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Project Description

Introduction

This specialization project is done in collaboration with Rolls-Royce Marine. The
project will be continued into a master thesis in the spring of 2019.

Main Goal

The main goal of the project is to explore methods that can be used in a positioning
system on board typical ”roll-on roll-off” (ro-ro) ferries as a redundant measurement
to the GNSS system. The positioning system should be based as much as possible
on the sensors that already exist on the ferries, with a special focus on the camera
system. The system is a step on the way in the development of fully autonomous
ferries, and it is supposed to be used in auto-docking situations.

Secondary Objectives

• Literature study on monocular computer vision methods, as well as pose es-
timation algorithms.

• Study the OpenCV documentation.

• Find intrinsic parameters using calibration techniques and the OpenCV li-
brary.

• Test different pose estimation algorithms from the OpenCV library.

• Present some suggestions for future work on the problem presented in the
main goal.

Tasks

• Calibration of a monocular camera.

• Evaluate the reprojection error of the calibration.

• Use feature detection to find markers in images.

• Test different pose estimation algorithms.

• Evaluate the reprojection error, relative pose results and speed of pose esti-
mation.

• Evaluate all results and develop some suggestions for future work.
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This specialization project concludes my 9 th. semester at NTNU in Trondheim.
The work on the project has been time consuming and difficult at times, but I have
learned a lot and I look forward to continuing this work in my thesis next spring.

I want to thank my advisor Dr. Annette Stahl for helpful discussions and help
during the semester. I also want to thank Rolls-Royce Marine and especially Dr.
Øivind K̊are Kjerstad for contributing with helpful information and guidance before
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Abstract

Autonomy is becoming increasingly popular in the maritime industry today.
Developing autonomous ferries for commercial use can lower the cost of running,
building and maintaining ferries. This project is a study on potential methods that
can be used in a computer vision system, as a redundant positioning system both
on board ferries today and on future autonomous ferries. This report presents a
study done on methods and systems that can be used in such a system.

The report presents different methods and algorithms. There are two areas
within computer vision that has been given attention in this report, and that is pose
estimation and camera calibration. Throughout the report we present methods,
theories and give an implementation of both camera calibration and pose estimation
testing. Within pose estimation we present six different methods and compare them
against each other.

The pose estimation are tested on 18 different images, and the results show
that there are big differences in performance. The results from this testing will be
presented in different diagrams in the last part of the report.

The report finishes with a discussion on the results and a small section containing
useful suggestions for future work on the subject.
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Chapter 1

Introduction

Figure 1.1: Illustration showing
the docking situation from a top
down perspective.

This specialization project is done in collabora-
tion with Rolls Royce Marine (hereby referenced
as RRM). It is a concept study on using monoc-
ular computer vision (CV) in a supplementary
system on board ocean vessels to identify and
measure the distance to the quay where the ves-
sel is supposed to dock. The measurement will
be redundant with the GNSS signals, radar or
other sensor data already in use on a lot of ships.
Based on the results from the CV measurements
it is possible to estimate the position and atti-
tude of the vessel.

The GNSS positioning system used on board
the vessels are quite good and is used as the
main positioning system on board. It does how-
ever have a small uncertainty, which is okay in
transit when there is nothing to bump into. In
the docking situation however, the vessel can hit
the dockside or car ramp with too much force if
the error in the GNSS position estimate is large
enough. By applying a positioning system based
on computer vision in the last couple of meters,
it is possible to optimize the position of the ferry
based on both systems.

1.1 Motivation

The main goal of this project is to explore methods and systems that can be used
to develop a new positioning system. The focus will be on the camera systems
already installed on typical ”roll-on roll-off” (ro-ro) ferries, as the Fjord1 vessel MF
Gloppefjord in fig. 1.2. The cameras installed on board ferries are located both on
the sides and in the front, and are directed towards the area between the ferry and
the quay, as it is illustrated in fig. 1.3. The computer vision positioning system is

1



CHAPTER 1. INTRODUCTION

Figure 1.2: Fjord1 ferry MF Gloppefjord in transit between Anda and Lote. Image
courtesy of Fjord1 [10]

supposed to be a redundant system to other positioning systems that are based on
GNSS signals and radar.

Figure 1.3: Illustration showing
the camera locations on board
a typical ro-ro ferry from a top
down perspective. The color code
represents what cameras that will
be used in combination, they are
based on what direction the ferry
sails.

RRM officially started working on au-
tonomous ship solutions back in 2014. The de-
velopment has been fast, and already in 2016
they sold their first auto-crossing system to
Fjord1 [26]. The first commercial operation with
the system was on MF Gloppefjord, a ferry that
service the transit between Anda and Lote on
the western coast of Norway. This system con-
trols the ferry autonomously between the quays,
and the captain only takes the control when it’s
docking to and leaving the quay. The system is
vital for the ferry MF Gloppefjord as the ferry is
one of the first electric ferries in the world, and
the ”auto-crossing” system makes the power us-
age as efficient as possible so that the charging
time at the quay is as low as possible. In or-
der to make the entire transit autonomous, the
system needs to be supplemented with a sys-
tem for autonomous docking. The first version
of this system has now been developed, and on
the third of December 2018 RRM demonstrated
the system on the ferry Falco, see fig. 1.5, which
made the worlds first fully autonomous ferry transit in Åbo Finland [31]. Although
the demonstration was a success, there is still a lot of development that needs to
be done before the system is ready for commercial use, which is estimated to be

2



CHAPTER 1. INTRODUCTION

around 2021.

Although the ”auto-docking” system has already been demonstrated as a work-
ing system, there are still a lot of challenges remaining. In order to make such a
system interesting to shipowners it has to be economical enough so that they can
make a profit on the investment. This is especially difficult on older ships with older
equipment and propulsion systems that are difficult to configure. On the old vessels
it is not desirable to make a lot of new installations, because it might be difficult to
make it work together with the older equipment. In other words it is desirable to
use the equipment already installed on the ferries in the system, so that it in theory
just will be a software installation needed to make the ship ready for autonomous
service.

Figure 1.4: Illustration showing the GNSS
Multipath phenomenon.

Another big challenge for the use of
such systems is redundancy. In order to
operate completely autonomously the
ferry has to be able to handle unex-
pected events such as a radar malfunc-
tion or loss of signal/error in the GNSS
signals. This is especially a big chal-
lenge in the Norwegian fjords where the
satellite signals tend to mirror off the
mountain sides so that the GNSS gets
confused. This behavior is called multi-
path, see fig. 1.4, because the GNSS re-
ceiver can receive multiple signals from
the same source, one direct and other
reflected off mountains or other ob-
jects[23].

A system that is completely redun-
dant to the traditional positioning sys-
tems on board the vessel is the cam-
era system. The ferry has six cameras
mounted around the ferry and they are used by the captain as aid when the ferry
docks to the quay. Four of the cameras are mounted on the two sides of the ferry
(two on each side) and the last two are mounted on the front and on the back, as
indicated by fig. 1.3. As the ferry docks there are only two cameras in use; the front
camera and one of the side cameras depending on what side of the ferry the camera
is located. The red and green cameras in the figure indicates what cameras that
are used together in a docking situation.

1.2 Contribution

This project explores methods that are needed for estimating the position of a
typical ro-ro ferry. The project includes a simple camera calibration algorithm
based on the OpenCV documentation. QR detection algorithms used in the project
are based on the ZBar python library, which has built-in functions for detection of

3
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Figure 1.5: The Finnish ferry Falco during the world’s first fully autonomous ferry
transit. Image courtesy of The Engineer [8].

QR- and bar-codes. Different PnP solvers are already implemented as functions in
OpenCV, and are tested in this project. The results from the testing are evaluated,
and the methods compared against each other.

A considerable literature study was done within the computer vision field. Dif-
ferent calibration algorithms was studied, but only one of them made it into the
report. Choosing the right calibration algorithm is difficult because they all have
different qualities, but the final choice was in this case the same as the one that
is implemented in OpenCV. The reasoning behind this is that the implementation
implementation in the library is already optimized and it would be very complicated
to implement an algorithm from scratch.

The literature study also involved a considerable amount of pose estimation
methods. A lot of different PnP algorithms were looked into, and six of them made
it into the report. The ones that are presented in the report are all implemented
in OpenCV, which was very useful when they were tested. The reason for not im-
plementing any other methods is that the built-in functions gave very good results,
and are very well optimized in the OpenCV library.

All implementations in this project has been written and rewritten many times.
The implementations are inspired by examples and the documentation of theOpenCV
library, in addition to other sources on the Internet. The final versions are based on
a class structure, and the main reason for this is that it would be simpler to rewrite
the code to C++ if it was needed.

Some parts of the project did not make it to the report. There was done a lot
of research on visual odometry, and a lot of code was written to run a positioning
system based on video input instead of still images. It turned out to be more
difficult than expected to implement, and in the end it was decided that there
was not enough time to finish the work. There can be many reasons to why the
odometry did not work, but mainly the QR detection time was an issue. Also the
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runtime of the rest of the systems was very high, and so no successful test of the
system was done. It is suggested to replace the current camera with a camera with
lower resolution, or use software to downscale the images although this might lead
to longer runtime than just changing the camera. Rewriting the code to C++ might
also solve the runtime issues, and this is presented as a suggestion for future work
in the last chapter of the report.

RRM has contributed with information on the main goal of the project. In
addition they have given detailed descriptions on the docking situation, camera
setup and on ferry and quay configurations. They have also made a simulator
available if the project got as far as to test any systems on a ferry simulator.

1.3 Structure

We have now introduced the project and some of its contents. We follow up with
chapter 2 which contains related work within computer vision, and some introduc-
tions to autonomy and its history. Following comes the theory in chapter 3 where
some mathematics behind the concepts presented in the related work will come. Af-
ter that we will present the implementations we have worked on during the project,
both the hardware used and the software in chapter 4. The results from the testing
follows with a lot results from testing four different image sets in chapter 5. In
chapter 6 we will discuss the results from the chapter before, and make some con-
clusions based on the work. We will also present some suggestions for future work
on the subject. In the end we have placed the appendices, where all code, images
and some runtime results are attached.
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Chapter 2

Related work

This chapter contains literature references to related work within autonomous sys-
tems, sensors and computer vision. Some of the theory of the contents within this
chapter will be presented in detail in chapter 3, which is the basis for the imple-
mentations presented in chapter 4.

2.1 Autonomous systems

We start this chapter by introducing a couple of autonomous systems and their
history, in order to get some context within the field of autonomy. A system can be
defined ”autonomous” if it ”can change it’s behavior in response to unanticipated
events during operation” [40]. The first autonomous systems were purely based on
feedback control, which is the theory that founded the field of cybernetics. One of
these early applications was done at Johns Hopkins University Applied Physics Lab
in the 1960’s when they made the Beast which was a mobile automaton that drove
around in the hallways of the university. When the power got low it searched for
a black socket in the hallway and was able to plug itself in to charge. The robot
was purely cybernetic and did not use a computer, it was purely driven by a lot of
transistors controlling analogue voltages, and it used sonar and photocell optics to
navigate [37].

Autonomy has come a long way since the Beast was introduced. The most
popular area for the use of autonomy is within the automobile industry. Companies
like Über, Tesla, Waymo and many more are all working towards introducing the
first autonomous car for commercial sale. It is however difficult to make this a
reality as the security requirements are set very high, especially after Über had
a fatal accident in March of 2018 [14]. Autonomy is also a hot topic within the
maritime industry, and companies like RRM, Volvo Penta, Kongsberg Maritime,
Wärtsila and others are all working on bringing autonomy to the marine market.
Volvo Penta sticks out as the only company that has a main focus on the private
yacht sector, and demonstrated a working automatic docking system in July of 2018
[25]. This was however just a prototype of the system, and it will take them a long
time to make it ready for commercial sale.
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2.1.1 Autonomous Vessels

As it is mentioned in the paragraph above there are many companies working on au-
tonomy in the maritime industry, including RRM. Kongsberg Maritime, see fig. 2.1,
is working in a collaboration with DNV-GL to launch the worlds first fully au-
tonomous cargo ship, Yara Birkeland, by the first quarter of 2020 [30]. As men-
tioned above Wärtsila is also working towards autonomous ships, and as a step
along the way they successfully tested remote controlling a ship in the north sea
from San Diego [7] in August of 2017.

Depending on the type of vessel, the transit and service usually consists of three
different modes: un-docking, transit and docking. Since un-docking basically is the
inverse of a docking operation it is possible to reduce the problem into two modes,
docking and transit. RRM developed and tested an autonomous transit system
called auto-crossing that’s able to control a ship between two endpoints without
human interaction. This system is installed on MF Gloppefjord, see fig. 1.2, which
transits between Anda and Lote, and RRM has made a deal with Fjord1 to install
the system on 13 more ferries as well [26].

Figure 2.1: Yara Birkeland. Image courtesy of Kongsberg Maritime [22]

2.1.2 Autonomous Docking

One of the most precarious parts of a ferry transit is the docking operation. Docking
refers to the last operation of the transit when a vessel is slowly approaching and
finally connecting to the quay. Then the vessel stays in this position by thrusting
against the dockside, connecting a rope or by some other connection between the
vessel and the quay. A docking operation for a typical ro-ro ferry is illustrated in
the introduction, see fig. 1.1, but other vessels may have a different approach to the
operation. An aspect of the docking operation that makes it difficult is that it must
hit the quay with as little force as possible in order to avoid damage on passengers,
cargo, dockside, car ramp and ship. In order to achieve this, the ferry needs to be
maneuvered precisely and slowly towards the quay until it hits, and is able to load
off its cargo and passengers. Such an operation is difficult even for trained captains,
and making a system that can achieve this autonomously will require sensors with
very high precision and good redundancy to handle unexpected events.

The high precision requirement for an autonomous docking system makes it
complicated to develop. As it was mentioned above, there are a lot of companies
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working on automatic docking systems, and a lot of them has already demonstrated
working prototypes. Volvo Penta’s system relies heavily on sensors mounted on the
quay, and cannot be used unless the dockside is configured for automatic docking
[25]. Wärtsila has also made an automatic docking system, and in contrast to
Volvo Penta’s system this system does not require installation of sensors on the
dock. Instead this system relies heavily on the the ships DP system based on GNSS
and IMUs, making it very reliant on satellites to avoid drift in the position estimate
[39]. As mentioned earlier, these systems are prototypes, and they still rely on a
captain to take over if something unexpected should happen, which is why they are
called automatic and not autonomous systems.

We have now presented some background on autonomous systems as well as some
challenges in the development of autonomous docking systems. In order to develop
the positioning system described in the problem description, we need to introduce
and explore what positioning really is, as well as how position is parametrized.

Latitude Angle

North Pole

South Pole

Equator
0 degrees

Longitude Angle

West East
Equator
0 degrees

Figure 2.2: Illustration showing the earth coordinate system as it is described by
latitude and longitude, where the circle represents the earth from different different
perspectives. The height is the distance to the point from the earth center.

2.2 Positioning

Positioning is the process of determining and describing the position of an object
with respect to a coordinate system. When navigating the earth it is most common
to use an ”earth-centered earth-fixed” (ECEF) coordinate system that rotates with
the earth. A proper positioning system is able to estimate the position of an object
based on sensor inputs. There are many ways of accomplishing this, but one of the
oldest is the magnetic compass which was first used in the Han dynasty in China
more than 2000 years ago [21]. The compass is not able to find the position on the
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earth on its own, but it exploits the magnetic field around the earth to find the
four four cardinal directions (north, south, east and west). Another more modern
approach is to use satellites and a GNSS system that triangulate the position on
the earth based on the information it receives from a minimum of three satellites
[5]. The position in earth coordinates is given in latitude, longitude and height, as
the illustration in fig. 2.2 shows.

In this project we assume that the position of the quay in earth coordinates is
known. The goal is then to use CV methods to detect the quay using some kind of
feature detector and estimate the position of the ferry based on that information
and some known model of the quay. After that the position of the quay in the earth
coordinate system and the position of the vessel in the quay coordinate system are
both known. Then the position of the vessel in the earth frame can be found by a
simple coordinate transformation, and a transformation from Cartesian coordinates
to longitude, latitude and height.

The goal of the project is to explore methods that can be used to develop a
positioning system as discussed above, mainly based on already installed sensors on
board the vessels with a focus on the camera system. We will now explore different
options of hardware that can be used in such a system, including an introduction
of sensors and some potential markers.

2.3 Hardware

Hardware used on board vessels has to be certified to both national and interna-
tional safety and regulatory requirements. These requirements are set by different
agencies, one example is the European Maritime Safety Agency (EMSA) [29]. Some
of the requirements are about redundancy, water resistance and material standards,
which all make the system more robust, but it also make sensors and equipment
more expensive. The installation will also be more complex because important
systems as GNSS, Radar, etc. is required to have separated redundant cabling.

In this section different hardware components will be discussed. First we will
discuss the sensors that we can use, and afterwards different markers that can be
installed on the dockside will be presented.

2.3.1 Sensors

Making a positioning system requires to decide on what sensor inputs to use. Al-
though a complete system probably will use a sensor fusion solution, it is interesting
to see what the options are. For this project, the positioning system is supposed to
be as redundant to the GNSS system as possible, hence it has to use other sensors
to collect data. Choosing a sensor is not an easy task, and it is important to find
the right balance between price and precision. We will now present a couple of
different sensors both already installed and some good alternatives that could be
installed.
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Radar (Radio detection and ranging)

The radar is a very common sensor that is used a lot in the marine industry. The
sensor is active and transmits bursts of radio waves in all directions by rotating
360 degrees. Then the receiver on the radar measures the time until a reflected
signal returns to the sensor and calculates the distance to it. The radar can use
this information to map the area around it quite well, and it is also used to detect
other vessels in the vicinity.

Figure 2.3: Illustration showing
the ferry from the front, where
the radar ”dead zone” in the red
triangle.

An advantage of the radar is that it’s very
robust to disturbances. It can filter out small
objects like birds, leafs and snowfall by setting
a threshold on how big the returning radio waves
has to be in order to be classified as an object.
Since the radar is an active sensor it is also not
very dependent on the weather conditions, and
will work well even in changing light conditions
and fog. In addition the radar is already in-
stalled on most vessels, so there will be no extra
installation cost to the shipowner if it was used
in a new positioning system.

A ro-ro ferry as seen from the front is illus-
trated in fig. 2.3 where the red triangle repre-
sents the ”dead zone” in the radar view. The
radio waves from the radar will reflect of all sur-
faces, and is therefore dependent on a optical
line of sight. Unfortunately this means that an
object located behind another will not be de-
tected by the radar. The area that cannot be seen is called the radar ”dead zone”,
and a more detailed description of the phenomenon can be found in [43], where the
curvature of the earth makes a big ”dead zone”.

The radar would be a great sensor to use for positioning because of its robustness
against disturbances and changing weather conditions. The ”dead zone” is however
a big problem if the system is going to be used in docking situations. The reason
for this is that the area between the quay and the vessel is inside the ”dead zone”,
making it difficult to find the position of the ferry relative to the quay. One solution
to this problem would be to install radar reflectors on specific locations on the
dockside that does not fall in the radar ”dead zone” during docking. The reflectors
has to be quite high to avoid it, and the installation might be difficult as the
reflectors must be completely still even in high winds. In addition, the system will
not be able to work on quays that does not have the reflectors installed.

Camera

The camera is a passive sensor that use the available light in a scene to record an
image of the environment in front of it. By taking a lot of images in series, the
camera can also record a video. The sensor data, called images, can be combined
with geometrical calculations and known information about the model to estimate
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the position of the camera with respect to the scene. The geometrical information
in the image is extracted using feature detection where some known features in the
image is detected. This can be done either by a classical feature detector or by a
more modern approach using neural networks.

Figure 2.4: An image of the
side of the Fjord1 ferry MF
Hjørundfjord showing the loca-
tion of the side cameras.

Just like the radar, the cameras are already
installed on typical ro-ro ferries as it is de-
scribed in fig. 1.3. An image of the ferry MF
Hjørundfjord with the side cameras is depicted
in fig. 2.4. These cameras are used as support for
the captain when he cannot see over the edges of
the vessel, a bit like the ”dead zone” of the radar.
Because the cameras are already installed there
is no need for installation of sensors on board the
vessel, and the cost of installation will be low.
Another advantage is that if there is a need for
installing hardware on the quay (some kind of
marker), it will be simpler than for the radar as
the cameras can see inside the ”dead zone” of the
radar. The maintenance of such a marker might
however be more demanding as it will need to
get rid of snow covering it. The cameras are also very easy to replace if they do not
meet the required accuracy for the system.

Cameras are highly dependent on the light conditions, and fog or heavy snow can
cause problems for the sensor. A solution to this might be to use active markers
such as red fog-lights or something similar. Today there are already installed a
single red fog-light on the end of most docksides, which are used by the captain
as navigation when the weather is bad. Such an active marker can also get quite
warm, and hence melt the snow that covers it in the winter.

Lidar (Light detection and ranging)

The lidar has become a very popular active sensor within autonomy. It has been es-
pecially well received in the automobile industry in the development of autonomous
cars. It works almost like a radar, but instead of sending radio waves it sends bursts
of light. Both the radar and the lidar rotates 360 degrees to map the entire area
around them, but the range of the radar is better than the lidar. The light from the
sensor reflects of any surface, and the resulting output is a point cloud of the area
around it. Just like the radar it uses the time of flight to determine the distance to
each of the points in the point cloud.

This sensor has a lot of similar characteristics with the radar. It works in almost
all weather conditions, and by some software post processing even thick snow can
be eliminated from the point cloud [19]. There is no need for extra installations on
the quay because the light rays from the lidar will reflect from any surface.

This is however a bigger investment to install on board the vessel. The lidar
sensor(s) has to be installed on the ship at appropriate positions to catch the entire
area around the vessel, including the radar ”dead zone”. This means that there
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has to be installed multiple lidars (at least one in the front and one in the back),
to cover the entire area around the vessel. It is also important that the lidars are
certified for maritime use, which make them quite a bit more expensive than regular
lidars.

IR camera

As a final proposal we present a thermographic (or infrared) camera. The imaging
technique works much like a regular camera, but instead of measuring the light
intensity, it measures the heat radiation transmitted from the objects in the scene.
Because it measures a physical property of the scene without sending any signal
out, this is a passive sensor just like the regular camera.

In order to use the geographic information in the images to estimate the position
and attitude of the ferry, there has to be some ind of markers on the quay. The
markers has to have a higher temperature than the surroundings in order to stick out
from the scene, and be detected by the IR camera. Since the temperature usually
is changing a lot between winter and summer they also have to be thermostatically
controlled. The markers can however keep off snow by having a positive temperature
in the winter.

In addition to installing the markers, the camera must also be installed. Since
the camera is not a regular sensor on a vessel, it needs to be installed on board and
facing both towards the front and the back of the vessel. This camera also has to
be certified for maritime use, which will make it more expensive than a regular IR
camera.

Comparison

All sensors have both positive and challenging qualities. It is difficult to decide
what sensor to use in a positioning system, but the project has a goal of making the
system as easy and low cost as possible to make it attractive to shipowners even
with older vessels. This is why the regular camera is a good choice as sensor in the
system. It is already installed on most vessels, and it is a cheap sensor to upgrade
if higher accuracy is required.

Some of the sensors presented will require some kind of marker or feature point
as positioning reference. The camera is chosen as main sensor, which means there
has to be some visual points on the quay that can be located by the CV system.
This can either be some kind of marker, or features that already exist s on the quay.
In the next section we present three possible markers for the CV system.

2.3.2 Markers

In order to locate the quay there has to be some markers or features on the quay
for the CV system to detect, see section 2.4.1. It might of course be possible to use
some features that already exists on the quay as markers but that will be difficult
to generalize as different quays have different features. In the main front camera
of the ferry, a good placement for he markers could be on both sides of the car
ramp. Then the pose of the ship could be estimated relatively to the car ramp, and
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subsequently the latitude, longitude, height and attitude. We will now present a
few different possible markers that can be used in a CV based positioning system.

QR Codes

Figure 2.5: A QR code
with the text-string
”Left”.

QR codes are distinct markers that can contain different
types of data. It can contain almost anything, Internet
urls, wi-fi-configurations, plain text, and much more, the
marker in fig. 2.5 show the qr code containing the word
”Left”. In other words it is possible to store information
about the position of the marker inside the marker itself.
This is useful because then the marker can be installed on
different places on different quays, without hard coding
the position of all markers on different quays in the CV
system.

One difficulty with the QR codes is that they need to
be well maintained so that it does not loose information.
If the code is changed or distorted the positioning system
will not be able to use it. Also if there is snow it needs
to be brushed off, and in fog the camera might not be
able to detect the code.

Light

An active marker that could be used is a light. Similar to how a light house works,
it can be located even in difficult weather conditions such as in fog or thick snow.
It might also be able to melt snow that lands on top of it, making maintenance
just changing the bulb/LED if it stops working. One weakness with using lights
is that they do not have the same capability to store information as the QR code
has. Differentiating it from other light sources is also a challenge, but by making
the light turn on and off at a certain frequency it might be possible to solve this
problem. By making different lights have different frequencies it might also be
possible to differentiate the markers from each other. Another option is to have
different colored lights indicating different points.

This is actually a marker that is already present on the edge of most docksides.
These lights are used as a reference point by captains when they are docking during
difficult weather and cannot see the quay properly. A possible light that can be
used is the ”FAA L-810”, which is actually an obstruction light for airports shown
in fig. 2.6.

Custom

As a fourth option we suggest making a custom marker. There are lots of different
possibilities, but one option is to combine the two suggestions above. Another
option is to make a simpler coded marker than the QR code, for example an n× n

binary matrix (a simpler version of the QR code). The possibilities are endless, but
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in order to work well during fog and thick snow it might be smart to use some kind
of active marker.

Figure 2.6: Obstruction
light for airports. Image
courtesy of Flight Light
Inc. [17]

We have now presented different hardware that can
be used in a system for estimation of pose during a
docking operation, including different sensors and mark-
ers. Choosing the correct hardware is difficult, espe-
cially since the system is supposed to work on old ferries
as well as new, but also in different light- and weather
conditions. The system also has to be as affordable as
possible and with small maintenance costs. In addition
to this RRM has expressed an interest in using the cam-
era systems on board the ferries, and so this will be the
sensor that will be used in the positioning system. Now
that the hardware has been discussed we will present
some software that is relevant to the system.

2.4 Software

In this software section of the report we will go through software techniques that
can be used in a positioning system for a ferry. We start by introducing computer
vision, an interdisciplinary field based on using computer systems and algorithms
on images and videos to extract useful information about the scene in front of the
camera. We begin this section by introducing computer vision and useful parts of
the field for this project, then we will introduce OpenCV which is a well known
programming library for computer vision.

2.4.1 Computer Vision

Computer vision is a huge field spanning multiple areas within science and tech-
nology. The goal in this project is to use computer vision methods to estimate the
position. This includes detecting the quay, estimating the pose of the camera with
respect to the quay and subsequently the pose of the ferry in the ECEF coordinate
system. In order to use the geometrical information in an image we have to know
the distortion parameters in the image as well as the intrinsic parameters of the
camera. These parameters can be estimated using a calibration algorithm which is
discussed next.

Camera Calibration

In order to extract correct information from the images taken by the camera, it has
to be calibrated. Camera calibration is a procedure that can estimate the intrinsic
parameters of a camera, see section 3.1.2, as well as the parameters of the distortion
model, see section 3.1.3.

There exists lots of different methods and algorithms for camera calibration,
including [1], [9] and [41] to mention a few. The methods can roughly be classified
into two different categories; ”self-calibration” and ”photogrammetric calibration”
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[45]. ”Self-calibration” algorithms does not use any kind of calibration object,
instead it is based on multiple images of a static scene. They assume that the camera
has the same settings in all images, then the displacement between the images can
be used to estimate the intrinsic and extrinsic parameters of the camera. In this
project we will however use a ”photogrammetric calibration” method instead, where
we use a calibration object. In most cases this is a chessboard pattern as shown
in fig. 3.4, but this varies depending on the method. The methods use the known
information it has about the chessboard, the size of the squares and that the points
are coplanar, to estimate the intrinsic parameters.

Figure 2.7: Calibration
chessboard.

In this project we will focus on the method proposed
by Z. Zhang in [45]. This is a ”photogrammetric cali-
bration” technique using a chessboard as seen in fig. 3.4,
which uses a chessboard with known square sizes as cal-
ibration object. The algorithm estimates the intrinsic
and extrinsic parameters of the camera, as well as the
parameters of the radial distortion.

After calibrating the camera and finding an estimate
of all the parameters of the camera model, see sec-
tion 3.1.2, we have found the relationship between 3D
object points in the scene and points in the image plane.
In order to locate image points corresponding to feature
points in the scene, a procedure called feature detection
can be used.

Feature detection

Features are pieces of information that are useful for solv-
ing tasks for certain applications. In computer vision
context features are defined as an easily re-identifiable element of the scene. There
are three typical features used in computer vision; edges, corners and ridges.

Edges are defined as an amount of points where there is a boundary between
two image regions. According to R. Szelinski in [33] edges refer to ”boundaries
of objects” and ”other kinds of edges correspond to shadow boundaries or crease
edges, where surface orientation changes rapidly”. Detecting edges in an image can
be done by inspecting the image gradients, and there are many different algorithms
for achieving this. The Canny Edge Detector was proposed by J. Canny in [2] in
1986, and is probably the most known edge detector today. The algorithm suggested
by Canny is a multistage algorithm which takes advantage of the image gradients
in an image. First it removes noise, this is because edge detection in general is
susceptible to noise. This can be done by a applying a simple Gaussian filter.
Next the algorithm finds the intensity gradient of the image. Lastly the algorithm
scan the gradient image using non-maximum suppression, removing any pixels that
may not constitute an edge. By performing a hysteresis thresholding on the image
where the gradients below a lower threshold are discarded, the gradients above are
classified as edges, and the ones in between are classified based on their connectivity
with edges or non-edges. This leaves a binary edge image as the one in fig. 2.8.
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Figure 2.8: Canny edge detection used on an image taken from bridge of a ferry.

Ridges and edges are often used synonymously but are not actually the same.
While edges are sharp borders between areas of high an low intensity, ridges are
thin lines that are brighter or darker than the surrounding neighborhood. Thus the
resulting binary image of the canny edges detector in fig. 2.8 is actually an image
of ridges representing the edges in the original image. Both ridges and edges has a
common problem, they both consists of multiple points and it is difficult to define
a specific point along them. Hence they are not very useful in an operation to find
feature point correspondences between two images or image and scene.

The most popular feature in computer vision is corners. They are uniquely
defined as a single point, and are easy to find in multiple images of the same scene.
This make them especially useful when point correspondences are to be found in
different images, i.e. for epipolar geometry or feature tracking. Corners are easy to
identify by evaluating the gradient, whatever direction one moves from the corner
the gradient will change by a large amount. This is in contrast to edges or ridges
where the gradient will stay more or less the same if we move along them. There are
a lot of different corner detection algorithms, some of the most known are Movarec’s
corner detector, Harris’ corner detector and ”SUSAN” corner detector. All three
algorithms work by the same basic principle of evaluating the gradients, but the
most popular and well known is the Harris corner detector [13].

In order to perform point feature matching where the same feature is found in
different images, we need some kind of descriptor that is unique for all points, in
order to avoid false point matching. ORB (Oriented FAST and Rotated BRIEF)
is a good descriptor based on BRIEF. It is very efficient and a good open source
and free alternative to SURF and SIFT descriptors that both are protected by
copyright [27]. The ORB descriptor use a FAST detector for detecting corners,
augmented with a pyramid scheme for scale awareness and a Corner Harris filter
for removing edges in the detected key-points. It uses a descriptor for the key-points
called rBRIEF (rotated BRIEF), which is very efficient and robust, to describe the
detected points. The ORB descriptor is very fast and outperforms both SIFT and
SURF, and is therefore a good choice for real-time systems.

Feature detection is a big area in computer vision, and choosing detection
method and the descriptor depends on the application; what is going to be de-
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tected, and what information about the feature is important. In the event of QR
code detection, as discussed in section 2.3.2, it might be useful to implement a
pre-made detector, like the ones that are found in the library called ”ZBar” [44].

By using feature detection it is possible to find either a marker or a specific
feature in an image. In a positioning system the points will have a known longitude,
latitude and height, so when the ferry has a known position relative to the quay a
simple coordinate transformation gives the position in the world. In order to use
the points that are detected in the image together with the points on the quay,
and subsequently estimate the pose of the ferry, we move into another area within
computer vision called pose estimation.

Pose Estimation

Pose estimation is the process of computing the pose of an object with a known
structure, relative to a calibrated camera [32]. The problem of estimating the pose
is a classical problem in computer vision, but also in photogrammetry where it is
called ”resection”. The pose of an object refers to the position and orientation
relative to a coordinate frame, often the camera coordinate frame.

Estimating the pose is done by connecting features between object and image.
Features such as lines and corners that will be used for pose estimation has to be in
a known position in the earth coordinate system, and they have to be easily identi-
fiable in an image. Then the pose of the camera can be estimated by connecting the
object points and the image points using the camera matrix containing the intrinsic
parameters of the camera.

Initially the model has 6 degrees of freedom (6DOF) and the goal of the pose
estimation is to reduce it to 0DOF. Introducing one single point correspondence
between the image and the object reduces the degree to 4DOF, and introducing
two reduces it to 2DOF. By introducing three point correspondences reduces the
degree to 0DOF, which means that in order to estimate the pose of the camera a
minimum of three points has to be known. However as R. Holt and A. Netravali
show in [16] knowing three corresponding points does not necessarily give a unique
pose, but can actually give up to four. They found that in order to generally get a
unique solution four non-coplanar (Coplanar points are points that do not occupy
the same surface or linear plane) points has to be known.

Estimating the pose is a nonlinear problem that must be solved with a nonlinear
estimator. The solvers often minimize the mean-square error to find the best pose to
fit the point correspondences (hence estimator). Assuming that the camera model is
a perspective camera model (all image rays go through the center of projection) the
problem is called the ”Perspective-n-Point” (PnP) problem. If the camera model is
non-perspective then it is called ”Non-Perspective-n-Point” (NPnP), and it has to
be solved with a NPnP solver like the one suggested by C. Chen and W. Chang in
[4].

PnP Problem

The PnP, problem refers to the pose estimation problem based on n known point
correspondences between image and scene. Each known point in the scene is de-
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tected in the image plane, and the problem assumes that the position of the points
in the scene is known or at least that the points have known locations with respect
to each other. The problem itself is to find the rotation and translation of the cam-
era so that the n scene points projected into the image plane, as will be presented
in section 3.2.2, is as close to the detected image point as possible. This is called
evaluating the reprojection error, and can be used both to validate calibration and
pose estimation. This kind of pose estimation is called model based because the
model, or relationship between the points in the scene, is known. The problem is
nonlinear, and there has been proposed a lot of different solvers for it. Some of
the possible solutions are presented below, and will be explained in more detail in
section 3.3.1.

One solution to the problem is the Levenberg-Marquardt (LM) optimization al-
gorithm presented by M. Transtrum, B. Machta and J. Sethna in [38]. This solver is
iterative combining advantages of both Gradient-descent and Gauss-Newton meth-
ods. The LM steps are linear combinations of the Gradient-descent and Gauss-
Newton steps based on an adaptive rule. The adaptive rule use Gradient-descent
dominated steps until it reaches a ”canyon” in the function, and then Gauss-Newton
dominated steps along the canyon. The function that the algorithm optimizes over
is the reprojection error which it wants to minimize, and the algorithm continues
until it reaches convergence. When it has converged, it has found the pose that
minimizes the reprojection error of the image points.

The CASSC algorithm solves the minimal PnP problem of estimating the pose
based on three known control points. As it is described above, the P3P problem
can have four solutions. The algorithm to solve the problem is presented by X.-S.
Gao, X.-R. Hou, J. Tang and H.-F. Cheng in [12], which is an algebraic approach
using Wu-Ritt’s decomposition providing the first solution to the problem. Another
P3P algorithm (AP3P) is presented by T. Ke and S. Roumeliotis in [18], and this
algorithm is also algebraic. The main difference compared to CASSC is that AP3P
calculates the attitude, and subsequently the camera position, instead of all param-
eters at once. This algorithm is supposedly faster and more accurate than other
P3P algorithms because it avoids unnecessary calculations.

A solver for the general PnP problem is the Direct Least-Squares (DLS) method
as presented by J. Hesch and S. Roumeliotis in [15]. The method ”formulate a non-
linear least-squares cost function whose optimality conditions constitute a system
of three third-order polynomials”[15]. Further it determines the roots of the system
analytically by employing a multiplication matrix. The roots of the system give the
minimum of the least-squares, and consequently the pose of the camera without
iterating or making an initial guess of the parameters. One big advantage of this
solver is the scalability, which is a result of the order of the polynomial that has to
be solved is independent of the number of points, n.

There are many other solutions to the problem with advantages and disadvan-
tages. Another non-iterative solver is the EPNP solver presented by V. Lepetit, F.
Moreno-Noguer and P. Fua in [20], which is fast and require n ≥ 4 points. The
UPNP solver presented by A. Penate-Sanchez, J. Andrade-Cetto and F. Moreno-
Noguer in [28] is another non-iterative solver. This is inspired by the EPNP solver,
but in addition to estimate the pose, it also estimates the camera focal length, which
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is useful if the camera is poorly calibrated.
Now that we have introduced the CV techniques, we need tools to implement and

use the techniques on the computer. The next section introduces a computer vision
library called OpenCV that come with a lot of already implemented functions.

2.4.2 OpenCV

OpenCV is a free open source computer vision library. It is written in optimized
C/C++ but has interfaces for use in C++, python and Java. It is an efficient library
that can utilize multi-core processing, which is essential in real time computer vision
systems [35]. According to the developers, the library contains over 2500 built-in
and optimized algorithms, and new algorithms are implemented frequently. The
newest version of the library was released on the 20 th. of November this year
(2018), but in this project a previous version will be used (v. 3.4.0). How the
library is utilized in this project will be described in detail in chapter 4, and the
main documentation of the language can be found in [36].
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Chapter 3

Theory

This chapter presents the theory explored in the project. The theory is used as a
basis for the systems implemented and described in section 4.2. The basis for most
of the theory comes from the work presented in chapter 2.

3.1 Camera

Figure 3.1: Image of Canon EOS
7D.

A camera is a very simple passive sensor to cap-
ture visual information as it is described in sec-
tion 2.3.1. It collects the light in a scene over a
short time interval, and represent the informa-
tion either as analogue film or digital as bytes.
The camera mainly consist of three components;
an imaging sensor to capture the information, a
lens to collect the most amount of light and di-
rect it towards the imaging sensor and a camera
housing to make sure the imaging sensor is not
influenced by other light sources. The imaging
sensor can be either analogue or digital, but the
digital sensor is by far the most used nowadays.

3.1.1 Digital Images

There are two types of digital imaging sensors;
charge coupled device (CCD), and complemen-
tary metal oxide semiconductor (CMOS). Both
of them consist of a grid of pixels that measures
the amount of light in the scene, and they differ only in the way the light intensity
is measured and converted into an imaging file [3]. How they work in detail is not
important in terms of computer vision methods, and will therefore not be presented.
Each pixel in the grid usually consist of three parts that measures the intensity of
red, green and blue light, unless it is a greyscale sensor which only measures the
total light intensity.

The image is saved as bytes of information about the color intensity. Each pixel
gets a value between 0 and 255, which means that each color pixel requires one byte
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to store the information. Assuming that the sensor is RGB means that one image
takes 3 bytes times the number of pixels in the sensor to store the information of
the image.

3.1.2 Camera Model

In order to use the information captured by the camera, a good model of the camera
is needed. There has been developed a lot of different models for cameras with
different usages. The two main groups of camera models are the central camera
models and the non-central camera models, which differ only in the sense that the
central camera models has an optical center and the non-central does not[32]. These
are again divided into global, local and discrete models, where the parameters of
the global models influence the entire image plane and the parameters of the local
models affect different portions of the image. The discrete models sample the back-
projection function at different points, which means that the model has a lot of
parameters; one per sampled location.

The global central models are the most used because they are simple to use and
describes the cameras in an intuitive way. There are many models in this category
including affine models, two-plane model, models for Slit cameras, etc.., but the
most common model is the perspective camera model. This model is based on the
simple pinhole cameras that where used in the early days of photography, where
the pinhole is in the center of projection. In a regular pinhole camera the imaging
sensor would be behind the principle point, meaning that the image is projected
upside down on the imaging plane. However to simplify the calculations based on
the model, the imaging plane is moved in front of the principal point so that the
image is the right way compared to the scene in front of the camera.

So what model should you choose? According to section 3.6 on page 84 in [32]
”The general answer to these questions is: it depends...”, but if the camera that is
used is a regular perspective camera the easiest and most accurate is the perspective
camera model, popularly called the pinhole camera model.

cX

cY

cZ

cO

Center of
projection

Projection axis

iu
iv

Image
plane

P (cx, cy, cz)

P (u, v)

f

Figure 3.2: Illustration of the perspective camera model.

The perspective camera model is illustrated in fig. 3.2. The model assumes a
linear relationship between a 3D point in the scene and a corresponding 2D point in
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the image coordinate system. This linear relationship is dependent on five parame-
ters called the intrinsic parameters. The parameters are fx and fy representing the
focal length in pixel dimensions in the horizontal and vertical direction respectively
(assuming that the pixels are square the focal lengths are equal). s is a skew pa-
rameter that can represent non-rectangular pixels or synchronization errors in the
image read-out, assuming square pixels gives s = 0. The last two parameters, x0

and y0, represents the position of the principal point in the pixel coordinate system,
see fig. 3.2, which represents the origin of the normalized image coordinate system.
The intrinsic parameters will later on be presented in the camera calibration ma-
trix in section 3.2.2, where the linear relationship between the scene and the image
plane is presented and are found using a camera calibration method as presented
in section 3.1.4.

3.1.3 Distortion model

The perspective camera model presented in section 3.1.2 is usually called the ideal
perspective camera model because it assumes no distortions in the image. Distor-
tions are errors with respect to the real world, and are divided into many different
categories including geometrical, chromatic aberration, spherical aberration etc.
The distortions can be difficult to model precisely, but can be approximated by
polynomials.

v

u

Ideal position

Position with distortion

dtdr

Figure 3.3: Illustration of radial (dr)
and tangential (dt) distortions [42] on
a single pixel.

In this project the geometrical distor-
tions are the most important, which consists
of radial and tangential parts. Both parts
are illustrated in fig. 3.3.

The radial distortion can be modeled as

δr = k1r
3 + k2r

5 + k3r
7 + · · · (3.1)

where r is the distance to the image point
from the principal point, r =

√

x2 + y2.
The tangential distortion is usually smaller,
and a bit more complicated to model [6], but
is included in eq. (3.4). After removing the
the distortions the new image coordinates
are given as

ud = u+ δu (3.2)

vd = v + δv (3.3)

and the displacement due to geometrical distortion is given by [6]
[

δu
δv

]

=

[

u(k1r
2 + k2r

4 + k3r
6 + · · · )

v(k1r
2 + k2r

4 + k3r
6 + · · · )

]

︸ ︷︷ ︸

radial distortion

+

[

2p1uv + p2(r
2 + 2u2)

p1(r
2 + 2v2) + 2p2uv

]

︸ ︷︷ ︸

tangential distortion

(3.4)

The parameters, k1, k2, k3, p1, p2 in the distortion model, are called the distortion
coefficients and can be estimated by a camera calibration algorithm.
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3.1.4 Camera Calibration

Figure 3.4: A typical calibration
image of a chessboard.

A short introduction to camera calibration can
be found in section 2.4.1. We will focus on the
method proposed by Z. Zhang to find the intrin-
sic parameters as well as the extrinsic parame-
ters of the calibration images, see fig. 3.4. The
method also finds an estimate of the parameters
describing the radial distortion of the image. We
will now present the method in this text, but for
the interested reader, the method is described in
depth in [45].

Assuming the mathematical interpretation
of the perspective camera model, as it is de-
scribed in eq. (3.35) in section 3.2.2, and the

augmented points
c
P̃ = (cX, cY, cZ, 1) in the camera frame and

i
P̃ = (iu, iv, 1) in

the image plane (original points are cP = (cX, cY, cZ) and iP = (iu, iv)). From
section 2.2 in [45] we know that if we assume the model plane at cZ = 0 we can
relate a model point

c
P̃ = (cX, cY, 1) with an image point with a 3× 3 homography

H:

s






iu
iv

1




 = C

[

r1 r2 r3 t
]








cX
cY

0
1







= C

[

r1 r2 t
]






cX
cY

1




 = H






cX
cY

1




 (3.5)

where ri represents the columns of the rotation matrix of the extrinsic parameters,
and s is a scaling factor. From eq. (3.5) we have H = C[r1 r2 t], where H is the
homography. Appendix A in [45] explains one technique for estimating H based on
maximum likelihood criterion. Minimizing the function

∑

i

(iPi −
i
P̂i)

⊤Λ−1
i
Pi
(iPi −

i
P̂i) (3.6)

where

ˆiPi =
1

h̄⊤

3
cPi

[

h̄⊤

1
cPi

h̄⊤

2
cPi

]

(3.7)

will yield the maximum likelihood estimation of H. h̄i is in this context the i-th
row of the homography H. Λi

Pi
is a covariance matrix of Gaussian white noise with

0 mean which is presumed to be corrupting the image point iPi = [iu iv]⊤, this
is usually assumed Λi

Pi
= σ2I2×2. Because of this assumption the minimization

problem become a nonlinear minimization problem

min
H

∑

i

∥
∥
∥
iP− ˆiP

∥
∥
∥

2

(3.8)
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This nonlinear minimization must be solved with a nonlinear solver, like the
Levenberg-Marquardt Algorithm which is presented for solving the PnP-problem
in section 3.3.1.

Based on the new estimate of the homography we can find constraints on the
intrinsic parameters. By H = [h1 h2 h3] and the following equation

[h1 h2 h3] = λC[r1 r2 t] (3.9)

with λ as an arbitrary scalar, the method in [45] finds the following equations
(equations (3) and (4) in the paper)

h⊤

1 (C
⊤)−1C−1h2 = 0 (3.10)

h⊤

1 (C
⊤)−1C−1h1 = h⊤

2 (C
⊤)−1C−1h2 (3.11)

where the fact that r1 and r2 are orthonormal is exploited.
Now that we have found the intrinsic constraints we can move over to the actual

calibration itself. First we find a closed-form solution (see section 3.1 in [45]) by
letting

B = (C⊤)−1C−1 =






B11 B12 B13

B12 B22 B23

B13 B23 B33




 (3.12)

=







1
f2
x

− s
f2
xfy

y0s−x0fy
f2
xfy

− s
f2
xfy

s2

f2
xf

2
y
+ a

f2
y

− s(y0s−x0fy)

f2
xf

2
y

− y0
f2
y

y0s−x0fy
f2
xfy

− s(y0s−x0fy)

f2
xf

2
y

− y0
f2
y

(y0s−x0fy)2

f2
xf

2
y

+
y2
0

f2
y
+ 1







(3.13)

where B is a symmetric matrix which can be defined by a 6D vector as

b =
[

B11 B12 B22 B13 B23 B33

]

(3.14)

By following the suggestion of the paper and denoting the i-th column vector of H
as hi = [hi1, hi2, hi3]

⊤ we get

h⊤

i Bhj = v⊤

ijb (3.15)

Now the constraints in eq. (3.10) and 3.11 can be rewritten as eq. (8) in [45]:

[

v⊤

12

(v11 − v22)
⊤

]

b = 0 (3.16)

Doing this with n images of the model in question gives the general equation

Vb = 0 (3.17)

V is a 2n × 6 matrix, so to solve this linear equation we need n ≥ 3 images to
estimate all five intrinsic parameters of the camera. If we assume that the skew-
parameter is zero (s = 0), we can solve the equations with n = 2 images. If we
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also assume that x0 and y0 are known, then we can actually estimate the last two
parameters based only on a single, n = 1, image. When b is estimated, the camera
matrix can be estimated. Then it is possible to find the extrinsic parameters of the
camera (with respect to the calibration chessboard) by eq. (3.5).

Now that the intrinsic parameters are known the next step is to find the dis-
tortion parameters described in section 3.1.3. The method proposed by Z. Zhang
in [45] only accounts for the radial distortion, because it dominates the tangential
distortion, an assumption based on the paper by D. C. Brown [1]. The radial distor-
tion in [45] is modeled by two parameters so that the distorted image coordinates
are given by the following equations

ŭ = u+ (u− u0)[k1(x
2 + y2) + k2(x

2 + y2)2] (3.18)

v̆ = v + (v − v0)[k1(x
2 + y2) + k2(x

2 + y2)2] (3.19)

where (u, v) are the ideal distortion-free image coordinates. In order to estimate
the distortion parameters, the equations can be rewritten to matrix form as

[

(u− u0)(x
2 + y2) (u− u0)(x

2 + y2)2

(v − v0)(x
2 + y2) (v − v0)(x

2 + y2)2

]

︸ ︷︷ ︸

D

[

k1
k2

]

︸︷︷︸

k

=

[

ŭ− u

v̆ − v

]

︸ ︷︷ ︸

d

(3.20)

The radial distortion parameters can now be estimated by taking the pseudo-inverse
of D so that the equation for the parameters become [45]

k = (D⊤D)−1D⊤d (3.21)

Now that the initial estimates of all parameters, intrinsic, extrinsic and radial dis-
tortion, has been calculated, they will all be refined using a complete maximum
likelihood estimation. This can be obtained by minimizing the following function
[45]

n∑

i=1

m∑

j=1

∥
∥
∥
iPij −

˘iP(C,k,Ri, ti,
cPj)

∥
∥
∥ (3.22)

where n represents the number of images in the calculation,m represents the number
of points on the calibration object (corners in the chessboard), C represents the
camera calibration matrix with the intrinsic parameters, k represents the radial
distortion, Ri represents the rotation matrix of the camera with respect to the
calibration object in the i-th image, ti represents the translation of the camera in
the same image and cPj represents the j-th 3D point on the calibration object.
˘iP(C,k,Ri, ti,

cPj) is the projection of the point cPj in image i. Solving this
nonlinear minimization problem can be done by using a nonlinear solver like the
Levenberg-Marquardt algorithm.

As a summary of the method, Z. Zhang in [45] presents the following procedure:

1. Print a pattern (chessboard) and attach to a planar surface;

2. Take images of the pattern from different orientations;
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3. Detect the feature points in the images (chessboard corners);

4. Estimate the intrinsic and extrinsic parameters by using eq. (3.17) as described
above;

5. Estimate the radial distortion parameters by eq. (3.21);

6. Refine the estimated parameters by complete maximum likelihood estimation
by minimizing eq. (3.22);

A calibration procedure presented by OpenCV is loosely based on the method
presented above. It begins by estimating the intrinsic parameters by using eq. (3.17)
and the method described above, then it uses the intrinsic parameters to find
the pose of the camera (extrinsic parameters) by solving a PnP problem, see sec-
tion 2.4.1, and not by using the homography as proposed by [45]. The distortion is
modeled a bit differently here as well, where the radial distortion is modeled with
three parameters (can be extended to 6) and the tangential is not neglected but
modeled by two parameters, p1, p2. The model of the distortion in eq. (3.4) is in
this procedure modeled as:

[

δu
δv

]

=

[

u(k1r
2 + k2r

4 + k3r
6)

v(k1r
2 + k2r

4 + k3r
6)

]

+

[

2p1uv + p2(r
2 + 2u2)

p1(r
2 + 2v2) + 2p2uv

]

(3.23)

The parameters of the distortion model are all initialized to 0. This is to avoid the
intricate calculations to find initial estimates, because the model is more complex
than the model presented in [45], it is very difficult to find good initial estimates.

The last step of the procedure is to refine the parameters. This is done by run-
ning the Lavenberg-Marquardt optimization algorithm over the reprojection error
in order to minimize it. The reprojection error is found by the following function

n∑

i=1

m∑

j=1

d(iPij, ˆiP(C,k,p,Ri, ti,
cPj))

2 (3.24)

where d is a function calculating the euclidean distance between two points.
ˆiP(C,k,p,Ri, ti,

cPj) represents the projected image coordinates of the j-th model
point cPj in the i-th image, and p are the parameters of the tangential distortion.

By running this kind of a procedure the parameters of the camera model with
distortion are estimated. After calibration, the camera model stays the same unless
the camera settings are changed, for example by increasing the focal length.

We have now introduced the camera. The perspective camera model has been
presented together with a model of the distortion, and calibration procedures for
estimating the parameters of the models. We will now use the parameters and model
in single view geometry where we present some geometrical connections between a
scene and its projection in the image plane.
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3.2 Single View Geometry

In order to use the information in the image to perform a 3D reconstruction, there
is a need for mathematical tools that can describe the projection of the scene into
the image plane. Single view geometry is the common term for these mathematical
tools, which are different based on what camera model that is used. In this project
the perspective camera model described in section 3.1.2 is used, which assumes a
linear relationship between the points in the 3D scene and the 2D image plane.

3.2.1 Image Plane

u

v nx

ny

Figure 3.5: The image plane with the
image coordinate system and the nor-
malized image coordinate system.

The image plane is illustrated in the per-
spective camera model in fig. 3.2. The plane
has two different coordinate systems, the
image coordinate system with origin in the
top left corner and the normalized image co-
ordinates with origin on the principle line
only a simple translation along the cam-
era z axis from the camera coordinate sys-
tem with the origin in the principal point.
The coordinate systems and the image plane
is illustrated in fig. 3.5. The two coordi-
nate systems have different units, the im-
age coordinate system have pixels as unit
while the normalized image coordinate sys-
tem uses meters as unit.

3.2.2 Scene to Image Plane

The camera calibration matrix is used to project a point in the 3D scene into the 2D
image plane. This is the inverse problem of projecting a point from the image plane
into the scene, which is an important part of this project. However projecting points
this way is important when calculating the reprojection error, which is important
when calibration and pose estimation is evaluated.

Now the relationship between the scene coordinates and the image coordinates
will be described. Assuming that a point in the camera coordinate system, cP =
(cx, cy, cz) in the scene is projected into the projective plane by

pP = (px, py, 1) = (
cx
cz
,
cy
cz
,
cz
cz
) = (

cx
cz
,
cy
cz
, 1) (3.25)

In order to describe this point in the normalized image coordinate system triangle
similarity is used, which can be rewritten in terms of the projective plane coordi-
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nates, see also fig. 3.2 for the model,

nx

f
=

cx
cz

=⇒ nx = f
cx
cz

= f px (3.26)

ny

f
=

cy
cz

=⇒ ny = f
cy
cz

= f py (3.27)

Getting from normalized image coordinates to image coordinates is just a translation
in the plane

ix = f px+ x0 (3.28)
iy = f py + y0 (3.29)

The last step is to change the unit of the coordinates from meters to pixels, which
is easily done with the pixel density of the imaging sensor. In horizontal direction
the pixel density is given by ρx = nx

sx
, and in vertical direction it is ρy =

ny

sy
. Where

nx, ny, sx and sy are the number of pixels in the sensor and the physical size of the
sensor in meters respectively.

iu = ρxf
px+ ρxx0 = fx

px+ cu (3.30)
iv = ρyf

py + ρyy0 = fy
py + cv (3.31)

The previous two equations can be written in matrix form as





iu
iv

1




 =






fx 0 cu
0 fy cv
0 0 1











px
py

1




 = C pP (3.32)

Where the matrix C is called the camera calibration matrix. Formally this matrix
is written as

C =






fx s cu
0 fy cv
0 0 1




 (3.33)

where s is a skew parameter if the camera sensor is not rectangular, but this is
usually not the case so it is set to 0. The camera calibration matrix contain the
information from the calibration, and consists of the intrinsic parameters of the
camera.

If we in addition relate the camera coordinate system to the world coordinate
system we get the linear relationship between the scene and image plane. Assuming
a point P described in the world frame: wP = (wX, wY, wZ), which can be aug-
mented to include 1 as the last element:

w
P̃ = (wX, wY, wZ, 1). Transforming this

point to the camera coordinate system can be done by:

c
P̃ =








cX
cY
cZ

1







=






r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3













wX
wY
wZ

1







= [R t]

w
P̃ (3.34)
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In this transformation, [R t] are the extrinsic parameters of the camera in the world
frame, describing the rotation and translation of the camera in the world coordinate
system. By adding the results of eq. (3.32) into the results of eq. (3.34) we find the
linear relationship between a point in the 3D scene and the projected point in the
2D image plane:

s
i
P̃ = s






iu
iv

1




 =






fx s cu
0 fy cv
0 0 1










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r21 r22 r23 t2
r31 r32 r33 t3










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

wX
wY
wZ

1







= C[R t]

w
P̃ (3.35)

where the constant s is a scale factor. Equation (3.35) is the mathematical inter-
pretation of the perspective camera model described in section 3.1.2.

3.2.3 Image Plane to Scene

No that the forward projection from scene to image plane is found, it is easy to
think that the inverse operation is the inverse of the calibration matrix. This is
however not actually the case because this will only give the transformation from
the pixel coordinates to the projective plane. In the scene this represent a camera
ray, and in order to place the point one of the three scene coordinates has to be
known.

In this project the goal is to estimate the pose of the camera compared to
the quay. In order to achieve this pose estimation algorithms need some point
correspondences between the image plane and the scene. This is called model based
pose estimation, where the model in this case will be of the markers placed around
the quay as discussed in section 2.3.2. The pose estimation is done by moving the
pose of the camera so that the projection of the markers in the image plane is equal
to the location of the detected markers in the image with a minimized geometrical
error. The problem of estimating the pose of a camera based on n known points is
called the ”PnP problem”, and as it is shown in the next chapter there are many
different algorithms to solve it.

3.3 Pose Estimation

The pose of an object can be described by six parameters; three translations and
three rotations, also called the extrinsic parameters of the camera. These six param-
eters of the camera can be estimated if the intrinsics and distortion parameters are
known. In other words the results from the camera calibration in section 3.1.4 are
used to calculate the extrinsic parameters of the camera by a spacial resection from
known points in the scene [11]. Solving the PnP problem is one way of estimating
the pose, and in the next section we will present different PnP solvers.

3.3.1 PnP

The PnP problem is explained in section 2.4.1, and we will in this section present
some of the mathematical theory behind a couple of algorithms that solve the
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problem. The solvers are all implemented in the OpenCV library, can are easily
used by calling a ”solvePnP” function with image points and scene points as input.
An extra possibility presented by the OpenCV developers is to use the presented
algorithms with a RANSAC scheme, where the points used in the algorithm is
based on selection using the RANSAC algorithm. Such a solver is more robust to
outliers than the original solver, but can be more inaccurate if the points are well
defined. The RANSAC solver is most used when the points are influenced by a lot
of disturbances. For more information on the implementation, the reader is advised
to review the documentation [34].

A lot of the mathematical background on the PnP solvers is quite complex, and
the methods that are used for solving the problems are outside the scope of this
report. However all papers are cited in the proper sections, so for a more in-depth
look at the algorithms the reader can find the information following the citations.

Iterative Levenberg-Marquardt (LM) Optimization

This method is based on both Gradient Descent (GD) and Gauss-Newton (GN)
optimization. The algorithm combines the advantages of GD and GN by choosing
the iterative step (popularly called the ”LM step”) to be a linear combination of
the two methods. The algorithm is presented by M. Transtrum, B. Machta and J.
Sethna in [38], and it iteratively solves the problem by minimizing the reprojection
error. A purely analytical explanation of the algorithm is that the LM step is
dominated by the GD until it finds a ”canyon” in the function, and then the step
will be dominated by GN until the function converges. The LM step is called
adaptive because it changes based on how the function looks around the current
iteration.

CASSC

The CASSC (Complete Analytical Solution with the assistance of Solution Clas-
sification) algorithm is an algorithm for the minimal PnP problem, P3P. In sec-
tion 2.4.1 we presented how 3 points are the minimum number of points that give
a finite number of possible poses, and this is why the P3P problem is called the
minimal PnP problem. CASSC is a complete and robust algorithm solving the P3P
problem, and was presented by X.-S. Gao, X.-R. Hou, J. Tang and H.-F. Cheng
in [12]. The algorithm finds all the possible solutions to the P3P problem, and
classifies them as possible or impossible results.

The paper presents two approaches; geometrical and algebraic. The geometric
approach can give some criteria for the number of solutions which will be simpler
than the algebraic approach, but it has to find the solutions using an algebraic
approach in any case. The algebraic approach finds the first solution to the problem
by Wu-Ritt’s zero decomposition algorithm, which gives a triangular decomposition
of the equation sets of the P3P problem. The decomposition gives the first analytical
solution to the equation set. After this a complete solution classification to the P3P
equation system is found from the decomposition. This classification means that
there are found explicit criteria for the given problem to have one, two, three or
four solutions. The CASSC algorithm combines the analytical solutions with the
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criteria, which can be used to find the complete and robust numerical solutions to
the P3P problem.

The mathematics supporting this algorithm is quite extensive. Especially finding
the classification is very complex, and the reader is advised to read the paper, [12],
for a complete description of the algorithm.

OpenCV has implemented this algorithm as a PnP solver. This implementation
does however require four points, even though the solver is for P3P problems. The
fourth point in this problem is used to narrow down the result to a single pose
estimate after running the proposed CASSC algorithm.

AP3P

This is a method based on the paper by T. Ke and S. Roumeliotis [18]. They do
not actually provide a name for their algorithm, so we will reference it by AP3P
or (Algebraic P3P). The algorithm is a more efficient solver than the previously
proposed CASSC algorithm, in fact they claimed that it only used 40% of the time
of the current state of the art methods. The authors also claimed that the AP3P
algorithm was both more robust and accurate than other methods.

This method starts by finding the attitude (orientation) of the camera, and then
finds the translation (this is opposite to other methods like the CASSC presented
above). The method first directly determines the camera’s attitude by eliminating
it’s position and features’ distances, resulting in a system of trigonometric equations.
By employing an algebraic approach to the system it yields the rotation matrix of
the camera, and then it’s position.

This method is also implemented as a function on the ”solvePnP” function in
OpenCV. The implementation require four points in both image coordinates and 3D
scene coordinates, the reason for requiring four points is the same as in the CASSC
solver: to find the correct pose if multiple are found.

DLS

This is a Direct Least-Squares method for PnP based on the paper [15]. It is a
solver that works for n ≥ 3 points, based on solving a nonlinear least-squares cost
function, eq. (3) in [15]
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subject to S
GC

⊤ S
GC = I3, det(SGC) = 1 (3.37)

αi =
∥
∥
∥
S
GC

Gri +
SpG

∥
∥
∥ (3.38)

where the cost function is the sum of the squared measurement errors. Finding all
solutions of this problem is challenging because the cost function is nonlinear in the
unknown quantities. The approach that is used in [15] is to relax the optimization
problem described above, and manipulate the measurement equations in order to
reduce the number of unknowns. The details of this procedure is described in
sections 3.3-3.5 in [15].
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The algorithm directly finds all possible poses based on any number of points,
n ≥ 3. This makes the algorithm very flexible, and the scalability is very good.
The poses are calculated using an analytical approach, and it does not need any
initialization.

EPnP

The EPnP algorithm is a fast and non-iterative solver based on the paper [20] for
n ≥ 4. This method expresses the n points as a weighted sum of four virtual control
points

pw
i =

4∑

j=1

αijc
w
j ,

4∑

j=1

αij = 1 (3.39)

where αij are homogeneous barycentric coordinates, p are the 3D world coordinates
for the points n and c are the virtual control points. The algorithm then solves for
the coordinates of the control points in the camera referential instead. If there is a
higher accuracy requirement the result can be optimized by running Gauss-Newton
with the previous result as initialization.

UPnP

This method is inspired by the EPnP method, and is also non-iterative. It is based
on the paper [28], and in addition to estimate the pose of the camera it also handles
the focal length as an unknown. This means that the algorithm will work even on
uncalibrated cameras provided that the location of the principal point in the image
plane is known, and that the skew parameter is zero.
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Hardware and Software Implementation

In order to work with new methods and algorithms, they have to be tested and
verified. In this chapter we present the implementations that was used in the
project, as well as the hardware and software.

4.1 Hardware

This section introduces the reader to the hardware that was used to test the meth-
ods. The only hardware components that were used is a camera, a computer and
markers.

4.1.1 Computer

The main computer used in the project was an Apple Mac-book Pro. It has a 2GHz
Intel Core i7 processor and 8 GB RAM.

4.1.2 Camera

In order to test methods and implementations a single camera is used. The camera
is a Canon EOS 7D digital single-lens reflex (DSLR) with a Canon EF 17-40mm lens
attached. The camera has an 18 mega pixel APS-C CMOS image sensor with a size
of 22.3x14.9mm. In order to keep the parameters of the camera model constant, the
lens is kept at 17mm in all images both in the calibration and the pose estimation.

4.1.3 Markers

QR codes was used as markers in this project, see section 2.3.2. The QR codes
contained simple text displaying information on what marker it was, and was printed
with 81mm and 161mm sides. In all tests the QR codes was taped to a straight
object like a wall or a table. All four corners were used as feature points in the
algorithm.
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4.2 Software

The software used in the project is mainly focused around the OpenCV library for
python. The OpenCV library is simple to use and install in addition to containing
a lot of built-in functions for computer vision tasks. We used python version 3.5.3
with version 3.4.0 of OpenCV.

4.2.1 Calibration

The calibration algorithm is based on the examples and implementation shown on
the OpenCV documentation page [24]. As the documentation page suggests, a 9×6
chessboard was printed and used for calibration of the camera. There was taken
22 pictures of the chessboard from different angles, but only 20 was used for the
calibration as two of the images was out of focus.

The implementation of the calibration can be found in section A.1. The cali-
bration is done in the ”main()”-function on line 91 which run the entire calibration
procedure. The function first make an instance of the ”cameraCalibration”-class
and run the ”calibrate”-function on the instance. This function iteratively finds the
chessboard in all the calibration images, saves them as image points and associates
them with object points. Then it runs the built-in function ”calibrateCamera”
which returns a translation vector containing the translation of the camera in all
calibration images, a rotation vector containing the attitude of the camera com-
pared to the chessboard in all images, the distortion coefficients for the distortion
model introduced in section 3.1.3, the camera calibration matrix introduced in sec-
tion 3.2.2 and a boolean that informs whether the calibration was successful. This
information is then saved as parameters in the instance that was made in the main
function. The main function continues, if the calibration is a success, by saving
the calibration matrix and distortion coefficients in their own files so that they can
easily be loaded and used by other functions. The last parts of the main function
on line 98 and 99 calculate the reprojection error and illustrates the information
in a figure. If the images with a high reprojection error are removed from the
calibration, a recalibration is necessary so that the parameters are updated.

4.2.2 QR Detection

The QR detection implemented in this system is from the ZBar library [44]. The
implementation itself is in the function ”detect QR codes(self)” on line 186 in sec-
tion A.2. The library has a lot of good functions for detection and reading of both
bar codes and QR codes, which makes the implementation very simple. It consists
of a ”scanner” object that can run over the image, and return a container with all
the codes detected within it. Each element in the container has the contents of the
code and the position of all corners of the code making it easy to use all four corners
as points for the pose estimation.
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4.2.3 Pose Estimation

The pose estimation implementation is written to test different methods for PnP
solving. The accuracy of the methods will be tested both visually and mathemat-
ically by measuring the reprojection error. The implementation can be found in
section A.2, and the results are shown in section 5.2.

The pose estimation is implemented using a class for each image, and a subclass
for each PnP solving methods. The PnP solvers presented in section 3.3.1 are
already implemented in the OpenCV library, and are easily called using the function
”solvePnP()” as it is done in line 173 in the code in section A.2. The output of
the function is a return boolean indicating whether the estimation war a success,
a rotation vector indicating the attitude of the camera and lastly a translation
vector indicating the position of the camera in the scene coordinate system. The
reprojection error is calculated by reprojecting the known scene points using the
estimated pose of the camera, and then evaluating the projected points with the
detected points in the image.

There are two methods that use only four points, and those are the two P3P
solvers. In the testing were there are more than one marker, which gives more than
four points, the implementation uses the two first points and the two last. This
means that in the testing where we used two markers, two points from the first
marker and two points from the last marker are chosen as reference points in the
pose estimation.

4.2.4 Runtime Pose Estimation

The pose estimation runtime is tested by timing the pose estimators. A timing
test is implemented in the function ”pose estimations timing test()” in line 237 in
the code in section A.2. The PnP methods are each ran 100 times on the same
points, and the runtime results are then shown in the same plot by the function
”plot timing test results()”.
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Testing and Results

The methods and algorithms were tested on the components introduced in chapter 4
together with the implementations in software.

5.1 Camera Calibration

5.1.1 Camera Calibration Matrix and Distortion Coefficients

One of the results of the camera calibration is the calibration matrix described in
section 3.1.4.

C =






4058.49591 0 2575.64541
0 4057.71596 1722.26599
0 0 1




 (5.1)

=






0.01745 0 0.01108
0 0.01749 0.00743
0 0 1




 (5.2)

The first matrix has pixels as unit, and the second matrix has meters as unit.

The distortion coefficients are the second result of the calibration error. These
correspond to the radial and the tangential distortions presented in section 3.1.3.

d = [k1, k2, p1, p2, k3] (5.3)

= [−0.11582583, 0.13720204, 0.00113294, 0.00100731,−0.09993004] (5.4)

5.1.2 Reprojection Error

The reprojection error measures how good a calibration is. Figure 5.1 show the
result of the reprojection error calculation on the different images that were used
for the calibration of the camera. To improve the calibration all images with a
reprojection error above the mean error (above the black line) indicated with red
bars in the chart was removed and the calibration was done again. The procedure
reduced the mean reprojection error by almost 0.01.
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Figure 5.1: The reprojection error in the different images of the calibration.

5.2 Pose Estimation

Pose estimation was thoroughly tested using the implementation presented in chap-
ter 4. The code for all testing presented in this section can be found in section A.2,
and the images used are found in section A.3. The images are divided into four sets,
where the marker combination is the same. The recorded results are the reprojec-
tion error of all methods on all images, the runtime of the estimation methods, the
QR detection time and a illustration of the estimated and true poses.

In all image sets, the scene coordinate system is based on the floor. The y-axis
is up along the wall, the x-axis is along the corner between wall and floor, and
the z-axis goes along the floor perpendicular from the wall. The illustration of the
estimated and true poses of the camera are shown for all the images, where the
z-axis is along the perspective line, the y-axis points down from the camera and the
x-axis points out to the right of the camera.

5.2.1 Image set number 1

In the first image set, there were five images (1.JPG-5.JPG). As it is presented in
table 5.1, there was a single marker (with 81mm sides) in all images in this set. The
QR code detector was not able to detect the marker in image 3. and 5, which are

37



CHAPTER 5. TESTING AND RESULTS

the two images that are the furthest away from the marker itself. Hence there are
no more results from these images below. Figures 5.2 to 5.7 show the results from
the tests of images 1.JPG to 5.JPG. Finally figs. 5.8 and 5.9 show the combined
reprojection errors and the runtime of the QR code detection respectively.

Image #Markers #Detected #1 Marker Camera
Name: Markers: Size: Position:
1.JPG 1 1 0.081m (0,0.85,1)
2.JPG 1 1 0.081m (0,0.85,2)
3.JPG 1 0 0.081m (0,0.85,3)
4.JPG 1 1 0.081m (-1.5,0.85,2.5)
5.JPG 1 0 0.081m (-1.5,0.85,4)

Table 5.1: Information on the first image set.
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Figure 5.3: Reprojection error of pose es-
timation in image 1
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Figure 5.4: The estimated poses and true
pose of image 2
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Figure 5.5: Reprojection error of pose es-
timation in image 2
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Figure 5.6: The estimated poses and true
pose of image 4
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Figure 5.7: Reprojection error of pose es-
timation in image 4
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5.2.2 Image set number 2

The second image set contained images 6.JPG-9.JPG. In this set there was two
markers in the scene, both of them had sides measuring 81mm, see table 5.2. Fig-
ures 5.10 to 5.17 show the test results of images 6.JPG-9.JPG, and figs. 5.18 and 5.19
show all projection errors compared and the QR code detection respectively.

Image name: #Markers #Detected #1 Marker #2 Marker Camera
Name: Markers: Size: Size: Position:
6.JPG 2 2 0.081m 0.081m (0,0.85,2)
7.JPG 2 2 0.081m 0.081m (0,0.85,3)
8.JPG 2 1 0.081m 0.081m (-1.5,0.85,2.5)
9.JPG 2 1 0.081m 0.081m (-1.5,0.85,4)

Table 5.2: Information on the second image set.
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Figure 5.10: The estimated poses and
true pose of image 6
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Figure 5.11: Reprojection error of pose
estimation in image 6
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Figure 5.12: The estimated poses and
true pose of image 7
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Figure 5.13: Reprojection error of pose
estimation in image 7
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Figure 5.14: The estimated poses and
true pose of image 8
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Figure 5.15: Reprojection error of pose
estimation in image 8
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Figure 5.16: The estimated poses and
true pose of image 9
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Figure 5.17: Reprojection error of pose
estimation in image 9
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Figure 5.18: Comparing the reprojection
error of all images and methods in image
set 2.
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Figure 5.19: Runtime for the QR detec-
tion in all images in image set 2.
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5.2.3 Image set number 3

Just like the first two image sets the information about the images can be found
in table 5.3. The scene contained two markers, one with edge sizes 161mm and
one with sizes 81mm, both of them can be seen in correct scale in fig. 5.26. Fig-
ures 5.20 to 5.29 show the image test results, and figs. 5.30 and 5.31 show the image
reprojection errors compared and QR code detection runtime.

Image #Markers #Detected #1 Marker #2 Marker Camera
Name: Markers: Size: Size: Position:
10.JPG 2 1 0.161m 0.081m (0,0.85,1)
11.JPG 2 2 0.161m 0.081m (0,0.85,2)
12.JPG 2 2 0.161m 0.081m (0,0.85,3)
13.JPG 2 2 0.161m 0.081m (-1.5,0.85,2.5)
14.JPG 2 2 0.161m 0.081m (-1.5,0.85,4)

Table 5.3: Information on the third image set.
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Figure 5.20: The estimated poses and
true pose of image 10
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Figure 5.21: Reprojection error of pose
estimation in image 10

44



CHAPTER 5. TESTING AND RESULTS

x−3
−2

−1
0

1
2

3y

0.0
0.5

1.0
1.5

2.0
2.5

3.0

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Pose Estimation, 11.JPG
LM Optimization
P3P
AP3P
EPNP
DLS
UPNP
True

Figure 5.22: The estimated poses and
true pose of image 11
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Figure 5.23: Reprojection error of pose
estimation in image 11
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Figure 5.24: The estimated poses and
true pose of image 12
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Figure 5.25: Reprojection error of pose
estimation in image 12
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Figure 5.26: The estimated poses and
true pose of image 13
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Figure 5.27: Reprojection error of pose
estimation in image 13
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Figure 5.28: The estimated poses and
true pose of image 14
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Figure 5.29: Reprojection error of pose
estimation in image 14

46



CHAPTER 5. TESTING AND RESULTS

10.JPG 11.JPG 12.JPG 13.JPG 14.JPG
Image name

0

1

2

3

4

5

Er
ro

r

Geometric Reprojection error

LM Optimization
CASSC
AP3P
EPnP
DLS
UPnP

Figure 5.30: Comparing the reprojection
error of all images and methods in image
set 3.
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Figure 5.31: Runtime for the QR detec-
tion in all images in image set 3.
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5.2.4 Image set number 4

The last image set is images 15.JPG to 18.JPG. The information in table 5.4 show
the setup of the images, and the scene contained two markers with edge sizes 161mm.
Figures 5.32 to 5.39 show the results of pose estimation, and the reprojection error
in all images and QR detection runtime is shown in figs. 5.40 and 5.41.

Image #Markers #Detected #1 Marker #2 Marker Camera
name: Markers: Size: Size: Position:
15.JPG 2 2 0.161m 0.161m (0,0.85,2)
16.JPG 2 2 0.161m 0.161m (0,0.85,3)
17.JPG 2 2 0.161m 0.161m (-1.5,0.85,2.5)
18.JPG 2 2 0.161m 0.161m (-1.5,0.85,4)

Table 5.4: Information on the fourth image set.
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Figure 5.32: The estimated poses and
true pose of image 15
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Figure 5.33: Reprojection error of pose
estimation in image 15
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Figure 5.34: The estimated poses and
true pose of image 16
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Figure 5.35: Reprojection error of pose
estimation in image 16
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Figure 5.36: The estimated poses and
true pose of image 17
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Figure 5.37: Reprojection error of pose
estimation in image 17
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Figure 5.38: The estimated poses and
true pose of image 18
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Figure 5.39: Reprojection error of pose
estimation in image 18
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Figure 5.40: Comparing the reprojection
error of all images and methods in image
set 4.
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Figure 5.41: Runtime for the QR detec-
tion in all images in image set 4.
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Runtime

The runtime of the PnP solvers was found from running all solvers 100 times. Each
iteration was done on the same data, and the resulting chart can be seen in fig. 5.42.
The runtime is found using the implementation described in section 4.2.4, and the
code is found on line 237 in section A.2.
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Figure 5.42: Timing of different PnP solvers during 100 iterations.
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Chapter 6

Discussion

The contents of this last chapter is a discussion of the results in the project. In
the last part of the chapter there are some suggestions for future work, that can be
used when developing an actual positioning system for a vessel.

6.1 Hardware

In this section we will discuss the hardware used in the project.

6.1.1 Camera

The camera used in the tests in this project is too good for representing the cameras
on board a vessel. The intention of using such a good camera was to get good results
for testing the methods for pose estimation. The results from the testing show that
the QR markers in the images can easily be detected, the only times where it was a
problem was when the QR codes was too small and too far away from the camera.
Making the QR codes big can solve problems of detecting them in cameras with
low resolution. Images with lower resolution can also make the QR detection time
in the images faster.

6.1.2 Computer

The computer is a standard UNIX-based computer. The processing power is aver-
age, installing a similar processing power on a ferry will be a reasonable investment.

6.1.3 Marker

As presented in section 4.1.3 we used QR codes as markers for the pose estimation.
The codes are easy to detect as long as light conditions are good, and there are
nothing blocking the view. For the pose estimation testing however, the QR codes
works very well as they have four corners that can easily be used as four separate
reference points.

One of the biggest disadvantages is resolution. In order to be detectable by the
camera, it has to have a resolution so that the camera sensor can read it from an
appropriate distance. This can be observed from the results in section 5.2 where
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the bigger QR code is detected in all five images in image set 3, but only in the
closest three images in image set 1.

Runtime is another issue. As it clearly comes from figs. 5.9, 5.19, 5.31 and 5.41,
it takes a long time to detect a QR code (around 1 second on average). This is
not acceptable even though the ferry is not supposed to move very quickly in the
docking. This might be solved by changing language from python to C++, but this
has yet to be verified. Another possible solution is lower resolution images, so there
are less pixels to scan over for the QR detector.

6.2 Software

Now we will discuss the software used and tested in the project.

6.2.1 Python

The software in this project is written in python. It is a language that is easy to use
and simple to understand, and it is therefore well suited for testing and developing
new methods and algorithms. However the language is not very efficient, and the
runtime is therefore quite high which is reflected especially in the QR detection
section 4.2.2. This makes it not well suited for real-time applications such as in the
autonomous docking operation.

It is suggested that further development of such a system is done in a more
efficient language. A good alternative to python with the same advantages of the
OpenCV package is C++, which will result in much lower runtime. Another ad-
vantage of C++ is that it is a language that is used a lot in the maritime industry,
and it is also the language used by RRM on all of their systems. This makes imple-
mentation on board vessels easier, and the system can interact easy with the other
systems on board.

6.2.2 Calibration

The implementation of the camera calibration is pretty simple. The code is found
in section A.1, and the implementation is inspired by the examples in [24]. The
”calibrateCamera()” on line 51 in the implementation is based on the theory in
section 3.1.4, and can be called in the same way in both Python and C++. The
implementation itself is quite efficient and easy to understand, and converting the
entire code to C++ should be quite simple, especially since classes are used which
is closer to C++ than regular python syntax.

6.2.3 Pose Estimation

The pose estimation implementation in section A.2 is written to test the pose esti-
mation methods. It is not written as a positioning system, and even though some
of the code can be used as inspiration in a fully optimized positioning system it
cannot all be included. The code fulfills the purpose of testing different methods
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against each other, and testing more methods can easily be done by adding them
to the list.

6.3 Results

In this section we will discuss the results presented in chapter 5.

6.3.1 Camera calibration

The camera calibration results in section 5.1 are as expected. The calibration matrix
in eq. (5.2) has approximately the same focal length in both horizontal and vertical
directions, verifying that the pixels are indeed square, see end of section 3.2.2. The
focal length is at 17mm, which also verifies the settings presented in section 4.1.2,
and the skew element is 0 since the sensor is rectangular. The principal point is also
very accurate as it is approximately half the length of the sensor size presented in
section 4.1.2. The reprojection error presented in fig. 5.1 gives the same conclusion,
as it is very low, and by removing some ”bad” images with reprojection results
above the mean, we were able to lower the reprojection error by 0.01 pixels. The
results can be further improved by adding more images that results in a lower
mean reprojection error. The distortion parameters shown in eq. (5.4) also seems
to be quite accurate as they are very low. Clearly the tangential distortion, (p1, p2),
is highly dominated by the radial distortion, (k1, k2, k3), as the radial distortion
parameters are many times larger than the radial distortion, see section 3.1.3. The
low distortion is expected as the camera is a high-end consumer DSLR, expected
to have close to no distortion.

6.3.2 Image set 1

The results from the first image set, see section 5.2.1, are not ideal, but they are
however expected. The small size of the QR code makes it difficult to detect and
decode from a distance. This is clear from table 5.1 where we can see that the code
is not detected in the two images that were the furthest away from the marker.
All methods are run on the images, but since the corners of the qr code obviously
are coplanar, the three general PnP solvers does not work very well while the P3P
solvers and LM Optimization work better, see figs. 5.3, 5.5 and 5.7. From the
reprojection error in fig. 5.8 it is quite obvious that the LM-Optimization and the
AP3P algorithms work the best, and the CASSC algorithm is more unstable. The
poses does also seem to be quite accurate in figs. 5.2, 5.4 and 5.6 where they are
illustrated together with the ”true” pose. The deviation might be because the
measurement of the ”true” pose can have errors. This especially seems to be the
case in fig. 5.4 where the results of AP3P and LM Optimization are almost equal,
and the ”true” pose is positioned a small deviation away from them.
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6.3.3 Image set 2

From the second image set, the results can be found in section 5.2.2. In these
images we had two markers, which in total make up for eight points. The QR codes
are not coplanar, but are of the same size of 81mm, see information in table 5.2.
As expected, the two images the furthest away does not detect the first QR code,
which is the same as in the previous image set. However, since there are one QR
code that is closer than the first one, it is able to find points in the to last images.
The results are more or less expected, in the two images where both markers was
detected the reprojection error from using the general PnP solvers as well as LM
Optimization is very low, see figs. 5.11 and 5.13. In the last two images, there was
only one code detected, which has coplanar points, and here the AP3P and LM
Optimization solvers clearly handles the estimation best, see figs. 5.15 and 5.17. As
a last observation, the poses illustrated in figs. 5.10, 5.12, 5.14 and 5.16 indicates
again that the true pose of the camera might be poor measurements, and that the
estimated poses actually are more accurate than the ”true” pose. This is especially
indicated in fig. 5.12 where almost all the estimated poses are placed on top of each
other, and the ”true” pose is offset by a small amount.

6.3.4 Image set 3

The results from the third image set can be found in section 5.2.3. As it is presented
in table 5.3 there are two markers in the scene, with different sizes. In image 10.JPG
there are only detected one code, which is reasonable since the other code is outside
the image area, see fig. A.10. The first code is however bigger than it has been in
the previous two image sets, but this does actually seem to lower the accuracy of the
pose estimators, as the reprojection error is bigger in all methods when comparing
fig. 5.3 and fig. 5.21. In the next four images both markers are detected, and the
accuracy seem to be better than in the previous image set, at least if the reprojection
errors presented in fig. 5.18 and fig. 5.30 are compared. Another observation is that
the accuracy seem to get better when the camera is further away, which might
indicate that the accuracy will be better the further away the camera is, until the
code can no longer be detected. If this is the case, then the size of the QR code
can be optimized depending on how far away the camera is supposed to be. As a
final observation on the set the poses seen to indicate that the measurements done
for the ”true” pose are not accurate enough. It is clear from fig. 5.28 where all the
reprojection errors are under 1 pixel, see fig. 5.29, that the ”true” pose has an offset
from the estimated poses and might actually be less accurate than the estimated
poses.

6.3.5 Image set 4

Section 5.2.4 contains the results from image set 4. The scene contained two markers
with size 161mm, which were both detected by the QR detection algorithm in all
images, see table 5.4. Following the tendencies from the last image set, the accuracy
seems to increase when the camera further away from the markers, until it is too
far away to be detected at all. This is especially clear from the reprojection errors
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shown in fig. 5.40. The ”true” pose of the camera presented in the pose illustrations
in figs. 5.32, 5.34, 5.36 and 5.38, has the same tendencies as in the previous image
sets where it is offset from the estimated poses. Especially fig. 5.38 show that all
estimated poses are more or less equal, while the ”true” pose is shifted a bit away
from them. The reprojection error in this image, see fig. 5.39, is very low, so it is
very likely that the estimated poses are more accurate than the ”true” pose.

One observation in all the image sets is that the QR detection is very slow.
In figs. 5.19, 5.19, 5.31 and 5.41 the scanner uses around 1 second to detect the
codes, regardless of the size of the code and the amount of codes in the image. This
indicates that the amount of codes and the sizes does not matter for the efficiency
of the QR detection. There are two possible reasons for this; the first is that the
image quality is too good. Since the resolution in this project is very hight, the QR
scanner has too many pixels to scan over. The other possibility is that the scanner
is written in python which is not a very efficient language in itself, but the scanner
implementation might also be inefficient. The solution might be to rewrite the code
to C++ and check if the runtime is lower, or see if there are better and faster
implementations for the detection. It might also be a solution use other markers
that are easier to detect, or lowering the resolution of the camera itself. As a last
suggestion the QR detector is run on the entire image only in the initialization, and
after the initialization only check in a small region around the previously detected
points. This is however only a solution if the vessel does not move so much that
the detection area is very big.

6.3.6 Runtime PnP Methods

The runtime of the different methods is shown after running 100 times on the same
input data in fig. 5.42, and they show a clear tendency. The LM optimization
algorithm is much slower than the other methods which has approximately the
same runtime. The results are verified again in figs. A.19 to A.34 in section A.4
which is the timing of the methods when they were used in the pose estimation of
the image sets above.

6.4 Conclusions

In this project we have studied different possibilities for a position estimation sys-
tem. Concluding from the related work in section 2.3.1 we decided to focus the
work around the camera systems currently used on typical ro-ro ferries today, see
fig. 1.3 for illustration of the camera placements. We also presented different possi-
ble markers for such a system in section 2.3.2, and for this project we chose to use
the QR codes as they could be easily recognized by pre-made open source software.
For an actual system on board a ferry we would advise to use custom markers,
similar to QR but since it does not need to contain a lot of information, it can be
made simpler than the QR code. Active markers would be the best because they
can easily be detected in any weather conditions. In section 2.4.2 we also presented
the OpenCV software, this is by far the most used computer vision library and it
is easy to use and implement. Hence it is an obvious choice for this project.
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From testing we see that the calibration functions implemented in OpenCV work
very well. Clearly from the discussion in section 6.3.1 the calibration on the camera
used in this project worked very well. The resulting camera matrix parameters are
sufficiently close to the actual values given by the camera manufacturer.

After running pose estimation on image sets 1-4, we have multiple different
implications. The most obvious is that the QR detection runtime is very high, see
figs. 5.9, 5.19, 5.31 and 5.41. This needs to be reduced if the system is to run in real
time on a vessel, and there are presented some possible solutions to this problem
in the previous section. Another observation is that the markers used in such a
system needs to be optimized in size with respect to the distance from the camera
and the resolution of the image sensor.

The pose estimation algorithms give an interesting result. It seems as the LM
Optimization algorithm has the most consistent low reprojection error, and is there-
fore the most accurate method of the ones presented. It works well both with 4
points and more, and even with coplanar points it works very well compared to the
other methods. It seems to be an obvious choice for method in a pose estimation
procedure. Consistently through all the images, the LM optimization algorithm
gives the lowest reprojection error, and based on visual evaluation of the poses it
fits very well with the ”true” value. The downside to the LM optimization is that
it is quite a lot slower than the other methods, which can be a problem in a very
fast system. However the runtime is around 0.001 seconds, so it should really not
be a problem for a real-time system.

6.5 Future Work

This project has mainly focused on an introduction to methods and algorithms that
can be used in a positioning system based on computer vision. In order to use the
methods described in this project, a system for tracking the position in multiple
frames has to developed using some kind of visual odometry method. A complete
system where all aspects of pose estimation, camera calibration and tracking also
needs to be developed. As method for pose estimation it is suggested to use LM
optimization, as it is consistently the most accurate estimator. It might also be a
good idea to do some more accurate testing of the methods using more markers,
and a more accurate measurement of the ”true” position of the camera.

We suggest that the software is converted to C++ to lower runtime. C++ is a
much more efficient language, and there might be a lot of runtime saved on convert-
ing the code. In addition C++ is the most used language in commercial maritime
systems, and implementation of parts of a system developed for positioning will be
easier if the code is converted.

The detection method has to be improved. This can be done by making a
custom marker and making a detection method optimized for the marker. It is
suggested that this is looked into in future work. Also the markers them selfs must
be optimized to ensure high enough accuracy, and consistent detection. In order to
get as realistic results as possible it is also suggested that the systems are tested on
cameras that are more similar to the cameras used on the ferries.
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Appendix A

Code

A.1 Camera Calibration

1 import numpy as np

2 import cv2 as cv

3 import glob

4 import matplotlib.pyplot as plt

5
6 #Initialize directories and images

7 calibration_images_directory = "Calibration_images"

8
9 #Settings

10 criteria = (cv.TERM_CRITERIA_EPS + cv.

TERM_CRITERIA_MAX_ITER , 30, 0.001)

11
12 class cameraCalibration:

13
14 def __init__(self):

15 self.cameraMatrix = None

16 self.distortionCofficients = None

17 self.ret = False

18 self.rvecs = []

19 self.tvecs = []

20 self.objectPoints = []

21 self.imagePoints = []

22 self.error_list = []

23
24 def calibrate(self):

25
26 objp = np.zeros ((6*9 ,3), np.float32)

27 objp [: ,:2] = np.mgrid [0:9 ,0:6].T.reshape (-1,2)

28
29 objpoints = []

30 imgpoints = []
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31
32 images = glob.glob(calibration_images_directory+"/*.

JPG")

33
34 for fname in images:

35 img = cv.imread(fname)

36
37 gray = cv.cvtColor(img , cv.COLOR_BGR2GRAY)

38
39 ret , corners = cv.findChessboardCorners(gray , (9,6)

,None)

40
41 if ret == True:

42
43 objpoints.append(objp)

44
45 corners2 = cv.cornerSubPix(gray , corners , (11 ,11)

, (-1,-1), criteria)

46 imgpoints.append(corners)

47
48 self.objectPoints = objpoints

49 self.imagePoints = imgpoints

50
51 self.ret , self.cameraMatrix , self.

distortionCofficients , self.rvecs , self.tvecs = cv

.calibrateCamera(objpoints , imgpoints , gray.shape

[::-1], None ,None)

52
53 def save_parameters(self):

54 np.savetxt(’cameraMatrix.out’, self.cameraMatrix ,

delimiter = ’,’)

55 np.savetxt(’distortionCofficients.out’, self.

distortionCofficients , delimiter=’,’)

56
57 def reprojection_calculation(self):

58 for i in range(len(self.objectPoints)):

59 imgpoints2 , _ = cv.projectPoints(self.objectPoints[

i], self.rvecs[i], self.tvecs[i], self.

cameraMatrix , self.distortionCofficients)

60 error = cv.norm(self.imagePoints[i],imgpoints2 , cv.

NORM_L2)/len(imgpoints2)

61 self.error_list.append(error)

62
63 def make_figure(self):

64
65 fig ,ax = plt.subplots ()
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66
67 ax.axhline(np.mean(self.error_list), c = "black")

68 ax.axhline(np.mean([i for i in self.error_list if i <

np.mean(self.error_list)]), c = "black",

linestyle="--")

69
70 pictures = range(len(self.error_list))

71
72 chart = plt.bar(pictures ,self.error_list ,width =0.5,

tick_label = [str(i) for i in range(1,len(self.

error_list)+1)])

73
74 plt.grid(False)

75
76 for i in range(len(chart)):

77 if chart[i]. get_height () > np.mean(self.error_list)

:

78 chart[i]. set_color(’r’)

79
80 ax.set_xlim (-1,20)

81 ax.set_ylim (0 ,0.1)

82
83 ax.set_title("Geometric reprojection error")

84 ax.set_xlabel("Image")

85 ax.set_ylabel("Error")

86 ax.legend (["Original","Updated"])

87
88 plt.savefig("Calibration_reprojection_error.eps",

format = "eps", dpi =2000 , bbox_inches="tight")

89 plt.show()

90
91 def main():

92
93 calibration = cameraCalibration ()

94 calibration.calibrate ()

95
96 if calibration.ret:

97 calibration.save_parameters ()

98 calibration.reprojection_calculation ()

99 calibration.make_figure ()

100
101 return 0

102
103 if __name__ == "__main__":

104 main()
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A.2 Pose Estimation

1 import zbar

2 from PIL import Image

3 from PIL import ImageDraw

4 import time

5 import math

6 import settings

7 import numpy as np

8 import matplotlib.pyplot as plt

9 from mpl_toolkits.mplot3d import Axes3D

10 import cv2 as cv

11 import glob

12 from matplotlib.lines import Line2D

13 from matplotlib import rcParams

14
15
16 rcParams[’axes.titlepad ’] = 30

17
18 PnP_methods = [cv.SOLVEPNP_ITERATIVE ,cv.SOLVEPNP_P3P ,cv.

SOLVEPNP_AP3P ,cv.SOLVEPNP_EPNP ,cv.SOLVEPNP_DLS ,cv.

SOLVEPNP_UPNP]

19
20 Color_list = [’royalblue ’,’darkorange ’,’forestgreen ’,’

crimson ’,’mediumorchid ’,’sienna ’]

21
22 #Configuration information

23 Image_directory = "Pose_estimation_images/"

24 QR_square_size_1 = 0.081

25 QR_square_size_2 = 0.161

26
27 Image_name_list_1 = [Image_directory+"1.JPG",

Image_directory+"2.JPG",Image_directory+"3.JPG",

Image_directory+"4.JPG",Image_directory+"5.JPG"]

28 QR_First_1 = [[0,1,0],[0,1- QR_square_size_1 ,0],[

QR_square_size_1 ,1-QR_square_size_1 ,0],[

QR_square_size_1 ,1 ,0]]

29 QR_Second_1 = None

30 True_poses_1 = [np.array

([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,1],[0,0,0,1]]),np.

array ([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,2],[0,0,0,1]]),

np.array

([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,3],[0,0,0,1]]),np.

array

([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,2.5],[0,0,0,1]]),

np.array
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([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,4],[0,0,0,1]])]

31
32 Image_name_list_2 = [Image_directory+"6.JPG",

Image_directory+"7.JPG",Image_directory+"8.JPG",

Image_directory+"9.JPG"]

33 QR_First_2 = [[0,1,0],[0,1- QR_square_size_1 ,0],[

QR_square_size_1 ,1-QR_square_size_1 ,0],[

QR_square_size_1 ,1 ,0]]

34 QR_Second_2 = [[ -0.5 ,0.48 ,0.5] ,[ -0.5 ,0.48 -

QR_square_size_1 ,0.5] ,[ -0.5+ QR_square_size_1 ,0.48 -

QR_square_size_1 ,0.5] ,[ -0.5+ QR_square_size_1

,0.48 ,0.5]]

35 True_poses_2 = [np.array

([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,2],[0,0,0,1]]),np.

array ([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,3],[0,0,0,1]]),

np.array

([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,2.5],[0,0,0,1]]),

np.array

([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,4],[0,0,0,1]])]

36
37 Image_name_list_3 = [Image_directory+"10. JPG",

Image_directory+"11. JPG",Image_directory+"12. JPG",

Image_directory+"13. JPG",Image_directory+"14. JPG"]

38 QR_First_3 = [[0,1,0],[0,1- QR_square_size_2 ,0],[

QR_square_size_2 ,1-QR_square_size_2 ,0],[

QR_square_size_2 ,1 ,0]]

39 QR_Second_3 = [[ -0.5 ,0.48 ,0.5] ,[ -0.5 ,0.48 -

QR_square_size_1 ,0.5] ,[ -0.5+ QR_square_size_1 ,0.48 -

QR_square_size_1 ,0.5] ,[ -0.5+ QR_square_size_1

,0.48 ,0.5]]

40 True_poses_3 = [np.array

([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,1],[0,0,0,1]]),np.

array ([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,2],[0,0,0,1]]),

np.array

([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,3],[0,0,0,1]]),np.

array

([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,2.5],[0,0,0,1]]),

np.array

([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,4],[0,0,0,1]])]

41
42 Image_name_list_4 = [Image_directory+"15. JPG",

Image_directory+"16. JPG",Image_directory+"17. JPG",

Image_directory+"18. JPG"]

43 QR_First_4 = [[0,1,0],[0,1- QR_square_size_2 ,0],[

QR_square_size_2 ,1-QR_square_size_2 ,0],[

QR_square_size_2 ,1 ,0]]
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44 QR_Second_4 = [[ -0.5 ,0.48 ,0.5] ,[ -0.5 ,0.48 -

QR_square_size_2 ,0.5] ,[ -0.5+ QR_square_size_2 ,0.48 -

QR_square_size_2 ,0.5] ,[ -0.5+ QR_square_size_2

,0.48 ,0.5]]

45 True_poses_4 = [np.array

([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,2],[0,0,0,1]]),np.

array ([[1,0,0,0],[0,-1,0,0.85],[0,0,-1,3],[0,0,0,1]]),

np.array

([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,2.5],[0,0,0,1]]),

np.array

([[1,0,0,-1.5],[0,-1,0,0.85],[0,0,-1,4],[0,0,0,1]])]

46
47
48 def main():

49
50 First_QR = QR_First_2

51 Second_QR = QR_Second_2

52 Image_list = Image_name_list_2

53 True_poses = True_poses_2

54
55 pose_estimation_results = []

56 pose_estimation_timing_results = []

57 pose_estimation_reprojection_errors = []

58 QR_detection_timing_results = []

59 image_names_detected = []

60
61 timing_test = False

62
63 for i in range(len(Image_list)):

64 print("Running poseEstimator on: ",Image_list[i])

65 opened_image = Image.open(Image_list[i]).convert(’L’)

66 poseEstimator = poseEstimation(image = opened_image ,

image_name=Image_list[i], QR_First = First_QR ,

QR_Second = Second_QR , True_pose = True_poses[i])

67
68 if timing_test:

69 poseEstimator.pose_estimations_timinig_test(

print_result = True)

70
71 else:

72 poseEstimator.pose_estimations_accuracy_tests(

print_result = True)

73 if len(poseEstimator.detected_QR_codes) >0:

74 pose_estimation_results.append(poseEstimator.

estimated_poses)

75 pose_estimation_reprojection_errors.append(
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poseEstimator.reprojection_errors)

76 pose_estimation_timing_results.append(

poseEstimator.timing_pose_estimation)

77 QR_detection_timing_results.append(poseEstimator.

QR_detection_timing)

78 image_names_detected.append(Image_list[i])

79 del poseEstimator

80
81 if not timing_test:

82 display_reprojection_errors(

pose_estimation_reprojection_errors ,

image_names_detected)

83 display_QR_detection_timing(

QR_detection_timing_results , image_names_detected)

84
85 def display_reprojection_errors(reprojection_errors ,

image_name_list):

86 errors = [[ reprojection_errors[i][j] for i in range(len

(reprojection_errors))] for j in range(len(

reprojection_errors [0]))]

87 fig , ax = plt.subplots ()

88 ax.grid(True)

89 bar_width = 0.1

90 for i in range(len(errors)):

91 plt.bar([ number +((i -2.5)*bar_width) for number in

range(1,len(errors[i])+1)],errors[i], width =

bar_width , color = Color_list[i])

92 ax.legend (["LM Optimization","CASSC","AP3P","EPnP","DLS

","UPnP"],fontsize = 8)

93 ax.set_title("Geometric Reprojection error")

94 ax.set_xlabel("Image name")

95 ax.set_ylabel("Error")

96 plt.xticks(range(1,len(reprojection_errors)+1))

97 ax.set_xticklabels ([ image_name [23:] for image_name in

image_name_list ])

98 for tick in ax.xaxis.get_major_ticks ():

99 tick.label.set_fontsize (8)

100 for tick in ax.yaxis.get_major_ticks ():

101 tick.label.set_fontsize (8)

102 plt.xlim(0,len(reprojection_errors)+2)

103 plt.ylim (0,5)

104 plt.savefig("Reprojection_error_all_images.eps",format

= "eps", dpi =2000 , bbox_inches="tight")

105 plt.show()

106
107 def display_QR_detection_timing(QR_detection_timing ,
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image_name_list):

108 fig , ax = plt.subplots ()

109 ax.grid(True)

110 for i in range(len(QR_detection_timing)):

111 plt.bar(i+1, QR_detection_timing[i],width = 0.5)

112 ax.set_title("QR Code Detection Runtime")

113 ax.set_xlabel("Image name")

114 ax.set_ylabel("Time (Seconds)")

115 plt.xticks(range(1,len(QR_detection_timing)+1))

116 ax.set_xticklabels ([ image_name [23:] for image_name in

image_name_list ])

117 plt.xticks(range(1,len(QR_detection_timing)+1))

118 for tick in ax.xaxis.get_major_ticks ():

119 tick.label.set_fontsize (6)

120 for tick in ax.yaxis.get_major_ticks ():

121 tick.label.set_fontsize (6)

122 plt.xlim(0,len(QR_detection_timing)+1)

123 plt.ylim (0,2)

124 plt.savefig("Timing_qr_detection.eps",format = "eps",

dpi =2000 , bbox_inches="tight")

125 plt.show()

126
127
128
129 class poseEstimation:

130
131 def __init__(self , image , image_name , QR_First ,

QR_Second , True_pose):

132 self.camera = 1

133 self.image = image

134 self.image_name = image_name

135 self.estimated_poses = []

136 self.timing_pose_estimation = []

137 self.detected_QR_codes = []

138 self.scene_points = []

139 self.image_points = []

140 self.QR_First = QR_First

141 self.QR_Second = QR_Second

142 self.True_pose = True_pose

143 self.QR_detection_timing = None

144 self.camera_matrix = None

145 self.distortion_cofficients = None

146 self.reprojection_errors = []

147
148 # Solver class

149 class method:
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150
151 def __init__(self , method , image_points , scene_points

, camera_matrix , distortion_cofficients):

152 self.method = method

153 self.image_points = image_points

154 self.scene_points = scene_points

155 self.camera_matrix = camera_matrix

156 self.distortion_cofficients =

distortion_cofficients

157 self.estimated_pose = None

158 self.estimation_timer = 0

159 self.rvec = None

160 self.tvec = None

161
162 def estimate_pose(self):

163 if not len(self.image_points)==0:

164 estimation_start_time = time.clock ()

165
166 if (self.method == cv.SOLVEPNP_P3P) or (self.

method == cv.SOLVEPNP_AP3P):

167 self.image_points = np.concatenate ((self.

image_points [:2], self.image_points[len(self.

image_points) -2:]),axis = 0)

168 self.scene_points = np.concatenate ((self.

scene_points [:2], self.scene_points[len(self.

scene_points) -2:]),axis = 0)

169
170 image_points = np.ascontiguousarray(self.

image_points [: ,:2]).reshape ((self.image_points

.shape [0],1,2))

171 scene_points = np.ascontiguousarray(self.

scene_points [: ,:3]).reshape ((self.scene_points

.shape [0],1,3))

172
173 ret , self.rvec , self.tvec = cv.solvePnP(

scene_points , image_points , self.camera_matrix

, self.distortion_cofficients , flags = self.

method)

174
175 if ret:

176
177 Rmat , jacobian = cv.Rodrigues(self.rvec)

178
179 T_cs = np.array ([[ Rmat [0][0] , Rmat [0][1] , Rmat

[0][2] , self.tvec [0][0]] ,[ Rmat [1][0] , Rmat

[1][1] , Rmat [1][2] , self.tvec [1][0]] ,[ Rmat
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[2][0] , Rmat [2][1] , Rmat [2][2] , self.tvec

[2][0]] ,[0 ,0 ,0 ,1]])

180
181 self.estimated_pose = np.linalg.inv(T_cs)

182
183 self.estimation_timer = time.clock ()-

estimation_start_time

184
185 # Supporting fucntions

186 def detect_QR_codes(self):

187 #Object that scans for the corners of a QR-code and

measures the distance between them

188 scanner = zbar.Scanner ()

189 #Use the scanner on the image to find the qr-code

location

190 self.detected_QR_codes = scanner.scan(self.image)

191
192 def extract_image_and_scene_points(self):

193
194 for code in self.detected_QR_codes:

195 image_coordinates = []

196 scene_coordinates = []

197
198 if code.data == b’First ’:

199 for image_point in code.position:

200 image_coordinates.append(image_point)

201 for scene_point in self.QR_First:

202 scene_coordinates.append(scene_point)

203 elif code.data == b’Second ’:

204 for position in code.position:

205 image_coordinates.append(position)

206 for scene_point in self.QR_Second:

207 scene_coordinates.append(scene_point)

208
209 if len(image_coordinates) != 0:

210 for image_point in image_coordinates:

211 self.image_points.append (( image_point [0],

image_point [1]))

212 for scene_point in scene_coordinates:

213 self.scene_points.append (( scene_point [0],

scene_point [1], scene_point [2]))

214
215 del image_coordinates

216 del scene_coordinates

217
218 self.image_points = np.array(self.image_points ,dtype
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= np.float32)

219 self.scene_points = np.array(self.scene_points ,dtype

= np.float64)

220
221 def load_intrinsics(self):

222 #If multiple cameras , a configuration is needed for

different cameras

223 if self.camera == 1:

224
225 self.camera_matrix = np.loadtxt(’../ Camera 

Calibration/cameraMatrix.out’, delimiter = ’,’)

226 self.distortion_cofficients = np.asarray ([np.

loadtxt(’../ Camera Calibration/

distortionCofficients.out’, delimiter=’,’)])

227
228 def reprojection_calculation(self , solver):

229
230 image_points2 , _ = cv.projectPoints(self.scene_points

, solver.rvec , solver.tvec , self.camera_matrix ,

self.distortion_cofficients)

231 image_points2 = np.array ([ point [0] for point in

image_points2],dtype = np.float32)

232
233 error = cv.norm(self.image_points , image_points2 , cv.

NORM_L2)/len(image_points2)

234 self.reprojection_errors.append(error)

235
236 # Timing tests on PnP solvers

237 def pose_estimations_timinig_test(self , print_result =

True):

238
239 self.detect_QR_codes ()

240
241 if len(self.detected_QR_codes) != 0:

242
243 self.extract_image_and_scene_points ()

244 self.load_intrinsics ()

245
246 for iteration in range (100):

247
248 timers = []

249
250 for method in PnP_methods:

251
252 solver = self.method(method , self.image_points.

copy(), self.scene_points.copy(), self.
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camera_matrix , self.distortion_cofficients)

253 solver.estimate_pose ()

254
255 timers.append(solver.estimation_timer)

256
257 del solver

258
259 self.timing_pose_estimation.append(timers.copy())

260
261 del timers [:]

262
263 if print_result:

264 self.plot_timing_test_results ()

265
266 def plot_timing_test_results(self):

267 fig , ax = plt.subplots ()

268 ax.grid(True)

269
270 for iteration in range(len(PnP_methods)):

271 plt.plot(range(1,len(self.timing_pose_estimation)

+1) ,[l[iteration] for l in self.

timing_pose_estimation],color = Color_list[

iteration ])

272
273 ax.set_title("Pose Estimation Runtime")

274 ax.legend (["LM Optimization","CASSC","AP3P","EPnP","

DLS","UPnP"],fontsize = 8)

275 ax.set_xlabel("Iteration")

276 ax.set_ylabel("Time (seconds)")

277
278 plt.xlim (0 ,100)

279 plt.ylim (0 ,0.002)

280
281 plt.savefig("Timing_test_"+str(self.image_name [23: len

(self.image_name) -4])+".eps",format = "eps", dpi

=2000 , bbox_inches="tight")

282
283 plt.show()

284
285 # Accuracy tests on PnP solvers

286 def pose_estimations_accuracy_tests(self , print_result

= True):

287
288 qr_timer_start = time.clock ()

289 self.detect_QR_codes ()

290 self.extract_image_and_scene_points ()
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291
292 if len(self.detected_QR_codes) >0:

293 self.QR_detection_timing = time.clock ()-

qr_timer_start

294 self.load_intrinsics ()

295
296 for method in PnP_methods:

297
298 solver = self.method(method , self.image_points.

copy(), self.scene_points.copy(), self.

camera_matrix , self.distortion_cofficients)

299
300 solver.estimate_pose ()

301
302 if solver.estimated_pose is not None:

303 self.estimated_poses.append(solver.

estimated_pose.copy())

304 else:

305 self.estimated_poses.append(solver.

estimated_pose)

306
307 self.timing_pose_estimation.append(solver.

estimation_timer)

308
309 self.reprojection_calculation(solver)

310
311 del solver

312
313 if print_result:

314 self.display_estimation_accuracy_tests_results ()

315 else:

316 print("No codes detected.")

317
318 def display_estimation_accuracy_tests_results(self):

319 # Print QR detection time

320 print("It took ",self.QR_detection_timing ," seconds 

to detect ",len(self.detected_QR_codes)," QR codes

 in the image.")

321
322 # Display time it took to estimate pose

323 fig , ax = plt.subplots ()

324 ax.grid(True)

325 for method in range(len(self.timing_pose_estimation))

:

326 ax.bar(method+1,self.timing_pose_estimation[method

], width = 0.5, color = Color_list[method ])
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327 ax.set_title("Timing bar plot , "+str(self.image_name

[23:]))

328 ax.set_xlabel("Method")

329 ax.set_ylabel("Time (seconds)")

330 ax.set_xticks(range(1,len(PnP_methods)+1))

331 ax.set_xticklabels (["LM Optimization","CASSC","AP3P",

"EPnP","DLS","UPnP"])

332 for tick in ax.xaxis.get_major_ticks ():

333 tick.label.set_fontsize (8)

334 for tick in ax.yaxis.get_major_ticks ():

335 tick.label.set_fontsize (8)

336 plt.xlim(0,len(PnP_methods)+1)

337 plt.ylim (0 ,0.002)

338 plt.savefig("Timing_accuracy_test_"+str(self.

image_name [23: len(self.image_name) -4])+".eps",

format = "eps", dpi =5000)#, bbox_inches="tight")

339 #plt.close()

340 plt.show()

341
342 # Display reprojection error

343 fig , ax = plt.subplots ()

344 ax.grid(True)

345 for method in range(len(self.reprojection_errors)):

346 ax.bar(method+1,self.reprojection_errors[method],

width = 0.5, color = Color_list[method ])

347 ax.set_title("Reprojection Error Bar Chart , "+str(

self.image_name [23:]))

348 ax.set_xlabel("Method")

349 ax.set_ylabel("Reprojection Error")

350 ax.set_xticks(range(1,len(PnP_methods)+1))

351 ax.set_xticklabels (["LM Optimization","CASSC","AP3P",

"EPnP","DLS","UPnP"])

352 for tick in ax.xaxis.get_major_ticks ():

353 tick.label.set_fontsize (8)

354 for tick in ax.yaxis.get_major_ticks ():

355 tick.label.set_fontsize (8)

356 plt.xlim(0,len(PnP_methods)+1)

357 plt.ylim (0,5)

358 plt.savefig("Reprojection_accuracy_test_"+str(self.

image_name [23: len(self.image_name) -4])+".eps",

format = "eps", dpi =2000 , bbox_inches="tight")

359 plt.show()

360 #plt.close()

361
362 # Display actual pose estimates

363 figure = plt.figure ()
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364 ax = figure.add_subplot (111, projection=’3d’)

365 ax.set_xlim3d (-3,3)

366 ax.set_xlabel(’x’)

367 ax.set_ylim3d (0,3)

368 ax.set_ylabel(’y’)

369 ax.set_zlim3d (0,3)

370 ax.set_zlabel(’z’)

371 ax.view_init (120 , -65)

372
373 #Scene coordinate system

374 x1 = np.array ([0,0,0,1])

375 x2 = np.array ([.3 ,0 ,0 ,1])

376 y1 = np.array ([0,0,0,1])

377 y2 = np.array ([0 ,.3 ,0 ,1])

378 z1 = np.array ([0,0,0,1])

379 z2 = np.array ([0 ,0 ,.3 ,1])

380
381 ax.plot([x1[0],x2[0]] ,[x1[1],x2[1]] ,[x1[2],x2[2]],

color = ’red’)

382 ax.plot([y1[0],y2[0]] ,[y1[1],y2[1]] ,[y1[2],y2[2]],

color = ’green ’)

383 ax.plot([z1[0],z2[0]] ,[z1[1],z2[1]] ,[z1[2],z2[2]],

color = ’blue’)

384
385 #QR code position

386 x1_qr = self.QR_First [0][0]

387 x2_qr = self.QR_First [2][0]

388 y1_qr = self.QR_First [0][1]

389 y2_qr = self.QR_First [2][1]

390 ax.plot([x1_qr ,x1_qr],[y1_qr ,y2_qr ],[0,0], color = ’

black ’)

391 ax.plot([x1_qr ,x2_qr],[y2_qr ,y2_qr ],[0,0], color = ’

black ’)

392 ax.plot([x2_qr ,x2_qr],[y2_qr ,y1_qr ],[0,0], color = ’

black ’)

393 ax.plot([x2_qr ,x1_qr],[y1_qr ,y1_qr ],[0,0], color = ’

black ’)

394 if self.QR_Second is not None:

395 x1_qr = self.QR_Second [0][0]

396 x2_qr = self.QR_Second [2][0]

397 y1_qr = self.QR_Second [0][1]

398 y2_qr = self.QR_Second [2][1]

399 z1_qr = self.QR_Second [0][2]

400 z2_qr = self.QR_Second [2][2]

401 ax.plot([x1_qr ,x1_qr],[y1_qr ,y2_qr],[z1_qr ,z2_qr],

color = ’black ’)
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402 ax.plot([x1_qr ,x2_qr],[y2_qr ,y2_qr],[z1_qr ,z2_qr],

color = ’black ’)

403 ax.plot([x2_qr ,x2_qr],[y2_qr ,y1_qr],[z1_qr ,z2_qr],

color = ’black ’)

404 ax.plot([x2_qr ,x1_qr],[y1_qr ,y1_qr],[z1_qr ,z2_qr],

color = ’black ’)

405 ax.plot([x2_qr ,x2_qr],[y2_qr ,y1_qr],[z1_qr ,z2_qr],

color = ’black ’)

406 ax.plot([x2_qr ,x1_qr],[y1_qr ,y1_qr],[z1_qr ,z2_qr],

color = ’black ’)

407
408 #Estimated poses

409 for i in range(len(self.estimated_poses)):

410 if self.estimated_poses[i] is not None:

411 x1_c = np.dot(self.estimated_poses[i],x1)

412 x2_c = np.dot(self.estimated_poses[i],x2)

413 y1_c = np.dot(self.estimated_poses[i],y1)

414 y2_c = np.dot(self.estimated_poses[i],y2)

415 z1_c = np.dot(self.estimated_poses[i],z1)

416 z2_c = np.dot(self.estimated_poses[i],z2)

417
418 ax.plot([x1_c[0],x2_c [0]] ,[ x1_c[1],x2_c [1]] ,[ x1_c

[2],x2_c [2]], color = Color_list[i])

419 ax.plot([y1_c[0],y2_c [0]] ,[ y1_c[1],y2_c [1]] ,[ y1_c

[2],y2_c [2]], color = Color_list[i])

420 ax.plot([z1_c[0],z2_c [0]] ,[ z1_c[1],z2_c [1]] ,[ z1_c

[2],z2_c [2]], color = Color_list[i])

421
422 x1_t = np.dot(self.True_pose ,x1)

423 x2_t = np.dot(self.True_pose ,x2)

424 y1_t = np.dot(self.True_pose ,y1)

425 y2_t = np.dot(self.True_pose ,y2)

426 z1_t = np.dot(self.True_pose ,z1)

427 z2_t = np.dot(self.True_pose ,z2)

428
429 ax.plot([x1_t[0],x2_t [0]] ,[ x1_t[1],x2_t [1]] ,[ x1_t[2],

x2_t [2]], color = ’black ’)

430 ax.plot([y1_t[0],y2_t [0]] ,[ y1_t[1],y2_t [1]] ,[ y1_t[2],

y2_t [2]], color = ’black ’)

431 ax.plot([z1_t[0],z2_t [0]] ,[ z1_t[1],z2_t [1]] ,[ z1_t[2],

z2_t [2]], color = ’black ’)

432
433 custom_lines = [Line2D ([0], [0], color=Color_list [0],

lw=4),

434 Line2D ([0], [0], color=Color_list [1], lw=4),

435 Line2D ([0], [0], color=Color_list [2], lw=4),
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436 Line2D ([0], [0], color=Color_list [3], lw=4),

437 Line2D ([0], [0], color=Color_list [4], lw=4),

438 Line2D ([0], [0], color=Color_list [5], lw=4),

439 Line2D ([0], [0], color=’black ’, lw=4)]

440
441
442 ax.set_title("Pose Estimation , "+str(self.image_name

[23:]))

443 ax.legend(custom_lines ,["LM Optimization","P3P","AP3P

","EPNP","DLS","UPNP","True"],fontsize = 8)

444 plt.savefig("Pose_estimation_"+str(self.image_name

[23: len(self.image_name) -4])+".eps",format = "eps"

, dpi =2000 , bbox_inches="tight")

445 plt.show()

446 plt.close ()

447
448
449
450 if __name__ == ’__main__ ’:

451 main()

A.3 Images

Figure A.1: Image 1 Figure A.2: Image 2
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Figure A.3: Image 3 Figure A.4: Image 4

Figure A.5: Image 5 Figure A.6: Image 6

Figure A.7: Image 7 Figure A.8: Image 8
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Figure A.9: Image 9 Figure A.10: Image 10

Figure A.11: Image 11 Figure A.12: Image 12

Figure A.13: Image 13 Figure A.14: Image 14
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Figure A.15: Image 15 Figure A.16: Image 16

Figure A.17: Image 17 Figure A.18: Image 18
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A.4 Runtime of PnP Methods
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Figure A.19: Runtime of all methods ran
on image 1
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Figure A.20: Runtime of all methods ran
on image 2
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Figure A.21: Runtime of all methods ran
on image 4
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Figure A.22: Runtime of all methods ran
on image 6
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Figure A.23: Runtime of all methods ran
on image 7
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Figure A.24: Runtime of all methods ran
on image 8

LM Optimization CASSC AP3P EPnP DLS UPnP
Method

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Ti
m

e 
(s

ec
on

ds
)

Timing bar plot, 9.JPG

Figure A.25: Runtime of all methods ran
on image 9
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Figure A.26: Runtime of all methods ran
on image 10
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Figure A.27: Runtime of all methods ran
on image 11
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Figure A.28: Runtime of all methods ran
on image 12
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Figure A.29: Runtime of all methods ran
on image 13
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Figure A.30: Runtime of all methods ran
on image 14
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Figure A.31: Runtime of all methods ran
on image 15
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Figure A.32: Runtime of all methods ran
on image 16
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Figure A.33: Runtime of all methods ran
on image 17
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Figure A.34: Runtime of all methods ran
on image 18
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