
A
lexandra Skau Vedeler

Learning an End-to-End Steering M
odel for an U

nm
anned Surface Vehicle

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Alexandra Skau Vedeler

Learning an End-to-End Steering
Model for an Unmanned Surface
Vehicle

Inverse Optimal Control for End-to-End
Mapping of Input Sensor Data to Action
Parameters

Master’s thesis in Cybernetics and Robotics
Supervisor: Kristin Y. Pettersen

June 2019

Learning an End-to-End Steering Model
for an Unmanned Surface Vehicle

INVERSE OPTIMAL CONTROL FOR END-TO-END MAPPING
OF INPUT SENSOR DATA TO ACTION PARAMETERS

Alexandra S. Vedeler

Master’s Thesis in Cybernetics and Robotics
Supervisor: Kristin Ytterstad Pettersen, ITK
Co-supervisor: Narada Warakagoda, FFI
June 2019

Problem Formulation

This task deals with the ability of an Unmanned Surface Vehicle (USV) to move

autonomously without colliding with other static or moving objects found in the

environment. The vehicle is endowed with this ability through several modules

such as scene understanding, navigation, route planning, and the control system.

Traditionally, these modules are designed and optimized separately and combined

afterward. For example, scene understanding module is designed to detect inter-

esting objects such as other boats, ships, and buoys etc. and the control system

itself needs to convert this information into appropriate action parameters, such as

steering angle, engine power or degree of braking. In this proposal, we advocate a

tighter coupling among individual modules, where the system directly generates the

action parameters based on the sensor data. This end-to-end approach allows one to

make the overall system more compact, efficient and accurate. Deep learning is an

excellent candidate to implement such an end-to-end mapping of the input sensor

data onto the action parameters. One well-known area of deep learning suitable for

similar problems is deep reinforcement learning (DRL). However, DRL depends on

a known reward function. But in the case of a USV, it is difficult to manually design

a good reward function because at least in certain maneuverings the relevant reward

structure is not clear. A solution to this problem is learning the reward function

together with the control policy based on training data using a technique known as

Inverse Reinforcement Learning (IRL).

The objective of the task is to train and test a system based on deep neural networks

that map sensor inputs to action parameters of the control system of the USV using

the Inverse Reinforcement Learning approach. A suitable derivative of IRL or a

similar algorithm is envisaged to be adopted. Given the limited duration of the

ii

project, the task may be simplified with respect to the type and number of inputs and

outputs within the goal of end-to-end training. The system will be trained to perform

a particular type of maneuverings such as collision avoidance with stationary objects.

The task consists of development and testing of the system as well as evaluation of

the results.

iii

Abstract

The task of obstacle avoidance using maritime vessels, such as Unmanned Surface

Vehicles (USVs), has traditionally been solved using specialized modules that are

designed and optimized separately. However, this approach requires a deep insight

into the environment, the vessel, and their complex dynamics. In this project, we

study an alternative method that maps the USV’s sensor output to steering actions

in a direct end-to-end way in hopes of making the system more compact, efficient

and demand less insight into the complex dynamics of the environment. Deep

Reinforcement Learning is a promising alternative in this regard and has produced

some impressive results over the last years. However, the requirement of a manually

crafted reward function may hinder its use in cases where the wanted behavior is

difficult to express.

We propose the use of Imitation Learning (IL) using Deep Reinforcement Learning

(RL) and Deep Inverse Reinforcement Learning (IRL) and present a system that

learns an end-to-end steering model capable of mapping radar-like images directly

to steering actions in an obstacle avoidance scenario. In addition to this, we present

an RL system and a handcrafted reward function for the task in order to evaluate

both IL and RL performance on the task. We found that while RL performs with the

greater accuracy and consistency, both systems are able to grasp the task of obstacle

avoidance using only a mix of radar and GPS observations, completely model free.

We thus deem both RL and IL promising options for future development in USV

tasks, where IL specifically may provide an option for tasks that are even more

difficult to model with a reward function than this specific case.

iv

Sammendrag

Hindringsunngåelse med maritime fartøy, slik som Ubemannede Overflatefartøy

(UOF), har tradisjonelt sett blitt løst ved hjelp av spesialiserte moduler som er

designet og optimalisert separat fra hverandre. Denne tilnærmelsen krever imidletid

et høyt kunnskapsnivå om miljøet, fartøyet, og deres komplekse dynamikk. I dette

prosjektet studerer vi en alternativ metode som kan transformere fartøyets sensor

data til styringsaksjoner i en mer direkte, ende-til-ende-metode i håp om å gjøre

systemet mer kompakt, effektivt og at det krever mindre innsikt inn i den komplekse

dynamikken til det maritime miljøet. Dyp Forsterkende Læring (FL) er slikt sett

et lovende alternativ som har hatt flere imponerende resultater i de siste årene.

Imidlertid gjør denne metodens bruk av en manuelt utformet belønningsfunksjon,

noe som kan være vanskelig å anskaffe i tilfeller der den ønskede atferden er

vanskelig å formulere matematisk.

Vi foreslår her bruk av Imitasjonelæring (IL) med bruk av Dyp Forsterkende Læring

(FL) of Dyp Invertert Forsterkningslæring (IFL), og vi presanterer et system som

lærer en ende-til-ende-styringsmodell som kan transformere radar-lignende bilder

direkte til styringsaksjoner i en hindringsunngåelsessituasjon. I tillegg til dette

presenterer vi et FL-system og en håndlaget belønnelsesfunskjon for oppgaven

slik at vi kan evaluere prestasjonen til både IL og FL. Vi fant at FL presterer best,

men at begge systemene klarer å fatte oppgaven ved bruk av observasjoner kun

bestående av radar og GPS data. Vi anser dermed både RL og IL som lovende

alternativer for videre utvikling i UOF-oppgaver, hvor IL spesielt kan funcgere som

et alternativ i oppgaver som er vanskeligere å beskrive i en belønningsfunksjon enn

dette spesifikke tilfellet.

v

Preface

This thesis concludes my five-year journey at the Master of Cybernetics and Robotics

program of the Norwegian University of Science and Technology and is the cul-

mination of my work under the supervision of Kristin Y. Pettersen and Narada

Warakagoda, spring 2019. The thesis summarizes my work and my findings as well

as the theory and methods which my work builds upon.

The project was performed in collaboration with the Norwegian Defence and Re-

search Establishment (FFI). The results rely on a USV simulator received from

FFI and a dataset collected in collaboration with FFI during a previous preparatory

project (Vedeler; 2018). The reader is not required to know the specifics of this

preparatory project.

vi

Acknowledgment

I would like to thank my co-supervisor, Narada Warakagoda, for insightful discus-

sions and support throughout this project. Your guidance and support have been

invaluable. I would also like to thank my supervisor, Professor Kristin Y. Pettersen,

for providing guidance on the writing process and other formalities regarding this

thesis. In addition, I would like to extend my gratitude towards the Norwegian

Defence and Research Establishment (FFI) for providing me with the necessary

resources to complete the task. Specifically, I would like to thank Else-Line Malene

Ruud for her work on the USV simulator which this project relies upon and Jarle

Sandrib for his help in collecting the demonstration dataset used in the project.

Lastly, I want to thank my fellow graduate students for inspiring discussions as well

as my family and friends for their love and support.

07.06.2019

Alexandra Skau Vedeler

vii

Table of Contents

Abstract iv

Sammendrag v

1 Introduction 1
1.1 Previous works . 2

1.2 Contribution and Background . 3

1.3 Abbreviations and Notation . 5

1.4 Outline . 6

2 Background and Theory 7
2.1 Deep Learning . 7

2.1.1 Artificial Neural Networks 8

2.1.2 Deep Neural Networks 11

2.1.3 Convolutional Neural Networks 13

2.1.4 Training . 15

2.2 GAN . 16

2.2.1 Training . 17

2.2.2 Advantages and Drawbacks 19

2.3 Reinforcement Learning . 20

2.3.1 The core idea of Reinforcement Learning 21

2.3.2 Marcov Decision Process 21

2.3.3 Optimal Policy . 22

2.3.4 Deep Reinforcement Learning 24

2.3.5 Trust Region Policy Optimization 26

viii

2.4 Inverse Reinforcement Learning 31

2.4.1 The concept of IRL . 31

2.4.2 IRL algorithms . 32

2.5 Imitation Learning . 33

2.5.1 GAN and Imitation Learning 33

2.5.2 GAIL . 34

2.6 Unmanned Surface Vehicle . 37

2.6.1 Radar . 38

3 Method 41
3.1 Programs used . 42

3.2 The task . 43

3.2.1 Observation of state . 43

3.3 Training Data . 46

3.3.1 Data Gathering . 46

3.3.2 Simulation of environment 47

3.4 Reinforcement Learning setup 51

3.4.1 Policy . 52

3.4.2 Reward . 54

3.5 Imitation Learning setup . 56

3.5.1 Data Preprosessing . 57

3.5.2 Discriminator . 58

4 Results and Discussion 61
4.1 Validation . 61

4.2 Results . 62

4.2.1 Training . 62

4.2.2 Expert Demonstrations 62

4.2.3 Rwsults using Positional Observations 64

4.2.4 Radar Observations . 68

4.2.5 The Difference between Categorical and Gaussian Policy . 72

4.2.6 Summary of Results . 72

4.3 Discussion . 73

4.3.1 Observations and actions 73

4.3.2 GAN . 74

4.3.3 End-to-end learning in practical use 75

4.3.4 RL vs IL . 76

ix

4.3.5 Model-free systems . 76

4.4 Future Work . 78

5 Conclusions 81

A Additional Theory 83
A.1 Maximum Entropy IRL . 83

A.2 Deep Maximum Entropy IRL . 84

A.3 Guided Cost Learning . 85

A.3.1 The GCL Cost Optimization 87

A.3.2 The GCL Policy Optimization Step 88

References 89

x

List of Tables

1.1 Summary of the abbreviations frequently used in this paper 5

1.2 A summary of the notation frequently used in this paper 6

4.1 Success rates of the different system setups. 73

xi

List of Figures

1.1 Simplified illustration of our system 4

2.1 Simplified illustration of a biological neuron 9

2.2 Simplified illustration of an artificial neuron 9

2.3 Plot of three activation functions 11

2.4 Example of a Neural Network structure 12

2.5 Example of convolution of a kernel and an image 14

2.6 Simplified example of a CNN detection 15

2.7 Illustration of GAN . 18

2.8 Agent interacting in an environment 21

2.9 Radar image example . 38

2.10 Simplified illustration of a radar spoke 39

3.1 Simplified illustration of our system 42

3.2 Conceptual illustration of obstacle avoidance 43

3.3 Illustration of positional vectors as defined in our system 45

3.4 Simplified illustration of the environment module 47

3.5 Illustration of initial episode setup 48

3.6 Example of a stand-in radar image 50

3.7 Simplified illustration of the RL module of the system 51

3.8 Simplified illustration of the policy network 54

3.9 Simplified illustration of the IRL module of the system 57

3.10 Simplified illustration of our discriminator network 59

4.1 Expert actions from Figure 4.2 discretized 63

xii

4.2 Example of an expert demonstration with continuous action space 63

4.3 Example of successful episode from validation of the RL setup with

positional observations with Gaussian Policy 64

4.4 Example of successful episode from validation of the RL setup with

positional observations with categorical policy 65

4.5 Rewards corresponding to the episode in Figure 4.4 65

4.6 Example of unsuccessful episode from validation of the IL setup

and positional observations and Gaussian policy 66

4.7 Rewards corresponding to the episode in Figure 4.6 66

4.8 Example of successful episode from validation of the IL setup with

positional observations with Categorical Policy 67

4.9 Example of episode from validation of the IL setup with radar image

as the only observation . 68

4.10 Example of successful episode from validation of the RL setup with

radar observations with Gaussian policy 69

4.11 Example of successful episode from validation of the RL setup with

radar observations with categorical policy 70

4.12 Example of unsuccessful episode from validation of the IL setup

with radar observations with Gaussian policy 70

4.13 Example of successful episode from validation of the IL setup with

radar observations with categorical policy 71

4.14 Test with waypoint following . 80

A.1 An illustration of the GCL algorithm 86

xiii

xiv

Chapter 1
Introduction

Traditionally, USV steering has been performed through the use of a set of several

modules, each designed and optimized separately before they are combined into

the full system. For example, a scene understanding module may be designed to

detect interesting objects such as other boats, which may be used by the navigation

module to pinpoint its location relative to the USV. The guidance system then

uses this information to generate new trajectories which in turn is delivered to and

executed by the control system through the use of appropriate action parameters

such as a change in rotor angle or a decrease in speed. While this approach has

given good results it requires a high level of engineering, tuning, and knowledge

in several disciplines, e.g. object detection from sensory input, knowledge of the

system dynamics, path planning, and control system algorithms. The resulting

system is also not optimized with respect to an overall objective function, but rather

a collection of locally optimized subsystems.

An alternative approach advocates a tighter coupling between the sensor input and

the actions taken by the vehicle. This project studies such an approach, often dubbed

an end-to-end approach, where the system directly generates action parameters based

on the sensory data, thus making the system overall more compact, efficient and

accurate. Deep Neural Networks (ANN) offer a high level of expressive power.

They are able to handle highly nonlinear relationships between their input and

output (Schmidhuber; 2015; Goodfellow et al.; 2016), an ability which is necessary

in order to perform end-to-end steering in USVs. Systems that couple deep ANNs

with Reinforcement Learning (RL), have also proved to be able to learn complex

1

2 CHAPTER 1. INTRODUCTION

tasks (Silver et al.; 2016; Mnih et al.; 2015; Martinsen and Lekkas; 2018; Levine

et al.; 2016; Cheng and Zhang; 2018; Kober et al.; 2013; Sutton and Barto; 2017).

However, RL requires a known reward function to guide its training. We argue

that such a function can be highly difficult to craft manually for USV steering as

certain maneuverings do not express a clearly weighted cost structure (Abbeel and

Ng; 2004). Because of this, combining RL with Inverse Reinforcement Learning

(IRL), where the goal is to learn the reward function from a set of demonstrations1,

may be a preferable solution. This combination of RL and IRL form an Imitation

Learning (IL) system that can learn from demonstrations. Though there are some

examples of varying degrees of use of RL in USVs (Martinsen and Lekkas; 2018;

Cheng and Zhang; 2018), we have not been able to find examples of the use of IL in

USV steering.

In this project, we investigate the use of IL to achieve an end-to-end steering model.

To this end, we implement a system that learns to perform obstacle avoidance

through the use of radar-like images as observations. Due to its relation to RL, we

also implement a system that uses purely RL, with a handcrafted reward function,

and discuss and compare both results.

1.1 Previous works 2

With the use of Artificial Neural Networks (ANNs), recent advancements in Rein-

forcement Learning (RL) have achieved impressive performances, rivaling, or even

beating, that of humans. Examples lie in their use in playing Atari games (Mnih

et al.; 2015) or in the program AlphaGo (Silver et al.; 2016), which famously beat

the human world champion in the game of Go.

An example of deep learning in steering, is Bojarski et al. (2017), who mapped raw

visual input to steering parameters of a car, quite successfully using their deep ANN

PilotNet. However, this treats steering more like a deep ANN classification problem,

a type of supervised learning. ANNs demand large datasets in order to be trained

well (Goodfellow et al.; 2016) and as a supervised learning approach, the data must

1IRL does involve RL, i.e. learning a policy, usually as a means to optimize a reward function.
However, in this thesis, we will treat them as two separate modules where IRL deals with learning the
reward function while RL deals with learning the policy.

2This section, though written by us, was originally written for the preparatory project (Vedeler;
2018) preceding this thesis

1.2. CONTRIBUTION AND BACKGROUND 3

be labeled before training. PilotNet trained on 6 hours worth of video and sensor

data from a human driving a car. Such demands make this approach problematic

in the case of USV steering, where large amounts of data is hard to come by or

generate. In addition, because a small mistake on the part of the policy will place the

system into states that lie outside of the distribution in the training data, supervised

learning will in general not generate a policy with good long-horizon performance

(Levine et al.; 2016).

Martinsen and Lekkas (2018) used a policy search RL approach, specifically the

Deep Deterministic Policy Gradient method, to find the desired policy for straight-

path following for an underactuated marine vessel exposed to unknown ocean

currents. As described in the article, the approach is model-free, requiring no prior

knowledge of the system it is assigned to control. Another example of RL in USV

steering is Cheng and Zhang (2018) who proposes a deep RL approach for obstacle

avoidance. However, as RL approaches, these require a pre-made reward function.

There are some examples of the use of Inverse Reinforcement Learning (IRL) in

steering. One such example is Wulfmeier et al. (2016), who used a Maximum

Entropy-based (Ziebart et al.; 2008), non-linear IRL framework with Fully Con-

volutional ANNs to represent the cost model underlying expert driving behavior.

However, we found no examples of IRL in use in USVs, much less the use of the

combination of both IRL and RL, known as a type of Imitation Learning (IL), in the

steering of USVs.

1.2 Contribution and Background

The main goal of this thesis is to investigate how an end-to-end steering model for

obstacle avoidance can be achieved through learning from demonstrated behavior.

Specifically, we explored the case of finding a steering model which can generate

the appropriate heading for the USV given a radar image observation. Our proposed

method uses an Imitation Learning (IL) approach called GAIL (Ho and Ermon;

2016), illustrated in Figure 1.1.

The system uses trial based Reinforcement Learning (RL) to train a steering model

in the form of a policy, to produce appropriate actions in order to accomplish a given

task. It employs actions generated by the policy in the environment and receives

feedback on how well it is performing considering the task at hand. In pure RL,

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Simplified illustration of the Imitation Learning system combining Reinforce-
ment Learning and Inverse Reinforcement Learning.

this feedback comes from a manually crafted reward function. Here, however, it

comes from a separate Inverse Reinforcement Learning (IRL) module that learns

the essence of the task by examining a set of demonstrations performed by an expert.

This way, the IRL module provides feedback to the RL module using a discriminator

function.

In our system, both the policy and the discriminator are parameterized by Artificial

Neural Networks (ANNs) and are trained using Deep Learning (DL) approaches.

The network structures are designed by us.

In addition to the exploration of IL in obstacle avoidance, we have also produced

and tested a system of pure RL, complete with a reward function of our own design.

Our results are comprised of both an IL system and an RL system as well as the

discussion and comparison of the different results. Through this, we show that

both RL and IL may be suitable alternatives to the more traditional approach which

separates scene understanding and navigation.

While we have found no examples of use of IL for USV steering, the use of RL in

USV obstacle avoidance has been performed by Cheng and Zhang (2018), however

in a different way. Cheng and Zhang (2018) uses a different setup and performs

obstacle avoidance using a different type of observations comprised of the kinematic

1.3. ABBREVIATIONS AND NOTATION 5

state of the USV, the existence of an obstacle in a given radius and previous control

behavior. We show that obstacle avoidance can be performed directly using radar-

like images combined with its intended goal position without the agent having any

other insight into the USVs state. However, we do note that, unlike Cheng and Zhang

(2018), our experiments were conducted without current or other disturbances and

that they used only one obstacle at a time.

Our implementation builds on two open source implementations: An implemen-

tation of the TRPO algorithm (Schulman et al.; 2015) from the RL codebase of

OpenAI:SpinningUp (2018) and the discriminator training scheme from Fu (2018).

We altered the two implementations and combined them into an implementation of

the GAIL algorithm (Ho and Ermon; 2016). The code is implemented in python, us-

ing tensorflow (Tensorflow home page; 2017) for Artificial Neural Network (ANN)

support. For training, we used four NVIDIA GeForce GTX 1080 GPU’s.

All illustrations in this thesis were created using Draw.io unless stated otherwise.

1.3 Abbreviations and Notation

For convenience, we use a number of abbreviations in this paper. A list of the most

notable abbreviations is included below in Table 1.1. In addition, we have included

a table of notations that are frequently used in Table 1.2. We have chosen to use

notation similar to that which is used in control theory.

Abbreviation Full text

USV Unmanned Surface Vehicle
DL Deep Learning
ANN Artificial Neural Network
GAN Generative Adversarial Network
RL Reinforcement Learning
IRL Inverse Reinforcement Learning
IL Imitation Learning

Table 1.1: Summary of the abbreviations frequently used in this paper

6 CHAPTER 1. INTRODUCTION

Symbol Definition Example/detail

xt System state in a Markovian
process at time step t ∈ [0,T]

The true state of a system or agent

ut control or action at time step
t ∈ [0,T]

E.g. a change in heading of a USV

ot Observation at time step t ∈

[0,T]
E.g. a combination of sensor measure-
ments LiDAR, camera image, etc.

τ Trajectory: τ =

(x0,u0), (x1,u1), ...(xt ,ut)
The sequence of state-action pairs in an
episode

r (xt ,ut) Reward function that defines
the goal of the task

May be parameterized as a Neural Net-
work (NN), in which case ϕ denotes the
network weights

p(xt+1 |xt ,ut) Unknown system dynamics,
the transition function from
one state to another

The physics of the environment of the
agent

πθ Policy, parameterized by θ May be parameterized as a Neural Net-
work (NN), in which case θ denotes the
network weights

Table 1.2: A summary of the notation frequently used in this paper

1.4 Outline

The thesis is organized as follows. In Chapter 2, a review of background information

and relevant fields is presented, explaining the theory and algorithms that this project

is built upon. Chapter 3 explains the details of our methods, how our system is

constructed and why. The results and discussion of the testing is presented in

Chapter 4. This chapter also presents a brief discussion of future work. Lastly,

conclusions are presented in Chapter 5.

Chapter 2
Background and Theory

Machine Learning (ML) is a field concerned with computers ability to learn a task

without following a set of rules or guidelines explicitly stated by the programmer.

This approach to task solving is especially relevant for tasks that are more or less

easy for humans to perform, but hard to describe formally, such as recognizing

words or faces. In this, a function approximator is fitted to generate the correct

output from a provided input.

In this chapter, relevant theory for machine learning will be presented. We will give

an introduction to Deep Learning (DL) followed by an introduction to Generative

Adversarial Networks (GANs). Later in this chapter, the principles of Reinforcement

Learning (RL) and Inverse Reinforcement Learning (IRL) will be presented as well

as their use in Imitation Learning (IL). The last section of this chapter is dedicated

to an introduction of the Unmanned Surface Vehicle (USV) used in this project and

the sensor most relevant for this project.

2.1 Deep Learning

In Machine Learning, the computer attempts to find a behavioral function which

can solve a task. Because this function is unknown, it must be approximated and a

choice of parametrization must be made. A linear function f (x) = ax +b is one very

simple example of a function approximation, in which a conclusion, f (x), results

from an observation, x , and parameters, a and b, may be adjusted to improve the

7

8 CHAPTER 2. BACKGROUND AND THEORY

performance of a certain task.

There are several ways with which relationships in data can be parametrized, and

each method is suited for function approximation in different situations. The pre-

vious example is a simple one, with little expressive power. Another example

is Gaussian processes, which are data efficient but struggle with expressing non-

smooth curves and are slow to train (Zhang; 2017). Adhering to trends in Machine

Learning and Reinforcement Learning (RL), we will in this section focus on Ar-

tificial Neural Networks (ANNs) and Deep Learning (DL), which possess great

expressive power and scalability to large amounts of data.

In this section, we will present an introduction to ANNs before moving on to Deep

Neural Networks which play an important part in some of the most impressive

abilities of machine learning systems today, including in RL (Sutton and Barto;

2017). Furthermore, we will take a look at Convolutional Neural Networks (CNNs)

an architecture type that builds on ANNs and which is used in our approach. The

main source for this section is Goodfellow et al. (2016) unless otherwise specified.

For deeper insight into ANNs and their use in RL, we refer to Goodfellow et al.

(2016) and Sutton and Barto (2017) respectively.

2.1.1 Artificial Neural Networks

While many associate Deep Learning with new technological fields in artificial

intelligence, the principles of Deep Learning date back to the 1940s. In order to

understand Deep Learning, we will first take a look at the emergence of Artificial

Neural Networks (ANNs).

ANNs were originally inspired by neuroscience and the human brain. The brain of

humans and animals consist of a network of biological components called neurons,

an example of which is illustrated in Figure 2.1. Simply put, a neuron has a body,

called a soma, a tail, called an axon, and connectors known as dendrites. The tail of

a neuron branches out and connect to the dendrites of other neurons like electrical

wires. Each neuron collects signals passed to them through their dendrites and,

depending on the strength of the signals it receives, sends out a signal of its own

through its axon, to be used by other neurons. This way, each neuron is connected

and receives signals from a number of neurons while sending its own signals to

different neurons. Through experience, neurons will adapt to put more weight to

2.1. DEEP LEARNING 9

Figure 2.1: Simplified illustration of a biological neuron. The neuron was drawn using
PaintTool SAI.

Figure 2.2: Simplified illustration of an artificial neuron

the signals of certain neurons they listen to, and less weight to others. Together,

neurons are able to form complex behavior in both animals and humans, despite

the individual neuron’s relatively simple design. The scientists of the early days

of Deep Learning took inspiration from this biological ingenuity and used similar

principles to develop ANNs. For deeper insight into biological neurons, see Squire

et al. (2008).

Like its biological counterpart, Artificial Neural Networks comprise of a network of

neurons. Similarly to the biological neurons, these artificial neurons take a set of n

input values, x1,x2, ...,xn , and uses a set of n weights, w1,w2, ...,wn , to calculate

an output. In addition, a bias term, b, is also often used. This amounts to a linear

10 CHAPTER 2. BACKGROUND AND THEORY

function

д(x) = w⊤x + b (2.1)

where x represents the vector of the input to the neuron, w the vector of weights,

and b the bias term. By adjusting the weights and the bias, the output of the neuron

can be fitted according to the user’s desire.

The perceptron presented by Rosenblatt (1957), was the first model to learn the

weights which defined two categories given examples of inputs from each category.

The function of a perceptron neuron is given in (2.2).

f (x) =


1, if w⊤x + b > 0

0, otherwise
(2.2)

The final output of the neuron is decided by an activation function, a function which

takes the sum of all inputs multiplied with their respective weights and the bias, i.e.

w⊤x + b, and computes an output, y = f (w⊤x + b). The perceptron used a step

function for activation, but a multitude of alternatives are in use today, depending

on the task at hand. A step function will give a binary response, 0 or 1, a tanh

function provides a continuous scaling between -1 and 1, a siдmoid function scales

continuously between 0 and 1, and a relu function will return the maximum of the

input and 0. Graphs of the siдmoid, tanh and relu functions are presented in Figure

2.3 and a visual representation of an artificial neuron is presented in Figure 2.2.

Neurons can be grouped together in layers where the layer takes in an input vector,

x, and outputs an output vector y as a result of a weight matrix, W, a bias vector b,

and an activation function, f (·).

y = f (Wx + b) (2.3)

A network is built by passing the input through an input layer to a neuron layer, often

called a hidden layer, and ultimately to an output layer. A network may contain only

one such hidden layer or it may contain many, where the output of one layer is used

as the input of the next. An example of such a network is provided in Figure 2.4.

ANNs represent a complex and nonlinear function. According to the Universal

2.1. DEEP LEARNING 11

Figure 2.3: Plot of three functions often used as activation functions in ANNs

Approximation Theorem (Cybenko; 1981), a network with a single layer of a finite

number of neurons can approximate any continuous function of a finite set of

real variables. However, the parameters of the network, the weights, and biases,

collectively labeled θ , must be fitted to the task. This process is called training the

network and will be discussed later.

2.1.2 Deep Neural Networks

An ANN with more than one hidden layer is called a Multilayer Perceptron or a

Deep Neural Network (DNN). It is through the use of such deep architectures and

different activation functions that Deep Learning has achieved the impressive results

seen in the later years (Silver et al.; 2016; Mnih et al.; 2015; Schmidhuber; 2015;

Levine et al.; 2016; Kober et al.; 2013). Examples of their successes are many, such

as Silver et al. (2016) and Mnih et al. (2015), who created networks that are able to

play games of Go and Atari respectively on superhuman levels, or Lu et al. (2017)

who provided a network which can transform sketches into photorealistic images.

Intuitively the notion of having a multitude of layers can be seen as piling simple

concepts together in order to create something complex. Where one layer alone may

be able to express something simple, building upon that expression may be able to

express or deduce more. This works in the same way simple concepts like addition

12 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.4: A Neural Network structure example where each colored dot represents a
neuron in the network and the arrows the weighted connections between them. The input is
passed to the network through the input layer, forwarded through a number of hidden layers,
and finally, mapped to the output through the output layer. Input neurons are activated
through sensors that are perceiving the environment, while other neurons are activated
through weighted connections from previously activated neurons (Schmidhuber; 2015). In
this example, the network consists of an input layer of size three, two hidden layers, both of
size three and an output layer of size two, but these sizes may vary.

and multiplication can be piled to create complex and nonlinear equations which are

able to describe highly complex concepts that lie beyond the expressive power of

the individual pieces. Another example lies in how simple constructs of Lego pieces

can together build large and intricate creations. One piece cannot represent much,

but by using many pieces, a wall can be built, and from that, an entire building. On

the other hand, the same pieces may be used to instead build a bridge. This example

illustrates the expressive power that lies in DNN.

ANNs and deep learning, the process of adapting the weights of the deep NN to

make it exhibit the desired behavior (Schmidhuber; 2015), have attracted widespread

attention and recognition. As pointed out in Schmidhuber (2015), they have espe-

cially found success in tasks of visual nature, like image classification, and have

accomplished impressive results in certain areas of reinforcement learning (Mnih

et al.; 2015; Silver et al.; 2016; Sutton and Barto; 2017). In our case, their expres-

sive power and compatibility with RL and IRL make them a good candidate for

end-to-end learning of a steering model.

2.1. DEEP LEARNING 13

2.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), are a special subclass of ANNs in which

at least one layer is convolutional, i.e. a layer that uses convolution in place of

general matrix multiplication. Convolution is a mathematical operation. E.g. given

a measurement function, x(t), dependent on time, t , and a weighting function

w(a) where a is the age of the measurement, a weighted sum that provides more

relevance to recent measurements could be gained by using the following operator

(Goodfellow et al.; 2016):

s(t) = (x ∗w)(t) =

∫
x(a)w(t − a)da (2.4)

This operator is called convolution and Equation (2.4) presents the continuous single

dimensional form. Equation (2.5) presents the discrete 2D form of the operator,

which is the one used in CNN.

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I (i −m, j − n)K(m,n) (2.5)

In CNNs, the weights which scale the input in a layer come in the form of kernels,

sometimes referred to as filters. A 2D kernel is a matrix where each entry represents

a weight of its input similarly to the weights of one fully connected neuron. In fact,

convolving a kernel with a size equal to the input would be the same as applying

one fully connected neuron to the input. However, these kernels are usually smaller

than the input, allowing them to focus on local spacial features.

The input I , e.g. an image, is convolved by a kernel K as defined in Equation 2.5,

resulting in an output image S where each entry equals a weighted sum of a piece

of the input image. This process is equal to flipping the kernel and then moving

it across the image, recording the weighted sum with each step. An example of

one such step is illustrated in Figure 2.5. One convolutional layer may apply more

than one kernel to its input. Because each convolutional operation outputs one 2D

image, a layer may, therefore, produce a number of output 2D images, often called

channels, from the same 2D input image.

The smaller size of the kernels, allow them to only account for local information in

the input. In addition to this, differently weighted kernels will provide high values

14 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.5: An illustrated example of two steps of the convolution of a kernel, K , and
an image, I . The convolution in this example is performed with a stride of 1 and without
padding the image.

in different cases. E.g. where one kernel may output high values when convolved

with a piece of an image that contains a horizontal edge, another may output high

values when exposed to vertical edges. Using both of these kernels in one layer, a

network may in a later layer combine this information in order to detect corners and

more complex forms or textures. The weights and sizes of these kernels thus define

a network’s output. The sizes and number of the kernels in each layer are decided

by the programmer, while the weights of each kernel are learned through training.

CNNs are used for processing data that has a known grid-like topology, such as

images, and have proven highly effective in this regard. The application of deep

CNN has allowed for breakthroughs in text recognition, scene labeling, image

classification, object detection, object tracking, and more (Gu et al.; 2018). The

latter two, object detection and object tracking, are especially valuable to us in the

task of obstacle avoidance through the use of radar images.

2.1. DEEP LEARNING 15

Figure 2.6: Conseptual illustration of the layered detection of a box in a CNN

Max-Pooling

CNNs often combine convolutional layers with max-pooling layers. Max-pooling is

an operation in which a gridlike structure is downsampled by choosing the maximum

value of a region to represent the region, effectively reducing the size of the grid in

the process. In CNNs, pooling helps make the network invariant to small translations

of the input, meaning that if an element in an image is moved by a small amount,

the output of the pooling layer will mostly stay the same.

Batch Normalization

Another type of layer that often accompanies convolutional layers in CNNs is batch

normalization (Ioffe and Szegedy; 2015). These layers normalize their input by

subtracting the batch mean and dividing by the batch standard deviation. This mean

and standard deviation is learned during the training process. The normalization

provides a remedy against the problem of certain neurons overpowering others by

leveling the playing field so to speak.

2.1.4 Training

A vital part of DL is the training of the ANNs. The parameters, θ , of the network

must be fitted so that the input to the network is processed in a way befitting the

network’s task, whether this is the classification of an inputted image or generation

16 CHAPTER 2. BACKGROUND AND THEORY

of an action based off an inputted observation as is the case in Reinforcement

Learning.

The network is trained by repeatedly feeding input data from a training set into the

network. For example, in supervised learning, such a training set consists of pairs of

input and labels where the labels represent the true output, that which the network is

to learn. The actual output of the network is then evaluated through a loss function

which determines the error of the output for the given input. Adjustments are then

made to the network parameters in order to reduce that loss. These adjustments are

often performed using Gradient Descent through back-propagation of the error, as

illustrated by this next example.

In the case of image classification, a supervised learning branch of DL, a task may

be for an ANN to determine whether its input image depicts a cat or a dog. The

image is passed through the network and produces two probabilities at its output,

the probability of the image depicting a cat and the probability of it depicting a

dog. In training, a loss may be found by calculating the difference in the true label

of the image, it being a cat or a dog, and the suggested output. These losses are

then back-propagated. This means that the gradientof the prediction error is passed

backwards through the network, and the gradients of the error with respect to the

weights of the network, are calculated. These gradients can then be used to update

the weights of the network. The process is repeated for different inputs drawn from

the training set.

2.2 GAN

Generative Adversarial Networks (GANs) were first introduced by Goodfellow et al.

(2014), inspired by two-player zero-sum games. In such a game, the sum of the

gains of the two players is always zero and the win of one player is thus exactly

matched by the loss of the other. The main idea behind GANs is to use two Artificial

Neural Networks (ANNs) and, similarly to the two-player zero-sum game, pit them

against each other in order for them to guide each other towards optimal behavior.

GANs are usually comprised of a generator and a discriminator which learn their

individual tasks simultaneously. The generator’s task is to capture the potential

distribution of a set of real samples and generate new data. It thus aims to generate

data which looks like it is part of the true set of samples, while in reality, it is

2.2. GAN 17

generated from a prompt, e.g. noise. The discriminator’s task is to separate the

real samples from the data generated by the discriminator as accurately as possible.

Because of the nature of its task, the discriminator is often a binary classifier,

though this does not need to true in all cases (Finn et al.; 2016b). As pointed out in

Wang et al. (2017), the discriminator and generator can both adopt the structure of

currently popular ANNs.

A practical example of the dynamics between the generator and the discriminator

is one of an art forger and an art dealer. The art forger attempts to gain money by

painting copies of expensive paintings while the art dealer attempts to distinguish

these copied paintings from the genuine articles. The art dealer will over time

improve their ability to distinguish between the copies and the real paintings and

in turn, the art forger will have to improve their copies. Eventually, the art forger

is able to capture the full distribution of the real paintings and the copies will be

indistinguishable from the real paintings. In this scenario, the forger represents

the generator, while the art dealer represents the discriminator. Their goals are

intertwined such that for one to succeed, the other must fail. GANs can thus be

viewed as two competing rivals. The win of one will motivate the other to do better

until the roles reverse. This keeps going and the two rivals will this way push each

other towards better results.

GANs have received much attention for their applicability and they have especially

seen success in the fields of image and vision. Through the use of GANs, networks

have learned to generate photorealistic photos of birds and faces, transform photos

of scenery taken during summer time into a version during winter time, create

high-definition images from low-definition images, and more (Goodfewllow; 2016;

Wang et al.; 2017). GANs have also been used for tasks that do not involve images,

such as a few cases of usage in Reinforcement Learning and Imitation Learning,

though most examples of GAN usage are related to visual tasks (Wang et al.; 2017).

2.2.1 Training

Given a binary discriminator D, and a generator G, parameterized by the parameters

θd and θд respectively, the training scheme of the GAN is defined by the following

equation:

18 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.7: Illustration of a Genereative Adversarial Network training scheme

min
G

max
D

V (D,G) = Ex∼pr (x)[loдD(x)] + Ez∼pz(z)[loд(1 − D(G(z)))] (2.6)

where pr (x) is the distribution of a training data set, i.e. the real distribution that

the generator is tasked to learn, and pz(z) is the distribution of the noise input to the

generator.

In equation (2.6), loд(1 − D(G(z))) is the loss function for G. The loss of G is based

on D’s ability to correctly classify G’s generated data,G(z), and will thus be optimal

at 0, when D classifies G(z) as a real sample, D(G(z)) = 1. The loss function of

D is loдD(x) + loд(1 − D(G(z))), i.e. to which degree D is able to categorize the

real and generated samples correctly, D(x) = 1, D(G(z)) = 0. In total, G attempts

to minimize equation (2.6), while D attempts to maximize it, resulting in a tug of

war between the two. The parameters of D and G are updated in turn, as shown in

Algorithm 1. An illustration of a GAN training scheme is shown in Figure 2.7

2.2. GAN 19

Algorithm 1: Batch Training of GAN

Input :Data set representing the distribution pr

1 while training do
2 Samplem generated samples {z(1), ..., z(m)} from pz (z)
3 Samplem real samples {x(1), ..., x(m)} from pr (x) Update D:

4

∇θd
1
m

m∑
i−1

[
loдD(x (i)) + loд(1 − D(G(z(i))))

]
Update G:

5

∇θд
1
m

m∑
j−1

loд(1 − D(G(z(j))))

6 end

2.2.2 Advantages and Drawbacks

Goodfewllow (2016) point out that GANs enable machine learning to work with

multi-modal outputs, i.e. the case of one single input corresponding to different, yet

each acceptable, outputs. This is e.g. the case with many steering scenarios such as

in our case of avoiding an obstacle, where one may choose to either turn to the left or

the right with different degrees. Where approaches such as mean square error may

only provide an average over the possible outcomes, which may be unsatisfactory

on its own, GANs may understand that there are many possible outputs, each of

which is distinctly different. This makes GAN a promising candidate for learning a

steering model from demonstrated behavior.

As seen in the previous section, GANs train by simultaneous gradient descent, a

process that converges for some games but not all. Goodfellow et al. (2014) showed

that simultaneous gradient descent in min-max GAN games converges if the updates

are made in function space. As pointed out in Goodfewllow (2016), updates are in

practice made in parameter space, making the convexity properties that the proof

relies on non-applicable. There are no theoretical arguments that GANs neither

converge nor that they do not, and in practice, they often oscillate (Goodfewllow;

2016). One common way of harmful non-convergence in GANs is mode collapse, in

20 CHAPTER 2. BACKGROUND AND THEORY

which the generator learns to map several different input values to the same output

point(Goodfewllow; 2016). Goodfewllow (2016) point out that while complete

mode collapse is rare, partial collapse is a common challenge of GANs.

2.3 Reinforcement Learning

As explained in Sutton and Barto (2017), Machine Learning (ML) is divided into

three categories, Supervised Learning, Unsupervised Learning and Reinforcement

Learning. In short, Supervised Learning concerns learning using data sets where

each input example has a corresponding label or target, corresponding to the ground

truth. Because these labels are known, training consists of comparing labels gener-

ated by the function in learning to the true labels, similarly to a teacher correcting

a student’s test. In Unsupervised Learning, the true labels of the examples in the

data set are unknown. Algorithms of this kind handles datasets containing many

features and learn useful properties of the structure of this dataset. While supervised

learning can for example be used to separate rats from mice, unsupervised learning

may be used to for example discover clusters in a data set, like correlations between

the rodents diet and their activity level. Reinforcement Learning (RL) differs from

the other two in that there is no pre-made data set used for training. Instead, training

data is collected during the learning process. The supervision in RL is also indirect

and often sparse. The control of a robot arm, learning to generate an appropriate

action in a specific situation, is a typical Reinforcement Learning task.

Out of the three ML branches, RL is better suited for control tasks such as those

considered in this project. In particular, with RL, we can avoid compounding errors,

support multi step, forward looking decisions, and do away with the requirement

of independently and identically distributed data (Tai et al.; 2016). Because of

this, we here focus on this branch of ML. For further reading about supervised and

unsupervised learning, we refer to Goodfellow et al. (2016).

This section will present some important topics in Reinforcement Learning (RL).

We also introduce the use of Deep Learning (DL), presented in the previous section

(Section 2.1), in RL as well as going more into detail of a specific deep RL algorithm

which we use in our system. Further details on RL can be found in Sutton and Barto

(2017), Gosavi (2009) and François-Lavet et al. (2018). We note that the first two

subsections of this section, though written by us, were originally written for a report

2.3. REINFORCEMENT LEARNING 21

as part of a preparatory project (Vedeler; 2018). As the theory has not changed, we

have elected to only make slight modifications to these paragraphs.

2.3.1 The core idea of Reinforcement Learning

Figure 2.8: An illustration of the agent-environment interaction in Reinforcement Learning.

As defined in Sutton and Barto (2017); "Reinforcement learning is learning what to

do — how to map situations to actions — so as to maximize a numerical reward

signal." At its core, the idea of Reinforcement Learning (RL) is to approach learning

in the highly intuitive way of most organisms we know of, learning by trial and error.

In RL, the one making the decisions is called the agent while everything outside of

the agent is called the environment The agent is not told what the goal is nor which

actions to perform in order to accomplish it. It is simply put into its environment

without prior knowledge of its workings. It must then discover the objective and

the suitable approach by performing actions and observe the results that they cause.

This feedback comes in the form of a numerical value from a given reward function

and, like a toddler, given encouragement and scolding, the agent will eventually

learn the desired behavior. A simple illustration of the RL process is presented in

Figure 2.8.

2.3.2 Marcov Decision Process

The process of the agent interacting with its environment and the resulting reward is,

in reinforcement learning, formulated as a Marcov Decision Process (MDP), a tuple

< X,U,P,R >. At each time step t = 0, 1, 2, 3..., the agent experiences some state

of the environment, x ∈ X, and must decide on some action, u ∈ U(x). The state is

here defined as a unique characterization of the environment and the process of the

task that the agent must solve. In practice, this is often expressed by a collection of

22 CHAPTER 2. BACKGROUND AND THEORY

sensory input of the agent, such as e.g. the pose of a robotic arm combined with

visual input (Finn et al.; 2016a). The actions can be used by the agent to control the

system state. In our case, the case of an USV, such an action could be to apply a

change in the steering parameters, e.g. change the heading of the USV. The choice

of action results in the agent transitioning into a new state, x′, and receiving a scalar

reward, r ∈ R, as a consequence of this transition. The transition is modeled by a

transition function P which defines the probability, p(x′ | x, u) ∈ [0, 1], of ending

up in state x′ after performing action u in state x. Meanwhile, R, or R(x, u, x′),

represents the reward function. It denotes the reward of transitioning from one state,

x, to another, x′, with the use of action u. The resulting reward may be positive or

negative and is used to guide the agent towards solving the task. The sequence of

state and action pairs, x0,u0,x1,u1, ...,xn ,un is often called the trajectory, τ .

RL is not alone in relying on a set of states, actions, and an underlying model. Both

in this regard and others, RL share similarities with classical optimal control (Kober

et al.; 2013). However, as pointed out by Kober et al. (2013), a key difference is the

fact that optimal control assumes knowledge about this model is available, while

RL does not. RL learns a task without prior knowledge of the inner workings of

the environment in which it resides. P and R are both unknown to the agent. Only

the string of states-actions pairs and the resulting rewards the repeated interactions

produces, x0,u0, r0,x1,u1, r1,x2, ..., is observable by the agent. RL’s ability to learn

without a given model makes it an appealing choice when it comes to our task of

steering an USV, as the dynamics of its environment is challenging.

An assumption of MDPs is that the current state provides enough information in

order to choose the optimal action. In other words, the past states can be ignored

when deciding the action. While this is unproblematic in some cases, an argument

could be made that this does not properly make use of the temporal information

that may be needed to perform the task in an optimal way (Chi and Mu; 2017).

A task can be episodic, meaning it has an ending state that stops the process, or

non-episodic, in which case the task could continue indefinitely.

2.3.3 Optimal Policy

As previously mentioned, RL learns how to map situations to actions. This mapping

function is, in RL, called a policy, π : X → U. When the agent acts in the

environment, it does so based on the state to action mapping its current policy

2.3. REINFORCEMENT LEARNING 23

provides it with. Thus, in order to solve its task, the agent’s policy must be trained

so that it maps a given state to an appropriate action, one that either successfully

achieves the goal of the task or puts the agent a step closer to doing so. The goal is

to learn a policy that solves the given task in an optimal way, i.e. to learn an optimal

policy. In RL, the optimal policy, π ∗, is learned by interacting with the environment

and optimizing the policy of an agent such that it maximizes the reward it receives

for its behavior.

The V-value function, V π (x) is a measure of the expected return of rewards given

the agent is in state x and will follow the policy π for all future states. Thus, the

V-value function is a measure of the value of a state under a specific policy. There

are several ways of defining how future rewards should account for the current

value of the state, three of which are named infinite horizon, finite horizon and

discounted infinite horizon. In the infinite horizon approach all future rewards are

used in calculating the value, while the finite horizon approach only accounts for

the rewards within a certain number of time steps. As somewhat of a compromise

between these two, the discounted infinite horizon approach accounts for all future

rewards, but scales them such that the rewards that lie closer in time are regarded

as more important. Using the discounted infinite horizon approach, the V-value

function can be expressed as in equation (2.7) and equation (2.8), where the latter

highlights the recursive property of the function.

V π (x) = E
[∞∑
k=0

γ krt+k |xt = x,π
]

(2.7)

=
∑

x′
P(x,π (x), x′)(R(x, u, x′) + γV π (x′)) (2.8)

In these equations, γ ∈ [0, 1] denotes the discount factor. The closer to zero γ is,

the more the agent values the immediate rewards over those further into the future.

When γ = 1, the approach equals that of infinite horizon.

In addition to the V-value function, we have the Q-value function, Qπ (x, u). Much

like the V-value function, the Q-value is a measure of the value of a state under a

certain policy. However, in the Q-value function a separate action is provided. The

Q-value represents the expected reward for the agent in state x provided it performs

action u and from the next state, x′, follows the policy. The action, u, may be one

24 CHAPTER 2. BACKGROUND AND THEORY

that does not follow from the policy, meaning the Q-value can be used to evaluate

the value of an state-action pair for actions outside of its policy. Thus, the optimal

policy can be obtained directly from the optimal Q-value function

π ∗(x) = argmax
u∈U

Q∗(x, u) (2.9)

where Q∗(x, u) = maxπ ∈ΠQ
π (x, u) is the optimal Q-value function.

In addition to these two, we have the advantage function:

Aπ (x, u) = Qπ (x, u) −V π (x) (2.10)

The advantage describes how good the action, u, is compared to following the policy

π directly. In other words, it measures the value of changing the current policy so

that it chooses the action u for the state x.

These value functions are not readily known to the actor, and must thus be estimated

during training. Like the policy, they must be represented by some form of function

approximation that can be updated and optimized during training. One type of such

representation which has performed well in this regard is the use of Artificial Neural

Networks (ANNs).

2.3.4 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines RL and Deep Learning (DL),

using Artificial Neural Networks (ANNs) to express their policies. As previously

mentioned, the use of DRL have accomplished impressive results in certain areas

of reinforcement learning (Mnih et al.; 2015; Silver et al.; 2016; Sutton and Barto;

2017; Martinsen and Lekkas; 2018). Also in our case, the expressive power and

compatibility with RL and make it a good candidate for end-to-end learning of a

steering model.

Value based methods learns a value function and uses this function as a basis for the

policy. Value based methods, most notably varieties of the Deep Q-networks (DQN)

algorithm introduced by Mnih et al. (2015), have accomplished impressive tasks,

like reaching super-human performance in Atari games. However, as explained in

2.3. REINFORCEMENT LEARNING 25

François-Lavet et al. (2018), these types of algorithms are not well-suited for large

and/or continuous action spaces and they cannot explicitly learn stochastic policies.

Another group of DRL methods are the Policy Gradient Methods (PGMs), which

learn a parameterized policy, πθ , that selects actions without consulting an estimated

value function. A value function may still be used as a means to learn the policy, a

subgroup of methods called actor-critic methods, but they are not required for the

selection of the action. PGMs optimize a performance objective, J (πθ), by finding

a good policy, πθ , using variants of stochastic gradient ascent with respect to the

policy parameters θ . The performance objective is typically the expected cumulative

reward (François-Lavet et al.; 2018). With α denoting the step size, or the learning

rate, the general gradient ascent update rule is given in equation (2.11) (Sutton and

Barto; 2017)

θt+1 = θt + α∇J (πθt) (2.11)

Actor-critic methods get their name from their two parts: the actor and the critic

(Konda; 2002). The actor refers to the policy while the critic is the estimate of

the value function. Both can be represented by ANNs (Mnih et al.; 2016). When

updating the policy, actor-critic methods bases the changes on feedback from the

critic.

Stochastic Policies
Policy Gradient Methods (PGMs) are usually performed on-policy, i.e. updating

only using data collected with the most recent policy, as opposed to off-policy,

meaning the update can be made on any collected data, even if the choices which led

to the collected data does not adhere to the current policy. In practice, policies used

in PGMs are thus usually non-deterministic so as to allow for exploration, resulting

in the use of stochastic policies. Two of the most common types of stochastic

policies are categorical policies, which can be used in discrete action spaces, and

multivariate Gaussian policies, which are used in continuous action spaces. While

the latter of the two is perhaps the more intuitive choice for use in a continuous

task such as ours, we have performed testing with both and thus devote a short

introduction to both of these forms of policy representation.

Multivariate Gaussian Policies, N(µ(x), Σ(x)) are described by a mean vector, µ,

26 CHAPTER 2. BACKGROUND AND THEORY

and a covariance matrix, Σ. µ is calculated for the observed state by passing the

observation through a neural network. The same may be true for Σ, but this is not

always the case. An action sample, corresponding to the observed state can then be

drawn from this distribution and training of the policy is equivalent to training the

ANNs which produce the mean and, possibly, the covariance.

While Multivariate Gaussian Policies may produce actions that are continuous, cate-

gorical policies work with discrete action spaces. They map the input observation to

one out of a fixed number of discrete categories where each of these categories have

a separately specified, learned probability of being chosen. It is worth noting that

even though the output of such a policy, the action, is discrete, the same need not be

the case for the observation or state space. A discrete policy may still be used to

solve a continuous task.

Policy gradient methods optimize their policy by promoting the actions which

result in high rewards, making changes so that these favorable actions gain a high

probability of occurring. Likewise, the actions which lead to low rewards are to be

pushed towards a low probability of occurring.

2.3.5 Trust Region Policy Optimization

Policy gradient methods adjust the policy by updating with a step in the direction

which yields the steepest ascent in expected reward. However, deciding the size

of the step, often referred to as the learning rate, is not always a trivial matter. A

large step may yield fast improvement, but it may also cause the update to step over

the intended optima which may delay or even prevent convergence. In the worst

case, the resulting policy could become destructive for the agent or its environment

during training. On the other hand, an overly cautious step size may prolong the

training time. This can be illustrated by a hiker walking towards the top of a cliff:

Stepping too far will make them fall off the edge while taking too short steps will

slow down the progress. An additional issue is the fact that the optimal step size, or

learning rate, is not necessarily consistent. A learning rate with high performance at

one point of the learning progress might prove disastrous in another.

Trust Region Policy Optimization (TRPO) (Schulman et al.; 2015) handles this

issue by taking the largest step possible while still constraining the policy changes,

limiting the parameter changes with a constraint on the difference between the

2.3. REINFORCEMENT LEARNING 27

new and the old policy. In order to do this, TRPO uses a minorization-maximation

(MM) algorithm (Hunter and Lange; 2004), trust region, importance sampling, and

a conjugate gradient algorithm. The method, described in detail in Schulman et al.

(2015), will be summarized in the following paragraphs.

The optimization objective

Let η(π) express the expected discounted reward of the stochastic policy π . This is

the objective that is to be optimized in order to attain an optimal policy.

η(π) = Ex0,u0, ...

[∞∑
t=0

γ krt
]

(2.12)

where rt is the reward for state xt , x0 is the initial state sampled from the the

distribution of initial states p0, ut is the action provided by the policy ut ∼ π (ut | xt),
and the next state xt+1 results from the transition function xt+1 ∼ P(xt+1 | x, u)

As proved in Kakade and Langford (2002), the expected return of another policy π̃

can be expressed by the accumulated advantage over π .

η(π̃) = η(π) + Ex0,u0, ...∼π̃

[∞∑
t=0

Aπ (xt ,ut)
]

(2.13)

Where A(π)(xt , ut) is the expected advantage, as described in equation (2.10).

By defining pπ as the discounted visitation frequencies, i.e. the frequency of

which the states are visited under the policy π , pπ (x) := P(x0 = x) + γP(x1 =

x)+γ 2P(x2 = x)+ ..., equation (2.13) can be expressed as a sum over states instead

of time steps.

η(π̃) = η(π) +
∑

x
pπ̃ (x)

∑
u
π̃ (u | x)Aπ (x, u) (2.14)

Because the visitation frequency cannot be negative, this confirms that a policy

update π → π̃ is guaranteed to either increase or retain the policy performance

η(π) if its expected advantage at every state is nonnegative,
∑

u π̃ (u | x)Aπ (x, u) ≥ 0.

However, as pointed out by Schulman et al. (2015), when the components of (2.14)

28 CHAPTER 2. BACKGROUND AND THEORY

are estimations, as is the case in most practical tasks, approximations and estimation

errors makes the appearance of negative advantage values unavoidable.

Equation (2.14) is difficult to optimize directly due to its dependency on pπ̃ (x).
Schulman et al. (2015) thus provides an alternative, local approximation to η which

uses the visitation frequency of the old policy pπ instead of having to account for

the changes that the new policy will introduce in the visitation frequency pπ̃ .

Lπ (π̃) = η(π) +
∑

x
pπ (x)

∑
u
π̃ (u | x)Aπ (x, u) (2.15)

Though Lπ is an approximation of η, when the policy is parameterized and differ-

entiable such as an ANN, results of Kakade and Langford (2002) show that Lπ
matches η to first order. Because of this, a step that improves Lπ , will also improve

η.

The step size

In order for optimization of Lπ to guarantee optimization policy improvement, the

step size must be sufficiently small. Building on the work done in Kakade and

Langford (2002), Schulman et al. (2015) shows that the following holds for the

expected discounted reward η:

η(π̃) ≥ Lπ (π̃) −CDmax
KL (π , π̃),

where C =
4ϵγ

(1 − γ)2
(2.16)

where ϵ = maxx,u |Aπ (x, u)|. For details and proofs for this result we refer to

Schulman et al. (2015).

In equation (2.16), Dmax
KL (π , π̃) = maxu DKL(π (·| x)| | π̃ (·| x)) is the maximum KL-

divergency. The KL-divergency represents the dissimilarity between two distribu-

tions (Zhang; 2017). Thus, it is intuitively sound that it would be usable in a lower

bound.

By maximizing Lπ (π̃) −CDmax
KL (π , π̃), the true objective η is guaranteed to be non-

decreasing, thus training will cause monotonical improvement. This is, in fact,

2.3. REINFORCEMENT LEARNING 29

a type of minorization-maximation (MM) algorithm (Hunter and Lange; 2004),

where the maximation of an objective is achieved by estimating a lower bound that

approximates the true objective at the current step but which is easier to use in

calculations. At each step, this lower bound is then optimized and because the true

objective is always larger than, the improvement to this true objective is guaranteed

to be at least as great as the improvement made to the estimated bound.

Applying the results of equation (2.16) in the optimization of a policy parameterized

by the parameters θ , yields the following update rule

argmax
θ

[Lθold (θ) −CDmax
KL (θ

old
,θ)] (2.17)

where θ denotes the parameters that make up the policy, and θold denotes the

previous policy parameters which are to be improved upon.

Trust Region

Schulman et al. (2015) remarks that, in practice, using the update rule of equation

(2.17) results in excessively small step size because of the penalty constant C,

slowing down the learning of the policy. In order to allow for larger steps while

still keeping the algorithm robust, Schulman et al. (2015) suggests the use of a trust

region.

When applying a trust region, the maximum step size is determined based on the

local accuracy, or level of trust, of the estimations in the objective function. This

maximum step size yields a trust region. Once the trust region has been established,

the objective can be maximized and a step can be taken to the maxima within the

region.

Schulman et al. (2015) bases their trust region on the average KL-divergence,

meaning the trust region is large for small changes in policy parameters and small

for large changes in policy parameters. This results in the update rule of the TRPO

algorithm: (Schulman et al.; 2015)

30 CHAPTER 2. BACKGROUND AND THEORY

argmax
θ

Lθold (θ)

subject to D̄
pθold
KL (θ

old
,θ) ≤ δ

(2.18)

where D̄
pθold
KL (θold ,θ) is the average KL-divergence. The use of average KL-

divergence rather than true KL-divergence is motivated by the lesser number of

constraints.

Intuitive summary

Intuitively, the expected improvement of a new policy can be approximated locally

around the current policy, but with an accuracy which decreases when the new

and current policy diverge. Establishing an upper bound for this error using KL-

divergence yields a region in which the approximation can be trusted and thus when

optimizing the local approximation within this trust region, the step is guaranteed to

improve the policy. Repeating this process iteratively will eventually result in an op-

timal policy. TRPO also applies importance sampling in order to increase sampling

efficiency and conjugate gradient optimization for computational efficiency.

Exploitation and Exploration

Policy methods can be categorized into on-policy methods and off-policy methods.

While on-policy methods choose their actions from the current policy to be opti-

mized during training, off-policy methods are free to use actions which do not come

from the policy they are currently optimizing. This allows them e.g. to use random

actions at random points during training. This randomness makes the agent explore

its environment outside of the current path of the policy and perhaps discover better

alternatives which can then be incorporated into the policy.

Because TRPO trains its policy, which is stochastic, in an on-policy way, it explores

by sampling actions according to the latest version of its policy. Contrary to

off-policy methods, TRPO, an on-policy method, explores by sampling actions

according to the latest version of its policy. Because its policy is stochastic, some

2.4. INVERSE REINFORCEMENT LEARNING 31

randomness will be present, allowing for exploration of the environment. However,

this randomness of its selected actions depends on initial conditions and the training

procedure. The policy also typically becomes less random over the course of the

training as a result of the TRPO rule which encourages the exploitation of the

rewards which it has already found. This results in a policy that optimizes well over

the rewards that it has discovered, however, it may also cause it to get trapped in a

local optimum.

2.4 Inverse Reinforcement Learning

Reinforcement Learning (RL) relies heavily on feedback from a reward function as

it provides the agent with the only exterior feedback on its behavior. In order for

an agent to learn, a reward function must not only be known by the programmer, it

must also capture the nature of the task. Formulating such a reward function is no

trivial matter however, as many tasks may be difficult to describe in such a manner.

In many cases, the reward function may be overly complicated, abstract or simply

unknown to the programmer.

Inverse Reinforcement Learning (IRL) is a response to the issue of constructing a

reward function. It is a relatively new field, in which the focus lies on the reward

function, not the policy (Zhifei and Joo; 2012). In this section, we provide a short

introduction to the IRL principles in order to build the necessary vocabulary for the

next section.

2.4.1 The concept of IRL

As already mentioned, the need for a pre-constructed reward function is a drawback

of RL because the design of such a function may be difficult to achieve, especially

for complex tasks. E.g. in the case of driving a vehicle, even though we perform the

task, there is no guarantee we will be able to accurately represent it in the form of a

reward function.

In IRL, the construction of a reward function is achieved through observing an expert

perform the task. The agent is given a set of demonstrations, D = {τ 1,τ 2, ...,τn},

performed by an expert, where each demonstration consists of a set of state-action

pairs, τ i = {(x0, u0), (x1, u1), ...(xk , uk)}. The usage of recorded expert behavior is

32 CHAPTER 2. BACKGROUND AND THEORY

a trait IRL shares with the behavioral cloning techniques. In behavioral cloning, the

goal is to replicate these trajectories directly from the demonstrations, usually

through supervised learning. However, this approach usually suffers from an

insufficient number of training samples and poor generalization (Zhifei and Joo;

2012). Unlike behavioral cloning, IRL does not attempt to learn the behavioral

directly, instead the goal is to infer the motivation behind the demonstrations or the

underlying goal of the task. It learns the reward function that the expert would have

used to achieve its performance.

As with RL, the reward function is assumed to able to succinctly represent the task

and lead to optimal behavior (Zhifei and Joo; 2012). Thus, assuming the expert is

performing the task, finding the reward function under which the expert behavior is

optimal, IRL may recover a reward function that describes the task itself. Such a

reward function contains the expert’s experience in both the task and the dynamics

of the environment in which it is performed. The latter part is especially important in

situations with complex dynamics, such as in robotics, where extensive knowledge

of such dynamics would be required in order to manually craft a descriptive reward

function.

2.4.2 IRL algorithms

Two important advances in IRL were made with the papers on Maximum Entropy

IRL (Ziebart et al.; 2008) and Deep Maximum Entropy IRL (Wulfmeier et al.;

2015), which introduced the use of entropy maximation and use of Artificial Neural

Networks as a parametrization of the reward function respectively. For the sake of

brevity, the specifics of these algorithms are left out of this thesis. However, for the

sake of completion, a summary of them is included in Appendix A.1 and A.2.

An issue with learning a reward function is that it is difficult to evaluate the function

directly. Most IRL algorithms perform this evaluation by optimizing a policy for

the current iterations reward function, before comparing the performance of this

policy with the expert demonstrations. Thus most such IRL algorithms contain

an RL training loop which learns an optimal policy for every iteration of the IRL

training loop. As pointed out in Finn et al. (2016a), this RL task can be a costly and

complex task in itself, making such IRL algorithms expensive to run.

Guided Cost Learning (GCL) (Finn et al.; 2016a) differs from most IRL algorithms

2.5. IMITATION LEARNING 33

in that it improves on the reward function inside a policy optimization loop instead

of learning a policy in a reward function optimization loop. Because the algorithm

does not complete a full RL procedure at each training iteration, the computational

efficiency is drastically improved. In addition to this, the policy optimization of

GCL fits a model to the dynamics, a model that the reward function optimization

can benefit from. The algorithm, which for completion is summarized in Appendix

A.3, learns both a policy and a reward function, and may thus also fall under the

category of Imitation Learning which will be covered in the next section.

2.5 Imitation Learning

Imitation learning (IL) techniques aim to mimic human behavior in a given task,

specifically by observing a teacher demonstrate this task (Hussein et al.; 2017). The

goal of IL is not simply to reproduce the specific motions of the demonstrations but

to learn a policy that can be generalized to unseen scenarios. The combination of In-

verse Reinforcement Learning (IRL), to learn a reward function, and Reinforcement

Learning (RL) to learn a policy from the reward function can thus be categorized as

IL techniques.

In this section, we will compare IL, specifically the technique of combining IRL

and RL, with the Deep Learning technique of Generative Adversarial Networks

(GANs) introduced in Section 2.2. We will then proceed to summarize GAIL, an IL

algorithm which exploits this connection.

2.5.1 GAN and Imitation Learning

In Section 2.2 we saw that in GAN, a generator, G, learns to imitate a (possibly

unknown) distribution and that it does so by receiving feedback on its performance

from a discriminator, D. The discriminator, meanwhile learns to distinguish between

samples generated by G and samples of the real distribution represented by a data

set. This relationship between D and G is highly similar to the relationship between

a policy and a reward function in combined RL and IRL such as e.g. the GCL

algorithm Finn et al. (2016a). The policy, which takes a state as input and outputs

an action, should learn to imitate the distribution of the state-action pairs that the

expert is working under and can thus assume the role of a generator in a GAN. The

34 CHAPTER 2. BACKGROUND AND THEORY

reward function that the IRL part of the technique trains may then be represented by

a discriminator, and thus provide feedback to the policy on whether or not it behaves

as the expert would. One of the first to use this GAN representation of combined

RL and IRL was Ho and Ermon (2016), through the GAIL algorithm.

2.5.2 GAIL

The similarities between the combination of IRL and RL and the combination of a

discriminator and generator in GAN are many, as pointed out in both Ho and Ermon

(2016) and Finn et al. (2016b). Generative Adversarial Imitation Learning (GAIL)

(Ho and Ermon; 2016) uses these similarities in order to learn an optimal policy

using expert demonstrations. According to its authors, GAIL can scale to large state

and action spaces.

In true GAN fashion, GAIL is a two-step algorithm. GAIL first updates the discrimi-

nator network, D, with an ADAM (Kingma and Ba; 2014) gradient step based on its

ability to discern between samples from expert demonstrations and from the policy

in training. This is followed by an update in the policy, using a TRPO updating

step before the process is repeated. The use of TRPO as the updating procedure

limits the change in policy, ensuring that a new policy does not stray too far from

the next, as explained in Section 2.3.5. As explained in Ho and Ermon (2016), this

step scheme ensures that divergence does not occur due to high noise estimating the

gradient. Because the discriminator, which assumes the role of a reward function in

an RL algorithm, is changing with every step the use of a constrained optimization

step such as TRPO is crucial. If large steps were to be taken based on noisy and/or

incorrect rewards, the policy learning could diverge or, in the case of real physical

systems, adapt potentially dangerous behavior for the agent and its environment.

Algorithm 2(Ho and Ermon; 2016) shows the GAIL algorithm, denoting τ as the

sequence of state-action pairs through an episode. While the method of parallel

training of the networks is the same, the update rules are slightly different from the

GAN algorithm presented in Algorithm 1. This will be explained shortly.

The Mathematics of GAIL

Similar to GAN, as a method of learning a generator that can imitate the distribution

2.5. IMITATION LEARNING 35

Algorithm 2: GAIL

Input :Expert trajectories τE ∼ πE
1 for i = 0, 1, 2... do
2 Samplem generated samples {τ (1), ...,τ (m)} from πθ i
3 Update discriminator parameters from wi to wi+1:

Eτi
[
∇wloд(Dw(x, u))

]
+ EτE

[
∇wloд(1 − Dw(x, u))

]
(2.19)

4 Take a policy step from θ i to θ i+1, using the TRPO rule with reward function
loд(Dwi+1(x, u)):

Eτi
[
∇θ loдπθ (x | u)Q(x, u)

]
− λ∇θH (πθ),

where Q(x̄, ū) = Eτi
[
loд(Dwi+1(x, u))|x0 = x̄, u0 = ū

] (2.20)

5 end

represented by some data set, IL can be described as a method of finding a policy

that matches an experts occupancy measures, i.e. a distribution of state-action pairs

which are generated by a policy π (Ho and Ermon; 2016). Mathematically, the

occupancy measure is defined:

pπ (x, u) = π (u | x)
∞∑
t=0

γ tP(xt = x |π) (2.21)

where P represents the dynamic model of the environment, the transition function,

and γ is the discount factor.

GAIL uses a form of apprenticeship learning, a sub-class of IL learning methods.

In traditional IRL, the goal is to find a function for which the expert’s policy is

the unique optimal solution so that the use of RL will yield the same policy. In

apprenticeship learning, the goal is not to exactly match the policy of the expert,

but to find one that solves the task at least as well, or even better, than the expert.

In this regard, the task of IL can be expressed as finding a policy that matches the

experts occupancy measure and not its policy directly.

min
π

−H (π) +max
c ∈C
Eπ [c(x, u)] − EπE [c(x, u)] (2.22)

36 CHAPTER 2. BACKGROUND AND THEORY

where H (π) is the γ -discounted causal entropy, πE is the expert policy and π is the

policy which is to be trained. Here, c ∈ C is a cost function, the negative of the term

reward, c = −r . This optimization is equivalent to performing RL followed by IRL

with a cost regularizer,ψ , which forces the IRL procedure to recover a cost function

that allows the expert policy but is not restricted to it specifically.

Using this, Ho and Ermon (2016) developed a new IL algorithm which finds a policy

whose occupancy measure minimize the divergence from the occupancy measure

of the expert. They do this by treating the causal entropy, H (π), as a regularizer

for the policy, controlled by λ ≥ 0 and introducing a regularizer for the cost in the

form ofψGA(c). Expressing the difference in occupancy measures of the expert and

the agent as a Jensen-Shannon divergence D JS (pπ ,pπE = DKL(pπ | |(pπ + pE)/2) +
DKL(pE | |(pπ + pE)/2) this IL algorithm is mathematically expressed:

minimize
π

ψ ∗
GA(pπ − pπE) − λH (π) = D JS (pπ ,pE) − λH (π) (2.23)

Thus, the cost regularizer ψGA must be optimized. Using this, the policy can be

optimized such that it causes the least divergence from the occupancy of the expert.

Ho and Ermon (2016) expressed the cost regularizer, such that its optima can be

found by the following maximation problem

ψ ∗
GA(pπ − pπE) = max

D∈(0,1)X×U
Eπ [loд(D(x, u))] + EπE [loд(1 − D(x, u))] (2.24)

where D is a discriminator who’s maximum range of output lies in the range

of (0, 1)X×U . This formulation is highly similar to the GAN formulation of the

discriminator from Section 2.2 and is indeed used for the update step (2.19) for the

discriminator in the practical algorithm in Algorithm 2.

The full, practical algorithm of GAIL is thus to find the saddle point (π ,D) of the

expression

Eπ [loд(D(x, u))] + EπE [loд(1 − D(x, u))] − λH (π) (2.25)

which is done by performing Algorithm 2.

2.6. UNMANNED SURFACE VEHICLE 37

The Qualitative Characteristics of GAIL

According to Ho and Ermon (2016), the algorithm is in general quite sample

efficient in terms of expert data but requires a number of environmental interactions

comparable to the TRPO algorithm. Because the TRPO algorithm is such a large part

of GAIL, it is intuitive that it will inherit some of its characteristics. Because GAIL

is a GAN method, the same is true for the characteristics of GAN. One example is

the previously mentioned ability to handle multi-modal data, an important factor in

USV steering.

GAIL is a model-free method, neither requiring a model beforehand nor fitting a

model of the dynamics during training. As mentioned in Ho and Ermon (2016),

this means that GAIL generally needs more environmental interaction than methods

which use such models, such as e.g. GCL (Finn et al.; 2016a). On the other hand,

it also means that GAIL can be used in cases where the dynamics are unknown or

complex without suffering from potentially ill-fitted models.

It is worth noting that while the discriminator, D, gives feedback to a policy that is

learned through an RL updating scheme, D is not a reward function as defined in

RL. D does not give feedback that indicates how valuable an action or transition

into the next state is for the goal, it returns a value corresponding to its prediction of

the sample being generated or drawn from the expert respectively.

2.6 Unmanned Surface Vehicle

The USV used in our project is owned by the Norwegian Defence and Research

Establishment (FFI). The boat is of 10.5 meters length and 3.5 meters width and its

sensors include a pulse compression radar and a LiDAR. The USV moves through

the water by the use of two waterjet based thrusters. Though the USV is a complex

work of engineering, we do not need details on its workings for our use. This is

because the GAIL system we have implemented is a model-free Imitation Learning

(IL) algorithm. However, we do need a basic understanding of radar data measures,

which is provided below.

38 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.9: Radar image from taken through the use of the USVs radar. The object to be
avoided is represented by the oval dot in the lower middle of the image. This indicates that
the object is straight ahead of the USV.

2.6.1 Radar

One of the sensors that the USV is equipped with is a Radar. A radar sensor

measures distance through the use of short pulses of radio waves. Objects reflect

the waves and by recording the direction of these reflections and the time it took for

them to return, a distance measure can be acquired. The radar measures the distance

to objects in an area of a certain radius. The radius of the area, i.e. the maximum

viewing distance, depends on the specific radar. The same is also true for the angle

of view. While some radars provide a full 360 degrees view of their surroundings,

others provide only a section of this. The USV radar used in this project has a view

of 295 degrees, a circle sector spanning from 147.5 degrees to the right of the USVs

heading and to 147.5 degrees to the left of the USVs heading.

The measurements can be represented in the form of images, such as the one

presented in Figure 2.9. Detected objects are shown in white and their distance from

the sensor is given by their distance from the bottom line of the image. The data

itself was collected through rotation, by repeatedly sending out radio wave pulses

and collecting the reflections of the area in a section, called radar spoke. However,

in this image format, each of these spokes is represented as a column of the image

grid, making the image a panoramic view of the USVs surroundings. An illustration

of a radar spoke and its representation as a column in an image is shown in Figure

2.10

In addition to the measured distances, the radar of our USV also records the heading

of the USV at the time of the measurement. Both the distance image and the heading

measurements are relevant for this project as they contain information that a human

captain would base their steering decisions on during object avoidance.

2.6. UNMANNED SURFACE VEHICLE 39

Figure 2.10: Simplified illustration of a radar spoke as a segment of a circle and its
representation as a column in an image

40 CHAPTER 2. BACKGROUND AND THEORY

Chapter 3
Method

Our goal is to learn an end-to-end steering model that can map sensor measurements

to steering actions without requiring insight into the system’s dynamics. In order to

accomplish this, we consider Reinforcement Learning (RL) and Imitation Learning

(IL). The GAIL algorithm combines RL with Inverse Reinforcement Learning (IRL)

to form an IL algorithm with the clever training tactic of a GAN network. Using

neural networks, GAIL is reported to be able to learn a policy from a relatively small

set of demonstrations in a large state space completely model free. Motivated by this,

we implemented a GAIL system for use in obstacle avoidance with an Unmanned

Surface Vehicle (USV) and performed experiments using full IL. For comparison,

we also implemented an RL system that learns using the TRPO algorithm and a

handcrafted reward function, which does require more insight into the specifics of the

tasks than IL. The RL only approach is still a model-free alternative to the traditional,

modularized USV steering system, and it can be used in an end-to-end fashion as

well. We implemented our system by using TRPO from OpenAI:SpinningUp (2018)

and an implementation of the GAIL discriminator updating scheme from Fu (2018).

We altered them to meet the needs for a full GAIL system and to accommodate for

the specifications of our task.

A modularized illustration of the full system is presented in Figure 3.1. In this

chapter, we will present the different modules as well as important aspects of

our method. We present different test set-ups, including two different choices of

observations and a set-up for training the full Imitation Learning system and one

which uses solely Reinforcement Learning. Comparison and discussion of the

41

42 CHAPTER 3. METHOD

Figure 3.1: Simplified illustration of the Imitation Learning system combining Reinforce-
ment Learning and Inverse Reinforcement Learning.

results are presented in the next chapter.

3.1 Programs used

Our system is programmed in the Python programming language, an easy and highly

popular language that has an active community and a wide range of compatible

open source libraries and implementations. In our implementation, we make use

of the Tensorflow library (Tensorflow home page; 2017) which is an open source

software library, originally developed by Google for high-performance numerical

computing such as in the use of machine learning techniques like Neural Networks

(NN). Tensorflow allows the user to construct a graph of data in the form of tensors

and tensor operations in high-level python abstraction. A tensor is a regularized

grid-like structure in which matrices and vectors are special cases. That is, matrices

and vectors are 2D grids and 1D grids respectively but a tensor may represent a 3D

grids or even 0D grids (scalars). In tensorflow, a tensor works as a symbolic handle

to the output of a tensorflow operation, and the passing of tensors as input to other

operations builds data flow connections. This way, data can be passed through multi-

ple steps of computations and be manipulated efficiently in a predetermined fashion.

3.2. THE TASK 43

Figure 3.2: Conceptual illustration of obstacle avoidance. The dark circle represents the
obstacle in question.

This way of programming is especially useful for machine learning purposes such

as in the construction of Neural Networks. At runtime, tensorflow translates the

operations specified by the user in python, to high-performance C++, providing

its user with the ease of python coding while still keeping the benefits of highly

optimized code.

3.2 The task

The task which we aimed to accomplish through Imitation Learning was that of

object avoidance. We here define object avoidance as moving from an initial

position to a goal position without coming into contact with an object positioned

in the straight-line path between the initial and goal positions. This task requires

the agent to travel towards the goal position, turn at an appropriate time to avoid

the obstacle, and then turn back in order to reach the goal position. We deemed this

to be an appropriate task for this project as it requires the use of sensor data and

path planning in a dynamic setting. In this project, we thus aim to find a policy that

accomplishes this task through Imitation Learning (IL), specifically through a GAN

formulation of Reinforcement Learning (RL) and Inverse Reinforcement Learning

(IRL) combination. For comparison, we also included experiments using only RL

with a manually crafted reward function for the same task.

3.2.1 Observation of state

We have until now referred to the agent’s policy to be a mapping from the agents

state to an action, x ∈ X → u ∈ U. In practice, however, the agent will not have

access to its whole state. Instead, only the information given through an observation,

o ∈ O, of the state will be available. Thus, a more practical definition of a policy is

a mapping from observation to action, o ∈ O → u ∈ U. For our experiments, we

44 CHAPTER 3. METHOD

have used two types of observations: Relative positions1 and radar images.

In physical systems, such as ours, an agent may use observations in the form of

sensor data. This data must contain the information necessary for the agent to

perform its task. E.g. an accelerometer, while an important sensor for control

purposes, provides no information about an agents surroundings or upcoming

obstacles. In order to be able to discover objects that lie a distance away, a distance

measuring sensor must be used, such as radar or LiDAR images. Sensors providing

both of these were available and could potentially be combined for a more complete

insight into the state, however, we decided that using only one of the sensors would

suffice for the scope of the task. We chose to use radar images, as they provide a

long range view of the surroundings with accurate distances to obstacles, however,

use of LiDAR would likely have been possible as well.

In an end-to-end system, the image does not need to be preprocessed by a scene

understanding module before being passed to the policy. There is no need to detect

an object and its position in a separate module before feeding the result to the policy

because the policy should be able to deduce this information from the raw data

by itself. However, mapping the appropriate action from such a large observation

space is a more difficult task than if the important information was provided directly.

We thus also included experiments with simpler observations in the form of the

positions of the obstacle and the goal relative to the USV in order to compare the

results.

Positional observations

One observation of the type using positional vectors, op , consist of a vector shaped

tensor on the form [rpole ,ϕpole , rдoal ,ϕдoal]. Here rpole and ϕpole form the distance

vector from the USV to the obstacle, the pole to be avoided, and rдoal and ϕдoal
mark the distance vector from the USV to the goal position. Both vectors are given

in polar coordinates and are expressed relative to the USVs current heading. The

reasoning behind the choice of the latter is twofold. Firstly, this mimics the way

a human would observe an obstacle. A human captain would observe an obstacle
1Strictly speaking, relative position in this case is not an observation, because we measure only

the position of the boat (GPS), unless the position of the object is known a priori, or position is
estimated using a computer vision algorithm on the sensor data such as Radar/Lidar. Relative position
together with the goal position can well be the full state. In the thesis, however, relative positions are
considered as observations

3.2. THE TASK 45

Figure 3.3: Illustration of positional vectors as defined in our system. All observational
and action angles are given relative to the current heading.

relative to their own orientation, i.e. to their left or to their right, and swerve

accordingly. This first-person view of the world is also the way a radar image

expresses the data. Secondly, this makes the agent invariant to rotation, meaning the

policy does not need to treat an obstacle it is approaching from the north differently

than one it is approaching from the east. This makes training easier and the resulting

policy more general. It is because of this same reasoning that we also express the

action, a choice of reference heading, not as a new reference heading on the scale of

0 to 360 degrees, but rather as a degree of adjustment to the current heading. This

type of observation and action is illustrated in Figure 3.3

Radar observations

While real radar measures were collected and studied, we did not end up using the

images directly as observations. Instead, we chose to generate simplified substitutes

for both the expert demonstrations and during training. The reasoning behind this

will be presented in Section 3.3.2.

As any grayscale image, a radar image can be expressed as a 2D array of numbers,

where each of the entries in this array adds to the observation space. The radar image

thus provides a much larger observation space than the positional type observations.

46 CHAPTER 3. METHOD

In order to reduce the observation space somewhat and speed up operations with

the image, the image size was reduced to a width of 119 pixels and a height of 50

pixels, which corresponds to the two dimensions of the 2D array.

Unsurprisingly, testing showed radar images on their own could only provide the

position of the obstacle to be avoided, not the goal. The goal position is not a

physical object and thus is not visible on the radar image. To prevent the agent

from essentially going blind after passing the obstacle we decided to add the

relative position of the goal to the image in a combined observation. In a practical

perspective, we assume the goal position must be pre-assigned already through a

path planning algorithm and the distance vector may be calculated from this and the

USVs GPS position.

3.3 Training Data

While RL does not normally require a ready-made data set before training, it does

require an environment for the agent to interact in and receive feedback from. In

addition to this, as GAIL includes IRL as well as RL, a training set is still required

in order to learn, specifically a set of expert demonstrations. Thus, in order to train

our system, we needed both expert demonstrations and an environment in which to

apply the policy.

3.3.1 Data Gathering

One of the results of the pre-project (Vedeler; 2018) was the gathering of expert

USV demonstrations in preparation for this project. As explained in a pre-project

report, we traveled to Horten, Norway, where we performed sampling of manual

obstacle avoidance by the use of the USV, Odin, courtesy of the Norwegian Defence

Research Establishment. During the demonstrations, the weather was dry and the

water was relatively calm, which was beneficial to us as more challenging weather

would introduce further challenges into an already difficult set of dynamics and

task.

Each demonstrated episode consisted of the USV being manually steered directly

towards an obstacle, before swerving either right or left to avoid collision and then

steering back to the previous course. The obstacle in question was one of two poles

3.3. TRAINING DATA 47

Figure 3.4: Simplified illustration of the environment module. The circle represents the
goal position and the dot the pole, the obstacle to be avoided

present in the area, where we alternated between the two when using them for

obstacle avoidance. The sensor data from the episodes was recorded in separate

files. Each such episode file contained recorded radar images, heading measures

and a note on which pole was used for the specific episode, in addition to other data

which ultimately went unused, such as LiDAR readings.

The actuator input of the USV was not recorded during the demonstrations. The

lack of actuator input means that the system cannot be completely end-to-end using

IL in the sense that it does not produce a low-level control action in the form of

thruster input. Instead, we chose the heading recorded by the radar compass, as the

output. This heading may provide a reference value for a controller, making the

system end-to-end only to the point of producing a high-level steering action.

3.3.2 Simulation of environment

In simple terms, GAIL learns by allowing the policy to act in an environment and

then comparing these episodes with episodes performed by the expert in the same

environment. However, in a physical system such as ours, this is not so straight-

forward. The USV is a large and expensive machine and allowing untrained policies

to act through it would likely result in dangerous situations for both the USV and its

surroundings. We thus cannot allow the policy to act in the true environment during

training. Instead, we use a simulated environment.

48 CHAPTER 3. METHOD

Figure 3.5: Illustration of initial episode setup

As per convention in RL, the environment handles the transition between the states,

calculates the reward and provides the agent with a new observation for every step in

an episode. A simplified illustration of this module, highlighting the step function,

is shown in Figure 3.4.

Setting up the episode scenario

Before an episode is run, the reset() function of the module must be called. This

resets the environment to an initial state from which the episode can take place. The

environment contains the positions of the two poles used in the gathering of expert

demonstrations and uses these as a base for the scenario’s setup. When called, the

reset function will choose one of the two poles at random and the chosen pole

will act as the obstacle in the succeeding episode. The function then chooses a

distance and an angle from which the USV is to approach. The angle is chosen from

a uniform random distribution in the range of 0 to 360 degrees and the distance

from the pole is chosen from a uniform random distribution in the range of 50 to

100 meters initial distance from the pole. The position of the USV is then set to

this chosen position and its initial heading is set to face the pole, the obstacle to

be avoided, similarly to the scenario of the expert demonstrations. Lastly, a goal

position is placed 220 meters from the USVs initial position, on the other side of

the obstacle. All the distances are chosen to approximate the setup of the expert

demonstrations while still introducing some randomness into the setup. See Figure

3.5 for an illustration of the initial setup for an episode. After the setup is complete,

an initial observation is generated and returned and the episode can begin.

3.3. TRAINING DATA 49

Simulating one step

The step(u) function is called at each step of the episode in order to perform the

action chosen by the policy, transition to a new state and receive a new observation

of the new state. The function takes the action, u, which marks an adjustment that

the agent wishes to perform on its heading. The environment adds this adjustment

to the current heading of the USV, which itself is unknown to the agent, to get a new

desired heading.

The environment acts as a stand-in for the actual physical environment and its dy-

namics. In order to simulate these dynamics of the system, we used a USV simulator

provided us by FFI. This simulator simulates the dynamics of the USVs actuator

controller and then simulates the dynamics of the physical system when the USV is

moving in the water. Its step function thus takes a desired heading, performs one

step of the controller, whose aim is to reach this value, and one step in the simulated

physical system, before returning the new position and orientation of the USV.

Reaching the desired heading is not an instant procedure and the simulators step

function returns after only 0.1 seconds. In order to assure that, given a non-drastic

action, the desired heading is reached, we thus perform 20 iterations of the simu-

lators step function, effectively simulating 2 seconds of dynamics. When looking

at the number of radar images that were recorded in each expert demonstration, a

slower step time like this may actually be more realistic for a system which uses

radar images for observations as the sampling frequency of the radar is not very

high. We keep the speed of the simulated USV constant as was the case with the

expert demonstrations.

After the simulation of the physical system has been performed, the environment

module records the resulting position and heading of the USV. These values are

then used to generate the observation, o, of the new state and to calculate a reward,

r , to provide the agent. Which type of observation is generated depends on which is

enabled.

Simulating radar images

Because GAIL compares expert demonstrations with episodes performed by the

policy on the environment, it is important that the environment is as similar to

50 CHAPTER 3. METHOD

Figure 3.6: Example of a stand-in radar image generated for our task

the true environment as possible. If not, the discriminator may exploit the differ-

ences and base its predictions on this, which the policy cannot compensate for and

thus effectively preventing any further learning. This means that the simulated

environment and the observations it generates must be similar enough to fool the

discriminator.

This fact proved difficult to achieve when using radar images as observations. In

order to use the data collected from the radar on the true USV in the training, we

would have to generate images that truly looked like those generated by a real radar

in the same place as the expert demonstrations were performed. This generation

would also have to be relatively quick as it would have to be performed at every

timestep of every episode during training.

A fair amount of time went into studying the collected radar data and attempting

to use it directly or indirectly in the generation of appropriate radar observations

during simulation but this was ultimately scrapped due to the limited time and scope

of the project. Instead, fully generated stand-ins were created to test the concept.

The stand-ins were constructed to be the simplest form of radar data. We created

a black image and placed a box at the appropriate place according to the position

of the obstacle relative to the USV and its heading. As with real radar images, the

distance from the USV is represented through the row of a given pixel, while the

angle is given by the column. We gave the USV a maximum viewing distance of

200 meters and a viewing angle spanning from -120 degrees to 120 degrees relative

to its heading. This is smaller than the real radar images but it allows us to also

make the images smaller and thus save computational time. A smaller view like

this can be created from real radar images through cropping. We created images of

50-pixel height and 119-pixel width. Scaling an object’s position to these ranges,

they could then be represented by a white box on the black background. An example

of a stand-in radar image generated through this method is presented in Figure 3.6.

3.4. REINFORCEMENT LEARNING SETUP 51

Figure 3.7: Simplified illustration of the RL module of the system, consisting of a modified
TRPO algorithm. The module makes calls to the environment, sending an action u, and
receiving the following observation, o, and a reward calculated by a manually crafted
reward function. When IRL is enabled, it also calls the IRL module, sending the batch of
trajectories, τ , and receiving the reward for the trajectories, calculated by the discriminator.
The critic network has the same structure as our policy network, but lacks the stochasticity
which the policy introduces.

3.4 Reinforcement Learning setup

A large part of the GAIL system is the RL module, which uses the TRPO algorithm

(Schulman et al.; 2015) to learn a policy. We based this module on a TRPO

implementation from OpenAI:SpinningUp (2018) but substantially altered the code

to the point where only the module’s update() function remained unaltered. This

was done in order to accommodate the specifications of the task and to enable its

use as part of a GAIL system. An overview of the module is given in Figure 3.7.

Because the TRPO algorithm itself has already been explained in Section 2.3.5, we

will here focus on things more specific to our scenario, such as the structure of our

policy. By disabling the connection to the IRL module of the system, this module

becomes a regular RL training system. We used this setup for testing of learning

through RL.

52 CHAPTER 3. METHOD

3.4.1 Policy

We performed experiments with two types of policies, Multivariate Gaussian and

Categorical. As explained in Section 2.3.4, both use a neural network, but where

Gaussian policies output continuous results, Categorical policies output discrete.

However, that does not mean that Categorical policies cannot be used in continuous

systems. In fact, the use of a Categorical policy will limit the number of potential

action values from theoretically infinite values to a discrete set. As we deemed such

a limitation of action space to simplify the task somewhat we decided to perform

experiments with this type of policy. The resolution of the Categorical Policy is

however limited to a discrete number of categories, while a Gaussian policy is not.

We decided thus to perform experiments with both policies in order to gauge their

impact on the overall performance.

The networks used for the policies were equal for both the Categorical and Gaussian

policy, with the exception of the output layer. For the Gaussian policy, we created an

output function which assured the output of the network would be contained within

a certain range. The output from the final layer was sent through a sigmoid function,

scaling it between 0 and 1, before this value was scaled between a minimum action

value and a maximum action value. We did this to assure that the output was in the

correct range. For the Categorical policy, the network outputs a discrete number

between 0 and 40, which is later scaled to a number between a minimum action

value and a maximum action value. For both policies, the minimum and maximum

action value were -30 and 30 degrees respectively. We chose this interval as a

heading change of more in one timestep would be unrealistic. In fact, one could

argue that even a 30-degree change in the heading would be drastic in one timestep.

With this interval, the Categorical policy has a resolution of 1.5 degrees.

Positional Observations

The positional observation is a vector with 4 entries, representing the position of the

obstacle and the goal, expressed relative to the USV. For this type of observation,

we chose to use a fully connected network of two hidden layers, with 400 and 300

neurons each, inspired by Martinsen and Lekkas (2018). For the hidden layers, we

use a tanh activation function. Obviously, the input size of the policy network in

this case is 4, whereas the output layer has the shape as described in the previous

3.4. REINFORCEMENT LEARNING SETUP 53

section depending on whether it is categorical or Gaussian.

Radar Image Observations

The use of images as input lends itself to a Convolutional Neural Network (CNN)

as described in Section 2.1.3. In constructing our CNN policy we took inspiration

from AlexNet (Krizhevsky et al.; 2012), arguably the most well known CNN to date.

AlexNet is a classification network used to classify images, labeling them as e.g.

’cat’ or ’dog’, and consists of five convolutional layers and three fully connected

layers. Even though our task is not to classify per se, part of the network may be

used for other purposes as well since the actual classification is only performed in

the last layer of the network.

The images we are to use are much simpler than those used by Krizhevsky et al.

(2012), being simplified binary radar images. We thus deemed it unnecessary to use

the full AlexNet network and settled for only the first convolutional layer, followed

by two fully connected layers. The first convolutional layer of AlexNet uses 96

kernels of size 11 × 11, and performs convolution with a stride of 4 with relu

activation. We downsized this to a convolutional layer of 10 kernels of size 7 × 7,

also performing convolution with a stride of 4 and relu activation. We did this

because the information that is important in the image is not textures or shapes,

but the position of pixels with non-zero values. The smaller number of kernels

reduces the number of parameters in the network, reducing the training time as well.

AlexNet follows up this convolution layer with a max-pooling layer, which helps

make the output more invariant to small translations in elements of an image. In our

case, however, the position of a pixel contains important information on the distance

or direction of the object it may represent. For this reason, we chose to not include

max-pooling in our network. The fully connected layers of AlexNet contain several

thousand neurons each, but for our task, we settled on using the same number of

neurons as in the network used for positional observation, i.e. 400 for the first layer

and 300 for the second.

As mentioned earlier, the images in the radar observation case were not descriptive

of the goal and so they were accompanied by a vector describing the goal position

relative to the USV. However, because this position is a vector and not a 2D grid,

it cannot be fed to the convolutional layer of the network together with the image.

54 CHAPTER 3. METHOD

Figure 3.8: Simplified illustration of the policy network

Instead, we chose to perform a late input, merging the vector observation with the

output of the convolutional part of the network before following suit with the fully

connected layers.

When performing such a late input, we found that it was especially important to

standardize this second input, i.e. scale the values to lie between 0 and 1. This

was so that the new input, which could have values of hundreds of meters, did not

overpower the output of the previous layer and change the focus to solely reaching

the goal, ignoring the task of avoiding the obstacle. To make sure that the output

of the convolution did not overpower the late input either we also added batch

normalization and scaled the image input to the network. The network is illustrated

in Figure 3.8

3.4.2 Reward

While GAIL does not need a manually crafted reward function, in order to run

experiments with RL alone, we still need one. The reward function is implemented

in the environment module. However, because it is relevant to the RL setup only,

we will address it here.

In order to craft a reward function, we boiled down the task to its two most essential

parts: Reach the goal position, and do not reach the pole position. The goal and

3.4. REINFORCEMENT LEARNING SETUP 55

pole positions are thus both important values in our reward function but in different

ways. We want the agent to be rewarded when the goal position is reached but to be

punished should it reach the pole, i.e. crash. However, only providing a constant

reward when the agent finds itself in one of these two positions or in a bound around

them, is not sufficient.

Because the state space is so large, care had to be taken so that the agent would

experience a reward that was sufficiently descriptive of the desired behavior during

the whole episode, even at the initial state. TRPO is a policy gradient method,

meaning it updates through gradient ascent/descent. Doing this is comparable to

a person attempting to reach the highest point in an unknown terrain wearing a

blindfold, they move in the steepest direction of the terrain they can currently feel.

In RL, this terrain is a result of the reward function. However, if the agent starts in a

spot where this terrain is flat, i.e. there is no change in the reward when transitioning

from one state to the next, there is no clear direction in which to improve the

policy and thus the training may not converge to an optimal policy. The lack of

a sufficiently descriptive reward function may be countered by more extensive

exploration, but this will likely prolong the training. A descriptive reward function

was especially important because of the large state space in our environment and of

TRPO’s vulnerability to entrapment in suboptimal, local solutions of the task.

We thus chose to express our reward function using Gaussian functions, as these are

smooth, symmetrical and differentiable functions who’s output lies between 0 and 1.

This makes them predictable and easy to work with. A Gaussian function is defined

as:

д(x ,σ , µ) =
1

σ
√

2π
e−

1
2 ((x−µ)/σ)

2
(3.1)

where σ 2 is the variance, denoting the steepness of the bell-shaped curve, and µ

is the mean, denoting the position of the maximum. By inserting a difference in

position, p − p ′, for x and setting µ = 0 we get a function who’s maximum arises

when p − p ′ = 0 and gradually decreases as p moves away from p ′. Using this, we

define our reward function for this problem as:

56 CHAPTER 3. METHOD

rpole (pU SV ,ppole) = −
2

σpole
√

2π
e−

1
2 ((pUSV −ppole)/σpole)2 (3.2)

rдoal (pU SV ,pдoal) = −1 +
1

σдoal
√

2π
e−

1
2 ((pUSV −ppole)/σдoal)2 (3.3)

rдoal (pU SV ,ppole ,pдoal) = rpole (pU SV ,ppole) + rдoal (pU SV ,pдoal) (3.4)

where pU SV ,ppole , and pдoal are the positions of the USV, pole and goal respectively

and π denotes the number, not the policy. We deem avoiding the pole as more

important than quickly reaching the goal and thus weight this penalty double.

This means rpole (pU SV ,ppole) ∈ (−2, 0) and rдoal (pU SV ,pдoal) ∈ (−1, 0), making

rдoal (pU SV ,ppole ,pдoal) ∈ (−3, 0).

Because the danger of the pole is only a factor in close proximity, and we did not

want the agent to take a too large detour around it, we chose σpole = 5 meters. As

mentioned previously in this section, we want the goal to attract the agent even from

far away. For this reason we chose σдoal = 100 meters.

3.5 Imitation Learning setup

When the full IL setup is enabled, the RL module does not use the rewards calculated

by the reward function when training its policy. Instead, it uses the rewards received

by the IRL module. The discriminator network, which calculates the reward based

on the observation-action pairs of a trajectory, is trained through the GAIL updating

scheme. The implementation is based on an implementation of the discriminator

update scheme of GAIL by Fu (2018), altered to accommodate for our task. An

overview of the module is given in Figure 3.9.

The full IRL setup, presented in Figure 3.1, uses the same policy as the RL setup

explained in the previous section. In this section, we will thus focus on the discrim-

inator network which this model introduces and the expert data set which it uses

during training.

3.5. IMITATION LEARNING SETUP 57

Figure 3.9: Simplified illustration of the IRL module of the system, consisting of the GAIL
discriminator update rule.

3.5.1 Data Preprosessing

While the expert data was gathered before the commencing of this project, the data

collected could not be used in its raw form. Thus, time was spent writing a program

to preprocess the data collected and construct the expert trajectories which would

be used during training.

The positional observations were constructed from the USVs position, recorded

through GPS, by calculating the vector from the USV to the static position of the pole

and the goal for every step in the trajectory. When performing the demonstrations,

the expert had not been aiming for a specific target position after passing the goal.

Thus, we chose the last position of each trajectory as the goal position. The pole

positions had been recorded separately.

The different sensors on the USV have different sample frequencies, resulting in

measurements that are neither in synch nor of the same number. In order to construct

the expert trajectories, the observations recorded from the GPS, and actions from

the radar compass, had to be matched in time. For this, we wrote a program that

matched them through the timestamps attached to each measurement.

The heading recorded during the expert demonstrations is not in actuality a reference,

but rather a measurement of the heading measured from the radar compass. However,

by down-sampling extensively it can be assumed that using the simulated heading

58 CHAPTER 3. METHOD

controller, the USV will have reached the next value in the time between two samples.

Thus, the heading measured at the next time step can be used as an approximate

to the real reference value. From this, a change in reference was calculated by

comparing the two headings, resulting in a change in the heading which we defined

as the expert’s action. Doing this, we were able to recreate the paths of the expert

demonstrations using the expert’s actions in our simulated environment, albeit at a

lower speed than during the recording of the expert demonstrations.

Depending on what type of observation, the trajectories would then be further

processed. For example, when using radar observations, these had to be generated

using the same method as during training to assure the discriminator would not

learn to discern them through a difference in generation. When using a Categorical

policy, the actions had to be discretized.

3.5.2 Discriminator

Unlike the policy, which takes an observation and outputs an action, the discrimina-

tor takes both the observation and the action of a timestep and outputs a prediction

of a label, i.e. if the observation-action pair comes from an expert or the agent in

training. As with the policy, the network differs depending on the observation type.

Positional Observations

The discriminator network for the positional observations is highly similar to the

policy network, i.e. two hidden layers of 400 and 300 neurons each. The only

difference is the input layer which takes the observation and action of a timestep

concatenated into one tensor.

Radar Observations

The discriminator network for the Radar based observations is highly similar to the

policy network using those same observations. Because part of the observation is an

image and part is a vector, the network performs convolution on the image, flattens

the result and concatenates the result with the vector observation before sending

them through two fully connected layers. This part is equal to the policy network.

3.5. IMITATION LEARNING SETUP 59

Figure 3.10: Simplified illustration of our discriminator network for radar observations

However, the discriminator also uses the action, one single value per step in our

case, as input to its network. As with the vector part of the observation, the action

cannot be merged with the image directly before the convolutional layer. Thus, it is

also inputted at a later point in the network. This discriminator network is illustrated

in Figure 3.10

60 CHAPTER 3. METHOD

Chapter 4
Results and Discussion

In this chapter, we present the results of each of our setups, using their best perfor-

mances after training. We also present a discussion of our results and of the use of

Imitation Learning (IL). Finally, we present our ideas for future work.

4.1 Validation

Validation was performed by executing the policy and measuring the results. 15

episodes were performed, each with a different, but fixed, starting position. For

each of these episodes, a random pole was chosen from the two available to work as

the obstacle. The USV was then placed from 50 to 100 meters away from the pole,

making sure that the 15 test episodes spanned the range of possible distances. The

USV was placed at an angle spanning from 0 to 360 degrees from the pole, facing it.

Then the goal placed 220 meters from the USV, at the opposite side of the pole. We

performed validations each 100th episode during the course of the training.

In Reinforcement Learning, unlike in Supervised Learning, there is no separate

validation data set and training data set. The agent trains by being exposed to the

environment, just like it would be at validation time. Our validation setup was thus

very similar to the training scenario, but more regularized so that we could more

easily compare the results.

61

62 CHAPTER 4. RESULTS AND DISCUSSION

We deemed an episode a quantitative success if the agent was able to get within

10 meters from the goal while never being closer to the pole than 10 meters at any

point during the episode. Because steering includes more than this quantitative

measure, however, we also plotted the path taken by the agent, the observations,

the actions and the rewards recorded for the episode in order to also evaluate more

qualitative aspects. E.g. since we operated with fixed length validation episodes,

some validations ended before the USV reached the goal position. Whenever it was

clear that the agent was heading towards the goal state and would have reached it

within only a few steps after the episode ended, we deemed it a successful episode.

4.2 Results

4.2.1 Training

In Deep Learning (DL) projects such as this, training time can be an issue. Training

deep networks are time-consuming and this limits the number of experiments

that may be performed. Our results might have improved through longer training

sessions and more experimentation. However, with the amount of training time

available to us for training and testing when the simulator arrived and the number

of set-ups to test, we did not have enough time to prolong the training sessions or

perform more experiments. For reference, 5000 iterations of training with radar

observations took approximately 12 hours. As recommended for TRPO in Schulman

et al. (2015), the RL optimization was performed through the conjugate gradient

method, while the IRL module used Adam optimization.

4.2.2 Expert Demonstrations

After preprocessing the raw data from the expert demonstrations, we plotted them

and examined them. Out of the 46 demonstrations collected, we deemed 35 of them

good enough to use as our expert data set. An example from this set is shown in

Figure 4.2. The expert aims straight for the obstacle, makes a decisive turn, and

proceeds to turn back to its original path. The curve of the path is smooth. Though

the actions may look noisy, keep in mind that each entry is a correction in heading

and that from one timestep to another the USV is given time to reach the new,

corrected, heading as long as the demanded change is not too drastic.

4.2. RESULTS 63

Figure 4.1: Expert actions from Figure 4.2 discretized

This path is steered by a human, and it is a similar steering pattern which we wished

to re-create. Because there was no given goal position when the expert paths were

recorded, we chose to mark the final position of the USV as the goal position in

each expert episode.

(a) The actions taken by the expert (b) The path taken by the expert

Figure 4.2: Example of an expert demonstration with continuous action space. In (b), the
blue star marks the starting position, and the red star marks the obstacle.

64 CHAPTER 4. RESULTS AND DISCUSSION

4.2.3 Rwsults using Positional Observations

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.3: Example of successful episode from validation of the RL setup with positional
observations with Gaussian Policy. In (b), the blue star marks the starting position, the
green dot marks the goal position and the red star marks the obstacle.

RL setup with Gaussian policy
After approximately 2400 RL training iterations the agent using positional observa-

tions and Gaussian policy performed all 15 validation tests successfully. As shown

in Figure 4.3, an example of a successful episode, the agent is able to maneuver

around the obstacle and converge on the goal position. Compared to the expert

demonstration in Figure 4.2 the turn is slightly larger and the shape of its actions

is different. The expert’s actions marked a decisive turn to the left and then to the

right before a slower adjustment to the right to get back on the path. The agent,

however, shows oscillations in its action and chooses a more direct path to the goal

position after avoiding the obstacle. This effectiveness is logical when considering

the reward function the agent attempts to optimize for.

4.2. RESULTS 65

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.4: Example of successful episode from validation of the RL setup with positional
observations with categorical policy. In (a) the vertical axis marks the action category,
where 20 equals a 0 degree change in heading and 40 equals a 30 degree change. In (b), the
blue star marks the starting position, the green dot marks the goal position and the red star
marks the obstacle.

Figure 4.5: Rewards corresponding to the
episode in Figure 4.4

RL setup with categorical policy
The categorical policy seemed to learn

faster and performed all 15 validation

episodes successfully after 1000 itera-

tions. However, its actions were more

radical, creating oscillating movements

in the path as shown in Figure 4.4. This

may partly be a more extreme case of

the symptom spotted in the Gaussian

policy in Figure 4.3 and while this be-

havior is unfavorable, it is also interest-

ing. As can be concluded from Figure

4.5, the oscillations do not impact the reward the agent gets when using the reward

function we have constructed and thus has no incentive to correct it. While this

likely could have been solved by assigning a penalty for large changes in actions, it

highlights the problem of crafting and tuning a reward function manually. When

defining a task, even one as simple as this one, much thought must be put into the

reward function for RL to be able to accomplish the task. We would also like to

point out that while a penalty on rapid changes in the categorical RL policy may

have lessened the larger oscillations of the agent, removing the smoother oscillations

66 CHAPTER 4. RESULTS AND DISCUSSION

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.6: Example of unsuccessful episode from validation of the IL setup with positional
observations with Gaussian policy. In (b), the blue star marks the starting position, the green
dot marks the goal position and the red star marks the obstacle.

of the Gaussian RL policy in Figure 4.3 may prove more challenging.

Figure 4.7: Rewards corresponding to the
episode in Figure 4.6

IL setup with Gaussian policy
The Gaussian policy IL setup peaked

at 1700 training iterations with all but

two of the episodes successful. Though

these two were close, they did not quite

reach the goal position. The agent did

not seem to be able to amend this flaw

with further training. This agent also

seemed to steer a bit closer to the pole

than the previous agents, something

which also caused a few unsuccessful

episodes at later iterations.

An example of an episode where the agent missed the target is shown in Figure 4.6.

Here we see that the agent has a spike in the action which steers it off course at the

end of the episode. It is quite peculiar that this flaw in the policy is not corrected

as the spike is penalized by the discriminator, which we can defer from comparing

the time of the action spike in Figure 4.6a with the drop in reward in Figure 4.7.

One possibility is that this is caused by the TRPO algorithm getting stuck in a

local optimum and/or that this behavior remains from a previous iteration of the

4.2. RESULTS 67

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.8: Example of successful episode from validation of the IL setup with positional
observations with Categorical Policy. In (a) the vertical axis marks the action category,
where 20 equals a 0 degree change in heading and 40 equals a 30 degree change. In (b), the
blue star marks the starting position, the green dot marks the goal position and the red star
marks the obstacle.

discriminator’s untrained feedback. From the theory, explained in Section 2.3.5,

we know that TRPO should update so that it monotonically improved the policy.

However, this may not apply when the reward it is updating under is changing such

as is the case in GAIL.

From Figure 4.6b, we can see that the shape more closely resembles the expert’s

and that it steers back to the original path before continuing. The shape of the action

graph, with the exception of the spike at the end, also closely resembles the experts.

Like the expert, it marks three distinct and gradual turning motions. We can also

see that the path is smoother and lacks the oscillations seen in the previous two

scenarios.

IL setup with categorical policy
The agent using the IL setup with categorical policy produced successful episodes

on all 15 validations after 2100 iterations. Figure 4.8 presents an example of a

successful episode. Like the previous categorical policy, it produced some large

changes through its actions, but unlike before, here they produced no oscillations.

Here they seemed to help the USV make sharper turns and course corrections while

it otherwise kept close to zero change. When considering both quality and quantity

this agent seems to have the best performance on this observation type.

68 CHAPTER 4. RESULTS AND DISCUSSION

(a) The radar observations seen by the agent.
The images have been added onto one image.
The intensity of the object is more faded the
further out in the episode it was seen.

(b) The path taken by the agent

Figure 4.9: Example of episode from validation of the IL setup with radar image as the
only observation. In (b), the blue star marks the starting position, the green dot marks the
goal position and the red star marks the obstacle.

4.2.4 Radar Observations

As mentioned previously, before we included the position of the goal into the

radar observations, we first performed experiments using only radar images as

observations. As seen by the example from one of the IL setup validations in Figure

4.9, we found that the agent struggled with reaching the goal position, resulting in

few to none successful validation episodes. This is not surprising as the moment the

obstacle disappears out of the agents 240-degree view angle, the agent essentially

goes blind. The radar observations provide no information on where it should head

in relation to the goal position. While this experiment did not yield successful

behavior in relation to the overall task, it did indicate that our networks were able

to extract the position of the obstacle from the images and avoid collision. These

experiments led to our decision to include the goal positional vector in the radar

observation setup as explained in Section 3.4.1.

RL setup with Gaussian policy With the new observations, the RL setup using

a Gaussian policy was able to perform 15 out of 15 validation episodes successfully

after only 1300 iterations. An example is shown in Figure 4.10. Out of all of our

experimental setups, this is likely the most consistent. During all 15 validation

episodes, the agent had a very consistent minimum distance to the pole, varying

with less than one meter regardless of the initial distance the agent had to the pole.

The same consistency was also present considering the agent’s ability to reach the

4.2. RESULTS 69

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.10: Example of successful episode from validation of the RL setup with radar
observations with Gaussian policy. In (b), the blue star marks the starting position, the green
dot marks the goal position and the red star marks the obstacle.

goal position.

From Figure 4.10, we can also see that the agent no longer follows an oscillating

path and that it has more stable actions. In fact, the actions seem to keep close to a

zero change in heading, making for a highly efficient path albeit one less similar to

that of the expert which the RL agent does not have access to.

RL setup with categorical policy
The RL setup with a categorical policy needed more training before reaching 15

successful validation episodes, specifically 4300 iterations. As seen by the example

in Figure 4.11, the result is an agent that manages to avoid the pole and reach the

goal in a similar fashion as with the positional type observations in Figure 4.4. The

oscillations in the actions and path also remained.

IL setup with Gaussian policy
The IL Gaussian policy at its best managed only 8 successful episodes out of 15

validation episodes at 3700 iterations. The unsuccessful episodes came as a result of

the agent steering too close to the pole, coming as close as a 5-meter distance from

the obstacle at the worst run. While this would likely not have caused a collision

due to the obstacle’s size, it is dangerously close. Plots of this particular episode is

presented in Figure 4.12. What is interesting though, is that this was the only agent

who chose to alternate between passing the obstacle on the right and passing it on

70 CHAPTER 4. RESULTS AND DISCUSSION

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.11: Example of successful episode from validation of the RL setup with radar
observations with categorical policy. In (a) the vertical axis marks the action category,
where 20 equals a 0 degree change in heading and 40 equals a 30 degree change. In (b), the
blue star marks the starting position, the green dot marks the goal position and the red star
marks the obstacle.

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.12: Example of unsuccessful episode from validation of the IL setup with radar
observations with Gaussian policy. In (b), the blue star marks the starting position, the green
dot marks the goal position and the red star marks the obstacle.

4.2. RESULTS 71

(a) The actions taken by the agent (b) The path taken by the agent

Figure 4.13: Example of successful episode from validation of the IL setup with radar
observations with categorical policy. In (a) the vertical axis marks the action category,
where 20 equals a 0 degree change in heading and 40 equals a 30 degree change. In (b), the
blue star marks the starting position, the green dot marks the goal position and the red star
marks the obstacle.

the left. The expert also alternated between the two. With a starting distance of 70

meters and lower from the obstacle the agent chose to the right, while at starting

distances of higher than 70, it chose to turn towards the left. Interestingly, it was at

these lower starting distances, that it also failed the episodes. While this agent had

the least successes in our quantitative definition of success, other than returning to

its original path too quickly, its qualities were favorable. The paths were smooth

and showed no noticeable oscillations and the actions are reminiscent of the expert’s

actions as seen in Figure 4.2a, though with a stronger tendency towards a straight

path to the goal.

IL setup with categorical policy
The IL agent with categorical policy succeeded in 13 out of 15 validation episodes

after reaching the maximum training iterations of 5000 iterations. Like with the

Gaussian IL agent, the unsuccessful episodes came as a result of the agent steering

too close to the obstacle, though not to the same degree. Here the agent reached

a minimum distance to the obstacle of 9.6 and 6.8 meters in the two unsuccessful

episodes. Plots of the least successful episode are given in Figure 4.13. For both the

successful and the unsuccessful episodes, we observed oscillations in the agent’s

path, similar to its RL counterpart in Figure 4.11.

72 CHAPTER 4. RESULTS AND DISCUSSION

4.2.5 The Difference between Categorical and Gaussian Policy

We initially believed that because of its discretization of the action space, a categori-

cal policy would simplify the problem and learn faster. However, from our results,

it seems this is not always the case. The categorical policy was the quickest to learn

in the case of the positional vector observations. Yet, using radar observations, the

RL agent using the Gaussian policy was by far the quickest learner and seemed to

produce the most consistent results overall.

When considering all previously mentioned experiments, the categorical policy did

overall perform a greater number of successful episodes than the Gaussian policy.

However, the policy also seemed to be overall more susceptible to oscillations and

produced action graphs that looked less like that of the expert’s in Figure 4.1.

One reason for its susceptibility to oscillations may be that the categories in this

policy are treated as separate, non-related labels. Their numbers and their order do

not necessarily mean anything, just as a label of ’dog’ has no inherent relationship

with a label of ’flower’. For example, the category corresponding to zero change

in heading does not necessarily lie closer in action space to the one corresponding

to 3 degrees of change than the one corresponding to 30. We have chosen to label

the actions in rising order so that category 0 corresponds to a -30-degree change

while category 39 corresponds to a 30-degree change. However, the agent would

have acted the same if we instead chose to label them in random order, such as

category 0 corresponding to a 27-degree change while category 1 corresponding to

a -25-degree change and so on.

Gaussian policies, however, are continuous and so the actions relate to each other

differently. An output of 0 is inherently closer to an output of 2 than 10 in the action

space. That does not mean that jumps in outputs cannot happen, but they require a

greater process to be learned.

4.2.6 Summary of Results

Overall, the results of our experiments have been mostly positive. Though some

unsuccessful episodes were recorded, bringing the lowest succession rate down to

53.3%, all set-ups showed a clear grasp of the task, even when their performances

were not accurate enough to be marked successful. The quantitative performances

of all 8 set-ups are summarized in Table 4.1

4.3. DISCUSSION 73

Setup Success rate

RL-gaussian-positionalObs 100%
RL-categorical-positionalObs 100%
IL-gaussian-positionalObs 86.6%
IL-categorical-positionalObs 100%
RL-gaussian-radarObs 100%
RL-categorical-radarObs 100%
IL-gaussian-radarObs 53.3%
IL-categorical-radarObs 86.6%

Table 4.1: Success rates of the different system setups.

As mentioned above, the IL setup with Gaussian policy acts mostly like the expert

demonstrations, and it was the only setup to not show any noticeable oscillating

behavior in any of the experiments. However, it has the least success rate on both

positional observations and on radar observations. Overall IL, which has to learn

more than only the policy, is the more difficult problem. This seems to show in its

results as it offers less accuracy. Meanwhile, the RL setup with Gaussian policy has

the most consistent and efficient paths, though they are not as similar to expert’s.

In the end, one would likely have to make the decision whether the goal is to act as

the expert or act the most accurate. Either way, we have shown it is possible to use

an end-to-end approach to learn object avoidance with a USV. Though the results

were slightly better for RL in terms of quantitative success measures, the IL setup

achieves competitive and promising results that might have been improved upon

with further testing.

4.3 Discussion

4.3.1 Observations and actions

From our results, we observed that the starting angle, i.e. from which direction

(North, South, etc.) the USV approaches the pole, is irrelevant to its performance.

The same seems to be the case with which of the two poles the agent is tasked to

avoid. This is unsurprising as both poles are represented equally in the observations

and because all locations provided to the agent, whether through radar observations

74 CHAPTER 4. RESULTS AND DISCUSSION

or positional vectors, are relative to its position and heading. This makes the system

invariant to starting positions, though not to starting headings. The data set of expert

demonstrations all started facing towards the pole. We thus elected to do the same

during training both for the full IL setup and for the RL setup.

In our experiments, we used two types of observations, the relative position of

the obstacle, that would have needed the use of some sort of scene understanding

module, and radar-like images, which worked as a stand-in for downsampled raw

radar measurements. Both of these were coupled with the relative position of the

goal position, which could be provided by the use of measurements of the USVs

position through a GPS and the predetermined position of a goal position. While the

IL agents displayed weaker results using radar observations than with the sparser

positional observations, the RL agents performed better. We found this interesting

because the radar images were generated using only the positional vectors of the

obstacles relative to the USV, the very same information which the agent is fed

directly in the positional observations. The radar observations thus do not include

more information about the agent’s state than the positional observations. However,

it is possible that the use of images to represent the information combined with our

CNN network design for the policy enables better use of the information.

The IL agents, unlike the RL agents, performed worse using radar observations, yet

they employ the same observation-policy combinations as their RL counterparts.

This may suggest that the problem lies in the discriminator and its feedback to

the policy. The discriminator and policy networks are highly similar. However,

the discriminator also uses the agent’s and the expert’s actions when performing

its task, in addition to their observations. Unlike the observations, these actions

are not normalized before they are inputted into the network. Thus they may have

overpowered the other input features and partly hindered the learning process. While

this is likely not the sole reason of the IL agents performing being weaker than

the RL agents, correcting this flaw in the discriminator, may have improved upon

the performance. Sadly, due to the lack of time, we could not test this simple

improvement.

4.3.2 GAN

As mentioned in Section 2.2, there are no proofs that GANs will eventually converge

and in practice, the generator and the discriminator may end up playing cat and

4.3. DISCUSSION 75

mouse. In our experiments, we saw that the number of successful episodes varied

over the course of the run, increasing and decreasing sometimes drastically from one

validation to the next. While this did not seem to be as much of an issue with RL, it

was especially noticeable in IL agents. This may be an issue of non-convergence,

where the accuracy of the performance would not converge. The overall trajectory

of aiming for the goal while swerving for the obstacle did not change after the agent

had grasped it. The non-convergence lied mostly in the finesse with which the agent

performed the task.

4.3.3 End-to-end learning in practical use

In the traditional modularized USV-setting, a scene-understanding module, a path

planning module and a path following module would all be implemented directly

onto the USV. With the use of DL systems such as ours, all these modules could be

replaced by one policy. Though our system does comprise of several modules, they

serve the purpose of training that policy and would thus not directly be implemented

on the USV outside of training. This end-to-end policy would drastically reduce the

complexity of the USVs system at run-time. However, this, of course, comes at the

expense of a time-consuming training session before the policy can be put into use.

An issue with the idea of end-to-end learning using raw data is the potentially

massive amount of raw data the system may need to process, especially when

combining the raw data of several sensors. For example, it would be reasonable

to assume that the combined use of LiDAR data and radar data may provide more

information to the agent in each observation, thus the agent may select better actions.

However, the sensors output large images that will result in a large observation-

space. A large observation-space does not only increase the training time, but it

also increases the computational time of the policy. When used in situations that

require real-time output this may potentially become an issue. We chose to use

images of smaller dimensions than that the ones directly outputted by a radar. This

corresponds to downsampling of the raw sensor output which is likely a necessary

preprocessing step of the observation data.

When combining data from different sensors into singular observations, the different

sampling frequencies of the sensors must be taken into account. This is relevant for

both policies learned through RL and IL alike.

76 CHAPTER 4. RESULTS AND DISCUSSION

4.3.4 RL vs IL

Our results show that both our RL setup and our IL setup is able to grasp the task at

hand. However, RL did seem to perform with greater accuracy when performing

the task. This indicates that, while our system is able to deduce the underlying goal

of the demonstrations, it does not provide the same finesse as its RL counterpart.

The RL agents learned using a simple reward function of our own design. In this

type of object avoidance, the crafting of a reward function thus seems to be non-

problematic, raising the question of whether using an IL system demands more

work than it is worth. However, there are a plethora of other tasks in which a reward

function is not as simply crafted as in our case. Designing a reward function for

larger and more irregular obstacles may in example prove more difficult than for

small regularized obstacles. Another task which may benefit from an IL approach

rather than an RL approach may be the docking of the USV, which require a series

of finer movements. In this obstacle avoidance scenario, however, we were able to

construct a reward function for the task and thus conclude that RL performs better.

We have repeatedly pointed out the problems of defining a reward function for

certain tasks, and how IL is released from this issue by introducing the use of expert

demonstrations. However, we also need to address the problem of acquiring these

expert demonstrations. Though the expert demonstrations relieve the programmer

of the task of creating a function to describe the task, it does not relieve them of

work. The execution of the task, recording of observations and the construction

of demonstration episodes from this, is time-consuming and requires access to the

physical agent. The use of expert demonstrations also imposes a set of restrictions

on the RL part of the system. For example, the agent’s observation type must be

equal to the expert’s and must be produced through a simulation that is realistic

enough to fool the discriminator. These factors mean IL systems are not short-cuts.

In some cases, creating and testing a reward function may be the easier route. On

other cases, the reward structure may lie so far beyond reach that the IL approach

would be the better option.

4.3.5 Model-free systems

Our system uses a policy parameterized by an ANN, specifically, a deep ANN,

whose parameters are learned without the use of a model or need of knowledge

4.3. DISCUSSION 77

about the dynamics of the system. This may be seen as both a positive and a negative

aspect.

ANNs are often seen as black boxes. They contain a high number of variables, many

in the magnitudes beyond millions, which are fitted to the task guided only by the

data they observe and without the direct influence or intentions of the programmer.

While this may help avoid the need for a descriptive model of the solution of the

task, it also makes the entire process less transparent. It is often hard to know or

explain on what basis an ANN draws its conclusions. This is especially true for

deeper networks because the initial input is processed in so many stages it quickly

becomes unmanageable for a human. Even the maker of the network is often not

able to pinpoint what qualities of the input that spurred the specific output or exactly

why a certain result was wrongly generated. This may pose some problems when

the output of the ANN is unfavorable like we saw in one of our experiments using

the IL setup on positional observations. We observed that the policy output suddenly

spiked, causing the agent to miss its goal. However, it is unclear as of why this is.

A positive side of model-free DL systems like GAIL and TRPO is that we do not

need intricate knowledge about the physics of the system. In this thesis, no focus

has been placed on the environments dynamics and physical properties because

the policy will learn the behavior without the programmer having to account for

them. We did rely on a simulator to train the system, but with the simulator working

as a black box for both the system and the programmer. The treatment of the

environment as a black box is perhaps even more consistent for IL than for RL, as

the programmer may choose or need to account for some dynamics in the manual

construction of a reward function. That being said, we still chose to construct our

ANNs based on properties of the sensor data in order to make it as small as possible.

In this sense, the need to adapt a system to the sensor it relies on is a factor our

system shares with the more traditional, modularized, control systems.

Unlike the classification of visual images, we are not looking for textures, colors

or whether or not an individual has pointy ears. Our data is radar-based and we

wish it to tell us two things: If there is an obstacle, and where is it - whether it is

close enough to act. We create our network so that it can exploit the information

present in the data. We do not need many convolutional layers to combine textures

and shapes, and we do not need to make it invariant to translation. In fact, in our

images, the translation carries important information that we want to be extracted.

This is part of the reason why our CNNs have only one convolutional layer, few

78 CHAPTER 4. RESULTS AND DISCUSSION

kernels, and no pooling layers.

4.4 Future Work

We have here only used substitutes for real radar images, due to the problem of

generating realistic radar images residing outside of our scope. For future work,

however, this may be a natural next step. One possible way of simulating radar

measurements could be to transform a map of the surrounding area into a radar

image. This could e.g. be done by training a GAN in a similar fashion as the GAN

network of Lu et al. (2017) which generates photo-realistic images from sketches.

Another alternative could be to simply calculate the angle and distance to every

nearby object from a map or some other database. The addition of noise in the

measurement would also be relevant as noisy measurements happen from time to

time in real radar data. Introducing more variation in the scenarios could also be a

natural next step, for example in the size and type of obstacles to be avoided. This

could eventually lead to the avoidance of moving obstacles.

In our task, we have simply needed to extract two things from the images: whether

there was an object present, and where it was. We had no use for sensitivity to

texture or shapes, such as a network trying to determine whether an individual has

fur and if its ears are triangular or round. Thus we did not see the need for a large

number of layers that, combined, could detect such features. In more complex

scenarios, however, where the agent must determine whether it is observing an

actual object or simply noise, and what size the object in question is, more layers to

the networks would likely be necessary. The agent could distinguish objects from

noise based on their texture, and it would have to determine its path based on the

size and shape of the obstacle to be avoided.

The goal position which we have used in our scenarios as the point the agent should

attempt to reach is in many ways equal to a waypoint. In marine path-following,

waypoints often mark the path that the ship should follow. Path following may then

be executed through e.g. trying to keep as close to the line between two points

as possible. Using such waypoints as goal positions, our system could potentially

be used as an alternative to such a path following technique. The system may

then also offer automatic obstacle avoidance without the need to generate new

waypoints around the obstacle, reducing the number of waypoints. Because our

4.4. FUTURE WORK 79

implementation of GAIL does not generate actions based on a trajectory, but rather

on one observation alone, it has no sense of history. The switching of one waypoint

as goal position to the next would thus likely not be problematic. A quick test was

performed to illustrate the concept using the RL-gaussian-radarObs policy from

Table 4.1. No further training was performed before the test was conducted. The

resulting path is shown in Figure 4.14.

In order for this extension of use to work properly, one would likely need to include

training episodes with no obstacle present, so that the agent is familiarized with this

scenario and learns to aim straight for the goal when nothing obstructs its path. It

would likely also benefit from introducing starting positions where the USV is not

already facing the goal position as this is a likely scenario when switching from one

waypoint to another.

Future work could also include the implementation of a fully end-to-end system in

the sense of a policy that maps the raw sensor data to a low-level actuator input such

as the input of the USVs thrusters. The use of GAIL for acquiring an end-to-end

policy could be extended to other USV tasks as well, such as e.g. docking.

80 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.14: Test with waypoint following using the Gaussian policy trained with RL, using
radar observations. The green dots mark the waypoints and the red stars mark obstacles the
agent must avoid. The numbers along the axis mark the distance from the starting position
in meters.

Chapter 5
Conclusions

We have in this project presented two systems that both learn an end-to-end steering

model, one learning through Reinforcement Learning (RL) and the use of a manually

crafted reward function, and one learning through Imitation Learning (IL) and the

use of a set of expert demonstrations. Both of these systems use Deep Learning

techniques to learn a policy that maps input observations to steering actions. We

have tested our systems on two types of observations, the most notable of which is

the use of radar-like images. Both systems show a clear understanding of the task at

hand and are able to steer towards a target position while avoiding collision with an

obstacle.

The RL system performed at the highest accuracy overall, scoring 100% on our

pre-determined success measure. While the problem of learning from demonstrated

behavior seems to be the more difficult task, resulting in lower accuracy, the IL

system produces results that indicate it is able to grasp the concept of the task and

that in many ways are on par with the RL system. We deem this promising for future

use in tasks that are not as easily described by a reward function. While object

avoidance using radar observations seem to be a task which can be described by a

manually crafted reward function without many difficulties, other USV tasks may

not be as simple to capture. These tasks may benefit more from the IL approach.

From our results, we conclude that our end-to-end steering model is able to perform

the task of obstacle avoidance using radar observations all without the need for a

model or insight into the dynamics of the system. Our choice of observations and

81

82 CHAPTER 5. CONCLUSIONS

action formulation also make our system invariant to the position and past actions

of the USV. Such a system could thus potentially be further developed into a path

following approach using waypoints with automatic obstacle avoidance.

Appendix A
Additional Theory

This appendix contains additional theory included for the sake of completion and

for the readers support. Sections A.1, A.2 and A.3 were originally written by us for

the pre-project report preceding this thesis. In this section, the terminology cost, c,

is used. Cost is defined as negative reward, c = −r

A.1 Maximum Entropy IRL

A challenge in IRL is that the task of finding a cost function that describes the

observed behavior is underdefined. Several cost functions might describe the same

behavior. For example, a red ball is moved to the left, and onto a green cloth. The

motivation behind this action might not easily be discerned. Its movement could be

motivated by some rule that red always should go on top of green, or it could be

that the ball should not be in direct contact with the table, or it could be that the ball

should always move to the left and the cloth was simply there. Although this is a

simple example, it illustrates an important issue with learning from observations.

Maximum entropy IRL (Ziebart et al.; 2008) attempts to ease the issue of the

underdefined problem in IRL. By making use of the principle of maximum entropy

(Jaynes; 1957), they present a probabilistic approach. Intuitively, the algorithm

assumes that the optimal policy is the most likely to appear in the dataset and

the algorithm will favor the reward function that maximizes the likelihood of the

observed expert distribution. This is done by formulating a probabilistic problem.

83

84 APPENDIX A. ADDITIONAL THEORY

With τ representing a trajectory, τ = {s1,a1, ..., st ,at , ..., sT } and Rϕ (τ) the hidden

reward for the trajectory, Rϕ (τ) =
∑

t r (st ,at) where ϕ denotes the reward weights.

p(τ) =
1
Z
exp(Rϕ (τ)) (A.1)

Z is the partition function, Z =
∫
exp(Rϕ (τ))dτ a normalization constant gained by

summing exp(R(ϕ)) over all paths. A benefit of this is the implicit handling of the

uncertainty and noise of the observed path, making the approach more robust.

The expression of the trajectory probability comes as a result of the assumption

that trajectories with higher rewards will have exponentially higher probability

of occurring in the set of trajectories than those yielding lower rewards. I.e. it

expresses the wish to find a reward function such that if the expert were to use

it, the likelihood of it receiving high rewards would be exponentially larger than

it receiving low rewards for its demonstrations, maximizing the likelihood of the

occurrence of the observed trajectories. The weights of the reward function can thus

be found through maximizing over the set of demonstrations D : {τi } ∼ π ∗

ϕ∗ = argmax
ϕ

∑
τ ∈D

logprϕ (τ) (A.2)

The reward function is assumed to be linear. As such, the gradient of the log-

likelihood function can be found by the use of dynamic programming.

Formulating or estimating a partition function can be challenging, especially in

higher dimension problems or when the dynamics are unknown. Despite this, the

Maximum Entropy approach has been heavily used and built upon in the IRL field.

In its work on the distribution of trajectories, the algorithm not only provides a way

to handle the issue of the underdefined problem but it also somewhat facilitates

another issue of IRL. In contrast to the IRL approaches proceeding it, Ziebart et al.

(2008) does not assume the expert observations are optimal.

A.2 Deep Maximum Entropy IRL

Deep Maximum Entropy IRL (DeepIRL) (Wulfmeier et al.; 2015), builds upon the

Maximum Entropy IRL, using Neural Networks (NN) to approximate the reward

A.3. GUIDED COST LEARNING 85

function. In their paper, they advocate the use of NNs in IRL because their layered

structure allows for a compact representation of highly nonlinear functions through

composition and reuse of results from previous layers. In addition, they point out

how NNs computational complexity allows them to scale well to problems with

large state spaces and complex cost structures. NNs thus opens the door for end-to-

end learning, where the cost may be learned from raw sensor data rather than from

hand-crafted features.

Wulfmeier et al. (2015) suggests a Fully Convolutional Neural Network (FCNN)

which calculates the cost of each state-action pair. This current cost function is then

used to calculate a policy before the policy is propagated through the MDP. From

this, the frequency of which each state is visited, can be calculated and compared

to that of the demonstrations. Finally, the results can be backpropagated and the

wights of the network can be updated before possibly re-iterating the process.

The paper indicated promising results that outperformed methods such as the Gaus-

sian Process IRL of Levine et al. (2011) when it came to complex situations where

higher order relationships between features were of large importance. However, like

most IRL approaches, DeepIRL uses the transition function in its calculation of the

cost and thus requires it to be known beforehand. Another limitation of Wulfmeier

et al. (2015) is that they use dynamic programming that traverses over the whole

state space to calculate the partition function. In large state spaces, this is highly

problematic from a computational view.

A.3 Guided Cost Learning

Motivated by the prospect of using IRL in fields where the dynamics are complex or

unknown, such as in robotics, Finn et al. (2016a) presents the Guided Cost Learning

algorithm (GCL). GCL uses an adaptive IRL approach that tests the current cost

function and policy through training in the environment, samples this and uses the

samples to update its environmental model and policy. The cost function is then

updated through a sample based approximation of Entropy IRL (Ziebart et al.; 2008)

which, like Wulfmeier et al. (2015), expresses the cost function by the use of a

Neural Network.

A regular challenge in IRL is how to evaluate the cost function. As pointed out

in Zhifei and Joo (2012) and Finn et al. (2016a), a common approach is to find

86 APPENDIX A. ADDITIONAL THEORY

Figure A.1: An illustration of the GCL algorithm. i represents the time step, and ϕ
represents the cost parameters.

the optimal policy for the current cost function, a task which has been dubbed ’the

forward problem’ and compare the actions of this policy to that of the expert. The

aforementioned authors note that standard IRL solutions solve this forward problem

inside the cost optimizing loop. They argue that finding an optimal policy for a cost

function can in itself be a complex and costly task that requires intricate knowledge

of the dynamics of the system.

Thus, instead of finding a policy inside the loop searching for the cost, the approach

of Finn et al. (2016a) is to find the cost in a loop searching for the policy. In other

words, it constructs a cost function that can motivate the expert’s behavior as a

step in optimizing a policy that can imitate that same behavior. The policy is then

tested in the environment and samples are collected. These samples are used to

improve the cost function that gives rise to the policy. This way, knowledge of

the system dynamics is not required as the agent will estimate them by itself when

creating its current policy in the environment. This also grants it the benefit of

building knowledge of the dynamics that is closer to the true local dynamics only

for the areas where it is most important. GCL gets its name from the fact that the

optimizing of the policy guides the sampling towards regions with lower cost.

A result of this approach is that it yields not only the cost but also a trajectory

function, q(τ), that corresponds to a time-varying linear-Gaussian controller which

can be used to execute the learned behavior.

A.3. GUIDED COST LEARNING 87

A.3.1 The GCL Cost Optimization

In the GCL algorithm, the loop updating the cost function is located inside the loop

that performs the policy search. GCL builds upon Ziebart et al. (2008) and assumes

the demonstrated trajectories, τi , are drawn from the distribution

p(τ) =
1
Z
exp(−cϕ (τ)) (A.3)

where cϕ (τ) =
∑

t cϕ (xt ,ut), the sum of the cost for each state, xt , and action, ut ,

pair that make up the trajectory. Because the partition function, Z =
∫
exp(Rψ (τ))dτ ,

is unknown, it is estimated from samples of a background distribution, q(τ) which

is estimated as part of the policy optimizing part of the GCL algorithm.

The GCL objective can then be expressed using the set of N demonstrations, Ddemo ,

and M samples, Dsamp as denoted below (Finn et al.; 2016a)

LGCL(ϕ) =
1
N

∑
τi ∈Ddemo

cϕ (τi) + logZ (A.4)

≈
1
N

∑
τi ∈Ddemo

cϕ (τi) + log
1
M

∑
τj ∈Dsamp

exp(−cϕ (τj)

q(τj)
(A.5)

Finn et al. (2016a) then compute the corresponding gradients, with respect to the

cost parameters, ϕ, and denoting w j =
exp(−cϕ (τj)

p(τj)
and Z =

∑
j w j

dLGCL

dϕ
=

1
N

∑
τi ∈Ddemo

dcϕ

dϕ
(τi) −

1
Z

∑
τj ∈Dsamp

w j
dcϕ

dϕ
(τj) (A.6)

The parameters of the cost function, ϕ, can thus be updated iteratively, using this

gradient. As the cost function is represented by a NN, Finn et al. (2016a) back

propagate −w j
Z for each trajectory τj ∈ Dsamp and 1

N for each trajectory τi ∈ Ddemo

and update the weights of the NN based on the resulting gradients.

88 APPENDIX A. ADDITIONAL THEORY

A.3.2 The GCL Policy Optimization Step

GCL optimize both a cost function and a policy. As part of the algorithm, a policy

is optimized as a step in estimating the background distribution p(τ) used in the cost

optimization. As described in Finn et al. (2016a), this step in the GCL algorithm

uses the method of Levine and Abbeel (2014). Their method is highly similar

to the GPS algorithm described in Section ??. Similarly to the GPS approach

described in Levine et al. (2016), the policy optimization procedure consists of

iteratively generating samples from p(ut |xt), fitting the dynamics, p(xt+1 |xt ,ut), to

these samples, and updating p(ut |xt) under these fitted dynamics. One difference

between the method of Levine and Abbeel (2014) and Levine et al. (2016) is that

the latter offers the simultaneous learning of a global, observation-based policy πθ .

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt

ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse

platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum

fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin,

felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin

tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

References

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforce-

ment learning, Proceedings, Twenty-First International Conference on Machine

Learning, ICML 2004, pp. 1–8.

Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel,

L. D. and Muller, U. (2017). Explaining how a deep neural network trained with

end-to-end learning steers a car, CoRR abs/1704.07911.

Cheng, Y. and Zhang, W. (2018). Concise deep reinforcement learning obstacle

avoidance for underactuated unmanned marine vessels, Neurocomputing 272: 63–

73.

Chi, L. and Mu, Y. (2017). Learning end-to-end autonomous steering model from

spatial and temporal visual cues, VSCC 2017 - Proceedings of the Workshop on

Visual Analysis in Smart and Connected Communities, co-located with MM 2017,

pp. 9–16.

Cybenko, G. (1981). Approximations by superpositions of sigmoidal functions,

Mathematics of Control, Signals, and Systems 2: 303–314.

Finn, C., Christiano, P. F., Abbeel, P. and Levine, S. (2016b). A connection between

generative adversarial networks, inverse reinforcement learning, and energy-based

models, CoRR .

Finn, C., Levine, S. and Abbeel, P. (2016a). Guided cost learning: Deep inverse op-

timal control via policy optimization, 33rd International Conference on Machine

Learning, ICML 2016, Vol. 1, pp. 95–107.

89

90 REFERENCES

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G. and Pineau, J. (2018).

An introduction to deep reinforcement learning, CoRR .

Fu, J. (2018). Implementation of gail’s discrim-

inator update scheme. Software available from

https://github.com/justinjfu/inverse_rl/blob/master/inverse_rl/models/imitation_learning.py.

URL: https://github.com/justinjfu/inverse_rl/blob/master/inverse_rl/models/imitation_learning.py

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT Press.

http://www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y. (2014). Generative adversarial nets, Advances in

Neural Information Processing Systems 27: 2672–2680.

Goodfewllow, I. (2016). Nips 2016 tutorial: generative adversarial networks.

Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent advances,

INFORMS Journal on Computing 21(2): 178–192.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X.,

Wang, G., Cai, J. and Chen, T. (2018). Recent advances in convolutional neural

networks, Pattern Recognition 77: 354–377.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning, CoRR .

Hunter, D. R. and Lange, K. (2004). A tutorial on MM algorithms, The American

Statistician 58(1): 30–37.

Hussein, A., Gaber, M. M., Elyan, E. and Jayne, C. (2017). Imitation learning: A

survey of learning methods, ACM Computing Surveys 50(2).

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift, 32nd International Conference on

Machine Learning, ICML 2015, Vol. 1, pp. 448–456.

Jaynes, E. (1957). Information theory and statistical mechanics, Physical Review

108(2): 171.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforce-

ment learning, p. 267–274.

http://www.deeplearningbook.org

REFERENCES 91

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization,

International Conference on Learning Representations .

Kober, J., Bagnell, J. A. and Peters, J. (2013). Reinforcement learning in robotics:

A survey, International Journal of Robotics Research 32(11): 1238–1274.

Konda, V. (2002). Actor-critic Algorithms, PhD thesis, Cambridge, MA, USA.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks, Advances in Neural Information Processing

Systems, Vol. 2, pp. 1097–1105.

Levine, S. and Abbeel, P. (2014). Learning neural network policies with guided pol-

icy search under unknown dynamics, Advances in Neural Information Processing

Systems, Vol. 2, pp. 1071–1079.

Levine, S., Finn, C., Darrell, T. and Abbeel, P. (2016). End-to-end training of deep

visuomotor policies, Journal of Machine Learning Research 17.

Levine, S., Popović, Z. and Koltun, V. (2011). Nonlinear inverse reinforcement

learning with gaussian processes, Advances in Neural Information Processing

Systems 24: 25th Annual Conference on Neural Information Processing Systems

2011, NIPS 2011.

Lu, Y., Wu, S., Tai, Y. and Tang, C. (2017). Sketch-to-image generation using deep

contextual completion, CoRR .

Martinsen, A. B. and Lekkas, A. M. (2018). Straight-path following for underac-

tuated marine vessels using deep reinforcement learning, IFAC-PapersOnLine

51(29): 329–334.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.

and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement

learning, CoRR .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. and

Hassabis, D. (2015). Human-level control through deep reinforcement learning,

Nature 518(7540): 529–533.

92 REFERENCES

OpenAI:SpinningUp (2018). Implementation of the trpo algorithm. Implemented

by by Josh Achiam.

URL: https://github.com/openai/spinningup/blob/master/spinup/algos/trpo/trpo.py

Rosenblatt, F. (1957). The perceptron - a perceiving and recognizing automaton,

Cornell Aeronautical Laboratory .

Schmidhuber, J. (2015). Deep learning in neural networks: An overview, Neural

Networks 61: 85–117.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I. and Abbeel, P. (2015). Trust

region policy optimization, CoRR .

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T. and Hassabis, D. (2016). Mastering the game of go

with deep neural networks and tree search, Nature 529(7587): 484–489.

Squire, L., Berg, D., Bloom, F., du Lac, S., Ghosh, A. and Spitzer, N. (2008).

Fundamental Neuroscience, 3rd edition, Elsevier.

Sutton, R. S. and Barto, A. G. (2017). Reinforcement Learning: An Introduction,

2nd edition, MIT Press Ltd.

Tai, L., Zhang, J., Liu, M., Boedecker, J. and Burgard, W. (2016). A survey of

deep network solutions for learning control in robotics: From reinforcement to

imitation, arXiv preprint .

Tensorflow home page (2017). [Online; accessed 13-December-2018].

URL: https://www.tensorflow.org/

Vedeler, A. S. (2018). Pre project: Learning an end-to-end steering model for an

unmanned surface vehicle.

Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X. and Wang, F.-Y. (2017). Generative

adversarial networks: introduction and outlook, IEEE/CAA Journal of Automatica

Sinica 4(4): 588–598.

Wulfmeier, M., Ondruska, P. and Posner, I. (2015). Maximum entropy deep inverse

reinforcement learning, CoRR .

REFERENCES 93

Wulfmeier, M., Wang, D. Z. and Posner, I. (2016). Watch this: Scalable cost-

function learning for path planning in urban environments, 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 2089–

2095.

Zhang, M. (2017). Model-based reinforcement learning. [Online; posted 27-

September-2017].

URL: https://michaelrzhang.github.io/model-based-rl

Zhifei, S. and Joo, E. M. (2012). A survey of inverse reinforcement learning

techniques, International Journal of Intelligent Computing and Cybernetics

5(3): 293–311.

Ziebart, B. D., Maas, A., Bagnell, J. A. and Dey, A. K. (2008). Maximum en-

tropy inverse reinforcement learning, Proceedings of the National Conference on

Artificial Intelligence, Vol. 3, pp. 1433–1438.

A
lexandra Skau Vedeler

Learning an End-to-End Steering M
odel for an U

nm
anned Surface Vehicle

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Alexandra Skau Vedeler

Learning an End-to-End Steering
Model for an Unmanned Surface
Vehicle

Inverse Optimal Control for End-to-End
Mapping of Input Sensor Data to Action
Parameters

Master’s thesis in Cybernetics and Robotics
Supervisor: Kristin Y. Pettersen

June 2019

	Abstract
	Sammendrag
	Introduction
	Previous works This section, though written by us, was originally written for the preparatory project preproj preceding this thesis
	Contribution and Background
	Abbreviations and Notation
	Outline
	Background and Theory
	Deep Learning
	Artificial Neural Networks
	Deep Neural Networks
	Convolutional Neural Networks
	Training

	GAN
	Training
	Advantages and Drawbacks

	Reinforcement Learning
	The core idea of Reinforcement Learning
	Marcov Decision Process
	Optimal Policy
	Deep Reinforcement Learning
	Trust Region Policy Optimization

	Inverse Reinforcement Learning
	The concept of IRL
	IRL algorithms

	Imitation Learning
	GAN and Imitation Learning
	GAIL

	Unmanned Surface Vehicle
	Radar

	Method
	Programs used
	The task
	Observation of state

	Training Data
	Data Gathering
	Simulation of environment

	Reinforcement Learning setup
	Policy
	Reward

	Imitation Learning setup
	Data Preprosessing
	Discriminator

	Results and Discussion
	Validation
	Results
	Training
	Expert Demonstrations
	Rwsults using Positional Observations
	Radar Observations
	The Difference between Categorical and Gaussian Policy
	Summary of Results

	Discussion
	Observations and actions
	GAN
	End-to-end learning in practical use
	RL vs IL
	Model-free systems

	Future Work

	Conclusions
	Additional Theory
	Maximum Entropy IRL
	Deep Maximum Entropy IRL
	Guided Cost Learning
	The GCL Cost Optimization
	The GCL Policy Optimization Step

	References

