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Summary

This report is based on the artifex project. It discuss and poses an approach to an im-
age processing subsystem . The subsystem would help the autonomous operation in and
around the fish farm by sending out information about the structures in the water. Recog-
nising the geometries in the water is a step towards fully automatising the operations on
the locations. Getting this drone based vision system to work will be key to making it eas-
ier to oversee the production sights and would allow avoidance of coalition and tethering
for every vehicle involved in such operations.

In the task description of the specialisation project it can be found that this report aims
to reviewing literature and identify relevant algorithms for mapping the safe zones during
operation.

The work has resulted in several different experimental modules used for detection and
visualisation. The visualisation part of the project description was not originally included
in the problem description as stated above, but has been added since, as its has been seen
as a valuable addition.

Revived Tested Implemented
Image pre processing x x x
Height based cage detection x x x
DNN based cage segmentation x x x
Experimental SFM module x x
Experimental mooring buoy detection x x
Serialisation module x
WebGL GUI for output data x x x
Sensor fusion IMU/GPS x x
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Chapter 1
Introduction

1.1 Background

The sea accounts for 70 % of the earth surface area, but only 2 % of the world food pro-
duction comes from the sea. Of this is Norway responsible of 2 % of this as of 2018.

In 2012 there was a opportunity study called ”Verdiskaping basert p	a produktive hav i
2050” it was a part of ”perspektivanalysen” ordered by the government of Norway. where
they predicted the growth until 2050. The work was conducted by NTVA, DKNVS og
SINTEF. In the study we can �nd that the sector is expected to go from a �ve doubling
as of 2010 to 2050, that means taking the productions of 1 million tonn of salmon to �ve
million in 2050.

Figure 1.1: Potential for maritime wealth creation (Mrd. NOK / year) NTVA / DKNVS (2012)

As of today the country is ahead of the curve when it comes to value creation but be-
hind when it comes to production.
The predicted prices are higher but the volume is lower. This is because of the industry
has a problem of health. The industry as a whole is strongly regulated growth regulated
with respect to kilos per year produced, until the health problems are improved.

With this in mind this report aims to contribute towards a fully human less operation
around and within one locality. Thus increasing the convenience and lowering the cost of
inspection. More frequent and in dept inspection can make for better understanding and
prevention of poor health conditions in and around �sh farm.
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1.1 Background

1.1.1 Problem description

The problem can be stated as the following

� Generate a static map of the �sh

� Mapping the safe zones where the USV, the RPAS and the ROV can operate

Figure 1.2: Picture taken from Artifex

The following is speci�ed as input output in of the RAPS operation

Inputs
Images taken from above: they shall encompass the biggest possible area of the �sh
farm with a suf�cient resolution

Output
Georeferenced coordinates of the key structures of the �sh farm such as the buoys
and the cages, as well as estimate the position of the mooring lines underwater

The problem of extracting and mapping structures in the sea will make the autonomous
operation the �sh farm easier for all autonomous vehicles involved. As all of the structural
information outputed by the RAPS is broadcast when found.

1.1.2 Limitations and scope

The report is limited to literature study and testing of methods solving the problem at
hand. There was also an functionality added throughout the semester, as the addition of
GUI feature to the software package allowing for monitoring of the operation. Also it will
be assumed at least a Nadia jetson or similar computing capabilities in the RAPS or USV
for the algorithems to run on.

2



1.2 Planning

1.2 Planning

During the �rst meeting it was decided to lay out a rough plan what the time was to be
spent on in during the semester.

1. Literature study (week 38-14)

2. Schedule planning (week 37- 41)

- Speci�cations of the RPAS system of ARTIFEX

- Pictures and methods from the SensorDrone project

- Simple geometrical model of the farm and the anchoring system

3. Possessing of the 2015 pictures (week 37- 41)

4. Field drone �ying (week 41- 44)

5. Possessing of the obtained data (week 44- 48)

6. Report writing (continuous)

1.3 Data sets used throughout the report

There are data to this project is speci�ed in the task description, that is the pictures are
to be taken at suf�cient height and and resolution. There are also one addition who the
task description is not taking into account that is bene�cial to the problem solving. There
where is always given a GNSS and barometer reading aside with the data set.

Table 1.1: Data sets

Location Date Camera Type Project

ACE Korsneset
04/08/2015 DJI FC350z Pictures Artifex
08/11/2018 DJI FC350z Pictures and video Artifex

Rataren 2015 DJI FC350z Video Artifex

Remark- The last data set obtained has the most relevance to the project because of the
relevance with regards to ful�lling the speci�cation listed in the section above.

Parsing and visualising the driven distance

As mentioned there has been conducted several experiments over the year. To better eval-
uate the sets and video given there was made two script with python and MATLAB to
visualise. It �rst parses the text �le given into a csv, then matlab can be used to visualise
the data, the script also supports visualising loss of GPS connection.

3



1.4 Equipment

Figure 1.3: Flight pattern Korsneset 08/11/2018

1.4 Equipment

The equipment used throughout the testing phase of the artifex project was provided by
Maratime Robotics.

P-GPS Accuracy [0.5 m, 1.5 m]
Max Pitch Angle 25

�

Max Wind Resistance 8 m/s
Package Dimensions 525 mm�

480 mm� 640 mm
Weight 9.5 kg
Hovering Time 16 min

Figure 1.4: Drone (Korsneset 2018)

The camera is �xed to a gimbal and it is regulating the camera to an attitude that is
aligned parallel to the ground plane. The camera and gimbal package is listed below.

4



1.4 Equipment

Sensor Sony EXMOR 1/2.3
Resolution 4096x2160 (25fps)
FOV 94 deg
Lens 20mm
Vocal length 3.6mm

Figure 1.5: Camera (Korsneset 2018)
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Chapter 2
Theory

2.1 Image pre processing

2.1.1 Converting colour image

Grayscale

OpenCV has the following convection of the coloured image to grayscale.
2

4
X
Y
Z

3

5  
�
0:299 0:587 0:114

�
�

2

4
R
G
B

3

5 (2.1)

Otsu's Method

This method was �rst proposed by Otsu in 1979 in the paper Otsu (1979). The technique
relies on a stochastic approach to background �ltering. The basic idea is to iterate trough
all the threshold values and calculating the variance spread at in each iteration.

� 2
w (t) = q1(t)� 2

1(t) + q2(t)� 2
2(t) (2.2)

2.2 Common linear kernels

Common kernels used trough out the project

Gaussian

H ( i;j ) =
1

2�� 2 e� ( i ) 2 +( j ) 2

2 � 2 (1)

Sharpening

Yi;j (k) = I (i +
gx (i; j )

q
g2

x + g2
y

� k; j +
gy (i; j )

q
g2

x + g2
y

� k): (2.3)
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2.3 Sea �ltering approach

2.3 Sea �ltering approach

A colour space is a mapping of the pixels contained in an image to some other represen-
tation. There are several conversions of how one could represent the information encoded
in the image. The goal is often to make make for easier thresholding or adjustment of an
abstract value associated with the pixel, for example thresholding or adjusting a saturation
rather then a red intensity value. The usage of colour spaces can be one method of sepa-
rating the sea form the structures in the sea shown in the paper M. Klimkowska and Lee
(2017). The paper discusses �ltering sea and uses the Lab space posed in 1976 the CIE
recomended the colorspace CIE LAB, CIE publication 15.2.

The following equation is used for the Lab mapping.
2

4
X
Y
Z

3

5  

2

4
0:412453 0:357580 0:180423
0:212671 0:715160 0:072169
0:019334 0:119193 0:950227

3

5 �

2

4
R
G
B

3

5 (2.4)

2.4 Segmentation and structure detection

Many higher more abstract image processing algorithms has its ground basis in the edge
emphasising algorithms

2.4.1 Edge emphasising operators

Sobel

Sobel is trying to solve the problem of approximating the derivative of the the intensity
along a binary image. Taking the derivative along one axis

G x =

2

4
+1 0 � 1
+2 0 � 2
+1 0 � 1

3

5 � I and G y =

2

4
+1 +2 +1
0 0 0

� 1 � 2 � 1

3

5 � I (2.5)

Used to obtain the kernel

G =
q

G2
x + G2

y or G = jGx j + jGy j (2.6)

There exists more derivations of this operator, notably the scarr, who replaces the kernel
with bigger coef�cients when the image kernel is small in size. But the base idea of sobel
still stands, and that is to take the approximate the derivative along x and y axis of the
image.

Canny

There are still no concern of the absolute localisation of where the edge is found in the
sobel. Problems associated with Sobel could be
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2.4 Segmentation and structure detection

� Gives out no answer for de�nite max for the edges in the image

� The noise can be present and ampli�ed

Solving the problem of not knowing exactly where the edges are, canny calculates the
gradients along a speci�ed edge and the size of these, the largest one will be the direction
of decent.

� = atan2 ( G y ; G x ) (2.7)

Knowing the direction of descent there the algorithm can obtain the max pixel value of the
edge and scrap the other values along the axis of decent.

There still might be some noise present. The classical way to do this is to a hysteresis
threshold where the allowed values in the pictures lie inside a region region d

d = max( d1; d2)

Final step is to suppress all the values that are not connected to the edge of intensity
d1 with intensity larger or lower thand1 or d2 are suppressed. (Fang et al. (2009))

2.4.2 Circular Hough Transform (CHT)

In 1990 there was an survey summing up different methods of doing the circular hough
transform (Yuen et al. (1990)) papers centeral to the creation of the methods where revived,
like the central paper in 1975 Kimme et al. (1975)). There has been some contributions to
the method since then, noticeably in 1999 there was a method proposed how has formed
the scene (Atherton and Kerbyson (1999)).
Although there are many papers written on the subject since. Most om them include the
following steps of �nding circles.

1. Accumulator Array Computation.
Here the circles drawn around the main circle casts votes that for it being a main
circle in the image. As every circle iterated upon shares the one main point at the
centre

Figure 2.1: Illustration Atherton and Kerbyson (1999)

2. Center Estimation
Used for counting and processing the votes made from the edges iterated upon.

8



2.4 Segmentation and structure detection

3. Radius Estimation
Not all the circles then to have the same radius, so an estimate needs to be done.

The equation for iterating trough the circles can be expressed as:

y =
�

�
cos�
sin �

�
x +

� r
sin �

�
(2.8)

Hough elipse

First preposed algoritem in 2002 Xie and Ji (2002)

a(x � p)2 + 2b(x � p)(y � q) + c(y � q)2 = 1 (2.9)

ac � b2 > 0 (2.10)

For now this algorithm was found to be suf�cient, there needs to be a consideration and
performance comparison with algorithms �nding ellipses as described in Fitzgibbon and
Fisher (1995)

2.4.3 Harris Corner detection

The most common edge detection algorithm is Harris corner detection. The theory relies
heavily on the edges described in previous section about edges. In 1988 the Chris Harris
and Mike Stephens proposed a method for �nding corners heavily based on previous edge
�ltering algorithms Harris and Stephens (1988). Mathematically its borrowin from the
sobel kernal (eks of sobel kernel 2.5)

M =
X

(x;y )2 W

�
G2

x Gx Gy

Gx Gy G2
y

�
(2.11)

WhenG is computed there is an threshold set and if

R = det(M ) � k(trace(M ))2 = � 1� 2 � k(� 1 + � 2)2 (2.12)

Why corners

In the paper original proposed, the problem is described in relation to the growing topic
of robotic vision. An corner allows systems to note down a position of a region of pixels.
Contrary to an edge, who is less strictly de�ned. Many of the more sophisticated tacking
algoritems today relies hugely on edges .

2.4.4 Shi–Tomasi corner detection

Sometimes refereed to as the Kanade–Tomasi algorithm Shi and Tomasi (1994). Are is
an extension of the Harris corner detection. The basic idea is that the algorithm acts more
selective for the points conserved and this might increase the robustness in the tracking.
In this project the selectness can be used to extract mooring buoys. Assuming these are

9



2.5 Transformation between inertial and drone

the most dominant edges found in the picture.
As the harris edge detecetion calcualtes high eigenvalues� 1 and� 2 conclues there exists
an edge. The Shi–Tomasi concludes by using the R as

R = min (� 1; � 2) (2.13)

This is a way of threshold lamda values, and can be highly ef�cient for corner detection
applications.

2.5 Transformation between inertial and drone

The notation used in describing the qaudcopter is inpired by the book Beard and McLain
(2012)

vb =

2

4
u
v
w

3

5 =

2

4
longitudinal velocity

lateral velocity
normal velocity

3

5 ! =

2

4
p
q
r

3

5 =

2

4
roll rate

pitch rate
yaw rate

3

5 (2.14)

� =

2

4
�
�
 

3

5 =

2

4
bank angle

pitch attitude
heading

3

5 pn =

2

4
pn

pe

h

3

5 =

2

4
north position
east position

height

3

5 (2.15)

2.5.1 Obtaining NED the NED frame

The GNSS reading the RPAS gives out WGS (World Geodetic System) 84 readings, these
are given in[�; l ]

The GNSS coordinates gives out WGS readings, witch models the earth as an ellip-
soid, more presise, oblate spheroid. This geometical model needs a cople of parameters
including equatorial radius a, �attening factor f,

f = 1=298:257223563

a = 6378137:0 m

With
these parameters speci�ed by the WGS 84 will allow to compute the identities involving
�attening. Polar radius and eccentricity respectively.

b = a(1 � f )

e =
p

f (2 � f ) = 0 :0818191908;
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2.5 Transformation between inertial and drone

Geodetic to ECEF

With the parameters speci�ed the EFEC cordinates can be computed (by Heiskanen and
Moritz, 1967).

xec = ( h + N ) cos(� ) cos(l) (2.16)

yec = ( h + N ) cos(� ) sin(l ) (2.17)

zec = ( h + (1 � e2)N ) sin(� ) (2.18)

with
N (� ) =

a
p

1 � e2(sin(� ))2
(2.19)

P ec =

2

4
xec

yec

zec

3

5 (2.20)

ECEF to NED

R n=e =

2

4
� sin(l0) cos(l0) 0

� cos(l0) sin(� 0) � sin(� 0) sin(l0) cos(� 0)
cos(� 0) cos(l0) cos(� 0) sin(l0) sin(� 0)

3

5 (2.21)

P n = R n=e (P e � P e;ref ) (2.22)

2.5.2 The Euclidean transformation from body to NED

Assuming the structures observed is ridged in NED� = [ �; �;  ] where yaw

R x (� ) =

2

6
4

1 0 0
0 c� � s�

0 s� c�

3

7
5; R y (� )=

2

6
4

c� 0 s�

0 1 0

� s� 0 c�

3

7
5; R z ( ) =

2

6
4

c � s 0

s c 0

0 0 1

3

7
5

This can be integrated up to the angles needed to transform observed objects. The rotation
of the objects observed by the camera system is described by

R n
b (� nb ) = R z ( ) R y (� ) R x (� )

=

2

4
cos� cos � cos� sin  + sin � sin � cos sin � sin  + cos � sin � cos 
cos� sin  cos� cos + sin � sin � sin  � sin � cos + cos � sin � sin  

� sin � sin � cos� cos� cos�

3

5

There is a using this angles we get a singularity when the pitch is90� . But This can
be assumed to not be a problem, considering the normal behaviour of an drone. The
translation is described by the vectort =

�
x; y; h

� >
.

The full translation then becomes

p =
�
R t
0 1

�

| {z }
GPS and IMU

�
ps

1

�

| {z }
Observation in body

(2.23)
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2.5 Transformation between inertial and drone

Theps needs to come from type of slam system that as obtained some depth informa-
tion about the point of interest

Assuming perfect Gimbal

Assuming the gimbal is perfect, we get� = 0 and� = 0

eR n
b ( ) = R z ( )I 2 (2.24)

Adding the assumption of perfect height trackingt becomes

et =
�
pn ; pe; h0

� >
(2.25)

Then the translation becomes

ep =
�

eR ~t
0 1

� �
ps

1

�
(2.26)

=

2

6
6
4

cos � sin  0 pn

sin  cos 0 pe

0 0 1 h0

0 0 0 1

3

7
7
5

| {z }
T

�
ps

1

�

12



2.6 Camera calibration and notation

2.6 Camera calibration and notation

In order to translate the points in the image obtained into the right measurement units there
is needed to do a calibration. The model of the camera includes

� Pinhole camera model Zhang (2000)

� Lens distortion Heikkila and Silven (1997)

The reason for that the pinhole algorithm does not contain the radial and tangential distor-
tion is that it the model does not contain a lens, therefore this is accounted for in a later
step. Models here is obtained in Bradski and Kaehler (2013)

Pinhole camera model

ep =

2

4
eu
ev
ew

3

5 = �

2

4
u
v
1

3

5 =

2

4
ku f 0 u0

0 kv f v 0

0 0 1

3

5

| {z }
intrinsic matrix

2

4
X c

Yc

Zc

3

5

There are several notations of focal lengths expressed
in pixel units:

ku f = f u = � u

kv f = f v|{z}
OpenCV nation

= � v

Radial distortion correction

The radial distortion in Opencv and Matlab Camera Modelsradial

xcorrected = x(1 + k1r 2 + k2r 4 + k3r 6) (2.27)

ycorrected = y(1 + k1r 2 + k2r 4 + k3r 6) (2.28)

Tangential distortion correction

xcorrected = x + [2p1xy + p2(r 2 + 2x2)] (2.29)

ycorrected = y + [ p1(r 2 + 2y2) + 2 p2xy] (2.30)

Summery
The coef�cients obtained by calibrating this kind of calibration is

Intrinsic coef f icients = ( f u f v ) (2.31)

Distortion coef f icients = ( k1 k2 p1 p2 k3) (2.32)
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2.7 State estimation

2.7 State estimation

The internal sensors are measuring the relative position of the drone and gives out fast
updates but are prone to drift the GPS receiver provides out the absolute location but it
gets updated less frequently and it may be noisy in this scenario a where its desirable to
estimate stats, one of the techniques used can be kalman �ltering, to fuse measurements
and �nd the optimal estimate of the exact position of the AUV. This section discusses
different approaches of �ltering including Kalman.
The following state vector x can written as a combination of states and their related biases.

x = [p n ; � n ; _pb; bb
a ; bb

! ; bn
z ]T (2.33)

The multi-Sensor system model for the the AUV can be written as

ut = [a b; ! b]T

vt = [v a ; V ! ; vba ; vb ! ; vbz ]T

xt +1 = f (x t ; ut ; vt ) (2.34)

Modelling with the sensor model based on Fossen (1994).

ab
imu = R n

b (� )( _vb
m=n + gn ) + bb

a + wb
a (2.35)

! b
imu = ! b

m=n + bb
w + wb

w (2.36)

mb
imu = R n

b (� )mn + bb
z + wb

z (2.37)

2.7.1 Motivation for estimating states

Importance of yaw

Adding to what is mentioned in the above section it can be said that at high altitudes the
error in the reading from for the manometer can result in a very high error taking the point
found in the object detection module to NED. There therefore the it can be useful to do
estimation.

Figure 2.2: Camera projected to ground plane
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2.7 State estimation

x̂k � 1 x̂ �
k

x̂k

yk

x

y

Figure 2.3: Graphical representation of estimating one state

Dreadlocking

In a GPS fallout dreadlocking it gets harder to estimate the position through GPS since
the receivers line-of-sight to satellites these blocks and GPS signal is weak in this case
it may be desirable to trust the IMU readings which will yield acceleration. However
for the position its needed to take the double integral of the acceleration, unfortunately
this operation is prone to drift due to small errors accumulating over time to get better
position estimates you can use IMU measurements along with other readings, but the other
measurements may be affected by biases and noise.

2.7.2 State estimation

KF- most basic theory

One of the problem associated with Kalman �lters is that it assumes a zero mean Gaussian
white noise. And if the state transition function is linear the noise remains its property and
distribution. The same can be said for the measurement function. However if the state state
transition function is not linear the noise may not have contained the Gaussian distribution
and therefore the �lter may not converge.

EKF

However,f (x t ; ut ; vt ) is nonlinear, and the resulting state distribution may not be Gaus-
sian. And therefore, the Kalman �lter algorithm may not converge.

� Analytically obtaining the derivative may be dif�cult

� Computational cost of computing numerically may be high

� The system function may be non continuous at one point, making the differential
unde�ned

� Linearisation in some cases may be a bad approximation for high non linear system
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2.7 State estimation

UKF

Instead of linearizing the funciton at hand, the unscented Kalman �lter aims to approx-
imate the probability distribution. It works be selecting a minimal set of sample points
such that their mean and covariance is the same as the distribution, these are referred to as
sigma points. Each of the points are propagated tough the true nonlinear system and the
new mean and covariance are computed. Witch is then used to get the new estimate.

2.7.3 Filtering techniques for navigation reviewed

The need for state estimation can be relevant. As in the data collection at Korsneset 2018
the GPS fell out, then there would be desirable to estimate position based off of the sen-
sores contained inside the different IMU packages. It could also be RPAS for the simple
reason of getting better estimate of states in a certain time step considering the GNSS
system is slowing than the IMU with respect to update frequency. In the paper Tailanián
et al. (2014) it is proposed that an EKF approach can be used to get the desirable estimated
states. However in the paper Cappello et al. (2015) and Ren and Ke (2010) the authors
tries to compare the ways of �ltering giving a certain benchmark of each method.

Figure 2.4: Comparison sensor fusion by Cappello et al. (2015) based off GNSS, VBN and IMU

However implementing and testing them self for the speci�c localisation task at hand
is not in the scope. To hold complexity down it is considered to take one open source
library that is based off Roetenberg et al. (2005), where there is proposed usage of an
complementary �lter.
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2.8 CNN

2.8 CNN

CNN stands for convolutional neural networks. The basic idea is to take in image data
though the layers that �lters (convolves). These �lters has kernals and are adjusted within
the layers so that these �lters are adjusted automatically to extract the most useful in-
fraction to the task at hand. What separates the convolutional neural network from the
traditional neural network is that the layers are not fully connected, they are rather what
we call locally connected.

2.8.1 Single Shot detectors

The previous networks neural networks has divided up the it in to sub tasks

� Providing region proposals

� Quality classi�er classify these proposals

This makes for high accuracy but not fast processing of images.

However in the Single shot detectors they do this by instead have a set of pre-de�ned
boxes to look for objects. Instead of having one part of the program dedicated to providing
region proposals.

Figure 2.5: Pre de�ned boxes exsample (taken from dos Santos (2018))

2.8.2 Object detection and the Yolo network

Yolo is one of the single shot detectors, hence the name ”you only look once”.
The network also tacles the porblem formulation of object detection: given a image, output
bounded boxes where the objects of interest while also labelling. Detecting objects have
historical been a big task for computers. There have been a lot of advances in recent years
of making it more accurate, however as mentioned before the computational load has been
considerable associated with these problems. Until the yolo network proposed a solution
to this Redmon et al. (2015). Since then there has been some notable improvements to the
�rst version of the network proposed.
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2.8 CNN

Loss function

The loss function can be written like the following

� coord

S2
X

i =0

BX

j =0

1 obj
ij [(x i � x̂ i )2 + ( yi � ŷi )2]

+ � coord

S2
X

i =0

BX

j =0

1 obj
ij [(

p
wi �

p
ŵi )2 + (

p
hi �

q
ĥi )2]

+
S2
X

i =0

BX

j =0

1 obj
ij (Ci � Ĉi )2 + � noobj

S2
X

i =0

BX

j =0

1 noobj
ij (Ci � Ĉi )2

Note that form the original posed loss function the last therm are not present because of in
the projects application there was no multiple classes.There is no reason for the simpli�ed
cost funciton, there is only one class used in the project so far.

2.8.3 Training the network

After labelling the pictures with ground trough and generating the corresponding XML
there the network could be trained.

The network was trained for little over 150 epochs

Figure 2.6: Training of the network
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2.9 Considerations in the artifex project

2.9 Considerations in the artifex project

One consideration to take into account when specifying the hardware and software of the
artifex project. This is the constraint on the height of the drone. There needs to be a video
stream link from the USV and the drone, this is decided to be cabled so far in the project
as of now.

Figure 2.7: Caption

There are is a maximal distance depending on the length of the cable attached to the
vassal. This cable is attached to the vassal by design of the artifex project.

2.9.1 Distance of sight from vassal

The distance can be written as a function of the angle� from the vassal to the RPAS.

D (� ) = d1(� ) + d2(� ) + dsafe (2.38)

Simplifying the problem down to the two dimensional space we get the �gure 2.8.
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2.9 Considerations in the artifex project

Figure 2.8: Viewing distance projected

The �gure contains two separate triangles, who can be used to obtain the geometric
relations with descriptor as the angle.

cos (� ) =
dsafe + d1

h1 + h2
tan

� �
2

�
=

d2

dr sin(� ) � h1
(2.39)

Substituting into 2.38

D (� ) = dsafe + d1(� ) + d2(� )

= dr cos(� ) + ( dr sin(� ) � h1) tan( � )

Differentiating with respect to angle yields the following equation

D 0(� ) = � dr sin(� ) + dr cos(� ) tan
� �

2

�
(2.40)

This can be set to t zero to check for the optimal angle�

D 0(� ) = 0

dr sin(� ) = dr cos(� ) tan
� �

2

�

From this the relation for optimal angle between the RPAS and the vassal can be obtained
based on the speci�ed lens used in the project

� = tan
� �

2

�
(2.41)

The calculation shows that there needs to be an concern regarding the height of the RPAS.
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2.9 Considerations in the artifex project

2.9.2 Adjusting the lens

For this section� can be considered to be variable, then the function of distance becomes.

D (�; � ) = dsafe + d1(� ) + d2(�; � ) (2.42)

Differentiating with respect to angle of view

d
d�

D(�; � ) = dr cos(� )(1 + tan( � )2) (2.43)

The other differentiation with respect to� can be found in the equation 2.40. Putting
these tougher one gradient can be found.

Numerical plotting

Setting the rope distance to 45 m (dr = 45) and the camera offset toh1 = 0 :5 meters we
get the following relation between the angle of view, angle from he vassal to the drone and
the height.

Figure 2.9: Left plot: D (�; � ), Right plot: d
d� D (�; � )

Last we can consider

� = 2 arctan
d

2f
(2.44)

Allowing for change in vocal length what the speci�cation of the lensf andd.

2.9.3 Ground Sample Distance - GSD

From the previous section we can know that keeping the angle� somewhat high is bene-
�cial to the maximising the distance of wieving. This is the sensor projected down to the
ground. The relationship can be described with the following equation

GSD =
p

fW
R [m=px] (2.45)
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2.10 Compiling OpenCV to Node.js

Figure 2.10: Conceptual illustration of sparse image sensor projected on to the ground plane

WhereR is the distance from the optical centre, theW is the length of the pixel. This
has to be taking into account while considering the height of operation.

This could also be taken into account. The geometric relation is derived in equation
2.45. This relation can be extended to get an constraint on how high the drone can go, with
respect the projected pixels at the ground.

2.10 Compiling OpenCV to Node.js

Node.js is the runtime environment of the executing the JavaScript. The javaScript runtime
is built on Chrome's V8 JavaScript and WebAssembly engine. The node-gyp build tool
can be used to compile c++ projects into node addons.. It is based on gyp, a similar tool to
Cmake. To automatically compile addons written in c++ v8 to what is called node addons.

Figure 2.11: Opencv implementation of frontend GUI Electron framework
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Chapter 3
Methodology

3.1 Structure geometry detection module

The proposed image segmentation system is consisting of the following three modules.
STM, deep neural network and hough lines. The the statistical model is

Figure 3.1: Flowchart describing the image data�ow

The euclidean transform would take in parameters from the sensor module, but is not
drawn in to the �ow chart.
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3.2 GUI

3.2 GUI

3.2.1 Visualisation of the operation

The data generated at the USV can be sent to a base station for the operators. To make the
operators gain insightful information about the operation and avoid threats in the testing
phase of the artifex project. The USV contains the data generated from the drone. And
should also contain the information about the speci�c location of the ROV and of course
the UAV.

Figure 3.2: Communication �ow during operation

3.2.2 Front end

The idea of the proposed GUI implementation is for the program modules to be bundeled
together as one program, running off JavaScript. The proposed way of doing it may

The idea is that when the user is launching the frontend javascript/ Electron application,
the c++ binary is called by the program and is working in the background.

3.2.3 Building around existing libraries and frameworks

The importance of JavaScript as an front end language is growing rapidly. This could be
seen in the relation to how it is the most popular used for web front end development. The

(a) Electron (b) Nodejs (c) Threejs

Figure 3.3: Libraries and framework used making program front end
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