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Abstract

This report is a literature review of the problem known as the simultaneous localization
and mapping (SLAM) problem. This report aims to widen the knowledge of the process
of running a SLAM algorithm on an autonomous system. The rapport also visits
different methods that are applicable for LiDAR SLAM, which is SLAM where the
main sensor is a laser range scanner. The result of the literature review is a broader
understanding of the subject and an intuition for which method best fits in a system
that is planned as a master thesis, here described in a future work chapter.
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1 Introduction

This introductory chapter will briefly provide context for the material presented in this
report and give motivation and a description of the problem that is to be solved in the
master thesis after this literature review project. The contributions of the thesis are
defined and elaborated. Finally, the outline of the report is presented in short.

1.1 Motivation

In many applications of robotics, such as industrial automation, and autonomous
mobility, there is a need to implement a model that can localize the robot, and simulta-
neously map its surroundings. This is by many considered as the "holy grail" of mobile
robotics. The motivation behind this project is to review the work and development
in this subject and use this knowledge to make a plan for future work in a master
thesis. The subject is interesting because it is evolving, and no perfect solution to the
problem is found. The tools given to accomplish the task is a new and cheaper product
than the state of the art sensor, and may, therefore, inflict how future research is made
more available. Aside from this, the main motivation behind this project is to learn
the theory of SLAM, explore different methods of solving this problem and make a
good guess to which of these methods best suit the plan for future work.

1.2 Background and Contributions

This report is mainly a literature review and is therefore mostly a tool for the writer
to get a good overview of the theory and methods behind the problem. The report is
also written in a way so that the reader should be able to understand what the SLAM
problem implies, and how this process can be handled. The main contribution of this
report is, therefore, an overview of possible methods, and an in-depth description of
key parts of the system.

Most of the parts presented in the report has been touched upon in earlier reports
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and studies, and these are well cited. The background material for the general solving
of the SLAM problem is therefore broad, but in terms of background material for the
tools presented in this report, there hasn’t been much development, as the provider
of the sensor is a start-up company. The sensor technology is by no means new, and
the use of background material from similar products should, therefore, be of helpful
use.

1.3 Outline

The report is organized as follows. After this intro chapter, Chapter 2 presents the
theory and origins behind the SLAM problem. It gives an in-depth description of
how the process works and presents the theory on how to solve the problem. The
chapter also touches upon the sensor that is to be included in the future work of
this process and describes the most important aspects of its features. The theory
behind the communication system is also presented in this chapter. Chapter 3 explains
the main algorithms used to solve the SLAM problem, while Chapter 4 presents
some methods where these algorithms are included, and is more a chapter presenting
possible implementations for future work with the process. Lastly, Chapter 5 presents
an overview of the key subjects for future work in the master thesis.
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2 Theory

2.1 The SLAM problem

The Springer Handbook of Robotics gives a great statement of what the SLAM problem
represent [19]. A mobile robot roams the unknown environment, starting at an initial
location. Its motion is uncertain, making it gradually more difficult to determine its
current pose in global coordinates. As it roams, the robot senses its environment with a
noisy sensor. The SLAM problem is the problem of building a map of the environment
while simultaneously determine the robot’s position relative to this map given noisy
data.

Simultaneously Localization and Mapping or SLAM has its origin in studies done by
Smith, Self and Cheeseman back in 1986 on estimation for spatial relationships and
covariance between coordinate frames [17]. They introduced a method on how to
localize an object relative to another by manipulating the uncertainty associated with
spatial information, in the form of sensed relationships, prior constraints, and relative
motion. Theymade it possible to estimate the probability of certain events, based on the
uncertainty of the robot and the surrounding objects relative location. Smith, Self and
Cheeseman made an effort to develop the methods in the context of state-estimation
and filtering theory [18] to provide a solid basis for numerous extensions. This led to
the introduction of SLAM in 1991 by Leonard and Durrant-Whyte [12].

Leonard and Durrant-Whyte introduced an algorithm for localization, based on current
state, position estimates and sensor observation. They were able to develop a mobile
robot localization system that integrated a variety of beacon observations as input to a
Kalman filter to maintain a robust vehicle location estimate. Although their algorithm
had a number of limitations, most importantly the need for a priori environment
description and infinite data limits, they set the standard for further work with more
computationally tractable algorithms.

Durrant-Whyte, Fellow and Bailey have written one of the most cited papers on the
general SLAM topic [2]. To illustrate their points, figure 1 shows the general idea of
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Figure 1: SLAM illustration. Objects in green are the real locations, the white objects
are the estimated equivalents

how SLAM works. The true locations are never known or measured directly in SLAM.
Instead, observations are made between true robot and landmark locations, and an
estimated result is presented in both robot and landmark location. In the illustration, a
robot is moving through an environment taking relative observations of a number of
unknown landmarks. In the figure objects in green represent real locations of robot
and landmarks, while white is the estimated equivalents. To further understand this
we need to define the notations used in figure 1 at time instant t. The notations used in
SLAM varies in different papers, but the ones presented below is fairly common.

xt : The state vector. Describes the robot’s location and orientation. Put in consecu-
tive order X0:T , and we get the path of the robot.

ut : The control vector. Describes the controls the robots receives in the prior state
to drive it to the current state. Put in consecutive order u1:T , and we get the
robot controls.

mi : Landmark vector. The environment may be comprised of landmarks, objects,
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surfaces, etc., This vector describes the location of these. Put together, the
landmarks create a mapm of the environment.

zt,i : The observation vector. At time instant t , zt,i describes the observation of
landmark mi . Put in consecutive order, z1:T describes a set of observations,
where e.g zT could be a laser scan image.

The data that is obtained is not necessarily accurate. Uncertainty in the robot’s motion
and observations is common. SLAM is best described by a probabilistic approach. The
robot or landmark is not seen in an exact position but has a probability distribution to
its location. The use of the mean and variance from this distribution is a common way
to estimate the positions in SLAM. Even though probabilistic distribution models vary
depending on the system, there are mainly two forms of the SLAM problem. The full
and online SLAM problem.

The full SLAMproblem aims to estimate the entire path together with themap as shown
in equation 1. Written this way, the full SLAM problem is the problem of calculating
the probability distribution of the path xT and the mapm given observed sensor data
and robot controls. Figure 2 illustrates a graphical model of the full SLAM problem.
Algorithms for the full SLAM problem often process all data at the same time. The
online SLAM problem seeks to recover only the recent pose and map, marginalizing
out the previous poses. Usually done incremental one at a time, as shown in equation 2.
A graphical model of the online SLAM problem would look familiar to the full problem
figure 2, but with an unknown coloured field only for the current state and not the
entire path.

p(x0:T ,m | z1:T ,u1:T ) (1)

p(x t ,m | z1:t ,u1:t ) =

∫
x 0

...

∫
x t−1

p(x0:t ,m | z1:t ,u1:t )dx t−1...dx0 (2)

p(x t | x t−1,ut ) (3)
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p(zt+1 | x t+1,m) (4)

Figure 2: Graphical Model of the full SLAM-Problem

These two generalizations of the SLAM problem is usually structured into two models.
The motion model and the observation model. The motion model describes the relative
motion of the robot, while the observation model relates measurements with the robots
pose. The models corresponds to the arcs in figure 3. Probabilistic motion models
comprise the state transition probability shown in equation 3. It is an essential part
of the prediction step of the Bayes filter which calculates the belief parameter that
helps the robot infer its position and innovation. See chapter 2 in [20] for Bayes filters
algorithms and mathematical derivation. There are several different techniques to
motion models designed for different use cases. Thrun, Fox, Burgard and Dallaert
introduced a robust motion model called Monte Carlo Localization in 2001 [21], able
to estimate the pose in dynamic systems. Examples of motion models in the plane is
given in [20] chapter 5.

As for motion models, observation models offer vastly different models depending
on the measurement devices and the system platform. The specifics of the model
depends on the sensor. Cameras are best modelled by projective geometry, sonars
by describing the sound wave and its reflection on surfaces in the environment. The
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system planned in this paper uses a laser range scanner, the observation model should
therefore be applicable to this sensor. Chapter 6 in Thrun [20] presents different
approaches with different distributions for the probability estimates. Solutions using
the RANSAC-algorithm is used in [6] and ICP (iterative closest point) methods in
[9].

Figure 3: Grapical representation of the motion and observation model

SLAM is best explained as a concept rather than a simple algorithm, where all the blocks
that are shown in figure 2 can be solved with different approaches. The basic idea is
that after enough measurements, errors caused by vibrations and robot movements will
be nullified. Each measurement is expected to be the same relative to the environment,
meaning the position can be estimated over a large enough data set.

The data association problem is a problemworthmentioning when talking about SLAM.
It is, in fact, one of the hardest problems to solve when you wish to track your position.
The data association problem is the problem of deciding which target generated which
observation. This would be easy in single-target tracking problems, but when the
association is more ambiguous and tracks multiple observation in one scan or sample,
the assignment of the observations become much harder to solve. One simple strategy
to solve this is to pay attention to the measurement that is closest to the prediction.
This again becomes a problem when areas suffer for clutter in the landscape. A more
sophisticated method is to keep track of multiple states/observations hypothesis and
consider the possibilities of these hypotheses. This is a common method for particle
filter strategies, where each particle can be a hypothesis of the current observation.
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Some suggested solutions is presented in [8][14][16].

Another common problem in SLAM is the loop-closing problem. This is the problem of
realizing that the observed measurements have been observed at an earlier stage. If one
with certainty can conclude that this, in fact, has accrued, a loop-closing algorithm can
be used to overcome the drift accumulated in the robot trajectory over time. Possible
solutions with descriptors to the problem is presented in [11][5].

2.2 LIDAR - OUSTER1

A LiDAR is a laser range sensor. The sensor shines a light at a surface and measures
the time it takes for the light beam to return to its source. Since light moves at constant
speed, a LiDAR can measure the distance with high accuracy. LiDARs fires rapid pulses
of light every second and receives these as points. By repeating this process in quick
succession, the LiDAR can build a complex map of the surface it is measuring. The
number of points received per second varies greatly with the price of the sensor, but
more expensive LiDARs can receive millions of points per second [1].

There are different kind of LiDARs for different use cases, including detection in all
three different dimensions. A 1D LiDAR is usually a cheap sensor that is used for
detecting the distance to a single point. A 2D LiDAR usually rotates to measure the
distance to objects in the 2D plane. The last and more expensive 3D LiDAR also
has a vertical field of view, giving it 3D measuring capabilities. In SLAM both 2D
and 3D LiDARs is a common measurement tool. A 3D LiDAR will give you more
information but is usually more costly in both price and processing power. Compared
to vision-based SLAM, LiDAR SLAM has the advantage of working in areas were
distinct features and light is absent.

The Ouster-1 LiDAR planned used in this project is a 16-beam 3D LiDARwith a 16.6 deg
vertical field of view. It is able to capture 327 680 points per second. Every point received
contains data information including range, intensity, reflectivity, ambient data, angles
and time-stamp. Ouster-1 also has a built-in IMU for gyro and accelerometer readings.
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See appendix A for the Ouster-1 datasheet. Since the Ouster-1 LiDARs output depth
images, signal images, and ambient images in real time, all without a camera, they add
a solution with one sensor that competitors need a LiDAR/camera fusion to accomplish.
Together with the cheap price compared to other 3D LiDAR products, the OUSTER-1
sensor makes a good candidate for SLAM-related use.

2.3 ROS

Robot Operating System (ROS) is an open-source, meta-operating system. ROS was
made to support the reuse of code in robotics research and development. The point is
to have an environment where many modules can run concurrently, and communicate
without being aware of each other. Meta-operating system means that ROS is built and
based on Ubuntu Linux, and shares it’s process management system, file system, user
interface and programming utilities. In addition, it also provides tools and libraries
for obtaining, building, writing and running code across multiple computers. In other
words, instead of redefining and changing the programming vocabulary and grammar,
ROS only adds features and libraries to the traditional C++ program. You can therefore
simply use some function calls and classes instead of rewrite major parts of code.

In ROS, programs are called nodes. Nodes can communicate with each other by sending
messages. These messages are sent to what is called a message topic. A topic of a
message must have a defined message type. This is so that ROS can convert them
from data structures to byte streams at sender’s end, transport them to the recipient,
and then convert them back to data structures. To receive and send certain topic of
messages the nodes needs to include what is called ROS Subscriber and ROS Publisher
functions. These are functions included in the ROS library and are necessary for the
nodes to communicate. An example of a node used in ROS is the ouster_ros node that
can visualize recorded or real-time point cloud messages. Most open-source robot
systems use ROS nodes to run different nodelets in the system. The nodelet package
in ROS is designed to provide a way to run multiple algorithms in the same process
with zero copy transport between algorithms.
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3 SLAM Algorithms

There are several different paradigms to solve the SLAM problem. This chapter will
review the three main paradigms used for SLAM, for which most others are derived.
EKF(extended Kalman filter)-SLAM is historically the first introduced, but it has become
less popular due to its limiting computational properties. Particle filtering is a popular
method for online-SLAM and provides a perspective on addressing the data association
problem in SLAM. Graph-Based SLAM is based on graphical representations and
successfully applies sparse nonlinear optimization methods for solving the full SLAM
problem.

3.1 EKF SLAM

As mentioned in chapter 2, Smith, Self and Cheeseman were the first to propose the
use of a single state vector to estimate the locations of a robot and a set of features
in the environment. Together with this, an error covariance matrix represented the
uncertainty in these estimates, including a correlation between the vehicle and feature
state estimates. Based on this the EKF-SLAM algorithm was developed.

Simply put, the EKF-SLAM algorithm applies the extended Kalman Filter to online
SLAM using maximum likelihood data association. As any EKF-algorithm, EKF-SLAM
makes a Gaussian noise assumption for the robot motion and observed surroundings.
The system covariance matrix mentioned above grows quadratically with the number
of landmarks. Therefore, EKF-SLAM uses a feature-based map, composed of a relatively
small number of point landmarks (>1000). The number of landmarks is preferably kept
low for computational reasons.

The EKF algorithm represents the robot estimate by a multivariable Gaussian shown
in equation 5. The vector µt represents the state vector including the estimate of the
robot’s location and location of the features in the map. The dimension of µt depends
on the system. If the systemwere a planar surface robot, the dimension would be 3+2N ,
as three variables are needed to represent the location and 2N for the N landmarks.
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Figure 4: EKF-SLAM (image courtesy of Michael Montemerlo, Standford University)

The matrix ∑t is the error covariance matrix used as the expected error for the guess
µt . With the same example as above, the covariance matrix is of size (3+2N ) · (3+2N ),
making the problem quadratic. The off-diagonal elements in the covariance matrix
represent the correlations in the estimates of different variables. Since the robot’s
location is uncertain, and therefore the landmarks locations are uncertain, the nonzero
correlations are included. In appendix A the complete algorithm for updating µt and
∑t is shown, see [20] for an complete review. The algorithm uses an incremental
maximum likelihood (ML) estimator to determine the correspondences.

p(x t ,m | Z t ,U t ) = N(µt ,∑t ) (5)

Figure 4 illustrates the EKF-SLAM algorithm. The ellipses shown in the figure repre-
sents uncertainty in position (grey) and in landmark location (transparent). As the
system moves, the pose uncertainty increases because of the errors in odometry mea-
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surements. The system also senses landmarks in the environment and maps these with
an uncertainty that combines the uncertainty in the measurement and the systems
pose. This result in increasing uncertainty also for the landmark positions. The most
important part happens in the last frame of the figure. Here the system observes the
same landmark it did in the beginning. Through this observation, the systems state
error is reduced, along with the uncertainty of the landmark locations. This happens
because the uncertainty in the location estimates of the landmarks is vastly affected
by the error in the position. The correlation in the covariance matrix spreads through
the whole matrix and updates the previous landmark estimates. This effect is probably
the most important in EKF-SLAM. As mentioned above, to solve the problem of un-
certain data association, the system can use an ML-estimator to approximate which
of the landmarks in the map most likely corresponds to the landmark just observed
[22].

A key limitation to the method is the computational complexity. Sensor updates require
time quadratic in the number of landmarks N to compute. This complexity stems
from the fact that the covariance matrix maintained by the Kalman filters has O(N 2)

elements of which must be updated even if just a single landmark is observed. This
limits the method for sets with a large number of landmarks [19][20].

3.2 Particle filtering

Particle filtering has become popular in recent decades. Particle filters is a recursive
Bayes filter, where it represents a posterior through a set of particles. The posterior is
the distribution of possible unobserved values conditional on the observed values. In
SLAM, each particle is best taught as a concrete guess as to what the true value of the
state may be, see figure 5 for an illustrated example. By collecting many such guesses
into a set of guesses, or a set of particles, the particle filter approximates the posterior
distribution. Under mild conditions, the particle filter has been shown to approach the
true posterior values as the particle set size goes to infinity. The particle filter is also
not limited to Gaussian distributions.
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Figure 5: Particle illustration, making guesses of obstacle states

x = (xx :t ,m1,x ,m1,y ....mN ,x ,mN ,y ) (6)

The key problem with the particle filter in the context of SLAM is that the path and
the map tend to be huge. Particle filters scale exponentially with the dimension of
the underlying state space. Three or four dimensions are thus acceptable, but e.g. 100
dimensions are generally not, as seen from equation 6. The trick in making particle
filters applicable to the SLAM problem is to use the particle set only to model the
system’s path, then each sample of particle sets is a path hypothesis. Now an individual
map of landmarks can be computed. This key idea is known as the Rao-Blackwellization
or fastSLAM.

Rao-Blackwellization performs a marginalization over the probability distribution in
the state space. Instead of using sampling to represent the multivariate probability
distribution of the state space, marginalizing out a subset of the state space, is a much
more efficient method when using a Gaussian distribution, as seen in figure 6 where
the map is marginalized to several smaller maps. This marginalization has become
very popular in SLAM problems because jointly sampling over position and map is
impractical. When the creators of FastSLAM realized that Rao-Blackwellization could
help to marginalize the maps from the joint distribution, the SLAM problem became
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Figure 6: Graphical model of fast SLAM map marginalization

much more tractable.

FastSLAM is an algorithm that recursively estimates the full posterior distribution
over the systems pose and landmark locations, yet scales logarithmically with the
number of landmarks in the map. The algorithm has been run successfully on as
many as 50000 landmarks [13]. FastSLAM decomposes the SLAM problem into a
robot localization problem and a collection of landmark estimation problems that
are conditioned on the robots pose estimate. Each particle in FastSLAM processes N
Kalman filters that estimate the N landmark locations conditioned on the path estimate.
This results in an algorithm requiringO(MN ) time, whereM is the number of particles.
By developing a tree-based data structure, the FastSLAM algorithm obtainsO(MloдN )

running time.

x [k ]
t ∼ p(x t | x

[k]
t−1,ut ) (7)

ω[k ] = |2πQ |[k ] exp(−
1
2 (zt − ẑ[k ])T Q−1 (zt − ẑ[k ]) (8)
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The key steps of the fastSLAM algorithm are shown in equation 7 and 8. Equation 7 ex-
tends the path posterior by sampling a new pose for each sample. Equation 8 computes
the particle weighting parameter ω[k ] that helps the algorithm update the belief of
each observed landmarks for each sample, and then resample. k represents the particle
number, Q is the measurement covariance matrix, and ẑ[k ] is the expected observation.
See appendix A for the full algorithm, and [13] for a complete review.

3.3 Graph-Based SLAM

In Graph-Based SLAM, landmarks and robot locations can be thought of as nodes in a
graph. Every consecutive pair of locations xt−1, xt is tied together by an edge/spatial-
constraint that represents the information conveyed by the control reading ut . Edges
also exist between the nodes that correspond to locations ut and landmarksmi , assum-
ing a landmark is observed, represented by the orange arcs in figure 7. Edges in this
graph are soft constraints. Relaxing these constraints and finding a node configuration
that minimizes the error in the edges yields the robot’s best estimate for the map and
the full path.

The construction of the graph is illustrated in figure 7. Suppose at time tt−1, the
robot senses landmark m1. The edge between these two nodes is added to the yet
incomplete graph, as shown by the red line. When caching the edges in a matrix
format (which happen to correspond to a quadratic equation defining the resulting
constraints), a value is added to the elements between xt−1 andm1. If the system now
moves, the control readings will create a new edge between xt−1 and xt . By doing this
in consecutive fashion, edges from observations and controls lead to a graph-matrix of
increasing size. Nevertheless, this graph is sparse, in that each node is only connected
to a small number of other nodes (assuming a sensor with limited sensing range). The
number of constraints in the graph is (at worst) linear in the time elapsed and in the
number of nodes in the graph.

In figure 8 and figure 9 an implementation of a Graph-based SLAM algorithm is shown.
Every node in the graph corresponds to a robot position and a laser measurement. We
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Figure 7: Caption

can see in the first figure that the uncertainty from the measurements and controls
is huge. By letting edges between two nodes be represented by spatial constraints,
a graph is made in the last frame of figure 8. Once the graph is obtained the most
likely map is obtained by correcting the nodes, figure 9. Finally, the map can then be
rerendered based on the now known poses.

Graph-SLAM methods were originally used to solve the full SLAM problem offline, but
more recent techniques handles the online-SLAM problem by incrementing and re-
using the previously computed solutions. In comparison to EKF-SLAM, graphical meth-
ods scale to higher-dimensional maps, exploiting the sparsity in the graphs.
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(a) (b) (c)

Figure 8: Graph-Based SLAM, KUKA Halle 22, courtesy of P. Pfaff & G. Grisetti

(a) (b)

Figure 9: Graph-Based SLAM, KUKA Halle 22, courtesy of P. Pfaff & G. Grisetti
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4 Methods

4.1 HDL Graph Slam

High Definition LiDAR (HDL) graph SLAM, is an open source ROS package for real-
time 6DOF(degrees of freedom) SLAM using a 3D Lidar. It is a 3D Graph-based SLAM
method with normal distribution transform (NDT) [3] scan matching-based odometry
estimation and loop detection. It also supports several, graph constraints including
GPS, IMU acceleration and orientation, and floor constraints detected in point clouds.
Information and code is obtained from the hdl_graph_slam Github branch [10].

The HDL Graph SLAM algorithm consists of four ROS nodelets.

• Prefiltering

• Scan Matching

• Floor detection

• HDL_Graph_SLAM

The input cloud from the LiDAR measurements is firstly downsampled by the prefilter-
ing nodelet. The filtered points from the prefiltering nodelet are passed through to
the scan matching nodelet which estimates the sensor pose by iteratively applying a
scan matching between consecutive frames. Consecutively the floor detection nodelet
detects floor planes by RANSAC [6]. The estimated odometry and the detected floor
planes are sent to HDL Graph SLAM. To compensate for the accumulated error of scan
matching, the algorithm performs loop detection and optimizes a pose graph which
takes various constraints into account.

4.2 Cartographer

Cartographer is a real-time 2D and 3D SLAM system working on multiple platforms
developed by Google. Cartographer builds globally consistent maps in real-time across
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Figure 10: Illustration of HDL Graph SLAM nodelets

a broad range of sensor configurations. Google released Cartographer as an open-
source SLAM library in 2016. Although the system works with a range of sensors, the
algorithm is developed with a heavy focus in LiDAR SLAM.

A high-level system overview is illustrated in figure 11, were the system is divided
into three main parts.

• Input Sensor Data

• Local SLAM

• Global SLAM

The first part provides the system with sensor information. The local SLAM part
matches range data with IMU and pose estimates and uses this to update a Voxel grid.
A voxel grid represents a value on a regular grid in three-dimensional space. In SLAM
voxel grids are used to create the map from the observed scan. Cartographer uses
OctoMap [7], which is a common framework for 3D mapping, and has the advantage
of lossless compression and compact map files in addition to being open-source. After
producing the 3D point map, the Global SLAM part adds constraints to the map and
optimizes the robots position [15].

4.3 SegMap & SegMatch

SegMap is a segment based approach for map representation in localization and
mapping with 3D sensors. The robot’s surroundings are decomposed into a set of
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Figure 11: High-level system overview. Courtesy of Google.
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segments, and each segment is represented by a distinctive, low dimensional learning
based descriptor. Segmap is able to reconstruct the environment while achieving a
high compression rate allowing for SLAM with 3D LiDARS at a large scale [4].

The developers of SegMap also developed an algorithm called SegMatch. SegMatch
is a loop-closing algorithm designed for loop-closing from 3D laser data. In figure
12 a block diagram of SegMatch is presented. The Segmentation block segments
point clouds into distinct elements for matching. Feature extraction from the distinct
elements is then performed by a descriptor. Similar features from different segments
are matched in the next step using the RANSAC approach. A detailed description is
given in [5].

Figure 12: SegMatch block diagram. Courtesy of Dubé, Dugas, Stumm, Nieto, Siegwart
and Cadena
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5 Future work

5.1 Master Thesis

As this literature review concludes, the building of a system is set to take place from
January - June 2019 as a master thesis. There is no set task, other than to apply the
knowledge touch upon in this report to develop a test platform for a system that runs
autonomously using SLAM with the Ouster1 LiDAR. There are nonetheless several
important subjects that need to be touched upon in the master thesis for this to happen.
The most obvious being:

• Obtaining datasets of some local area

• Visualize obtained point clouds and localize the measuring device

• Attach the measurement device to some platform and develop control structures

• Test the platform with different SLAM approaches in different types of environ-
ments

The first task has some fairly straightforward procedures developed by Ouster and
should be no problem to complete in the early stages of the master thesis time span.
As for the second part, the visualizing is already tested with Ousters ROS package,
while the localizing is more of a challenge. At this time there are no sources that
has developed this part, except for Ouster that have shown a video of their system
running on SLAM. Ouster has not provided any information on how to solve the SLAM
problem using their sensors, but similar systems with a similar product should be
sufficient enough to develop a platform for this task. As the first two parts progress,
we need to decide upon a platform for the system to run on. There are many applicable
alternatives, but this decision needs a lot of planning as it will in a large majority
decide the outcome of the thesis. The last and probably the most important part is to
test the system in different environments and test how the system responds to the use
of the Ouster-1 LiDAR. If time allows it, and the faculties resources allow for testing
of similar products, comparisons of the solution on different sensors would pay off
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as a great way of presenting the results. Figure 13 shows a draft of a Class Diagram,
visualizing how the system could be modeled, containing the most important sections
that the proposed plan above needs to comprise.

Figure 13: Class Diagram

5.2 Stakeholders

The technology and development of SLAM is a very important part of true autonomous
navigation. If a well-developed platform works with the OUSTER-1 LiDAR, which is a
cheaper alternative to its competitors, works in different environments the possibility
for growth of the technology is huge. Development in this field of technology will have
stakeholders in industrial solutions, autonomous driving and further development at
this institute.
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6 Conclusion

After reviewing different methods for solving the problem, only some of the many has
been highlighted. The only testing that has been done in this project is the visualization
of some provided test data by Ouster-1. It is therefore difficult to conclude on which
method that will fit in future work before they all are tested. Aside from this, I think
that the HDL_Graph_SLAM method presented in subsection 4.1 fits the proposed
process described in Chapter 5 Future work, and should on paper be a great candidate
to solve the visualization and mapping problem of the system. I say this because
the method is well documented and specifically aims to solve the problem using 3D
LiDARs. The package is tested on the Velodyne VLP16 sensor, which is the very similar
counterpart to the Ouster-1 16 beam sensor.

The Cartographer solutions is also an option and should be considered as it is developed
by Google, which is known for their innovative and solid solutions. I have heard from
other students with similar projects, that the Cartographer algorithm may be hard to
implement as it requires fine-tuned parameters. In spite of that, a test of this solution
should be fitting in the master thesis.

In addition to the methods targeted above, this report concludes that SLAM is a
complex and difficult problem, but with the right tuning and constraints a solvable
and applicable solution for a vast majority of different scenarios.
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Ouster, Inc.
350 Treat Ave

San Francisco, CA 94110
LIDAR@ouster.io

OS-1
High Resolution Imaging LIDAR

SUMMARY
The OS-1 offers a market leading 
combination of price, performance, 
reliability and SWAP. It is designed 
for indoor/outdoor all-weather 
environments and long lifetime. As 
the smallest high performance 
LIDAR on the market, the OS-1 can 
be directly integrated into vehicle 
facias, windshield, side mirrors, and 
headlight clusters.

HIGHLIGHTS

• Fixed resolution per frame operating mode
• Camera-grade ambient and intensity data
• Multi-sensor crosstalk immunity
• Industry leading intrinsic calibration
• Open source drivers

OPTICAL PERFORMANCE

Range 0.5 m - 120 m @ 80% reflective lambertian target, 225 w/m2 sunlight, SNR of 12
0.5 m - 40 m @ 10% reflective lambertian target, 225 w/m2 sunlight, SNR of 12
* range of 0.0-80m (min range of 0.0m) in enhanced low range mode

Range Accuracy Zero bias for lambertian targets, slight bias for retroreflectors

Range Resolution 1.2 cm

Range Repeatability
  (1 sigma / standard deviation)

SNR >250: ± 1.5cm
SNR 100: ± 3 cm
SNR 12: ± 10 cm

Vertical Resolution 64 or 16 beams

Horizontal Resolution 2048, 1024, or 512 (configurable)

Field of View Vertical: +16.6° to -16.6 ° (33.2°) - uniform spacing / Horizontal: 360°

Angular Sampling Accuracy Vertical: ±0.01° / Horizontal: ±0.01°

Rotation Rate 10 to 20 hz (configurable)

# of Returns 1 (strongest)

LASER

Laser Product Class Class 1 eye-safe per [IEC 60825-1:2007 & 2014]

Laser Wavelength 850 nm

Beam Diameter Exiting Sensor 10 mm

Beam Divergence 0.13° (FWHM)

LIDAR OUTPUT

Connection UDP over gigabit ethernet

Point Per Second 1,310,720 (64-channel)
327,680 (16-channel)

Data Per Point Range, intensity, reflectivity, ambient, angle, time stamp

Time Stamp Resolution 10 ns

Data Latency < 10 ms

IMU OUTPUT

Connection UDP over gigabit ethernet

Samples Per Second 1,000

Data Per Sample 3 axis gyro, 3 axis accelerometer

Time Stamp Resolution 10 ns



Data Latency < 10 ms

CONTROL INTERFACE

Connection TCP over gigabit ethernet

Time Synchronization Input sources: 
    • IEEE1588 precision time protocol
    • External PPS
    • Internal 10 ppm drift clock
Output sources: 
    • Configurable 1-60Hz output pulse

LIDAR Operating Modes Hardware triggered angle firing (guaranteed fixed resolution per rotation): 
    • 64 x 2048 @ 10hz
    • 64 x 1024 @ 10hz  or 20hz
    • 64 x 512 @ 10hz  or 20hz
Fixed timing firing: 
    • Configurable measurement period between 50 µsec and 1 second

Additional Programmability Multi-sensor rotation phase tuning
Queryable intrinsic calibration information:
   • Beam angles
   • IMU pose correction matrix

MECHANICAL/ELECTRICAL

Power Consumption 14-16 W typical, 18 W peak

Operating Voltage 22-26 V, 24 V nominal

Connector Proprietary pluggable connector (Power + data + DIO)

Dimensions Diameter: 85 mm (3.34 in)
Height: 73 mm (2.87 in)

Weight 380 g (13.4oz)

Mounting 4 M3 screws / 2 locating 3mm pins

OPERATIONAL

Operating Temperature -20C to +50C (with Mount)

Storage Temperature -40C to +105C

Ingress IP67

Shock 500 m/s2 amplitude, 11 ms duration

Vibration 5 Hz to 2,000 Hz, 3 Grms

Certification FCC, CE, RoHS

ACCESSORIES

Included Interface Box PolyCarb/FR4, 100g, 75mm x 50mm x 25mm (LxWxH), 2m CAT6 cable, 24V 
power adapter, 5m sensor cable

Optional Mount Aluminum, 530g, 110mm x 110mm x 20.5mm (LxWxH), 4x M8 thru holes

EXTERIOR DIMENSIONS

*Specifications are subject to change without notice.
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