
N
icholas D

alhaug
Lidar-based Localization for A

utonom
ous Ferry

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Nicholas Dalhaug

Lidar-based Localization for
Autonomous Ferry

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke and Gustaf Hendeby

June 2019

Nicholas Dalhaug

Lidar-based Localization for
Autonomous Ferry

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke and Gustaf Hendeby
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This document serves as the master’s thesis for the master’s project TTK4900 in
Cybernetics and Robotics at the Norwegian University of Science and Technology
(NTNU). By contributing the last 30SP, it finalizes the Master of Technology degree.
The master’s project was preceded by a specialization project [13] and is a contin-
uation within the same field of mapping and localization for autonomous docking.
The specialization project was a literature study and analysis of the necessity of
Simultaneous Localization And Mapping (SLAM) in mapping and localization for
autonomous docking.

This master’s project is instantiated under the Autoferry Project at the Centre for
Autonomous Marine Operations and Systems (AMOS) at NTNU. It has the goal to
analyze methods for localizing the Unmanned Surface Vehicle (USV) Milliampere
using a lidar. The equipment at disposal includes data gathered in earlier experi-
ments.

I would like to thank my supervisor Edmund Førland Brekke and co-supervisor
Gustaf Hendeby for giving me the possibility to work on this project and for taking
the time to counsel and supervise my activities throughout it. It has been an
interesting journey and I hope it is interesting for you as well. I would also like to
thank my colleagues for discussions on the relevant topics.

i

Abstract

This thesis wants to establish properties for localization of an Unmanned Surface
Vehicle (USV), explain advantages and disadvantages of some methods for localiza-
tion and suggest where to focus next. The use of a lidar to do this is motivated by
the fragility of Global Navigation Satellite Systems (GNSSs). The analyzes in this
thesis are important in order to lay a basis for further development, development
that is based on an understanding of the underlying problem.

The particle filter using a physically based measurement model and a simple kine-
matics motion model can be used to localize the USV in an occupancy grid. Using
only the motion model as a prior for movement gives the fastest method, using
Unscented Kalman Filter (UKF) gives no benefit and using Iterative Closest Point
(ICP) reduces the state estimation error. Using the physically based measurement
model it is suggested to tune parameters such as measurement uncertainty to get
better estimation consistency.

An analysis of the workings of the physically based measurement model is at least
as important as the particle filter results. While the physical measurement model
does not handle discontinuities in the map well, the ICP method is better at taking
the structure of the environment into account. The physically based measurement
model will, depending on the noise and tuning, have difficulties with different kinds
of noise. The ICP method has different problems, but the use of it as a measurement
model might solve several different issues.

The basis established by this thesis will supplement the development of robust local-
ization methods that enable an autonomous ferry to conduct duties such as transit
and safe and reliable docking . These duties should be carried out only using on-
board sensors.

iii

Sammendrag

This section gives a summary in norwegian.

Denne masteroppgaven ser p̊a egenskaper ved lokalisering av en Unmanned Surface
Vehicle (USV), forklarer fordeler og ulemper ved noen metoder for lokalisering og
foresl̊ar hvor fokus bør ligge videre. Bruken av en lidar til å gjøre dette er motivert
av skjørheten til Global Navigation Satellite System (GNSS). Analysene i denne
oppgaven er viktige for å lage en basis for videre utvikling, utvikling som er basert
p̊a en forst̊aelse av det underliggende problemet.

Patrikkelfilteret med en fysikk-basert målemodell og en enkel kinematisk bevegel-
sesmodell kan brukes for å lokalisere USVen i et occupancy grid. Bruk av en beve-
gelsesmodell som forslag for bevegelse gir den raskeste metoden, å bruke Unscented
Kalman Filter (UKF) gir ingen fordeler og å bruke Iterative Closest Point (ICP) re-
duserer feilen i estimert tilstand. Ved bruk av en fysikk-basert målemodell anbefales
det å tune parametre slik som måleusikkerheten for å f̊a bedre konsistensegenskaper.

En analyse av hvordan en fysikk-basert sensor modell virker er minst like viktig
som resultatene fra partikkelfilteret. Mens den fysikk-baserte m̊alemodellen ikke
h̊andterer diskontinuiteter i kartet godt er ICP-metoden bedre til å ta strukturen i
miljøet med i betraktningen. Den fysikk-baserte målemodellen vil, avhengig av støy
og tuning, ha problemer med forksjellige typer støy. ICP-metoden har andre proble-
mer, men bruken av den som en målemodell kan løse flere forksjellige problemer.

Grunnlaget etablert av denne oppgaven supplementerer utviklingen av robuste lo-
kaliseringsmetoder som muliggjør at en autonom ferge kan utføre plikter slik som
gjennomreise og trygg og p̊alitelig tillegging til kai. Disse pliktene skal utføres kun
ved bruk av sensorer om bord.

v

Contents

Preface i

Abstract iii

Sammendrag v

Contents vii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem description . 3
1.4 Delimitations . 4
1.5 Contribution . 4

2 Overview of literature 7
2.1 USV challenges . 7
2.2 Localization and mapping . 8
2.3 Earlier project on lidar SLAM comparison 8
2.4 Bayesian navigation using DME . 9
2.5 Ray tracing and likelihood fields . 9
2.6 3D likelihood fields . 10
2.7 Maritime RobotX Challenge . 10
2.8 Changing environments . 11
2.9 The broad topic of localization . 12

3 Platform and map 13
3.1 Milliampere introduction . 13
3.2 Vessel . 14
3.3 Quay . 14

3.3.1 Ravnkloa and Brattøra quays 14
3.3.2 Brattøra harbour . 16

3.4 Sensors . 16
3.4.1 Lidar . 16
3.4.2 GNSS . 18

vii

CONTENTS

3.4.3 IMU . 18
3.5 Software . 19

3.5.1 ROS . 19
3.5.2 Rviz . 20
3.5.3 OctoMap . 20
3.5.4 OpenCV . 20
3.5.5 PCL . 20

3.6 Spatial resolution . 21
3.6.1 Ray height . 21
3.6.2 Other configurations . 22

3.7 Map representations . 23
3.8 Reference frames . 24
3.9 Mapping . 24

4 Dynamics and sensor models 27
4.1 State estimation . 27
4.2 Ship dynamics . 28
4.3 Process model used . 28

4.3.1 Considerations . 31
4.4 Lidar . 31
4.5 Sensor models . 32

4.5.1 Ray tracing . 33
4.5.2 Combining measurements . 33
4.5.3 Beam model . 33
4.5.4 Other models . 35

4.6 Measurement model used . 35
4.6.1 Finding the parameters . 37

5 State estimation methods 39
5.1 Relation to localization . 39
5.2 The unscented Kalman filter . 39

5.2.1 The unscented transform . 40
5.2.2 The filter . 41

5.3 Monte Carlo simulation . 43
5.4 Bayes Filter . 43
5.5 Particle filter . 45

5.5.1 Sequential Importance Sampling 45
5.5.2 Weighting and importance density 46
5.5.3 The problem of degeneracy . 48
5.5.4 Re-sampling . 49
5.5.5 The generic particle filter . 52
5.5.6 Sampling Importance Re-sampling 52
5.5.7 Point estimation . 54

5.6 Particle filter in logarithmic space . 54
5.6.1 Normalizing in log-space . 55

viii

CONTENTS

5.6.2 Effective sample size from logarithms of weights 55
5.6.3 Logarithmic low variance sampling 56
5.6.4 Sampling using the Gumbel-max trick 56
5.6.5 Point estimation in logarithmic space 57

5.7 Simulation filter evaluation . 58
5.7.1 Monte Carlo simulation consistency test 58
5.7.2 RMSE . 59

5.8 The unscented particle filter . 60
5.9 Iterative Closest Point method . 60

6 Particle filter analysis and simulations 65
6.1 Particle filter method . 65

6.1.1 Weighting and importance density 66
6.1.2 Normalization and re-sampling 67
6.1.3 Evaluating the filter . 68
6.1.4 Regularized re-sampling . 68

6.2 Particle filter properties . 71
6.2.1 Corners . 71
6.2.2 Bad importance density . 72
6.2.3 Diagonal map . 72
6.2.4 Noise . 74
6.2.5 Localize in another map . 75
6.2.6 Using the filter map . 75

6.3 Particle filter simulations . 80
6.3.1 Weighting and importance density 80
6.3.2 Normalization and effective sample size 83
6.3.3 Re-sampling . 83
6.3.4 Point estimation . 84

6.4 Evaluating the simulations . 84
6.5 Increasing the uncertainty . 88

7 UKF-based importance density 89
7.1 UPF method . 89
7.2 UPF properties . 90

7.2.1 Gaussian distribution . 90
7.2.2 Tuning . 90
7.2.3 Bad importance density . 92
7.2.4 Diagonal lines . 92
7.2.5 Corners . 92
7.2.6 Noise . 94
7.2.7 Using the filter map . 94

7.3 Evaluation . 97
7.4 Beam model considerations . 99

8 ICP-based importance density 101
8.1 ICP convergence analysis . 101

ix

CONTENTS

8.1.1 Point cloud from occupancy grid 101
8.1.2 Tuning the ICP . 103
8.1.3 Different maps . 108
8.1.4 Measurement noise and realistic map 108

8.2 From ICP to importance density . 111
8.3 Evaluation . 114

9 Discussion 117
9.1 Analyzes and evaluations . 117

9.1.1 Generic particle filter . 117
9.1.2 UKF-based importance density 118
9.1.3 ICP-based importance density 119

9.2 Comparison . 119
9.3 Importance of modeling and tuning 120
9.4 Limitations . 121

10 Conclusion and future work 123
10.1 Conclusion . 123
10.2 Future work . 124

Bibliography 125

A Experiment data 131
A.1 Pre-project experiments . 131
A.2 Rosbag overview . 133
A.3 Lidar data . 135
A.4 Velocity . 137

B Mapping to an occupancy grid 139
B.1 Point filtering . 139
B.2 Getting a map . 139
B.3 Saving an occupancy grid as an image 141

C Implementation 145

x

Acronyms

AIS Automatic Identification System. 3

AMOS the Centre for Autonomous Marine Operations and Systems. i

ANEES Average Normalized Estimation Error Squared. 59, 68, 69, 84, 85, 88, 97,
98, 114, 116, 118–121, 123

ASV Autonomous Surface Vehicle. 1, 3, 7, 10, 16

DME Distance Measuring Equipment. 9, 12, 20, 31, 32

DOF Degrees Of Freedom. 28, 61, 69, 71, 80, 90, 97, 114, 118, 121

DP Dynamic Positioning. 4, 14

EKF Extended Kalman Filter. 39, 40, 89

ENU East North Up. 24, 28

GNC Guidance, Navigation and Control. 7

GNSS Global Navigation Satellite System. iii, v, 3, 5, 7, 14, 16, 18

GPS Global Positioning System. 7, 9, 11, 139

GUI Graphical User Interface. 20

HMM Hidden Markov Model. 44

ICP Iterative Closest Point. iii, v, 5, 11, 12, 35, 39, 61–63, 100–103, 105, 106, 108,
110–117, 119–121, 123, 124

IMU Inertial Measurement Unit. 3, 4, 7, 10, 16, 18, 19, 31, 133

INS Inertial Navigation System. 3, 5, 14, 18, 31

IS Importance Sampling. 43

LG Linear Gaussian. 59

MMSE Minimum Mean Square Error Estimate. 54, 57, 84

xi

Acronyms

NED North East Down. 24, 137, 141

NEES Normalized Estimation Error Squared. 58, 59, 114

NIS Normalized Importance Sampling. 43

NTNU the Norwegian University of Science and Technology. i, 2, 13

OpenCV Open Source Computer Vision Library. 19, 20, 141

PCL Point Cloud Library. 11, 19–21, 61, 139

PF Particle Filter. 5, 8, 39, 45, 89, 99, 112, 115

RMSE Root Mean Square Error. 59, 68, 69, 84, 85, 88, 97, 98, 102, 103, 105–111,
113, 114, 116, 119, 120, 123

ROS Robot Operating System. 8, 11, 19–21, 24, 32, 131, 133, 135, 139, 141, 145

RTK-GPS Real-Time Kinematic Global Positioning System. 3, 16, 18

SIR Sampling Importance Re-sampling. 50, 52, 53, 60, 68, 69, 90–96

SIS Sequential Importance Sampling. 45, 46, 48, 52, 66, 67

SLAM Simultaneous Localization And Mapping. i, 3, 7, 8, 11, 12, 24, 122, 131,
139

SNR Signal to Noise Ratio. 69

SVD Singular Value Decomposition. 61, 62

TOF Time Of Flight. 31

UKF Unscented Kalman Filter. iii, v, 5, 39–42, 60, 89–91, 94–97, 99, 118–120, 123

UPF Unscented Particle Filter. 39, 60, 89, 90, 92–100, 114, 117–120

USV Unmanned Surface Vehicle. i, iii, v, 1, 3, 4, 7–9, 16

UT Unscented Transform. 40, 41

xii

Chapter 1

Introduction

This chapter introduces the field of Autonomous Surface Vehicles (ASV), explains
the specific problem of localizing the ferry and specifies the structure of this thesis.

1.1 Background

The development of Autonomous Surface Vehicles (ASV) has come far. Unmanned
Surface Vehicles (USVs) are vehicles that operate on the surface of water without
an operator on-board, with varying degrees of autonomy [44, p. x]. ASVs are USVs
where the vessel is autonomous. The historical review [38] mentions that an ASV
was developed in 1993 which was used to collect simple bathymetry data. Years
later, prototypes have been demonstrating capabilities of autonomous operation.
Jokioinen explains that autonomous ships can now be at least as safe as manned
ships [28]. This article also states that the main technological challenges regard
cost and reliability. Those are therefore important research topics within the field
of ASVs together with development of new features.

There are several reasons for making an autonomous ship. One such reason is that
they might be more cost effective and more environmentally friendly than manned
ships. For military use it could manage tasks that are dangerous for humans or
it could increase the situational awareness on missions. In urban environments,
autonomous ferries could replace manned ferries and bridges [3]. The fact that they
are autonomous can also give a better integration with higher level systems. For
example when it comes to minimizing the ferry usage or waiting time, the ferry can
be integrated in an intelligent higher level public transportation system. Lastly, the
reduced cost of ferries might enable ferries to work in environments where they have
been too expensive to be implemented. This might be the case for several places
along the coast or fjords where a manned ferry would not be economically efficient.

1

CHAPTER 1. INTRODUCTION

The Fløtmann in Trondheim, a man rowing people across a specific water passage,
was a time-saver for people working or travelling in the Brattøra region [33]. The
history goes back to the 1880s with the constructions around the railroad and when
people needed to get across the water passage between Ravnkloa and Brattøra. The
Fløtmann rowed people across the passage until 1965. The tradition was revived
in 1997, but only for certain days during the summer months. This passage is
therefore not easy to traverse outside of those days, and especially not if one wants
to transport a bicycle over the passage.

1.2 Motivation

The Autoferry project is a project at the Norwegian University of Science and Tech-
nology (NTNU) [3]. Its goal is to develop methods and increase the relevant level of
knowledge that will enable the production and use of autonomous passenger ferries.
These ferries should be fully electrical and able to transport people in urban water
passages on-demand, making them arrive when a button is pressed. A key part of
the project is the ferry prototype Milliampere shown in Figure 1.1. The ferry is
designed to roam the passage between Ravnkloa and Brattøra in Trondheim. (See
Chapter 3 for more technical information about this specific platform.) As well as
collision avoidance, this ferry will need a navigation system in order to fulfill its task
of autonomous people transport.

Figure 1.1: The ferry prototype Milliampere as it, not so au-
tonomously, leaves the quay. From the left: Brage Sæther and
Emil Hjelseth Thyri. Photo taken by Nicholas Dalhaug.

An intricate part of a ferry’s capabilities is its ability to dock. Therein lies the
necessity of precise navigation and localization as the vessel approaches the quay.
Using its on-board sensors, the ferry should be able to find its own location and

2

CHAPTER 1. INTRODUCTION

orientation, find where the quay is and therefore know its position and orientation
relative to the quay. This can be done in many different ways, but an important
part is knowing where the quay is, whether this is given before the docking as a
map or figured out through data analysis and an understanding of what a quay is.
The transport of people necessitates that the docking is safe, reliable and effective.
These factors put requirements on the sensors and sensor fusion software used on
the vessel, including those for localization.

Navigation in general needs good sensors, and this is especially true for autonomous
vehicles. For a system to navigate autonomously, it needs to utilize several sensors
and combine them to estimate its position and orientation. An influential step
towards good measurement of the heading of vehicles like ships or planes was the
invention of the gyrocompass, patented by Elmer Sperry in 1911 [7]. Since then,
there has been an increasing effort in making sensors better, smaller and more
affordable. Some typical sensor types in autonomous ship navigation today are
Global Navigation Satellite System (GNSS), Automatic Identification System (AIS),
Inertial Measurement Unit (IMU), Inertial Navigation System (INS), sonar, lidar
and radar.

Even though Real-Time Kinematic Global Positioning Systems (RTK-GPSs) are
accurate enough, GNSS might not always be available or trustworthy. That might
happen in certain environments or if the signals are being jammed, intentionally or
unintentionally, or attacked [49]. The vessel therefore needs to be equipped with
other sensors that should be able to locate it. An ASV can then use the information
gathered about the environment in methods for localization. It can fuse the data
to a representation that can further supplement systems such as path planning and
control, to finally make the vessel move towards the dock.

Many articles exist on localization using lidars. Some articles use features extracted
as landmarks [73] [10] while others use scan-matching [71] [72] [20]. Some articles
use a lidar placed on ground vehicles [73] [71] [10] while others place the lidar on
water surface vehicles [46] [68] [22]. Some experiment in indoor environments [4]
and some in outdoor environments [73] [71] [10]. But the author of this master’s
thesis has not found an article that surveys localization using a lidar on USVs, nor
an article doing localization with a physically based sensor model of the lidar in an
occupancy grid.

1.3 Problem description

This master’s project is partly based on an earlier project about different Simulta-
neous Localization And Mapping (SLAM) implementations for autonomous docking
using lidar [46]. That thesis is discussed in more detail in Section 2.3. It describes
the inadequacy of certain pure implementations of known SLAM methods for the

3

CHAPTER 1. INTRODUCTION

autonomous ferry case. This leaves the question of how to go forward with the goal
of autonomous localization of the vessel.

The goal of this master’s project is to analyze methods for localizing the USV
Milliampere using a lidar. This is in an attempt to find out how to go forward in the
development of a localization method for the vessel. There are many different ways
of doing this, as the literature overview in Chapter 2 states, but certain properties
of the sensor must first be established. The problem has therefore been delimited
to a narrower problem described next.

1.4 Delimitations

The problem of lidar localization has in this project been delimited to particle fil-
ters. This is because of its ability to represent multi-modal distributions and its
weak assumptions on both the process model and the measurement model, this is
explained in more detail in Section 6.1.

The problem is further delimited to the use of a physically based sensor model.
This delimitation is made in an attempt to analyze the behavior of the localization
method in an intuitive and understandable way where the artifacts from the relation
between the map and the state are easy to understand.

The problem is also restricted to the use of an occupancy grid. This is because it
is easy to make and edit by hand. It is also flexible with what structures it can
represent, for example not only lines.

Lastly, since the problem is in the stage of analysis, it has been restricted to the
case of simulations. A lot can be learned from simulations, for example about the
behavior of a particle filter used in an occupancy grid with a physically based sensor
model.

The platform Milliampere, see Chapter 3, has many different sensors, but the most
relevant for this project are the lidar and the IMU.

1.5 Contribution

The developments in this master’s project are supposed to supplement the already
existing capabilities of Milliampere, as well as projects that are presently being
developed. The vessel already has methods for path following, thrust allocation [62]
and Dynamic Positioning (DP) implemented. Other projects currently in work are

4

CHAPTER 1. INTRODUCTION

for example navigation based on GNSS and INS [55]. The developments in this
master’s project therefore become one localization component in a bigger system of
many components.

This thesis describes the execution of these tasks:

• Do a short literature review, Chapter 2. This gives an overview of some
different methods and important topics in localization and shows different uses
of localization as well as how the choice of method depends on the application

• Study the platform and data from earlier experiments, Chapter 3 and Ap-
pendix A.

• Create a map, in the form of an occupancy grid, in which localization can be
done, Appendix B.

• Simulate localization with a particle filter and a physically based sensor model.
The different approaches chosen are:

– Generic Particle Filter (PF), Chapter 6. The theory about the dynamics
of the system and the sensor models in Chapter 4 combined with the
Bayesian state estimation theory described in Chapter 5 is used.

– PF with Unscented Kalman Filter (UKF) used to make an importance
density, Chapter 7.

– PF with Iterative Closest Point (ICP) used to make an importance den-
sity, Chapter 8.

Through these tasks, an analysis has been made of UKF in the occupancy grid and
ICP in an occupancy grid, both using a physically based sensor model. Based on
the analyzes, a discussion about the problem at hand is made and concluded with
suggestions of future work, Chapter 9 and Chapter 10. Some aspects on how to
implement the methods have been discussed in Appendix C.

5

Chapter 2

Overview of literature

Some papers and other projects related to this master’s project are described below
in order to get an overview of different ways to do localization.

2.1 USV challenges

There have been much development within the field of USVs and with it also some
challenges. This has been discussed in articles such as [35], which summarizes many
elements of USV development with many references and is a good introduction to
USVs from a Guidance, Navigation and Control (GNC) point of view. On the topic
of navigation, sensors normally only give position and orientation measurements, and
it is necessary to do state estimation in order to get velocity. This might for example
be done by combining Global Positioning System (GPS) and IMU measurements
in a state estimator such as a Kalman filter. For localization without GNSS a
solution might be using a lidar for perceiving the environment and do SLAM, which
is explained later in this chapter.

There are still many challenges related to single ASVs. Path planning and path
re-planning have several important challenges. The same goes for control systems.
On the topic of navigation, sensing technologies like radar, sonar and vision all have
their problems. For radar this can be the detection precision, for sonar it can be
sensitivity to noise and for vision it can be phenomena like fog or changing lighting
conditions. One solution to these single challenges is to combine the sensors. The use
of GPS and IMU together in a state estimator is common. But a challenge there is
autonomous exploration in environments with degraded GPS signals, like near trees
or under bridges. A solution to this is the use of active sensors for state estimation.
Autonomous docking is a challenge in relation to control, and the article [35] states
that the research at that time on USV navigation using active and passive ranging

7

CHAPTER 2. OVERVIEW OF LITERATURE

sensors had been minimal. It references several papers on vision-based docking,
and it references one article on a docking procedure for USVs [9]. Many of these
challenges are still relevant today, but there have been some development in certain
fields.

2.2 Localization and mapping

Localization and mapping are in general different tasks. They have both been stud-
ied in detail, see for example the books [60, 57]. Mapping is the act of creating a
map from observations of the environment or objects to be mapped. It requires a
known pose, position and orientation, for the sensor whose relative measurements
then can be combined into a map. Localization is the act of finding or estimating the
pose of a robot based on measurements and an understanding of the environment,
often in the form of a map. This can be regarded as a sort of state estimation,
where the state is the pose of a robot. These tasks generally depend on each other,
which makes it difficult when both the environment and the pose of the robot is
unknown. When the word “robot” is used here, it means the object whose state is
to be estimated. This can for example be a boat.

Simultaneous Localization And Mapping (SLAM) is the act of simultaneously local-
izing a robot and mapping the environment. Several tutorials have been made on
this topic [17, 5, 60, 57] and a survey of how far it has come is given in [11]. Stated
simply, SLAM uses an initial pose estimate together with sensor measurements along
a path and the registration of the same objects or landmarks several times, so-called
loop closures, to calculate the most probable map and path estimates. An example
of a SLAM method is FastSLAM [42, 41]. It uses a PF, explained in Chapter 5, for
path estimation and Kalman filters for landmark location estimation. SLAM is very
useful for applications where both the environment and the robot pose is unknown,
but might be unnecessarily complex for other applications.

2.3 Earlier project on lidar SLAM comparison

An earlier master’s project on the ferry Milliampere was [46]. The thesis compares
the lidar SLAM methods Hector-SLAM [32], LOAM [74] and BLAM [45] that are all
available as open-source in implementation Robot Operating System (ROS). It also
goes into detail about different sensors and the equipment used on Milliampere. The
thesis concludes that none of the pure implementations are adequately suited as a
stand-alone solution for the autonomous ferry. It shows that Hector-SLAM is quite
promising and suggests several possible ways of improving the implementation, but
did not initially give a good enough map for autonomous docking.

8

CHAPTER 2. OVERVIEW OF LITERATURE

2.4 Bayesian navigation using DME

Lidar and radar are examples of Distance Measuring Equipment (DME). An example
of navigation using DME is where Karlsson and Gustafsson propose a radar based
navigation system for a surface vessel [31]. The radar range measurements are
compared with information from a digital sea chart and combined with a particle
filter to give pose estimates. This becomes more robust than GPS, partly because of
the higher energy of signals and much shorter distances. This method of navigating
seems to work well from the article. It might also be easily converted to using a lidar
or an other DME instead of the radar as no part of the method required anything
radar specific.

The motion model [31] used is three dimensional, with Cartesian position and crab
angle, the angle between the velocity vector of the ship and the stem of the ship.
They also measure the longitudinal and lateral speed of the ship so that less states
need to be estimated. The measurement model is range measurements with noise. So
the particle filter does for every iteration a prediction using the motion model. After
the prediction, there is a measurement step that compares the real measurements
with simulated ones, from a database of expected land areas, for each particle. The
simulation might be some sort of ray-casting, but this is not specified. Then the
re-sampling of the particle filter is done and the method continues. The particle
filter is explained in more detail in Chapter 5.

2.5 Ray tracing and likelihood fields

A lidar can not only be used to localize USVs, but robots in general, including
autonomous cars. A master’s thesis from Chalmers University [26] describes how
to localize an autonomous car using a lidar and a particle filter. It tries out two
different sensor models, the ray tracing model and the likelihood model, both of
which are described in Chapter 4. The likelihood model is taking the measured
rays and for each ray find the shortest distance from the end point to an obstacle
in the map. This is faster than the ray tracing model by not having to simulate
rays for each particle, but just project the end points of the measurements onto the
closest object. In the beginning of the authors’s project, a simulation environment
was constructed in which different localization methods could be tried out. And the
authors explain through this how the lateral and longitudinal error behaves. The
thesis concludes that both methods work very well based on logged data from actual
driving and ground truth GPS data.

9

CHAPTER 2. OVERVIEW OF LITERATURE

2.6 3D likelihood fields

Another project using a particle filter and a lidar for localization is described in
the paper by Merriaux et al. [40], even though the paper focuses a lot on the
map representation with regards to memory and time efficiency. It was made for
the ARGOS Challenge contests in which a robot should navigate a complex known
industrial environment. The method uses what they call a 3D likelihood field that
is a map with likelihoods of lidar impact and introduces hybrid octrees. Together
with the hybrid octree map, a particle filter is used. The measurement function
uses ray tracing to find the impact in the map for each particle in the particle filter.
The given probability likelihood is then the distance between this point and the
impact of the corresponding ray in the lidar measurement. An IMU was used for
the motion update. Their hybrid octree map representation is deemed faster than
the regular octree, and relatively smaller and smaller as the map size increases. The
localization is said to work fairly well also with dynamic changes made by the jury
in the contest. The paper concludes with stating that the method is fast and robust
and that the map representation is suited for complex environments and embedded
systems.

2.7 Maritime RobotX Challenge

The Maritime RobotX Challenge is a competition for students [52]. It was created to
support the advancements within autonomous vehicle technology, focusing on ASV
platforms and sensors. The latest and third competition was held in 2018 in Hawaii.
Some of the tasks in this challenge are to autonomously pass through gates, avoid
obstacles, find totems, read patterns and symbols, and dock. The docking task used
a dock similar to the one in Figure 2.1, where the ASV should find the correct dock
through symbol matching and then dock there.

Figure 2.1: An illustration of the dock in the Maritime RobotX
Challenge 2018. Courtesy of RoboNation [52].

One team that competed in the competition in 2016 was from Flinders University

10

CHAPTER 2. OVERVIEW OF LITERATURE

[68]. They primarily used a Real Time Kinematic (RTK) GPS for navigation. Ob-
stacles were located using a Simrad 4G maritime navigation radar and a Velodyne
LiDAR HDL-32 lidar. To find obstacles and localize relative to them, the FastSLAM
algorithm was used and was implemented using the Point Cloud Library (PCL) and
ROS. They removed unwanted points on the shore by restricting points to be within
a polygon and removed water reflection by setting a minimum intensity threshold.
Thereafter clustering was done and a list of landmark measurements was sent to
the SLAM node. The classification of 3D shapes was done using an ICP method,
see Chapter 8 for a more detailed explanation, to compare point cloud clusters to
template models, giving a best-fit score and a relative transformation. The map
consisted of sparse objects with identifiers and properties relating to the relevant
tasks, like type, color and shape. Different sensors were fused through a particle
filter, more precisely a bootstrap version since the objects are stationary.

As several other teams, also the one from the University of Florida used an occupancy
grid as a map [22]. They used the lidar data to find objects through clustering, and
treated them as obstacles. The docking procedure consisted of finding the correct
symbol that marked the dock, and approaching it while the obstacle avoidance
system tried not to collide with the dock.

2.8 Changing environments

Many of the methods discussed, and localization and SLAM methods in general,
assume a static environment, but the real world can rarely be considered static.
One obvious example would be that the lighting conditions change over time, from
night to day. Another example is the weather, changing from calm to a storm.
These example might be less of a problem for indoor implementations. Examples
there might be the rearranging of furniture, doors that open and close or people
walking in the environment. Most environments change over time, and mapping
such an area would mean knowing exactly how it changes. Knowing this, the map
could further be used in localization. The map representation in a SLAM method
would have to take the changes in the environment into account.

A paper that tries to solve the problem of tackling dynamic environments in localiza-
tion is [34]. There they assume that the map consists of a set of features where the
number of features is not certain. The observation of each feature is also uncertain.
This is contrary to [61] where there is not a set of features, but the dynamic elements
are embedded into an occupancy grid and probabilities of observing occupied cells.

Tipaldi et al. [61] test their method successfully in a parking lot where cars move,
using a combination of a Rao-Blackwellized particle filter and a hidden Markov
model for their dynamic occupancy grid. The sensor used is a laser range finder.

11

CHAPTER 2. OVERVIEW OF LITERATURE

This results in the ability of using the original map and changing it as new mea-
surements come in. A weak prior on the map and a weak prior on the initial pose
is used, making this a method in between SLAM, where the map is assumed un-
known, and global Monte Carlo localization, where the map is assumed known. The
Rao-Blackwellized particle filter is used for estimating the state trajectory and the
map. The dynamic occupancy grid, like most occupancy grids, assumes the inde-
pendence between observations given the map and among cells. Each cell also has
a hidden Markov model with a specified transition probability, observation model
and initial state distribution. The transition probabilities in the Markov model are
learned through expectation maximization. What differentiates this map and state
estimation from SLAM is the separation of robot trajectory and map estimation.
Where SLAM estimates the distribution p(x1:t,mt|z1:t, u1:t−1,m0, x0), this method
separates

p(x1:t,mt|z1:t, u1:t−1,m0, x0) = p(mt|x1:t, z1:t,m0, x0)p(x1:t|z1:t, u1:t−1,m0, x0),

since p(mt|x1:t, z1:t,m0, x0) can be computed analytically, making the estimation
more efficient. Here x is the state, m is the map, z are the observations and u
are the control inputs. The paper finally demonstrates outperforming the popular
Monte Carlo localization by updating the map and not lose track when the initial
map was not correct [61]. It concludes with stating that the described method is
suited for long term operations in changing environments. Monte Carlo localization
is explained later in the form of the particle filter, Chapter 5.

2.9 The broad topic of localization

Even though the methods discussed above were restricted DME such as lidars, every
method is different. The topic of localization is broad, with some methods being
pure localization while others used SLAM. State estimation can be done with for
example particle filters, Kalman filters or both. The map representations can for
example be lines or occupancy grids, in a traditional sense or with more complex
estimation for each grid cell. The robots that are localized range from small almost
toy-like platforms to vehicles intended for human transport. In some cases, it might
be enough to do clustering to find objects, and find relative pose for that object
using a ICP method. In other cases, finding the relative pose of clusters of data
might not be as simple as doing ICP since the data comes from a larger map in
which the the data can fit to several poses. ICP is explained in detail in Chapter 8.
The best way to do localization depends on the application, which in this project is
the localization of an autonomous ferry.

12

Chapter 3

Platform and map

This chapter describes the equipment used and the environment in which the ferry
should work.

3.1 Milliampere introduction

Figure 3.1: Image of Milliampere being tested. On-board is Brage
Sæther and Emil Hjelseth Thyri. Photo taken by Nicholas Dalhaug.

Milliampere, see Figure 3.1, is a part of the ongoing Autoferry Project [3] at NTNU.
It is a half-sized prototype of an autonomous ferry that is being designed. The ferry
is intended to become a fully autonomous ferry that will roam the passage between
Ravnkloa and Brattøra in Trondheim. It will be electric and the ferry should be
able to transport people across the approximately 110 m wide passage back and forth
throughout the day. On each side of the passage there is a dock. The northern dock

13

CHAPTER 3. PLATFORM AND MAP

is fixed to concrete and the southern dock is floating and points out in the water,
see Section 3.3 for a more detailed description of the quays in question.

Several project have been conducted within the Autoferry project. The vessel has
methods for path following, thrust allocation [62] and DP implemented. One on-
going project right now is for navigation based on GNSS and INS [55].

3.2 Vessel

The ferry Milliampere is itself approximately 3 m tall, see an illustration of the ferry
in Figure 3.2. Most of the sensors are placed on top of the vessel. There are openings
both in the front and in the back for pedestrians and cyclists to board.

(a) Front (b) Side

Figure 3.2: Illustration of the ferry Milliampere. Source: Egil Eide.

3.3 Quay

In this master’s project, there are different relevant quays. The most obvious one
is the one where the ferry is intended to roam autonomously, the Ravnkloa and
Brattøra quays. Another one is the Brattøra harbour, which has been used for
testing and implementation of methods. Both are described in more detail below.

3.3.1 Ravnkloa and Brattøra quays

The quays at Ravnkloa and Brattøra are the ones at which the ferry is intended to
roam autonomously. They are shown in Figure 3.3. The passage is approximately

14

CHAPTER 3. PLATFORM AND MAP

110 m wide. There is a certain amount of traffic there, including the boat that takes
tourists to the island Munkholmen. The Munkholm boat leaves from the southern
quay and goes through the tunnel in the top of the figure on its way to Munkholmen.
It is therefore some times during the summer docked at the southern quay, and the
autonomous ferry should be able to handle other vessels being docked and moving
in the passage as it transports people.

Figure 3.3: The figure shows an aerial photo of the passage between
Ravnkloa and Brattøra in Trondheim, including the docks on each
side. The northern dock is to the left of the tunnel, while the south-
ern dock is the floating structure in the middle lower part of the
image. c© Statens kartverk, Geovekst og kommunene, Trondheim
2017.

The northern most quay is fixed to concrete and is made of wood. It is to the left
of the tunnel in the top part of Figure 3.3. This quay is not the most important

15

CHAPTER 3. PLATFORM AND MAP

part of the project. It might be changed or moved, and it is assumed that it will be
possible to dock here if it is possible to dock at the other quay.

The biggest floating quay on the southern side of the passage is for now the primary
quay to which the vessel should be able to dock autonomously. See the bottom part
of Figure 3.3. It is approximately 0.5 m tall, over the water line. The relevant place
for the USV is specifically on the tip of the biggest floating quay. The surrounding
area is made of concrete with several places for boats to dock. It is a place with
many people and shops nearby.

3.3.2 Brattøra harbour

For some testing and developing of methods, the Brattøra harbour was used. See
Figure 3.4 for a map of the area. It includes several places to dock, as can be
seen from the boats in the image. There are often boats there, also during the
experiments related to this master’s project. But the area includes many different
features useful for tracking. It is also quite large, giving much space for testing of
an autonomous vessel.

3.4 Sensors

The primary navigation system on the ASV is GNSS. But the ferry is equipped with
the following sensors related to this project:

• GNSS in the form of a RTK-GPS

• IMU

• Lidar

The workings of some sensors are described in Chapter 4, and more details about
the specific sensors used is described below.

3.4.1 Lidar

The lidar used in this project is the Velodyne LiDAR Puck, also known as VLP-16,
see Figure 3.5. For an explanation of the workings of a lidar, see Section 4.4. This is
a 3D lidar, capable of measuring with a 360◦ horizontal field of view and 30◦ vertical
field of view [65]. It has a range of 100 m, a range accuracy of ±3 cm (typical) and
it fits approximately inside the palm of a hand. As the name suggests, it has 16

16

CHAPTER 3. PLATFORM AND MAP

Figure 3.4: Aerial photo of Brattøra harbour. Inside the harbour
there are mainly two floating quays, excluding the top one where
there are no boats. Those two floating quays have several boats
docked at the time the image was taken. c© Statens kartverk,
Geovekst og kommunene, Trondheim 2017.

vertically spaced IR emitters which spin horizontally clockwise, each of which has a
paired IR detector.

The vertical angular resolution is 2.0◦, from −15.0◦ to 15.0◦. This includes rays at
±15◦ and ±1◦ and excludes a ray at 0◦.

The horizontal angular resolution is 0.1◦ to 0.4◦, and the rotation rate is 5 Hz to 20 Hz
with a deviation of ±3 min−1 [66]. This deviation is due to a feedback controller
being responsible for keeping the right rotation speed. More precisely, the lidar can
rotate between 300 min−1 and 1200 min−1 including the increments of 60 min−1 [66,
p. 50]. The firing timing is fixed to 55.296 µs per firing cycle. This gives an azimuth
resolution satisfying

∆α = r
rot

min
· 1 min

60 s
· 360◦

rot
· 55.296 · 10−6 s

firing cycle
, (3.1)

where r is the number of rotations per minute the sensor does.

This results in a data throughput of ∼ 300 000 points
s

. The lidar also has different re-

17

CHAPTER 3. PLATFORM AND MAP

turn modes, strongest, last and dual. They say something about what measurements
to gather, as lasers can hit multiple objects.

Figure 3.5: A picture of the lidar used in this project. Courtesy of
Velodyne LiDAR.

This project considers the number of horizontal lidar rays to be 1800 based on the
relevant data from earlier experiments, see Appendix A for information about the
experiment data.

3.4.2 GNSS

The Global Navigation Satellite System (GNSS) equipped on the vessel is a RTK-
GPS. This sensor has been important for finding the actual state in the mapping
process in Appendix B, but is at the same time the sensor which this project tries
to localize without.

3.4.3 IMU

An Inertial Measurement Unit (IMU) is a sensor that measures motion. It is often
equipped with three or more accelerometers for estimating linear acceleration and
three or more angular rate sensor to estimate the rotational velocity. Sometimes
it can also include three or more magnometers, used to measure the magnetic field
vector which enables an absolute orientation estimation. IMUs can through these
measurements be very useful for state estimation resulting in an Inertial Navigation
System (INS), usually by some sort of integration to find position and orientation
which would require some noise compensation. IMUs are also generally cheap sen-
sors, depending on the noise magnitude that is acceptable.

18

CHAPTER 3. PLATFORM AND MAP

IMUs can be used for velocity estimation, which is relevant in this project for finding
the noise on the constant velocity model.

3.5 Software

Some of the software used in this project is:

• ROS

• Rviz

• OctoMap

• Open Source Computer Vision Library (OpenCV)

• PCL

They are described in more detail below.

3.5.1 ROS

Robot Operating System (ROS) is an open source communication layer above the
host operating system [50]. It works by running a “roscore” that handles the over-
head of the communication, making the development of independent “nodes” pos-
sible. These nodes are the different tasks running on the system, and they com-
municate over “topics” by subscribing to “topics”, publishing to “topics” and using
standard message types. In ROS the standard for representing transformations be-
tween different reference frames, such as different parts of a robot or different robots,
is to publish the transformation on a topic called “\tf” using a standard message
type “tf/tfMessage”. ROS is made to simplify communication between different
parts of robotic systems as a standardization of protocols. For a tutorial on ROS,
the author suggests reading [47].

One of the big benefits of using ROS is the recording and playback of “rosbags”. A
“rosbag” is a file containing all messages sent over topics in the period of recording,
including when each message was sent. This enables publishing the same data on the
same “topics” in the exact same sequence and after the same elapsed time as when
the recording happened. When sensor data is captured, “rosbags” makes possible
the development of “nodes” as if they were tested in the exact same setting as when
the data was captured. It is useful for the testing of methods in robotic systems.

19

CHAPTER 3. PLATFORM AND MAP

3.5.2 Rviz

Rviz is a ROS package for visualizing different data through the ROS framework [70].
It handles several of the standard message types in for example the “sensor msgs”
and “nav msgs” packages. It can for example display point cloud data through the
“sensor msgs/PointCloud2” message or display the robotic platform through the use
of a description file and the different transforms sent over ROS. Rviz is used as a
node that subscribes to the relevant topics on which the data is published and is
operated through a Graphical User Interface (GUI).

3.5.3 OctoMap

OctoMap is a framework for generating 3D models of the environment [27]. It is
based on octrees and uses probabilistic occupancy estimation. Octrees divide each
node into eight octants recursively until a minimum size. This can be utilized to
reduce memory demand of maps by representing eight octants or more as one node.
Occupied space is estimated using the endpoint of a measurement from DME, and
free space is the space between the sensor and that endpoint. The software can only
do mapping, and the pose of the sensor needs to be supplied in order to get a correct
map. OctoMap has been integrated into ROS and can be used by sending data over
topics. The software is also able to reduce the map to a 2D occupancy grid.

3.5.4 OpenCV

Open Source Computer Vision Library (OpenCV) was designed to be a common
infrastructure for applications within computer vision and machine learning [48].
The library contains many methods and algorithms, from displaying of images to
facial recognition software. It has been downloaded over 14 million times and is
used by companies, researchers and hobbyists alike. It has interfaces for C++,
Python, Java and Matlab. The library also has an interface for ROS, including the
translating of different message types to images. This has been useful for creating
images from occupancy grids in ROS.

3.5.5 PCL

Point Cloud Library (PCL) is an open source library made for efficient handling
of point clouds [54]. With faster and more precise DME sensors, efficient handling
of the corresponding sensor data becomes more important. The library provides

20

CHAPTER 3. PLATFORM AND MAP

methods for the most important building blocks of point cloud handling, for exam-
ple for filtering and point cloud registration. It is a templated C++ library with
definitions of different point cloud data structures. PCL also has ROS integration
with translation from ROS data types to PCL data types.

3.6 Spatial resolution

From the properties of the different parts of the platform, it is possible to calculate
the resulting spatial resolution of the lidar at certain distances. It is not necessary
to check the horizontal spatial resolution of the lidar because of the grater horizontal
angular resolution and that the quay is wider than it is tall. It might be desirable to
see the quay in the lidar data at approximately a distance of l = 10 m, see Figure 3.6.
The lidar is at a height h = 3 m above the water. The vertical angular resolution
of the lidar is ∆θ = 2◦. θ is the angle for a lidar ray, and hθ is the resulting height
above the horizontal ray for different rays.

Figure 3.6: The figure illustrates the ferry as it is a distance l from
the quay. The blue line illustrates the horizontal line from the lidar,
there is no lidar ray there at 0◦.

3.6.1 Ray height

The height of a ray, over the horizontal ray of the lidar, at a distance l horizontally
from the lidar can be calculated as

hθ = l · tan(θ),

21

CHAPTER 3. PLATFORM AND MAP

see Figure 3.6 and the calculation in Table 3.1. It shows the calculations of hθ for
each ray and the resulting absolute difference between rays, ∆hθ, taken between the
ray of the column it is at and the next column.

θ [deg] -15 -13 -11 -9 -7 -5 -3 -1 1

hθ [m] -2.679 -2.309 -1.944 -1.584 -1.228 -0.875 -0.524 -0.175 0.175
∆hθ [m] 0.371 0.365 0.360 0.356 0.353 0.351 0.350 0.349

Table 3.1: Spatial resolution calculations. The values above 0◦ are
the same, but with the opposite sign.

The calculations show that the best resolution at the distance l = 10 m is ∆hθ =
0.349 m. If the quay is 0.5 m tall, the quay will be visible, but only with at most
two rays. It also shows that the lowest ray, at θ = −15◦ is very close to the water
line, |hθ| = 2.679 m is almost equal to h = 3 m. So the quay will not be visible from
the vessel if it is much closer than this. This also does not take self occlusion into
account, the fact that parts of the vessel might be in the way.

This sensor configuration height will result in the tip of the quay not being seen
in the lidar data when the vessel is close to the quay. The resolution of the sensor
can also make the tip of the quay not showing in the data at longer distances, see
Appendix C for an illustration of rays going above the quay. This increases the
demand for some sort of outlier detection for the data and the ability to localize
relative to other surrounding structures.

3.6.2 Other configurations

To find where the ray hits the water line, this relationship is used:

l =
h

tan(θ)
,

where the variables are as given in Figure 3.7. θ is the angle of the ray, 15◦ in this
case. h is the lidar’s height above the water line, and l is the distance from the vessel
to where the ray intersects the water line. For h = 3.00 m this gives l = 11.2 m. To
find where the lowest ray hits the top of the quay, the calculation becomes

l =
h− 0.500 m

tan(θ)
=

3.00 m− 0.500 m

tan(15◦)
= 9.33 m.

So if the vessel is any closer to the quay than l = 9.33 m, the front of the quay is
not visible and can not be used to localize the quay. The top of the quay is still
visible in the data, but it does not give information about the horizontal position of
the lidar nor the vessel.

22

CHAPTER 3. PLATFORM AND MAP

Figure 3.7: Illustration of the vessel, one ray and where it hits the
water line.

If for example it had been desirable to see the front of the quay at l = 5.00 m, this
would result in the lidar being placed at h = 5.00 m · tan(15.0◦) + 0.500 m = 1.84 m.
That would give a resolution of about ∆hθ = 0.2 m. An other possibility would be
to rotate the lidar, so that the 0◦-line is not horizontal. But then the data would
not represent both sides of the vessel equally well. The point cloud would also be
angled.

3.7 Map representations

There are many ways of representing a map. A 2D map can for example consist
of lines. But like many map representations, this would restrict what the map can
model, in this case only the edge of 2D structures. In this project, the map used
is a 2D occupancy grid, see [19] for a thorough description of how occupancy grids
work. Occupancy grids are maps that rasterize the real world into what we can call
grid cells in 2D and voxels in 3D, similar to the pixels of images. Each cell holds
the probability of the cell being occupied or not, a probabilistic occupancy grid,
or each cell can simply be free, occupied or unknown. This map representation is
flexible when it comes to the structures it can represent, but it is limited to a certain
resolution. It is also easy to edit manually since the grid can be converted back and
forth to an image.

The occupancy grid is a location-based map representation, where the indexing is
based on the position [60, p. 152]. This is contrary to feature-based maps, where
each feature has an index. Since occupancy grids are location-based, they are also
volumetric [60], they label all locations in the map. This property enables the

23

CHAPTER 3. PLATFORM AND MAP

occupancy grid to not only say where objects are, but also where there are no
objects, the free space.

3.8 Reference frames

Motion and measurements are expressed relative to reference frames. The world
reference frame is commonly placed on the surface of the earth with the approx-
imation that it is inertial. This is a good approximation for most systems. The
orientation of the world frame can for example be in the North East Down (NED)
configuration. This means the x-axis points north, the y-axis points east and the
z-axis points down into the ground [21, p. 16]. The reference frame used in this
project is in the East North Up (ENU) configuration, with x-axis east, y-axis north
and z-axis up. This is because the standard of ROS [39] specifies that as well as the
map frame being fixed, the z-axis of the map frame should point upwards and that
the map frame should be fixed.

3.9 Mapping

To do localization it might be necessary with some sort of map. The earlier master’s
project on SLAM [46] did not give a map in the sense of a single file, but rather
implementations of different SLAM methods that give maps over a topic. And
also since that project was not finished in the beginning of this project, the author
needed to make a map. Because of the simplicity in representation, the flexibility
and the fact that it can easily be visualized as an image, the author chose to make
an occupancy grid. Details of how this is done is explained in Appendix B. The
result is shown in Figure 3.8.

24

CHAPTER 3. PLATFORM AND MAP

Figure 3.8: The occupancy grid from the mapping as an image,
when the mapping range was 50 m and the resolution was 0.5 m.
Up is north, right is east. The white cells are free space, the black
cells are occupied space and the gray cells are unknown.

25

Chapter 4

Dynamics and sensor models

The models explained in this chapter are intended to be used for localization. More
precisely, they will be used in a probabilistic framework for state estimation. The
process model will be used for both estimation and for simulations, while the mea-
surement model will use one model for the estimation and an other for simulating
measurements.

4.1 State estimation

The state and measurements for a time independent discrete time nonlinear au-
tonomous dynamic system is in the state estimation literature often written on the
state space form

xk = f(xk−1,vk−1)

zk = h(xk,nk),
(4.1)

where f(·) and h(·) are nonlinear functions corresponding to a process model and a
measurement model respectively, xk is the unobserved state at time step k, zk are
the measurements, vk−1 is the process noise and nk is the measurement noise. The
nonlinear function are considered known, but not necessarily analytically lineariz-
able.

In this case autonomous means that the system only depends on the state at the
last time step. This is without any other input to the process. If the process
model did also depend on an input uk, the function could for example become
f(xk−1,uk−1,vk−1). This could for example be the case if the velocity of a vessel
was not constant, but was rather given to the system as an input.

27

CHAPTER 4. DYNAMICS AND SENSOR MODELS

4.2 Ship dynamics

Ships have complicated dynamics, and the modeling of them requires simplification.
One possible simplification is reducing the motion of the ship to three Degrees Of

Freedom (DOF). Using the state η =
[
N E ψ

]T
with velocity in body coordinates

ν =
[
u v r

]T
the simplified dynamics become [21, p. 134]

η̇ = RZ(ψ)ν =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

ν, (4.2)

(MA +MRB) ν̇r +N (νr)νr = τ + τwind + τwave. (4.3)

N is the north position, E is the east position and ψ is the heading relative to a fixed
world frame. MA is the added mass matrix, MRB is the rigid body mass matrix
and N (νr) consists of the nonlinear Coriolis and damping terms and is dependant
on the relative velocity νr = ν − νc. τ is the force vector made by the actuators of
the ship, τwind and τwave are forces due to the environment and the hydrodynamic
forces τ hyd are included in the mass matrix and the nonlinear term. This formulation
assumes irrotational constant ocean currents νc, movement only in the horizontal
plane, a parametrization of the Coriolis matrix independent of linear velocity and
no hydro-static forces τ hs.

After simplifying the dynamics of a ship a lot, the model is in a sense too inaccurate
for many application and still too complex to be used as is. The kinematics in (4.2)
are accurate assuming motion in only three DOF, but the kinetics in (4.3) have
many tune-able parameters that might be sensitive to uncertainties. The different
matrices will have to be estimated in order to use this model. It can also be simplified
further by for example decoupling surge motion from sway and yaw. See [21] for
more details about ship modelling and navigation.

4.3 Process model used

The dynamics are simplified by assuming only three DOF, see Section 4.2 for theory
about ship dynamics. Using an ENU reference frame, see Section 3.8, the state

vector becomes x = η =
[
E N ψ

]T
, which is respectively east position along

the x-axis, north position along the y-axis and heading around the z-axis with zero
at the x-axis, also called yaw angle. The corresponding velocity vector becomes

ν =
[
u v r

]T
. That is the speed along the body x-axis, y-axis and yaw rate

respectively, see Figure 4.1 for an illustration of the chosen body axes.

The dynamics are reduced to the kinematics in (4.2) with η and ν as described

28

CHAPTER 4. DYNAMICS AND SENSOR MODELS

Figure 4.1: Vessel with body axes shown. xb is pointing through
the front of the vessel, and zb points up from the vessel.

above:

η̇ = RZ(ψ)ν, (4.2 revisited)

see Section 4.2 for the background theory. To approximate this on a computer, the
Euler method is used

ηk+1 = ηk +RZ(ψ)νk∆k,

where ∆k is the time step between iteration k and k+1. This assumes that the vessel
speed is either constant and given or is given to the simulation in each iteration. It
can be simulated by for example assuming ν is constant and has noise on it, with
noise as described in Appendix A.4. The process model then becomes

xk+1 = xk +RZ(ψ) (νk,µ + νk,σ) ∆k, (4.4)

where νk,µ is the mean velocity and νk,σ ∼ N (0,Σν) is the noise. The elements of
the diagonal

Σν =

σ2
surge 0 0
0 σ2

sway 0
0 0 σ2

yaw

can be deduced from Table A.1. This constant velocity model was chosen so that
no new states needed to be added and the particle filter still only needs to handle
three states. A realization of the path for the vessel with process noise is shown in
Figure 4.2.

29

CHAPTER 4. DYNAMICS AND SENSOR MODELS

Figure 4.2: Realizations of the path taken by the vessel with and
without the process noise, starting from the same position. The
map is the same as Figure 3.8, but with noise removed and made
to represent the area better.

30

CHAPTER 4. DYNAMICS AND SENSOR MODELS

4.3.1 Considerations

The kinetics have been discarded for simplicity and lack of data and time to model
the vessel. If the vessel is modelled and the thrust τ from the actuators is known, the
vessel dynamics could be simulated more accurately. This encourages cooperation
with other parts of the ferry project, like the control systems that probably have a
model of the vessel. On the other hand, the model would not fit very well because of
the complexity of ship dynamics and might not be desired for use in state estimation.

Instead of using a constant velocity, we can assume νk,µ is given. This can for
example be the case if the velocity is measured directly, or if INS is used. An INS
can for example integrate the IMU acceleration and rotation speed measurements to
get a dead reckoning velocity measurement. This velocity error can then be analyzed
to find the variance in the Gaussian model used above and the process model will
otherwise be the same.

4.4 Lidar

The lidar is a DME that uses the Time Of Flight (TOF) methodology, see Figure 4.3.
Similarly to the radar, it uses electromagnetic waves together with precise time
measurements to measure the distance to objects. The lidar uses IR light instead
of radio. The laser pulse traverses through the air until it hits an object. Then
some of the energy is reflected, traverses back and is measured by a detector. Some
lidars can then measure both the position of collision and intensity of light reflected.
With the speed of light known and the time from excitation through reflection and
to measurement known, the distance can be calculated as

R =
c · t
2
,

where R is the distance to the object, c is the speed of light and t is the time
measured.

One ray of a 3D lidar can be represented by the azimuth angle α and the vertical
angle ω as shown in Figure 4.3. The 3D coordinates of a point measured with
distance R can then be calculated as shown in the figure, transforming from spherical
coordinates to Cartesian coordinates. The high frequency of a lidar make it a sensor
with big data throughput and often necessitates a lot of computational resources.

One full horizontal rotation of the lidar is often considered as one measurement of
the environment. These measurements have mainly two representations, the point
cloud and the laser scan. Since every ray gives three Cartesian coordinates from a
3D lidar, one full rotation gives many 3D points that are together called a point

31

CHAPTER 4. DYNAMICS AND SENSOR MODELS

Figure 4.3: Illustration of how a lidar works. Courtesy of Velodyne
LiDAR [66].

cloud. Each point can also have data about the intensity of light reflected at that
position, see Section 3.4.1 for an example of a 3D lidar and Appendix A.3 for an
analysis of point cloud data. The laser scan represents 2D DME measurements.
They can still represent full rotations, but contain data in the form of azimuth
angles α and distances R instead of three coordinated. Both types of lidar data
are available in ROS, see Section 3.5.1 for an explanation of ROS. And these full
rotation measurements can then be used for example in localization with a good
sensor model.

4.5 Sensor models

A physically based sensor model for the lidar has been analyzed in for example [53,
56]. A sensor model for the lidar, and principally many different sensors, accounts for
the uncertainty in the measurements and the relationship between the measurements
and the underlying state variables [60, pp. 149]. Such a model can be formulated
as p (zk | xk,m), where zk are the measured distances to objects at time k, xk is
the state at time k and m is the map. The map is used together with the state
to find what measurements the lidar should give zk|k−1, and the measurements are
then assumed to be similar but with noise.

32

CHAPTER 4. DYNAMICS AND SENSOR MODELS

4.5.1 Ray tracing

In location-based maps like occupancy grids, zk|k−1 is found using ray tracing. Ray
tracing is the act of projecting a single beam from the sensor and following or
tracing that beam. It is done by moving through the map from xk in the direction
determined by the lidar. It can therefore be used to calculate zk|k−1 by tracing the
beam until a collision is found in the map, finding an occupied cell in the case of an
occupancy grid. Ray tracing is illustrated in Figure 4.4, where the measurements
are found using Nm = 20 rays.

Figure 4.4: Illustration of ray tracing in an occupancy grid with
resolution of 0.5 m

px
.

4.5.2 Combining measurements

For a lidar with Nm measurements in a scan, and assuming each measurement is
independent, the probability of a scan is the product of the likelihoods

p (zk | xk,m) =
Nm∏
n=1

p (znk | xk,m) .

Given a certain state, a map and the azimuth angle of a ray with index n, the mea-
sured range znk is distributed according to p (znk | xk,m). There are many different
models for range finders like lidars, some of which are mentioned below.

4.5.3 Beam model

Four possible measurement errors of the lidar are [60, pp. 153]:

33

CHAPTER 4. DYNAMICS AND SENSOR MODELS

• errors in measurement precision,

• errors due to unknown objects,

• failure to detect object,

• and unexplained noise or phantom readings.

The likelihood p (znk | xk,m) is a combination of different probability density func-
tions corresponding to different types of errors. Two of these are explained below.

The range to an object is not measured perfectly and often has a local uncertainty
around the expected range. This can be modelled using a Gaussian distribution [60,
p. 155]

phit (znk | xk,m) =

{
αN

(
znk ; znk|k−1, σ

2
hit

)
if 0 ≤ znk ≤ zmax

0 otherwise
(4.5)

N
(
znk ; znk|k−1, σ

2
hit

)
=

1√
2πσ2

hit

e
−

(znk−znk|k−1)
2

2σ2
hit , (4.6)

where α is a normalization constant and znk|k−1 is the expected or true range from a
assumed perfect map. α is often very close to 1, especially when zk|k−1 is not close
to the endpoints 0 and zmax. This is because the integral of a probability density
function should always be one, which the Gaussian distribution is. But if we cut of
the Gaussian distribution and make it zero outside of an interval, the integral will
not be one and a normalization constant is necessary.

Unexplained noise, phantom readings, unaccountable measurements or clutter can
also occur and can be modelled as a uniform distribution U(0, zmax) [60, p. 157]

prand (znk | xk,m) =

{
1

zmax
if 0 ≤ znk ≤ zmax

0 otherwise
(4.7)

The different probability density functions can be combined to form the likelihood
as

p (znk | xk,m) =
[
αhit αrand

] [phit (znk | xk,m)
prand (znk | xk,m)

]
,

where αhit and αrand are positive weights that sum to one. They can be found in
different ways, including visual inspection and error minimization. The likelihood
now contains the different errors used and can further be utilized in for example
Bayesian filtering, see Section 5.4.

There are some negative aspects of the beam model. The main difficulty of the beam
model is the ray tracing necessary to find the expected measurements [60, pp. 167].
This can be very computationally demanding, especially in already demanding state

34

CHAPTER 4. DYNAMICS AND SENSOR MODELS

estimation systems like the particle filter. Another difficulty is the lack of smoothness
of p (znk | xk,m), making close states have very different expected measurements in
cluttered environments. Some other models that do not have the same difficulties
as the beam model are mentioned in the next section.

4.5.4 Other models

The likelihood field model overcomes the limitations of the beam model [60, ch. 6.4].
Different types of distributions are combined in the same way as earlier, but the key
difference is that phit (znk | xk,m) is not found through ray tracing. It is now modelled
with a Gaussian d ∼ N (0, σhit), where d is the distance to the closest object from a
measurement. That is, each measurement point is transformed into the map frame
and the distance to the closest object is found. Since this model does not take the
whole ray path into account, a problem is that it operates as if it can see through
walls. The posteriors are smoother and the computation is much faster than the
beam model. It works well, even though it is not generated based on a model of the
physics of the sensor. The likelihood field can often be precomputed for all positions
in a map which greatly reduces computation time. And the effect on the probability
when using a grid for the precomputation is typically small.

Some other sensor models are correlation-based and feature-based models, but these
are not explained in more detail here. See [60, pp. 174] for more information about
them. The correlation between a measurement and the map can for example be
found using an ICP method [8], if both the map and the measurements are rep-
resented by point clouds. The ICP method is used in this project, explained in
Section 5.9 and used in Chapter 8, but as a method of state estimation rather than
a measurement model.

4.6 Measurement model used

The measurements used in this project are made into 2D measurements from a 3D
lidar as explained in the implementational aspects in Appendix C. Even though some
data from the real vessel is gathered, there have been no experiments to calculate
the optimal sensor model. One such experiment might be to place the ferry a set
distance from a quay and register how many rays go into the water, over the quay
and how many hit the actual quay. Then the model could have parameters defined
from these experiments and fitted to the beam model described in Section 4.5.3.
Since this is not the case, the model is created by using the map that was made
from real data, see Appendix B. It is important to differentiate between two maps:

• Simulation map: The map created from real data in Appendix B. This map can

35

CHAPTER 4. DYNAMICS AND SENSOR MODELS

be used to create an approximate sensor model because it contains somewhat
realistic noise. It can also be used to create partly realistic measurements.
The map is illustrated in Figure 3.8.

• Estimation map: A simpler map where noise has been removed, mostly points
that are known to be water. This is a map that should represent the quay and
be the map the vessel tries to localize in and calculate expected measurements
from. It is handmade to represent the area instead of the measurements. This
map is shown in Figure 4.2.

Each map is read into Matlab and made into a “robotics.OccupancyGrid”. This data
type has already defined functions for ray tracing and transforming from indices to
map coordinates. The measurements are therefore simulated by doing ray tracing in
the map with noise, whereas the expected measurements used by the particle filter
to evaluate particles are made from ray tracing in the simpler map. Figure 6.15
illustrates the difference, where there are measurements in the middle of the water.

There are two different kinds of noise used: Gaussian noise for measurement pre-
cision and uniform noise for clutter. There are also two different methods used for
measurements, one for creating them and one for weighting them. The Gaussian
and uniform errors were chosen because the measurements did not seem to be much
affected by the other errors mentioned in Section 4.5.3. They are combined with
weighting as mentioned in Section 4.5.3.

For evaluating measurements the model is

zk =

{
hr(xk) + nk with probability αhit

uk with probability αrand

, (4.8)

where αhit and αrand are parameters that will be estimated, zk ∈ RNm is a concatena-
tion of Nm range measurements at time step k, hr(xk) finds expected measurements
through ray tracing from the state xk, each different ray i has uk,i ∼ U(0, zmax) uni-
formly distributed noise and nk ∼ N (0,Σz),

Σz =

σ2
hit 0 · · · 0
0 σ2

hit · · · 0
...

...
. . .

...
0 0 · · · σ2

hit

 .
Since the measurements are made synthetically, the Gaussian variance can be set to
anything.

When creating measurements, the uniform noise is introduced by using the map
with noise as mentioned earlier. The measurement model becomes

zk = hr(xk) + uk + nk, (4.9)

36

CHAPTER 4. DYNAMICS AND SENSOR MODELS

where hr(xk) +uk is approximated in one step through ray tracing of the map with
realistic noise. This is for simplicity and to make the noise comes from the water
and not actually be uniform.

4.6.1 Finding the parameters

The beam model is chosen because it is based on the physics of the sensor, see
Section 4.5.3 for a description a the sensor model. For the ray tracing to work on
the 2D map created earlier, the sensor is modelled as a 2D sensor, as described
in Appendix C. So the angles used are azimuth angles and the measurements are
distances to the collisions. The functions for phit (znk | xk,m) and prand (znk | xk,m)
are implemented as shown in (4.5) and (4.7), respectively. The result is illustrated
in Figure 4.5 with αhit = 0.7, αrand = 0.3 and σ2

hit = 0.7. One thing to notice is
that the noise is actually not uniform, but there is mostly noise between the object
and the vessel, where there is water. On the other hand, the fact that points can be
behind the objects is not included in the simulations but is a problem in real life, as
shown in Figure C.2. These are things that can be tuned using real data gathered.

Figure 4.5: The combined probability density functions to fit mea-
surements.

In the sensor model, the Gaussian uncertainty is due to range uncertainty for the
sensor and the Gaussian noise from the actual sensor is very small, described in
Section 3.4.1. To find a more realistic likelihood, the simulations add noise in x-
and y-coordinates to simulate discretization of the map, which is a phenomenon not

37

CHAPTER 4. DYNAMICS AND SENSOR MODELS

otherwise included in the simulations:[
zk,i,x
zk,i,y

]
= hi (xk) + nk,i

nk,i ∼ N
(

0,

[
0.5 0
0 0.5

])
zk,i =

√
z2
k,i,x + z2

k,i,y

zk =
[
zk,1 · · · zk,Nm

]T
,

where hi (xk) gives the x- and y-coordinates of the collision point of ray i from the
lidar in relative coordinates. Nm is the number of measurements from one sweep of
the lidar and is simulated to be Nm = 100 due to computational limitations, which
is a lot less than the lidar gives. But the number of measurements used will depend
on the method chosen and is stated clearly for the relevant parts of the thesis. The
rays are spread uniformly in the horizontal plane. It is assumed that it can work
for more measurements in a case where it works for this number of measurements.
The map has a resolution of 0.5 m and the variance is set to 0.5 in both directions,
a standard deviation of approximately 0.7. The measurements are then made into
azimuth angles and distances to collision to coincide with the sensor.

38

Chapter 5

State estimation methods

This chapter explains several methods of state estimation, including UKF, particle
filter, Unscented Particle Filter (UPF) and ICP. It explains the particle filter as a
Bayesian state estimation method that uses Monte Carlo simulations. The theory
is gathered from a range of sources, but a good tutorial on particle filters is [1].

5.1 Relation to localization

As mentioned before, localization can be regarded as a state estimation problem,
where the state is the pose of the robot. The robot is the object whose state will be
estimated. The pose of a robot is its position and orientation with respect to a global
reference frame, the map frame. One type of state estimation is Bayesian state esti-
mation where an approximate probability distribution is propagated through Bayes
rule in order to represent a probability distribution for the actual state. The PF
localization, also known as Monte Carlo Localization, is a popular type of Bayesian
state estimation where the state is the pose of the robot. It uses particles to represent
the state probability distribution. How this works is described below.

5.2 The unscented Kalman filter

The Kalman filter is a well-known solution to the least squares method, see [69]
for an introduction to the Kalman filter and the Extended Kalman Filter (EKF).
The difference between the Kalman filter and the EKF is that where the Kalman
filter can be used for state estimation of linear processes with linear measurements,

39

CHAPTER 5. STATE ESTIMATION METHODS

governed by linear differential equations, the EKF uses linearizations of nonlinear
processes and measurement functions.

The Unscented Kalman Filter (UKF) was introduced by Julier and Uhlmann in
[29]. It uses the typical Kalman filter structure of a prediction step and a correction
step, without the linearization needed in the EKF. More precisely, it assumes a
Gaussian distribution and uses sampled points to parameterize mean and covariance,
a process called the Unscented Transform (UT). This yields performance similar to
the Kalman filter for linear systems but can also be generalized to nonlinear systems
[29].

The UKF extends the UT to the prediction and correction framework of the Kalman
filter [67]

x̂k = x̂−k +K
(
zk − ẑ−k

)
,

where x̂k is the estimated state at time step k, x̂−k is the predicted state based on
time step k − 1, K is the Kalman gain, zk is the measurement at time step k and
ẑ−k is the predicted measurement based on data at time step k − 1.

5.2.1 The unscented transform

The Unscented Transform (UT) is a “method for calculating the statistics of a
random variable which undergoes a nonlinear transformation” [29]. It finds the mean
and covariance under the assumption of a Gaussian distribution, see an illustration
of the UT in Figure 5.1. The random variable x ∈ Rnx is represented using a set of
2nx + 1 weighted sigma points that have a sample mean x̄ and covariance P xx. The
goal is to find the mean z̄ and covariance P zz from the nonlinear relation

z = f(x),

where f(x) is a nonlinear function.

The sigma points are chosen as [67]

X 0 = x̄

X i = x̄+
(√

(nx + λ)P xx

)
i
, i = 1, . . . , nx

X i+nx = x̄−
(√

(nx + λ)P xx

)
i
,

where
(√

(nx + λ)P xx

)
i

is the ith row of the matrix square root and

λ = α2(nx + κ)− nx (5.1)

is a scaling parameter. α determines the spread of the sigma points, κ is a secondary
scaling parameter which is often set to zero and β incorporates prior knowledge about

40

CHAPTER 5. STATE ESTIMATION METHODS

Z = f (X)

Figure 5.1: The principle of the UT is transforming the blue sigma
points to get the propagated statistics shown in red. The red point
is the UT mean, the red ellipse is the UT covariance. The figure is
similar to Figure 2 in [29] and Figure 1 in [67].

the distribution of x, optimally β = 2 for Gaussian distributions. The corresponding
weights are

W
(m)
0 =

λ

nx + λ

W
(c)
0 =

λ

nx + λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

1

2(nx + λ)
, i = 1, . . . , 2nx,

where W
(m)
i is used for finding the mean and W

(c)
i is used to calculate the covariance.

The sigma points are then propagated through the nonlinear function

Z i = f (X i) , i = 0, . . . , 2nx

and the resulting mean and covariance are calculated by

z̄ =
2nx∑
i=0

W
(m)
i Z i

P zz =
2nx∑
i=0

W
(c)
i (Z i − z̄) (Z i − z̄)T .

5.2.2 The filter

The UKF augments the state to be xak =
[
xTk ,v

T
k ,n

T
k

]T
where vk and nk is noise

according to (4.1). This results in nax = nx + nv + nn dimensions of the state, where
xk ∈ Rnx , vk ∈ Rnv and nk ∈ Rnn . The resulting number of sigma points is then

2nax + 1 = 2(nx + nv + nn) + 1. (5.2)

41

CHAPTER 5. STATE ESTIMATION METHODS

The sigma points are written as X a =
[
(X x)T , (X v)T , (X n)T

]T
. The resulting

augmented covariance is

P a
k =

P k 0 0
0 P v 0
0 0 P n

 ,
where the covariances of the process noise and the measurement noise, P v and P n

respectively, are known.

The UKF is initialized with state estimate x̂0 and covariance estimate P 0. Then
the UKF is used iteratively. One iteration of the filter is shown in Algorithm 1. It
is worth noting that the equations used in that algorithm does not require lineariza-
tion of the models used, an explanation of the model with process function f and
measurement function h is given in Section 4.1.

Algorithm 1 An iteration of the UKF. Based on [67] and [30]. The algorithm uses
the notation in Section 5.2.2.

1: function UKF(x̂k−1,P k−1, zk)
2: Augment system:

3: x̂ak−1 =
[
x̂Tk−1,0

T,0T
]T

4: P a
k−1 =

P k−1 0 0
0 P v 0
0 0 P n

5:

6: Calculate sigma points X a
k−1 from x̂ak−1 and P a

k−1 as in Section 5.2.1.
7:

8: Time update:
9: X x−

k = f
(
X x

k−1,X v
k−1

)
10: x̂−k =

∑2nax
i=0 W

(m)
i X x−

i,k

11: P−k =
∑2nax

i=0 W
(c)
i

(
X x−

i,k − x̂
−
k

) (
X x−

i,k − x̂
−
k

)T
12:

13: Measurement update:
14: Z−k = h

(
X x−

i,k ,X
n
k−1

)
15: ẑ−k =

∑2nax
i=0 W

(m)
i Z−i,k

16: P ẑk,ẑk =
∑2nax

i=0 W
(c)
i

(
Z−i,k − ẑ

−
k

) (
Z−i,k − ẑ

−
k

)T
17: P x̂k,ẑk =

∑2nax
i=0 W

(c)
i

(
X x−

i,k − x̂
−
k

) (
Z−i,k − ẑ

−
k

)T
18: K = P x̂k,ẑkP

−1
ẑk,ẑk

19: x̂k = x̂−k +K
(
zk − ẑ−k

)
20: P k = P−k −KP ẑk,ẑkK

T

21:

22: return x̂k,P k

23: end function

42

CHAPTER 5. STATE ESTIMATION METHODS

5.3 Monte Carlo simulation

Monte Carlo simulation is the act of simulating a process many times with random
sampling to estimate some statistic. This is a very general method and is useful for
many applications. The particle filter is an example of how Monte Carlo simulations
can be used for state estimation.

Monte Carlo simulation can be used for estimating the probabilities of different
outcomes of a system from the use of realizations of random input to the system.
This can for example be useful in the estimation of a probability density function
p(x) that is difficult to sample from. In this case assume that it is possible to sample
from an other probability distribution q(x). Let x{i}, i = 1, . . . , N be samples from
q(x) and let

w{i} =
p(x{i})

q(x{i})
.

Moreover, let w̄{i} denote the normalized weight

w̄{i} =
w{i}∑i=N
i=1 w

{i}
.

and let x∗ be a sample from the discrete distribution over {x{1}, . . . , x{N}} with mass
w̄{i} on x{i}. Then x∗ is approximately distributed according to q(x), with better
approximation as N increases [58]. This process of sampling is called Importance
Sampling (IS) or Normalized Importance Sampling (NIS) [16]. Monte Carlo simu-
lation can in this way be used to approximate sampling from p(x) by the sampling
described above.

5.4 Bayes Filter

Bayesian state estimation is concerned with calculating the probability density func-
tion p (x0:k | z1:k), where x0:k , {xi | i ∈ 0, . . . , k} is the hidden sequence of discrete
time states of a robot and z1:k , {zi | i ∈ 1, . . . , k} are the observations at the dif-
ferent time steps. Using Bayes rule the distribution can be written as

p (x0:k | z1:k) =
p (zk | z1:k−1,x0:k) p (x0:k | z1:k−1)

p (zk | z1:k−1)
.

This can furthermore be written on a recursive form by factorizing p (x0:k | z1:k−1):

p (x0:k | z1:k) =
p (zk | z1:k−1,x0:k) p (xk | z1:k−1,x0:k−1)

p (zk | z1:k−1)
p (x0:k−1 | z1:k−1) . (5.3)

These equations are very general and can be made easier to use by the Markov
assumption discussed next.

43

CHAPTER 5. STATE ESTIMATION METHODS

A Markov model is a model that satisfies the Markov property or equivalently as-
sumes the Markov assumption: that the probability of being in a state xk only de-
pends on the latest state xk−1 and not earlier states [51]. Furthermore, if the states
are not directly observable, the model is called a Hidden Markov Model (HMM)
[51]. It assumes the observation zk is a probabilistic functions of the state xk.
The resulting model is shown in Figure 5.2, illustrating the dependency between
states and measurements via arrows. Using a HMM, the probability distribution
p (zk | z1:k−1,x0:k) simplifies to p (zk | xk) and p (xk | z1:k−1,x0:k−1) simplifies to
p (xk | xk−1). These two probability density function are just different notation for
the same state estimation models mentioned earlier, the state space form in (4.1).

· · · xk−2 xk−1 xk

zk−2 zk−1 zk

Figure 5.2: A HMM for the state estimation problem.

The Bayes filter uses a HMM for estimating the state probability distribution. Using
(5.3) in combination with a HMM the state distribution takes the form

p (x0:k | z1:k) =
p (zk | xk) p (xk | xk−1)

p (zk | z1:k−1)
p (x0:k−1 | z1:k−1) . (5.4)

In practise, it is often desirable only to estimate the current state xk and not the
full history of states. This is can be done by marginalizing over all possible earlier
states xk−1:

p (xk | z1:k) =

∫
p (xk−1:k | z1:k) dxk−1

=

∫
p (zk | xk) p (xk | xk−1)

p (zk | z1:k−1)
p (xk−1 | z1:k−1) dxk−1.

This can be factorized into the prediction step, called the Chapman-Kolmogorov
equation [1]

p (xk | z1:k−1) =

∫
p (xk | xk−1) p (xk−1 | z1:k−1) dxk−1 (5.5)

and the filtering step

p (xk | z1:k) =
p (zk | xk)

p (zk | z1:k−1)
p (xk | z1:k−1) = ηp (zk | xk) p (xk | z1:k−1) , (5.6)

where η = (p (zk | z1:k−1))−1 is a normalization constant.

44

CHAPTER 5. STATE ESTIMATION METHODS

The Bayesian filter can be used in many applications, not only robotics, but the
filter seen in Algorithm 2 is the most general recursive estimation algorithm for
estimating the probability distribution over the state of the robot [60, pp. 26]. It
uses (5.5) and (5.6) with a measurement model for p (zk | xk) and a motion model for
p (xk | xk−1) in order to use the new measurement zk to update the state estimate.
The normalization constant η is the same for all states xk and does not need to
be calculated explicitly since it only makes the distribution a proper probability
distribution with integral equal to one.

Algorithm 2 The Bayes filter as an algorithm.

1: function BayesFilter(p (xk−1 | z1:k−1) , zk)
2: for all xk do
3: p (xk | z1:k−1) =

∫
p (xk | xk−1) p (xk−1 | z1:k−1) dxk−1

4: p (xk | z1:k) = ηp (zk | xk) p (xk | z1:k−1)
5: end for
6: return p (xk | z1:k)
7: end function

5.5 Particle filter

The Particle Filter (PF) is an implementation of the Bayes filter. There are many
different versions of the particle filter. Some making it more robust, faster and giving
better convergence in certain applications. It is a filtering method, and similarly to
the Kalman filter, it can be used for state estimation. It works by taking measure-
ments, doing prediction and doing Bayesian probability propagation to estimate
a probability density function for the state. It represents the probability density
function p (xk | z1:k) using so-called particles that are samples drawn from the dis-
tribution. This makes it able to represent many different probability distributions,
including multi-modal distributions contrary to the Kalman filter. Some relevant
literature on the subject is [60, pp. 96] and [1, 14]. It can be simple to implement a
basic particle filter, yet difficult to make it work well. The particle filter has several
difficulties regarding sample size and might be computationally expensive [15].

5.5.1 Sequential Importance Sampling

The Sequential Importance Sampling (SIS) method is in a sense a simplification of
the generic particle filter. It is ambiguous from the literature if it uses re-sampling
or not, but here it is shown without re-sampling following [1]. The SIS method
implements the recursive Bayes filter with Monte Carlo simulations [1]. The pos-
terior probability distribution is represented by a set of random samples x{i} and

45

CHAPTER 5. STATE ESTIMATION METHODS

associated weights w{i} for the particles with index i = 1, . . . , N , as described in Sec-
tion 5.3 about Monte Carlo simulation. The Bayes filter, described in Section 5.4,
is then used to update the approximate probability distribution using models of the
sensor and the process dynamics. The probability distribution of the state given the
measurements is

p (xk | z1:k) ≈
N∑
i=1

w̄
{i}
k δ

(
xk − x{i}k

)
, (5.7)

where w̄
{i}
k is the normalized weight of particle i at time step k and δ(·) is the Dirac

delta.

The resulting SIS filter is shown in Algorithm 3. To be able to use Monte Carlo
simulation, the importance density q (x) needs to be specified and the resulting
re-weighting strategy calculated. That is done in Section 5.5.2.

Algorithm 3 The SIS algorithm.

1: function SIS filter({x{ip}k , w
{ip}
k }Nip=1, zk)

2: for ip = 1, . . . , N do . Sample particles

3: x
{ip}
k ∼ q

(
xk | x{ip}k−1, zk

)
4: end for
5: for ip = 1, . . . , N do . Re-weight

6: Assign weight w
{ip}
k according to (5.8)

7: end for
8: return {x{ip}k , w

{ip}
k }Nip=1

9: end function

5.5.2 Weighting and importance density

The particle filter uses Monte Carlo simulations to approximate sampling from the
actual state distribution p (x), which can be difficult to sample from. The state

particles
{
x{i}

}N
i=1

are assumed easily generated from the importance density q (x),
see Section 5.3 for an explanation of Monte Carlo simulations. The weighting used
depends on likelihoods of different measurements and states, which might for exam-
ple require a sensor model and process model. Some examples of sensor models are
described in Section 4.5 and an example of process model is described in Section 4.2.
The weights follow the relation

w̄{i} ∝ p(x{i})

q(x{i})
,

46

CHAPTER 5. STATE ESTIMATION METHODS

where w̄{i} is the normalized weight of particle i. The approximation of the state
probability distribution then becomes

p (x) ≈
N∑
i=1

w̄{i}δ
(
x− x{i}

)
,

where δ(·) is the Dirac delta.

From the Bayes filter calculation (5.4) using that p (zk | z1:k−1) is a normalizing
constant for a certain time step, the probability distribution of the states satisfies
the relation

p (x0:k | z1:k) ∝ p (zk | xk) p (xk | xk−1) p (x0:k−1 | z1:k−1) .

Assuming the importance density can be factorized into

q (x0:k | z1:k) = q (xk | x0:k−1, z1:k) q (x0:k−1 | z1:k−1) ,

the weights become

w̄
{i}
k ∝

p
(
zk | x{i}k

)
p
(
x
{i}
k | x

{i}
k−1

)
p
(
x
{i}
0:k−1 | z1:k−1

)
q
(
x
{i}
k | x

{i}
0:k−1, z1:k

)
q
(
x
{i}
0:k−1 | z1:k−1

) ,

∝ w̄
{i}
k−1

p
(
zk | x{i}k

)
p
(
x
{i}
k | x

{i}
k−1

)
q
(
x
{i}
k | x

{i}
0:k−1, z1:k

)
since w̄

{i}
k−1 ∝

p
(
x
{i}
0:k−1|z1:k−1

)
q
(
x
{i}
0:k−1|z1:k−1

) . Lets assume that the density is independent on earlier

measurements and earlier states except the last one, that is the Markov property,

q
(
x
{i}
k | x

{i}
0:k−1, z1:k

)
= q

(
x
{i}
k | x

{i}
k−1, zk

)
. This gives the weight update equation

w̄
{i}
k ∝ w̄

{i}
k−1

p
(
zk | x{i}k

)
p
(
x
{i}
k | x

{i}
k−1

)
q
(
x
{i}
k | x

{i}
k−1, zk

) , (5.8)

for the posterior approximation shown in (5.7).

Optimal importance density

There are many different choices of importance densities. The optimal importance
density that minimizes the variance of the true weights conditioned on the earlier

47

CHAPTER 5. STATE ESTIMATION METHODS

state x
{i}
k−1 and the new measurement zk is [16]

q
(
xk | x{i}k−1, zk

)
opt

= p
(
xk | x{i}k−1, zk

)
=
p (zk | xk) p

(
xk | x{i}k−1

)
p
(
zk | x{i}k−1

)
Substituting this into (5.8) gives the weight update equation

w̄
{i}
k ∝ w̄

{i}
k−1p

(
zk | x{i}k−1

)
.

It might be difficult to find or use the optimal importance density. There are two
cases where it is possible [1]

• xk is a member of a finite set.

• p
(
xk | x{i}k−1, zk

)
is Gaussian. This can for example happen if the measure-

ments are linearly dependant on the state.

Prior as importance density

A common approximation to the optimal importance density is to use the prior [1]

q(xk | x{i}k−1, zk) = p(xk | x{i}k−1)

which gives the weights

w̄
{i}
k ∝ w̄

{i}
k−1p

(
zk | x{i}k

)
. (5.9)

This gives simple expressions that are quick to evaluate.

5.5.3 The problem of degeneracy

A typical problem of the SIS filter is the problem of degeneracy. This is where, after
some iterations, all particles but one have negligible weight. It means that a lot
of computational effort is wasted on less likely particles and also that the particles
might not be covering the most optimal area in order to get the best estimates. The
brute force solution is to simply increase the amount of particles N , but this comes
with severe increase of computational effort. Two other solutions to the degeneracy
problem are

• Better choice of importance density.

48

CHAPTER 5. STATE ESTIMATION METHODS

• Re-sampling: Sample the particles from the distribution in order to only have
particles in the most probable states. This is discussed more in Section 5.5.4.

A measure of the degeneracy of the particles is the effective sample size [1]

Neff =
N

1 + Var
(
w
{ip}∗
k

) ,
where w

{ip}∗
k =

p
(
x
{ip}
k |z1:k

)
q
(
x
{ip}
k |z1:k,x

{ip}
k−1

) is called the true weight. This can be approximated

by

N̂eff =
1∑N

ip=1

(
w̄
{ip}
k

)2 , (5.10)

where w̄
{ip}
k is the normalized weight from (5.8).

5.5.4 Re-sampling

To avoid the degeneracy problem, re-sampling can be done. By sampling particles
from the existing particles, particles with negligible weights will be lost and only
the most probable particles will remain. Some methods of re-sampling are described
below.

Sampling a discrete distribution

The weight of each particle in a particle filter represents the likelihood of that
particle, so that the particles together represent a discrete probability distribution as
formulated in (5.7). It is possible to sample such a discrete probability distribution,
as described in [14], by first sampling u from the standard uniform distribution
U ∼ U(0, 1). Then the particle p is found by picking the particle that satisfies

ip−1∑
i=1

w{i} < u and

ip∑
i=1

w{i} ≥ u, (5.11)

where ip is the index of the particle and w(i) is the normalized weight of a particle.
Assuming all particles have a probability above zero, this will be a single particle.
Since the weights sum up to one, this will make particles with big weights more
likely to be picked. If this is done for every particle in the particle filter, the result
will be a subset of particles representing the discrete probability distribution. The
more likely states have more particles representing it, and the less likely states have
fewer or even none. Weighting these new particles equally should make an integral
over the actual distribution of possible states approximately equal to the equivalent
sum over the states of the particle filter.

49

CHAPTER 5. STATE ESTIMATION METHODS

Low variance sampling

The variance of a sampler is the variability due to random sampling [60, p. 108].
Drawing every sample based on independent random number might give higher sam-
pling variance. A sampling method to mitigate this is the low variance sampling
or systematic sampling, given in Algorithm 4. Assume the weights are normalized
and there are N evenly spaced probabilities u. The method finds for each prob-
ability the particle that makes the cumulative weight W go above it and thereby
solving (5.11). More precisely, it draws a sample from the uniform distribution
U ∼ U(0, N−1). Then it takes N probabilities spaced evenly with a step of N−1

and finds for which particle the cumulative distribution passes that probability. The
first probability is at the random number chosen. That is, it takes the sample with
index ip that satisfies (5.11), where the u’s are described as above instead of each
being independent. This gives a lower variance sampling in O(N) time complexity.

Algorithm 4 Sampling algorithm with low variance from [60, pp. 110] and [1].
Assumes normalized weights w̄{ip}.

1: function Re-sample({x{ip}k , w̄
{ip}
k }Nip=1)

2: r = uniform(0, N−1)
3: W = w̄{1}

4: ip = 1
5: for n = 1, . . . , N do
6: u = r + (n− 1)N−1

7: while W < u do . Solve (5.11).
8: ip = ip + 1
9: W = W + w̄{ip}

10: end while
11: x

{n}∗
k = x

{ip}
k

12: w̄
{n}∗
k = N−1

13: end for
14: return {x{n}∗k , w̄

{n}∗
k }Nn=1

15: end function

Regularized particle filter

Particle impoverishment is when the particles lose diversity [1]. This can happen
since the default re-sampling gives a subset of the particles, and there can be many
repeated particles. It might eventually lead to particle collapse, where all particles
represent equal states. It can especially be a problem in the case of low process
noise, with a narrow true probability distribution. One attempt of solving this is
instead of re-sampling at every time step as in the Sampling Importance Re-sampling
(SIR) filter, only re-sample when the empirical particle variance is under a certain
threshold.

50

CHAPTER 5. STATE ESTIMATION METHODS

Another possible attempt of solving the problem of particle impoverishment is using
the regularized particle filter [1, 43]. It is very similar to the generic particle filter,
but has a step of re-sampling that diversifies the particles width the use of the
empirical covariance. The samples are then from the approximation

p (xk | z1:k) ≈
N∑
ip=1

ŵ
{ip}
k Kh

(
xk − x{ip}k

)
,

Kh (x) =
1

hnx
K
(x
h

)
,

where K(·) is the kernel density, h is the scalar bandwidth and nx is the dimension of
the state vector x. The kernel density is in general a symmetric probability density
function used to spread the particles and must satisfy certain properties [43]. The
kernel K(·) and bandwidth h are chosen to minimize the mean integrated square
error between the true posterior and the regularized approximation [1]:

MISE (p̂) = E
[∫

(p̂ (xk | z1:k)− p (xk | z1:k))
2 dxk

]
,

where p̂ (xk | z1:k) is the approximation of p (xk | z1:k). In the special case of
equal weights ŵ{ip} = 1

N
, the optimal kernel that minimizes MISE (p̂) becomes the

Epanechnikov kernel [43]

Kopt (x) =

{
nx+2
2cnx

(
1− ‖x‖2) if ‖x‖ < 1

0 otherwise,

where cnx is the volume of the unit sphere in Rnx . Assuming the density is Gaussian
with unit covariance matrix, the optimal bandwidth becomes

hopt = AN−
1

nx+4 ,

A =

(
8

cnx
(nx + 4)

(
2
√
π
)nx) 1

nx+4

.

To make sampling the density simpler, the Epanechnikov kernel can be replaced by
the Gaussian kernel [43]. This assumes the same as earlier, but additionally assumes
covariance equal to the empirical covariance and applies a linear transformation of
x{ip} into A−1x{ip}. The optimal bandwidth now becomes

hopt = AN−
1

nx+4 ,

A =

(
4

nx + 2

) 1
nx+4

.

The assumptions for the Epanechnikov and Gaussian kernels to be optimal are not
always valid. Nevertheless, the regularized particle filter performs well in practical
cases with big problems of sample impoverishment [1].

51

CHAPTER 5. STATE ESTIMATION METHODS

A regularized particle filter is implemented similarly as the generic particle filter, but
with the regularized re-sampling as shown in Algorithm 5. It uses the re-sampling
from Algorithm 4, but also scatters the particles depending on the bandwidth and
the empirical covariance.

Algorithm 5 The re-sampling step of a regularized particle filter.

1: function Regularized re-sampling({x{ip}k , w
{ip}
k }Nip=1)

2: Calculate empirical covariance matrix Sk from {x{ip}k , w
{ip}
k }Nip=1 . using

(5.13)
3: Calculate Dk such that DkD

T
k = Sk

4: {x{ip}k , w
{ip}
k }Nip=1 = re-sample({x{ip}k , w

{ip}
k }Nip=1) . Using Algorithm 4

5: for ip = 1, . . . , N do
6: ε{ip} ∼ K . Sample the kernel

7: x
{ip}
k = x

{ip}
k + hoptDkε

{ip}

8: end for
9: return {x{ip}k , w

{ip}
k }Nip=1

10: end function

5.5.5 The generic particle filter

Building on the SIS filter, a generic particle filter using re-sampling when the effective
sample size is small is shown in Algorithm 6. Here the re-sampling in Algorithm 4
is used. In general, any re-sampling method and importance density function might
be used.

5.5.6 Sampling Importance Re-sampling

The acronym SIR is ambiguous in the literature, where it can be short for Sequential
Importance Re-sampling, but the notation used here follows [1].

The Sampling Importance Re-sampling (SIR) filter is an implementation of the
generic particle filter shown in Algorithm 6. It assumes known state dynamics and

measurement function and that it is possible to sample from the prior p
(
xk | x{ip}k−1

)
.

An example of the dynamics of a system can be seen in Section 4.2. The likelihood
p (zk | xk) must be possible to evaluate up to proportionality. Then choosing the
importance density as the prior, as in (5.9) and applying the re-sampling at every
iteration gives the SIR filter shown in Algorithm 7.

52

CHAPTER 5. STATE ESTIMATION METHODS

Algorithm 6 The generic particle filter algorithm. NT is a threshold for the effective
sample size. Here the re-sampling is done using Algorithm 4, but it can be any re-
sampling method.

1: function Particle filter({x{ip}k−1, w
{ip}
k−1}Nip=1, zk)

2: for ip = 1, . . . , N do . Sample particles

3: x
{ip}
k ∼ q

(
xk | x{ip}k−1, zk

)
4: end for
5: for ip = 1, . . . , N do . Re-weight

6: w
{ip}
k = w̄

{ip}
k−1

p
(
zk|x

{ip}
k

)
p
(
x
{ip}
k |x{ip}k−1

)
q
(
x
{ip}
k |x{ip}k−1 ,zk

)
7: end for
8: for ip = 1, . . . , N do . Normalize weights

9: w̄
{ip}
k = w

{ip}
k

(∑N
i=1w

{i}
k

)−1

10: end for
11: Calculate N̂eff from (5.10)
12: if N̂eff < NT then . Small effective sample size

13: {x{ip}k , w̄
{ip}
k }Nip=1 = Re-sample({x{ip}k , w̄

{ip}
k }Nip=1)

14: end if
15: return {x{ip}k , w̄

{ip}
k }Nip=1

16: end function

Algorithm 7 The SIR filter.

1: function SIR filter({x{ip}k−1, w
{ip}
k−1}Nip=1, zk)

2: for ip = 1, . . . , N do . Sample particles

3: x
{ip}
k ∼ p

(
xk | x{ip}k−1

)
4: end for
5: for ip = 1, . . . , N do . Re-weight

6: w
{ip}
k = p

(
zk | x{ip}k

)
7: end for
8: for ip = 1, . . . , N do . Normalize weights

9: w̄
{ip}
k = w

{ip}
k

(∑N
i=1w

{i}
k

)−1

10: end for
11: {x{ip}k , w̄

{ip}
k }Nip=1 = Re-sample({x{ip}k , w̄

{ip}
k }Nip=1)

12: return {x{ip}k , w̄
{ip}
k }Nip=1

13: end function

53

CHAPTER 5. STATE ESTIMATION METHODS

5.5.7 Point estimation

In many cases, the desired output of the particle filter might not be a set of particles
but rather the best possible estimate of the true state of a system based on the
particles. There are many different ways of choosing such an estimate. One possible
way is simply picking the particle with the highest weight. But this might not give
the desired result depending on the application.

An other way is finding the Minimum Mean Square Error Estimate (MMSE) by
calculating the weighted mean and covariance of all particles. The weighted mean
can be calculated as

µ =
N∑
ip=1

w̄{ip}x{ip}, (5.12)

where w̄{ip} is the normalized weight of particle ip. This is for the logarithmic case
described in Section 5.6.5.

The weighted empirical covariance of the particles can be calculated as

S =
N∑
ip=1

(
x{ip} − µ

)
w̄{ip}

(
x{ip} − µ

)T
. (5.13)

5.6 Particle filter in logarithmic space

When likelihoods are calculated for the particle filter and small probabilities are
multiplied together, the resulting likelihood can become too small to work with. To
avoid numerical errors, it is possible to work in the log-space instead of working on
regular probabilities. Multiplying two probabilities are then done by summing the
logarithm of them. But then the problem of sampling occurs, where it is not trivial
to sample the distribution using only the logarithm of each particle weight. This can
be solved by converting the weights back to the linear space, normalizing them and
then do the regular sampling of a discrete distribution. To utilize the log-space even
further, the distribution can be normalized before being converted to the linear
space by doing as described in Section 5.6.1. But in some cases, the likelihoods
before sampling can be too small and give inaccuracies even after normalization.
This can be solved by not leaving the log-space for the re-sampling.

A paper that goes through the whole process of using a particle filter in log-space
is [23], which describes what the author calls Log-PF. This includes the weight
updating, normalization, re-sampling and the estimation in log-space. Some of

these methods are described below. Using logarithmic weights ŵ
{i}
k = ln

(
w
{i}
k

)
the

54

CHAPTER 5. STATE ESTIMATION METHODS

equation for the particle approximation of the probability density function becomes

p (xk | z0:k) ≈
N∑
i=1

eŵ
{i}
k δ

(
xk − x{i}k

)
.

5.6.1 Normalizing in log-space

As described in [23], the normalized weight

w̄
{i}
k =

w
{i}
k∑N

j=1w
{j}
k

can be calculated in log-space as

ln
(
w̄
{i}
k

)
= ln

(
w
{i}
k∑N

j=1w
{j}
k

)
= ln

(
w
{i}
k

)
− ln

(
N∑
j=1

w
{j}
k

)
= ŵ

{i}
k − Ŵk,

where Ŵk is the logarithm of the sum of the weights. For this to be done purely in
log-space it becomes

Ŵk = ln

(
N∑
j=1

eŵ
{j}
k

)
.

To calculate such a sum, the Jacobian logarithm can be utilized. That is

ln
(

eŵ
{1}

+ eŵ
{2}
)

= max
(
ŵ{1}, ŵ{2}

)
+ ln

(
1 + e−|ŵ{1}−ŵ{2}|

)
can be done iteratively by

Ŵ (i) = ln

(
i∑

j=1

eŵ
{j}

)
= max

(
Ŵ (i−1), ŵ{i}

)
+ ln

(
1 + e−|Ŵ (i−1)−ŵ{i}|

)
.

The normalization of weights in log-space is now reduced to subtracting the loga-
rithm of the sum of the weights from the logarithm of the weights. The resulting
algorithm is given in Algorithm 8.

5.6.2 Effective sample size from logarithms of weights

To calculate the effective sample size N̂eff using the logarithms of weights we use
(5.10) [23]

ln
(
N̂eff

)
= − ln

 N∑
ip=1

e2ŵ{ip}

 ,

where ŵ{ip} is the logarithm of the normalized weight of particle with index ip. The
logarithm of the sum can be calculated using the Jacobian logarithm in Algorithm 8.

55

CHAPTER 5. STATE ESTIMATION METHODS

Algorithm 8 Iterative Jacobian logarithm

1: function JacobiLog({ŵ{i}}Ni=1)
2: Ŵ = ŵ{1}

3: for i = 2, . . . , N do

4: Ŵ = max
(
Ŵ , ŵ{i}

)
+ ln

(
1 + e−|Ŵ−ŵ{i}|

)
5: end for
6: return Ŵ
7: end function

5.6.3 Logarithmic low variance sampling

The method described in Algorithm 4 can be translated to use logarithmic weights.
This is because ln (x) is strictly increasing for x > 0 and the cumulative distribution
can be calculated using the iterative Jacobian logarithm Algorithm 8. The method
is shown in Algorithm 9.

Algorithm 9 Sampling using weights in the logarithmic space. The logarithmic
version of Algorithm 4, described in [23]. {ŵ{ip}}Nip=1 are the logarithm of the nor-
malized weights.

1: function Log Re-sample({x{ip}k , ŵ
{ip}
k }Nip=1)

2: r = uniform(0, N−1)
3: Ŵ = ŵ{1} . Initialize cumulative distribution
4: ip = 1
5: for n = 1, . . . , N do
6: u = ln (r + (n− 1)N−1)
7: while Ŵ < u do . Solve (5.11).
8: ip = ip + 1

9: Ŵ = max
(
Ŵ , ŵ{ip}

)
+ ln

(
1 + e−|Ŵ−ŵ

{ip}|
)

10: end while
11: x

{n}∗
k = x

{ip}
k

12: ŵ
{n}∗
k = − ln(N)

13: end for
14: return {x{n}∗k , ŵ

{n}∗
k }Nn=1

15: end function

5.6.4 Sampling using the Gumbel-max trick

To re-sample the distribution without leaving log-space, the Gumbel distribution
might be used. The Gumbel-max trick is described in [36]. To sample the standard
Gumbel distribution, it is possible to simply take the negative logarithm twice of a

56

CHAPTER 5. STATE ESTIMATION METHODS

realization u of the standard uniform distribution

g{i} = − ln
(
− ln

(
u{i}
))
, u{i} ∼ U(0, 1),

where i is the index of the sample. The sample of the discrete distribution can then
be found through

ip = argmax
i∈[1,N]

(ln
(
w{i}

)
+ g{i}),

where ip is the index of the particle, N is the number of particles, g{i} is the sample
from the Gumbel distribution and w{i} is the likelihood of the particle. This is also
described in Algorithm 10. It is explained in [37] that argmaxi∈[1,N](φ(i) + g{i}) is
distributed according to

argmax
i∈[1,N]

(φ(i) + g{i}) ∼ eφ(i)∑
i∈[1,N] eφ(i)

,

where φ(i) is the log-unnormalized mass for a categorical distribution over classes
i ∈ [1, N].

This becomes in the case of logarithmic weights

argmax
i∈[1,N]

(ln
(
w{i}

)
+ g{i}) ∼ eln(w{i})∑

i∈[1,N] eln(w{i})
=

w{i}∑
i∈[1,N] w

{i} .

The re-sampling of the particle filter can therefore be done through doing the
Gumbel-max trick for every particle in the filter. This has a time complexity of
O(N2).

Algorithm 10 Sampling a discrete distribution in log-space. From N particles
the approximate sample of the discrete distribution is ip. u

{i} is a sample from the
uniform distribution and g{i} is a sample from the Gumbel distribution.

1: for i = 1, . . . , N do
2: u{i} = uniform(0, 1)
3: g{i} = − ln

(
− ln

(
u{i}
))

4: end for
5: ip = argmaxi∈[1,N](ln

(
w{i}

)
+ g{i})

5.6.5 Point estimation in logarithmic space

Two methods for finding a state estimate from the particles are discussed in [23].
One of these is the MMSE which is defined as

x̂MMSE =
N∑
ip=1

w{ip}x{ip},

57

CHAPTER 5. STATE ESTIMATION METHODS

where x{ip} is the state estimate of particle ip, w
{ip} is the normalized weight and N

is the number of particles. In log-space, this can be computed using the Jacobian
logarithm, but it requires the separation of positive and negative values. Let

[x̂MMSE]l =
N∑
ip=1

eŵ
{ip} [

x{ip}
]
l

be the lth element of the state estimate. Let the indices of positive and negative
values of

[
x{ip}

]
l

be represented by

I+,l =
{
ip | ip ∈ {1, . . . , N}

∧[
x{ip}

]
l
> 0
}
,

I−,l =
{
ip | ip ∈ {1, . . . , N}

∧[
x{ip}

]
l
< 0
}
.

Then

[x̂MMSE]l =
∑
ip∈I+,l

eŵ
{ip} ∣∣[x{ip}]

l

∣∣− ∑
ip∈I−,l

eŵ
{ip} ∣∣[x{ip}]

l

∣∣
=
∑
ip∈I+,l

eŵ
{ip}+ln(|[x{ip}]

l
|) −

∑
ip∈I−,l

eŵ
{ip}+ln(|[x{ip}]

l
|)

= e
ln

(∑
ip∈I+,l

e
ŵ{ip}+ln(|[x{ip}]

l
|)
)
− e

ln

(∑
ip∈I−,l

e
ŵ{ip}+ln(|[x{ip}]

l
|)
)
,

where the exponents can be calculated using the Jacobian logarithm in Algorithm 8.

5.7 Simulation filter evaluation

5.7.1 Monte Carlo simulation consistency test

Some consistency properties can be tested if the ground truth of the state to be
estimated is known [6, p. 234]. These are:

• The state error should be acceptable as zero mean.

• The state error should have a magnitude corresponding to the covariance of
the filter.

Let
ek = xk − x̂k (5.14)

be the state error at time step k, where x̂k is the estimated state. We can then
define the Normalized Estimation Error Squared (NEES) as

εk = eTkS
−1
k ek,

58

CHAPTER 5. STATE ESTIMATION METHODS

where Sk is the empirical covariance of the filter. Furthermore, the Average Nor-
malized Estimation Error Squared (ANEES) is

ε̄k =
1

Nruns

Nruns∑
i=1

εk,i,

where εk,i, i = 1, . . . , Nruns are the NEES for different Monte Carlo simulations i.

The Linear Gaussian (LG) assumption is that the initial state, process noise and
measurement noise is Gaussian and the state evolution and measurements are lin-
early dependant on the state. Under these assumptions and that the filter is con-
sistent, called hypothesis H0, εk is chi-square distributed with nx degrees of free-
dom, where nx is the dimension of the state xk[6, p. 234]. Moreover, the ANEES
times the number of runs is chi-squared distributed with Nrunsnx degrees of freedom,
Nrunsε̄k ∼ χ2

Nrunsnx
. This results in a two-sided consistency test acceptance interval

for the ANEES with r1 and r2 being the sides of the interval

P {ε̄k ∈ [r1, r2] | H0} = 1− α,

where for example α = 0.05 for a 95% confidence interval. ε̄k can then be plotted
for each time step k together with the lower and upper bound r1 and r2 to see if the
ANEES satisfies the test.

The consistency properties are important even if the LG assumptions do not hold.
The confidence interval can then be used to say something about how well the
error is covered by the Gaussian distribution with covariance equal to the empirical
covariance.

5.7.2 RMSE

Knowing the true state of a robot in simulations makes it possible to calculate the
Root Mean Square Error (RMSE) at time step k as

RMSEk =

√√√√ 1

Nruns

Nruns∑
i=1

ek,i � ek,i, (5.15)

where ek,i is the state error in (5.14) for different simulation runs i at time step k and
a� b takes the Hadamard product of a and b, that is element wise multiplication.
This results in the vector RMSEk with the RMSE values for each component of
the state at time step k from Nruns runs.

59

CHAPTER 5. STATE ESTIMATION METHODS

5.8 The unscented particle filter

The Unscented Particle Filter (UPF) uses a bank of UKFs in order to obtain a
proposal for the importance density of a particle filter [64]. Using the SIR filter in
Section 5.5.6 can fail if the likelihood of measurements is too peaked compared to
the prior or when the measurements appear in the tail of the prior. Those cases can
often occur when the sensors used are very accurate. This is illustrated in Figure 5.3,
which shows the case of sampling using the prior versus sampling using UKF.

(a) Using prior (b) Using UKF. The blue graph is
the likelihood estimated from one
UKF iteration.

Figure 5.3: Illustrates the different in particle sampling using the
prior versus the UKF for estimating the importance density in the
particle filter. The black dots are the particles.

The UPF is an implementation of the generic particle filter in Algorithm 6 where
the optimal importance density is approximated for each particle using the UKF
[63]. The resulting importance density becomes for a particle with index ip

x
{ip}
k ∼ q

(
xk | x{ip}k−1, zk

)
= N

(
xk; x̂

{ip}
k ,P k

)
,

where x̂
{ip}
k and P k is the output from the UKF using x

{ip}
k−1 and P k−1 as input. The

corresponding weighting becomes

w̄
{ip}
k ∝ w̄

{ip}
k−1

p
(
zk | x{ip}k

)
p
(
x
{ip}
k | x{ip}k−1

)
q
(
x
{ip}
k | x{ip}k−1, zk

) , (5.8 revisited)

which should now be possible to evaluate directly.

5.9 Iterative Closest Point method

If the state of a robot is implicitly defined by the transform from one point cloud to
another, this transform can be used for localization. If the correspondences between
points in two different point clouds is known, the method of point set registration is
to find the transform that minimizes the error between these known correspondences.

60

CHAPTER 5. STATE ESTIMATION METHODS

But in many cases the correspondences is not known. One way of solving this is
to iteratively find the closest point in the fixed point cloud from every point in the
moving point cloud, minimized that error and then find new correspondences. This
is called the Iterative Closest Point (ICP) method.

One of the first articles on ICP was [8], which states that “The iterative closest
point algorithm always converges monotonically to a local minimum with respect
to the mean-square distance objective function.” This is a great property for lo-
calization, but local minima not being global minima can become a problem as we
will note later. The article describes how to register 3D point clouds, finding the 6
DOF transformation, and also minimizing the error from a point cloud to geometric
entities like lines or triangle faces. But ICP can also be used in spaces of more or
fewer dimensions. An nD implementation exists in the PCL1 for C++, and also
Matlab2 has a 3D implementation.

The authors of [8] preferred using quaternions over the Singular Value Decomposition
(SVD) [2] approach to minimize the error. They seem to be using the Hamilton
convention [59], with the real part first, right-handedness, operator being passive and
operator being local-to-global. The quaternions have been used to make a rotation

matrix: The unit rotation quaternion qR =
[
q0 q1 q2 q3

]T
, where q2

0+q2
1+q2

2+q2
3 =

1, gives the rotation matrix

R(qR) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − q2

1 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2

 .
The complete registration state vector is q =

[
qTR qTT

]T
where qT =

[
q4 q5 q6

]T
is the translation vector. Let P = {pi} be the set of measured data points and
X = {xi} be the model points, where the number of points NX = NP and each
point in P corresponds to the point i X with the same index. For point clouds of
different sizes, NX = NP is enforced through the closest point method, finding the
closest point in the other point cloud for every point in the first cloud. The mean
square objective function to be minimized is

f(q) =
1

NP

NP∑
i=1

‖xi −R(qR)pi − qT‖
2 .

Using the means for each point set

µP =
1

NP

NP∑
i=1

pi and µX =
1

NX

NX∑
i=1

xi,

1The point registration library in the PCL can be found here: http://docs.pointclouds.

org/trunk/group__registration.html.
2A point cloud registration method for Matlab can be found here: https://se.mathworks.

com/help/vision/ref/pcregistericp.html.

61

http://docs.pointclouds.org/trunk/group__registration.html
http://docs.pointclouds.org/trunk/group__registration.html
https://se.mathworks.com/help/vision/ref/pcregistericp.html
https://se.mathworks.com/help/vision/ref/pcregistericp.html

CHAPTER 5. STATE ESTIMATION METHODS

the cross covariance matrix becomes

ΣPX =
1

NP

NP∑
i=1

(pi − µP)(xi − µX)T.

The vector ∆ =
[
A23 A31 A12

]T
is made from A = ΣPX − ΣT

PX and the sym-
metric 4× 4 matrix Q (ΣPX) is made

Q (ΣPX) =

[
tr (ΣPX) ∆T

∆ ΣPX + ΣT
PX − tr (ΣPX) I3×3

]
.

The optimal rotation is found as the unit eigenvector corresponding to the maximum
eigenvalue of the matrix Q (ΣPX) and the optimal rotation is found as

qT = µX −R(qR)µP .

This process is denoted as
(q,dms) = Q(P ,X), (5.16)

where dms is the mean square point matching error. Other methods exist for finding
possible steps q, for example SVD [2] or solve a least squares problem by linearizing
the measurement function on a manifold using Lie algebra [12, 18].

The resulting algorithm is shown in Algorithm 11, where τ is a threshold for when
the error is small enough. An illustration of two 2D point clouds being matched
is shown in Figure 5.4. For each iteration, the closest points are calculated. Then
the measured data is transformed by the method described above and new closest
points are being calculated. This is done iteratively and results in the clouds in
Figure 5.4a being transformed into the clouds in Figure 5.4b.

(a) Before ICP. (b) After ICP.

Figure 5.4: Two point clouds being matched using ICP. The gray
dots are point in the model X, and the orange points are in the
measured data points P .

62

CHAPTER 5. STATE ESTIMATION METHODS

Algorithm 11 The ICP algorithm from [8].

1: function ICP(P = {pi}
NP
i=1 , X = {xi}NXi=1)

2: P 0 = P , q0 =
[
1 0 0 0 0 0 0

]T
, k = 0

3: repeat
4: Compute the closest points: Y k = C(P k,X).

Cost: O(NPNX)
5: Compute the registration: (qk,dk) = Q(P 0,Y k) from (5.16).

Cost: O(NP)
6: Apply the registration:

P k+1 =
{
R(qR)pi + qT | pi ∈ P 0, i ∈ 1, . . . , NP , qk =

[
qTR qTT

]T}
Cost: O(NP)

7: until dk − dk+1 < τ
8: end function

63

Chapter 6

Particle filter analysis and
simulations

Simulations have been done in Matlab. This was chosen because Matlab is a great
environment to test methods and visualize different kinds of data in. The simulations
use synthetic velocity data and measurement data as described in Section 4.3 and
Section 4.6 respectively. Remember from Chapter 4 that the map used is based
on gathered data, but the measurements created using that map and ground truth
state trajectory are synthetically generated.

6.1 Particle filter method

Two main reasons for using the particle filter in this problem are:

• The particle filter is able to represent multi-modal distributions. For areas of
symmetry in the map, the lidar scans might not be enough to differentiate
different possible states, which makes it necessary to represent more than one
possible state. It also enables global localization, where the initial position is
unknown.

• The requirements on the sensor model and process model are weak. There are
requirements on the possibility to evaluate certain likelihoods and sampling
certain distributions. Which distributions that have to be sampled depends on
the type of particle filter used. This enables the use of a sensor model which is
so non-linear that it is difficult to formulate as a function of the state, which
is the case for the model and map used here.

This section describes the components used in the particle filter. A simple map is

65

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

used in this analysis, see Figure 6.1. The simulations in the bigger map are described
later in Section 6.3. We will use this map in order to test how different properties
of a map changes the properties of the filter.

Figure 6.1: A simplified map to analyze the behavior of the particle
filter in the relevant application. The resolution is 0.5 m

px
, making

the stripe of occupied cells 1 px thick.

6.1.1 Weighting and importance density

It is quickly noticed that the values multiplied together becomes too small for Mat-
lab, so the logarithms of the weights are used, see Section 5.6. The chosen impor-
tance density is in this chapter the prior, but the later chapters will show the use of
different importance densities. The weight update equation using the prior becomes

w
{i}
k ∝ w

{i}
k−1p(zk | x

{i}
k). (5.9 revisited)

The multiplication is substituted by summing. So the re-weighting with the sensor
model becomes summing the log of the likelihood of each single measurement, using
the sensor model in Section 4.6 for each measurement.

The prior uses the dynamics from Section 4.3 with the Gaussian noise as described
in Appendix A.4. In the sampling of the importance density, each particle is moved
with the dynamics and added noise. An illustration of the behavior of the resulting
SIS filter, see Algorithm 3, is shown in Figure 6.2. The weights have been scaled
to have the maximum height of 10 for viewing the distribution. The variance of
single measurements has been set to σ2

hit = 30 m2 for illustration purposes in the
weighting, but the measurements used have no noise on them, as can be seen by the
measurements in the figure hitting exactly the occupied spaces. The weights have
been set equal after re-sampling in each iteration, otherwise almost all particles
would get a weight of zero due to particle impoverishment, which we will come back

to. Here the whole state x =
[
E,N, ψ

]T
is estimated. The figure illustrates how the

importance density over time spreads the particles out in E and N , but they are
also spread out in heading ψ. It also shows the weighting of the particles and the

66

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

Gaussian nature of this simple estimation. A non-linearity can be observed from
the distribution in Figure 6.2a, but this will be discussed later when we will see that
the map can make the state distribution less like a Gaussian.

(a) Initial distribution

(b) Final distribution

Figure 6.2: Illustration of the spread from a SIS filter.

6.1.2 Normalization and re-sampling

In order to not use particles with very low values and thereby reduce the spread of
the particles, re-sampling is done, as mentioned in Section 5.5.4. This requires nor-
malization which is done using the logarithmic weights as described in Section 5.6.1.

The re-sampling is first implemented using the Gumbel-max trick, as described
in Section 5.6.4. After the sampling seems to work, the low variance sampling
in logarithmic space as shown in Algorithm 9 is used. This is in order to have
increased robustness and based on the preferences of the authors of [1]. And after
the re-sampling, the particles are given equal weights as in Monte Carlo simulations.

67

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

Re-sampling at every time step makes this the SIR filter, described in Algorithm 7.
The resulting distribution is shown in Figure 6.3. It illustrates how the particles
are not spread out in areas of low likelihood when the distribution is re-sampled at
every time step, compared to Figure 6.2b.

Figure 6.3: The final distribution when using the SIR filter.

6.1.3 Evaluating the filter

To evaluate the simulations, the consistency can be tested using ANEES as de-
scribed in Section 5.7.1. The ANEES is then compared to the corresponding confi-
dence interval. The empirical covariance can be found using (5.13) and the position
estimated using (5.12). The error can be evaluated using RMSE as shown in (5.15).

6.1.4 Regularized re-sampling

The particle filters used in this project do utilize regularization. The regularization
is implemented as described in Section 5.5.4 using a Gaussian kernel. In order to
illustrate what the regularization does, the only state estimated is the heading. If
the particles before regularization in Figure 6.4 are to be used further and there is
low process noise, each particle will not move much relative to the actual path and
the distribution will not be represented well. The actual state will in that case ap-
proximately stay between the same particles for future time steps. If regularization
is used, the empirical covariance of the particles is calculated and each particle is
spread in order to represent the distribution better. In the figure, the particles have
been re-weighted in order to show the distribution. But all particles are given equal
weight after the re-sampling step.

The author believes that it is important in this case to differentiate between problems
of low process noise relative to measurement noise and problems of high process

68

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

Figure 6.4: The particle distribution before and after regularization.

noise relative to measurements. Using the terminology of [24] these are low and
high Signal to Noise Ratio (SNR) respectively. When the process noise is small, the
regularized particle filter can be a good idea, as described above. When the process
noise on the other hand is big, the particles will be spread a lot in the sampling
and the spread of the regularization makes minimal difference when it comes to the
sampled state of a particle.

The difference between low and high process noise also changes how one might view
the particles. If the process noise is small it is reasonable to look at each particle
as representing a proposal trajectory of the state. This makes sense based on the
derivation of the Bayes filter. But in the case of high process noise and the use of
the SIR filter, the particles can represent the distribution well, even though each
particle might have noise realizations that make the corresponding trajectory very
different from the actual trajectory.

To further illustrate the effect of the regularized particle filter, the simulations run
with low process noise compared to the measurement noise. The whole 3 DOF are
used. Visual inspection of the particles showed that without regularization, the
particles are often in a small but likely area. But with regularization the particles
are more spread out. The resulting ANEES and RMSE is shown in Figure 6.5.
The ANEES is consistently smaller when regularization is used. The spread of the
particles introduced by the regularization might be the reason why the ANEES is
below the lower bound of the confidence interval.

69

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

(a) Without regularization

(b) With regularization

Figure 6.5: Evaluation of particle filter with and without regular-
ization when low process noise is used. Uses Nruns = 5 and a 95%
confidence interval.

70

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

6.2 Particle filter properties

This section looks at the properties in the application of this project. The same
map as earlier in Figure 6.1 is used in order to test how different properties of a
map changes the properties of the filter. Mostly the heading is estimated and used
for visualization, but the properties in x- and y-direction seems to be similar. The
properties are specific to this sensor model and type of map and will be used in
order to discuss the behavior of the particle filter in the three DOF case.

6.2.1 Corners

Figure 6.1 revisited.

The map used does not give a linear relation between the
state an measurements. And it does not guarantee a Gaus-
sian state distribution when only Gaussian noise is used for
both process noise and measurement noise. Lets look at Fig-
ure 6.1, it has five outward pointing corners and one inward
pointing corner. Both of these types of corners give certain
artifacts shown in Figure 6.6. The inward corner, whose ar-
tifact is shown in Figure 6.6b, gives the possibility that when
the heading crosses a certain angle, a ray will pass the corner
and hit the back wall. The range then becomes very big in
comparison with the measurement and that state gets a low likelihood. The artifact
of an outward pointing corner, shown in Figure 6.6c, seems to be different variances
depending on the state. If for example the vessel is far to the left in Figure 6.1 and
a ray hits exactly the top left corner, giving too much heading will change the range
measurement a lot, making the likelihood narrow. And too little heading will give
a measurement on the top wall, where the measured range will not change as much
depending for a small change in heading.

(a) Usual (b) Inward corner (c) Outward corner

Figure 6.6: Different artifacts using the map in Figure 6.1. The
y-axes have different scales in order to compare the distributions.

71

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

6.2.2 Bad importance density

In the case of a narrow p (zk | xk) compared to the process prior p (xk | xk−1), using
the prior as the importance density might be a bad approximation. Such a case is
illustrated in Figure 6.7. It results in few particles in the area of highest likelihood
and the particles not representing the distribution well.

Figure 6.7: Illustrates what might happen when using the prior as
the importance density.

6.2.3 Diagonal map

The map used earlier is very simple in that the discretization of the map is not
visible. In order to show the discretization the map can be rotated, as shown in Fig-
ure 6.8. The sides of this are not straight, but have been pixelated. If the ray tracing
finds the closest point on those cells and not the center point, as in our implementa-
tion, this will affect the estimation as shown in Figure 6.9. The figure shows how the
discretization affects the distribution p (zk | xk). It becomes less smooth and seems
to consist of many combinations of the corner artifacts described earlier. Increas-
ing the measurement variance makes the distribution better represented because it
becomes wider and more particles are in the core of the distribution. The increase
of measurement noise also increases the spread of the particles via the re-sampling
step.

72

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

Figure 6.8: Diagonal map with pixelated lines.

(a) Normal map (b) Diagonal map. (c) Diagonal map with
more measurement
noise.

Figure 6.9: Difference between using straight and diagonal lines
in a discretized map. The y-axes have different scales in order to
compare the distributions.

73

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

6.2.4 Noise

Small details in the map can change the distribution by for example creating dis-
continuities. One such example is shown in Figure 6.10 where one occupied cell is
placed to the left in the map. This discontinuity decreases the range measurements
when hit. If the discontinuity increases the range instead of decreasing it, the results
are assumed to be similar. This can reduce the likelihood of a state if that state
hits either on or off the occupied cell, shown in Figure 6.10a and Figure 6.10c re-
spectively. But it is also possible for the new occupied cell to increase the likelihood
of a state, as shown in Figure 6.10b. There, a decrease in heading gives reduced
likelihood until the occupied cell is hit, the measured range of that ray is reduced a
bit, resulting in a more likely state.

(a) Decreasing the
likelihood when hitting
the discontinuity.

(b) Increasing the
likelihood when hitting
the discontinuity.

(c) Decreasing the
likelihood when missing
the discontinuity.

Figure 6.10: How the distribution is changed by details in the map.
Note the one occupied cell to the left in the map. The y-axes of
the likelihoods have different scales in order to compare the distri-
butions.

The map can be not so smooth in many different ways, but all are in some way
a combination of the properties already discussed. Some examples are shown in
Figure 6.11. The different figures are:

• Figure 6.11a: Case 1. This shows a regular pattern of occupied cells on the
left side of the map. It results in several discontinuities of the distribution.

74

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

• Figure 6.11b: Case 2. A lot of small occupied cells are introduced to the map,
giving many discontinuities. The corresponding distribution is only high in a
very small region.

• Figure 6.11c: Case 3. The map borders have been made into curvatures. The
corresponding distribution seems to be in between the normal distribution and
the one from the diagonal map.

• Figure 6.11d and Figure 6.11e: Case 4. More realistic structures with curved
walls and some bigger structures in the map. The corresponding distribution
is mostly similar to Case 3, but might have some more big discontinuities due
to the bigger structures.

6.2.5 Localize in another map

If we try to use one map for localization, while the actual measurements have noise
induced by a noisy map, the result might look similar to Figure 6.12. We see that
the distance between the actual state and the mean of the distribution made from
noisy measurements depends on the noise.

In order for the particles to give higher weight to the actual state in the cases of
noise, the parameters in the sensor model from Section 4.5.3 can be tuned, see
Figure 6.13. The parameters from Section 4.6 are the ones in Figure 6.13d. We
see from the figure how the weighting of the uniform noise affects the distribution.
The actual state gets increased weight as the Gaussian weight is reduced and the
uniform weight is increased. In the extreme case of αrand = 1 all particles get the
same weight. The difference between increasing he variance of the Gaussian and
increasing the weight of the uniform distribution is that increasing the variance
affects the closest points to the peak of the distribution, while increasing the weight
of the uniform part increases all particles equally.

6.2.6 Using the filter map

Attempting to estimate heading using the realistic map is illustrated in Figure 6.14
where the filter map from Section 4.6 is used. Rays that go beyond the maximum
range zmax are given the value of z = zmax. It is possible to see that the result is a
combination of the different possible types of noise described earlier. The increased
distance to the occupied cells also makes more happen as the heading is changed,
explaining the narrower distribution compared to earlier. The map can also contain
any sort of noise, and the estimate can contain any of the different artifacts described
above.

75

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 4

Figure 6.11: Different maps and what the corresponding distribu-
tions look like. The y-axes of the likelihoods have different scales
in order to compare the distributions.

76

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

(a) Noticeable error
from distribution mean
to actual state.

(b) Smaller error from
mean to actual state.

Figure 6.12: Localizing in a different map than where measure-
ments are from. The distance between the actual state and the
mean of the distribution changes depending on the noise on the
measurements. The y-axes of the likelihoods have different scales
in order to compare the distributions.

77

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

(a) Actual state and measurements (b) σ2
hit = 30, αrand = 0

(c) σ2
hit = 0.7, αrand = 0 (d) σ2

hit = 0.7,
αrand = 0.3

(e) σ2
hit = 0.7,

αrand = 0.7

(f) σ2
hit = 0.7,

αrand = 0.9
(g) σ2

hit = 0.7,
αrand = 0.99

(h) σ2
hit = 0.7,

αrand = 0.999

Figure 6.13: Localizing in a different map than where measurements
are from. The different figures are made using different values of
σ2

hit and αrand, the tuning parameters for the sensor model in Sec-
tion 4.5.3. The y-axes of the likelihoods have different scales in
order to compare the distributions.

78

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

(a) Normal variance. (b) Increased variance.

Figure 6.14: Estimating only heading in the realistic map. The
two illustrations have different variance for the sensor noise. The
y-axes of the likelihoods have different scales in order to compare
the distributions.

79

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

When this method is going to be run on estimating the full 3 DOF, the artifacts
mentioned will affect all states. The filter will need to have a lot more particles to
have as good an estimation of heading. Figure 6.14 shows a distribution that is not
exactly Gaussian, and when more states need to be estimated and the particles do
not represent the distribution as well, approximating this distribution as Gaussian
might not be accurate. This problem is illustrated in the next section.

6.3 Particle filter simulations

This section runs the generic particle filter algorithm shown in Algorithm 6, de-
scribed and analyzed above, in a more realistic yet simulated run. It uses noise on
measurements and weights them using a more realistic uncertainty. Some important
parameters mentioned earlier and their values in this simulation:

• N = 100: the number of particles. This is not many, but using more means
slower computations and using less means not being able to represent the
distribution well.

• Nm = 100: the number of measurements. This is a lot less than the 1800 rays of
the real sensor. But using more means slower computation. Using less means
less data to use for estimation. The measurements are made synthetically.

• ∆k = 1 s: time step. This decides how much the process noise will spread the
particles, and how much the vessel can move randomly between different time
steps.

The filter is initialized around the initial true state distributed with a Gaussian
with standard deviation

√
3 m,

√
3 m and

√
0.1 rad for x-, y-position and heading

respectively. The particles are given equal weights. But the implementation has
also proved able to handle a uniform distribution over the whole map, given that
enough particles have been used. A constant velocity used a lot in this project is

νk,µ =
[
15 km

h
0 km

h
−2

◦

s

]T
based on the authors assumptions on typical speeds

for a ship. An example of the localization being run is shown in Figure 6.15. An
illustration of all the steps in the algorithm is shown in Figure 6.16 and all steps are
discussed below.

6.3.1 Weighting and importance density

In Figure 6.16 after sampling the particles have weights 0.01, since they have been
given equal weights after the last re-sampling step. As can be seen in Figure 6.17,
the likelihood of different particles is small after weighting. This is probably due
to the fact that many narrow Gaussians are implicitly being multiplied together

80

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

Figure 6.15: The figure shows actual path, estimated path, mea-
surements and particles after re-sampling.

81

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

Figure 6.16: The particles after drawing from the prior, weighting,
normalization and re-sampling. The particles shown have all the

coordinates of the x =
[
E N ψ

]T
, but heading is for simplicity

not displayed.

82

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

to form a very narrow distribution. So a small deviation in measurements gives a
large deviation in likelihood. This also explains why there are only a few particles in
Figure 6.16 that are not approximately zero after normalization. The artifact of only
a few particles having relatively high weight can also be explained as a combination
of artifacts of the sensor model, as mentioned in Section 6.2. In that case, a better
importance density might be very difficult to find, which will be discussed in the
future chapters Chapter 7 and Chapter 8.

Figure 6.17: Likelihood of different particles after weighting.

6.3.2 Normalization and effective sample size

The normalization is done using the logarithmic weights as described in Section 5.6.1.
And the effective sample size is calculated as described in Section 5.6.2. The thresh-
old NT is chosen to satisfy ln(NT) = 0.01, which is very small. This is due to the
small empirical covariance of the particles.

6.3.3 Re-sampling

One problem in this application is particle impoverishment. Figure 6.16 shows a
typical case where only one particle represent most of the distribution. The basic
low variance sampling will often only sample this one particle.

The regularized particle filter can be used to partly solve the problem of particle
impoverishment, see Section 5.5.4 for theory about the regularized particle filter.

83

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

In this implementation, the Gaussian kernel is used and the result is shown in
Figure 6.16 after re-sampling. The figure shows that after re-sampling, there is not
only one particle, but rather that all particle are distributed around the one sampled
particle. But the illustration also shows a problem in this case, where the empirical
covariance is small: the regularized re-sampling barely spreads the particles. The
regularization does not seem to help much in this case, and the case of low process
noise where it is more effective is described in Section 6.1.4.

6.3.4 Point estimation

The method of point estimation used in this implementation is MMSE and is ex-
plained in Section 5.6.5. It was chosen because of its simplicity and used in Fig-
ure 6.15 to find the estimated trajectory.

6.4 Evaluating the simulations

This section describes how well the particle filter behaves using different values of
parameters. To evaluate the simulations, the consistency is tested using ANEES
as described in Section 5.7.1. Finding the empirical covariance using (5.13) and
estimating the position using (5.12) gave the ANEES as shown in Figure 6.18. Notice
that the y-axis is in logarithmic scale, hence these are big numbers. The ANEES
seems to not be inside the confidence interval at all. This indicates that the model
is not correct. It is likely due to the low empirical covariance resulting from only
one particle being very high compared to the others, which makes the particles not
represent the distribution well enough. The RMSE is calculated using (5.15).

Figure 6.18: Data gathered over 5 simulations using N = 100 and
Nm = 100. The lower and upper bound are the bounds of a 95%
confidence interval.

Some things that can be done to get better consistency are

84

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

• Use more particles N : This makes the particles able to cover and represent
the distribution better.

• Use more measurements Nm: Gives more precise point estimation and makes
the method more robust to noise on each measurement.

• Reduce time step ∆k: If the time step is smaller, the vessel cannot move as
much from the last state, meaning less effect of the dynamics uncertainty. The
time step is bounded below by the inverse of the frequency of the sensor.

Using more particles can give a better representations of the true state probability
density. Using N = 10000 particles instead gives Figure 6.19. The particles might
represent the true distribution better, but it is still not represented well. On the
other hand, both the ANEES and the RMSE seem to be reduced. The consistency
is still not very good, as can be seen from noting that the y-axis is still logarithmic
scale. The ANEES is often inside the confidence interval, but peaks far above the
upper bound several times.

Figure 6.19: Data gathered over 5 simulations using N = 10000
and Nm = 100. The lower and upper bound are the bounds of a
95% confidence interval. The x- and y-axis for the particles plot
are set to the same scale as in Figure 6.18.

Reducing the amount of measurements used can have a big impact on the consis-
tency of the filter. Figure 6.20 shows the filter being used with N = 10000 particles
but different amounts of measurements Nm. It shows that increasing the amount
of measurements decreases the RMSE. But more measurements also make the true
state distribution more narrow and increases the ANEES. The case in Figure 6.20c
is similar to the incredibly narrow case in Figure 6.19 but with twice as many mea-
surements, giving a generally higher ANEES. In the case of a Gaussian distribution
having a standard deviation σ, the case of Nm such Gaussians multiplied together
will have a standard deviation of σNm :

1

σ2
Nm

= Nm
1

σ2

σ,σNm>0
=⇒ σNm =

σ√
Nm

.

This explains why the particles seem to form a more narrow distribution as Nm

increases in the figure.

85

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

(a) Nm = 3

(b) Nm = 50

(c) Nm = 200.

Figure 6.20: Data gathered over 5 simulations using N = 10000
particles and different number of measurements Nm. The lower
and upper bounds are the bounds of a 95% confidence interval.
The x- and y-axis for the particles plot are set to the same scale.
Different scales on the z-axes of particle plots is set to be able to
see the shapes.

86

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

An other way of increasing consistency is reducing the time step ∆k. This reduces the
time the vessel is allowed to move between iterations and therefore reduces the noise
on the process model. For a real-time application, it means making the code run with
higher iteration frequency. That is the opposite of what will happen when increasing
either the number of particles or the number of measurements. The running times
of the above mentioned simulations are shown in Table 6.1. These numbers might
be deemed too big for real-time applications, arguing that N = 10000 particles is
too many. Only the simulations with N = 100 particles had an iteration time of
less than ∆k = 1 s. But this one had bad consistency properties. By decreasing ∆k,
the noise on the process is reduced and the particles are less spread after sampling
the prior. Making the method run faster is generally a good idea if possible also
because any zero-mean noise will be averaged over time and it makes less happen
between different time steps. It is also worth mentioning that doing the simulations
in Matlab might make them slower than a C++ implementation.

N Nm Time [s] Time [s
iteration

]
100 100 92 92/(35 · 5) = 0.53

10000 3 3449 3449/(35 · 5) = 19.7
10000 50 6306 6306/(35 · 5) = 36.0
10000 100 8766 8766/(35 · 5) = 50.1
10000 200 14030 14030/(35 · 5) = 80.2

Table 6.1: The time necessary for 5 simulation runs for different
choices of parameters. Each simulation run had 35 time steps. N
is the number of particles and Nm is the number of measurements.

The threshold NT for when to re-sample the particles depends on the amount of
particles. It should be tuned for each set of parameters, but is for simplicity in the
evaluation set to 0.15N , where N is the number of particles used. This results in not
having to re-sample too often for Nm = 3, but ends up re-sampling every iteration
of the particle filter for more narrow distributions. It might not be a problem in the
case of using a better importance density.

The consistency problem can also be dealt with using a better importance density. If
the sampling of points is done using a better importance density, the points are not
spread as much, they will cover the relevant area better by not having many points
in low probability areas and the amount of particles used does not have to be as high.
This would for the particles in Figure 6.20b mean less particles with low weights and
more particles representing the core of the distribution, the higher weighted ones in
the figure. But the sensor model used here is not linearly dependant on the state,
and an optimal importance density, as described in Section 5.5.2, might not be as
easy to find.

87

CHAPTER 6. PARTICLE FILTER ANALYSIS AND SIMULATIONS

6.5 Increasing the uncertainty

One way of getting better estimates is increasing either the variance σ2
hit or the

weight for the uniform noise αrand. Increasing αrand has been done in Figure 6.21.
It shows both a decrease in the RMSE and also a decrease in ANEES.

(a) αrand = 0.1

(b) αrand = 0.9

Figure 6.21: Data gathered over 5 simulations using N = 1000 par-
ticles Nm = 20 range measurements. The lower and upper bounds
are the bounds of a 95% confidence interval. Note that one has a
logarithmic y-axis for the ANEES.

88

Chapter 7

UKF-based importance density

For many problems it can be difficult to find the optimal importance density in the
PF as described in Section 5.5.2. But it can still be possible to approximate it, for
example using an EKF as done in [24]. Using the same sensor model as in Chapter 6,
the measurement model is not only nonlinear, but can be difficult to linearize. This
is because of discontinuities in the relation between measurements and the state,
that is the map. Therefore, the EKF is not well suited for this case. Instead, the
UKF [29] can be used as described in this chapter, resulting in the UPF [64]. The
methods are explained in detail in Section 5.2 and Section 5.8 respectively.

7.1 UPF method

The simulations are running using simplified versions of the models used in Chap-
ter 6. This has been done to remove uncertainties and make the uncertainties more
Gaussian in the hope that it simplifies the tuning of the UKF. More precisely, the
measurements now follow instead of (4.9)

zk = h (xk,nk) = hr (xk) + nk,

where the uniform noise has been removed. σ2
hit is the same as in Section 4.6. This

is because the UKF uses models where the noise covariance needs to be specified
explicitly. It does not conform with the sensor model containing a combination of
a uniform and a Gaussian distribution used earlier. But it is only needed in the
UKF and not the rest of the particle filter. For simplicity of tuning, the map used
to make both measurements and expected values are the same. The process model
is the same as in (4.4).

The UKF implementation used was found online at [30]. The UKF was difficult
to tune due to the computational burden, see an explanation of the parameters in

89

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

Section 5.2. Some choices of parameters are shown in [25, p. 463], explaining that
β = 2 is a good value for Gaussian distributions and κ = 0 is typical. The initial
attempt α = 10−3 was probably a very narrow spread of sigma points because it
gave a lot of track loss. Using α = 1 instead worked a lot better. The question
remains if those are the optimal choice of parameters, which we will come back to
in the next section.

7.2 UPF properties

This section looks at how the UPF works by using the simplified map made earlier,
see Figure 6.1, similar to Section 6.2. Most figures are made by using the SIR
filter until something interesting happens, and the UKF is then used and the results
discussed. These properties will be used further to discuss the behavior of the UPF
in the three DOF case.

7.2.1 Gaussian distribution

The UPF works as expected for the perfectly Gaussian case, see Figure 7.1. Here, the
UKF seems to find the core of the distribution well, and the particles becomes less
spread than in the SIR filter. This makes the actual state distribution represented
better and might enable a reduction in the amount of particles used.

(a) SIR (b) UPF

Figure 7.1: Using UKF to make the importance density.

7.2.2 Tuning

Assuming a Gaussian distribution, the one parameter to tune with regards to the
UKF is α. This has been done for a specific scenario in Figure 7.2. It is difficult

90

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

to know exactly what the distribution should look like, but it should not value
the actual state very low. The best Gaussian importance density is assumed to be
similar to the distribution from the SIR filter. Too small α seems to not spread the
particles enough to see the correct distribution, giving many different possibilities
due to the complexity of the map. And too big an α seems to spread the particles so
much that there becomes several different importance densities a big distance from
each other. α = 1 was also attempted and moved the left Gaussian in Figure 7.2e
farther to the left. As we will see later, the best value of α depends on the situation.

(a) Map and measurements (b) SIR

(c) α = 0.01 (d) α = 0.2 (e) α = 0.5

Figure 7.2: How different values of α affect the distribution and the
importance density.

It is important to remember the assumption of a Gaussian. As mentioned in [64],
the UKF has “[. . .]the limitation that it does not apply to general non-Gaussian
distributions.” On the other hand, this does not mean it cannot be a good approx-
imation.

91

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

7.2.3 Bad importance density

Figure 7.3 shows how the UPF can make a better importance density than the SIR
filter. The SIR filter has relatively few particles in the most important area, where
the UPF has placed all its particles. Contrary to the tuning before, here it seems that
α = 0.5 is better than α = 0.2. It therefore seems that the best tuning depends on
the situation, which is expected but still not good for this state estimation method.

(a) SIR

(b) α = 0.2 (c) α = 0.5

Figure 7.3: Better importance density than SIR.

7.2.4 Diagonal lines

The UPF does not seem to react well to diagonal lines, see Figure 7.4. It does
spread the particles less than the SIR and in the correct region. But the weighting
is difficult to understand. It might be a good distribution, but it would be more
intuitive to have something similar to the core of the SIR distribution. This can be
done by using only p (z | x) in the weighting instead of (5.8).

7.2.5 Corners

The simple map in Figure 6.1 has five outwards pointing corners and one inward
pointing corner. Figure 7.5 shows that the UPF can in some cases approximate the

92

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

(a) SIR (b) UPF

Figure 7.4: How the UPF reacts to diagonal lines.

optimal importance density even though the measurements are not pure Gaussians.
We can notice that the importance density resembles what the SIR distribution
would have looked like if the right and down wall had been all the way to the right.

(a) Map and measurements (b) SIR

(c) UPF (d) Importance density

Figure 7.5: Inward corner affecting the UPF distribution.

Also an outward pointing corner can affect the distribution, shown in Figure 7.6.
The UPF seems to handle this well. The figure also shows what the importance
density does in the weighting by (5.8). Where the importance density is low, the
resulting weight becomes big, as we see from many particles in the UPF distribution
having high values when it has low values in the SIR distribution. This phenomenon
can be viewed on some of the earlier figures, but is very clear in this case.

93

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

(a) SIR (b) UPF (c) Importance density

Figure 7.6: Outwards pointing corner affecting the UPF distribu-
tion.

7.2.6 Noise

Many different types of maps get similar distributions as the ones already described.
But an important artifact is shown in Figure 7.7 where the map once again has been
made to give big changes in range measurements from small changes in state. The
states of the highly weighted particles in the SIR filter are now the ones we want the
UPF to represent. The figure shows how this depends on the tuning. For the case of
α = 0.2 the UKF placed all particles in regions that are away from the actual state.
This is unfortunate and might make the UPF diverge. Using α = 0.5 is better, while
increasing α even more can spread the particles more than necessary.

7.2.7 Using the filter map

Until now, the SIR filter has been run first in order to find the interesting artifacts,
and then the particles from before last iteration has been used in the UKF to make
the importance density. Only a single iteration of the UPF has been run. The UPF
will now run by itself.

Using the UPF in the filter map, described in Section 4.6, seemed to not give any new
insight. Running the UPF on its own can give results like in Figure 7.8. The figure
shows that the particles have been spread in a small and correct area as desired.
But the particles do not seem to represent any intuitive distribution. When looking
closer, the zoomed in figure shows similarities with the SIR weights. It is difficult to
say what weighting is best and what the distribution should look like. But the filter
seems to not spread the particles too much using UPF and it should be optimal
under the assumptions used.

94

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

(a) Map and measurements (b) SIR

(c) α = 0.2 (d) α = 0.5 (e) α = 1

Figure 7.7: How a map with many discontinuities affects the UPF
distribution. α is a tuning parameter of the UKF.

95

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

(a) Map and measurements

(b) UPF (c) UPF zoomed in (d) SIR

Figure 7.8: The distribution during a realistic run. The SIR weights
are using the particles after sampling from the UKF importance
densities, it is just a different weighting.

96

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

7.3 Evaluation

This section evaluates how well the UPF works for the full three DOF. The UPF
was run Nruns = 4 times on the full 3 DOF state and the resulting data is shown
in Figure 7.9b. It shows that the UPF can at least give similar results as with the
earlier particle filter, from now on called the generic particle filter, in Figure 7.9a.
But neither the RMSE or the ANEES seems to be significantly better, and the
distribution might even look like a worse estimate without a clear peak. The sampled
particles are spread a bit less, which is easier to see in Figure 7.10, but not a lot.
This might become better with better tuning of the UKF. The big problem is that
to run only the Nruns = 4 runs, with 35 time steps each, took approximately 15
hours as shown in Table 7.1, making it difficult to tune the UKF. Using N = 1000
particles for tuning was tested instead, but as well as still taking a lot of time, it was
difficult to see differences in distributions with such few particles, see Figure 7.10.

(a) Generic particle filter. Uses Nruns = 5. Figure 6.20a revisited.

(b) UPF. Uses Nruns = 4.

Figure 7.9: Illustrates the difference in distribution, ANEES and
RMSE for the use of the generic particle filter and the new UPF
using N = 10000 particles and Nm = 3 rays of measurements. The
difference in lower and upper bounds of the 95% confidence interval
comes from the difference in number of runs. The scales have been
set equal.

Some run times of different simulations are shown in Table 7.1. The table shows
that the run times of the UPF is even bigger than for the generic particle filter.
The long run times are due to the methods used having to loop over many different
states. The UPF has to for each time step iterate over

97

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

(a) Generic particle filter. Uses Nruns = 5.

(b) UPF. Uses Nruns = 1.

Figure 7.10: Illustration of the difference in distribution, ANEES
and RMSE when using the generic particle filter and the UPF. Pa-
rameters used are N = 1000 particles and Nm = 20 range measure-
ments. The scales have been set equal. The differences in lower and
upper bound of the 95% confidence interval is due to the difference
in number of runs Nruns.

98

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

• N particles. For each particle

• 2(nx + nν + nn) + 1 sigma points, see (5.2). For each sigma point

• calculate Nm measurements using ray tracing.

Notice that nn = Nm here. There is also a lot more happening, but this gives the
time complexity of O(NN2

m). Using many measurements therefore makes the UKF
computationally demanding. This is the case since the sensor model is based on
the physics of the sensor, giving a lot of measurements and doing a lot of compu-
tation to find the expected measurements. This argues that a more efficient sensor
model would be one using fewer measurements, for example using features from the
measured points or doing scan matching.

Which PF N Nm Nruns Time[s] Time
[

s
iteration

]
Generic PF 10000 3 5 3449 19.7 From Table 6.1

UPF 10000 3 4 52984 378
Generic PF 1000 20 5 487 2.8

UPF 1000 20 1 4654 133

Table 7.1: The run times of different particle filters with different
number of particles N , number of measurements used Nm and num-
ber of runs. The time per iteration of the particle filter, that is one
time step, is shown. The number of time steps for each run is 35.
The time per iteration is calculated as t/(35 ·Nruns) where t is the
time a simulation used.

7.4 Beam model considerations

The UPF seems to be a possible solution to finding a better importance density. But
actually finding it in this case has been made very difficult due to the already big
computational demand of the particle filter and the sensor model used. The reason
for finding a better importance density was to not spread the particles in areas of low
likelihood, enabling the use of less particles and use more measurements. This seems
to not be a solution because of the big increase in computation when increasing the
number of measurements.

One suggestion to make the UPF better is reducing the amount of measurements
only for the UKF importance density estimation, but keep using the same amount
for the rest of the PF. This would decrease the run time of the method, but it would
not necessarily make the estimate better, probably the opposite. It would make
the estimates less robust as noise on one measurement will affect the total estimate
more than earlier, arguing that a method for which rays to choose is important.

99

CHAPTER 7. UKF-BASED IMPORTANCE DENSITY

An other suggestion is increasing αrand as done in Section 6.5. This is assumed
to be approximately as good as done there, but not actually solving any of the
problems discussed in this chapter. An other suggestion is analyzing every one of
the 3 dimensions separately to try and figure out how the UPF behaves in the
different dimensions.

The beam model is generally slow as it requires ray tracing for each measurement ray,
and the lidar has a lot of rays. The particle filter is also known to be one of the slower
estimation methods. The closest results to a good real time implementation are the
results in Section 6.5. But it is important to remember the methods discussed so far
are based on a sensor model where all measurements are evaluated independently.
The next chapter tries to mitigate this by using the ICP method which does not
handle measurement independently.

100

Chapter 8

ICP-based importance density

Instead of using every beam of a lidar scan independently, all rays can be used
together in scan matching. A scan is a set of measurements taken in succession,
often represented as a point cloud. Scan matching is generally the process of finding
the rigid transformation of a scan that best aligns it with some other data. This
data can have different types, for example a map or an other scan. If the map itself
is a point cloud, or the matching is done to an other scan, the process is also called
point set registration, where the transformation between two different point clouds
is found that optimizes a certain metric. The rigid transformation found when a
scan is matched to a map, given that the scan was made in that map, can be used as
an estimate of the pose of the scan in that map, and therefore useful in localization.
The ICP method, see Section 5.9, is a method that finds such a transform.

8.1 ICP convergence analysis

8.1.1 Point cloud from occupancy grid

Figure 6.1 revisited.

The map in Figure 6.1 is used to analyze how well the ICP
works. Making this occupancy grid into a point cloud can
be done in many ways. Three ways will be described and a
short analysis of the differences is made.

A quick solution is to simply let the center of every occupied
cell be a point and then do ICP with the resulting point cloud
as the fixed set. This has been done in Figure 8.1 which shows
how a quite big deviation after sampling a particle filter can
converge close to the correct state. But it also shows that

101

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

the real measurements do not actually coincide with the map
points and can result in the estimated state being farther to the sides where there
are more points, farther toward the bottom of the figure. Since the measurements
are actually at the sides of the occupied cells in these simulations, placing points
on the sides of the occupied cells might be advantageous. This will also enable
the use of more points for better estimation. In these simulations there have been
no noise on the measurements, but the states have been spread quite a bit to see
what happens. Using the center as point gave the convergence of particles shown
in Figure 8.2. We see that many particles get close to the actual state, while other
seemingly have converged to other local minima. This is also the case for the other
ways of creating point clouds, and ways to solve this will be discussed.

Figure 8.1: The center of occupied cells used as point cloud.

The three different ways of making a point cloud from an occupancy grid discussed
here are shown in Figure 8.3 with states of different situations. The cases have
been run on different realization of motion noise. Corresponding RMSE values are
shown in Figure 8.4 and are given from the ICP implementation in Matlab. It
seems the number of different local minima is visible in the RMSE graphs, where
the RMSE seem to take one of several values depending on the particle. See for
example mainly 3 local minima in Figure 8.2b seem to correspond to 3 different
values of RMSE in Figure 8.4a, both figures made from the same run. All maps
seem to have the problem of the type of minimum shown in Figure 8.3b. These give
the highest RMSE values and are seemingly fixable by using more measurements or
more points in the map, this tuning will be discussed later. Using points on each
corner of each occupied cell as well as one on each side of each occupied cell gives the
map in Figure 8.3a. That figure shows the case of a local minimum that is special
for that map. Since the map is no longer thin, but has a thickness of a cell width,
the ICP runs into local minima close to the actual state. This is also shown in the
RMSE values in Figure 8.4b. More information can be used to solve this. By only
placing points on the sides between occupied and free space, the map becomes the

102

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) After sampling, that is propagating
the particles with a motion model.

(b) After ICP.

Figure 8.2: States converging using ICP.

one shown in Figure 8.3c. This map type seems to give less local minima than the
others and has a reduced RMSE. It is also tunable with the amount of points to
place on the sides.

8.1.2 Tuning the ICP

Some tunable parameters in the simulation regarding ICP are:

• The number of points the map consists of.

• The tolerance of the ICP method.

• The maximum number of iterations for the ICP method.

• The number of measurements used, Nm.

• The spread of the possible states or the noise of the motion model, Σν .

An easy fix to the problem of the ICP converging to states far from the actual state
is to simply not spread the particles a lot, but have all particles close to the true
state. This is obviously not a solution, as the motion noise is in real life not tunable
and is therefore disregarded here. But the motion noise is still set very high in order
to analyze possible outcomes.

The local minima mentioned earlier and viewed in Figure 8.3b did not disappear by
the use of more points in the map, lower ICP tolerance or increasing the number

103

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) Points on corners and each side

(b) Point at center (c) Points along sides
between occupied and free
space

Figure 8.3: Different ways of creating point cloud from occupancy
grid for each occupied cell. The figure also shows some different
types of local minima and lastly how a good convergence should
look.

104

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) Point at center (b) Points on corners
and each side

(c) Points along sides
between occupied and
free space

Figure 8.4: The RMSE using different ways of creating point cloud
from occupancy grid for each occupied cell.

of ICP iterations. But increasing the number of measurements from Nm = 20 to
Nm = 100 helped and gave results in Figure 8.5. The maximum RMSE seems
to have been reduced compared to earlier, and the particle with highest RMSE is
shown in Figure 8.6a. The ICP method does not seem to give many groups of
converged particles. This does not solve the problem, since different realizations can
still give convergence toward approximately the same states as earlier, where the
measurement point cloud is rotated approximately 45◦ relative to the actual cloud.
But it does not happen as much when more measurements are used. Increasing the
spread of the particle more makes more particles have that problem. But 45◦ is a
big angle and the problem can be omitted by not artificially spreading the particles
as much.

Figure 8.5: Particle convergence and RMSE when increasing the
number of measurements.

A new problem occurs where the ICP gives a certain tail of particles close to the
actual state. We see from the particle with highest RMSE, in Figure 8.6a, that it
does not seem to be a problem of a local minimum, but rather that the ICP did
not converge. By increasing the number of maximum ICP iterations, lets call it
Niter, from the default Niter = 20 to Niter = 100, this problem was removed and the

105

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) Possible particle when increased
Nm.

(b) Typical particle when increased
maximum number of ICP iterations.

Figure 8.6: How increasing the number of maximum ICP iterations
might affect the estimation.

particles with highest RMSE becomes similar to Figure 8.6b. The RMSE is now
similar to Figure 8.7a.

The other parameters to tune enable a reduction in RMSE and more precise conver-
gence. Let Nmap be the number of points on each side of an occupied cell, Nmap = 3
has been used earlier. The tolerance of the ICP method is a vector of two values,
with Euclidean distance threshold for the translation and a rotation threshold in
degrees respectively, the default is (0.01, 0.05). The illustrations in Figure 8.7 use
the same actual state, measurement and particles before the ICP is done. When
the tolerance has been reduced in Figure 8.7b, the RMSE is also reduced and the
particles become less spread. This is as expected given that the maximum number
of ICP iterations Niter is big enough. When Nmap is increased in Figure 8.7c, the
RMSE is also reduced, but more spread than when the tolerance is decreased. Com-
bining these in Figure 8.7d gives a big reduction in RMSE, and the particles are all
very close to the actual state. We can see from Figure 8.8 what the resulting map
looks like and how big a transformation the method handles and still converges very
well. Increasing Niter did not seem to make any difference, arguing that it is big
enough for all particles to converge within the mentioned tolerances. This tuning
makes it seem like it is possible to get the estimates as accurate as desired, given
that there are no local minima.

106

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) Nmap = 3 and
the tolerance is
(0.01, 0.05).

(b) Nmap = 3 and
the tolerance is
(0.001, 0.005).

(c) Nmap = 20 and
the tolerance is
(0.01, 0.05).

(d) Nmap = 20 and
the tolerance is
(0.001, 0.005).

Figure 8.7: The RMSE using Nm = 100 and Niter = 100.

Figure 8.8: A typical convergence using Nm = 100, Niter = 100,
Nmap = 20 and a tolerance of (0.001, 0.005).

107

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

8.1.3 Different maps

It is interesting to see how the ICP converges when using different maps. Similarly
as seen in Figure 6.11, Figure 8.9 shows some different maps and a particle and
convergence with relatively high RMSE value. All of these maps can give conver-
gence to a state with heading that is approximately 45◦. But it is in the figures
only showed in Figure 8.10d where the top particles converged to approximately
two different states with high heading error. It seems like the map in Figure 8.9d is
the one that is most sensitive to this kind of local minimum. Figure 8.9b and Fig-
ure 8.9c gave RMSE and convergence that was similar to the results after the tuning
in the simpler map. But looking closely at Figure 8.9a we can see that one of the
particles with high RMSE values has converged to what looks like a local minimum,
where the orange points are not overlapping the teal points. The same is true for
Figure 8.9d. The local minima are also evident from Figure 8.10a and Figure 8.10d
for the rotated and the noisy map respectively. They show a bigger RMSE value for
the minima that do not coincide with the actual state. The existence of such local
minima are expected and lies in the nature of the ICP method.

8.1.4 Measurement noise and realistic map

Adding Gaussian measurement noise, and not the uniform noise, with variance
σ2
hit = 0.7 as found in Section 4.6.1, gave the results shown in Figure 8.11. The

state after ICP convergence is very similar for all particles, and all particles gave
approximately the same RMSE which is high compared to when different maps were
used in Figure 8.10. The higher RMSE is expected since it becomes impossible to
align the measured point cloud perfectly to the map. Compared to the spread of
the particles after sampling, the resulting error after convergence is small, not only
in the figure but for more runs of the simulation. That said, there is a consistent
error between the particles after convergence compared to the actual state, which
is due to the fact that the actual state does not minimize the objective function of
the ICP method.

The more realistic map in Figure 4.2 shows a lot of areas of free space that is not
necessarily free. These areas make the resulting point cloud contain many more
points than necessary. They are removed by making free space that is covered by
occupied space into occupied space, see Figure 8.12.

Figure 8.13 shows that local minima can occur for big errors in heading angle also for
the realistic map. This can be seen from some particles having high RMSE values
in Figure 8.13a which correspond to the particle far away from the actual state in
Figure 8.13b. Zooming in, we see that the particles do not seem to converge towards
the actual state, but gets an error because of the noise, as described earlier. In the
zoomed in Figure 8.13b there is not just one state the particles have converged to,

108

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) Rotated map (b) Structured noise map

(c) Curved occupied space (d) A lot of noise in the map

Figure 8.9: Different maps and some converged states with high
RMSE values from Figure 8.10. These do not represent the type
of local minimum discussed before, where the heading is approxi-
mately 45◦.

109

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) Rotated map (b) Structured
noise map

(c) Curved
occupied space

(d) A lot of noise
in the map

Figure 8.10: The RMSE from one realization of ICP on N = 2000
particles using different maps.

Figure 8.11: How the ICP converges with Gaussian measurement
noise.

(a) Map as occupancy grid (b) Map as point cloud

Figure 8.12: The map in Figure 4.2 after removing free space that
is covered by occupied space.

110

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

but several. This property needs to be taken into account when the ICP method is
used further.

(a) RMSE zoomed
in

(b) Particles
zoomed in (c) Map and a single ICP convergence

Figure 8.13: Using the realistic map.

When also including approximate uniform noise, the ICP method consistently gives
bad estimates as shown in Figure 8.14a. There we see many measurements being
placed inside free space of the occupancy grid and far from the map point cloud.
These measurements can make the ICP method converge far from the actual state.
But the Matlab implementation used enables the use of outlier detection in the
ICP, and the resulting convergence is seen in Figure 8.14b. Points that are far from
the map point cloud are then treated as outliers for each iteration of the ICP. The
resulting state is then consistently close to the actual state.

8.2 From ICP to importance density

One way of using ICP to make an importance density is by using the model

xk = f icp (f(xk−1,vk−1), zk,m) + nicpk , (8.1)

where x′k = f(xk−1,vk−1) propagates the state through the process model, the
function xicpk = f icp (x′k, zk,m) represents the ICP method using the measurements

zk and the map m and nicpk is noise. This means using the ICP method for each
particle. But a lot of particles will end up in the same states or very close to one
another after the use of the ICP method. That is why one can use less particles only

111

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) ICP without outlier detection (b) ICP with outlier detection

Figure 8.14: Illustration of how the ICP method is affected by
outliers and how the use of outlier detection can fix the problem.

to find the importance density and then use all particles in the rest of the particle
filter. A benefit from this is that the ICP method can use more measurements than
the rest of the particle filter, giving better convergence, while not increasing the run
time as much.

The noise nicpk in (8.1) depends on many factors, such as how many measurements
Nm are used and also the noise on both the process and the measurement. It has
been estimated for the simulations in Figure 8.15. From these figures, the noise is
approximated as Gaussian. We can see a lack of symmetry about zero for all the
plots and also a sort of plateau in the x- and y-coordinates, but these are assumed
to be specific to the map. The distance of three standard deviations is used which
should give a 99.7% confidence interval:

Σicp =

(

0.3
3

)2
0 0

0
(

0.3
3

)2
0

0 0
(

0.004
3

)2

 .
The variance has been set a bit high in order to handle the fact that the noise is not
really Gaussian and spread the particles more.

To create the importance density, a mix of Gaussian distributions has been chosen.
This is because the noise is approximately Gaussian and that the ICP can converge
to different states xicpk . First, K ICP states are sampled from the PF distribution
from last time step giving xik−1, i = 1, . . . , K. These are propagated through the
process model giving xik = f(xik−1,v

i
k−1). Then the ICP method is run on each ICP

state, giving xicp,ik = f icp (xik, zk,m). The importance density becomes

q(xk | xk−1, zk) =
K∑
i=1

π̄iN (xk | xicp,ik ,Σicp), (8.2)

112

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

Figure 8.15: Histograms of the error of the state made by propagat-
ing the actual state from last iteration through the process model
and using the ICP method. This was done for 50 runs with 32 time
steps, giving 50 · 32 = 1600 noise realizations for each coordinate of
the state. Nm = 1800 measurement were used for the ICP method.

where N (xk | xicp,ik ,Σicp) is a Gaussian distribution with mean xicp,ik and covariance
Σicp, π̄

i is the normalized πi. πi is the weight for each Gaussian chosen to be

πi =
1

ri
P (xk = xicp,ik | xk−1),

where ri is the RMSE value from the ICP method and P (xk = xicp,ik | xk−1) is the
process model evaluated at the state after the ICP convergence.

When using this importance density, the particles were spread less than in the
original particle filter. But the particle distribution once again got the problem of a
few particle getting high weights and most particle getting very low weights. Better
results were achieved when the weighting did not use the exact importance density
in (8.2), but weighted the particles only using the π̄i:

q(x
{ip}
k | x{ip}k−1, zk) = π̄i. (8.3)

This means sampling with (8.2) and weighting with (8.3). This is only a trick that
gave better results and might be difficult to motivate theoretically. The particle
filter weight update equation in (5.8) becomes

w̄
{ip}
k ∝ w̄

{ip}
k−1

p
(
zk | x{ip}k

)
p
(
x
{ip}
k | x{ip}k−1

)
π̄i

,

where π̄i is the Gaussian mixture weight of the ICP state xicp,ik with index i ∈
{1, . . . , K} and ip is the particle index.

113

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

8.3 Evaluation

Using the ICP method to make an importance density as described in Section 8.2
including both the approximately uniform noise and the Gaussian noise gave the
results in Figure 8.16. The filter still seems to have the problem of spikes in the
ANEES with really high values. And it can also go higher than in this figure, which
is shown in Figure 8.18. But compared to the implementations earlier, the RMSE is
decreased. This is likely due to the high precision and accuracy of the ICP method,
and the use of a lot of measurements, some properties of which were described in
Section 8.1.

Figure 8.16: ANEES and RMSE for the particle filter after one run
of using the ICP method to make the importance density. 1800
measurements were used in the ICP method and Nm = 3 measure-
ments were used in the particle filter with N = 1000 particles.

At some time steps the particle distribution can have a big empirical covariance
while in others it might be very small. This has been visualized in Figure 8.17. The
big empirical covariance in Figure 8.17a will for the same error as in Figure 8.17b
give a smaller NEES and vice versa. The jumps in empirical covariance can explain
the spikes in the NEES in Figure 8.16.

The reason that the particle distribution can get such a low empirical covariance as in
Figure 8.17b might be a combination of properties of the sensor model and the map.
Section 6.2 discussed some of these properties in one dimension, namely heading. It
showed that the likelihood could become quite narrow by introducing noise, and how
different types of noise could affect the distribution. Taking into account that the
estimation is now in three DOF and not just one, and fewer particles are used, could
explain why the filter is even more sensitive to noise. It is now sensitive to the noise
in all three DOF and not just one. In that case, trying out different importance
densities, as tried here, will not give much better results with the same amount of
particles. A possible solution is to make changes to the sensor model or the map
used.

The time used by the method is estimated in Table 8.1. We can see that it is
faster than the UPF in Table 7.1 and slower than the ordinary particle filter. The
consistency results and errors are discussed next.

114

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

(a) Big empirical covariance (b) Small empirical covariance

Figure 8.17: Two different particle distributions from the same run
of the particle filter with ICP used to make the importance density.
The x- and y-axis of the two figures have the same scale.

Which PF N Nm Nruns Time[s] Time
[

s
iteration

]
ICP PF 1000 3 5 1279 8.0

Table 8.1: Te run time of the particle filter using ICP to make an
importance density, where N is the number of particles used, Nm is
the number of measurement used and Nruns is the number of times
the simulation is run. 1800 measurements were used in the ICP.
The time per iteration of the particle filter is shown. The number
of time steps for each run is 32. The time per iteration is calculated
as t/(32 ·Nruns), where t is the time a simulation used.

115

CHAPTER 8. ICP-BASED IMPORTANCE DENSITY

The consistency results after running the simulations Nruns = 5 times are shown in
Figure 8.18. They show that the ANEES can become quite big at the same time as
the RMSE is low. This is likely due to the same reasons as mentioned above, the
small empirical covariance. One way to solve this problem, when the importance
density is made using the ICP method, is to force the particles to a Gaussian dis-
tribution with a set covariance around the mean, instead of the regularization step.
This would not change the spread of the particles, but it would artificially decrease
the ANEES. This is possible because the ICP convergence does not depend on the
weights of the particles and is very consistent when many measurements are used.
It is on the other hand not a good solution, since it only fixes a symptom and not
the problem of bad representation of the actual state probability distribution. In
that case, the reasons for using a particle filter disappear and one might instead use
a Kalman filter or an other mono-modal method.

Figure 8.18: ANEES and RMSE after Nruns = 5 runs of the simu-
lations using the ICP method to make an importance density. 1800
measurements were used in the ICP method and Nm = 3 measure-
ments were used in the particle filter with N = 1000 particles.

116

Chapter 9

Discussion

This chapter discusses different topics related to the project.

There is no definitive best way of going forward from this project. Several methods
within the given delimitations have been attempted and analyzed, non of which
were ideal. But these analyzes give insight for what to embark on. Analyzes of
the workings of the particle filter, the UPF and the ICP method with the use of a
physically based sensor model in an occupancy grid has been made. These will be
discussed and compared.

9.1 Analyzes and evaluations

9.1.1 Generic particle filter

The particle filter analysis, in Section 6.2, is not only useful for implementations of
the particle filter. The particle filter can be viewed as a way of showing the state
probability distribution, at least in the ideal simulations without noise. Given that
one lidar ray has a low range, the state of the vessel could not possibly be in a state
that would give any longer range. In this sense, the analysis described a relation
between the measurements and the state, via the map. This can for example be
useful for the developments of a Kalman filter. That said, the Kalman filter would
not solve any problems of the sensor model, but this suggestion will be discussed
later.

The analysis of the particle filter gave mostly expected results. For example, when
one ray of the lidar passes a corner, the measurement get a sudden increase in range.
The particle placed a bit off such that the expected measurement is smaller again will

117

CHAPTER 9. DISCUSSION

get low probability values, this is shown in Figure 6.6b. Also how the distribution
was affected by changes in the map and increase in uncertainty was mostly expected.
They were expected based on the sensor model used and its dependency on every
single measurement.

A property that was not expected was the behavior of the particle filter in the full
three DOF with fewer particles. The empirical covariance would become very small,
only leaving one particle with a high value. It was initially thought that this was
because many Gaussian distributions were multiplied together, one for each ray of
the lidar. But as mentioned in Section 8.3, when using fewer measurements and a
narrower importance density, the particle distribution could still get the problem of
low empirical covariance. The best explanation found is that it is because of the
noise mentioned in Section 6.2, but affecting all three DOF, and the resulting lower
amount of particles per DOF.

Even though the evaluation of the particle filter showed a run time that was too
high and difficulties with high ANEES, the filter might be usable. When it comes to
the run times, they are assumed to be reduced quite a bit when the method is run
in an other programming language or after explicitly trying to make the code more
efficient. When it comes to the high ANEES, it could partly be mitigated using
synthetically high uncertainty, as shown in Section 6.5. Of all the particle filters
implemented in that chapter, that last section probably describes the best one.

9.1.2 UKF-based importance density

The analysis of the UKF-based importance density, in Section 7.2, gave ambiguous
results. On the one side, using a simple map and no noise gave much less spread of
the particles toward the correct state, exactly the property of a better importance
density. The importance density in the figures also seemed to represent a distribution
of where the vessel was likely to be. On the other side, the resulting distribution after
weighting was rarely intuitive and there was rarely a distinct peak in likelihood at
the actual vessel state. This indicates that there might be better ways of weighting
the particles, maybe by increasing the uncertainty as done in the generic particle
filter.

The biggest problem of the UPF is the run time. The method scales badly with
the number of measurement, and with a sensor model using many measurements,
this gives long run times. The results in Table 7.1 show that the UPF used well
over ten times as long as the generic particle filter did, making it both bad for
implementations and not least difficult to work with in simulations. The reasons
for the method being slow and suggested solutions were discussed in more detail in
Section 7.3 and Section 7.4.

118

CHAPTER 9. DISCUSSION

9.1.3 ICP-based importance density

An important part of the localization method is the outlier detection. This is where
the measurements that do not give a lot of information, or measurements that are
noisy, are not used for estimation. This was not done in all particle filters, but was
done in the ICP method, see Figure 8.14. The ICP method worked a lot better with
outlier detection and the localization method in general could have the same benefit.
If outlier detection was used more in the particle filter, the distributions might look
a lot nicer with lower ANEES. This would also fix any problem of measurements
hitting on top of the quay, see Figure C.2, or on buildings in the environment instead
of the edge of the quay.

The analysis of the particle filter using the ICP method to make an importance
density, Section 8.1, is also not only useful for the particle filter. It looks at how the
ICP method convergence in the occupancy grid. This can also be useful when the
ICP method is used as a sensor model, or equivalently the measurement function.
If it is for example used in a Kalman filter, the method will not be exempt from
converging to wrong states, which is therefore an important aspect to take into
account when designing the filter. This once again goes back to the analyzes not
only analyzing the particle filter, but also the relation between the sensor, or the
ICP method in this case, and the state via the map.

The act of ray tracing is slow and the physically based sensor model gives a lot of
measurements. One possible solution is to use an other sensor model, for example
the ICP method. The ICP method gives a single state out, which makes a possible
model a linear dependency on the state. If this had been done in the particle filter,
the usage of the UKF to make an importance density would go much faster. Since
the relation between measurements and state is linear, it might enable the use of a
Kalman filter. The benefit of that is that it does not have to use a lot of particles
but only gives a single estimate, making it possibly faster than all methods tested
in this project.

9.2 Comparison

All methods seemed to have similar consistency properties measured with ANEES.
It is assumed that this is because of the same sensor model is being used for the
weighting. Different parameters could be used to affect the ANEES with the different
methods, but non gave ideal results. It is therefore difficult to say which method
was best in this regard.

The method that gave the smallest RMSE was using the ICP method to create
an importance density. While the UPF and the generic particle filter had similar

119

CHAPTER 9. DISCUSSION

RMSE, the use of many measurements in the ICP method placed the particles closer
to the true state.

The method that used the least amount of time was the generic particle filter. It
only uses the process model as an importance density, which takes less time than
what the UKF and the ICP uses in the creation of importance densities. Especially
the UPF used a lot of time. This is mostly relevant for real time implementation,
but also for the time it takes to do simulations.

The method that did best in total seems to be the generic particle filter. More
specifically, the version that weights the particles with an increased uncertainty, see
Section 6.5. By increasing the uncertainty, the ANEES was decreased to a more
appropriate level. The RMSE was not so bad as too lose track and the time the
method used was low compared to the other methods. This reduction in ANEES
shows that the tuning of parameters is important for the performance of localization
methods.

9.3 Importance of modeling and tuning

It is important to know how well the models match reality. This requires a lot of
experimentation and gathering of data for both the vessel and each sensor. The data
from these experiments can then be used to establish how accurate for example the
process model is. The lidar data can be useful for modelling how many rays miss,
the precision of hits, etc. (See Section 4.5.3 for a list error types and references.)

Good tuning of the methods is very important for good performance. This project
has attempted to see what happens when different parameters are tuned, but not
all possibilities have been studied. For example the ICP-based particle filter could
use less measurements, instead of 1800 use for example 100. This would reduce the
run time of the method and probably get it closer to the time the generic particle
filter used. If the method kept giving a low RMSE for the vessel state, it had likely
taken over as the best method. Also the increasing of the uncertainty for weighting
the particles could for the UKF-based method and the ICP-based method have been
tested, in which case the ANEES would likely decrease an reach a similar level as
the generic particle filter. The reason for not testing all possibilities is both the lack
of time and that the focus of this project is on finding a way to go forward.

120

CHAPTER 9. DISCUSSION

9.4 Limitations

The delimitations of this project can be regarded as limitations. The delimitation
to the use of a particle filter might be unnecessary. One might argue, based on the
figures in this thesis, that the property of handling multi-modality was not used. It
might also be difficult to see how multi-modality is necessary if the initial position
is known, especially if a faster method is run so fast that the process uncertainty
gets small. On the one hand, the ICP method gave convergence to what seemed
to be several local minima. This was on the other hand taken care of by tuning of
different parameters such as the amount of measurements used. If the method does
not have to represent multi-modal distributions, it might be possible to use other
methods than the particle filter which will decrease the run time significantly. For
localization in general, the case of ambiguities in the state might happen, and it is
important to take that into consideration.

Only using a single sensor model is a limitation to this project. Only the physically
based sensor model described in Section 4.6 was used, which does not give a clear
understanding of pros and cons with using different sensor models. For example the
likelihood fields method mentioned several times in Chapter 2 could be of interest.
The ICP method has on the other hand been analyzed and to a certain degree
compared to the physically based sensor model. The use of a physically based
sensor model is good for genera lidar localization analysis, but might not be ideal
for implementation.

This study was also limited to using an occupancy grid as a map. The flexibility of
the map with what structures it can represent is good, and the map can even be made
by lidar data, then edited manually, if desired, before it is used for localization. This
also enables the use of different maps for different situations. It could be interesting
to try similar methods in a 3D occupancy map or a feature-based map. Using a
3D map, it would be possible to establish the difference in performance when for
example roll is estimated versus assuming only three DOF for the vessel. The lidar
measurements hitting above the quay would also not be as big of a problem since the
map would explain where there are structures. The buildings and other structures
on land could then be used in a better way for localization. Using a feature-based
map would for example reduce the amount of measurements from the number of
rays used to the number of features detected. This was once again not done because
of limitations in time and comprehensiveness of the project.

Some other limitations are that the methods were only run on simulated data and
the analyzes are tightly connected to how well the process and the sensor is modelled.
For example the model of the dynamics, the process model. The uncertainties on
the vessel velocity might be a lot smaller than what was used in the simulations.
In that case, some of the filters with high ANEES would get a lower ANEES in the
real application. The properties analyzed in this project are on the other hand more

121

CHAPTER 9. DISCUSSION

dependant on the workings of the methods and not necessarily the parameters used.

Lastly, this project has not explicitly compared pure localization to SLAM. Since
the application of the methods is an autonomous ferry, where the map is usually
known, it might not be necessary with SLAM. SLAM is on the other hand a more
flexible method with regards to where it can work, so that the map does not have
to be made prior to deployment of the vessel. The vessel would anyway need an
understanding of the changing elements of the environment, especially other boats,
for this to be employed safely in the water passage, even if this is not done with the
use of SLAM.

122

Chapter 10

Conclusion and future work

10.1 Conclusion

The localization of an autonomous ferry, using a lidar and a map of the environment,
with such accuracy that it can dock is seemingly possible. This has more precisely
been done in simulations with a physically based sensor model, a particle filter and
an occupancy grid.

The available sensor data can be utilized in different ways. While using the physi-
cally based sensor model gave the ability to analyze the problem at hand, the use of
ICP resulted in lower RMSE. Some of the analyzes conducted in this project have
seemingly not been done before. The analysis of the ICP method shows that the
ICP method might in itself be a good sensor model, and its linear dependence on
the state makes it compatible with more estimation frameworks than the physically
based sensor model.

The generic particle filter can be simple to implement, but can simultaneously be
difficult to get good performance from. The particle filter using the motion model,
the UKF or the ICP method to make an importance density all gave good tracking,
but also unexpectedly high ANEES. This is concluded to be because of the sensor
model in combination with the occupancy grid. The problem is solved, at least to
a certain degree, by the increase of uncertainty when weighting the particles. Using
the motion model as importance density gave faster run times, while using ICP to
make an importance density gave low RMSE values.

These observations can together be used to find a way to go farther with localization
of the vessel, resulting in a ferry that can dock autonomously.

123

CHAPTER 10. CONCLUSION AND FUTURE WORK

10.2 Future work

Some suggestions of future work are:

• Use the ICP method as the sensor model. This gives the benefit of a linear de-
pendency on the state, enabling the use of a Kalman filter. Even if the method
is not ideal with regards to not representing multi-modal distributions, it can
still suffice as a benchmark and also supplement other aspects of autonomous
ferry development.

• Localize in changing environments. The aspect of other ships moving in a
harbour is as big of a change of the environment as cars moving in a parking
lot, mentioned in Section 2.8. An implementation of such a method would
combine the freedom of manually designing the occupancy grid with the a
robustness to changes in the environment.

• Localize in 3D. How important it is to do 3D localization will depend on how
much the roll and pitch affect the estimation , and this will have to be analyzed
in order to make a decision on 2D versus 3D.

• Experiment to get good sensor models. Some experiment suggestions for an-
alyzing the process model, requiring known vessel velocity and pose, are:

– Drive the vessel at a constant velocity. Use both zero yaw rate and non-
zero yaw rate. Also run with and without speed in the sway direction.

– Drive the vessel with a varying velocity.

– Drive the vessel in waves and wind.

For modelling the sensor, it will be useful to place the sensor a fixed distance
from a wall and see how the measurements represent that wall.

• Implement the generic particle filter used in this project on the vessel. It is
then suggested to also do the experiments mentioned above and find how well
the models fit reality.

124

Bibliography

[1] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A Tuto-
rial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking.
IEEE Transactions on Signal Processing, 50(2), 2002.

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-Squares Fitting of 3-D
Point Sets. IEEE Transactions on pattern analysis and machine intelligence,
PAMI-9(5), 1987.

[3] Autoferry, NTNU. Autoferry. https://www.ntnu.edu/autoferry, mar 2019.

[4] Abraham Bachrach, Ruijie He, and Nicholas Roy. Autonomous Flight in Un-
known Indoor Environments. International Journal of Micro Air Vehicles,
1(4):217–228, dec 2009.

[5] T Bailey and H Durrant-Whyte. Simultaneous localization and mapping
(SLAM): part II. IEEE Robotics Automation Magazine, 13(3):108–117, sep
2006.

[6] Yaakov Bar-Shalom, X.-Rong Li, and Thiagalingam Kirubarajan. Estimation
with Applications to Tracking and Navigation. John Wiley & Sons, Inc., 2001.

[7] Stuart Bennett. Nicholas Minorsky and the automatic steering of ships. IEEE
Control Systems Magazine, 4(4):10–15, 1984.

[8] Paul J. Besl and Neil D. McKay. A Method for registration of 3-D shapes. In
Paul S. Schenker, editor, SPIE Sensor Fusion IV: Control Paradigms and Data
Structures, volume 1611, pages 586–606. International Society for Optics and
Photonics, apr 1992.

[9] Morten Breivik and Jon-Erik Loberg. A Virtual Target-Based Underway Dock-
ing Procedure for Unmanned Surface Vehicles. IFAC Proceedings Volumes,
44(1):13630–13635, jan 2011.

[10] Claus Brenner. Vehicle Localization Using Landmarks Obtained by a LIDAR
Mobile Mapping System. IAPRS, XXXVIII, P, 2010.

[11] C Cadena, L Carlone, H Carrillo, Y Latif, D Scaramuzza, J Neira, I Reid, and
J J Leonard. Past, Present, and Future of Simultaneous Localization And Map-
ping: Towards the Robust-Perception Age. IEEE Transactions on Robotics,
32(6):1309–1332, 2016.

125

https://www.ntnu.edu/autoferry

BIBLIOGRAPHY

[12] José Luis Blanco Claraco. A tutorial on SE(3) transformation parameterizations
and on-manifold optimization. Technical report, Universidad de Málaga, 2019.

[13] Nicholas Dalhaug. SLAM for Autonomous Docking using Lidar(Not published,
specialization project). NTNU, Trondheim, 2018.

[14] Raffaello D’Andrea and Assistants. Lecture notes 10 and 11, Recursive estima-
tion 151-0566-00L at ETHZ, 2018.

[15] F. Daum. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and
Electronic Systems Magazine, 20(8):57–69, aug 2005.

[16] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential Monte
Carlo sampling methods for Bayesian filtering. Statistics and Computing,
10(3):197–208, 2000.

[17] H Durrant-Whyte and T Bailey. Simultaneous localization and mapping: part
I. IEEE Robotics Automation Magazine, 13(2):99–110, 2006.

[18] Ethan Eade. Lie Groups for 2D and 3D Transformations. http://www.

ethaneade.org/lie.pdf, 2017.

[19] A. Elfes. Occupancy Grids: A Stochastic Spatial Representation for Active
Robot Perception. In Proceedings of the Sixth Conference on Uncertainty in
Artificial Intelligence (UAI1990), 1990.

[20] Daniele Fontanelli, Luigi Ricciato, and Stefano Soatto. A Fast RANSAC-Based
Registration Algorithm for Accurate Localization in Unknown Environments
using LIDAR Measurements. In 2007 IEEE International Conference on Au-
tomation Science and Engineering, pages 597–602. IEEE, sep 2007.

[21] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons, 2011.

[22] Daniel Frank, Andrew Gray, Kevin Allen, Tess Bianchi, Kipling Cohen, Daniel
Dugger, Jake Easterling, Matthew Griessler, Sylvie Hyman, Matthew Lang-
ford, Ralph Leyva, Lucas Murphy, Jason Nezvadovitz, Anthony Olive, Blake
Peterson, David Soto, Forrest Voight, Daniel Volya, Timothy Williams, Eric
Schwartz, Carl Crane, Ira Hill, and Shannon Ridgeway. University of Florida:
Team NaviGator AMS. In RobotX Forum, 2016.

[23] Christian Gentner, Siwei Zhang, and Thomas Jost. Log-PF: Particle Filtering in
Logarithm Domain. Journal of Electrical and Computer Engineering, 2018:11,
mar 2018.

[24] Fredrik Gustafsson. Particle filter theory and practice with positioning appli-
cations. IEEE Aerospace and Electronic Systems Magazine, 25(7):53–82, jul
2010.

[25] Fredrik Gustafsson. Statistical sensor fusion. Studentlitteratur, 2:1 edition,
2010.

[26] Eiliv Hägg and Yingzhi Ning. Map Representation and LIDAR-Based Vehicle
Localization(MSc thesis). Chalmers, 2016.

126

http://www.ethaneade.org/lie.pdf
http://www.ethaneade.org/lie.pdf

BIBLIOGRAPHY

[27] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-
fram Burgard. OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees. Autonomous Robots, 2013.

[28] Esa Jokioinen. AAWA Position Paper: Remote and Autonomous Ships - The
next steps. Technical report, Rolls-Royce, 2016.

[29] Simon J. Julier and Jeffrey K. Uhlmann. New extension of the Kalman filter
to nonlinear systems. In Ivan Kadar, editor, SPIE. 3068, Signal Processing,
Sensor Fusion, and Target Recognition VI, page 182, jul 1997.

[30] Simon J. Julier and Rudolph van der Merwe. ukf.m. https://www.cs.cmu.

edu/%7Emotionplanning/papers/sbp_papers/kalman/ukf, apr 2019.

[31] Rickard Karlsson and Fredrik Gustafsson. Bayesian surface and underwater
navigation. IEEE Transactions on Signal Processing, 54(11):4204–4213, 2006.

[32] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe Klingauf. A
flexible and scalable slam system with full 3d motion estimation. In Safety,
Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium
on, pages 155–160. IEEE, 2011.

[33] Kystlaget Trondhjem. Fløtmann. https://www.kystlaget-trh.no/

flotmann/, 2014.

[34] Chee Sing Lee, Daniel E. Clark, and Joaquim Salvi. SLAM With Dynamic
Targets via Single-Cluster PHD Filtering. IEEE Journal of Selected Topics in
Signal Processing, 7(3):543–552, jun 2013.

[35] Zhixiang Liu, Youmin Zhang, Xiang Yu, and Chi Yuan. Unmanned surface
vehicles: An overview of developments and challenges. Annual Reviews in
Control, 41:71–93, jan 2016.

[36] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribu-
tion: A Continuous Relaxation of Discrete Random Variables. In ICLR 2017,
2016.

[37] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* Sampling. In Advances
in Neural Information Processing Systems, pages 3086—-3094, 2014.

[38] Justin E. Manley. Unmanned surface vehicles, 15 years of development. In
OCEANS 2008, pages 1–4. IEEE, 2008.

[39] Wim Meeussen. REP 105 – Coordinate Frames for Mobile Platforms. http:

//www.ros.org/reps/rep-0105.html, 2010.

[40] Pierre Merriaux, Yohan Dupuis, Rémi Boutteau, Pascal Vasseur, and Xavier
Savatier. Robust robot localization in a complex oil and gas industrial environ-
ment. Journal of Field Robotics, 35(2):213–230, mar 2018.

[41] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit.
FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous
Localization and Mapping that Provably Converges. In IJCAI, 2003.

127

https://www.cs.cmu.edu/%7Emotionplanning/papers/sbp_papers/kalman/ukf
https://www.cs.cmu.edu/%7Emotionplanning/papers/sbp_papers/kalman/ukf
https://www.kystlaget-trh.no/flotmann/
https://www.kystlaget-trh.no/flotmann/
http://www.ros.org/reps/rep-0105.html
http://www.ros.org/reps/rep-0105.html

BIBLIOGRAPHY

[42] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, and Oth-
ers. FastSLAM: A factored solution to the simultaneous localization and map-
ping problem. Aaai/iaai, 593598, 2002.

[43] Christian Musso, Nadia Oudjane, and François LeGland. Improving regularised
particle filters. In Sequential Monte Carlo methods in practice, pages 247–271.
Springer, 2001.

[44] U.S. Navy. The Navy Unmanned Surface Vehicle (USV) master Plan. Technical
report, U.S. Navy, 2007.

[45] Erik Nelson. B(erkeley) L(ocalization) A(nd) M(apping)! https://github.

com/erik-nelson/blam, 2019.

[46] Marius Strand Ødven and Edmund Førland Brekke. Lidar-Based SLAM for
Autonomous Ferry(MSc thesis). NTNU, 2019.

[47] Jason M O’Kane. A Gentle Introduction to ROS. Independently published,
2013.

[48] OpenCV team. About - OpenCV library. https://opencv.org/about.html,
mar 2019.

[49] Panagiotis Papadimitratos and Aleksandar Jovanovic. Protection and funda-
mental vulnerability of GNSS. In 2008 International Workshop on Satellite
and Space Communications, IWSSC’08, Conference Proceedings, pages 167–
171. IEEE, oct 2008.

[50] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[51] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[52] RoboNation. 2018 Maritime RobotX Challenge Task Descriptions and Specifi-
cations. Technical report, RoboNation, 2018.

[53] Philipp Rosenberger, Martin Holder, Marina Zirulnik, and Hermann Winner.
Analysis of Real World Sensor Behavior for Rising Fidelity of Physically Based
Lidar Sensor Models. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages
611–616, jun 2018.

[54] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl).
In Robotics and automation (ICRA), 2011 IEEE International Conference on,
pages 1–4. IEEE, 2011.

[55] Brage Sæther and Edmund Førland Brekke. Navigation and Motion Control
for milliAmpère: Theory and Experiments(MSc thesis). NTNU, 2019.

[56] Alexander Schaefer, Lukas Luft, and Wolfram Burgard. An Analytical Lidar
Sensor Model Based on Ray Path Information. IEEE Robotics and Automation
Letters, 2(3):1405–1412, jul 2017.

128

https://github.com/erik-nelson/blam
https://github.com/erik-nelson/blam
https://opencv.org/about.html

BIBLIOGRAPHY

[57] Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, and Ronald C
Arkin. Introduction to autonomous mobile robots. MIT press, 2011.

[58] A. F. M. Smith and A. E. Gelfand. Bayesian Statistics without Tears: A
Sampling-Resampling Perspective. The American Statistician, 46(2):84–88,
1992.

[59] Joan Solà. Quaternion kinematics for the error-state Kalman filter. arXiv
preprint arXiv:1711.02508, nov 2017.

[60] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[61] Gian Diego Tipaldi, Daniel Meyer-Delius, and Wolfram Burgard. Lifelong local-
ization in changing environments. International Journal of Robotics Research,
32(14):1662–1678, 2013.

[62] Tobias Valentin Rye Torben. Hybrid Control of Autonomous Ferries(MSc The-
sis). NTNU, 2018.

[63] Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, and Eric Wan. The
unscented particle filter. Technical report, Cambridge University Engineering
Department, 2000.

[64] Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, and Eric Wan. The
Unscented Particle Filter. Advances in neural information processing systems,
pages 584—-590, 2001.

[65] Velodyne LiDAR. Velodyne LiDAR PUCK TM Datasheet. Technical report,
Velodyne LiDAR, 2019.

[66] Velodyne LiDAR. VLP-16 User Manual 63-9243 Rev. D. Technical report,
Velodyne LiDAR, 2019.

[67] Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter for non-
linear estimation. In IEEE 2000 Adaptive Systems for Signal Processing, Com-
munications, and Control Symposium, AS-SPCC 2000, pages 153–158, 2000.

[68] Andrew Webb, Bradley Donnelly, Jesse Stewart, Jonathan Wheare, Michael
Kossatz, Scott Hutchinson, Shane Geyer, and Tenzin Crouch. Development and
Testing of the TopCat Autonomous Surface Vessel for the Maritime RobotX
Challenge 2016. In RobotX Forum, 2016.

[69] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter, 1995.

[70] William Woodall. rviz. http://wiki.ros.org/rviz, mar 2019.

[71] Ryan W Wolcott and Ryan M Eustice. Robust LIDAR localization using mul-
tiresolution Gaussian mixture maps for autonomous driving. The International
Journal of Robotics Research, 36(3):292–319, 2017.

[72] Xia Yuan, Chun-Xia Zhao, and Zhen-Min Tang. Lidar scan-matching for mobile
robot localization. Information Technology Journal, 9(1), 2010.

[73] Chen Zhang, Marcelo H. Ang, and Daniela Rus. Robust LIDAR Localization
for Autonomous Driving in Rain. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3409–3415. IEEE, oct 2018.

129

http://wiki.ros.org/rviz

BIBLIOGRAPHY

[74] Ji Zhang and Sanjiv Singh. LOAM: Lidar Odometry and Mapping in Real-time.
In Robotics: Science and Systems, volume 2, page 9, 2014.

130

Appendix A

Experiment data

This project is based on some experiments done before it in the master’s project
[46]. The data used is in a broad sense explained in this chapter.

A.1 Pre-project experiments

Data has been gathered for an earlier master’s project, see Section 2.3 for information
about that master’s project. Those experiments were based in the Brattøra harbour,
see Section 3.3.2 about the quays. The ferry Milliampere was here used for the
purpose of SLAM. The data was gathered using ROS and recorded into several
rosbags, see Section 3.5.1 about ROS. Gathering all data in the rosbag format,
makes it possible to replay the scenario in real-time. That means that the data can
be used and analyzed as if the vessel did the whole procedure exactly the same way,
getting the same sensor readings and doing the same actions. This process was also
used in the experiments made in this master’s project.

The ferry was driven in the pattern shown in Figure A.1. Starting from the dock,
it turned around and drove south closer to the structures. Then the ferry moved
southwest before it went northeast going into the different quay areas. Lastly it
went straight back, stopped and rotated right before it drove straight towards the
quay and docked again.

131

APPENDIX A. EXPERIMENT DATA

Figure A.1: The path taken by Milliampere in the pre-project ex-
periments. The figure illustrates the Brattøra harbour in gray, wa-
ter in blue and the path in red. The vessel is shown close to a quay.
Other boats are not shown even though they were there, as can be
seen in the data.

132

APPENDIX A. EXPERIMENT DATA

A.2 Rosbag overview

One of the rosbags given from the earlier experiments is “velodynemasterset.bag”.
It contains the lidar data and IMU data on the standard ROS message formats
“sensor msgs/PointCloud2” and “sensor msgs/Imu” respectively. They are sent on
the “/velodyne points” and “/imu topic” topics respectively. See Listing A.1 for
a list of the topics and message types. While the lidar data was publishing data
with respect to the reference frame “velodyne”, the IMU was with respect to the
frame “imu”. None of these frames are specified through the “/tf” topic in the
other rosbag, see the frames in Figure A.2. That topic is standard for publishing
the relation between different frames.

Listing A.1: The different topics and message types in the rosbag
“velodynemasterset.bag”

path : ve lodynemaster set . bag
ve r s i on : 2 . 0
durat ion : 10 :36 s (636 s)
s t a r t : Sep 11 2018 1 3 : 1 7 : 5 2 . 8 5 (1536664672 .85)
end : Sep 11 2018 1 3 : 2 8 : 2 9 . 1 2 (1536665309 .12)
s i z e : 1 . 1 GB
messages : 69932
compress ion : none [1319/1319 chunks]

types :
sensor msgs /Imu [6 a62c6daae103 f4 f f 57a132d6 f95cec2]
sensor msgs / PointCloud2 [1158 d486dd51d683ce2f1be655c3c181]

t o p i c s :
/ imu top ic 63627 msgs : sensor msgs /Imu
/ ve l odyne po in t s 6305 msgs : sensor msgs / PointCloud2

The other rosbag, “obccorrectedtime.bag”, has topics and message types as shown
in Listing A.2. That bag has many different messages and topics, where many
of them use custom message types. One of the used topics here is the “cus-
tom msgs/NorthEastHeading” on the “/navigation/eta” topic. It is a custom mes-
sage consisting of the north, east and heading of the vessel relative to the starting
pose. The message type does not include timestamp nor a reference frame frame.

Listing A.2: The different topics and message types in the rosbag
“obccorrectedtime.bag”

path : obccor rec tedt ime . bag
ve r s i on : 2 .0
durat ion : 10 :36 s (636 s)
s t a r t : Sep 11 2018 13 : 1 7 : 5 2 . 6 9 (1536664672 .69)
end : Sep 11 2018 13 : 2 8 : 2 9 . 1 2 (1536665309 .12)
s i z e : 74 .4 MB
messages : 553432
compress ion : none [91/91 chunks]

133

APPENDIX A. EXPERIMENT DATA

Figure A.2: The different reference frames published in “obccor-
rectedtime.bag”.

types :
custom msgs/ActuatorSetpo ints [2 d64702992bfea9b6443fa0b9864979b]
custom msgs/MotorState [5 ba26985322fe9ed7cb8984452bc3eb4]
custom msgs/NorthEastHeading [f8c4d8d295356fc4c7989ce2c0e1b148]
custom msgs/RemoteControlState [ceda10c7b37590a99e768bcaea5d1257]
custom msgs/SurgeSwayYaw [d86ccd8ad254d064df2af607e63b6ac0]
custom msgs/ThreeDofForce [5 d59525997a21f5b026ea2746ebcfb38]
custom msgs/gnssGGA [76 d41a768710775209ac34b58a4ce202]
custom msgs/gnssHDT [99 a6e32aaf44ebb75a8836a630ce410e]
custom msgs/ o r i en ta t i onEs t imate [8061 e110314ddf08ca1dfbc48d314df8]
custom msgs/rawGPSdata [9 b7b5e623e612f1bf238822a134f2656]
rosgraph msgs /Log [ac f fd30cd6b6de30f120938c17c593fb]
sensor msgs /Imu [6 a62c6daae103 f4 f f57a132d6 f95cec2]
sensor msgs / Jo in tS ta t e [3066 dcd76a6c fae f579bd0f34173e9 fd]
std msgs / Int16 [8524586 e34 fbd7cb1c08c5 f5 f1ca0e57]
std msgs / St r ing [992 ce8a1687cec8c8bd883ec73ca41d1]
t f2 msgs /TFMessage [94810 edda583a504dfda3829e70d7eec]

t op i c s :
/ a c t u a t o r r e f 1 6362 msgs : custom msgs/ActuatorSetpo ints
/ a c t u a t o r r e f 2 6362 msgs : custom msgs/ActuatorSetpo ints
/ ac tuato r s / ac tuato r 1 / az imuth angle 55464 msgs : std msgs / Int16
/ ac tuato r s / ac tuato r 1 / th ru s t e r /motor s tate 1536 msgs : custom msgs/MotorState
/ ac tuato r s / ac tuato r 2 / az imuth angle 55248 msgs : std msgs / Int16
/ ac tuato r s / ac tuato r 2 / th ru s t e r /motor s tate 1531 msgs : custom msgs/MotorState
/ dynamic pos i t i on ing / c on t r o l a c t i o n 6362 msgs : custom msgs/ThreeDofForce
/ guidance /dockpose 1 msg : custom msgs/NorthEastHeading
/ guidance / r e f e r e n c e / a c c e l e r a t i o n 6363 msgs : custom msgs/NorthEastHeading
/ guidance / r e f e r e n c e /pose 6362 msgs : custom msgs/NorthEastHeading
/ guidance / r e f e r e n c e / v e l o c i t y 6363 msgs : custom msgs/NorthEastHeading
/ j o i n t s t a t e s 109678 msgs : sensor msgs / Jo in tS ta t e
/ nav igat ion / eta 12725 msgs : custom msgs/NorthEastHeading
/ nav igat ion /nu 12725 msgs : custom msgs/SurgeSwayYaw
/ r c s t a t e 8264 msgs : custom msgs/RemoteControlState
/ rosout 20 msgs : rosgraph msgs /Log
/ rosout agg 2 msgs : rosgraph msgs /Log
/ supe rv i s o r /mode 6275 msgs : std msgs / St r ing
/ t f 67264 msgs : t f2 msgs /TFMessage
/ t f s t a t i c 19091 msgs : t f2 msgs /TFMessage
/vectorVS330/GPGGA 12726 msgs : custom msgs/rawGPSdata
/vectorVS330/ f i x 12724 msgs : custom msgs/gnssGGA
/vectorVS330/heading 12726 msgs : custom msgs/gnssHDT
/xsens /imu 63629 msgs : sensor msgs /Imu
/ xsens / o r i e n t a t i o n 63629 msgs : custom msgs/ o r i en ta t i onEs t imate

134

APPENDIX A. EXPERIMENT DATA

A.3 Lidar data

The lidar data in the message form of “sensor msgs/PointCloud2” on the topic
“/velodyne points” is a point cloud. This means that calculations are necessary to
find which azimuth angle a specific beam was sent out on. The azimuth angle might
for example be useful for simulating the lidar in a measurement function. To find
the azimuth angle of each ray, trigonometry is once again used, see Figure 4.3 for
visualization of how the lidar works:

tan(α) =
x

y
, (A.1)

α = atan2(x, y), (A.2)

where α is the azimuth angle. atan2(x, y) is the tangent inverse which also finds
in which quadrant the point is, to give α ∈ (−π, π]. Notice that this definition of
the azimuth angle is the inverse of the usual one, but it is based on the definitions
shown in Figure 4.3.

From the data gathered, the settings of the lidar can be found. Using the ROS
command “rostopic hz /velodyne points”, the data frequency was measured to be
in the range 9.90 Hz − 9.97 Hz, which indicates that the setting used for the lidar
was 10 Hz = 600 min−1, see Section 3.4.1 for a description of the possible angular
settings. From (3.1) this corresponds to an angular resolution of 0.199

◦

firing cycle
.

This does not mean that the rays are measured at fixed azimuth angles. Figure A.3
shows that the angles at which the lidar projects varies. The images were made by
each image being a pointcloud, one full rotation. For each point in the cloud, the
azimuth angle is calculated using (A.1). This may not be a precise way of calculating
the azimuth angles, but is the only way when the data is only represented as a point
cloud. There seems to be 5 groups for each row in the images, which indicates that
the resolution is approximately 0.2◦. But as the images have these groups placed
differently within the same row, the azimuth angles seem to vary. Also the angles
of the stripes change over time, which indicates that the azimuth angles vary. One
reason might be that the controller for the sensor does not care about the angles
being consistent, but rather that the rotation speed is correct. One resulting problem
might be difficulties in simulating the lidar precisely.

We get the number of points by using the angular resolution:

360
◦

rot

0.199
◦

firing cycle

= 1808.45
firing cycle

rot
.

Having 16 rays gives

1808.45
firing cycle

rot
· 16

ray

firing cycle
= 28 935.19

ray

rot
.

135

APPENDIX A. EXPERIMENT DATA

(a) One point
cloud’s azimuth
angles.

(b) A point cloud a
few seconds later.

Figure A.3: The two images show point cloud azimuth angles at
two different measurement times. The black pixels represent angels
where there is at least one point. The white pixels are where there
are no points. The rows of the images go from 0 to 359 and are
different angles with each column corresponding to the decimal 0.00
to 0.99, at a resolution of 0.01◦. So these are two images of 360 ·
100 azimuth angles each. The red lines are to separate the angles
to intervals of 0.2◦ and to make them easier to compare. Said
differently, the images could each have been one pixel high and
36000 pixels wide, but it would be difficult to compare them.

136

APPENDIX A. EXPERIMENT DATA

That is how many points one point cloud might contain. But it is just an approxi-
mation since the sensor needs a controller that has a deviation and some rays might
not be reflected and give a point. Since the data is unordered, the height field in the
point cloud is 1. Using the command “rostopic echo /velodyne points/width”, the
number of points was found to oscillate in the range 3000− 10000 points. This is a
lot less than initially expected, but might be due to the vast number of rays going
up into the sky and down into the water, where few to no points reflect back.

A.4 Velocity

The velocity uncertainty is estimated from the topic “/navigation/nu” on the data
given. This contains velocity in surge, sway and yaw as shown in Figure A.4. They
are given in the NED frame, similarly as for the position data on “/navigation/eta”.
The uncertainty is difficult to know without more testing, but the velocities are
assumed Gaussian with means and standard deviations as shown in Table A.1. These
numbers are based on the data series by reading of the plot as in Figure A.4 for
the whole duration of the course. The uncertainty is estimated by an approximate
measure of two standard deviations, that is approximately a 95% confidence interval.
They serve as simple estimates that enable simulations, but are not tested on the
actual system.

µ 2σ
Surge 0 m

s
to 2.5 m

s
0.5 m

s

Sway −1 m
s

to 1 m
s

0.3 m
s

Yaw −0.3 rad
s

to 0.3 rad
s

0.1 rad
s

Table A.1: Typical velocity values for the vessel based on the data
on the “/navigation/nu” topic. µ is an estimated mean of a Gaus-
sian distribution and 2σ corresponds approximately a 95% confi-
dence interval.

For better estimates of the motion uncertainty, the vessel should be tested with
a set velocity in surge, sway and yaw and the error should be measured between
the motion model expected state and the ground truth. This would require ground
truth position and velocity.

137

APPENDIX A. EXPERIMENT DATA

58.6 58.8 59.0 59.2 59.4
Time [s]

1

0

1

2

V
a
lu

e

Velocity

/navigation/nu/surge
/navigation/nu/sway
/navigation/nu/yaw

Figure A.4: Values for surge, sway and yaw velocity from the data
gathered in the earlier project, on the topic “/navigation/nu”. The
image is a representative period from the data series. The values
are in m

s
for surge and sway, and rad

s
for yaw.

138

Appendix B

Mapping to an occupancy grid

This chapter explains how to take the data from earlier experiments described in
Appendix A and make a map.

B.1 Point filtering

After initial inspection of the rosbag data, the lidar data was visualized using rviz,
see Section 3.5.2 for an explanation of rviz. In order for the lidar point cloud
data to be usable by methods that analyzes the environment, the vessel should be
removed from the data. This enables all the points in the point cloud to be usable
in for example scan matching or SLAM. Assuming a static environment, all moving
elements have then been removed.

See Figure B.1 for an illustration of difference between the point clouds. On the
first image, the equipment on the top of the vessel is visible, whereas it is not on the
second image. This was done by first making a ROS node in C++ that subscribes
to the lidar data. A box around the lidar was made by inspection, in which all data
was removed. The ROS node uses PCL and the conditional removal functionality,
see Section 3.5.5 for an description of PCL. The resulting point cloud was then
published on another topic.

B.2 Getting a map

The occupancy grid was made using a combination of GPS and lidar, see Appendix A
for an explanation of the data. To localize the ferry in the making of the map, the

139

APPENDIX B. MAPPING TO AN OCCUPANCY GRID

(a) Before filtering.

(b) After filtering.

Figure B.1: Illustrations of the point clouds from the lidar before
and after filtering. The axes represent the frame of the lidar, with
the red axis pointing forward. The other points represent what
looks like the quay and some other ships.

140

APPENDIX B. MAPPING TO AN OCCUPANCY GRID

pose was given through the earlier mentioned “/navigation/eta” topic. The lidar
data was made to an OctoMap, as described in Section 3.5.3. The same software also
gives the map in the form of a occupancy grid, with the map frame set to “map”.
The occupancy grid is published on the “/projected map” topic. Some parameters
of the method are the radius in which to make lidar points specified occupied cells
and the resolution of the map. The mapping happens using the point clouds in
the frame “velodyne”, and the data is combined by reformulating the pose messages
into a “tf2 msgs/TFMessage” that represents the transformation from the “map” to
“velodyne” frames. The data on the “/navigation/eta” topic is in a NED reference
frame and is transformed into a frame with the z-axis upward as specified by the
ROS standards described in Section 3.8. That reformulation happens in a new ROS
node.

An illustration of the mapping process is given in Figure B.2. The mapping seems
to work fine, but there are some misplaced occupied cells especially as the range of
the OctoMap method is increased. They can be noise from water. But the jittering
of the measurements relative to the map, especially during turns, might be due to
the pose estimates and the lidar estimates not being synchronized, or the accuracy
of the pose estimates. But since the map is supposed to be used for localization,
it is not necessary to have a perfect map and it can be changed in an editing tool
later. The resulting map after going around the whole map in the pattern described
in Figure A.1 is shown in Figure B.3.

B.3 Saving an occupancy grid as an image

The occupancy grid message type used is “nav msgs/OccupancyGrid” published on
the topic “/projected map”. This is now transformed via a new ROS node to a
standardized OpenCV image. Using the nodes “image transport”, “cv bridge” and
OpenCV in ROS, the cell values of the occupancy grid are converted to image colors,
for more information on the software see Section 3.5. Also the axes needed to be
changed, as the x-axis of the map points north, y-axis of the map points west, x-axis
of the image points east and the y-axis of the image points south. The resulting
images are then published in ROS as images instead of occupancy grids, see the
result in Figure 3.8. The image is then saved with a call to “imwrite(·)”.

141

APPENDIX B. MAPPING TO AN OCCUPANCY GRID

(a) OctoMap and occupancy grid.

(b) Only occupancy grid.

Figure B.2: The figure illustrates the mapping process, both the
OctoMap and the occupancy grid. The occupancy grid has black
squares representing the horizontal occupied space. The colored
blocks are the pieces of the OctoMap. The colored points are the
lidar data in one full rotation. The resolution was here 1 m and the
range 50 m.

142

APPENDIX B. MAPPING TO AN OCCUPANCY GRID

(a) OctoMap and occupancy grid.

(b) Only occupancy grid.

Figure B.3: The figures show the OctoMap and the occupancy
grid resulting from mapping the whole trajectory in Figure A.1
with a resolution of 0.5 m and a range of 50 m. The horizontal
plane is the occupancy grid, with light gray squares representing
free space, black squares being occupied space and the dark gray
being unknown. The colored cubes combined is the OctoMap. The
colored points are the lidar data of one full rotation close to the
quay after mapping.

143

APPENDIX B. MAPPING TO AN OCCUPANCY GRID

Figure 3.8 revisited.

144

Appendix C

Implementation

This chapter explains some of the aspects of implementing the suggested methods.
More precisely it explains how to remove measurements that are from the vessel
itself and how to reduce the 3D measurement to simulate 2D measurements.

To compare the 3D measurements to a 2D map, different methods might be used.
Some are described in Section 4.5. The choice of doing ray tracing in the 2D map
was made. That makes it possible to make an estimate of what measurements the
lidar should get for each pose in the map. But if the vessel is in free cells and a ray
goes toward an occupied cell, no measurement will be simulated to be behind that
occupied cell in the map. So only the points closest to the lidar will be used, giving
an output similar to what a 2D lidar would get. To use this sensor model, the lidar
settings needed to be known, and the way to find this is described in Appendix A.3.
The ray tracing in a 2D map was chosen because of the simplicity and existence of
a 2D map and since it gives a way of estimating the probability of different mea-
surements at different poses. It also reduced the amount of measurements greatly,
approximately by 16 because it is the amount of vertically spaced rays in the lidar
in this project.

The definition used for the 2D scan is the data type “sensor msgs/LaserScan” defined
in ROS. It contains the angles for each ray as well as the range to object collision
for each ray. Contrary to the lidar frame, see Figure 4.3, the azimuth angles are
defined with zero at the x-axis and increasing anti-clockwise. So the azimuth angles
are defined as

tan(α) =
y

x
.

To find the azimuth angle α from the x- and y-coordinates we do

α = atan2(y, x),

which gives an α ∈ (−π, π]. The angles at which the lidar projects rays seems to
not be constant and it therefore chosen that 1800 evenly spaced horizontal rays are

145

APPENDIX C. IMPLEMENTATION

used. For each 3D point measured, the azimuth angle is calculated and estimated
to be the closest one of the Nm = 1800 angles. Let {αi}Nm−1

i=0 be the set of Nm

evenly space azimuth angles. The the index i of the azimuth angle a measurement
corresponds to is then calculated by

i =

⌊((
atan2(y, x) + 2π +

αr
2

)
mod (2π)

) Nm

2π

⌋
,

where a mod b gives the remainder after dividing a by b, bac rounds a down to the
closest integer and αr is the azimuth resolution of the scan. The measurement is
then used if the range is smaller than any other measurement with approximately
the same angle, that is the same index i.

The resulting scans look like the ones in Figure C.1. Most of the points seem
reasonable and could be estimated from the pose of the vessel and the map. But
some points are behind black cells in the map, which is even more clear in Figure C.2.
This is due to the geometry of the lidar and the fact that it is a 3D lidar, and not
2D. Some rays might for example go into the water, while the others pass above the
quay and hit buildings instead. See Section 3.6 for a more quantitative explanation
of this.

(a) Point cloud (b) Laser scan

Figure C.1: Illustration of the resulting laser scan from a point
cloud.

146

APPENDIX C. IMPLEMENTATION

(a) Point cloud (b) Laser scan

Figure C.2: Illustration of the resulting laser scan from a point
cloud. Here there are many points that might be hard to estimate
from the map and the pose of the vessel.

147

N
icholas D

alhaug
Lidar-based Localization for A

utonom
ous Ferry

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Nicholas Dalhaug

Lidar-based Localization for
Autonomous Ferry

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke and Gustaf Hendeby

June 2019

	Preface
	Abstract
	Sammendrag
	Contents
	Introduction
	Background
	Motivation
	Problem description
	Delimitations
	Contribution

	Overview of literature
	USV challenges
	Localization and mapping
	Earlier project on lidar SLAM comparison
	Bayesian navigation using DME
	Ray tracing and likelihood fields
	3D likelihood fields
	Maritime RobotX Challenge
	Changing environments
	The broad topic of localization

	Platform and map
	Milliampere introduction
	Vessel
	Quay
	Ravnkloa and Brattøra quays
	Brattøra harbour

	Sensors
	Lidar
	GNSS
	IMU

	Software
	ROS
	Rviz
	OctoMap
	OpenCV
	PCL

	Spatial resolution
	Ray height
	Other configurations

	Map representations
	Reference frames
	Mapping

	Dynamics and sensor models
	State estimation
	Ship dynamics
	Process model used
	Considerations

	Lidar
	Sensor models
	Ray tracing
	Combining measurements
	Beam model
	Other models

	Measurement model used
	Finding the parameters

	State estimation methods
	Relation to localization
	The unscented Kalman filter
	The unscented transform
	The filter

	Monte Carlo simulation
	Bayes Filter
	Particle filter
	Sequential Importance Sampling
	Weighting and importance density
	The problem of degeneracy
	Re-sampling
	The generic particle filter
	Sampling Importance Re-sampling
	Point estimation

	Particle filter in logarithmic space
	Normalizing in log-space
	Effective sample size from logarithms of weights
	Logarithmic low variance sampling
	Sampling using the Gumbel-max trick
	Point estimation in logarithmic space

	Simulation filter evaluation
	Monte Carlo simulation consistency test
	RMSE

	The unscented particle filter
	Iterative Closest Point method

	Particle filter analysis and simulations
	Particle filter method
	Weighting and importance density
	Normalization and re-sampling
	Evaluating the filter
	Regularized re-sampling

	Particle filter properties
	Corners
	Bad importance density
	Diagonal map
	Noise
	Localize in another map
	Using the filter map

	Particle filter simulations
	Weighting and importance density
	Normalization and effective sample size
	Re-sampling
	Point estimation

	Evaluating the simulations
	Increasing the uncertainty

	UKF-based importance density
	UPF method
	UPF properties
	Gaussian distribution
	Tuning
	Bad importance density
	Diagonal lines
	Corners
	Noise
	Using the filter map

	Evaluation
	Beam model considerations

	ICP-based importance density
	ICP convergence analysis
	Point cloud from occupancy grid
	Tuning the ICP
	Different maps
	Measurement noise and realistic map

	From ICP to importance density
	Evaluation

	Discussion
	Analyzes and evaluations
	Generic particle filter
	UKF-based importance density
	ICP-based importance density

	Comparison
	Importance of modeling and tuning
	Limitations

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Experiment data
	Pre-project experiments
	Rosbag overview
	Lidar data
	Velocity

	Mapping to an occupancy grid
	Point filtering
	Getting a map
	Saving an occupancy grid as an image

	Implementation

