tivariate Quadratic (MQ) Public Key Cryptography. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, Public Key Cryptography, volume 4450 of LNCS,
pages 266–281. Springer, 2007.

[DYC+08] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and
Chen-Mou Cheng. New Differential-Algebraic Attacks and Reparametrization
of Rainbow. In Proceedings of Applied Cryptography and Network Security,
6th International Conference, ACNS 2008, volume 5037 of LNCS, pages 242–
257, 2008.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139(1-3):61–88, June 1999.

[FGLM93] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput.,
16:329–344, October 1993.

[FGS05] Pierre-Alain Fouque, Louis Granboulan, and Jacques Stern. Differential crypt-
analysis for multivariate schemes. In Eurocrypt 2005, volume 3494 of LNCS,
pages 341–353. Springer, 2005.

[FØPG10] Jean-Charles Faugère, Rune Steinsmo Ødeg̊ard, Ludovic Perret, and Danilo
Gligoroski. Analysis of the MQQ public key cryptosystem. In Swee-Huay
Heng, Rebecca N. Wright, and Bok-Min Goi, editors, CANS, volume 6467 of
LNCS, pages 169–183. Springer, 2010.

[FP06] Jean-Charles Faugère and Ludovic Perret. Polynomial Equivalence Problems:
Algorithmic and Theoretical Aspects. In Advances in Cryptology - EURO-
CRYPT 2006, volume 4004 of LNCS, pages 30–47. Springer, 2006.

[GC00] Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosys-
tem. In Advances of Cryptology, Asiacrypt 2000, volume 1976 of LNCS, pages
44–57. Springer, 2000.

PAPER F: MQQ-SIG 211

[GJ79] Michael R. Garey and Davis S. Johnson. Computers and Intractability. A
guide to the theory of NP-Completeness. Bell Telephone Laberatories, Incor-
porated, 1979.

[GMK08a] Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. Multivariate
quadratic trapdoor functions based on multivariate quadratic quasigroups. In
MATH’08: Proceedings of the American Conference on Applied Mathematics,
pages 44–49, Stevens Point, Wisconsin, USA, 2008. World Scientific and En-
gineering Academy and Society (WSEAS).

[GMK08b] Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. Public key
block cipher based on multivariate quadratic quasigroups. In Cryptology
ePrint Archive, Report 2008/320, 2008.

[IM86] Hideki Imai and Tsutomu Matsumoto. Algebraic methods for constructing
asymmetric cryptosystems. In Proceedings of the 3rd International Conference
on Algebraic Algorithms and Error-Correcting Codes, AAECC-3, pages 108–
119, London, UK, 1986. Springer-Verlag.

[Kat10] Jonathan Katz. Digital Signatures. Springer, 2010.

[KHPG99] Aviad Kipnis, Hamarpe St. Har Hotzvim, Jacques Patarin, and Louis Goubin.
Unbalanced Oil and Vinegar Signature Schemes. In Advances in Cryptology
- EUROCRYPT 1999, volume 5479 of LNCS, pages 206–222. Springer, 1999.

[Kob87] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[KS04] Masao Kasahara and Ryuichi Sakai. A construction of public key cryptosys-
tem for realizing ciphertext of size 100 bit and digital signature scheme. IEICE
Transactions, 87-A(1):102–109, 2004.

[MAG] MAGMA. High performance software for algebra, number theory, and geom-
etry — a large commercial software package. url:http://magma.maths.usyd.
edu.au.

[MDBW09] Mohamed Saied Mohamed, Jintai Ding, Johannes Buchmann, and Fabian
Werner. Algebraic attack on the MQQ public key cryptosystem. In CANS ’09:
Proceedings of the 8th International Conference on Cryptology and Network
Security, pages 392–401, Berlin, Heidelberg, 2009. Springer-Verlag.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature-verification and message-encryption. In Advances in Cryp-
tology – EUROCRYPT 1988, volume 330 of LNCS, pages 419–453. Springer–
Verlag, 1988.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO ’85, volume 218 of LNCS, pages 417–426. Springer-
Verlag, 1986.

[Moh99] T. Moh. A public key system with signature and master key functions. Com-
munications in Algebra, 1999.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polyno-
mials (IP): Two new families of asymmetric algorithms. In EUROCRYPT’96,
volume 1070 of LNCS, pages 33–48. Springer-Verlag, 1996.

[Pat00] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme
of Eurocrypt 98. Des. Codes Cryptography, 20:175–209, June 2000.

212 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[PBB10] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. CyclicRain-
bow - A multivariate Signature Scheme with a Partially Cyclic Public Key
based on Rainbow. Cryptology ePrint Archive, Report 2010/424, 2010.

[Per05] Ludovic Perret. A fast cryptanalysis of the isomorphism of polynomials with
one secret problem. In EUROCRYPT 2005, volume 3494 of LNCS, pages
354–370. Springer, 2005.

[Per08] Ludovic Perret. Personal e-mail communication with Danilo Gligoroski, 2008.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Commun. ACM, 21:120–126, February
1978.

[SBA09] Rajesh P Singh, B.K.Sarma, and A.Saikia. Public key cryptography using
permutation p-polynomials over finite fields. Cryptology ePrint Archive, Re-
port 2009/208, 2009. http://eprint.iacr.org/.

[SCG11] Simona Samardjiska, Yanling Chen, and Danilo Gligoroski. Construction of
Multivariate Quadratic Quasigroups (MQQs) in Arbitrary Galois Fields. In
Proceeding of IAS 2011, Malacca, Malaysia, Dec. 5-8, 2011, 2011.

[Sha93] Adi Shamir. Efficient signature schemes based on birational permutations.
In Proceedings of CRYPTO’93, volume 773 of LNCS, pages 1–12. Springer-
Verlag, 1993.

[SMG10] S. Samardjiska, S. Markovski, and D. Gligoroski. Multivariate quasigroups
defined by t-functions. In Proceedings of SCC2010 - The 2nd International
Conference on Symbolic Computation and Cryptography, 2010.

[Smi07] J. D. H. Smith. An introduction to quasigroups and their representations.
Chapman & Hall/CRC, 2007.

[WBP04] Christopher Wolf, An Braeken, and Bart Preneel. Efficient Cryptanalysis of
RSE(2)PKC and RSSE(2)PKC. In Conference on Security in Communication
Networks – SCN 2004, volume 3352 of LNCS, pages 294–309. Springer, 2004.
Extended version:http://eprint.iacr.org/2004/237.

[WP05] Christopher Wolf and Bart Preneel. Taxonomy of Public Key Schemes based
on the problem of Multivariate Quadratic equations. IACR Eprint archive,
2005. url:http://eprint.iacr.org/2005/077.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. Building Secure Tame-like Multivari-
ate Public-Key Cryptosystems: The New TTS. In Information Security and
Privacy, 10th Australasian Conference, ACISP 2005, volume 3574 of LNCS,
pages 518–531. Springer, 2005.

[YCCC06] Bo-Yin Yang, Chen-Mou Cheng, Bor-Rong Chen, and Jiun-Ming Chen. Im-
plementing minimized multivariate PKC on low-resource embedded systems.
In Security in Pervasive Computing, SPC 2006, volume 3934 of LNCS, pages
73–88. Springer, 2006.

Bibliography

[AA09] Frederik Armknecht and Gwenolé Ars. Algebraic Attacks on Stream Ciphers
with Gröbner Bases. In Gröbner Bases, Coding, and Cryptography, pages
329–348. Springer Berlin Heidelberg, 2009.

[AACW08] Martin Albrecht, Daniel Augot, Anne Canteaut, and Ralf-Philipp Wein-
mann. Algebraic cryptanalysis of symmetric primitives. Technical report,
ECRYPT, 2008.

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A flexible block
cipher with maximum assurance. In The First Advanced Encryption Standard
Candidate Conference, 1998.

[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube
Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium.
In Orr Dunkelman, editor, Fast Software Encryption (FSE), volume 5665 of
LNCS, pages 1–22. Springer, Berlin, Heidelberg, 2009.

[AF03] G. Ars and J.C Faugère. An Algebraic Cryptanalysis of Nonlinear Filter
Generators using Gröbner Bases. INRIA Research Report, n 4739, 2003.

[AF05] G. Ars and J.C Faugère. Algebraic immunities of functions over finite fields.
In Boolean Function : Cryptography and Applications - BFCA 05, pages 21–
38, 2005.

[AFG+08] Daniel Augot, Matthieu Finiasz, Philippe Gaborit, Stéphane Manuel, and
Nicolas Sendrier. SHA-3 proposal: FSB. Submission to NIST, 2008.

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and
Makoto Sugita. Comparison between XL and Gröbner Basis Algorithms. In
ASIACRYPT 2004, volume 3329 of LNCS, pages 338–353. Springer-Verlag,
2004.

[AHMP08] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W.
Phan. SHA-3 proposal BLAKE. Submission to NIST (Round 1/2), 2008.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for re-
duced Keccak-f and for the core functions of Luffa and Hamsi. NIST mailing
list, 2009.

214 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[AMZ08] Rafael Alvarez, Gary McGuire, and Antonio Zamora. The Tangle Hash
Function. Submission to NIST, 2008.

[AS09] Kazumaro Aoki and Yu Sasaki. Meet-in-the-Middle Preimage Attacks
Against Reduced SHA-0 and SHA-1. In Advances in Cryptology - CRYPTO
2009, volume 5677 of LNCS, pages 70–89. Springer-Verlag, 2009.

[Ass00] American Bankers Association. Keyed Hash Message Authentication Code.
ANSI X9.71, Washington, D.C., 2000.

[Aur09] Valerie Aurora. Lifetimes of cryptographic hash functions, 2009. http:

//valerieaurora.org/hash.html.

[BAK98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block
cipher proposal. In Serge Vaudenay, editor, FSE, volume 1372 of LNCS,
pages 222–238. Springer, 1998.

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. PhD thesis, Université de Paris
VI, 2004.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer Berlin /
Heidelberg, 2004.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM J. Comput.,
26:1510–1523, October 1997.

[BBG+08] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas
Peyrin, Matt Robshaw, and Yannick Seurin. SHA-3 Proposal: ECHO. Sub-
mission to NIST, 2008.

[BCC10] Christina Boura, Anne Canteaut, and Christophe De Canniere. Higher-order
differential properties of Keccak and Luffa. Cryptology ePrint Archive, Re-
port 2010/589, 2010.

[BCCM+08] Emmanuel Bresson, Anne Canteaut, Benôıt Chevallier-Mames, Christophe
Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-François Misarsky,
Mar̀ıa Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-René Reinhard,
Céline Thuillet, and Marion Videau. Shabal, a Submission to NIST’s Cryp-
tographic Hash Algorithm Competition. Submission to NIST, 2008.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Advances in Cryptology - CRYPTO ’96, volume
1109 of LNCS, pages 1–15. Springer-Verlag, 1996.

[BD06] Eli Biham and Orr Dunkelman. A framework for iterative hash functions:
Haifa. In In Proceedings of Second NIST Cryptographic Hash Workshop,
2006.

BIBLIOGRAPHY 215

[BD08] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function. Submission
to NIST (Round 1), 2008.

[BD09] Olivier Billet and Jintai Ding. Overview of cryptanalysis techniques in mul-
tivariate public key cryptography. In Massimiliano Sala, Teo Mora, Ludovic
Perret, Shojiro Sakata, and Carlo Traverso, editors, Gröbner bases, coding
and cryptography, pages 263–283. Springer Verlag, 2009.

[BDPA07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
Ecrypt Hash Workshop, 2007.

[BDPA08] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge
function family main document. Submission to NIST (Round 1), 2008.

[BDPA10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Note on zero-sum
distinguishers of Keccak-f. NIST mailing list, 2010.

[Be11a] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT benchmarking of
cryptographic systems, 2011. Accessed 12 January,2011.

[Be11b] Daniel J. Bernstein and Tanja Lange (editors). eBASH:ECRYPT Bench-
marking of All Submitted Hashes. measurements of hash functions, 2011.
Accessed May 2011.

[Bel67] V. D. Belousov. Osnovi teorii kvazigrup i lup (in russian), 1967. Nauka,
Moscow.

[Ber92] T. A. Berson. Differential Cryptanalysis Mod 232 with Applications to MD5.
In Advances in Cryptology - EUROCRYPT ’92, volume 658 of LNCS, pages
71–80, 1992.

[Ber07] Daniel J. Bernstein. Better price-performance ratios for generalized birthday
attacks. In SHARCS, 2007. http://cr.yp.to/papers.html#genbday.

[Ber08a] D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In M. Robshaw and
O. Billet, editors, New Stream Cipher Designs, volume 4986 of LNCS, pages
84–97. Springer-Verlag, 2008.

[Ber08b] Daniel J. Bernstein. Cubehash specification (2.b.1). Submission to NIST
(Round 1), 2008.

[BERW08] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf.
Time-Area Optimized Public-Key Engines: MQ -Cryptosystems as Replace-
ment for Elliptic Curves? In Cryptographic Hardware and Embedded Systems
(CHES), volume 5154, pages 145–61. LNCS, 2008.

[BFFP11] C. Bouillaguet, J.-C. Faugère, P.A. Fouque, and L. Perret. Practical crypt-
analysis of the identification scheme based on the isomorphism of polynomial
with one secret problem. In Public Key Cryptography – PKC 2011, volume
6571 of LNCS, pages 441–458. Springer, 2011.

216 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[BFJT09] Charles Bouillaguet, Pierre-Alain Fouque, Antoine Joux, and Joana Treger.
A family of weak keys in HFE (and the corresponding practical key-recovery).
Cryptology ePrint Archive, Report 2009/619, 2009.

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach
for solving multivariate systems over finite fields. Journal of Mathematical
Cryptology, volume 3(issue 3):177–197, 2009.

[BFP11] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of
multivariate and odd-characteristic HFE variants. In Public Key Cryptogra-
phy – PKC 2011, volume 6571 of LNCS, pages 441–458. Springer, 2011.

[BFS02] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity study
of Gröbner basis computation. Technical report, INRIA, 2002. http://www.
inria.fr/rrrt/rr-5049.html.

[BFS03] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity of
Gröbner basis computation for semi-regular overdetermined sequences over
F2 with solutions in F2. Technical report, Institut national de recherche en
informatique et en automatique, 2003.

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complex-
ity of Gröbner basis computation of semi-regular overdetermined algebraic
equations. In Proc. International Conference on Polynomial System Solving
(ICPSS), pages 71–75, 2004.

[BFSY05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang.
Asymptotic behaviour of the degree of regularity of semi-regular polyno-
mial systems. In Proc. of MEGA 2005, Eighth International Symposium on
Effective Methods in Algebraic Geometry, 2005.

[BG81] Charles H. Bennett and John Gill. Relative to a random oracle a, pa 6=
npa 6= co− npa with probability 1. Siam Journal on Computing, 10:96–113,
1981.

[BJN94] P.B. Bhattacharya, S.K. Jain, and S.R. Nagpaul. Basic abstract algebra.
Cambridge University Press, 1994.

[BJV04] Thomas Baignres, Pascal Junod, and Serge Vaudenay. How far can we go
beyond linear cryptanalysis? In Pil Lee, editor, Advances in Cryptology -
ASIACRYPT 2004, volume 3329 of LNCS, pages 113–128. Springer Berlin /
Heidelberg, 2004.

[BK04] Mihir Bellare and Tadayoshi Kohno. Hash function balance and its impact
on birthday attacks. In Advances in Cryptology - EUROCRYPT 04, volume
3027 of LNCS, pages 401–418. Springer-Verlag, 2004.

[BLSS04] Dan Boneh, Ben Lynn, Hovav Shacham, and Hovav Shacham. Short signa-
tures from the weil pairing. Journal of Cryptology, pages 297–319, 2004.

BIBLIOGRAPHY 217

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hash-
ing: Incrementality at reduced cost. In Walter Fumy, editor, EUROCRYPT,
volume 1233 of LNCS, pages 163–192. Springer, 1997.

[BP95] A. Bosselaers and B. Preneel. Integrity Primitives for secure information
systems: Final report of RACE integrity primitives evaluation. RIPE-RACE,
1995.

[BPW06a] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A Zero-
Dimensional Gröbner Basis for AES-128. In Fast Software Encryption, 13th
International Workshop, FSE 2006, volume 4047 of LNCS, pages 78–88,
2006.

[BPW06b] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. Block
Ciphers Sensitive to Gröbner Basis Attacks. In David Pointcheval, editor,
CT-RSA, volume 3860 of LNCS, pages 313–331. Springer, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, CCS ’93, pages 62–73, New York,
NY, USA, 1993. ACM.

[Bra08] Colin Bradbury. Blender: A proposed new family of cryptographic hash
algorithms. Submission to NIST, 2008.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of
the block-cipher-based hash function constructions from PGV. In Proceedings
of CRYPTO 2002, volume 2442 of LNCS, pages 320–335, 2002.

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. In Proceedings of the 10th Annual International Cryptology Con-
ference on Advances in Cryptology, CRYPTO ’90, pages 2–21, London, UK,
UK, 1991. Springer-Verlag.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Leopold-Franzens University, 1965.

[Buc79] B. Buchberger. A criterion for Detecting Unnecessary Reductions in the Con-
struction of Gröbner Bases. In Proceedings of the EUROSAM 79 Symposium
on Symbolic and Algebraic Manipulation, Marseille, June 26-28, volume 72,
pages 3–21, London, UK, 1979. Johannes Kepler University Linz, Springer,
Berlin - Heidelberg - New York.

[Buc85] B. Buchberger. Gröbner-Bases: An Algorithmic Method in Polynomial Ideal
Theory. Reidel Publishing Company, Dodrecht - Boston - Lancaster, 1985.

[BWP05] An Braeken, Christopher Wolf, and Bart Preneel. A Study of the Security of
Unbalanced Oil and Vinegar Signature Schemes. In Alfred Menezes, editor,
Topics in Cryptology CT-RSA 2005, volume 3376 of LNCS, pages 29–43.
Springer Berlin / Heidelberg, 2005.

218 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[CB10] Anne Canteau Christina Boura. Zero-Sum Distinguishers for Iterated Per-
mutations and Application to Keccak-f and Hamsi-256. In Selected Areas in
Cryptography - SAC’10, volume 6544 of LNCS. Springer, 2010.

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng,
Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang.
SSE Implementation of Multivariate PKCs on Modern x86 CPUs. In Cryp-
tographic Hardware and Embedded Systems, CHES 2009, volume 5747 of
LNCS, pages 33–48. Springer, 2009.

[CD96] Ronald Cramer and Ivan Damg̊ard. New Generation of Secure and Practi-
cal RSA-Based Signatures. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology - CRYPTO ’96, volume
1109 of LNCS, pages 173–185. Springer-Verlag, 1996.

[CD03] Nicolas T. Courtois and Magnus Daum. On the security of HFE, HFEv- and
Quartz. In Proceedings of PKC 2003, volume 2567 of LNCS, pages 337–350.
SpringerVerlag, 2003.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damg̊ard Revisited: How to Construct a Hash Function.
In Advances in Cryptology: CRYPTO’05, volume 3621 of LNCS, pages 430–
448. Springer Berlin / Heidelberg, 2005.

[CDN95] G. Carter, E. Dawson, and L. Nielsen. A latin square variation of DES. In
Proc. Workshop of Selected Areas in Cryptography, Ottawa, Canada, 1995.

[CDS94] J. Cooper, D. Donovan, and J. Seberry. Secret sharing schemes arising from
latin squares. Bulletin of the Institute of Combinatorics and its Applications,
12(4):33–43, 1994.

[Che09] Lily Chen. Recommendation for Key Derivation Using Pseudorandom Func-
tion. National Institute of Standards and Technology, 2009.

[CHK+08] Donghoon Chang, Seokhie Hong, Changheon Kang, Jinkeon Kang, Jongsung
Kim, Changhoon Lee, Jesang Lee, Jongtae Lee, Sangjin Lee, Yuseop Lee,
Jongin Lim, and Jaechul Sung. Arirang. Submission to NIST, 2008.

[CKG10] Yanling Chen, Svein Johan Knapskog, and Danilo Gligoroski. Multivariate
quadratic quasigroups (MQQs): Construction, bounds and complexity. In
Inscrypt, 6th International Conference on Information Security and Cryptol-
ogy. Science Press of China, October 2010.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Ef-
ficient algorithms for solving overdefined systems of multivariate polynomial
equations. In Theory and Application of Cryptographic Techniques, pages
392–407, 2000.

[CLO05] David Cox, John Little, and Donal O’Shea. Using Algebraix Geometry.
Springer, 2005.

BIBLIOGRAPHY 219

[CLS06] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an Efficient and
Provable Collision-Resistant Hash Function. In EUROCRYPT’06, volume
4004 of LNCS, pages 165–182. Springer, 2006.

[CMR05] C. Cid, S. Murphy, and M. J. B. Robshaw. Small Scale Variants of the
AES. In Proceedings of FSE 2005, volume 3557 of LNCS, pages 145–162.
Springer-Verlag, 2005.

[CMR07] Christophe De Cannière, Florian Mendel, and Christian Rechberger. Colli-
sions for 70-Step SHA-1: On the Full Cost of Collision Search. In Carlisle M.
Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas in Cryptog-
raphy, volume 4876 of LNCS, pages 56–73. Springer, 2007.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with
overdefined systems of equations. Cryptology ePrint Archive, Report
2002/044, 2002. http://eprint.iacr.org/.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based on the strong
RSA assumption. ACM Trans. Inf. Syst. Secur., 3:161–185, August 2000.

[CSW08] Christophe De Canniere, Hisayoshi Sato, and Dai Watanabe. Hash Function
Luffa: Supporting Document. Submission to NIST (Round 1), 2008.

[ÇT10] Çağdaş Çalık and Meltem Sonmez Turan. Message recovery and pseudo-
preimage attacks on the compression function of Hamsi-256. Cryptology
ePrint Archive, Report 2010/057, 2010.

[CW09] Carlos Cid and Ralf-Philipp Weinmann. Block Ciphers: Algebraic Crypt-
analysis and Gröbner Bases. In Gröbner Bases, Coding, and Cryptography,
pages 307–327. Springer Berlin Heidelberg, 2009.

[Dam87] I. B. Damg̊ard. Collision free hash functions and public key signature
schemes. In Advances in Cryptology–EUROCRYPT ’87, volume 304 of
LNCS, pages 203–216. Springer-Verlag, 1987.

[Dam89] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard,
editor, CRYPTO, volume 435 of LNCS, pages 416–427. Springer, 1989.

[Dav94] Philip J. Davis. Circulant Matrices. AMS Chelsea Publishing, 1994.

[dBB93] Bert den Boer and Antoon Bosselaers. Collisions for the Compression Func-
tion of MD5. In EUROCRYPT’93, volume 765 of LNCS, pages 293–304,
1993.

[DBP96] H Dobbertin, A Bosselaers, and B Preneel. RIPEMD-160: A strengthened
version. In Fast Software Encryption (FSE), volume 1039 of LNCS. Springer-
Verlag, 1996.

[DFSS07] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Prac-
tical cryptanalysis of SFLASH. In Advances in Cryptology - CRYPTO 2007,
volume 4622 of LNCS. Springer-Verlag, 2007.

220 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[DH76a] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic techniques.
In AFIPS National Computer Conference, pages 109–112, 1976.

[DH76b] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[DH77] W. Diffie and M. E. Hellman. Special Feature Exhaustive Cryptanalysis of
the NBS Data Encryption Standard. Computer, 10:74–84, June 1977.

[DK74] J. Denes and A. D. Keedwell. Latin squares and their applications. Academic
Press, New York :, 1974.

[DK92] J. Dénes and A. D. Keedwell. A new authentication scheme based on latin
squares. Discrete Math., 106-107:157–161, 1992.

[DN94] Cynthia Dwork and Moni Naor. An efficient existentially unforgeable signa-
ture scheme and its applications. In Journal of Cryptology, pages 234–246.
Springer-Verlag, 1994.

[Dob98] Hans Dobbertin. One-to-one highly nonlinear power functions on GF(2n).
Appl. Algebra Eng. Commun. Comput., 9(2):139–152, 1998.

[DPP98] Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. Statistical se-
crecy and multibit commitments. IEEE Transactions on Information The-
ory, 44(3):1143–1151, 1998.

[DR98] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. In The First
Advanced Encryption Standard Candidate Conference, 1998.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomi-
als. In Theory and Application of Cryptographic Techniques, pages 278–299,
2009.

[DS10] Itai Dinur and Adi Shamir. An Improved Algebraic Attack on Hamsi-256.
Cryptology ePrint Archive, Report 2010/602, 2010.

[dVMPT09] Francoise Levy dit Vehel, Maria Grazia Marinari, Ludovic Perret, and Carlo
Traverso. A survey on polly cracker system. In Massimiliano Sala, Teo Mora,
Ludovic Perret, Shojiro Sakata, and Carlo Traverso, editors, Gröbner bases,
coding and cryptography, pages 263–283. Springer Verlag, 2009.

[DWY07] Jintai Ding, Christopher Wolf, and Bo-Yin Yang. l-Invertible Cycles for Mul-
tivariate Quadratic (MQ) Public Key Cryptography. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, Public Key Cryptography, volume 4450 of LNCS,
pages 266–281. Springer, 2007.

[DYC+08] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and
Chen-Mou Cheng. New Differential-Algebraic Attacks and Reparametriza-
tion of Rainbow. In Proceedings of Applied Cryptography and Network Secu-
rity, 6th International Conference, ACNS 2008, volume 5037 of LNCS, pages
242–257, 2008.

BIBLIOGRAPHY 221

[EG84] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology, Proceedings of CRYPTO ’84,
Santa Barbara, California, USA, August 19-22, 1984, Proceedings, volume
196 of LNCS, pages 10–18. Springer-Verlag New York, Inc., 1984.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139(1-3):61–88, June 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). In Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, New York, 2002. ACM.

[Fau09] Jean-Charles Faugère. Interactions between computer algebra (Gröbner
bases) and cryptology, 2009.

[Fay08] Björn Fay. Meshhash. Submission to NIST, 2008.

[FdVP08] Jean-Charles Faugère, Françoise Levy dit Vehel, and Ludovic Perret. Crypt-
analysis of MinRank. In Advances in Cryptology - CRYPTO 2008, volume
5157 of LNCS, pages 280–296. Springer, 2008.

[FFG08] Ewan Fleischmann, Christian Forler, and Michael Gorski. Classification of
the SHA-3 Candidates. Cryptology ePrint Archive, Report 2008/511, 2008.

[FGLM93] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput.,
16:329–344, October 1993.

[FGS05] Pierre-Alain Fouque, Louis Granboulan, and Jacques Stern. Differential
cryptanalysis for multivariate schemes. In Eurocrypt 2005, volume 3494 of
LNCS, pages 341–353. Springer, 2005.

[Fil02] Eric Filiol. A new statistical testing for symmetric ciphers and hash func-
tions. In Robert Deng, Feng Bao, Jianying Zhou, and Sihan Qing, editors,
Information and Communications Security, volume 2513 of LNCS, pages
342–353. Springer Berlin / Heidelberg, 2002.

[Fis03] Marc Fischlin. The Cramer-Shoup Strong-RSA Signature Scheme Revisited.
In Proceedings of the 6th International Workshop on Theory and Practice in
Public Key Cryptography: Public Key Cryptography, PKC ’03, pages 116–129,
London, UK, 2003. Springer-Verlag.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of Hidden
Field Equation (HFE) cryptosystems using Gröbner bases. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of LNCS,
pages 44–60. Springer, 2003.

[FLS+08] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function
Family. Submission to NIST (Round 1), 2008.

222 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[FMRS08] Pierre-Alain Fouque, Gilles Macario-Rat, and Jacques Stern. Key Recovery
on Hidden Monomial Multivariate Schemes. In Advances in Cryptology -
EUROCRYPT 2008, volume 4965 of LNCS, pages 19–30. Springer, 2008.

[FØPG10] Jean-Charles Faugère, Rune Steinsmo Ødeg̊ard, Ludovic Perret, and Danilo
Gligoroski. Analysis of the MQQ public key cryptosystem. In Swee-Huay
Heng, Rebecca N. Wright, and Bok-Min Goi, editors, CANS, volume 6467 of
LNCS, pages 169–183. Springer, 2010.

[FOPT10] J.-C. Faugére, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Cryptanal-
ysis of McEliece Variants with Compact Keys. In Proceedings of Eurocrypt
2010, volume 6110 of LNCS, pages 279–298. Springer Verlag, 2010.

[FP06a] Jean-Charles Faugére and Ludovic Perret. Cryptanalysis of 2R− Schemes.
In Proceedings of Advances in Cryptology - CRYPTO 2006, volume 4117 of
LNCS, pages 357–372. Springer, 2006.

[FP06b] Jean-Charles Faugère and Ludovic Perret. Polynomial Equivalence Prob-
lems: Algorithmic and Theoretical Aspects. In Advances in Cryptology -
EUROCRYPT 2006, volume 4004 of LNCS, pages 30–47. Springer, 2006.

[FP09] Jean-Charles Faugère and Ludovic Perret. On the Security of UOV. Cryp-
tology ePrint Archive, Report 2009/483, September 2009.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, Proceedings, volume 263 of LNCS,
pages 186–194. Springer, 1986.

[Fuh10] Thomas Fuhr. Finding Second Preimages of Short Messages for Hamsi-256.
In In Advances in Cryptology - ASIACRYPT 2010, Proceedings, volume 6477
of LNCS, pages 20–37. Springer, 2010.

[GC00] Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosys-
tem. In Advances of Cryptology, Asiacrypt 2000, volume 1976 of LNCS, pages
44–57. Springer, 2000.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signa-
tures without the random oracle. In Proceedings of the 17th international
conference on Theory and application of cryptographic techniques, EURO-
CRYPT’99, pages 123–139, Berlin, Heidelberg, 1999. Springer-Verlag.

[GJ79] Michael R. Garey and Davis S. Johnson. Computers and Intractability. A
guide to the theory of NP-Completeness. Bell Telephone Laberatories, Incor-
porated, 1979.

[GJS06] Louis Granboulan, Antoine Joux, and Jacques Stern. Inverting HFE Is
Quasipolynomial. In Advances in Cryptology - CRYPTO 2006, volume 4117
of LNCS, pages 345–356. Springer, 2006.

BIBLIOGRAPHY 223

[GK08] D. Gligoroski and S. J. Knapskog. Edon–R(256, 384, 512) – an efficient
implementation of Edon–R family of cryptographic hash functions. Com-
ment.Math.Univ.Carolin., 49,2:219–239, 2008.

[GKAJ11] Danilo Gligoroski, Svein Johan Knapskog, Jørn Amundsen, and Rune Erlend
Jensen. Internationally standardized efficient cryptographic hash function.
In Javier Lopez and Pierangela Samarati, editors, SECRYPT, pages 426–433.
SciTePress, 2011.

[GKK+08] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-
Hadedy, Jørn Amundsen, and Stig Frode Mjølsnes. Cryptographic Hash
Function Blue Midnight Wish. Submission to NIST (Round 1), 2008.

[GKM+08] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl – a SHA-3 candidate. Submission to NIST (Round 1/2), 2008.

[GKS11] Danilo Gligoroski, Svein Johan Knapskog, and Simona Samardjiska. The
need for parallel ultra fast cryptographic designs for emerging technologies.
In Workshop on Cryptography for Emerging Technologies and Applications,
November 2011.

[Gla] B. Gladman. SHA1, SHA2, HMAC and Key Derivation in C. url:http:
//fp.gladman.plus.com/cryptography_technology/sha/index.htm.

[Gli05] D. Gligoroski. Candidate one-way functions and one-way permutations based
on quasigroup string transformations. Cryptology ePrint Archive, Report
2005/352, 2005.

[Gli09] D. Gligoroski. On a family of minimal candidate one-way functions and
one-way permutations. International Journal of Network Security, in print
2009.

[Gli10] Danilo Gligoroski. Narrow-pipe SHA-3 candidates differ significantly
from ideal random functions defined over big domains. NIST
mailing list, 2010. url:http://people.item.ntnu.no/~danilog/Hash/
Non-random-behaviour-narrow-pipe-designs-03.pdf.

[GLRW10] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced
Meet-in-the-Middle Preimage Attacks: First Results on Full Tiger, and Im-
proved Results on MD4 and SHA-2. In ASIACRYPT 2010, volume 6477 of
LNCS, pages 56–75, 2010.

[GM86] R. Gebauer and H. Möller. Buchberger’s algorithm and staggered linear
bases. In Symposium on Symbolic and Algebraic Manipulation, pages 218–
221, New York, USA, 1986. ACM Press.

[GMK06] D. Gligoroski, S. Markovski, and L. Kocarev. Edon–R, an infinite family of
cryptographic hash functions. In Second NIST Cryptographic Hash Work-
shop, August 2006.

224 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[GMK08a] D. Gligoroski, S. Markovski, and S. J. Knapskog. The Stream Cipher Edon80.
In M. Robshaw and O. Billet, editors, New Stream Cipher Designs, volume
4986 of LNCS, pages 152–169. Springer-Verlag, 2008.

[GMK08b] Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. Multivariate
quadratic trapdoor functions based on multivariate quadratic quasigroups.
In MATH’08: Proceedings of the American Conference on Applied Mathe-
matics, pages 44–49, Stevens Point, Wisconsin, USA, 2008. World Scientific
and Engineering Academy and Society (WSEAS).

[GMK08c] Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. Public key
block cipher based on multivariate quadratic quasigroups. In Cryptology
ePrint Archive, Report 2008/320, 2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GØ09] Danilo Gligoroski and Rune Steinsmo Ødeg̊ard. On the complexity of
Khovratovich et al.’s preimage attack on EDON-R. Available online, 2009.
url:http://eprint.iacr.org/2009/120.pdf.

[GØM+09a] Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan
Knapskog, Aleš Drápal, Vlastimil Klima, Jørn Amundsen, and Mohamed
El-Hadedy. Cryptographic hash function Edon-R′. In Proceedings of the 1st
International Workshop on Security and Communication Networks. IEEE,
2009.

[GØM+09b] Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan
Knapskog, Ljupco Kocarev, Aleš Drápal, and Vlastimil Klima. Crypto-
graphic hash function EDON-R. Submission to NIST, 2009.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A ”paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In Advances in Cryp-
tology - CRYPTO ’88, volume 403 of LNCS, pages 216–231. Springer, 1988.

[HHJ08] Shai Halevi, William E. Hall, and Charanjit S. Jutla. The Hash Function
Fugue. Submission to NIST, 2008.

[HK06] S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized
hashing. In Proceedings of CRYPTO 2006, volume 4117 of LNCS, pages
41–59, 2006.

[HKC97] M. Bellare H. Krawczyk and R. Canetti. RFC2104 - HMAC: Keyed-
Hashing for Message Authentication. Internet Engineering Task Force, 1997.
url:http://www.faqs.org/rfcs/rfc2104.html.

[HW09] Susan Hohenberger and Brent Waters. Short and Stateless Signatures from
the RSA Assumption. In Proceedings of the 29th Annual International Cryp-
tology Conference on Advances in Cryptology - CRYPTO 2009, volume 5677
of LNCS, pages 654–670. Springer-Verlag, 2009.

BIBLIOGRAPHY 225

[IM86] Hideki Imai and Tsutomu Matsumoto. Algebraic methods for constructing
asymmetric cryptosystems. In Proceedings of the 3rd International Confer-
ence on Algebraic Algorithms and Error-Correcting Codes, AAECC-3, pages
108–119, London, UK, 1986. Springer-Verlag.

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to cas-
caded constructions. In Advances in Cryptology - CRYPTO 2004, 24th An-
nual International Cryptology Conference, Santa Barbara, California, USA,
volume 3152 of LNCS, pages 306–316. Springer, August 2004.

[JP07] A. Joux and T. Peyrin. Hash functions and the (amplified) boomerang at-
tack. In Advances in cryptology: CRYPTO 2007, volume 4622 of LNCS,
pages 244–263. Springer-Verlag, 2007.

[K0̈8] Özgül Kücük. The Hash Function Hamsi. Submission to NIST (Round 1),
2008.

[K0̈9a] Özgül Kücük. The hash function Hamsi. Submission to NIST (Round 2),
January 2009.

[K0̈9b] Özgül Kücük. Reference implementation of Hamsi (round 2). Submission to
NIST, January 2009.

[Kal92] B. Kaliski. The MD2 Message-Digest Algorithm. RFC 1319 (Informational),
April 1992.

[Kat10] Jonathan Katz. Digital Signatures. Springer, 2010.

[KBN09] Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolić. Distinguisher and
related-key attack on the full AES-256. In Shai Halevi, editor, CRYPTO
2009, volume 5677 of LNCS, pages 231–249. Springer, 2009.

[KHPG99] Aviad Kipnis, Hamarpe St. Har Hotzvim, Jacques Patarin, and Louis
Goubin. Unbalanced Oil and Vinegar Signature Schemes. In Advances in
Cryptology - EUROCRYPT 1999, volume 5479 of LNCS, pages 206–222.
Springer, 1999.

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nos-
tradamus attack. In Advances in Cryptology - EUROCRYPT 2006, volume
4004 of LNCS, pages 183–200. Springer, 2006.

[Kli08] Vlastimil Klima. Multicollisions of EDON-R hash function and other obser-
vations. Available online, 2008. url:http://cryptography.hyperlink.cz/
BMW/EDONR_analysis_vk.pdf.

[KNR10] Dmitry Khovratovich, Ivica Nikolić, and Christian Rechberger. Rotational
Rebound Attacks on Reduced Skein. In ASIACRYPT’10, volume 6477 of
LNCS, pages 1–19. Springer, 2010.

[Knu94] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE, volume 1008 of LNCS, pages 196–211. Springer, 1994.

226 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[Knu95] Lars Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, Fast Software Encryption, volume 1008 of LNCS, pages 196–211.
Springer Berlin / Heidelberg, 1995.

[KNW08] Dmitry Khovratovich, Ivica Nikolić, and Ralf-Philipp Weinmann. Cryptanal-
ysis of EDON-R. Available online, 2008. url:http://ehash.iaik.tugraz.
at/uploads/7/74/Edon.pdf.

[Kob87] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of the
Network and Distributed System Security Symposium. The Internet Society,
2000.

[KRT07] Lars R. Knudsen, Christian Rechberger, and Søren Steffen Thomsen. The
Grindahl hash functions. In Alex Biryukov, editor, Fast Software Encryption
(FSE) 2007, volume 4593 of LNCS, pages 39 – 57. Springer, 2007.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil & Vinegar Signature
Scheme. In CRYPTO ’98: Proceedings of the 18th Annual International
Cryptology Conference on Advances in Cryptology, volume 1462 of LNCS,
pages 257–266, London, UK, 1998. Springer-Verlag.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryp-
tosystem by Relinearization. In Advances in Cryptology - CRYPTO ’99,
volume 1666 of LNCS, pages 19–30. Springer-Verlag, 1999.

[KS04] Masao Kasahara and Ryuichi Sakai. A construction of public key cryptosys-
tem for realizing ciphertext of size 100 bit and digital signature scheme.
IEICE Transactions, 87-A(1):102–109, 2004.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2n work. In Advances in Cryptology - EUROCRYPT
2005, volume 3494 of LNCS, pages 474–490. Springer, 2005.

[KSHW98] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. Secure appli-
cations of low-entropy keys. In Proceedings of the First International Work-
shop on Information Security, ISW ’97, pages 121–134, London, UK, 1998.
Springer-Verlag.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature
schemes with tight security reductions. In ACM Conference on Computer
and Communications Security, pages 155–164, 2003.

[Lai92] Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Richard
Blahut, Daniel Costello Jr., Ueli Maurer, and Thomas Mittelholzer, editors,
Communications and Cryptography, pages 227–233. Kluwer, 1992.

[LBF08] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD Is a
Message Digest. Submission to NIST (Round 1), 2008.

BIBLIOGRAPHY 227

[Leu09] Gaëtan Leurent. Key recovery attack against secret-prefix EDON-R. Cryp-
tology ePrint Archive, Report 2009/135, 2009.

[LM02] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential
properties of addition. In Proceedings of FSE 2001, volume 2355 of LNCS,
pages 336–350. Springer-Verlag, 2002.

[LM11] Mario Lamberger and Florian Mendel. Higher-Order Differential Attack on
Reduced SHA-256. Cryptology ePrint Archive, Report 2011/037, 2011.

[LMM91] X. Lai, J. L. Massey, and S. Murphy. Markov ciphers and differential crypt-
analysis. In Advances in Cryptology, CRYPTO ’91, volume 576 of LNCS,
pages 17–38. Springer-Verlag, 1991.

[Luc04] S. Lucks. Design principles for iterated hash functions. Cryptology ePrint
Archive, Report 2004/253, 2004.

[Luc05] Stefan Lucks. A failure-friendly design principle for hash functions. In
Proceeding of ASIACRYPT 2005, volume 3788 of LNCS, pages 474–494.
Springer-Verlag, 2005.

[LWD04] H. Lipmaa, J. Wallèn, and P. Dumas. On the Additive Differential Proba-
bility of Exclusive-Or. In Bimal Roy and Willi Meier, editors, Fast Software
Encryption 2004, volume 3017 of LNCS, pages 317–331. Springer-Verlag,
2004.

[MAG] MAGMA. High performance software for algebra, number theory, and ge-
ometry — a large commercial software package. url:http://magma.maths.
usyd.edu.au.

[Man11] Stéphane Manuel. Classification and generation of disturbance vectors for
collision attacks against SHA-1. Des. Codes Cryptography, 59:247–263, April
2011.

[Mar03] Smile Markovski. Quasigroup string processing and applications in cryptog-
raphy. In Proc. 1-st Inter. Conf. Mathematics and Informatics for industry
MII 2003, 1416 April, Thessaloniki, pages 278–290, 2003.

[Max08] Peter Maxwell. The Sgáil Cryptographic Hash Function. Submission to
NIST, 2008.

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic coding
theory. Technical report, Jet Propulsion Lab Deep Space Network Progress
report, 1978.

[McK] B. McKay. Web page: Latin squares - main classes of graeco-latin squares.
http://cs.anu.edu.au/people/bdm/data/latin.html.

[MDBW09] Mohamed Saied Mohamed, Jintai Ding, Johannes Buchmann, and Fabian
Werner. Algebraic attack on the MQQ public key cryptosystem. In CANS
’09: Proceedings of the 8th International Conference on Cryptology and Net-
work Security, pages 392–401, Berlin, Heidelberg, 2009. Springer-Verlag.

228 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[Mer89] Ralph C. Merkle. A certified digital signature. In Proceedings on Advances
in cryptology - CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer-
Verlag New York, Inc., 1989.

[Mer90a] R. C. Merkle. One way hash functions and DES, 1990. Based on an unpub-
lished paper from 1979 and his PhD thesis, Stanford, 1979.

[Mer90b] Ralph C. Merkle. A fast software one-way hash function. J. Cryptology,
3(1):43–58, 1990.

[MGB99] S. Markovski, D. Gligoroski, and V. Bakeva. Quasigroup string processing.
In Part 1, Contributions, Sec. Math. Tech. Sci., MANU, volume XX, pages
13–28, 1999.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples
for efficient signature-verification and message-encryption. In Advances in
Cryptology – EUROCRYPT 1988, volume 330 of LNCS, pages 419–453.
Springer–Verlag, 1988.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO ’85, volume 218 of LNCS, pages 417–426. Springer-
Verlag, 1986.

[MM08] Smile Markovski and Aleksandra Mileva. NaSHA - algorithm specification.
Submission to NIST, 2008.

[MMO85] S Matyas, C Meyer, and J Oseas. Generating strong one-way functions with
cryptographic algorithm. IBM Technical Disclosure Bulletin, 27(10A), 1985.

[MMT92] H. Michael Möller, Teo Mora, and Carlo Traverso. Gröbner bases computa-
tion using syzygies. In Papers from the international symposium on Symbolic
and algebraic computation, ISSAC ’92, pages 320–328. ACM, 1992.

[MN09] Florian Mendel and Tomislav Nad. A Distinguisher for the Compression
Function of SIMD-512. In Bimal K. Roy and Nicolas Sendrier, editors, IN-
DOCRYPT, volume 5922 of LNCS, pages 219–232. Springer, 2009.

[MNPN+09] Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolic, Yu Sasaki, and
Martin Schläffer. Rebound Attack on the Full LANE Compression Function.
Cryptology ePrint Archive, Report 2009/443, 2009.

[Moh99] T. Moh. A public key system with signature and master key functions.
Communications in Algebra, 1999.

[MR95] B.D. McKay and E. Rogoyski. Latin squares of order 10. Electronic J. Comb.,
2(3), 1995. http://ejc.math.gatech.edu:8080/Journal/journalhome.

html.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thom-
sen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grötl. In
Orr Dunkelman, editor, FSE, volume 5665 of LNCS, pages 260–276. Springer,
2009.

BIBLIOGRAPHY 229

[MS10] Pawel Morawiecki and Marian Srebrny. A SAT-based preimage analysis of re-
duced Keccak hash functions. Cryptology ePrint Archive, Report 2010/285,
2010.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,
1996.

[NBK08] Ivica Nikolić, Alex Biryukov, and Dmitry Khovratovich. Hash family LUX
- Algorithm Specifications and Supporting Documentation. Submission to
NIST, 2008.

[NF09] Peter Novotney and Niels Ferguson. Detectable correlations in Edon-R.
Cryptology ePrint Archive, Report 2009/378, 2009.

[Nik09] Ivica Nikolić. Near collisions for the compression function of Hamsi-256.
CRYPTO rump session, 2009.

[NIS] NIST. Cryptographic hash project web page. url:http://csrc.nist.gov/
groups/ST/hash/index.html.

[NIS93a] NIST. Data Encryption Standard. FIPS Publication 46-2, December 1993.

[NIS93b] NIST. FIPS 180, Secure Hash Standard, Federal Information Processing
Standard (FIPS), Publication 180. Technical report, DEPARTMENT OF
COMMERCE, 1993.

[NIS95] NIST. FIPS 180-1, Secure Hash Standard, Federal Information Processing
Standard (FIPS), Publication 180-1. Technical report, DEPARTMENT OF
COMMERCE, 1995.

[NIS02] NIST. FIPS 180-2, Secure Hash Standard, Federal Information Processing
Standard (FIPS), Publication 180-2. Technical report, DEPARTMENT OF
COMMERCE, August 2002.

[NIS07] NIST. Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA-3) family. Federal Register No-
tice, 72(112), November 2007. http://csrc.nist.govgroups/ST/hash/

documents/FR_Notice_Nov07.pdf.

[NIS08a] NIST. Randomized Hashing for Digital Signatures - Draft NIST Spe-
cial Publication 800-106. Federal Information Processing Standards Pub-
lication, August, 2008. http://csrc.nist.gov/publications/drafts/

800-106/2nd-Draft_SP800-106_July2008.pdf.

[NIS08b] NIST. The Keyed-Hash Message Authentication Code (HMAC), FIPS
PUB 198-1. Federal Information Processing Standards Publica-
tion, July, 2008. http://csrc.nist.gov/publications/fips/fips198-1/

FIPS-198-1_final.pdf.

[NIS09] NIST. Digital signature standard (DSS). Federal Information Processing
Standards (FIPS) Publication #186-3, 2009. Available at http://www.itl.

nist.gov/fipspubs/by-num.htm.

230 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[NIS11] NIST. Status Report on the Second Round of the SHA-3 Cryptographic
Hash Algorithm Competition. Technical report, DEPARTMENT OF COM-
MERCE, February 2011.

[NN03] Valtteri Niemi and Kaisa Nyberg. UMTS security. Wiley, 2003.

[NP10a] Mridul Nandi and Souradyuti Paul. Speeding up the wide-pipe: Secure and
fast hashing. In Guang Gong and Kishan Gupta, editors, Progress in Cryp-
tology - INDOCRYPT 2010, volume 6498 of LNCS, pages 144–162. Springer
Berlin / Heidelberg, 2010.

[NP10b] Maŕıa Naya-Plasencia. Scrutinizing rebound attacks: new algorithms for
improving the complexities. Cryptology ePrint Archive, Report 2010/607,
2010.

[NS90] Kazuo Nishimura and Masaaki Sibuya. Probability to meet in the middle.
Journal of Cryptology, 2:13–22, 1990.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In Symposium on Theory of Computing, pages
33–43, 1989.

[ONH08] Sean O’Neil, Karsten Nohl, and Luca Henzen. Enrupt hash function speci-
fication. Submission to NIST, 2008.

[OS90] H. Ong and Claus-Peter Schnorr. Fast signature generation with a fiat
shamir-like scheme. In Advances in Cryptology - EUROCRYPT ’90, volume
473 of LNCS, pages 432–440. Springer, 1990.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai Public Key
Scheme of Eurocrypt–88. In Don Coppersmith, editor, Advances in Cryptol-
ogy – CRYPT0’95, volume 963 of LNCS, pages 248–261. Springer Berlin /
Heidelberg, 1995.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polyno-
mials (IP): Two new families of asymmetric algorithms. In EUROCRYPT’96,
volume 1070 of LNCS, pages 33–48. Springer-Verlag, 1996.

[Pat97] Jacques Patarin. The Oil & Vinegar signature scheme. In Proceedings of
Dagstuhl workshop on cryptography, 1997.

[Pat00] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key
scheme of Eurocrypt 98. Des. Codes Cryptography, 20:175–209, June 2000.

[PBB10] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. CyclicRain-
bow - A multivariate Signature Scheme with a Partially Cyclic Public Key
based on Rainbow. Cryptology ePrint Archive, Report 2010/424, 2010.

[PCG01a] Jacques Patarin, Nicolas Courtois, and Louis Goubin. Flash, a fast multi-
variate signature algorithm. In David Naccache, editor, Topics in Cryptology
CT-RSA 2001, volume 2020 of LNCS, pages 298–307. Springer Berlin / Hei-
delberg, 2001.

BIBLIOGRAPHY 231

[PCG01b] Jacques Patarin, Nicolas Courtois, and Louis Goubin. Quartz, 128-bit long
digital signatures. In Proceedings of the 2001 Conference on Topics in Cryp-
tology: The Cryptographer’s Track at RSA, volume 2020 of CT-RSA 2001,
pages 282–297. Springer-Verlag, 2001.

[Per05] Ludovic Perret. A fast cryptanalysis of the isomorphism of polynomials with
one secret problem. In EUROCRYPT 2005, volume 3494 of LNCS, pages
354–370. Springer, 2005.

[Per08] Ludovic Perret. Personal e-mail communication with Danilo Gligoroski, 2008.

[Pey07] Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT 2007, volume
4833 of LNCS, pages 551–567. Springer, 2007.

[PGC98] Jacques Patarin, Louis Goubin, and Nicolas Courtois. C∗−+ and HM : Vari-
ations Around Two Schemes of T. Matsumoto and H. Imai. In Kazuo Ohta
and Dingyi Pei, editors, Advances in Cryptology – ASIACRYPT’98, volume
1514 of LNCS, pages 35–50. Springer Berlin / Heidelberg, 1998.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based
on block ciphers: a synthetic approach. In Proceedings of the 13th annual
international cryptology conference on Advances in cryptology - CRYPTO’93,
volume 773 of LNCS, pages 368–378. Springer-Verlag New York, Inc., 1993.

[Pys08] Andrey Pyshkin. Algebraic Cryptanalysis of Block Ciphers Using Groebner
Bases. PhD thesis, TU Darmstadt, July 2008.

[RDS98] Inc. RSA Data Security. PKCS#1 version 2.1:RSA cryptography standard,
1998. Available at http://www.rsa.com/rsalabs.

[Riv90] Ronald L. Rivest. The MD4 Message Digest Algorithm. In Alfred Menezes
and Scott A. Vanstone, editors, Proceedings of Advances in Cryptology –
CRYPTO’90, volume 537 of LNCS, pages 303–311. Springer, 1990.

[Riv92] Ronald L. Rivest. The MD5 Message-Digest Algorithm (RFC 1321).
url:http://www.ietf.org/rfc/rfc1321.txt?number=1321, 1992.

[RMG+00] K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, and D. R. Shier.
Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca
Raton, Florida, 2000.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Commun. ACM, 21:120–126,
February 1978.

[RSN+01] Andrew Rukhin, Juan Soto, James Nechvatal, Elaine Barker, Stefan Leigh,
Mark Levenson, David Banks, Alan Heckert, James Dray, San Vo, Andrew
Rukhin, Juan Soto, Miles Smid, Stefan Leigh, Mark Vangel, Alan Heckert,
James Dray, and Lawrence E Bassham Iii. A statistical test suite for random
and pseudorandom number generators for cryptographic applications, 2001.
Published by NIST. url: http://csrc.nist.gov/publications/nistpubs/
800-22-rev1a/SP800-22rev1a.pdf.

232 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[RTV10] Vincent Rijmen, Denis Toz, and Kerem Varc. Rebound Attack on Reduced-
Round Versions of JH. In FSE, volume 6147 of LNCS, pages 286–303.
Springer, 2010.

[SAB09] Bhupendra Singh, Lexy Alexander, and Sanjay Burman. On algebraic re-
lations of Serpent S-boxes. Cryptology ePrint Archive, Report 2009/038,
2009.

[SBA09] Rajesh P Singh, B.K.Sarma, and A.Saikia. Public key cryptography using
permutation p-polynomials over finite fields. Cryptology ePrint Archive,
Report 2009/208, 2009. http://eprint.iacr.org/.

[SCG11] Simona Samardjiska, Yanling Chen, and Danilo Gligoroski. Construction of
Multivariate Quadratic Quasigroups (MQQs) in Arbitrary Galois Fields. In
Proceeding of IAS 2011, Malacca, Malaysia, Dec. 5-8, 2011, 2011.

[sha] The SHA-3 Zoo. url:http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656—715, 1949.

[Sha93] Adi Shamir. Efficient signature schemes based on birational permutations.
In Proceedings of CRYPTO’93, volume 773 of LNCS, pages 1–12. Springer-
Verlag, 1993.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput., 26:1484–1509,
October 1997.

[Sin99] Simon Singh. The Code Book: The Evolution of Secrecy from Mary, Queen
of Scots, to Quantum Cryptography. Doubleday, New York, NY, USA, 1st
edition, 1999.

[SK98] Takeshi Shimoyama and Toshinobu Kaneko. Quadratic Relation of S-box
and its Application to the Linear Attack of Full Round DES. In Advances
in Cryptology - Crypto’98, volume 1462 of LNCS, pages 200–211. Springer-
Verlag, 1998.

[SKPI07] Makoto Sugita, Mitsuru Kawazoe, Ludovic Perret, and Hideki Imai. Al-
gebraic Cryptanalysis of 58-Round SHA-1. In Alex Biryukov, editor, Fast
Software Encryption (FSE), volume 4593 of LNCS, pages 349–365. Springer,
2007.

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Col-
lisions for MD5 and Colliding X.509 Certificates for Different Identities. In
Moni Naor, editor, EUROCRYPT’07, volume 4515 of LNCS, pages 1–22.
Springer, 2007.

[SMG10] S. Samardjiska, S. Markovski, and D. Gligoroski. Multivariate quasigroups
defined by t-functions. In Proceedings of SCC2010 - The 2nd International
Conference on Symbolic Computation and Cryptography, 2010.

BIBLIOGRAPHY 233

[Smi07] J. D. H. Smith. An introduction to quasigroups and their representations.
Chapman & Hall/CRC, 2007.

[Ste06] Till Stegers. Faugerè’s F5 algorithm revisited. Cryptology ePrint Archive,
Report 2006/404, 2006.

[SV94] C.-P. Schnorr and S. Vaudenay. Black Box Cryptoanalysis of Hash Networks
Based on Multipermutations. In Proceedings of EUROCRYPT 1994, volume
950 of LNCS, pages 47–57. Springer, 1994.

[Tho07] S. S. Thomsen, May 2007. Personal communication with S. S. Thomsen.

[TU10] Meltem Sönmez Turan and Erdener Uyan. Practical Near-Collisions for Re-
duced Round Blake, Fugue, Hamsi and JH. Second SHA-3 Candidate Con-
ference, 2010.

[Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE,
volume 1636 of LNCS, pages 156–170. Springer, 1999.

[Wag02] David Wagner. A generalized birthday problem. In Proceedings of Ad-
vances in Cryptology - CRYPTO 2002, volume 2442 of LNCS, pages 288–303.
Springer, 2002.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles.
In Proceedings of Advances in Cryptology - EUROCRYPT 2005, volume 3494
of LNCS, pages 114–127. Springer, 2005.

[WBP04] Christopher Wolf, An Braeken, and Bart Preneel. Efficient Cryptanalysis of
RSE(2)PKC and RSSE(2)PKC. In Conference on Security in Communica-
tion Networks – SCN 2004, volume 3352 of LNCS, pages 294–309. Springer,
2004. Extended version:http://eprint.iacr.org/2004/237.

[Wil75] M. V. Wilkes. Time Sharing Computer Systems. Elsevier Science Inc., New
York, NY, USA, 1975.

[Win84] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES.
In IEEE Symposium on Security and Privacy, pages 88–90, Los Alamitos,
CA, USA, 1984. IEEE Computer Society.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu.
Cryptanalysis of the hash functions MD4 and RIPEMD. In Ronald Cramer,
editor, EUROCRYPT’05, volume 3494 of LNCS, pages 1–18. Springer, 2005.

[WN94] D. J. Wheeler and R. M. Needham. TEA, a Tiny Encryption Algorithm. In
Bart Preneel, editor, FSE, volume 1008 of LNCS, pages 363–366. Springer,
1994.

[Wol06] Christopher Wolf. Multivariate Quadratic Public Key Systems: Introduction,
Nomenclatura, History (presentation), January 2006.

[WP05] Christopher Wolf and Bart Preneel. Taxonomy of Public Key Schemes based
on the problem of Multivariate Quadratic equations. IACR Eprint archive,
2005. url:http://eprint.iacr.org/2005/077.

234 HASH FUNCTIONS AND GRÖBNER BASES CRYPTANALYSIS

[Wu09] Hongjun Wu. The Hash Function JH. Submission to NIST (Round 1/2),
2009.

[WWJW09] Meiqin Wang, Xiaoyun Wang, Keting Jia, and Wei Wang. New pseudo-near-
collision attack on reduced-round of Hamsi-256. Cryptology ePrint Archive,
Report 2009/484, 2009.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, EUROCRYPT’05, volume 3494 of LNCS, pages
19–35. Springer, 2005.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the
full SHA-1. In Victor Shoup, editor, Proceedings of CRYPTO 2005, volume
3621 of LNCS, pages 17–36. Springer, 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 1–16. Springer, 2005.

[Xu08] Zijie Xu. Dynamic SHA2. Submission to NIST, 2008.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. Building Secure Tame-like Multivariate
Public-Key Cryptosystems: The New TTS. In Information Security and
Privacy, 10th Australasian Conference, ACISP 2005, volume 3574 of LNCS,
pages 518–531. Springer, 2005.

[YCCC06] Bo-Yin Yang, Chen-Mou Cheng, Bor-Rong Chen, and Jiun-Ming Chen. Im-
plementing minimized multivariate PKC on low-resource embedded systems.
In Security in Pervasive Computing, SPC 2006, volume 3934 of LNCS, pages
73–88. Springer, 2006.

[Yuv79] Gideon Yuval. How to Swindle Rabin. Cryptologia, 3:187–189, 1979.

[ZM02] Lintao Zhang and Sharad Malik. The Quest for Efficient Boolean Satisfiabil-
ity Solvers. In Proceedings of the 14th International Conference on Computer
Aided Verification, CAV ’02, pages 17–36. Springer-Verlag, 2002.

[ZPS93] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. Haval - a one-way
hashing algorithm with variable length of output. In Jennifer Seberry and
Yuliang Zheng, editors, ASIACRYPT 1993, volume 718 of LNCS, pages 83–
104. Springer, 1993.

