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Abstract

The purpose of this study was to investigate modifier adaptation schemes to
handle plant-model mismatch in real-time optimization of uncertain processes.
Building upon the works of (Marchetti et al. 2016) and (Ferreira et al. 2018),
two modifier adaptation algorithms are presented. The first one is a Modifier
Adaptation scheme that uses first-order corrections to update the gradients in
the optimization problem. However, first-order corrections rely on accurate
estimations of plant-gradients, which can be both impossible and costly. A second
variant is a machine learning based Modifier Adaptation scheme, which replaces
the first order corrections with Gaussian process regression to represent the
plant-model mismatch and estimation of plant gradients. Both algorithms are
demonstrated in a two-well oil production system. The simulations show that the
latter algorithm outperforms the former in terms of noise mitigation. However,
the latter algorithm did not satisfy feasible-side convergence. Therefore, further
investigation is needed to determine if the Aodifier Adaptation scheme with
Gaussian process regression is able to handle plant-model mismatch in real-time
optimization of uncertain processes.
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Sammendrag

Hensikten med denne studien var å undersøke om optimalisering med "Modifier
Adapation"-rammverket er i stand til å takle modelleringsfeil i "Real-time optimiza-
tion" av usikre prosesser. To ulike algortimer, basert på arbeidet i (Marchetti et al.
2016) og (Ferreira et al. 2018), er presentert i oppgaven. Den første metoden bruker
førsteordens korreksjoner til å oppdatere gradientene i optimaliseringsproblemet.
For tilstrekkelig utførelse er denne metoden sterkt avhengig av presise estimater
av gradientene, noe som kan være både umulig og kreve mye regnekraft. Den
andre varianten er en "Modifier Adaptation"-metode som tar i bruk maskinlæring,
ved å erstatte førsteordens korreksjoner med "gaussian process" regresjon, til
å prediktere modellfeil og gradientene i optimaliseringsproblemet. Begge algo-
ritmene er anvendt på et oljeproduksjonssytem med to oljebrønner. Basert på
simuleringene kan man se at den sistnevnte algoritmen utkonkurrerer den første,
med tanke på håndtering av målestøy. Selv om maskinlæringsalgoritmen klarer
å konvergere til det optimale punktet, klarte den dog ikke å holde seg innen-
for mulighetsområde under optimaliseringsprosessen. Derfor trengs det videre
undersøkelser for å bestemme om "Modifier Adaptation" med "gaussian process"-
regresjon er i stand til å løse modellfeil-problemet i Real-time optimization" av
usikre prosesser.
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Preface

0.1 Previous work

This master thesis is based on a project thesis carried out, by me, in fall 2018.
The project thesis involved Real-time optimization of oil production using an
algorithm called Modifier Adaptation. The models presented in this thesis are an
extension of the models developed in the project thesis. Moreover, some of the
content from the project thesis is reused here. However, this master thesis is a
standalone work and can be read independently from previous work.

0.2 This thesis

This thesis is the culmination of my work at the Norwegian University of Science
and technology, under the supervision of Professor Lars Struen Imsland. The the-
sis is written at the Department of cybernetics, during the spring semester of 2019.

The assumed background of the reader should be an education within control
engineering and mathematical optimization. Familiarity with machine learning,
and in particular function approximators such as Gaussian Process regression, is
beneficial. However, the theory needed to understand the specifics of optimization

iv



and Gaussian Process regression will be presented.

Mature oil fields that have passed “plateau” production often have a complex
bottleneck structure. This makes it hard to decide which well to produce from,
and how much to produce at a given time. Furthermore, the uncertainty of reser-
voir characteristics and equipment capacities makes model-based optimization
challenging. The motivation of this thesis is to investigate whether the “Modifier
Adaptation” approach to real-time optimization can be a solution to the mentioned
challenges, by using measurements of the plant to update the gradients in the
optimization problem.
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Chapter 1

Introduction

1.1 Background and motivation

As oil and gas reserves are getting more expensive and hard to explore it is im-
portant that we ensure the best utilization of the resources. These projects are
quite complex, thus there are many decisions that have to be taken carefully. The
development of these fields involves multibillion investments with huge expect-
ing returns. Therefore, the industry has been forced to come up with innovative
strategies to obtain the optimal operation of production. To optimize there are
many factors that have to be taken into consideration such as increased water
depths, environmental conditions, reserve structure and the ratio between gas
and oil.

Since the oil is the most valuable product in the reserves the optimal production
in oil fields involves maximizing oil production. When producing oil there will
also be produced gas and water, but the amount of the different fluids varies from
well to well. The production facilities have gas handling capacities, which is the

1
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maximum amount of gas the field can handle. Therefore, in oil production the
ratio between gas and oil in each well, gas-oil ratio (GOR), is an important factor
when deciding how to produce the oil. In other words it is essential that the
oil production is from the wells with the lowest GOR at all times, for optimal
production with respect to the gas handling capacity constraint.

At the moment there exist simulators that can predict the GOR for different
wells. Combining these simulators with model-based optimization, as for example
Real-time Optimization (RTO), is a powerful approach to optimize large scale
production problems. However, if there are disturbances, sudden changes in GOR
or reservoir pressures between the RTO iterations the GOR simulators will not be
accurate enough. Hence the optimal operation calculated by the RTO will not be
the actual optimal operation point for the plant. This problem, called plant-model
mismatch, is researched a lot by the process engineering community and several
RTO variants have arisen[1]. In this thesis I will investigate if this plant-model
mismatch problem can be solved by a RTO method called Modifier Adaptation
(MA).

1.2 Goal and method

The main goal of this thesis is to investigate whether the Modifier Adaptation
approach to real-time optimization can be a solution to the plant-model mis-
match problem, introduced above. First of all the standard “modifier adaptation”
approach proposed in [1], using measurements to update gradients in the opti-
mization problem, will be investigated. Then, to achieve better learning from data,
the “modifier adaptation” approach with an extension using machine learning
in the form of Gaussian processes (GP)[2] will also be investigated. Both the
standard modifier adaptation and with extension using GP will be tested and
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compared on a simple experiment from oil production.

1.3 Outline of report

Chapter 2 is committed to the literature review. This chapter covers the fun-
damental basics of mathematical optimization. Moreover, an introduction to
machine learning will be given, with emphasis on Gaussian process regression.
Lastly, the used software is introduced.

Chapter 3 gives an overview of the mathematical model of the oil-well. This
chapter is based on chapter 3 in the project thesis.

Chapter 4 provides a formulation of a static optimization problem in the model
developed in chapter 3. Furthermore, simulations on the model are presented.
Here some important concepts and notation used further will be explained.

Chapter 5 presents the implementation of Real-time optimization using Modi-
fier Adaptation (MA-RTO) to cope with mismatches between the model, modeled
in chapter 4, and the plant. Moreover, simulation results are presented and a dis-
cussion of these. Lastly, we draw a conclusion based on the results and discussions
and propose further work.
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Chapter 2

Background and theory

2.1 Introduction to Optimization

Mathematical optimization is an important tool in numerous fields [3][4][5]. It
is widely used in the fields of science, engineering, and economics. These in-
clude big industries such as the offshore industry. Developing oil fields involve
multi-billion investments, hence well calculated and optimized decisions can
save investors a lot of money[6]. Therefore, developing innovative optimization
strategies for the process industry is highly prioritized in the research community.

First of all an optimization problem consist of an objective function and de-
cision variables[3]. To use optimization techniques the objective function must
be identified, a scalar measure to study the performance of the solution. The
objective is described as a function of the decision variables. Hence the goal is to
decide the value of the decision variables that optimizes the objective. In other
words, if the objective is the profit of an oil production facility, the goal is to find
the optimal variables that maximize the profit. Moreover, many problems are

5



6 CHAPTER 2. BACKGROUND AND THEORY

constrained optimization problems. This means that the problems include a third
component, constraints, that have to be respected when solving the problem.
Finally, an optimization problem can be described as the following:

min
x

f (x) (2.1)

subject to

ci (x) = 0 i ∈ ϵ (2.2)

ci (x) ≤ 0 i ∈ I (2.3)

where x consists of the decision variables, f is the objective function, ϵ and I

are the set of equality and inequality constraints, respectively. To point out, any
maximization problem can be solved as a minimizing problem by minimizing the
negative objective of the maximizing problem. This means that the optimal point
of equation 2.1 is the same as for: max −f (x)

The solution of equation 2.1 is at point x∗ ∈ Ω if:

f (x∗) ≤ f (x), f or all x ∈ Ω

Such a point is a global minimum. A local maximum x∗ provides a maximum
objective value within some neighborhood instead of the whole feasible region
and is defined as follows:

f (x∗) ≤ f (x), f or all x ∈ ∥x∗ − x∥ ≤ ϵ
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(a) Convex set (b) Non-convex set

Figure 2.1: Illustration of a convex set and a non-convex set

2.1.1 Convexity

In optimization, the problems can be divided into convex and non-convex prob-
lems. The concept of convexity is fundamental in optimization. Problems which
possess this property are generally easier to solve both in theory and practice.

Convexity can be used to describe both sets and functions. A convex set is
a set S ∈ Rn , where the straight line segment connecting any two points in S

lies entirely inside S . Figure 2.1a illustrates a convex set and figure 2.1b shows a
non-convex set. Furthermore, a function is convex if its domain S is a convex set
and if for any two points x and y in S , the following conditions holds:

f (αx + (1 − α)y) ≤ α f (x) + (1 − α)f (y), f or all α ∈ [0, 1] (2.4)

If both the objective function and the feasible region for optimization is convex,
the problem holds the key property that a local optimal point is also a global
optimal point.
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Convex programming is used to describe constrained optimization problems
where [3]:

1. the objective function is convex,

2. the equality constraint functions are linear, and

3. the inequality constraint functions are concave.

2.2 Linear Programming

If both the objective function and the constraints in equations 2.1, 2.2 and 2.3
are linear, we have the simplest form of optimization problems, called linear
programs. Linear programs can generally be written as following:

min
x

cT x (2.5)

subject to

Aex − Be = 0 (2.6)

Aix − Bi ≤ 0 (2.7)
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Figure 2.2: LP problem

Figure 2.2 illustrates a simple Linear Program problem with two decision
variables, where the objective is:

min −(x + y) (2.8)

The problem is constrained by two inequality constraints, illustrated with the two
blue lines. As can be observed the contour lines shows how the objective function
changes linearly. The red star is a global optimal point where the objective is
maximized with respect to the constraints. Since LP problems are convex the
global optimal point is easily found as the KKT conditions are both necessary and
sufficient to meet a global solution. For further discussion on this the reader can
read chapter 12 in [3].
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2.3 Quadratic Programming

When the objective function in equation 2.1 is a quadratic function and all con-
straints are linear the problem is a quadratic programming problem, known as a
QP problem. QP problems are some of the most important nonlinear programming
problems. These arise as subproblems in methods for general constrained opti-
mization as in sequential quadratic programming (SQP) which will be discussed
in section 2.4.1. QP problems are defined as:

min
x

1
2x

TQx + cT x (2.9)

subject to

Aex − Be = 0 (2.10)

Aix − Bi ≤ 0 (2.11)

As all constraints are linear the feasible set is convex. QP problems are convex if
the symmetric matrix Q is positive semidefinite.
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Figure 2.3: QP problem

Figure 2.3 illustrates a simple QP problem with two decision variables, where
the objective is:

min [x y]


2 0

0 2



x

y

 (2.12)

As illustrated by the three blue lines in figure 2.3 the problem is constrained
by three inequality constraints. Different from the LP problem in section 2.2
the contour lines here are quadratic, as the objective is quadratic. The red star
is a global optimal point where the objective is minimized with respect to the
constraints.

A key point about QP problems is that they always can be solved, or shown
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to be infeasible, in a finite amount of computation[3]. First thing to remember
is that the required computational effort is highly dependent on the objective
function and the number of inequality constraints. In fact, a convex objective
function often makes the difficulty level of the problem similar to an LP problem.
Not surprisingly a non-convex QP is more challenging, regarding that the problem
can have several stationary points and local optimums.

2.4 Nonlinear programming

Nonlinear optimization problems include nonlinear objective functions or/and
nonlinear constraints. These problems are in general non-convex which makes it
challenging to find global optimums [3][7]. QP problems, introduced in section
2.3, are also by definition nonlinear problems, but are considered separately due to
their intrinsic importance, since their characteristics can be exploited by efficient
algorithms [3]. Figure 2.4 shows a non-convex function with one parameter. As
can be observed both the red and black stars are local maximums. In fact, the
black star is also a global maximum. The challenge in non-convex optimization
problems, as illustrated here, is to converge to the black star instead of the red
star. Luckily it has been developed powerful optimization methods to cope with
this, which will be discussed later in the chapter.
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Figure 2.4: Non-convex objevtive

2.4.1 Sequential quadratic programming

Regarding that most of the optimization problems in the process field are highly
nonlinear and non-convex, solving these are not straightforward. As mentioned
in section 2.3, both convex and non-convex QP problems can be solved in a finite
amount of computation. Sequential quadratic programming (SQP) algorithms
take advantage of this key property to solve other nonlinear problems. More
precisely SQP approximates a nonlinear problem to a QP problem and solves it for
each iteration. At point xk , in iteration k, SQP algorithms approximate equation
2.1 - 2.3 to:

max
p

f (xk ) + ∇f (xk )p +
1
2p

T∇2
xxL(xk , λk )p (2.13)
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subject to

∇ci (xk)T p + ci (xk) = 0 i ∈ ϵ (2.14)

∇ci (xk)T p + ci (xk) ≤ 0 i ∈ I (2.15)

where
L(xk , λk ) = f (xk ) +

∑
i ∈ϵ∪I

λici (xk ) (2.16)

and λi are the lagrangian multipliers. For detailed information on this, the reader
is referred to chapter 18 in [3]. After solving this problem the SQP algortihm solve
the same problem for xk+1 = xk + αp, where α ∈ [0, 1] denotes the step. This is
done sequentially until the convergence properties of the algorithm is satisfied.

2.5 Applications

2.5.1 Real-time optimization

Real-time optimization, known as RTO, is a model-based optimization approach.
RTO methods are widely used in the industry because they are powerful when
optimizing large scale problems[8]. These methods are typically structured in
three main steps [1]. First of all the process optimization contain a model of the
process, also known as process modeling, followed by numerical optimization
of the obtained process model. The numerical optimization is done by some
optimization algorithms, in example SQP from section 2.4.1. Then an application
of the optimal inputs, obtained from the numerical optimization, are applied on
the plant. In theory this seems quite simple and straightforward, however, in
reality, the models are usually not perfect representations of the plants. Hence
solving these problems in the real world are more challenging.



2.5. APPLICATIONS 15

 

Figure 2.5: Typical RTO control hierarchy [7]

The model-based optimal inputs, calculated by the RTO algorithms, are indeed
optimal for the model, but as long as the model is not a perfect representation the
inputs are often sub-optimal for the plant. However, RTO has shown its power
to converge to optimal inputs, even when there exist mismatches between the
plant and the model. This problem, called plant-model mismatch, is researched a
lot by the process engineering community and several RTO variants have arisen.
In this thesis, a specific RTO method called Modifier Adaptation(MA) is being
investigated. Figure 2.5 illustrates a typical RTO control hierarchy.

2.5.2 Modifier Adaptation approach

In section 2.5.1 the challenge of making an accurate model of the plant was
introduced. These inaccuracies, called plant-model mismatches, are mainly caused
by one of the following reasons or a combination of multiple of them[1]:

• Parametric uncertainty - when the model parameters do not correspond to
the real process.
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• Structural plant-model mismatch - when there is amismatch in the structure
of the model, for instance due to simplified/neglected dynamics or unknown
characteristics of the process.

• Process disturbances.

When choosing an RTO-method, some important properties have to be considered.
Guaranteed plant optimality upon convergence is one of the desired properties. In
addition, fast convergence and feasible-side convergence are two ideal properties
too. In fact, the latter two properties often oppose each other. As an illustration
fast convergence often require large steps, while feasible-side convergence often
calls for small steps. Hence to satisfy these two requirements there must be a
compromise between large and small step sizes. The key characteristic of modifier
adaptation is that it guarantees convergence to plant optimum even if there exist
structural plant-model mismatches.

Modifier Adaptation is an RTO method that uses the process measurements
to improve cost and constraint functions. In general, it uses correction terms for
the cost and constraint function to update the plant model, instead of estimating
the plant parameters, which is a more common strategy. More precisely it esti-
mates the plant gradients from the measurements, which are used as gradient
correction terms in the model to modify both cost and constraint functions in the
optimization problem. The use of gradients is justified by the necessary conditions
of optimality that include constraints with sensitivity conditions. By enforcing
the plant’s and model’s necessary conditions of optimality to match, the modified
model will be a likely candidate to solve the plant optimization problem.

As mentioned above the Modifier Adaptation method is implemented by adding
some correction terms to the optimization model. Hence the optimization problem
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for equation 2.1 becomes:

x∗k+1 = max
x

f (x) + (λfk )
T (x − xk ) (2.17)

s .t .

ci,k (x) = ci (x) + ϵ
ci + (λcik )

T (x − xk ) = 0 i ∈ ϵ (2.18)

ci,k (x) = ci (x) + ϵ
ci + (λcik )

T (x − xk ) ≤ 0 i ∈ I (2.19)

where the modifiers are defined as follows:

ϵci = cp,i (xk ) − ci (xk )

λ
f
k = (1 − K f )λ

f
k−1 + K

f (∇̂f p,k − ∇̂f k )

λcik = (1 − Kci )λcik−1 + K
ci (∇̂cp,i,k − ∇̂ci,k )

The variables with subscript p, cp,i , ∇̂f p,k and ∇̂cp,i,k to be specific, are based
on measurements directly from the plant. Similarly the same variable without
subscript p are the model values for the same variables. Note that the modifiers
becomes 0 when there is no mismatch between the model and the plant. In this
case the model is a perfect representation of the plant and the Modifier Adaptation
terms are not needed. Moreover the gradients, ∇̂f p,k , ∇̂f k , ∇̂cp,i,k and ∇̂ci,k ,
are estimated as it is very challenging to measure them directly [1]. Estimation
methods of the gradients are discussed in more detail in section 2.5.3.

2.5.3 Gradient estimation

Regarding that the plant gradients cannot be measured directly, implementing
MA in real situations can be difficult. Especially obtaining reliable estimates of
the gradients from noisy measurements can be quite challenging. Estimating
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gradients can be done by dynamic perturbation methods, that use transient data,
or steady-state perturbation methods, which is simpler since they only use sta-
tionary data.

In this thesis, two different gradient approximation methods will be applied
and the performances of each will be compared. Multiple methods are presented
in [1]. One of the proposed methods is finite-difference approximation using past
RTO points, which will be used in this project. In addition to that a Machine
learning approach called Gaussian processes will be investigated[2]. In the next
sections these two methods will be explained in detail.

2.5.3.1 Finite difference approximation using past RTO points

Finite difference approximation is the simplest steady-state method to estimate
the gradients. First, each input is perturbed around the operating point at the
current step. Secondly, the corresponding gradient elements get measured when
the process reaches steady state.

Gradients with finite-difference approximation can be obtained using past RTO
points. Initialization of this technique requires a number of operating points
equal to the number of inputs in the problem, nx , plus one in order to estimate
the gradients. For instance, in a problem with two input variables, the method
requires 3 operating points. One can obtain these points by perturbating each
input around the current operating point two times. Thus the following matrices
can be constructed

Uk =
[
xk − xk−1 xk − xk−2 ... xk − xk−nx

]
δ f̃p,k

T
=

[
f̃p,k − f̃p,k−1 f̃p,k − f̃p,k−2

]



2.5. APPLICATIONS 19

δc̃p,i,k
T =

[̃
cp,i,k − c̃p,i,k−1 c̃p,i,k − c̃p,i,k−2

]
Finally the plant gradients become

∇̂f p,k = δ f̃p,k
T
(Uk )

−1

∇̂cp,i,k = δc̃p,i,k
T
(Uk )

−1

Finite difference approximation is sufficient for processes without noise and
with few inputs. However, most realistic processes have noise and the method
can lead to constraint violation when it operates near a constraint. A more robust
alternative to finite difference approximation is a quadratic approximation[1].
The quadratic model obtains a local quadratic approximation of the cost and
constraint functions, using the current and past operating points. Further, the
model calculates the plant gradient. Since higher order of approximation captures
more precise information of the process it consequently decreases the influence
of the noise. Hence this is more accurate but is indeed more complex.

2.5.3.2 Gaussian processes

Gaussian processes, known as GP, is a regression method to estimate unknown
functions. The method has been very popular in the machine learning community
for a long time, and is now also becoming popular in the field of optimization
and control due to its simplicity and effectiveness[2][9][10]. By simplicity and
effectiveness, it is referred to GPs ability to capture complex unknown functions
using just a few parameters. The technique is probabilistic and non-parametric
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and can be seen as a multivariate normal distribution with up to infinitely many
random variables. Different from parametric methods that only use the training
data in the learning phase to identify the parameters, GP uses kernel methods
that use all the available data to estimate the mapping functions between input
and output data.

With GP the objective is to approximate the unknown function

f : Rn → R (2.20)

using observations
yi = f (xi ) + υ (2.21)

It is assumed that the observations yi differ from the actual values f (xi ) by an
additive noise υ. The noise is assumed to follow an independent, identically
distributed Gaussian distribution with zero mean and variance σ 2

υ .

υ ∼ N(0,σ 2
υ ) (2.22)

Furthermore np available input-output pairs

X̄ = [x1, x2, ... xnp ] ∈ R
xdim×np , ȳ = [y1, y2, ... ynp ]

T ∈ Rnp×1 (2.23)

are used to establish a relationship between the inputs and the outputs. From this
a corresponding conditional distribution of the output y for a new input x can be
obtained:

f (x) | (X̄ , ȳ) ∼ N(µf ,σ
2
f ) (2.24)
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µf = µf (X̄ , ȳ) = c
T (C̄ + σ 2

υ Inp )
−1ȳ (2.25)

σf = σf (x , X̄ , ȳ) = c(x ,x) − cT (C̄ + σ 2
υ Inp )

−1c (2.26)

where Inp is the identity matrix with dimension np × np and c(xi ,x j ) is the
kernel. [2] discuss multiple different kernels, but in this project the auto relevance
determination square exponential covariance function is used, defined as follows:

c(xi ,x j ) = σ 2
c exp

(
−
(xi − x j )TΛ(xi − x j )

2

)
, Λ = diaд(λ1, ..., λxnp ) (2.27)

Accordingly the GP regression need to learn the hyperparameters in θ , from X̄

and ȳ :
θ = [σ 2

c , λ1:xnp] ∈ R
xdim+1 (2.28)

Further C̄ ∈ Rnp×np is the covariance matrix with entries:

C̄i, j = c(xi ,x j ) (2.29)

and
cT = [c(x ,x1), c(x ,x2), ..., c(xi ,xnp )] ∈ R

np×1 (2.30)

The parameters are learned by maximizing the log-marginal likelihood:

L(θ , X̄ , ȳ) = −
1
2ȳ

TM(θ , X̄ )−1ȳ −
1
2 log |M(θ , X̄ )| −

n

2 log(2π ) (2.31)

where
M(θ , X̄ ) = C̄ + σ 2

υ Inp = C̄(θ , X̄ ) + σ 2
υ Inp (2.32)

As can be observed the log-marginal likelihood consists of three terms. First of all
the data-fit part − 1

2ȳ
TM(θ , X̄ )−1ȳ, which is the only term involving the observed

targets. Then there is a complexity penalty, 1
2 log |M(θ , X̄ )|, which depends on
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the covariance matrix and the noise. The last part n
2 log(2π ) is a normalization

constant. For further details on the model selection, the reader is referred to
chapter 5.4 in [2].

To find the optimal hyperparameters:

θ ∗ = θ
arдmax

L(θ , X̄ , ȳ) (2.33)

one can use both deterministic and stochastic methods. Themaximization problem
is both nonlinear and non-convex. For instance one can use an optimization
algorithm, which uses the partial derivatives of the marginal likelihood with
respect to the hyperparameters, to find the optimal hyperparameters. Using the
following properties:

∂

∂θ
K−1 = −K−1 ∂K

∂θ
K−1,

∂

∂θ
log(K) = tr

(
K−1 ∂K

∂θ

)
(2.34)

the partial derivatives can easily be computed as

∂

∂θi
L(θ , X̄ , ȳ) =

1
2ȳ

TM(θ , X̄ )−1 ∂M(θ , X̄ )

∂θi
M(θ , X̄ )−1ȳ−

1
2tr

(
M(θ , X̄ )−1 ∂M(θ , X̄ )

∂θ

)
(2.35)

GP can also compute the output distribution with more weight on the nearest
input. Hence the predicted output is more influenced by the nearby input-output
pairs from the training set. This flexibility is one of the main advantages of GP
compared to fixed input-output structures based on parametric methods[9]. Con-
sequently, GP is able to capture complex nonlinear relationships with the use of
only a few parameters. Another key-point is GPs ability to handle measurements
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with noise. This property comes in handy, regarding that most measurements in
the industry consist of noise [11].

In the context of RTO, the goal of using GP is to estimate the mismatch be-
tween the true plant and the available model. As mentioned in section 2.5.3 the
biggest challenge with MA is to accurately estimate the gradients in the modifiers.
In GP the modifiers from the general MA framework are replaced by higher order
regression functions.

For the sake of compact notation, GP estimation of some unknown function
f will from now on be written as:

y = (GP)f (x , X̄ , ȳ) (2.36)

with input-output pairs X̄ and ȳ and new query input x .

Finally the optimization problem in equations 2.17 - 2.19 with GP estimation
becomes:

x∗k+1 = max
x

f (x) + (GP)(f
p
k −fk ) (2.37)

s.t.

ci,k (x) = ci (x) + ϵ
ci = 0 i ∈ ϵ (2.38)

ci,k (x) = ci (x) + ϵ
ci ≤ 0 i ∈ I (2.39)

where the modifiers are defined as following:

ϵci = (GP)
(cpi,k−ci,k )
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2.5.3.3 Gaussian process regression example

In this section, Gaussian process regression will be illustrated with a simple ex-
ample. As discussed in section 2.5.3.2, the objective is to predict some unknown
function based on some observations. In the following example the observed func-
tion is f (x) = x · sin(x), but the measurements are influenced by an independent,
identically distributed Gaussian distribution with zero mean. The disturbance is
implemented using the communication toolbox in MATLAB. In order to predict
the true response, GP regression is applied to 50 observations in the domain
x ∈ [0, 10]. To demonstrate GP’s properties, the regression method is set to also
predict responses relatively far away from the observations. More precisely it is
set to predict response for the interval x ∈ [−10, 25].
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Figure 2.6: GP regression example

The results are illustrated in figure 2.6. The GP regression is implemented with the
statistic and machine learning toolbox in MATLAB. As can be seen, the observed
points are influenced by noise. However, the GP regression predicts the response
quite well for responses close to the observations. This illustrates GPs ability to
handle noise. On the other hand, it is far off to predict the response far away from
the measurements. This is not a surprise, since there is no information about
these points [2]. It can also be seen from the kernel, equation 2.27, that correlation
between two points decays with the distance between the points. Hence closer
points are expected to behave more similar.
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Figure 2.7: GP regression example with only 8 samples

Figure 2.7 illustrates the same GP regression example as before, but with only
8 observation points. The prediction seems to fit the training data very well,
which is no surprise regarding that there are little training data available. This
kind of overfitting can be a problem for noise with high variance. On the other
hand, the regression is still quite good even with few samples, which is a very
desirable property GP holds. This is an interesting trade-off between exploration
and exploitation, which has to be taken into consideration when implementing
GP[2].
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2.6 Software

2.6.1 Fmincon

All the optimization problems presented in this project have been solved using a
nonlinear programming solver, from the optimization toolbox in MATLAB. The
particular solver used is called fmincon. To give a brief introduction on how
fmincon works, a general nonlinear optimization problem will be defined:

min
x

f (x)

s .t .

Ax ≤ b

Aeqx = beq

c(x) ≤ 0

ceq(x) = 0

lb ≤x ≤ ub

where f (x) can be a nonlinear objective function, and both c(x) and ceq(x) are
nonlinear constraints. The powerful solver, fmincon, will solve this problem, or
show it to be infeasible, in finite amount of computation.
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Chapter 3

Model of a two-well system

As mentioned in chapter 1 the objective in this thesis is to investigate an opti-
mization problem for oil production. To simplify the analysis and understanding
the optimization problem is investigated on an oil-well system with two wells,
but the same principles yields for facilities with more wells. First the two-well
system has to be modeled. The following sections will give an overview model.
The model presented in this chapter is based on the work I did in the project
thesis in fall 2018.

3.1 Two-well system

As mentioned earlier a two-well case, well a and well b, with a separator is
considered. The two-well system is based on the system proposed by Grimholt
and Skogestad in [12]. For simplicity, only the well valves, za and zb , can be
controlled and the top valve is fixed to fully open. Hence the system has two
degrees of freedom.

29
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Figure 3.1: Sketch of the two-well system, based on [12]

As can be verified from figure 3.1 the system consists of three submodels: One
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for reservoir inflow, a model for pressure drop through a vertical pipe and a final
one for the flow across a valve. The three submodels will be described in detail
and modeled in the following sections.

3.2 Reservoir inflow

The reservoir inflow is assumed to follow Fetkowichs quadratic deliverability
equation[13]:

Ûmo = ko(p
2
r − p2

wf ) (3.1)

Ûmw = kw (p
2
r − p2

wf ) (3.2)

where Ûmo denotes the mass flow of the oil production and Ûmw is the mass flow
of water from production. ko and kw are the flow coefficients for oil and water,
respectively. pr is the reservoir pressure and pwf denotes the pressure in the pipe
orifice in the reservoir. In addition to water and oil, the reservoir fluid consists of
gas [14]. Combining the oil mass flow with GOR, gas oil ratio, the mass flow for
gas production, Ûmд , is obtained as follows:

Ûmд = GOR · Ûmo (3.3)

3.3 Modeling one phase pseudo fluid

Before modeling pressure drops, the three-phase fluid has to be modeled. The
fluid from the reservoir consists of three parts, specifically oil, water, and gas. To
simplify, the multiphase fluid will be approximated as a one-phase pseudo-fluid.
Accordingly, no mixing volumes are assumed. Furthermore, oil and water are
incompressible and the gas is assumed to follow the ideal gas law, described by
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the following equation:

ρ
iд
д =

pMд

RT
(3.4)

where ρiдд is the density, p is the pressure, Mд molar weight of the gas, R is the
ideal gas constant and T is the Temperature. Further, the one phased pseudofluid
is approximated by its volumetric average:

ρmix (p) =
Ûmo + Ûmд + Ûmw

Ûmo
ρo
+

Ûmw
ρw
+

Ûmд

ρ iдд (p)

(3.5)

where ρo and ρw are the densities of the oil and water, respectively.

3.4 Pressure drop across valve

The mass flow across a valve is given by the following valve equation:

Ûmo + Ûmw + Ûmд = f (z)CdA
√
ρavд(p2 − p1) (3.6)

where f(z) is describing the valve characteristics, with z between 0, when fully
closed, and 1, when fully open. Cd is the valve constant, A is the cross section area
of the pipe and the pressure on each side is denoted by p1 and p2, as illustrated
in figure 3.2. Hence the pressure drop across the valve is given by ∆p = p2 − p1.
From equation 3.5 it can be observed that the density for the one-phase fluid
is dependent on the pressure. Therefore, ρavд in equation 3.6 is approximated
by the average of the density on each side of the valve, given by the following
equation:

ρavд =
1
2 (ρmix (p1) + ρmix (p2)) (3.7)
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Figure 3.2: The pressure drop across the valve

Regarding that the manifold pressure, pm , is set by the designer the pressure on
the upper side, p1 of the valve can easily be calculated. Further the pressure on the
downside of the valve, p2, will be an equation with respect to the mass flows and
f(z). In this model the valve characteristics are assumed to be linear as follows:

f (z) = z, z ∈ [0, 1] (3.8)

By combining equations 3.6, 3.7 and 3.8 with some manipulations, the follow-
ing second order equation for p2 is obtained:

p2
2(ρmix,1β + Ûmtot ) + p2(ρmix,1α − p1(ρmix,1β + Ûmtot ) −

2
γ
Ûm2
tot β)

−(p1ρmix,1α +
2
γ
Ûm2
totα) = 0

(3.9)



34 CHAPTER 3. MODEL OF A TWO-WELL SYSTEM

α =
RT Ûmд

Mд
(3.10)

β =
Ûmo

ρo
+

Ûmw

ρw
(3.11)

Ûmtot = Ûmo + Ûmw + Ûmд (3.12)

ρmix,1 =
Ûmtot

α
p1
+ β

(3.13)

γ = (f (z)CdA)
2 (3.14)

As can be seen, the valve pressure drop is obtained by solving equation 3.9.

3.5 Pressure drop through vertical pipe

To estimate the pressure drop through a vertical pipe the stationary mechanical
energy balance is used. No slip between phases and no friction is assumed. In
addition to that work and kinetic energy are neglected. Hence the mechanical
energy balance is as follows:

dp = ρmixдdh (3.15)

where g is the gravitation acceleration. Combining 3.5, 3.10, 3.11 and 3.12 the
following equation is obtained:

dp =
Ûmtot

α
p + β

дdh (3.16)

Integrating 3.16 from (p1, h1) to (p2, h2) the relation becomes

β(p2 − p1) + αln(
p2
p1

) = Ûmtotд(h2 − h1) (3.17)
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As can be observed equation 3.17 cannot be solved exactly for p2, due to the
logarithm. For this reason, a serial expansion of the natural logarithm is used:

ln(
p2
p1

) = ln(1 + p2 − p1
p1

) ≈
p2 − p1
p1

(3.18)

Combining 3.17 and 3.18, and using ∆h = h2−h1, the pressure p2 can be expressed
as

p2 = p1 +
Ûmtotдp1∆h

α + βp1
(3.19)

 

Figure 3.3: Pressure drop across vertical pipe
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Chapter 4

Static optimization in a
two-well system

As the dynamics of the system are modeled, in chapter 3, the optimization prob-
lem can be formulated. From section 2.1 we know that the decision variables
have to be determined. Further, an objective function and constraints have to be
formulated.

4.1 Formulating the optimization problem

As mentioned in section 3.2 the reservoir fluid consists of oil, water, and gas.
Regarding that oil is the most valuable part, the objective is to maximize oil
production. In addition to that, an oil production facility usually have capacity
constraints on how much water and gas it can handle. In this thesis, it is assumed
that the facility can handle an infinite amount of water, but only a certain amount

37
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of gas. Therefore, the mass flows of oil and gas, Ûmo and Ûmд , respectively have to
be described by the decision variables. From equation 3.6 it can be observed that
the mass flows are dependent of the valve opening function f (z) = z. When z
is fully open there will be maximum mass flow. Contrary when z is fully closed,
z = 0, there will be no mass flow. Hence, the problem has two degrees of freedom,
one for the valve opening in each well. With this in mind the decision variables
can be chosen as:

xT = [x1 x2] = [z1 z2]

where the subscripts denote which well the variables belong to.

In view of that the objective is to maximize oil production the objective function
will be as simple as:

max = Ûmo,1 + Ûmo,2 (4.1)

Before formulating the problem, some restrictions have to be taken into considera-
tion. Certainly, the physics behind the reservoir mass flow, described by equation
3.1, have to be respected. Furthermore, the gas capacity constraint, from here
denoted as Ûmд,max , have to be considered. This constraint sets an upper limit on
how much gas that can be produced.

Before formulating the problem, the mass flows and other variables will be pre-
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sented with respect to the decision variables.

Ûmo,i = Ko,i (Pr
2 − P2wfi(xi )) i = [1, 2] (4.2)

Ûmw,i = Kw,i (Pr
2 − P2wfi(xi ))) i = [1, 2] (4.3)

Ûmд,i = GORiKo,i (Pr
2 − P2wfi(xi ))) i = [1, 2] (4.4)

Ûmtot,i = Ûmo,i + Ûmw,i + Ûmд,i i = [1, 2] (4.5)

αi =
RT Ûmд,i

Mд
i = [1, 2] (4.6)

βi =
Ûmo,i

ρo
+

Ûmw,i

ρw
i = [1, 2] (4.7)

ρavд,i =
1
2 (

Ûmtot,i
αi
pm
+ βi

+
Ûmtot,i

αi
Pwh,i

+ βi
) i = [1, 2] (4.8)

Where P2wfi
(xi ) denotes the inflow pressure as a function of the valve opening, xi .

Finally, using equiation 3.6 and 3.19 , the optimization problem can be formulated:

max Ûmo,1 + Ûmo,2 (4.9)

s .t .

Pwh1 = pm +
Ûm2
tot,1

ρavg,1 · (x1CdA)2
(4.10)

Pwf1 = Pwh1 +
Ûmtot,2 · дh · Pwh1

α1 + β1 · Pwh1
(4.11)

Pwh2 = pm +
Ûm2
tot,2

ρavg,2 · (x2CdA)2
(4.12)

Pwf,2 = Pwh2 +
Ûmtot,2 · дh · Pwh2

α2 + β2 · Pwh2
(4.13)

Ûmд,1 + Ûmд,2 ≤ Ûmд,max (4.14)
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4.2 Solving the optimization problem

4.2.1 Problem set-up

It is assumed that all observations are perfectly measured without disturbance.
The presented static optimization problem of the two-well system is solved for
different GOR levels in the wells. The change in GOR settings is done to illustrate
the relation between GOR and the amount of oil production. The numerical values
and units of all the well constants in the optimization problem can be found in
section A.1, which are based on the facility specifications from the case study in
[12]. The problems were solved using the optimization toolbox in MATLAB as
describes in section 2.6.1.

4.2.2 Results and comments

The surface plot in figure 4.1 presents the solutions for the optimization problem
described in equation 4.9. The problem was solved 625 times, where the GORs in
equation 4.5 were changed each time. Consequently the gas production constraint
in equation 4.14 were modified. The produced oil on the z-axis is the objective
from equation 4.9 with the optimal valve openings solved by the SQP-algorithm,
described in section 2.4.1.
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Figure 4.1: Optimal oil production for different Gas-oil ratios

As we can see from figure 4.1 the oil production is low for relatively high GORs.
High GOR leads to a relatively high production of gas. This will reduce oil produc-
tion since the production facility can only handle a certain amount of gas. This
relation is very interesting, regarding that the GORs have an important impact
on how much we want to tune the valves for the different wells.

As discussed in section 4.1, the two-well static optimization problem has two
degrees of freedom, one for each of the two valve openings. These valve openings
decide the lower flow pressures, Pwf1 and Pwf2 , which are the only variables in
the objective function. For this reason, in most of the further analysis, the graphs
will be visualized with respect to the lower flow pressures. Figure 4.2 shows the
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contour plot of the produced oil with respect to the lower flow pressures. For
our analysis, the area of interest is the feasible area, marked in the upper right
corner. The feasible area is determined by the set of constraints, and will vary
with variations in GOR. Figure 4.3 illustrates how the feasible area changes for
different GOR.
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Figure 4.2: Contour plot of produced oil w.r.t. lower flow pressures.

As expected the contour lines in figure 4.2 show that the production in oil in-
creases with decrease in the lower flow pressures, Pwf1 and Pwf2 . This can also be
verified from the objective function in equation 4.9.

As mentioned above, the area of interest is the feasible area. Figure 4.3 shows
contour plots scaled for the feasible region.
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(a) Contour plot of oil production, and con-
straints for GOR1 = 0.10 and GOR2 = 0.15.
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(b) Contour plot of oil production, and con-
straints forGOR1 = 0.20 andGOR2 = 0.25.

Figure 4.3: Contour plots of oil production w.r.t. lower flow pressures

As can be observed the gas-capacity constraints differs in both plots, which is due
to the difference in gas-oil-ratios in the two problems. If one takes a closer look,
both the vertical and the horizontal constraints differ in the two problems. This
is to illustrate the importance of the gas-oil- ratios in the optimization problem,
which will be very important for the analysis in the next chapter.

As mentioned above, and observed from the plots and equations, the objective
increases with a decrease in lower flow pressures. Hence, all the inequality
constraints will push the lower flow pressures up in order to constraint the maxi-
mization problem. The gas-capacity constraints are illustrated by the red sloped
lines. For higher gas capacity the red gas capacity constraint will parallel shift
down, to allow lower Pwf . This makes perfect sense with our intuition, that the
more gas the facility can handle the more oil can be produced. The steepness of
the constraint is determined by the ratio between the GORs in both wells, which
can be verified from equation 4.14.
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In reality, it can be very difficult to model and predict the GOR in the differ-
ent wells. Therefore, there will be mismatches between the model and plant. In
this section, only the model was simulated, but when implementing the system it
will be ideal to include process observations and regulate it to cope with model
errors. In the next chapter, we will use the model developed in this chapter in a
MA-RTO framework, to investigate if it can cope with plant-model mismatches.
The analysis in the next chapter will include plots like in figure 4.3, where the
inequality constraints determine the feasible area in the same way as here.



Chapter 5

MA-RTO of a two-well system
with uncertain parameters

As discussed in section 4.2.2, GOR is a very important parameter when solving the
optimization problem. GOR can be modeled as a function of reservoir pressures
and lower flow pressure. Thus GOR uncertainty can be a result of disturbances in
measurements of the pressures. Disturbances in the process, sudden changes in
GOR or reservoir pressures will also cause the wrong GOR in the model, which
can result in a suboptimal optimum for the plant when solving the optimization
problem. As described earlier this uncertainty is called plant-model mismatch.
In this section, we will try to solve this problem using the Modifier Adaptation
approach, which is described in section 2.5.2.

The Modifier Adaptation approach which has been used in this thesis is de-
scribed in detail in [1]. First of all two models have to be developed in order
to study the plant-model mismatch. One model for the plant is needed, which
will be updated by the observations, referred to as plant. Further one model for

45
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the optimization layer, using the modifier adaptation framework, referred to as
the model. Moreover, by applying high-order correction terms the model-based
optimization is supposed to reach the plant optimum. The correction terms are
referred to as the MA modifiers.

As introduced in section 2.5.2, we will apply two variants of the Modifier Adapta-
tion approach. First, the MA method with gradient estimation using past RTO
points will be applied. In this case, the zeroth order correction modifier is added.
The zeroth order modifiers correspond to the difference between the plant and
model values in each iteration. In other words, the difference between the most
recent plant measurement and model values are used in the optimization. Simi-
larly, the differences between the plant gradients and the gradients of the model
are applied as the first order modifiers. Secondly, the MA-RTO method using
Gaussian processes will be applied. In this variant, the zeroth and first order mod-
ifiers from the previous method are replaced by high-order regression functions
[2].

5.1 Formulating the MA optimization problem

In this thesis, the focus is to study the plant-model mismatch. Therefore, in the
MA scheme, it is assumed that both cost functions and constraint functions are
measured without noise. Hence the plant-model mismatch only comes from
the parametric uncertainty of the gas-oil ratios. However, we will also simulate
cases where there is measurement noise to see how the MA approach handles this.

Applying the MA framework from section 2.5.2 to the static optimization problem
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in equation 4.9 to 4.14, the modifier adaptation optimization problem becomes:

x∗k+1 = max
x

Ko1(Pr
2 − P2wf1(x1)) +Ko2(Pr

2 − P2wf2(x2)) + ϵ
J
k + λ

J
k


x1 − xk1

x2 − xk2


(5.1)

s .t .

Pwh1 = pm +
Ûm2
tot,1

ρavg(Pwh1) · (x1CdA)2
+ ϵC1

k + λ
C1
k


x1 − xk1

x2 − xk2

 (5.2)

Pwf1 = Pwh1 +
Ûmtot,2 · дh · Pwh1

α1 + β1 · Pwh1
+ ϵC2

k + λ
C2
k


x1 − xk1

x2 − xk2

 (5.3)

Pwh2 = pm +
Ûm2
tot,2

ρavg(Pwh2 · (x2CdA)2
+ ϵC3

k + λ
C3
k


x1 − xk1

x2 − xk2

 (5.4)

Pwf2 = Pwh2 +
Ûmtot,2 · дh · Pwh2

α2 + β2 · Pwh2
+ ϵC4

k + λ
C4
k


x1 − xk1

x2 − xk2

 (5.5)

Ûmд,1 + Ûmд,2 + ϵ
C5
k + λ

C5
k


x1 − xk1

x2 − xk2

 ≤ Ûmд,max (5.6)

where the MA modifiers are λ Jk , ϵ
Ci
k and λCik , for i = [1, 2, 3, 4, 5]. The implemen-

tation of the modifiers will differ from estimation method to estimation method.
As described in section 2.5.2, ϵCik are the zero order modifiers, while λ Jk and λCik
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are the first order modifiers. In general the modifiers are defined as:

ϵ Jk = J̃p,k − J̃k (5.7)

λ Jk = (1 − K J )λ Jk−1 + K
J (∇̂Jp,k − ∇̂Jk) (5.8)

ϵCik = C̃p,i,k − C̃i,k i = [1, 2, 3, 4, 5] (5.9)

λCik = (1 − KCi )λCik−1 + K
Ci (∇̂Cp, i,k − ∇̂Ci,k) i = [1, 2, 3, 4, 5] (5.10)

C̃p,i,k is the measurement of constraint i for the plant model in iteration k. Thus
the plant constraints C̃p,i,k for i=1 to i=5 are the plant measurements of Pwh1 ,
Pwf1 , Pwh2 , Pwf2 and Ûmд,1 + Ûmд,2, respectively. Similarly C̃i,k are the model values
for the same constraints. Moreover, by using these values the derivatives of the
model constraints, ∇̂Ci,k, and plant constraint gradients, ∇̂Cp, i,k, are estimated. In
addition, the plant cost gradient, ∇̂Jp, i,k, is also estimated from the measurements.
The biggest challenge when estimating these are noise, due to the fact that the
gradients cannot be measured directly. The implementations to estimate these
using FDA and using Gaussian Process regression are described in section 5.2 and
section 5.3, respectively.

5.2 Gradient estimationusing FDAwithpastRTOpoints

In [1], multiple methods are presented. One of these is the finite-difference ap-
proximation using past RTO points. Initialization of this technique requires the
number of operating points equal to the number of inputs in the problem, plus
one to estimate the gradients. Hence it will require 3 operating points in this
case, regarding that this problem has 2 inputs. One can obtain these points by
perturbating each input around the current operating point two times. Thus the
following matrices can be constructed
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Uk =


x1
k − x1

k−1 x1
k − x1

k−2

x2
k − x2

k−1 x2
k − x2

k−2


δ J̃p,k

T
=

[
J̃p,k − J̃p,k−1 J̃p,k − J̃p,k−2

]
δC̃p,i,k

T
=

[
C̃p,i − C̃p,i,k−1 C̃p,i,k − C̃p,i,k−2

]
Finally the plant gradients become

∇̂Jp,k = δ J̃p,k
T
(Uk )

−1

∇̂Cp, i,k = δC̃p,i,k
T
(Uk )

−1 i = [1, 2, 3, 4, 5]

where k indicates which iteration the values belong to.
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5.2.1 The algorithm

xk+1

Obtain gradients with
FDA using the most

recent three data
points

Calculate the MA 
modifiers for the

current step.
Solve Optimization

problem

Filter new operating
point

Apply the new input:
xk

Obtain
measurements of

plant and constraints

Perturbate x(0) two times
and obtain measurements

of plant and constraints
Choose initial points

x(0)

Figure 5.1: Flowchart of MA-RTO with FDA gradient estimation

1. Choose an initial point [x1
0 x2

0]

2. Perturbate x(0) two times to get enough data points for initialization.

3. Obtain the gradients with FDA using the recent three data points.

4. Calculate the current Modifiers: λ Jk , λ
Ci
k

5. Solve the static optimization problem in equation 5.1 and find the next
optimal input, xk+1.

6. Apply the new input , xk+1, and measure the outputs.

7. Return to point 3.
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From the algorithm, one can observe that the perturbation is only used in the
finite-difference approximation to estimate the initial gradient. Further, it is solv-
ing a static optimization problem in every iteration. Accordingly, it is applying
the new valve input after each iteration and solving the problem with the most
recent data points. Hence the modifiers are also updated after each input, using
the new gradient estimations from the finite-difference approximation.

5.2.2 Simulations and results

To investigate how the MA-RTO with FDA gradient estimation handles plant-
model mismatch, the optimization has been applied to four different cases, where
the degree of plant-model mismatch varies from case to case. In addition to that,
all cases have been simulated two times each, one time without measurement
noise and one with measurement noise. The measurement noise has been imple-
mented as an identically distributed Gaussian distribution with zero mean and
unit variance.

The modeled-GOR and plant-GOR in the following cases are mentioned in the
headlines on the form GORplant/model = [GORwell1 GORwell2].



52CHAPTER 5. MA-RTOOFATWO-WELL SYSTEMWITHUNCERTAIN PARAMETERS

5.2.2.1 Case 1: GORplant = [0.30 0.40] - GORmodel = [0.25 0.35]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.
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Figure 5.2: MA-RTO simulations using FDA gradient estimation to cope with
plant-model mismatch. GORplant = [0.30 0.40] and GORmodel = [0.25 0.35].
MA-FDA corrected iterations are plotted for both simulations, with and without
measurement noise.

In this case, the model underestimates the amount of gas in the plant. This can be
observed by comparing the plant- and model-constraints. To clarify the feasible
area for the plant is on the right side of the plant-constraints. Similarly, the
feasible area for the model is on the right side of the model-constraints. The
model-constraints are left-shifted compared to the plant-constraint the model,
indicating that it allows lower Pwf , which means lower GOR, which can be veri-
fied by the gas capacity constraint in equation 4.14. However, it can be observed
that the RTO performs well to cope with the mismatches. Especially the case
without measurement noise have great performance, regarding its convergence
to the plant optimum in a few iterations. Moreover, the operating points are
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on the feasible side. On the other hand, the RTO with measurement noise has
weaker performance. In fact, it is slow and oscillatory. Furthermore, it has three
operating points outside the feasible area of the plant.

All in all the MA-RTO with FDA estimation without measurement noise per-
forms very well to cope with the GOR mismatches in this case, including both
fast and feasible-side convergence. As discussed in section 2.5.2, MA-RTO has its
weaknesses when noise is present, thus as expected the algorithm is not sufficient
in the noisy case.

5.2.2.2 Case 2: GORplant = [0.30 0.40] - GORmodel = [0.15 0.30]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.
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Figure 5.3: MA-RTO simulations using FDA gradient estimation to cope with
plant-model mismatch. GORplant = [0.30 0.40] and GORmodel = [0.15 0.30].
MA-FDA corrected iterations are plotted for both simulations, with and without
measurement noise.
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As in case 1, the model in case 2 also underestimates the amount of gas in the
plant, but this time the plant-model mismatch is greater in both wells. However,
in the case without measurement noise, we can observe that the RTO performs
quite well to cope with the mismatches. Even though it is not exactly on the
plant optimum, it is practically in the optimum, regarding that the objective is
just slightly better in the plant optimum compared to the convergence point of
the MA-RTO, which can be observed from the contour lines. Then again, the
case with measurement noise performance weaker. At the same time, some of
the operating points are quite close to the plant-optimum.

After all, the MA-RTO with FDA estimation without measurement noise per-
forms adequately to cope with the GOR mismatches in this case, including both
fast and feasible-side convergence. Not surprisingly, the case with measurement
noise was not sufficient.
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5.2.2.3 Case 3: GORplant = [0.30 0.40] - GORmodel = [0.36 0.45]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.
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Figure 5.4: MA-RTO simulations using FDA gradient estimation to cope with
plant-model mismatch. GORplant = [0.30 0.40] and GORmodel = [0.36 0.45].
MA-FDA corrected iterations are plotted for both simulations, with and without
measurement noise.

Different from the previous two cases, this model overestimates the amount of gas
in the plant. In other words, we can produce more oil from the plant-wells, with
respect to the gas-capacity constraint, than the model proposes. Consequently,
the MA-RTO operating points crosses the model-constraint to cope with the
mismatches. The MA-RTO without measurement noise performs quite good and
converges very close to the plant optimum. As in case 2, the algorithm practically
converges to the optimum. Then again, the algorithm struggles in the case with
measurement noise. As a matter of fact, it is even more oscillatory than in the
previous cases.
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All in all the MA-RTO without noisy measurements performs satisfactory, with
both fast and feasible-side convergence. On the other hand, the performance in
the case with measurement noise was not sufficient.

5.2.2.4 Case 4: GORplant = [0.10 0.20] - GORmodel = [0.10 0.10]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.
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Figure 5.5: MA-RTO simulations using FDA gradient estimation to cope with
plant-model mismatch. GORplant = [0.10 0.20] and GORmodel = [0.10 0.10].
MA-FDA corrected iterations are plotted for both simulations, with and without
measurement noise.

In this case, the GOR in the plant is significantly lower than in the previous three
cases. The optimal valve opening for the plant in this case is "fully open" for
both wells (x1 = x2 = 1). In other words, the production facility, in this case, will
have no problem handling the gas production, since the oil-wells contains a small
amount of gas. Another key point, the modeled GOR inwell1 coincides with the
plant-GOR in the same well. This can be verified by observing that the vertical
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model-constraint and the vertical plant-constraint correspond to each other.

As can be observed from figure 5.5b, the MA-RTO algorithm converges accu-
rately and fast in the case without measurement noise. The algorithm performs
excellently, including both fast and feasible-side convergence. On the contrary,
the algorithm still struggles when there is measurement noise present.

5.3 Gradient estimation using Gaussian processes

Contrary to FDA using past RTO points, GP does not calculate the gradients at
each RTO iteration. In fact, these gradients are replaced byGP regression functions
that describe the plant-model mismatch. More accurately, the modifiers from
equations 5.8 and 5.10 will not be used in the MA with GP estimation. Moreover,
the zeroth- and first-order modifiers in equation 5.9 will be replaced by higher
order GP regression functions, which estimates the plant-model mismatches.
By adding these GP regression terms, the cost and constraint functions of the
modified optimization problem locally match those of the plant. Finally, the
optimization problem becomes:

x∗k+1 = max
x

Ko1(Pr
2−P2wf1(x1))+Ko2(Pr

2−P2wf2(x2))+ (GP)(Jp−J )(x , X̄ ) (5.11)
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s .t .

Pwh1 = pm +
Ûm2
tot,1

ρavg(Pwh1) · (x1CdA)2
+ (GP)(cp,1−c1)(x , X̄ ) (5.12)

Pwf1 = Pwh1 +
Ûmtot,2 · дh · Pwh1

α1 + β1 · Pwh1
+ (GP)(cp,2−c2)(x , X̄ ) (5.13)

Pwh2 = pm +
Ûm2
tot,2

ρavg(Pwh2 · (x2CdA)2
+ (GP)(cp,3−c3)(x , X̄ ) (5.14)

Pwf2 = Pwh2 +
Ûmtot,2 · дh · Pwh2

α2 + β2 · Pwh2
+ (GP)(cp,4−c4)(x , X̄ ) (5.15)

Ûmд,1 + Ûmд,2 + ϵ
C5
k + (GP)(cp,5−c5)(x , X̄ ) ≤ Ûmд,max (5.16)

Hence, we will construct the following 6 GP regression functions:

(GP)f (x , X̄ ,y) f ∈
{
Jp − J , cp,1 − c1, ..., cp,5 − c5

}
(5.17)

where X̄ and y are all the input-output pairs for the functions we want to predict.
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5.3.1 The algorithm

Filter new operating
point

Obtain measurements
of plant and constraints

Update GP predictors with
the new input - output pairs

Solve Optimization
problem

xk+1

Apply the new input: xk

Figure 5.6: Flowchart of MA-RTO with GP estimation

1. Train GP predictors (GP)f in equation 5.17 using initial data sets (X̄ 0,y0)

2. Solve the optimization problem in equation 5.8.

3. Filter new operating point xk+1

4. Apply new input, xk+1

5. Obtain measurements of the cost and constraint functions and update the
data sets (X̄ ,y).

6. Return to point 2.

5.3.2 Simulations and results

To investigate how the MA-RTO with GP regression estimation handles plant-
model mismatch, the optimization has been applied to four different cases, where
the degree of plant-model mismatch varies from case to case. In addition to that,
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all cases have been simulated two times each, one time without measurement
noise and one with measurement noise. The measurement noise has been imple-
mented as an identically distributed Gaussian distribution with zero mean and
unit variance.

The simulations are done in the same cases as for the FDA estimation exper-
iment in section 5.2.2. The modeled-GOR and plant-GOR, which indicates the
mismatch, in the following cases are mentioned in the headlines on the form
GORplant/model = [GORwell1 GORwell2]. Every case has used the same GP re-
gression model, meaning that the same training data has been used to construct
the machine learning model for all the cases.
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5.3.2.1 Case 1: GORplant = [0.30 0.40] - GORmodel = [0.25 0.35]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.

298.3 298.4 298.5 298.6 298.7 298.8 298.9 299

299.5

299.6

299.7

299.8

299.9

300

(b) A closer view of the operating points for
the simulations with and without measure-
ment noise.

Figure 5.7: MA-RTO simulations using GP gradient estimation to cope with
plant-model mismatch. GORplant = [0.30 0.40] and GORmodel = [0.25 0.35].
MA-GP corrected iterations are plotted for both simulations, with and without
measurement noise.

In this experiment, the model underestimates the amount of gas in the wells,
which can be observed from the constraint in figure 5.7a. A big difference from the
FDA cases is that several operating points are outside of the plant feasibility area.
As a matter of fact, only two of the operating points for the case without noise
and one for the simulation with noise are in the plant feasible area. However, the
operating points converge to an area very close to the plant optimum, even in
the case with measurement noise.

Overall the MA-RTO with GP estimation performs well to cope with the GOR
mismatches, even with noise present. In fact, it operates very close to the optimum
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and converges practically to the optimum. The algorithm handles measurement
noise quite good too. On the other hand, it does not have feasible-side conver-
gence, which will be discussed in section 5.4.

5.3.2.2 Case 2: GORplant = [0.30 0.40] - GORmodel = [0.15 0.30]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.
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(b) A closer view of the operating points for
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ment noise.

Figure 5.8: MA-RTO simulations using GP gradient estimation to cope with
plant-model mismatch. GORplant = [0.30 0.40] and GORmodel = [0.15 0.30].
MA-GP corrected iterations are plotted for both simulations, with and without
measurement noise.

As in case 1, the model in case 2 also underestimates the amount of gas in the
plant. Although the plant-model mismatch is greater in both wells, in this case,
the algorithm performs at least as good as in the previous case. In fact, for the
experiment without noise, only one of the operating points is outside the feasible
region of the plant. Furthermore, it practically converges to plant optimum, mean-
ing that the difference in objective between the MA-optimum and plant-optimum
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is negligibly small.

All in all the MA-RTO with GP estimation performs well to cope with the GOR
mismatches, with fast convergence to the optimum. However, it does not hold
the property of feasible-side convergence.

5.3.2.3 Case 3: GORplant = [0.30 0.40] - GORmodel = [0.36 0.45]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.

298.3 298.4 298.5 298.6 298.7 298.8 298.9 299 299.1

298.8

299

299.2

299.4

299.6

299.8

300

(b) A closer view of the operating points for
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Figure 5.9: MA-RTO simulations using GP gradient estimation to cope with
plant-model mismatch. GORplant = [0.30 0.40] and GORmodel = [0.36 0.45].
MA-GP corrected iterations are plotted for both simulations, with and without
measurement noise.

Unlike the previous two cases, this model overestimates the amount of gas in
the plant. As in the previous two cases, the algorithm is quite accurate with fast
convergence towards the plant optimum. However, several operating points are on
the infeasible side of the plant. The MA-RTO with GP estimation performs more
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or less equally good for both experiments with and without noise measurement.

5.3.2.4 Case 4: GORplant = [0.10 0.20] - GORmodel = [0.10 0.10]
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(a) Contour plot of the objective function of
the plant with plant- and model-constraints.
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Figure 5.10: MA-RTO simulations using GP gradient estimation to cope with
plant-model mismatch. GORplant = [0.10 0.20] and GORmodel = [0.10 0.10].
MA-GP corrected iterations are plotted for both simulations, with and without
measurement noise.

In this case, the GOR in the plant is significantly lower than earlier. The plant-
optimal valve opening is “fully open” for this case. Note that the gas-capacity
limit will not be a problem when producing from this plant, which can be verified
by the gas-capacity constraint, the sloped model-constraint, in figure 5.10a. To
put it differently, the plant feasible area will not change even if we remove the
gas-capacity constraint.

As can be seen, the MA-RTO with GP estimation converges fast and accurately,



5.4. DISCUSSION 65

but lacks feasible-side convergence.

5.4 Discussion

In this section, both MA-RTO methods, formulated in this chapter, have been
applied to 4 different cases with plant-model mismatches. To investigate the
properties of the algorithms, they have been tested for both environments, with
and without measurement noise, for each case.

The MA-RTO method with gradient estimation using past RTO points performed
very differently with and without measurement noise. As can be seen from the
contour plots in figures 5.2 - 5.5 the algorithm performs very well to handle
plant-model mismatches for the simulations without measurement noise. Overall
the algorithm reaches plant-optimality within a few numbers of RTO iterations.
Moreover, it is robust to starting points far from the plant-optimum and satisfies
plant feasibility throughout the optimization process.

From the contour plots in figures 5.2 - 5.5, it can be observed that the MA-RTO
with gradient estimation using past RTO points struggles to cope with plant-model
mismatches when there is noise in the plant observations. However, the operating
points are generally not too far from the plant-optimum. In the comparison to
the simulations without noise, it performs poorly.

Another key point here is that the algorithm was very sensitive to the start-
ing point. In fact, for simulations with starting points far from the plant-optimum,
it was not even able to solve the optimization problem. This is a huge limitation
because this means that we will need a lot of information about the plant to select
a sufficient starting point. However, this can be solved by trying different initial
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points and choosing the best one. This could be fine for a two-well system, but
would be a real challenge for more complex systems.

The algorithm also struggled to satisfy plant feasibility throughout the opti-
mization process, when there was measurement noise involved. From the contour
plots, one can verify that several operating points are outside of the feasible region
for the plant. A possible solution for this problem could be smaller steps with a
stronger filter than the one I implemented.

On the other hand, the MA-RTO method with GP estimation was very robust
against measurement noise. In fact, the algorithm performed equally good with
and without measurement noise. Although GPs ability to handle noise was known,
I did not expect it to perform that well. Even though they were generally equally
close to the plant optimum, the simulation with measurement noise violated the
constraints several times more. This can be verified by the plots in case 2 and
case 4 in figure 5.8 and figure 5.10, respectively.

Another key point is GPs robustness against the initial point. It usually con-
verged to the plant optimum regardless of the starting point of the algorithm.
Different from the FDA-method, which only uses the past 3 RTO points, GP
uses kernel methods that use all the available data to estimate the plant-model
mismatch. For this reason, the GP regression can achieve better learning from
data. However, in reality, it can be very costly or even infeasible to get enough
data, from an oil production facility in order to construct a good GP model.

A big challenge with the MA-RTO with GP estimation was that many of the
operating points were outside of the feasible region. This problem occurred for
experiments both with and without measurement noise. This could have been
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omitted with a stronger filter on the inputs. The implemented filter was 0.5,
but increasing it could solve the constraint violation problem. This would lead
to slower convergence, due to smaller steps, but could be required to push the
operating points to the feasible region. Instead, a trust region could have been
imposed on the inputs, which would require some knowledge about the plant.
However, an adaptive trust-region, which develops through the RTO-iterations
could be a simpler solution.

5.4.1 Comparison of Finite-difference approximation and Gaus-
sian processes

As discussed above both MA-RTO methods have their limitations and benefits.
Figure 5.11 compare both approaches in each case. To get a clear understanding,
the methods are compared based on the input values.
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Figure 5.11: Comparison of MA-RTO with FDA and GP, for all cases

Obviously, the MA-RTO with gradient estimation using past RTO points performs
very well when there is no noise involved but unfortunately it is insufficient when
measurement noise is present. On the other hand, the MA-RTO with Gaussian
process estimation converges towards plant optimum, regardless of noise present
in the measurement. In fact, in case 1 both MA-GP simulations are closer to the
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optimum than the MA-FDA method without noise.

Although the Euclidean distance between the MA-GP operating points is closer to
the optimum, we have to remember that this method violated the plant-constraint
numerous times before convergence. However, after some iterations, the algo-
rithm operates in the feasible region. This can be explained by the fact that the
algorithm has more data to train the model after some iterations. Consequently,
it will be able to make a better machine learning model. Therefore, one has to
consider the limitations to construct a sufficient machine learning model, in terms
of having enough training data. In fact, few data points increase the chance of the
Gaussian process model to make poor generalizations from the training data to
unseen data, also known as an overfitted model [2]. This is particularly important
when we are working with noisy data, regarding that our objective is to construct
a machine learning algorithm that will separate the signal from the noise. If we
overfit the model, it can end up learning the noise instead of the actual signal.
One possibility is to start by applying the standard MA-FDA method until enough
data is collected to make a good Gaussian process model.

Anyways, the MA-FDA method alone has shown its weaknesses when noise
is present. In fact, this was no surprise, regarding that obtaining reliable estimates
of plant gradients is the biggest drawback of the MA-method [1]. Hence, includ-
ing noise in the plant measurements will obviously make these estimates more
challenging to obtain. The use of quadratic approximation to estimate gradients
instead of finite-difference approximation is also an interesting approach, which
most likely would give more accurate estimations of the gradient. On the other
hand higher order estimations as a quadratic approximation will require more
computational power. Especially if we want to apply this method to a bigger
system with more than two wells, we will have to take this into account.



70CHAPTER 5. MA-RTOOFATWO-WELL SYSTEMWITHUNCERTAIN PARAMETERS

In reality, an appropriate solution could be to use the MA-FDA method initially
before applying the MA-GP when we have enough data to construct a good
Gaussian process model. To increase the accuracy, the MA-FDA method can be
replaced by the MA with quadratic approximation. This would indeed require
more power, but will only be needed to learn more about the model before a
simple and powerful GP model can be applied. However, the perfect solution
would be an MA-GP model, as implemented in this project, but without constraint
violations. This can be achieved by trust-region methods or a stronger filter, but
will be an exercise for future work.

5.5 Conclusion

This thesis has proposed two Real-time optimization schemes, one that uses the
standard Modifier Adaptation approach with gradient estimation using finite-
difference approximation and a second one that combines Modifier Adaptation
and machine learning through Gaussian Process regression. The schemes, which
are applied to cope with plant-model mismatches have been illustrated, employing
the RTO on an oil production system with two wells.

Simulations have shown that the proposed approaches perform well to find plant-
optimum, despite plant-model mismatches. A comparison between standard
MA and GP-based MA indicates that the latter outperforms the former in terms
of noise mitigation. The MA-GP scheme converged relatively fast to the plant
optimum, despite the fair amount of noise added to the measurements. However,
the simulations show that it does not satisfy feasible-side convergence. On the
other hand, the MA-FDA approach could only converge to the plant optimum in
the absence of process noise.
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After all, the standard Modifier Adaptation approach has shown its power to
solve plant-model mismatches when it can obtain reliable measurements. The GP-
based MA has surely illustrated its robustness to solve plant-model mismatches
in the presence of measurement noise, and has great potentials if the feasible-side
convergence problem can be solved. As a final conclusion of this work, it can be
stated that including machine learning in the RTO leads to simplicity, robustness
and better performance, in terms of noise attenuation, and has great potential to
solve the plant-model mismatch problem in RTO.

5.5.1 Future work

From the simulations, we see that we achieve quite good results to cope with
plan-model mismatches in RTO. However, some interesting challenges have to be
investigated. In future work, it would be interesting to investigate the GP-based
MA-scheme and attempt to solve the feasible-side convergence problem. If this
problem could be solved, I am confident that the GP-based MA-approach will be
valuable. As part of future work, it can also be interesting to apply an adaptive
trust region method on the input. Moreover, a more conservative filter on the
input can be applied. In addition to that, I will suggest applying both MA-schemes
to a larger scale RTO problem.
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Appendix A

A.1 Units

Table A.1: Units and numerical values used in the experiments

Unit Value

p bar

h m 1000

Cd

√
kд

mbarday2 84600

Mд
kд
mol 16.04

R J
kmol ·Kelvin 8314

T Kelvin 373

ko1
Tonne
bar 2 6.576 · 10−3

kд1
Tonne
bar 4 8.239 · 10−7

kw1
Tonne
bar 2 3.344 · 10−3

ko2
Tonne
bar 2 5.462 · 10−3

kд2
Tonne
bar 4 5.373 · 10−7

kw2
Tonne
bar 2 1.031 · 10−2

ρo
kд
m3 800

ρw
kд
m3 1000

д m
s2 9.81

K J 0.5

KCi i = [1, 2, 3, 4, 5] 0.5
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