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Abstract

Simultaneous Localization and Mapping is the problem of creating a map of the
surroundings and simultaneously localize the robot/vehicle within this map. In mobile
robotics and self-driving applications, this is one of the essential challenges that need
to be solved. The use of laser range scanners is a common way of mapping the
surroundings, and a LIDAR was supplemented by NTNU for real-world testing.

This thesis presents a comparison of different methods of registering point clouds.
The Iterative Closest Point and Normal Distribution Transform method differ in speed
and accuracy, where the first proved best in simulations, but the second best when
registering point clouds from the supplied LIDAR.

Sensor fusion of an IMU and GPS is included as part of an Inertial Navigation System
that utilizes an Extended Kalman filter to update the filter states and covariance. The
result is a pose estimate that tracks a ground truth trajectory well but suffers from drift
over longer periods because of sensor biases and the lacking of a model for the vehicle
dynamics. The INS solution proves less computationally demanding than tested SLAM
solutions for pose estimation. The ambit of this thesis is a building block for further
development in the field of Simultaneous Localization and Mapping.

ii



Sammendrag

SLAM er et problem som omhandler prosessen med å opprette et kart over omgivelsene
og samtidig lokalisere roboten/kjøretøyet i dette kartet. I robotikken og selvkjørende
applikasjoner er dette en av de viktigste utfordringene som må løses. Bruk av laser
skannere er en vanlig måte å kartlegge omgivelsene på, så en LIDAR ble supplert av
NTNU for sanntidstesting.

Denne oppgaven presenterer en sammenligning av ulike metoder for registrering
av punktskyer. ICP og NDT er to metoder som varierer i hastighet og nøyaktighet,
hvor den første viste seg best i simuleringer, mens det andre viste seg best når man
registrerer punktskyer fra LIDARen.

En sensorfusjon av en IMU og GPS er inkludert som en del av et navigasjonssystem
som bruker et Extended Kalman filter for å oppdatere filtertilstandene og kovariansen.
Resultatet er et posisjonsestimat som sporer en forhåndsmålt bane. Estimatet lider
av drift over lengre perioder på grunn av sensor bias og mangelen på en skikkelig
modell for kjøretøyet. Navigasjonsløsningen viser seg å være mindre krevende enn
SLAM-løsninger for posisjonsestimering. Omfanget av denne avhandlingen er en
byggestein for videreutvikling innen SLAM.
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1 INTRODUCTION 1

1 Introduction

This introductory chapter will briefly provide context for the material/results presented
in this report and give motivation and a description of this master thesis contribution
along with an outline of the report structure.

1.1 Motivation

Many applications of robotics, such as industrial automation, the aerial industry, and
the car industry are in a revolutionary transformwhen it comes to autonomous systems
[26]. Self-driving vehicles are researched by many manufacturers, but there are still
some challenges to this promising future. To have an effective control system, a map
of the dynamic environment and reliable position estimates is essential. The problem
is that in order to construct a map, accurate robot position estimates are needed, and
to accurately measure the position estimate, the robot needs a map.

Simultaneously Localization and Mapping or SLAM is probably the most common
method to solve this problem. But SLAM is not easy to implement as it is a complex
system, especially when it needs to operate in dynamic environments. The motivation
behind this thesis is, therefore, to test the different parts of SLAM on a laser range
scanner, or LIDAR, to best be able to tell which methods and solutions that work best
with the LIDAR. Apart from this, the thesis aims to answer some of the following
research questions:

• R1: How can 3D SLAM using LIDARs be a sustainable solution to the SLAM
problem?

• R2: What is more important, speed or accuracy when it comes to mapping?

• R3: How can SLAM be used to improve the ability to estimate the vehicles pose?
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1.2 Background and Contributions

This thesis aims to describe and make the reader understand what the SLAM problem
is. It aims to discover the essential parts of registration of a map and localization
within this map. It describes how to implement a laser range scanner in ROS and how
to connect the sensor to a SLAM algorithm. Registration and localization methods are
simulated, and the simulated results are used as an indicator of how to tune some of
the most important parameters of SLAM. The results of the simulation are tested on a
data-set recorded in an indoor and outdoor environment.

The Norwegian University of Science and Technology have provided the project with
the Ouster 1, 16 beam 3D LIDAR. It has been used to record data samples, and have
been integrated with a SLAM system. The Matlab simulations used for registration
and localization use an open-source data-set containing high-quality measurements.
How they were included and used is well described and cited in the thesis.

1.3 Outline

The thesis is organized as follows. In Chapter 2 brief background theory of filtering,
registration, and localization is presented to help the reader understand the later
chapters. Chapters 3 and 4 thoroughly explains the SLAM problem and the most
important paradigms to solve this problem. Following these chapters is the main
contribution of this thesis. Firstly chapter 5 presents the used data-sets and hardware,
before chapter 6, 7 and 8 presents the main implementations, the results, and an
evaluation of these results. Chapter 9 tries to answer some of the research questions,
and lastly, chapter 10 presents possible future work areas of the thesis.

Figure 1 illustrates a block diagram of the most important topics of SLAM, and these are
repetitiously brought up as sections in the different chapters throughout the thesis. The
colored fields in the figure represent the parts that were researched and implemented.
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Figure 1: System Outline

Localization was not fully tested, and loop closing was a subject not touch upon at
all. The intention was to implement all the blocks in the figure, but limited time,
priorities, knowledge, and resources limited the outline of the report to the ones
mentioned.
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2 Background Theory

This chapter mentions the most important aspects of the background theory that is
necessary to understand the terms and solutions presented later in the report. Filtering,
registration and localization theory is presented, and a chapter on ROS and grid theory
is also included.

2.1 Recursive Bayes estimation

Algorithm 1 : Bayes filter(bel(xt−1),ut , zt ) :

1: for all xt do
2: ¯bel(xt ) =

∫
p(xt |ut ,xt−1) · bel(xt−1)dx

3: bel(xt ) = η · p(zt |xt ) · bel(xt )
4: end for
5: return bel(xt )

The predominant approach for state estimation in probabilistic robotics is the Bayes
filters. The method estimates the probability distribution bel(xt ) over the state xt
recursively based on the most recent control inputs ut , measurements zt and the
previous probabilistic estimate. In the Bayes filter algorithm[1] this is represented
through a prediction step in line 2 and an update step in line 3. The previous probability
distribution is extrapolated based on the control input ut and the previous state xt−1,
in the update step the measurement is used to improve the estimate. Because of this,
the Bayes filters do not just "guess" the state, they calculate the probability that any
state is correct [31].
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2.2 Gaussian filters

2.2.1 Kalman Filter

The Kalman filter is probably the most used implementation of the Bayes filter and
has been regarded as the best solution to many tracking and data prediction solutions.
The filter is constructed to minimize the mean square likelihood, with the purpose of
extracting the required information from a signal, ignoring everything else. A cost or
loss function is used to measure how well the filter performs.

Algorithm 2 : Kalman filter(µt−1, Σt−1,ut , zt ) :
1: µ̄t = At µt−1 + Btut
2: Σ̄t = AtΣt−1A

T
t + Rt

3: Kt = Σ̄tC
T
t (Ct Σ̄tC

T
t +Qt )

−1

4: µt = µ̄t + Kt (zt −Ct µ̄t )
5: Σt = (I − KtCt )Σ̄t
6: return µt , Σt

In the Kalman filter, the probability distribution is represented by the mean µt and
the covariance Σt . Unlike the Bayesian filter, the Kalman filter needs the probability
distributions to be Gaussian. The predicted distributions in the algorithm[2] is per-
formed in the first two steps, updating the new best estimate µ̄t by incorporating the
control input ut and the previous best estimate µt−1, and updating the new uncertainty
Σ̄t from the previous uncertainty Σt and some additional uncertainty from the envi-
ronment Rt . In step 3 through 5, the estimates are refined using the measurements
zt . Kt is called the Kalman gain and decides to what the degree the measurements
should be incorporated into the new state estimates. The mean in line 4 is adjusted
in proportion with the Kalman gain and the difference between the measurements zt
and the expected measurements Ct µ̄t . In the last step, the covariance is adjusted with
regards to the Kalman gain. Using the Kalman filter any linear system can be modeled
pretty accurately. For non-linear system, an Extended Kalman filter can be used, which
works by linearizing the predictions and measurements about their mean.
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2.2.2 Information Filter

As for Kalman filters, Information filters represents the belief by a Gaussian Distribu-
tion. But the key difference between the two is in the way the belief is represented.
Whereas the Gaussian is represented by the mean and covariance in the Kalman filter,
the distribution is represented by a canonical form comprised of an information matrix
and an information vector. The difference in representation leads to different update
equations. What is complex in one representation is simple in the other, and vice versa.
Canonical and moments (mean and covariance) are therefore often considered dual to
each other, and thus are the Information and Kalman filter [31].

Algorithm 3 : Information filter(ξt−1,Ωt−1,ut , zt ) :

1: Ω̄t = (AtΩ
T
t−1A

T
t + Rt )

−1

2: ξ̄t = AtΩ
T
t−1ξt−1 + Btut

3: Ωt = CT
t Q

−1
t Ct + Ω̄t

4: ξt = CT
t Q

−1
t zt + ξ̄t

5: return ξt ,Ωt

Like the Kalman filter, the information filter updates in the same two steps. The
difference is that the input is a Gaussian in a canonical form ξt−1 and Ωt−1 represent-
ing the distribution. As all Bayesian recursive filters, the input includes control and
measurements. The outputs are the updated parameters ξt and Ωt of the updated
Gaussian. These parameters in the canonical form is a quadratic function of the nega-
tive logarithm of the Gaussian. This is e.g. used in the calculation of the Mahalanobis
distance.

2.3 Measurements

Probabilistic robotics explicitly models the noise in sensor measurements, this to
account for the inherent uncertainty in the sensors. The measurement model is usually
defined as a probability distribution p(zt |xt ,m), where zt is the measurement at time t
given the robots pose xt and the mapm of the environment. Sensor models can be
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very complicated to model as the state variables may be unknown. By modeling the
measurement process as a conditional probability density instead of a deterministic
function, the uncertainties in the models can be accommodated. This is probably the
biggest advantage of probabilistic robotics.

2.3.1 Mapping

The map of the environment is a list of objects in the environment and their locations.
The environment may be comprised of landmarks, objects, surfaces, etc.m describes
the location of these. Put together, the landmark vectors create the map.

m = {m1,m2, ...,mN } (1)

In robotics, maps are usually seen as either feature-based or location-based maps.
In feature-based maps, the properties of mn consist of the feature properties and
the cartesian location of the features. For location-based maps, the mapping matrix
consists of specific locations in the environment, e.g. a point cloud.

2.3.2 Beam measurement

Laser range finders measure range along a beam. The sensor shines a light at a surface
and measures the times it takes for the light beam to return to the source. Since light
moves at constant speed, the distance can be measured with high accuracy but there is
still measurement errors that need modeling including small measurement noise, errors
due to unexpected objects, detection failures errors, and random noise. The desired
model of distribution p(zt |xt ,m) is therefore a mixture of densities corresponding to
different measurement errors [6].
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Algorithm 4 : Beam range finder model(zt ,xt ,m ) :
1: q = 1
2: for k = 1 to K do
3: compute zk∗t for the measurement zkt using ray casting
4: p = zhit · phit (zkt |xt ,m) + zrand · pshor t (z

k
t |xt ,m) + zmax · pmax (z

k
t |xt ,m) + zrand ·

prand (z
k
t |xt ,m)

5: q = q · p
6: return q

2.4 Localization

In mobile robotics, localization is the problem of determining the pose of the robot
relative to a given map of the environment, often referred to as position estimation.
In robotics, this is one of the most important aspects of the modeling as almost all
robotic systems require knowledge of the location of the robot and the objects that are
handled. Localization can be seen as a problem of coordinate transformation. Maps
are described in global coordinates, independent from the robots pose. Pose estimation
is the process of establishing a relation between the global coordinates of the map,
and the local coordinates of the robot system. If the local coordinates of the robot are
known in the global coordinates of the map, it is possible to express the measured
surroundings in the same coordinate system. The problem with localization is that
most sensors used for pose estimation have noisy measurements. This means that the
system has to integrate measured data over time to get a sufficient estimation of the
robots local coordinates.

2.4.1 Markov localization

The straightforward application of Bayes filters to the localization problem is the
Markov localization. The algorithm for Markov localization is very similar to the
Bayes filter algorithm, but it requires a mapm as input. The map is used in both the
measurement model p(zt |xt ,m) and in the motion model p(zt |ut ,xt−1,m). The Markov
localization algorithm manages to estimate the pose in a global environment where
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the initial pose bel(x0) of the robot is unknown by initializing the belief with a uniform
distribution over the space of all legal poses in the map [10].

Algorithm 5 : Markov localization(bel(xt−1,ut , zt ,m) ) :

1: for all xt do
2: ¯bel(xt ) =

∫
p(xt |ut ,xt−1,m) · bel(xt−1)dx

3: bel(xt ) = η · p(zt |xt ,m) · ¯bel(xt )
4: end for
5: return bel(xt )

As the robot moves through the environment, the belief gets updated in line 4 of
the algorithm[5] for every new measurement observation the sensor makes, and the
motion model in line 3 updates the belief with regards to the continuum of recent
poses. As with the Bayes filter, the Markov algorithm calculates the probability that any
state is correct. After a sufficient number of observations, the belief has a distribution
represented close to the robots real pose.

2.4.2 EKF Localization

The Extended Kalman filter localization is a Landmark-based localization algorithm
with a prediction and a correction step represented by the mean µt and the covariance
Σt . The algorithm [6] is derived from the Extended Kalman filter. At initialization
the required inputs are the estimate of the robots pose with mean µt−1, covariance
Σt−1, control input ut , a mapm, a set of observed features zt and the correspondence
variables ct .

The first three lines of the algorithm represent the motion model, where the first
line calculates the predicted pose of the robot, while Σ̄t is an ellipse representing the
uncertainty of the predicted pose. This uncertainty increases as the robot progress.
The rest of the algorithm represents the measurement update sequence, where the
algorithm loops through all possible i observed at time t . The Kalman gain K i

t is
calculated from the predicted measurements ẑit and Jacobian H i

t of the measurement
model. Lastly, the sum of all updates is applied to obtain the new pose estimate in
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Algorithm 6 : EKF localization( µt−1, Σt−1,ut , zt , ct ,m ) :

1: µ̄t = µt−1+
©­­«
−
vt
ωt

sin µt−1,θ +
vt
ωt

sin(µt−1,θ + ωt∆t)
vt
ωt

cos µt−1,θ −
vt
ωt

cos(µt−1,θ + ωtδt)

ωt∆t

ª®®¬
2: Gt =

©­­«
1 0 vt

ωt
cos µt−1,θ −

vt
ωt

cos(µt−1,θ + ωt∆t)

0 1 vt
ωt

sin µt−1,θ −
vt
ωt

sin(µt−1,θ + ωt∆t)

0 0 1

ª®®¬
3: Σ̄t = GtΣt−1G

T
t + Rt

4: Qt =
©­­«
σr 0 0
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line 13 and 14. As more landmarks with known positions are observed, the ellipse Σ̄t
representing uncertainty in the predicted pose shrinks, making the estimated pose
better.

2.4.3 Inertial Navigation System(INS)

Inertial navigation is a self-contained navigation technique in which measurements
provided by accelerometers and gyroscopes are used to track the position, velocity and
orientation of an object relative to a known start position, velocity and orientation[12].
INS provides a full 6DOF navigation solution. The navigation state vector and inertial
measurement input vector can be defined in equation (2) and (3).

xt =


pt

vt

qt


∈ R10 (2)

ut =


st

ωt

 ∈ R6 (3)

where
pk is position in [m], vk is velocities in [m/s], and qk is the quaternion representation
of position, velocity and orientation of the navigation system at time t . St denotes
the difference between the inertial and gravitational acceleration [m/s2], and ωt is
angular velocity [rad/s]. By neglecting discretization and quantization errors in the
navigation equations, the INS will track position, velocity and orientation perfectly if
there is no error in the IMU readings. In real life scenarios, this is unfortunately not
the case, and the measurement errors will cause the position and velocity estimates to
grow without bounds. One way to improve the performance is to fuse the INS with a
position estimate usually from a GNSS/GPS. The fused INS solution may then look
something like figure 2. What type of filtering algorithm used to estimate the errors in
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the measurements and navigation parameters can differ, but the Kalman Filter(2.2.1) is
a well-used solution in INS filters.

Figure 2: INS fusion closed loop

2.5 Registration

3D Registration is the process of consistently aligning two or more sets of three-
dimensional points. In most applications, these sets, often called point clouds, are
acquired by 3D scanners from different viewpoints. The registration process leads
to the relative pose (position and orientation) between scans in the same coordi-
nate frame, such that overlapping areas between the point clouds match as well as
possible[27]. Once aligned, the individual point clouds are merged into a single one,
so that techniques for extracting information can be applied.

2.5.1 Coherent Point Drift (CPD)

A robust probabilistic multidimensional point set registration algorithm that considers
the alignment of two point sets as a probability density estimation problem. CPD uses a
Gaussian Mixture Model(GMM) to represent one of the point clouds. GMM is a method
much used in object tracking where tracking of multiple objects is needed. It creates
a Gaussian probability distribution combining several clusters of data[11]. The CPD
methods use the GMM-model to create centroids, figure3, which is the mean position of
a set of points in the cloud. The other point cloud in the CPD-algorithm is the current
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Figure 3: Centroid

observed data points. The GMM-centroids is found by iteratively maximizing the
likelihood, finding a posterior probability of centroids, which provides the algorithm
with a correspondence probability to the data set. The key to the algorithm is to make
all the centroids move coherently as a group, preserving their topological structure,
hence the name Coherent Point Drift[3].

2.5.2 Iterative Closest Point (ICP)

Probably the most popular registration algorithm is the ICP-algorithm. It minimizes
the difference between two sets, or point clouds, by iteratively finding correspondences
between the two sets of points [4]. The two different point clouds are called the Target
and the Source. In each iteration, a point in the source point cloud is matched with its
closest neighbour of the target point cloud using a search algorithm. A point-to-point
distance metric minimization is performed to find the estimate of the transformation
between the two points, this to best be able to align them. This step may also involve
weighting points and rejecting outliers prior to the alignment, for better performance
and quick calculation. The points in the source point cloud are then transformed using
the obtained transformation before the method iterates a new set of neighbour points
into the sequence.

Ai and Bi from algorithm[7] represents the target and source point cloud respectively.
M0 is the initial transformation between the two sets. If no initial transformation
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Algorithm 7 : Iterative Closest Point(Ai ,Bi ,M0 ) :
1: M =M0
2: while not converged do
3: for i = 1 to N do
4: ci = FindClosestPointInA(M · Bi )
5: if | |ci −M · bi | | ≤ dmax then
6: ωi = 1
7: else
8: ωi = 0
9: end if
10: end for
11: M = argmin

M
(
∑

i ωi (M · bi − ci )
2)

12: end while
13: returnM

information is obtainable M0 is set to identity. Line 4 of the algorithm is the search
algorithm to find the set of points which are closest to the points in the source. dmax

is the weighting parameter mentioned, deciding the trade-off between accuracy and
convergence, removing outliers. The point-to-point minimization is lastly performed to
estimate the transformationM between the points. If the resolution of the point clouds
is sufficient enough a point-to-plane error metric minimization may be used, where
a tangent plane is constructed for every point in the target point cloud, producing a
normal vector connecting the two clouds [19].

2.5.3 Normal-Distributions Transform(NDT)

In comparison to the CDP, the Normal-Distribution Transform approach applies a
normal distribution to subdivided cells of the point cloud, hereby modeling the prob-
ability of a measured point[5]. The result of the transformation is a continuously
differentiable probability density, that can be used to match another point cloud scan
by Newton’s method. The major advantage is that there is no need to establish an
explicit correspondence between points or features to produce an accurate probability
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distribution. It can establish a piecewise continuous and differentiable probability from
a single scan. See section 6.2.2 for details of the algorithm.

2.5.4 Voxel and Occupancy grids

A voxel is a volumetric pixel, or the 3D equivalent of a pixel. It is a volume element
that represents a specific grid value in 3D space. E.g. a Rubik’s cube can be seen as a
squared grid consisting of 33 voxels. Voxels do not contain information about their
axis coordinates, but rather they keep some information about their relative location
in relation to nearby voxels and are considered single points in the 3D space.

Many robot applications require a 3D model of the environment, along with a prob-
abilistic representation, modeling of free, occupied, and unmapped areas, with the
addition of runtime efficiency [14]. A voxelgrid is a great way of representing these
areas as the environment can be mapped by voxels storing relative information about
its neighbours being able to determine free, occupied and unmapped areas. It is
usually possible to adjust the resolution in voxelgrids by deciding the length of the
sides in the voxel cube. This way the 3D model of the environment can be adjusted
accordingly.

Occupancy grid maps are similar to the voxelgrid, but usually, represent the 2D
environment as binary random variables occupying some space. An obstacle in the
environment is represented in a grid by occupying cells that try to recreate the shape
of the obstacles. E.g. a chess board can be seen as an occupancy grid, where each
square represents a binary random variable representing the percentage of an obstacle
at this location. As for voxelgrids, the resolution of the occupancy grid map can be
adjusted, hereby being able to represent obstacles more accurate.
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2.6 ROS

Robot Operating System (ROS) is an open-source, meta-operating system. ROS was
made to support the reuse of code in robotics research and development. The point is
to have an environment where many modules can run concurrently, and communicate
without being aware of each other. Meta-operating system means that ROS is built and
based on Ubuntu Linux, and shares it’s process management system, file system, user
interface and programming utilities. In addition, it also provides tools and libraries
for obtaining, building, writing and running code across multiple computers. In other
words, instead of redefining and changing the programming vocabulary and grammar,
ROS only adds features and libraries to the traditional C++ program. You can therefore
simply use some function calls and classes instead of rewrite major parts of code.

In ROS, programs are called nodes. Nodes can communicate with each other by sending
messages. These messages are sent to what is called a message topic. A topic of a
message must have a defined message type. This is so that ROS can convert them
from data structures to byte streams at sender’s end, transport them to the recipient,
and then convert them back to data structures. To receive and send certain topic of
messages the nodes needs to include what is called ROS Subscriber and ROS Publisher
functions. These are functions included in the ROS library and are necessary for the
nodes to communicate. An example of a node used in ROS is the ouster_ros node that
can visualize recorded or real-time point cloud messages. Most open-source robot
systems use ROS nodes to run different nodelets in the system. The nodelet package
in ROS is designed to provide a way to run multiple algorithms in the same process
with zero copy transport between algorithms.
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A launch-file is a file type that launches multiple ROS nodes locally and remotely. This
file can also change certain aspects of the code in the nodes by replacing topic names
and setting parameter values. This is useful when you wish to connect different types
of sensors to your code, by altering just the necessary parameters in the launch file,
rather than changing the code itself.
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3 SLAM Background Theory

3.1 The SLAM problem

The Springer Handbook of Robotics gives a great statement of what the SLAM problem
represent [30]. A mobile robot roams the unknown environment, starting at an initial
location. Its motion is uncertain, making it gradually more difficult to determine its
current pose in global coordinates. As it roams, the robot senses its environment with a
noisy sensor. The SLAM problem is the problem of building a map of the environment
while simultaneously determine the robot’s position relative to this map given noisy
data.

Simultaneously Localization and Mapping or SLAM has its origin in studies done by
Smith, Self, and Cheeseman back in 1986 on estimation for spatial relationships and
covariance between coordinate frames [28]. They introduced a method on how to
localize an object relative to another by manipulating the uncertainty associated with
spatial information, in the form of sensed relationships, prior constraints, and relative
motion. Theymade it possible to estimate the probability of certain events, based on the
uncertainty of the robot and the surrounding objects relative location. Smith, Self, and
Cheeseman made an effort to develop the methods in the context of state-estimation
and filtering theory [29] to provide a solid basis for numerous extensions. This led to
the introduction of SLAM in 1991 by Leonard and Durrant-Whyte [18].

Leonard and Durrant-Whyte introduced an algorithm for localization, based on current
state, position estimates, and sensor observation. They were able to develop a mobile
robot localization system that integrated a variety of beacon observations as input to a
Kalman filter to maintain a robust vehicle location estimate. Although their algorithm
had a number of limitations, most importantly the need for a priori environment
description and infinite data limits, they set the standard for further work with more
computationally tractable algorithms.

Durrant-Whyte, Fellow and Bailey have written one of the most cited papers on the
general SLAM topic [2]. To illustrate their points, figure 4 shows the general idea
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Figure 4: SLAM illustration. Objects in green are the real locations, the white objects
are the estimated equivalents

of how SLAM works. The true locations are never known or measured directly in
SLAM. Instead, observations are made between true robot and landmark locations,
and an estimated result is presented in both robot and landmark location. In the
illustration, a robot is moving through an environment taking relative observations of
a number of unknown landmarks. In the figure, objects in green represent the real
locations of robot and landmarks, while white is the estimated equivalents. To further
understand this we need to define the notations used in figure 4 at time instant t. The
notations used in SLAM varies in different papers, but the ones presented below are
fairly common.

xt : The state vector. Describes the robot’s location and orientation. Put in consecu-
tive order X0:T , and we get the path of the robot.

ut : The control vector. Describes the controls the robots receives in the prior state
to drive it to the current state. Put in consecutive order u1:T , and we get the
robot controls.
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mi : Landmark vector. The environment may be comprised of landmarks, objects,
surfaces, etc., This vector describes the location of these. Put together, the
landmarks create a mapm of the environment.

zt,i : The observation vector. At time instant t , zt,i describes the observation of
landmark mi . Put in consecutive order, z1:T describes a set of observations,
where e.g zT could be a laser scan image.

The data that is obtained is not necessarily accurate. Uncertainty in the robot’s motion
and observations is common. SLAM is best described by a probabilistic approach. The
robot or landmark is not seen in an exact position but has a probability distribution to
its location. The use of the mean and variance from this distribution is a common way
to estimate the positions in SLAM. Even though probabilistic distribution models vary
depending on the system, there are mainly two forms of the SLAM problem. The full
and online SLAM problem.

The full SLAM problem aims to estimate the entire path together with the map as
shown in equation (4). Written this way, the full SLAM problem is the problem of
calculating the probability distribution of the path xT and the mapm given observed
sensor data and robot controls. Figure 5 illustrates a graphical model of the full SLAM
problem. Algorithms for the full SLAM problem often process all data at the same time.
The online SLAMproblem seeks to recover only the recent pose andmap, marginalizing
out the previous poses. Usually done incremental one at a time, as shown in equation
(5). A graphical model of the online SLAM problem would look familiar to the full
problem in figure 5, but with an unknown colored field only for the current state and
not the entire path.

p(x0:T ,m | z1:T ,u1:T ) (4)

p(x t ,m | z1:t ,u1:t ) =

∫
x 0

...

∫
x t−1

p(x0:t ,m | z1:t ,u1:t )dx t−1...dx0 (5)
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p(x t | x t−1,ut ) (6)

p(zt+1 | x t+1,m) (7)

Figure 5: Graphical Model of the full SLAM-Problem

These two generalizations of the SLAM problem is usually structured into two models.
The motion model and the observation model. The motion model describes the relative
motion of the robot, while the observation model relates measurements with the robots
pose. The models corresponds to the arcs in figure 6. Probabilistic motion models
comprise the state transition probability shown in equation (6). It is an essential part
of the prediction step of the Bayes filter which calculates the belief parameter that
helps the robot infer its position and innovation. There are several different techniques
to motion models designed for different use cases. Thrun, Fox, Burgard, and Dallaert
introduced a robust motion model called Monte Carlo Localization in 2001 [32], able
to estimate the pose in dynamic systems.

As for motion models, observation models offer vastly different models depending
on the measurement devices and the system platform. The specifics of the model
depends on the sensor. Cameras are best modeled by projective geometry, sonars by
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describing the sound wave and its reflection on surfaces in the environment. The
system planned in this paper uses a laser range scanner, the observation model should,
therefore, be applicable to this sensor. Chapter 6 in Thrun [31] presents different
approaches with different distributions for the probability estimates. Solutions using
the RANSAC-algorithm is used in [9] and ICP (iterative closest point) methods in
[15].

Figure 6: Grapical representation of the motion and observation model

SLAM is best explained as a concept rather than a simple algorithm, where all the blocks
that are shown in figure 5 can be solved with different approaches. The basic idea is
that after enough measurements, errors caused by vibrations and robot movements will
be nullified. Each measurement is expected to be the same relative to the environment,
meaning the position can be estimated over a large enough data set.

The data association problem is a problem worth mentioning when talking about
SLAM. It is, in fact, one of the hardest problems to solve when you wish to track
your position. The data association problem is the problem of deciding which target
generated which observation. This would be easy in single-target tracking problems,
but when the association is more ambiguous and tracks multiple observation in one
scan or sample, the assignment of the observations become much harder to solve. One
simple strategy to solve this is to pay attention to the measurement that is closest to
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the prediction. This again becomes a problem when areas suffer from clutter in the
landscape. Amore sophisticated method is to keep track of multiple states/observations
hypothesis and consider the possibilities of these hypotheses. This is a commonmethod
for particle filter strategies, where each particle can be a hypothesis of the current
observation[21][22].

Another common problem in SLAM is the loop-closing problem. This is the problem
of realizing that the observed measurements have been observed at an earlier stage.
If one with certainty can conclude that this, in fact, has accrued, a loop-closing al-
gorithm can be used to overcome the drift accumulated in the robot trajectory over
time[17][8].
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4 Simultaneous Localization and Mapping

There are several different paradigms to solve the SLAM problem. This chapter will
review the three main paradigms used for SLAM, for which most others are derived.
EKF-SLAM is historically the first introduced, but it has become less popular due to its
limiting computational properties. Particle filtering is a popular method for online-
SLAM and provides a perspective on addressing the data association problem in SLAM.
Graph-Based SLAM is based on graphical representations and successfully applies
sparse nonlinear optimization methods for solving the full SLAM problem.

4.1 EKF SLAM

As mentioned in chapter 2, Smith, Self, and Cheeseman were the first to propose the
use of a single state vector to estimate the locations of a robot and a set of features
in the environment. Together with this, an error covariance matrix represented the
uncertainty in these estimates, including a correlation between the vehicle and feature
state estimates. Based on this the EKF-SLAM algorithm was developed.

Simply put, the EKF-SLAM algorithm applies the extended Kalman Filter to online
SLAM using maximum likelihood data association. As any EKF-algorithm, EKF-SLAM
makes a Gaussian noise assumption for the robot motion and observed surroundings.
The system covariance matrix mentioned above grows quadratically with the number
of landmarks. Because of this, EKF-SLAM uses a feature-based map, composed of
a relatively small number of point landmarks (<1000). The number of landmarks is
preferably kept this low for computational reasons.

The EKF algorithm represents the robot estimate by a multivariable Gaussian shown
in equation (8). The vector µt represents the state vector including the estimate of
the robot’s location and location of the features in the map. The dimension of µt
depends on the system. If the system were a planar surface robot, the dimension would
be 3 + 2N , as three variables are needed to represent the location and 2N for the N
landmarks. The matrix ∑t is the error covariance matrix used as the expected error



4 SIMULTANEOUS LOCALIZATION AND MAPPING 25

Figure 7: EKF-SLAM (image courtesy of Michael Montemerlo, Standford University)

for the guess µt . With the same example as above, the covariance matrix is of size
(3 + 2N ) · (3 + 2N ), making the problem quadratic. The off-diagonal elements in the
covariance matrix represent the correlations in the estimates of different variables.
Since the robot’s location is uncertain, and therefore the locations of the landmarks
are uncertain, the nonzero correlations are included. In appendix A the complete
algorithm for updating µt and ∑t is shown, see [31] for an complete review. The
algorithm uses an incremental maximum likelihood (ML) estimator to determine the
correspondences.

p(x t ,m | Z t ,U t ) = N(µt ,∑t ) (8)

Figure 7 illustrates the EKF-SLAM algorithm. The ellipses shown in the figure repre-
sents uncertainty in position (grey) and in landmark location (transparent). As the
system moves, the pose uncertainty increases because of the errors in odometry mea-
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surements. The system also senses landmarks in the environment and maps these with
an uncertainty that combines the uncertainty in the measurement and the systems
pose. This result in increasing uncertainty also for the landmark positions. The most
important part happens in the last frame of the figure. Here the system observes the
same landmark it did in the beginning. Through this observation, the systems state
error is reduced, along with the uncertainty of the landmark locations. This happens
because the uncertainty in the location estimates of the landmarks is vastly affected
by the error in the position. The correlation in the covariance matrix spreads through
the whole matrix and updates the previous landmark estimates. This effect is probably
the most important in EKF-SLAM. As mentioned above, to solve the problem of un-
certain data association, the system can use an ML-estimator to approximate which
of the landmarks in the map most likely corresponds to the landmark just observed
[33].

A key limitation to the method is the computational complexity. Sensor updates require
time quadratic in the number of landmarks N to compute. This complexity stems
from the fact that the covariance matrix maintained by the Kalman filters has O(N 2)

elements of which must be updated even if just a single landmark is observed. This
limits the method for sets with a large number of landmarks [30][31].

4.2 Particle filtering

Particle filtering has become popular in recent decades. Particle filters are a recursive
Bayes filter, where it represents a posterior through a set of particles. The posterior
is the distribution of possible unobserved values conditional on the observed values.
In SLAM, each particle is best taught as a concrete guess as to what the true value of
the state may be, figure 8. By collecting many such guesses into a set of guesses, or a
set of particles, the particle filter approximates the posterior distribution. Under mild
conditions, the particle filter has been shown to approach the true posterior values as
the particle set size goes to infinity. The particle filter is also not limited to Gaussian
distributions.
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Figure 8: Particle illustration, making guesses of obstacle states

x = (xx :t ,m1,x ,m1,y ....mN ,x ,mN ,y ) (9)

The key problem with the particle filter in the context of SLAM is that the path and
the map tend to be large. Particle filters scale exponentially with the dimension of
the underlying state space. Three or four dimensions are thus acceptable, but e.g. 100
dimensions are generally not, as seen from equation (9). The trick in making particle
filters applicable to the SLAM problem is to use the particle set only to model the
system’s path, then each sample of particle sets is a path hypothesis. Now an individual
map of landmarks can be computed. This key idea is known as the Rao-Blackwellization
or fastSLAM.

Rao-Blackwellization performs a marginalization over the probability distribution in
the state space. Instead of using sampling to represent the multivariate probability
distribution of the state space, marginalizing out a subset of the state space, is a much
more efficient method when using a Gaussian distribution, as seen in figure 9 where
the map is marginalized to several smaller maps. This marginalization has become
very popular in SLAM problems because jointly sampling over position and map is
impractical. When the creators of FastSLAM realized that Rao-Blackwellization could
help to marginalize the maps from the joint distribution, the SLAM problem became
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Figure 9: Graphical model of fast SLAM map marginalization

much more tractable.

FastSLAM is an algorithm based on particle filtering that recursively estimates the
full posterior distribution over the systems pose and landmark locations, yet scales
logarithmically with the number of landmarks in the map. The algorithm has been run
successfully on as many as 50000 landmarks [20]. FastSLAM decomposes the SLAM
problem into a robot localization problem and a collection of landmark estimation
problems that are conditioned on the robots pose estimate. Each particle in FastSLAM
processes N Kalman filters that estimate the N landmark locations conditioned on
the path estimate. This results in an algorithm requiring O(MN ) time, where M is
the number of particles. By developing a tree-based data structure, the FastSLAM
algorithm obtains O(MloдN ).

x [k ]
t ∼ p(x t | x

[k]
t−1,ut ) (10)

ω[k ] = |2πQ |[k] exp(−
1
2
(zt − ẑ[k ])T Q−1 (zt − ẑ[k ]) (11)
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The key steps of the fastSLAM algorithm are shown in equation (10) and (11). Equation
(10) extends the path posterior by sampling a new pose for each sample. Equation (11)
computes the particle weighting parameter ω[k ] that helps the algorithm update the
belief of each observed landmarks for each sample, and then resample. k represents
the particle number, Q is the measurement covariance matrix, and ẑ[k ] is the expected
observation. See [20] for a complete review.

4.3 Graph-Based SLAM

In Graph-Based SLAM, landmarks and robot locations can be thought of as nodes in a
graph. Every consecutive pair of locations xt−1, xt is tied together by an edge/spatial-
constraint that represents the information conveyed by the control reading ut . Edges
also exist between the nodes that correspond to locations ut and landmarksmi , assum-
ing a landmark is observed, represented by the orange arcs in figure 10. Edges in this
graph are soft constraints. Relaxing these constraints and finding a node configuration
that minimizes the error in the edges yields the robot’s best estimate for the map and
the full path.

The construction of the graph is illustrated in figure 10. Suppose at time tt−1, the
robot senses landmark m1. The edge between these two nodes is added to the yet
incomplete graph, as shown by the red line. When catching the edges in a matrix
format (which happen to correspond to a quadratic equation defining the resulting
constraints), a value is added to the elements between xt−1 andm1. If the system now
moves, the control readings will create a new edge between xt−1 and xt . By doing this
in consecutive fashion, edges from observations and controls lead to a graph-matrix of
increasing size. Nevertheless, this graph is sparse, in that each node is only connected
to a small number of other nodes (assuming a sensor with limited sensing range). The
number of constraints in the graph is (at worst) linear in the time elapsed and in the
number of nodes in the graph.

In figure 11 and figure 12 an implementation of a Graph-based SLAM algorithm is
shown. Every node in the graph corresponds to a robot position and a laser mea-
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Figure 10: Construction of Graph

surement. We can see in the first figure that the uncertainty from the measurements
and controls is large. By letting edges between two nodes be represented by spatial
constraints, a graph is made in the last frame of figure 11. Once the graph is obtained
the most likely map is obtained by correcting the nodes, see figure 12. Finally, the map
can then be rerendered based on the now known poses.

Graph-SLAM methods were originally used to solve the full SLAM problem offline, but
more recent techniques handle the online-SLAM problem by incrementing and re-using
the previously computed solutions. In comparison to EKF-SLAM, graphical methods
scale to higher-dimensional maps, exploiting the sparsity in the graphs.
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(a) (b) (c)

Figure 11: Graph-Based SLAM, KUKA Halle 22, courtesy of P. Pfaff & G. Grisetti

(a) (b)

Figure 12: Graph-Based SLAM, KUKA Halle 22, courtesy of P. Pfaff & G. Grisetti
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5 Dataset and Sensors

5.1 Ford Campus Data set

Most of the data used in this thesis are presented by the open source Ford Campus Vision
and Lidar Data set [25], produces by the University of Michigan. The data is collected
in downtown Michigan in an urban environment. The perception data used in the
simulations comes from a VelodyneHDL64E lidar spinning at 10Hz providing raw point
cloud data with a resolution of 80000-100000 points per scan. The navigation data used
in the simulations is retrieved from aApplanix POS-LV 420 INS. It’s a professional-grade
turnkey position and orientation system combining a differential GPS and an IMU. Ran
at a sample rate of 100Hz, the sensor provides the data set with the relative position,
orientation, velocity, angular rate and acceleration estimates of the vehicle.

5.2 Ouster Lidar

The Ouster-1 LiDAR used in this project is a 16-beam 3D LiDAR with a 16.6 deg vertical
field of view. It is able to capture 327 680 points per second. Every point received
contains data information including range, intensity, reflectivity, ambient data, angles,
and time-stamp. Ouster-1 has a built-in IMU for gyro and accelerometer readings. See
appendix A for the Ouster-1 datasheet. The Ouster 1 software can be obtained from
their GitHub branch [24] by either cloning it or downloading it and build it as a ROS
node using ROS package building commands cmake and make.

To be able to test the SLAM algorithms, I recorded two different types of data-sets
using the Ouster Lidar. One inside capturing two rooms, and one outside on the roof
of NTNU EL-bygget. The sets were recorded by holding the LIDAR over my head and
walking around trying to capture as much of the surroundings as possible. How this
was done is explained better in section 6.1.
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6 Implementation

The following chapters describe how the different approaches in this thesis were
implemented. The Ouster Lidar has been implemented to run in ROS, and procedures
on how the lidar is implemented in two algorithms are explained. The point cloud
registration and GPS/IMU/LIDAR simulation has been implemented in Matlab. Most
of the testing was done on the Ford Campus data-set, and here in a certain area of
the data-set. The set is big and simulation-times suffer. Therefore most of the data is
collected 5 minutes into the set, and here running for about 20 seconds. This accounts
for approximately 200 LIDAR scans at 10Hz.

6.1 Ouster Lidar

The software for the Ouster 1 LIDAR was implemented in Ubuntu. To communicate
with the lidar, a Dnsmasq server[7] was set up to read the LIDARs interface. To obtain
this interface, the LIDAR was connected with an ethernet cable, and the interface code
was copied over to the Dnsmasq’s config file. The network configuration in Ubuntu
was assigned a manual IP-address that was configured in the Dnsmasq config so that
the Dnsmasq could allocate a range of IP-addresses for the LIDAR to connect to. After
the initial set up, a simple terminal command, sudo systemctl start Dnsmasq.service,
initializes the network infrastructure for the LIDAR to connect. By running, jour-
nalctl -fu Dnsmasq, I was able to obtain the IP-address and hostname of the Ouster
LIDAR.

A test of the sensor could now, after downloading the sensors test software as described
in section 5.2, be visualized by writing the following in the Ubuntu terminal:

• Terminal 1: source catkin_ws/devel/setup.bash
roslaunch ouster_ros os1.launch os1_hostname:=<hostname> ...
os1_udp_dest:=<udp_data_destination_ip-address>
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• Terminal 2: source catkin_ws/devel/setup.bash
rviz -d /<ouster_master_destination>/ouster_ros/viz.rviz

where
<hostname> was the IP-address along with the sensor-id obtained by looking at the
running Dnsmasq server, and <udp_data_dest> was the manually assigned IP-address
for the network. To record a set of point clouds, or a bag, a third terminal window
should include:

• Terminal 3: source catkin_ws/devel/setup.bash
rosbag record /os1_node/imu_packets /ose_node/lidar_packets

If the goal was to simply play a pre-recorded point cloud bag, the command for
hostname and IP-address in the first terminal window was substituted by replay:=true
and a fourth terminal window was assigned to play the recorded bag.

• Terminal 4: source catkin_ws/devel/setup.bash
rosbag play –clock <bag_destination>

To end the Dnsmasq server, the command sudo systemctl stop Dnsmasq.service can
be entered. After this implementation, the sensor should be able to run with other
types of software by running the commands in terminal 2, setting it ready as a node in
ROS.

6.2 Registration

Registration is an essential part when you want to map an environment for a vehicle
or robot to move within. Both speed and accuracy are important factors to evaluate
for point cloud registration when SLAM optimally runs in real-time. A simulation on
two of the most qualified registration algorithms has been implemented to discover
how they compare, and if accuracy and resolution is as important as the speed of the
registration.
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6.2.1 The ICP registration

The ICP registration algorithm is implemented through Matlab. Two consecutive
lidar scans are converted from a set of 3D-points into a Matlab point cloud object.
The first scan was appointed as the Target and the second as the Source. Every scan
obtained from the Velodyne HDL64E returns about 80 000 points in the 3D coordinate
system. Iterating over a set of that size demands a lot from the algorithm, but in
most cases, a resolution of this size is not necessary. The two point clouds were
therefor downsampled with a sample rate between 5-10 samples, resulting in two
clouds consisting of about 8000 - 16000 points. The downsampled clouds were then
matched using a k-d tree, which is a data structure used in computer science for
organizing some number of points in a space with k dimensions. The k-d tree is very
useful for range and nearest neighbor searches, which it was used for in this case.
Because of measurement noise, it can be helpful to remove unwanted outliers. An
outlier filter with a predefined weighting parameter dmax was applied, where the
sample rate of the point cloud was adjusted to obtain better performance.

M = argmin
M

(
∑
i

ωi ((M · bi − ci )ni )
2) (12)

In equation (12) the sum of the squared distance between each source and target point
was minimized returning the 3D rigid body transformation matrix between each pair
of neighbour points. Earlier methods of the ICP algorithm uses a point-to-point error
metric minimization, as the algorithm in chapter 2.5.2. In equation (12), the parameter
ni = (nix ,niy ,niz , 0)T is included as the unit normal vector from the tangent plane of
point ci . This is therefor called a point-to-plane error minimization[19]. The rigid
body transformation M composed of a rotation matrix R(α , β,γ ) and a translation
matrix T (tx , ty , tz ) is usually computed using nonlinear least-square methods. In the
point-to-plane method an approximation was done for angles θ ≈ 0 on sinθ ≈ θ and
cosθ ≈ 1. Therefor, when α , β,γ ≈ 0:
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R(α , β ,γ ) ≈

©­­­­­­­«

1 αβ − γ αγ + β 0

γ αβγ + 1 βγ − α 0

−β α 1 0

0 0 0 1

ª®®®®®®®¬
≈

©­­­­­­­«

1 −γ β 0

γ 1 −α 0

−β α 1 0

0 0 0 1

ª®®®®®®®¬
= R̂(α , β ,γ ) (13)

from

R(α , β,γ ) = Rx (γ ) · Ry (β) · Rx (α) =

©­­­­­­­«

r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

+ 0 0 1

ª®®®®®®®¬
(14)

where
r11 = cosγ cos β , r12 =− sinγ cosα+cosγ sin β sinα , r13 = sinγ sinα+cosγ sin β cosα ,
r21 = sinγ cos β , r22 = cosγ cosα+sinγ sin β sinα , r23 =− cosγ sinα+sinγ sin β cosα ,
r31 = − sin β , r32 = cos β sinα , r33 = cos β cosα

This resulting in an approximation of M̂ to equation (15).

M̂ = T (tx , ty , tz ) · R̂(α , β,γ ) =

©­­­­­­­«

1 −γ β tx

γ 1 −α ty

−β α 1 tz

0 0 0 1

ª®®®®®®®¬
(15)

Now for each paired point, the ((M̂ · bi − ci ) · ni )
2 part of the approximated rigid body

transformation can be written as a linear expressionAx −b. This cuts down simulation
times and is able to perform when the relative orientation between two points is quite
large.

When the rotation and translation between points in the two planes were calculated
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through theM matrix, a transformation was performed aligning the source point cloud
to the target point cloud. Matlab offers a function to merge multiple point clouds, so
this was the last step of the ICP-method as new scans were transformed and merged
into the reference. Figure 13 illustrates the implementation.

Figure 13: ICP Registration
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6.2.2 NDT Registration

As for the ICP-registration, the NDT-registration method require a input of two con-
secutive scans. The first scan was divided into voxels in the 3D space with a certain
grid-size for each side of the voxel [1]. Every point pi = (pix ,piy ,piz )

T in the voxel was
collected, and the mean µ = 1

n
∑

i pi and the covariance Σ = 1
n
∑

i (pi − µ) · (pi − µ)
T was

calculated to find the probability of measuring a sample of points within the voxel. This
probability was modeled by the normal distribution N (µ, Σ) in equation (16).

p(p) ∼ exp(−
(p − µ)T Σ−1(p − µ)

2
) (16)

This equation results in a voxel with probability densities for every point. The goal
of the approach was to recover estimates for a pose, x , consisting of positions x , y
and z, as well as roll pitch and yaw angles ψ , ϕ and θ . After building the NDT for
the first scan, these parameters were initialized at zero. The second scan was then
divided in a similar way and mapped to the first map using these parameters. The
corresponding normal distribution was then calculated for the mapped points, and a
new cost parameter was calculated in equation (17) to evaluate the accuracy of the
new parameters.

J (x) =
∑
i

exp (
−(p∗i − µi )

T Σ−1
i (p∗i − µi )

2
) (17)

p∗i = Rpi + t (18)

where
R and t is the rotation and translation matrices related to the vehicle pose. µi and Σi

is the mean and covariance for points in voxeli , which corresponds to p∗i . The cost
function was then maximized using the Newton algorithm as mentioned in chapter
2.5.3. Figure 14 illustrates the implementation.
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Figure 14: NDT registration

6.3 Localization

For all robotic applications, it is important to know the location and orientation of the
robot or vehicle. Especially for SLAM systems that operate in dynamic environments,
the certainty in position and pose is extremely important to not damage the system or
the people and objects in the environment. An inertial navigation system (INS) with
the fusion of an inertial measurement unit (IMU) and a global positioning system (GPS)
has been implemented to simulate a pose estimation using an Extended Kalman filter.
This was implemented to compare the results to a more common SLAM localization
method. The purposed time window of this project didn’t allow me to implement a
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SLAM localization method, so the INS was compared to a SLAM solution provided by
Matlab.

6.3.1 GPS & IMU

By using data from the Ford Campus data-set, a ground truth trajectory was cre-
ated from the Applanix Pos LV professional grade position and orientation system,
by extracting all poses of the vehicle in a certain time-space. The Matlab function
wayPointTrajectory calculates ground truth pose based on a specified sampling rate,
way-points, time of arrival and orientation. I wanted to include a GPS/IMU fusion
INS to compare the position estimate with the ground truth, seeing how useful these
sensors could be for SLAM integration. This whole implementation was done in Matlab
for easy comparison of the results with the Ford Campus data-set, which deliver most
of their parameters in Matlab .m-files.

The sampling rates for the GPS and IMU were sat at 10Hz and 100Hz respectively,
the same sampling rate used in the Ford Campus set. The filter to fuse the IMU and
GPS measurements was created as an Extended Kalman filter to track the position,
orientation, velocity, and the sensor bias offset. The filter updates with a factor of
ImuSamplinдRate/2.

The filter has 16 different states, the same number as described in the Inertial navigation
chapter in section 2.4.3. The different states is shown in table(1).
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Table 1: INSfilter states

States unit Index

Orientation (quaternion) 1:4

Gyroscope Bias (XYZ) rad/s 5:7

Position m 8:10

Velocity m/s 11:13

Accelorometer Bias (XYZ) m/s2 14:16

Nonlinear differential equations for the system:

xt = f (xt−1,ut ) +wt

zt = h(xt ) +vt
(19)

withw(t) ∼ N (0,Q) and vt ∼ N (0,R), meaningw(t) and v(t) is Gaussian noise with
covariance Q and R.

xt is defined as in equation (2), but with the velocity states denoted with a capital Vt
to distinguish it from the measurement noise vt in the differential equations.
Here

pt = pt−1 +TsVt−1 +
T 2
s

2
(Rnb (qt−1)st − д) (20)

Vt = Vt−1 +Ts (R
n
b (qt−1)sk − д) (21)

qt = (cos (0.5 ·Ts | |ωt | |I4 +
1

| |ωt | |
sin (0.5 ·Ts | |wk | |)Ωt )qt−1 (22)
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Ωt =



0 ωt,z −ωt,y ωt,x

ωt,z 0 −ωt,x ωt,y

ωt,y −ωt,x 0 ωt,z

ωt,x −ωt,y ωt,z 0


(23)

is the navigation equations, where Ts is the sampling rate, Rnb is the rotation matrix
rotating from the body frame to the navigation frame. The gravity vector д is assumed
constant and subtracted to obtain accelerations in the tangent plane. qt is the orienta-
tion as quaternions, calculated by the quaternion function in Matlab. The measurement
noise model is described by

ũt = ut + b(t) + n(t) (24)

where ut is defined as in equation (3). n is additive white noise with variance Q , and b
is a slowly varying sensor bias.

The filter states are initialized by the ground truth, resulting in it converging faster to
the estimated states. The prediction step of the EKF estimates the filter states based on
ωt from the measurement noise model. The Kalman gain updates the state estimates
and the state covariance estimate. The GPS position estimate was updated at a lower
sampling rate, contributing to the position estimate of the filter.

6.4 SLAM Algorithm

The choice and implementation of the SLAM algorithm were done on the background
of the research done in TTK4551 - Engineering Cybernetics, Specialization Project as
mentioned in the preface. The graph SLAMmethod seems to have become the standard
in modern SLAM solutions. This is mainly because the method is able to handle a
larger set of observations and a more complex map. Different SLAM solutions were
tested to see how easy the Ouster Lidar would be to implement into these algorithms.
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The two main solutions that were tested were the LOAM 3D SLAM [35] and the HDL
Graph SLAM. In the end, the choice fell on the HDL Graph SLAM algorithm because
it was easier to implement and adjust parameters, and it also offered loop closing
capabilities. Also, the LOAM method resulted in more drift in the tests that were
carried out in real-time.

6.4.1 HDL Graph Slam

High Definition LiDAR (HDL) graph SLAM, is an open source ROS package for real-
time 6DOF(degrees of freedom) SLAM using a 3D LIDAR. It is a 3D SLAMmethod based
on Graph SLAM (section 4.3) with the option of NDT, and ICP scan matching. It also
supports several, graph constraints including GPS, IMU acceleration and orientation,
and floor constraints detected in point clouds. Information and code is obtained from
the hdl_graph_slam Github branch [16].

The HDL Graph SLAM code was implemented in the samemanner as the Ouster LIDAR
software by building a catkin workspace for use in ROS. The HDL-GS consists of the
four ROS nodelets: Prefiltering, Scan matching, Floor detection and Graph_SLAM. The
input cloud from the LIDAR measurements was first downsampled by the prefiltering
nodelet. The filtered points from the prefiltering nodelet were then passed through to
the scan matching nodelet which estimated the sensor pose by iteratively applying a
scan matching between consecutive frames. Consecutively the floor detection nodelet
detects floor planes by RANSAC [9]. The estimated odometry and the detected floor
planes were sent to the Graph SLAM. To compensate for the accumulated error of scan
matching, the algorithm performs loop detection and optimizes a pose graph which
takes various constraints into account.

As many other SLAM algorithms, the HDL approach is built from two main c++
libraries, the Point Cloud Library (PCL) and the General Graph Optimization (g2o)
libraries. The PCL is a great source for point cloud and 3D processing, including
libraries for the most known registration algorithms and several filters applicable for
point clouds. The g2o is useful for optimizing graph-based non-linear error functions,
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Figure 15: Illustration of HDL Graph SLAM nodelets

making it great for the localization aspect of the SLAM algorithm. When I later
mention the inclusion of registration and localization methods for the HDL Graph
SLAM algorithm, these are the libraries used to execute these tasks.

To use the Ouster LIDAR in the HDL-GS environment, a launch-file was produced, as
explained in section 2.6, to connect the different nodes of the algorithm. The Ouster
LIDAR sends out a message topic called os1_cloud_node/points, which is the topic of
the point cloud. In the launch file section for the prefiltering-nodlet, this topic was
mapped so that the algorithms receive point cloud inputs from the Ouster sensor. The
launch-file specifies the downsampling resolution of a Voxelgrid applied to the point
cloud topic. An outlier removal method is also included in the prefiltering part of the
algorithm. The launch-file specifies which type of PCL outlier removal tool that is to
be applied to the point cloud.

The scanmatching nodlet implements the NDT and ICP registration methodmentioned
earlier through the PCL. The launch-file was used to decide which method to use, and
how the parameters were tuned. The floor matching and Graph SLAM nodlet have
not been tweaked with too much by the launch-file regarding this thesis. In the period
of this thesis, I had a lot of trouble extracting the correct IMU topic, and use these
important parameters in the algorithm. The sensor doesn’t include any GPS, which
also is an important part of the Graph SLAM nodelet. To watch the complete ROS
node tree see appendix B.

To run the HDL GS algorithm after creating a launch-file that utilize your sensor, you
have to apply the same procedure as for the Ouster sensor in section 6.1, where a new
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terminal window includes:

• Terminal: source /catkin_ws/devel/setup.bash
roslaunch hdl_graph_slam <launch-file>

The algorithm builds a graph based map as explained in section 4.3 where nodes
represent the poses of the robot, while the edges represent the connection between
these poses and the possibility of loop closures. The map and the robot localization
was observed using rviz, which is a 3D-visualization tool in ROS. It was launched in a
new terminal with the command:

• Terminal: source /catkin_ws/devel/setup.bash
rviz -d /<3D-tool destination>

The terminal launching the algorithm and the launch-file monitors the map optimiza-
tion and the loop closure detection candidates. The complete launch-file can be seen
in appendix B.
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7 Results

7.1 Registration

Both the Iterative Closest Point and the Normal Distribution Transform registration
methods performed well in Matlab on a Dell OptiPlex 7060, with 32GB RAM and an
Intel i7-8700 processor. The presented results use the same point cloud parameters for
both methods, and the same method of downsampling was used.

The ICP registration algorithm was tested with the point-to-point and point-to-plane
error minimization. The results are represented in figure 16 - 19. As we can see, the
methods behave very similarly with quick convergence to within the set tolerance.
The biggest difference lies in the number of iterations needed for the algorithms to
satisfy the set tolerance. It also seems like the point-to-point method needs a couple
of iterations to obtain the correct rigid transform between the point clouds, as seen
in figure 16. The same holds for the root mean square error for the two methods,
which is the Euclidean distance between the aligned points. The point-to-plane used
fewer iterations to converge to the correct estimate. A test was carried out to test
how this would affect the performance. Table 2 shows the running time of the two
methods by registering 50 scans from the Ford Campus data set at different particle
densities. This shows that the difference between the methods isn’t substantial, but
the point-to-plane is slightly faster and should, therefore, work better if there is need
of a higher resolution point cloud to extract key features for use in e.g SLAM.

Table 2: Performance test ICP

Downsampled Point-to-Point [t] Point-to-Plane [t]
5 % 10.40 10.44
10% 12.45 11.90
15% 14.93 13.93
25% 20.36 17,35
50% 34,11 27,17
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Figure 16: Point-to-point transformation
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Figure 17: Point-to-plane transformation
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Figure 18: Point-to-point RMSE
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The main adjustable parameter for the NDT is the size of the voxels in the Voxelgrid.
The root mean square error was monitored and plotted after each iteration of the
algorithm. The result is presented in Figure 20, were the fastest conversion to the
correct Euclidean distance between the aligned points was for a VoxelSize of approx 6
[cm]. Grid sizes below or above the ones shown in the figure gave unstable results,
and did not seem to find the same estimated rms-error as the ones presented., although
some parameters gave good results with faster simulation times. The number of
iterations and the similar values in different voxel sizes tells me that the tuning of
the NDT parameters is very dependent on the data it analyses. Some voxels may
contain a lot of points in some areas, and not so much in others, making it all that
more important to test the registration algorithm with different parameters when used
in SLAM applications.
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Figure 20: NDT RMSE with different VoxelGrid sizes
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As one can see from table 3, running 200 LIDAR scans with the same parameter settings
for the twomethods, yields a much faster result for the Iterative Closest Point algorithm.
However, as figure 21 and figure 22 try to illustrate, the Normal Distribution Transform
algorithms are more precise in merging larger sets of scans. The ICP solution isn’t
as accurate as the NDT. The colored fields of figure 21 implies that the transformed
points are somewhat skewed in comparison to the NDT map. This would be better
illustrated with a 3D tool.

Table 3: Merging 200 scans for ICP and NDT

Method time [s]

Iterative Closest Point 47.21

Normal Distribution Transform 880.48

Figure 21: ICP merged
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Figure 22: NDT Merged
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7.2 Localization

The inertial navigation position and orientation estimates were compared to the ground
truth trajectory by computing an end-to-end root mean square error, which is the
average rms-error of all pose estimates compared with the pose of the ground truth.
The simulation was done in the same time window as the 200 Velodyne scans used
in the registration simulation (7.1). The ground truth trajectory includes a straight
line and a curvature. The results of the INS sensor fusion is presented in figure 23 and
24. Here the rms-error for the position estimates is presented for axes x , y and z. The
INS filter manages to estimate the position of the vehicle for about 14 seconds before
the x and y estimates drift. The orientation is calculated as quaternions, and the error
between the ground truth orientation and the INS estimated orientation is therefore
presented as a quaternion distance, which is the same as angular distance. This result
is presented in figure 24. The filter estimates the orientation with small errors, but
there is also a tendency of drift in the orientation estimate.
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Figure 23: Root mean square error INS
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Figure 24: Quaternion distance error INS

The results of the INS sensor fusionwas comparedwith a localization solution inMatlab,
by applying the functions slamObject and addScan that returned a pose estimate based
on the LIDAR data from the same trajectory. The results are presented in figure 25 and
26, and table 4. The simulation time presented in the table only accounts for the SLAM
solution, as the INS estimations were almost instant. The SLAM function uses an
Occupancy grid to map the environment as an evenly spaced field with binary random
variables. By adjusting the resolution of this map, the localization and simulation time
is greatly affected. The result is a pretty good position estimate, comparable with the
INS fusion. With a map-resolution of about 3 grid cells per meter, the simulation time
is quite high, but the performance does not really improve with more grid cells per
meter. This is illustrated by figure 25 and 26 where the position estimate tracks the
ground truth well for a map-resolution of 3 cells/m, and similarly with an Occupancy
map with a grid size of 8 cells/m. With very low map resolutions, the SLAM algorithm
has big problems with the calculation of the estimated trajectory.
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Figure 25: Curved waypoint trajectory, lower map resolution
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Figure 26: Curved waypoint trajectory, higher map resolution
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Table 4: Curve End-to-End position RMS error with different map resolutions in SLAM
algorithm

Fusion RMS error [m] SLAM RMS error [m] [cell/m] time (s)
x: 1.1502 y: 0.9838 z: 0.7767 x: 14.628 y: 10.186 z: 1.8689 1.0 9.11
x: 1.1502 y: 0.9838 z: 0.7767 x: 1.2409 y: 0.5354 z: 1.3298 3.0 48.56
x: 1.1502 y: 0.9838 z: 0.7767 x: 0.3257 y: 1.2529 z: 1.3059 5.0 130.01
x: 1.1502 y: 0.9838 z: 0.7767 x: 0.8357 y: 1.3724 z: 1.2914 8.0 407.79

7.3 SLAM

The result of the simultaneous localization and mapping through the HDL Graph
SLAM method is shown in figure 27 - 30. The algorithm was tested with the Ouster
1 LIDAR in an indoor and outdoor environment. The resulting figures present the
mapped area with the estimated pose of the sensor represented as nodes with edges
between them. The launch file for the ROS nodes is included in the appendix[B] along
with the ROS node tree for the system.

The point cloud registration in the algorithm was tested with the registration methods
proposed in the registration section of this report. Both NDT and ICP was tested with
different parameter tuning. All the presented results in the HDL Graph SLAM maps
is with the NDT solution. The ICP algorithm was not sufficient and had problems
initializing the registration. This resulted in completely wrong pose estimates, without
the possibility of graph optimization. The presented methods are therefore registered
with the NDT registration method, but with different search methods to correspond
between each normally distributed point in the voxel map.

Figure 27 shows a bird’s eye view of room GG48 at EL-bygget, NTNU Gløshaugen,
mapped with the Ouster 1 LIDAR. The balls in the figure represent the graph nodes,
and the coloring represents the uncertainty in the pose estimates. The lines between
the nodes is a representation of the edges. The g2o library for graph optimization
demands a certain number of edges to initialize an optimization sequence, as explained
in section 4.3. In the HDL Graph SLAM algorithm, this number was set to 10 edges.
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Figure 27: SLAM Ouster Indoors

The algorithm struggled in the indoor environment, and the NDT parameters had to
be fine-tuned to even get an update of the map. This results in a skewed map.

Figure 29 and 28 shows a map of the roof of EL-bygget. Fewer disturbances in the
environment and more distinct features results in a map that represents the real world
much better than the indoors sample. Because of this, the trajectory of nodes tracks the
sensor position with much higher accuracy than for the indoors. In the outdoor sample,
the algorithm detects 10 edges after just a couple of seconds and is able to initialize
the optimization of the graph, compute initial guesses for the pose and compare the
error in the pose with the previous step. The blue lines indicate an update of the
pose.

Figure 30 shows the map and trajectory of a sample from the higher resolution Ouster
LIDAR required from Ouster [23]. The algorithm performed very well on this sample
and was quick to initialize and update the graph. The limitation to working with a
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Figure 28: SLAM Ouster outdoors

Figure 29: SLAM Ouster outdoors from above
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Figure 30: SLAM Ouster64 outdoors high resolution

LIDAR with four times the number of vertical beams is that the number of points
makes the computation more demanding. You need a state of the art graphics card to
visualize a longer trajectory with point cloud samples in this resolution.
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8 Evaluation

8.1 Registration

The report shows a comparison between two different methods for point cloud registra-
tion. In the ICP algorithm, the point-to-point and point-to-plane solutions performed
somewhat similarly, but the point-to-plane method seemed to consistently use fewer it-
erations. This means that scan matching with the point-to-point method will gradually
take longer to converge than the point-to-plane.

When comparing the results for the NDT and ICP registration solutions, it seems
that the ICP was much faster, but the NDT more accurate. The simulations were run
in Matlab and consequently simulation times is much slower than the c++ solutions
given by PCL. Apart from this, the simulations on LIDAR scans proved to be very
dependent on point cloud resolution and observation of distinct features. Testing
them in the SLAM environment yielded that the NDT algorithm outperformed the ICP
significantly. I learned from the registration results that tuning the NDT algorithm
was very dependent on the environment. The distinct features of the outdoors data
set made it possible for NDT to match the scans with high enough accuracy for the
algorithm to calculate good position estimates.

The Coherent Point Drift registration algorithm was very slow and inefficient to
work with. Because of this, no simulations were tested with this solution other than
some quick testing of performance, and no results are therefore presented on this
topic.

The subject of registration was interesting, and there is a lot of methods that I didn’t
have the time to explore. Too big ambitions for the thesis consequently resulted in me
not having the time or knowledge to develop and implement a registration solution of
my own.
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8.2 Localization

There is presented a localization solution using an INS filter that fuses an IMU and a
GPS sensor to obtain estimated poses along a ground truth trajectory. The implemented
solution works for a bit but drifts after about 15 seconds into the simulation, probably
because of the sensor biases. The error growth rate may be reduced if a model for
the vehicle dynamics was included in the information process, then being able to set
certain constraints on the system.

The Matlab SLAM solution gave accurate pose estimates but was very computation-
ally demanding on the computer. There is probably a reason that most SLAM and
localization problems use c++ solutions to faster compute the necessary pose and map
updates. A Markov Localization method was supposed to be tested as a part of this
thesis, but unfortunately, I did not manage to implement the solution. A lot of time
was was put into reading .log and .xml files from the Ford Campus data-set. The time
that preferably should have been used on implementing a localization solution.

The team behind the HDL SLAM algorithm also offers a localization solution called
HDL Localization. It is well tested for Velodyne LIDARs, and implementation of
this solution on the Ouster would possibly give more precise position estimates, and
combined with the SLAM algorithm a more complete system than I was able to test in
this thesis.

8.3 SLAM

The SLAM method HDL Graph SLAM was primarily used as a test environment for
the sensor functionality and filter implementation tests. Indoor testing was more
complicated because the LIDAR didn’t register points inside a circle with a diameter of
approx one meter. The mapping was therefore not sufficient enough for the algorithm
to estimate the pose and update the graph. When mapping outdoors with a more
open environment, the testing was more successful and it was possible to observe how
different registration solutions affected the mapping and localization.
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Ouster INC is a fairly new supplier of LIDAR systems, and because of this, there was
not much documentation of its implementations on state of the art SLAM solutions.
The Velodyne is the standard in this field, so most solutions are made with this sensor
in mind. Because HDL Graph SLAM was the easiest to implement with the Ouster
LIDAR, this was the algorithm that was used to run SLAM.

The goal of this thesis was to design a SLAM system that easily could implement the
Ouster LIDAR, and then test this system on a vehicle running real-time simultaneously
localization and mapping. I realized far too late that this task was beyond my current
knowledge and regrettably had to focus my attention on testing registration and
localization solutions for implementing the Ouster LIDAR on current SLAM algorithms.
Looking back, a focus on registration solutions with the Ouster LIDAR should have
been my focus, not the full SLAM problem.
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9 Conclusion

From my experience, it seems like a solution to the SLAM problem requires top quality
measurements. The main advantage of LIDARs is that the measurements are highly
accurate and that they work in environments were other sensors suffers, e.g. in
darkness or undistinct environments. The quality of the LIDARs is also their drawback.
State of the art LIDARs are very pricey compared to cameras and limits the research
and sales potential of LIDAR SLAM solutions

To determine whether speed or accuracy is more important when it comes to mapping
is a hard question to answer since both usually are essential. It comes down to in what
system the map is to be used. Speed may be more important in industrial automation,
and maybe not. The one thing that is certain is that in the revolution of self-driving
systems, the need for both speed and accuracy increases.

A suggestion to improve the estimate of the vehicles pose is to research methods of
combining INS with SLAM. The use of GPS and IMU is a well-researched field, so
combining the knowledge from this with SLAMmethods may result in pose estimations
with higher estimation certainty than for today’s standard methods.
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10 Future work

Since the main goal of the thesis originally was to design my own SLAM algorithm,
this is a logical step for future work in this project. The PCL and g2o libraries offer a
lot of solutions for registration and localization in c++. A SLAM solution should be
implemented in c++ because this is a language that runs very fast and managed to run
NDT fast enough to register an accurate map.

I was able to test some registration solutions, but time prevented extensive research of
localization possibilities. Some research regarding an INS fusion system was imple-
mented, so further development of this area in SLAM would be an interesting prospect
for future work. Not much research is done, but a data fusion algorithm using an
Extended Kalman filter for estimation of velocity and position of a UAV was proposed
by a team at the University of California[13]. Apart from this, there is not much work
with this integrated solution. Using a sensor fusion with IMU and GPS as an INS,
alongside SLAM to estimate a position update in an adaptive Kalman filter algorithm
on a ground vehicle is a prospect for future work of this master thesis. LIDARs and
GPS usually run on similar sampling times, so a fusion of these sensors should be
possible for a well defined Kalman filter to handle.
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Ouster, Inc.
350 Treat Ave

San Francisco, CA 94110
LIDAR@ouster.io

OS-1
High Resolution Imaging LIDAR

SUMMARY
The OS-1 offers a market leading 
combination of price, performance, 
reliability and SWAP. It is designed 
for indoor/outdoor all-weather 
environments and long lifetime. As 
the smallest high performance 
LIDAR on the market, the OS-1 can 
be directly integrated into vehicle 
facias, windshield, side mirrors, and 
headlight clusters.

HIGHLIGHTS

• Fixed resolution per frame operating mode
• Camera-grade ambient and intensity data
• Multi-sensor crosstalk immunity
• Industry leading intrinsic calibration
• Open source drivers

OPTICAL PERFORMANCE

Range 0.5 m - 120 m @ 80% reflective lambertian target, 225 w/m2 sunlight, SNR of 12
0.5 m - 40 m @ 10% reflective lambertian target, 225 w/m2 sunlight, SNR of 12
* range of 0.0-80m (min range of 0.0m) in enhanced low range mode

Range Accuracy Zero bias for lambertian targets, slight bias for retroreflectors

Range Resolution 1.2 cm

Range Repeatability
  (1 sigma / standard deviation)

SNR >250: ± 1.5cm
SNR 100: ± 3 cm
SNR 12: ± 10 cm

Vertical Resolution 64 or 16 beams

Horizontal Resolution 2048, 1024, or 512 (configurable)

Field of View Vertical: +16.6° to -16.6 ° (33.2°) - uniform spacing / Horizontal: 360°

Angular Sampling Accuracy Vertical: ±0.01° / Horizontal: ±0.01°

Rotation Rate 10 to 20 hz (configurable)

# of Returns 1 (strongest)

LASER

Laser Product Class Class 1 eye-safe per [IEC 60825-1:2007 & 2014]

Laser Wavelength 850 nm

Beam Diameter Exiting Sensor 10 mm

Beam Divergence 0.13° (FWHM)

LIDAR OUTPUT

Connection UDP over gigabit ethernet

Point Per Second 1,310,720 (64-channel)
327,680 (16-channel)

Data Per Point Range, intensity, reflectivity, ambient, angle, time stamp

Time Stamp Resolution 10 ns

Data Latency < 10 ms

IMU OUTPUT

Connection UDP over gigabit ethernet

Samples Per Second 1,000

Data Per Sample 3 axis gyro, 3 axis accelerometer

Time Stamp Resolution 10 ns



Data Latency < 10 ms

CONTROL INTERFACE

Connection TCP over gigabit ethernet

Time Synchronization Input sources: 
    • IEEE1588 precision time protocol
    • External PPS
    • Internal 10 ppm drift clock
Output sources: 
    • Configurable 1-60Hz output pulse

LIDAR Operating Modes Hardware triggered angle firing (guaranteed fixed resolution per rotation): 
    • 64 x 2048 @ 10hz
    • 64 x 1024 @ 10hz  or 20hz
    • 64 x 512 @ 10hz  or 20hz
Fixed timing firing: 
    • Configurable measurement period between 50 µsec and 1 second

Additional Programmability Multi-sensor rotation phase tuning
Queryable intrinsic calibration information:
   • Beam angles
   • IMU pose correction matrix

MECHANICAL/ELECTRICAL

Power Consumption 14-16 W typical, 18 W peak

Operating Voltage 22-26 V, 24 V nominal

Connector Proprietary pluggable connector (Power + data + DIO)

Dimensions Diameter: 85 mm (3.34 in)
Height: 73 mm (2.87 in)

Weight 380 g (13.4oz)

Mounting 4 M3 screws / 2 locating 3mm pins

OPERATIONAL

Operating Temperature -20C to +50C (with Mount)

Storage Temperature -40C to +105C

Ingress IP67

Shock 500 m/s2 amplitude, 11 ms duration

Vibration 5 Hz to 2,000 Hz, 3 Grms

Certification FCC, CE, RoHS

ACCESSORIES

Included Interface Box PolyCarb/FR4, 100g, 75mm x 50mm x 25mm (LxWxH), 2m CAT6 cable, 24V 
power adapter, 5m sensor cable

Optional Mount Aluminum, 530g, 110mm x 110mm x 20.5mm (LxWxH), 4x M8 thru holes

EXTERIOR DIMENSIONS

*Specifications are subject to change without notice.

WWW.OUSTER.IO
REV: 10/7/2018 • © 2018 Ouster, Inc. • All rights reserved
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<?xml v e r s i o n = " 1 . 0 " ? >
< launch >

<!−− arguments −−>
<arg name=" node le t_manager " d e f a u l t =" ve lodyne_node l e t_manager " / >
<arg name=" e n a b l e _ f l o o r _ d e t e c t i o n " d e f a u l t =" t r u e " / >
<arg name=" enab l e_gp s " d e f a u l t =" f a l s e " / >
<arg name=" enab l e_ imu_acc " d e f a u l t =" t r u e " / >
<arg name=" enab l e _ imu_o r i " d e f a u l t =" t r u e " / >

<node pkg =" nod e l e t " type =" nod e l e t " name=" $ ( arg node le t_manager ) "
a r g s =" manager " ou tpu t =" s c r e en " / >

<node pkg =" t f " type =" s t a t i c _ t r a n s f o rm _ p u b l i s h e r " name=
" l i d a r 2 b a s e _ p u b l i s h e r " a r g s =

" 0 0 0 0 0 0 o s 1_ s en so r t f _ s t a t i c 1 0 " / >

<node pkg =" t f 2 _ r o s " type =" s t a t i c _ t r a n s f o rm _ p u b l i s h e r "
name=" l a s e r _ b o r a d c a s t e r "
a r g s ="0 0 0 . 0 3 6 1 8 0 0 1 0 o s 1_ s en so r o s 1 _ l i d a r " / >

<node pkg =" t f 2 _ r o s " type =" s t a t i c _ t r a n s f o rm _ p u b l i s h e r "
name=" imu_b roadca s t e r "
a r g s = " 0 . 0 0 6 2 5 4 −0 .011775 0 . 0 0 7 6 4 5 0 0 0 1 o s 1_ s en so r
os1_imu " / >

<!−− p r e f i l t e r i n g _ n o d e l e t −−>
<node pkg =" nod e l e t " type =" nod e l e t " name=" p r e f i l t e r i n g _ n o d e l e t "

a r g s =" l o ad hd l_graph_s l am / P r e f i l t e r i n g N o d e l e t
$ ( a rg node le t_manager ) " >

<remap from = " / v e l o dyne_po i n t s " to = " / os1_c loud_node / p o i n t s " / >
<param name=" u s e _ d i s t a n c e _ f i l t e r " v a l u e =" t r u e " / >
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<param name=" d i s t a n c e _ n e a r _ t h r e s h " va l u e = " 0 . 1 " / >
<param name=" d i s t a n c e _ f a r _ t h r e s h " va l u e = " 2 0 0 . 0 " / >
<!−− NONE, VOXELGRID , or APPROX_VOXELGRID −−>
<param name=" downsample_method " va l u e ="VOXELGRID" / >
<param name=" downsamp le_ re so lu t i on " va l u e = " 0 . 1 " / >
<!−− NONE, RADIUS , or STATISTICAL −−>
<param name=" ou t l i e r _ r emova l _me thod " va l u e ="RADUIS " / >
<param name=" s t a t i s t i c a l _m e a n _ k " va l u e = " 1 0 " / >
<param name=" s t a t i s t i c a l _ s t d d e v " va l u e = " 5 " / >
<param name=" r a d i u s _ r a d i u s " va l u e = " 0 . 5 " / >
<param name=" r ad iu s_m in_ne i ghbo r s " v a l u e = " 2 " / >

</ node >

<!−− s can_match ing_odomet ry_node l e t −−>
<node pkg =" nod e l e t " type =" nod e l e t " name=

" scan_match ing_odomet ry_node l e t "
a r g s =" l o ad hd l_graph_s l am / ScanMatchingOdometryNodele t
$ ( a rg node le t_manager ) " >

<param name=" odom_frame_id " va l u e ="odom " / >
<!−−<remap from = " / odom " to = " / os1_c loud_node / t f _ s t a t i c " / > −−>
<param name=" ba s e_ f r ame_ i d " va l u e =" o s 1 _ l i d a r " / >
<param name=" k e y f r ame_d e l t a _ t r a n s " va l u e = " 1 . 0 " / >
<param name=" k ey f r ame_de l t a _ ang l e " v a l u e = " 1 . 0 " / >
<param name=" key f r ame_de l t a _ t ime " va l u e = " 1 . 0 " / >
<param name=" t r a n s f o rm_ t h r e s h o l d i n g " va l u e =" f a l s e " / >
<param name=" max_a c c ep t a b l e _ t r an s " va l u e = " 1 . 0 " / >
<param name=" max_ac c ep t ab l e _ang l e " v a l u e = " 1 . 0 " / >
<param name=" downsample_method " va l u e ="NONE" / >
<param name=" downsamp le_ re so lu t i on " va l u e = " 0 . 1 " / >
<!−− ICP , GICP , NDT, GICP_OMP , or NDT_OMP−−>
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<param name=" r e g i s t r a t i o n _me t h o d " va l u e ="NDT" / >
<param name=" n d t _ r e s o l u t i o n " va l u e = " 1 . 0 " / >
<param name=" ndt_num_threads " va l u e = " 0 " / >
<param name=" ndt_nn_search_method " va l u e ="KDTREE" / >

</ node >

<!−− f l o o r _ d e t e c t i o n _ n o d e l e t −−>
<node pkg =" nod e l e t " type =" nod e l e t " name=" f l o o r _ d e t e c t i o n _ n o d e l e t "

a r g s =" l o ad hd l_graph_s l am / F l o o rDe t e c t i o nNod e l e t
$ ( a rg node le t_manager ) "
i f =" $ ( a rg e n a b l e _ f l o o r _ d e t e c t i o n ) " >

<param name=" t i l t _ d e g " va l u e = " 0 . 0 " / >
<param name=" s e n s o r _h e i g h t " v a l u e = " 2 . 0 " / >
<param name=" h e i g h t _ c l i p _ r a n g e " va l u e = " 1 . 0 " / >
<param name=" f l o o r _ p t s _ t h r e s h " va l u e = " 5 1 2 " / >
<param name=" u s e _ n o rm a l _ f i l t e r i n g " va l u e =" t r u e " / >
<param name=" n o rm a l _ f i l t e r _ t h r e s h " va l u e = " 2 0 . 0 " / >

</ node >

<!−− hd l _g r aph_ s l am_node l e t −−>
<node pkg =" nod e l e t " type =" nod e l e t " name=" hd l _g r aph_ s l am_node l e t "

a r g s =" l o ad hd l_graph_s l am / HdlGraphSlamNodelet
$ ( a rg node le t_manager ) " >

<!−− Trying to connec t Ous te r IMU −−>
<remap from = " / gp s imu_dr i v e r / imu_data " to =" os1_c loud_node / imu " / >

<!−− f rame s e t t i n g s −−>
<param name=" map_frame_id " va l u e ="map " / >
<param name=" odom_frame_id " va l u e ="odom " / >
<!−− o p t im i z a t i o n params −−>
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<!−− t y p i c a l s o l v e r s : gn_var , gn_ f i x6_3 , gn_var_cholmod ,
lm_var , lm_ f i x6_3 , lm_var_cholmod , . . . −−>

<param name=" g 2o_ s o l v e r _ t yp e " va l u e =" lm_var_cholmod " / >
<param name=" g 2 o _ s o l v e r _num_ i t e r a t i o n s " va l u e = " 5 1 2 " / >
<!−− keyframe r e g i s t r a t i o n params −−>
<param name=" enab l e_gp s " va l u e =" $ ( arg enab l e_gp s ) " / >
<param name=" e n a b l e _ imu_ a c c e l e r a t i o n " va l u e =

" $ ( arg enab l e_ imu_acc ) " / >
<param name=" e n a b l e _ imu_o r i e n t a t i o n " va l u e =

" $ ( arg enab l e _ imu_o r i ) " / >
<param name=" max_keyframes_per_update " va l u e = " 1 0 " / >
<param name=" k e y f r ame_d e l t a _ t r a n s " va l u e = " 2 . 0 " / >
<param name=" k ey f r ame_de l t a _ ang l e " v a l u e = " 2 . 0 " / >
<!−− l oop c l o s u r e params −−>
<param name=" d i s t a n c e _ t h r e s h " va l u e = " 1 0 . 0 " / >
<param name=" a c cum_d i s t an c e_ th r e sh " va l u e = " 1 5 . 0 " / >
<param name=" m in_ edg e_ i n t e r v a l " v a l u e = " 5 . 0 " / >
<param name=" f i t n e s s _ s c o r e _ t h r e s h " va l u e = " 0 . 5 " / >
<!−− scan matching params −−>
<param name=" r e g i s t r a t i o n _me t h o d " va l u e ="NDT_OMP" / >
<param name=" n d t _ r e s o l u t i o n " va l u e = " 1 . 0 " / >
<param name=" ndt_num_threads " va l u e = " 0 " / >
<param name=" ndt_nn_search_method " va l u e ="DIRECT7 " / >
<!−− edge params −−>
<!−− GPS −−>
<param name=" gp s _ edg e_ r obu s t _k e rn e l " v a l u e ="NONE" / >
<param name=" g p s _ e d g e _ r o bu s t _ k e r n e l _ s i z e " v a l u e = " 1 . 0 " / >
<param name=" gps_edge_s tddev_xy " va l u e = " 2 0 . 0 " / >
<param name=" gps_edge_ s tddev_z " va l u e = " 5 . 0 " / >
<!−− IMU o r i e n t a t i o n −−>
<param name=" imu_o r i e n t a t i o n _ e d g e _ r o bu s t _ k e r n e l " v a l u e ="NONE"/ >
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<param name=" imu_o r i e n t a t i o n _ edg e _ s t d d e v " va l u e = " 1 . 0 " / >
<!−− IMU a c c e l e r a t i o n ( g r a v i t y v e c t o r ) −−>
<param name=" imu_ a c c e l e r a t i o n _ e d g e _ r o b u s t _ k e r n e l " v a l u e ="NONE"/ >
<param name=" imu_a c c e l e r a t i o n _ e dg e _ s t d d e v " va l u e = " 1 . 0 " / >
<!−− ground p l ane −−>
<param name=" f l o o r _ e d g e _ r o b u s t _ k e r n e l " v a l u e ="NONE" / >
<param name=" f l o o r _ e d g e _ s t d d e v " va l u e = " 1 0 . 0 " / >
<!−− scan matching −−>
<!−− r o bu s t k e r n e l s : NONE, Cauchy , DCS , F a i r , GemanMcClure ,

Huber , PseudoHuber , S a t u r a t ed , Tukey , Welsch −−>
<param name=" odome t ry_edge_ robus t _ke rne l " v a l u e ="NONE" / >
<param name=" odome t r y _ edg e_ r obu s t _ k e rn e l _ s i z e " v a l u e = " 1 . 0 " / >
<param name=" l o o p _ c l o s u r e _ e d g e _ r o b u s t _ k e r n e l " v a l u e =" Huber " / >
<param name=" l o o p _ c l o s u r e _ e d g e _ r o b u s t _ k e r n e l _ s i z e " v a l u e = " 1 . 0 " / >
<param name=" u s e _ c on s t _ i n f _ma t r i x " v a l u e =" f a l s e " / >
<param name=" con s t _ s t dd ev_x " va l u e = " 0 . 5 " / >
<param name=" con s t _ s t dd ev_q " va l u e = " 0 . 1 " / >
<param name=" va r_ga in_a " va l u e = " 2 0 . 0 " / >
<param name=" min_s tddev_x " va l u e = " 0 . 1 " / >
<param name=" max_stddev_x " va l u e = " 5 . 0 " / >
<param name=" min_stddev_q " va l u e = " 0 . 0 5 " / >
<param name=" max_stddev_q " va l u e = " 0 . 2 " / >
<!−− update params −−>
<param name=" g r a ph _upd a t e _ i n t e r v a l " v a l u e = " 1 . 0 " / >
<param name=" map_c l oud_upda t e _ i n t e r v a l " v a l u e = " 5 . 0 " / >
<param name=" map_c l oud_ r e so l u t i on " va l u e = " 0 . 0 5 " / >

</ node >

<node pkg =" hd l_graph_s l am " type =" map2odom_publ isher . py "
name=" map2odom_publ isher " / >

</ launch >
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