
TTK4550 - Development of an embedded
system for reading a wired M-Bus

Marius Lervik

Fall 2018

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

Specialization Project Report

Candidate: Marius Lervik

Course: TTK4550 Engineering Cybernetics, Specialization Project

Thesis title (Norwegian) Utvikling av embedded system for avlesing av

trådbundet M-Bus

Thesis title (English): Development of an embedded system for reading a
wired M-Bus

Thesis desctiption:

From Wikipedia.org:

M-Bus (Meter-Bus) is a European standard for the remote reading of gas or
electricity meters. M-Bus is also usable for other types of consumption meters. The M-
Bus interface is made for communication on two wires, making it very cost effective.

The smart meters, which all Norwegian electric power customer shall install within 2019-01-
01, also communicate via a wired M-Bus, using the HAN (Home Area Network) port.

We want to develop an embedded system for reading the HAN port of a smart meter. The
developed system shall be capable to do some local communication on the incoming
information, before sending the data to a cloud service. The correctness of the stored data
should be verified.

The tasks will be:

1. Conduct a survey concerning M-Bus as used in smart meters and previous work
concerning utilization om the HAN-port information.

2. Suggest a design of an embedded system for monitoring a wired M-Bus,
included needed SW, and transferring the information to a cloud service.

3. As far as time permits, make an implementation of the proposed solution.

Start date: August 18th, 2018
Due date: December 18th, 2018

Thesis performed at: Department of Engineering Cybernetics
Supervisor: Professor Geir Mathisen

-

i

Abstract

The Norwegian electricity grid is currently being modernized with the installation of new
smart electricity meters, abbreviated as AMS for all electricity consumers. These new
smart meters automatically send information about the consumption directly to the distri-
bution network operator, which can lead to more accurate billing and better monitoring and
utilization of the network. In addition to providing valuable information to the network
operator, the new smart meters open up new possibilities for consumers. This includes
the ability to monitor your own power usage and the potential for automation of home
electronic appliances.

An embedded system for logging the consumer data from an AMS meter, and uploading
the processed data to a server has been designed and implemented in this specialization
project. The hardware part of the project was done as a project in the specialization course
TTK8, consequently this report mostly focuses on software. The implementation of the
system was successful and it was able to fulfill its requirements.

ii

Preface

This report is written as a part of the Specialization Project at the Department of Engineer-
ing Cybernetics at the Norwegian University of Science and Technology in Trondheim.
The work done in this project is preliminary work for a master thesis. The supervisor of
the project is Geir Mathisen and he has provided an AMS meter for testing at NTNU in
addition to guidance and advice throughout the project. The meter used for development
and testing is a three-phase meter from Kaifa.

iii

Table of Contents

Problem description i

Abstract ii

Preface iii

Table of Contents vi

List of Tables vii

List of Figures viii

Abbreviations ix

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Report structure . 2

2 Literature Review 3
2.1 Smart meters and smart grids . 3
2.2 Enova AMS project . 4
2.3 Earlier work . 5

3 Standards and Protocols 6
3.1 OSI . 6
3.2 Standards used in AMS . 7
3.3 M-Bus . 7

3.3.1 Physical layer . 8
3.4 HDLC . 9

3.4.1 LLC layer frame format . 9

iv

3.4.2 MAC layer frame format . 10
3.4.3 Frame transmission . 11

3.5 DLMS/COSEM . 12
3.5.1 Specification . 12
3.5.2 Architecture . 12
3.5.3 OBIS . 13
3.5.4 DLMS/COSEM and AMS . 13

4 Specification and Design 15
4.1 Overview . 15
4.2 Hardware . 16

4.2.1 Specification . 16
4.2.2 Design . 16

4.3 Embedded software . 17
4.3.1 Specification . 17
4.3.2 Requirements . 17

4.4 Server software . 17
4.4.1 Specification . 17
4.4.2 Requirements . 17

4.5 Acceptance criteria . 17

5 Implementation 19
5.1 Hardware . 19

5.1.1 Components . 19
5.1.2 Implementation result . 20

5.2 Embedded Software . 20
5.2.1 Language and toolchain . 20
5.2.2 Interrupts . 21
5.2.3 AMS message reception . 21
5.2.4 AMS message decoding . 22
5.2.5 Message format to server . 23
5.2.6 Initialization procedure . 23
5.2.7 Complete embedded software 24

5.3 Server . 25
5.3.1 Programming language . 25
5.3.2 Implementation . 25
5.3.3 Hosting service . 26

5.4 AMS simulator . 26
5.5 Complete system . 26

6 Testing and Results 28
6.1 Testing procedure . 28
6.2 Results . 29

6.2.1 Server message reception . 29
6.2.2 Plots of collected data . 29

v

7 Discussion 32
7.1 Results . 32

7.1.1 Embedded system . 32
7.1.2 Complete system . 32

7.2 Collected data . 33
7.3 Inconsistencies between AMS suppliers 34

7.3.1 Impact on implementation . 34
7.4 Potential for improvements . 34

7.4.1 Message format to server . 35
7.4.2 Message sending interval . 35
7.4.3 Application layer protocol . 35
7.4.4 Server data processing . 35

8 Conclusion 36

9 Further work 37
9.1 Suggestions . 37

Bibliography 38

Appendix A: Kaifa HAN specification 40

Appendix B: PCB schematic 45

vi

List of Tables

3.1 LLC format used in DLMS/COSEM . 9
3.2 HDLC MAC layer frame format . 10
3.3 OBIS code structure and use of value groups [6] 13

5.1 Meter info message content . 23
5.2 Message format for List 1 . 23
5.3 Message for List 2, single-phase meter 23

6.1 Message for List 3, received 12.08.2018 23:00 29

vii

List of Figures

3.1 Illustration of the standards used in AMS meters 7
3.2 M-Bus physical layer bit representation[11] 8

4.1 Context diagram of full system . 15
4.2 Block diagram of all hardware components[10] 16

5.1 Image of the assembled PCB with an ESP8266 module connected to the
header[10] . 21

5.2 Activity diagram illustrating the reception of a HDLC MAC layer frame . 22
5.3 Activity diagram illustrating the initialization process 24
5.4 Activity diagram illustrating one iteration of the main system loop 24
5.5 Flow chart showing the server software 25
5.6 Sequence diagram showing communication between modules for normal

operation . 26

6.1 Plot showing active power consumption 30
6.2 Plot showing instantaneous current(RMS value) 30
6.3 Plot showing instantaneous voltage(RMS value) 31

viii

Abbreviations

AMS = Advanced Metering System
HAN = Home Automation Network
MCU = Microcontroller Unit
APDU = Application Protocol Data Unit
PCB = Printed Circuit Board
IC = Integrated Circuit
GSM = Global System for Mobile communications
GPRS = General Packet Radio Service
TCP = Transmission Control Protocol
IP = Internet Protocol
LLC = Logical Link Control
MAC = Medium Access Control
IoT = Internet of Things
HDLC = High-Level Data Link Control
DLMS = Device Language Message Specification
COSEM = Companion Specification for Energy Metering
VPS = Virtual Private Server
UART = Universal Asynchronous Receiver-Transmitter

ix

Chapter 1
Introduction

1.1 Background

Large investments are currently being made into upgrading the electricity meters of all
Norwegian electricity consumers into modern smart meters, abbreviated as AMS. This
process is a part of a global commitment to develop smart energy grids. In addition to being
beneficial for the network operators, this development is also beneficial for consumers.
Smart meters can help to reduce power usage by automation of some power consuming
utilities, or by making the consumer more aware of the consumption.

The consumer data has been made available through a HAN port located at the front of the
AMS meter, where the data sent uses the physical layer of the M-Bus standard[11]. There
are three suppliers of the Norwegian AMS meters, these are Kaifa, Kamstrup, and Aidon.
The suppliers have together with the Norwegian Electrotechnical Committee(NEK) and
The Norwegian Water Resources and Energy Directorate(NVE) decided on the essential
standards and protocols which the data transfer should conform to.

Several actors are currently developing systems for use with the HAN port, a list of which
can be found at [2]. Additionally a master thesis[5] was written which contains an imple-
mentation of such a system. This project continues to build on the experiences and work
presented in that master thesis.

1.2 Motivation

In order to utilize the potential of the AMS meter, a system which is able to collect and
present the consumption data in real-time must be developed. The system must have a
physical connection to the HAN port of an AMS meter and some way of logging and

1

Chapter 1. Introduction

storing of the data. At the moment of writing this report, there is no commercial product
available that will satisfy these requirements.

Moreover, the process of implementing an embedded system for this purpose would give
insights and experience in designing and implementing embedded hardware and software.
These were the main motivational factors for choosing to work with this project.

1.3 Report structure

This report is divided into 9 chapters. In chapter 2 some similar projects and some more
background for the project is presented, including a presentation of work done in a master
thesis concerning the same topic. Chapter 3 contains theory about protocols and standards
that are used by the AMS meters in order to transfer measurement values through the HAN
port. A functional specification, requirements, acceptance criteria and an overview of the
hardware design is presented in chapter 4. Chapter 5 is the longest chapter and contains
information about the system implementation and explains some implementation details
and choices. The testing procedure and the results of the testing are presented in chapter 6.
A discussion of the result and other key points is in chapter 7. A short conclusion followed
by suggested further work is presented in chapter 8 and chapter 9 respectively.

Furthermore, two appendixes are included. Appendix A includes the Norwegian HAN
specification from Kaifa. A hardware schematic of the produced PCB is shown in Ap-
pendix B.

2

Chapter 2
Literature Review

In this chapter some more background information about smart meters and their role in
smart grids is presented. Additionally, information about a project by Enova concerning
the use of the AMS meter HAN port is presented. Lastly, a recap of work done on a master
thesis previous to this project is given.

2.1 Smart meters and smart grids

A smart meter is an advanced energy meter that measures the energy and power consump-
tion of a consumer. This information is then provided to the distribution network operator,
and can also be presented to the consumer. The information provided can help to optimize
the usage of the power grid and detect problems within the grid. According to [8], a smart
grid can be defined as a type of power grid which allows unconventional power flow and
two-way information flow. Furthermore, this information flow can be utilized to create an
advanced distributed energy delivery network where there is a considerable potential for
automation.

Radio Frequency(RF) and Power Line Carrier(PLC) are two technologies that can be used
for communication in a smart grid. PLC is when the measurement data collected is trans-
mitted to the network operator by use of the utility power lines. Radio Frequency com-
munication transfers the measurement data using wireless radio signals to a data collector,
which in turn transfers the data to a central location. RF transmission was chosen as the
main communication technology for the AMS meters in Norway.

The smart meter is the most important device which allows the development of smart
grids. A two-way communication between the meter and the network operator is vital
for the functionality of a smart grid. Aside from the benefits for the network operator,
the end-user can also use the meter for monitoring and automation of home devices and

3

Chapter 2. Literature Review

appliances. Together with savings in operational costs for the network operator, the smart
meter could potentially lead to more cost-effective power use, which in turn can reduce the
electricity bill of consumers. On the other hand smart meters also open up the possibility
for dynamic tariffs which can lead to higher prices at certain times of the day.

2.2 Enova AMS project

Enova is an organization which contributes to the restructuring of energy use and energy
production in order to reduce carbon emission. Enova has together with the Norwegian
Water Resources and Energy Directorate(NVE) conducted a pilot project consisting of
several smaller projects where the goal is to find the best solutions in order to reduce power
consumption, by utilizing the data from the HAN port of the AMS meters. The motivating
factor behind the project is that the new smart meter technology should be fully utilized,
which will lead to smarter consumers.

The title of the project is ”Smart meters, smarter consumers”[4]. The projects test dif-
ferent methods of presenting information about power consumption in real time to the
consumer. Some examples are simple mobile apps or more advanced systems that can
regulate the water heater. Enova is co-funding 7 different pilot projects where a total of 25
000 consumers are a part of the pilot projects.

Although there is limited information available on how the different projects have imple-
mented the embedded system connected to the HAN port, the information presented at the
web page[4] shows some different implementations. One implementation shown is a de-
vice which draws power directly from the HAN port and transfers this to a gateway using
a wireless transfer protocol, where the gateway is connected to a Wi-Fi modem. Another
implementation shown is a gateway connected directly to the HAN port using a long cable.

As a part of the project, a report was commissioned by NVE [12]. This report explores
the potential of smart meter technology and home automation systems in order to reduce
power consumption. The report is authored by the consultant firm VaasaETT. In the report,
it is concluded that in order to reap the full benefits of the new AMS meters, dynamic
tariffs, consumer feedback and consumer education is needed. As there are limits to how
fast a consumer can react to variations in power price some household appliances have the
potential to be automated. As a result of a large scale automation of appliances, the total
power consumption can instantly drop if there is an increase in power prices. Thus if the
distribution network is congested or overloaded the operator can increase the power price
momentarily to lessen the load. For the automation to be effective, the size of the loads
that can be automated must be large enough to have a significant impact on the power
usage of a consumer.

To summarize the report found that home automation together with dynamic tariffs could
have an enormous impact on the annual Norwegian power consumption provided enough
households adopt a home automation system.

4

2.3 Earlier work

2.3 Earlier work

A master thesis about data collection and processing from an AMS meter was written in
2018 by Erlend Grande[5]. In this thesis, a system to log and transmit AMS data to a
cloud server using either a 3G modem or a Wi-Fi module was implemented. The mes-
sage publishing used the MQTT messaging protocol. In order to test the data collection
scheme with multiple AMS devices, a custom PCB to simulate M-Bus was designed and
implemented.

The system consisted of several different hardware components interacting. One module
converted M-Bus signals to TTL-levels, while the main processing module used was an
LPCXpresso4367 development kit which primary task was to decode the messages and
interact with a modem/Wi-Fi module. Lastly, the development kit was connected to either
a 3G modem or an ESP8266 Wi-Fi module.

The system was implemented and tested, however a satisfactory end result was not achieved.
The system had some problems with missing some messages from the AMS meter. Al-
though the system did not meet all real-time requirements specified for it, it was successful
in logging some data and publishing it to a server.

5

Chapter 3
Standards and Protocols

The AMS-meter data transfer through the HAN-port adheres to some standards and pro-
tocols explained in this section. A short explanation of the OSI model is included because
of its importance in the standards and protocols discussed in this chapter.

3.1 OSI

The Open Systems Interconnection Model(OSI) is a conceptual framework used to divide
protocols into layers. The goal of this model is to be able to have interoperability between
different communication systems and protocols. The abstraction in the OSI model makes
an upper layer completely independent of the layer below it, such that a protocol in a high
layer can make use of several different protocols from the lower layers. The 7 layer OSI
model is presented below. Some of the layers are optional and the most important ones for
this report are the physical layer, data link layer and application layer.

7. Application layer

6. Presentation layer

5. Session layer

4. Transport layer

3. Network layer

2. Data link layer

1. Physical layer

6

3.2 Standards used in AMS

3.2 Standards used in AMS

The physical layer protocol chosen for the data transfers is the M-Bus standard EN 13757-
2. The HDLC protocol as described in IEC 62056-46 is used as the link layer protocol.
On top of this, the meters adhere to various standards from the DLMS/COSEM suite de-
scribed in the IEC 62056 series of standards. Some of these standards are IEC 62056-5-
3(DLMS/COSEM application layer) and IEC 62056-7-5(Local data transmission profiles
for Local Networks (LN)), which in turn uses the IEC 62056-6-1(Object Identification
System (OBIS)) and IEC 62056-6-2(COSEM interface classes) standards. The informa-
tion about standards used presented here is taken from [9]. An illustration of the commu-
nication stack for the AMS meters is shown in fig. 3.1.

M-Bus physical layer
 EN 13757-2

HDLC data link layer
IEC 62056-46

DLMS/COSEM application layer
IEC 62056

Figure 3.1: Illustration of the standards used in AMS meters

3.3 M-Bus

M-Bus(meter-bus) is a European standard developed by Professor Horst Ziegler of the
Univerity of Paderborn for the remote reading of utility meters. The standard is now in-
cluded into the EN 13757 standard for communication systems for utility meters. Multiple
of the layers from the OSI model is included in the M-Bus standard, including the phys-
ical layer, data link layer, network layer and application layer. The standard EN 13757-2
describes the physical and link layer while EN 13757-3 describes the application layer of
M-Bus. An old documentation of the standard is freely available[11], which explains the
main features of the standard well despite its age. Additionally a wireless version of the
standard is specified in EN13757-4.

The M-Bus standard is based on a master-slave topology where the master controls the
communication. For the AMS meters, the meter itself acts as a master while any device

7

Chapter 3. Standards and Protocols

connected to the HAN port will be a slave. Only the physical layer of the M-bus standard is
used for AMS meters, therefore only the physical layer of the M-bus standard is presented
in this section.

3.3.1 Physical layer

The physical layer of the M-Bus standard is a bus consisting of two wires. Transmission is
possible in one direction at a time, that is either master to slave or slave to master. Hence
the communication is half-duplex. In the case of data transfer from master to slave, a
logical 1 is represented by a voltage of 36V and a logical 0 is represented by 24V. This
choice of voltage levels allows powering of slave devices directly from the bus. Data can
also be transferred from slave to master by modulating the current consumption of the
slave. A logical 1 is represented by a constant current draw of up to 1.5mA whereas a
logical 0 is represented by an increased current drain by the slave of additional 11-20mA.
This bit representation scheme is illustrated in fig. 3.2

Figure 3.2: M-Bus physical layer bit representation[11]

The quiescent(inactive) bus state is when the voltage is 36V and the current draw of slaves
is less than 1.5mA. That means that slaves powered exclusively by the bus must have
a maximum constant current draw of approximately 1.5mA each. As a result of cable
loss, the voltage levels at the slave will be lower than 24-36V. The slave must therefore
detect a voltage difference of approximately 12V and not the absolute voltage in order to
differentiate between a logical 0 and 1.

The physical layer makes some demands on the data link layer that will be used. It re-

8

3.4 HDLC

quires half-duplex asynchronous serial transmission with a baud rate of 300-9600 Baud.
Furthermore, there must be a master-slave structure where the slaves can’t communicate
with each other, and at least every eleventh bit should be a logical 1. This means that the
physical layer of M-Bus supports common methods of serial data transfer like UART.

3.4 HDLC

High-Level Data Link Control(HDLC) is a data link layer protocol developed by the In-
ternational Organization for Standardization(ISO). Although multiple network topologies
are possible, HDLC is mainly used for point to point connections.

The version of HDLC described in this section is the version described in IEC 62056-
46. An excerpt of this standard is found in [3, Ch.8]. The IEC 62056-46 standard specifies
that this specification supports asynchronous start/stop transmission, with 1 start bit, 8 data
bits, no parity bit and 1 stop bit. These requirements satisfy the demands by the physical
layer of M-Bus protocol presented in section 3.3.1.

The HDLC protocol consists of two sublayers, the Logical Link Control (LLC) upper
sublayer and the Medium Access Control (MAC) sublayer. The LLC sublayer is based
on the ISO/IEC 8802-2 standard and the MAC sublayer is based on the ISO/IEC 13239
standard. The LLC sublayer acts as an interface between the MAC sublayer and a network
layer, thus making it possible for several network layer protocols to coexist in a network.
The MAC layer is the most important layer in the HDLC protocol since the actual link
layer connection is ensured by this layer.

3.4.1 LLC layer frame format

The LLC frame for the purpose of DLMS/COSEM is shown in table 3.1 where the field
length in bytes and the assigned value is shown in the second row. It contains a destina-
tion and source LSAP(Service access points) which describes the logical address of the
network layer entity recipient and sender respectively. As can be seen from the table, the
destination is always the same while the least significant bit in the source can be either 0
or 1. This bit is used as a command/response identifier where 0 identifies a command and
1 identifies a response. The LLC quality field is reserved for future use and is always 0.
The information field consists of an integral number of bytes and it carries the LLC service
data unit. This field can also be empty.

Dest.(remote)
LSAP

Src.(local)
LSAP

LLC
quality Information

1B=0xE6 1B=0xE6 or 0xE7 1B=0x00 xB

Table 3.1: LLC format used in DLMS/COSEM

9

Chapter 3. Standards and Protocols

3.4.2 MAC layer frame format

The MAC layer for DLMS/COSEM uses the HDLC frame format type 3 defined in ISO/IEC
13239. The frame format is shown in table 3.2 where the field length is shown in bytes in
the second row.

Flag
Frame
format

Dest.
address

Src.
address Control HCS Information FCS Flag

1B 2B 1-4B 1-4B 1B 2B xB 2B 1B

Table 3.2: HDLC MAC layer frame format

Flag field

This field is used as a start and stop byte for frames, where the value is 0x7E. If two or
more frames are transmitted continuously a single flag is used as the start and stop byte
between the frames.

Frame format field

This field contains three sub-fields. The first sub-field is the frame format type and consists
of the first four bits. In the case of DLMS/COSEM the frame type is 3. The fifth bit is a
segmentation bit. The 11 remaining bits contain the length of the frame in bytes excluding
start and stop flags.

Destination and source address field

Contains the destination and source address of the frame.

Control field

The control field indicates the type of commands or responses and it contains sequence
numbers where appropriate.

Header check sequence (HCS) field

The header check sequence is a checksum that is applied only to the header. That is the
bits between the start flag and the HCS. The HCS is calculated in the same way as the
frame check sequence.

10

3.4 HDLC

Information field

This field contains the data that is sent using the HDLC protocol if a data frame is sent.
The LLC frame is included at the start of the information field.

Frame check sequence (FCS) field

The frame check sequence contains a 16-bit checksum calculated on the entire length of
the frame excluding start and stop flag. An example of an implementation of the 16-bit
FCS is found in [7]. The FCS was originally designed to be implemented in hardware,
hence it can be calculated bytewise on a transmitted or received byte stream. The receiver
has no way of determining when it has finished calculating the FCS until it detects the
stop flag. Consequently, the FCS is designed so that a particular pattern results when the
FCS operation passes over the complemented FCS in the frame. A good frame can then be
confirmed by confirming that the final result of the FCS calculation is equal to a specific
value.

3.4.3 Frame transmission

For both synchronous and asynchronous framing, measures are added to avoid sending
a flag byte in the middle of a message. The method of solving this is different for syn-
chronous and asynchronous communication and it’s described in ISO/IEC 13239.

Synchronous

In the case of synchronous transmission, the transmitter uses bit stuffing. This works
by inserting a 0 bit following all sequences of 5 consecutive 1 bits. The receiver must
examine the content of the frame and discard any 0 bit which comes after 5 consecutive 1
bits. Consequently, the sequence of bits which forms the flag byte will never be present in
the message.

Asynchronous

Asynchronous framing sends one byte at a time and utilizes byte stuffing, alternatively
called control-octet transparency. The standard defines a control octet(byte) as 0x7D. Ev-
ery occurrence of the control octet or flag byte is replaced with the control octet followed
by the original byte with bit number 5 complemented, where bit number 0 is the LSB.
Using this method a 0x7E is replaced by 0x7D 0x5E and a 0x7D is replaced by 0x7D
0xE6. Therefore if the receiver gets a control octet(0x7D) it knows that this isn’t part of
the message and the fifth bit in the next byte must be complemented in order to get the
correct value.

11

Chapter 3. Standards and Protocols

3.5 DLMS/COSEM

The EN 13757-1 standard together with IEC 62056 is the most widely accepted interna-
tional standard for utility meter data exchange, and is commonly referred to as DLMS/-
COSEM. The DLMS/COSEM standard suite is large and complex and only a high-level
overview of the standard will be presented here. The information presented here is mostly
based on the excerpts in [3] and [6]. A deeper understanding of the DLMS/COSEM stan-
dard is not needed in order to understand the rest of this report.

3.5.1 Specification

Device Language Message Specification(DLMS) is a concept for structured modelling of
the interface of a utility meter. Companion Specification for Energy Metering(COSEM)
sets rules for data exchange with energy meters, including specifications that define the
transport and application layers of the DLMS standard. Together DLMS/COSEM spec-
ifies an interface model and communication protocols for data exchange with metering
equipment. A three-step approach is specified by the standard where the steps are as fol-
lows.

1. Modelling

2. Messaging

3. Transporting

The modelling step covers the model of the metering equipment and rules for data iden-
tification. This includes specifications of COSEM interface classes and the OBIS object
identification system which is a naming system used on COSEM interface objects. The
data of a logical device is grouped into objects where the objects are always instances of
interface classes as defined by IEC 62056-6-2.

The messaging step covers the communication services and the protocols used to map
elements of the data model in step 1 to an APDU. Finally, the transporting step covers the
services and protocols for transportation of messages. This includes the HDLC protocol
explained in section 3.4.

3.5.2 Architecture

The DLMS/COSEM standard is based on a client-server architecture which uses the con-
cepts of the OSI model to describe information exchange between meters and data collec-
tion systems. The metering device has the role of a server while a data collection system
is a client. A client can send service requests to the server which will respond with a ser-
vice response. Furthermore, the server can send unsolicited service requests to the clients
containing information about events or send data on some preconfigured conditions.

12

3.5 DLMS/COSEM

3.5.3 OBIS

An OBIS code is used to identify data items in meter equipment, which provides a unique
identifier for all data within a meter. This includes measurement values, but also abstract
values used for obtaining information or configuration of the metering equipment. OBIS
codes consist of the six value groups A-F defined in table 3.3 where value groups D-F are
mostly used for further classification of abstract data.

Group Use of value Group
A Identifies the media (energy type) to which the meter is related. Data

not related to a media is handled as abstract which is 0.
B Generally used for identifying the measurement channel number where

a meter has several inputs for the same energy type, thus data from dif-
ferent sources can be identified. It may also identify the communication
channel or some other elements. The definitions in this group are inde-
pendent from value group A.

C Identifies abstract or physical data items related to the information
source. Examples are current, voltage, power and temperature. The
definitions depend on the value in group A.

D Identifies types or the result of the processing of physical quantities
identified by values in value groups A and C, according to various spe-
cific algorithms.

E Identifies further processing or classification of quantities identified by
value groups A-D

F Identifies historical values of data identified in value groups A-E ac-
cording to different billing periods. If this is not relevant this value
group can be used for further classification. Set to 255 if not used

Table 3.3: OBIS code structure and use of value groups [6]

An example of OBIS codes is shown in Appendix A which shows the OBIS codes for the
Kaifa HAN specification.

3.5.4 DLMS/COSEM and AMS

The AMS meters utilizes a push setup as defined by the COSEM interface class with
class id=40[6], where the data to be pushed is modelled as a push object list which con-
sists of a list of references to COSEM object attributes. A push setup sends out data on
a predefined interval. The complete APDU for the AMS meters is shown in listing 3.1.
The DataNotification service is used to push data to a client using a push setup. The In-
vode id parameter is used to identify which response corresponds to which request made
by clients, consequently this parameter is not very useful for push setup, as there are no
requests made by clients. A timestamp containing current date and time is in the DateTime
value and the actual meter measurement values are in the attribute fields.

13

Chapter 3. Standards and Protocols

Listing 3.1: APDU for AMS meters

<D a t a N o t i f i c a t i o n />
<L o n g I n v o k e I d A n d P r i o r i t y />
<DateTime Value />
<N o t i f i c a t i o n B o d y />

<DataValue />
<S t r u c t u r e />

<A t t r i b u t e 1>
. . .
<A t t r i b u t e n>

</ S t r u c t u r e >
</ DataValue>

</ N o t i f i c a t i o n B o d y >
</ D a t a N o t i f i c a t i o n >

14

Chapter 4
Specification and Design

This chapter focuses on the system specification and design. A short explanation about
the hardware design and specification is presented. The specification and requirements for
both the embedded software and server software are presented together with acceptance
criteria for the whole system.

4.1 Overview

A high-level context diagram of the embedded system and the server is shown in fig. 4.1
where the AMS logger consists of both hardware and software. The AMS logger and the
server software is to be implemented in this project. The hardware part consists of the
design and production of a PCB which will contain the necessary components in order to
implement the logger software. Additionally a simple server which can receive data using
the TCP/IP protocol must be implemented. The hardware part of this project is going to
be a part of the project in TTK8[10].

TCP/IPM-Bus

AMS_LoggerAMS Smart Meter Server

Figure 4.1: Context diagram of full system

15

Chapter 4. Specification and Design

4.2 Hardware

4.2.1 Specification

Some requirements can be set on the functionality of the hardware. The system should
be able to receive and process M-Bus messages sent from an AMS meter. This includes
the conversion of M-Bus voltages to voltages which will not damage the MCU chosen.
Another requirement is the ability to communicate with an external Modem/Wi-Fi chip in
order to upload the processed data to a server. A more detailed specification with corre-
sponding acceptance criteria can be found in [10].

4.2.2 Design

A block diagram based on the specification is shown in fig. 4.2, where all the components
inside the green dashed rectangle is embedded into a custom PCB. The power source
could possibly have been omitted since M-Bus supports powering slave devices from the
bus directly. However there is a discrepancy between the AMS suppliers on the maximal
power that can be drawn from the meter, hence the power supply was made external. A
GSM/GPRS modem or a Wi-Fi component could also have been embedded into the PCB.
The main reason for not doing this was the added complexity of the system. Furthermore,
the design chosen offers the possibility of connecting to both instead of limiting the system
to only one way of communicating with the server.

PCB

M-Bus to TTL

Voltage regulator

MCU

AMS meter

Power supply

Modem/WIFI

Power
LED

IO and leds

Server

Figure 4.2: Block diagram of all hardware components[10]

16

4.3 Embedded software

4.3 Embedded software

4.3.1 Specification

A functional specification of what the embedded software should do can be made based
on the task description, literature review and the hardware design. The software running
should be able to read in messages from an AMS meter and be able to check the validity
of the messages. Furthermore, decoding of the message is needed in order to extract
the desired data values from the message body. Subsequently, the extracted data values
should be put into a message and sent to a server. Additionally, the software must be able
to interact and connect to a server via either a GSM/GPRS modem or a Wi-Fi chip.

4.3.2 Requirements

In order to check the validity of the messages, the software must be able to detect the start
and stop of HDLC messages and calculate the checksum as described in section 3.4.2.
For the decoding of the message, the software must be able to extract the data values for
the COSEM attributes defined in Appendix A and the timestamp in the APDU defined in
section 3.5.4. A real-time requirement for the system is that it should not miss messages
from the AMS meter under normal running conditions.

4.4 Server software

4.4.1 Specification

The server software must be able to receive data from multiple systems at a time. Data
received should be stored such that the corresponding meter the data is received from is
easily identifiable. The server should be reliable and fault-tolerant.

4.4.2 Requirements

For handling multiple connections at a time the server implementation should be multi-
threaded. In order to make the server software reliable, the server must be able to handle
disconnects and reconnects of systems. The stored data should not be affected by such
events.

4.5 Acceptance criteria

A list of acceptance criteria for the project can be made based on the specifications and re-
quirements presented in this chapter. The implementation of the system can be considered

17

Chapter 4. Specification and Design

successful if all the criteria presented below are satisfied.

1. The system is able to receive and decode AMS messages received via M-Bus.

2. The system is able to send the measurement values to the server implemented.

3. Both a Wi-Fi module and a GSM/GPRS module can be used to interact with the
server.

4. No AMS messages are lost.

5. The integrity of the AMS messages is verified by the embedded software.

6. A long-term system test has been performed which shows the reliability of the sys-
tem.

18

Chapter 5
Implementation

This chapter will explain how the different components used in the project were imple-
mented and some of the choices that were made. This includes the embedded software,
embedded hardware and server software. The implementation has been made to work with
a Kaifa AMS meter where the specification is shown in Appendix A. Moreover, an AMS
simulator which simulates the HDLC frames sent out by an AMS meter was implemented
in order to test the system without the need for an actual AMS meter.

5.1 Hardware

As stated earlier the hardware design and implementation were done in the TTK8 project[10]
and therefore only a recap of the hardware implementation is presented here.

5.1.1 Components

This section covers some of the key components that were chosen to implement the hard-
ware of the embedded system.

ATmega324PB

The ATmega324PB was chosen as the MCU for the system. It’s a high performance 8-bit
RISC-based MCU from the AVR family of microcontrollers. It has 32 KiB flash program
memory, 2KiB SRAM, 3 hardware UARTs and with 44 pins. It includes plenty of digital
communication peripherals. Based on the requirements of the embedded system this MCU
should be well suited to implement the logger software on.

19

Chapter 5. Implementation

TSS721AD

The TSS721AD is a M-Bus transceiver slave device which was developed by Texas Instru-
ments in accordance with the M-Bus specification. The most important feature of this IC
is the conversion of the M-Bus voltages down to a level which is acceptable for the MCU,
that is it works as a level shifter. In addition to voltage conversion, it has a build in power
fail functionality which triggers when there is no voltage on the M-Bus lines connected to
it.

Modem/Wi-Fi

In order to be able to upload data to a server, two different modules have been used. For the
GSM/GPRS modem, a board with an A6 module from the Chinese company Ai-Thinker
was provided by the project supervisor. For the Wi-Fi module, an ESP8266 module which
is also developed by Ai-Thinker was chosen. Both of these modules can be interfaced
by using AT commands, where AT commands originally come from the Hayes command
set which was developed for smart modems. Although the ESP8266 and A6 module re-
quire different AT commands to interface there are some common operations and this will
simplify the software implementation.

5.1.2 Implementation result

The complete PCB schematic with all components is shown in Appendix B. An image
of the final result is shown in fig. 5.1 which shows the board with a connected ESP8266
module and an Atmel-ICE programmer connected to the JTAG header of the board. More
detailed information about the board design and testing of the board is presented in [10].

5.2 Embedded Software

All the software for the embedded system has been developed from the ground up without
the use of any external libraries. This approach results in a complete understanding of
every part of the software and the interactions between software modules. The design and
implementation of the software modules are explained in this section.

5.2.1 Language and toolchain

The C programming language was chosen for implementing the software on the ATmega.
Alternatively C++ could have been used however, most of the support available for AVR
MCUs are for C and not C++. Moreover the extra features in C++ like classes and generics
were not really needed for this project.

20

5.2 Embedded Software

Figure 5.1: Image of the assembled PCB with an ESP8266 module connected to the header[10]

The toolchain used was avr-gcc and avrdude was used to flash the program to the MCU
using an Atmel-ICE programmer. A makefile was used to both compile and flash the
program to the MCU. Alternatively the compilation and flashing can be done using Atmel
Studio which also uses avr-gcc.

5.2.2 Interrupts

The ATmega324PB supports both hardware and software interrupts. Although interrupts
can be useful for some events and operations, an overuse of interrupts will lead to complex
and unclear program execution. Furthermore not having a clear grasp on the program
execution can make bugs significantly harder to find and fix. Moreover interrupts will
also make it considerably more difficult to verify that real-time requirements will always
be satisfied. Consequently this implementation avoids the use of interrupts where it’s
feasible.

5.2.3 AMS message reception

The MCU receives the AMS messages from the TSS721AD connected to one of the hard-
ware UARTs of the ATmega. The messages received are HDLC MAC layer frames as
shown in section 3.4.2. The process of reading in a message is illustrated in fig. 5.2. A
buffer is used to hold the values of a single HDLC frame.

At first, the function has to detect the start flag of the message. In order to avoid mistaking
a stop flag from a previous message as the start flag of a new one, the system must check

21

Chapter 5. Implementation

that second byte received is not a flag byte. This is important because the checksum of
the message should only be calculated over the message content and not the start/stop flag.
The checksum of the message is calculated bytewise using the method described in [7].
The blue rectangle in the diagram indicates that all received bytes are a part of a HDLC
frame.

Read byte

else

Read byte

Byte = Flag

BYTE = Flag

else Bytewise
chekcksum calc

Read byte

else

act:read_msg

HDLC_Frame:Byte

Byte = Flag

Figure 5.2: Activity diagram illustrating the reception of a HDLC MAC layer frame

The procedure of reading a message will return a value to indicate if the reception was
successful or not. Reception of a message is successful only if a whole message is re-
ceived and the calculated checksum is correct. The implementation of reading a message
is blocking, that is if no message is received it waits forever. This is reasonable since if no
AMS measurement values are received there is no point of the system doing anything.

5.2.4 AMS message decoding

The decoding procedure consists of extracting the measurement values from the received
AMS messages. The measurement values are included in the DLMS/COSEM APDU
shown in section 3.5.4 which is located in the information field of the HDLC frame. Three
different messages are sent out from the meter as shown in the specification in Appendix
A. For all these messages the timestamp is located at the same position in the message.
The current implementation of the decoding uses index constants defined at compile time
to extract the measurement values from the message body. Depending on if the meter is
a three-phase meter or not the following macro must be present or commented out in the
source code.

22

5.2 Embedded Software

#define THREE_PHASE

The reasons for using constants to find the positions of the attributes are discussed in more
detail in chapter 7.

5.2.5 Message format to server

In order to send the data to a server, some message format had to be defined. A very
simple format where all the data values are strings separated by a comma and the end is
marked by the newline character was used. The measurement values sent corresponds to
the values in the lists defined in Appendix A, where the order of values is also the same as
in Appendix A.

Initially a single message containing information about the meter is sent to the server
where the content is as described in table 5.1. After the server receives this message it
will know that all the data received on the corresponding connection belongs to the meter
described in the info message.

Meter ID Meter type List ID

Table 5.1: Meter info message content

For messages containing data values, the timestamp in UNIX time is the first value in the
message. The format for the simplest AMS message is shown in table 5.2.

[UNIX time],[Active power imported]

Table 5.2: Message format for List 1

An example of a message for a single-phase meter is shown in table 5.3 which shows an
active power consumption of 677W, an instantaneous current of 3395mA and a voltage of
225.9V. A three-phase meter message would contain four additional measurement values
compared to a single-phase for this message type.

1544310000,677,0,0,197,3395,2259

Table 5.3: Message for List 2, single-phase meter

5.2.6 Initialization procedure

The initialization procedure of the system is shown in fig. 5.3. The first step is to initialize
the drivers, that is set up the UART drivers for both the AMS message reception and
modem/Wi-Fi communication. Furthermore, a simple interrupt driven timer and two status
LEDs on the board are initialized.

23

Chapter 5. Implementation

Init drivers
Read message
{act:read_msg}

else

Got meter_infoInit server
connection

Send meter_info
to server

act:init

Figure 5.3: Activity diagram illustrating the initialization process

Both the setup of server connection and the read message process are made blocking. This
makes sense since if the system can’t initially connect to the server there is no point in
logging data which can’t be sent anywhere. Also if the system doesn’t receive messages
from a meter nothing of value can be sent to the server. The loop in the diagram shows that
the system might need to receive several messages before getting a message that contains
the information in table 5.1. The reason for this is that the message shown as List 1 in
Appendix A doesn’t contain this information, while the two other message types do.

5.2.7 Complete embedded software

After the initialization procedure, the systems enter into the main loop shown in fig. 5.4.
If at any point the connection to the server is lost, the system will try to reconnect to the
server. If at any point the system stops receiving messages from the AMS meter it will get
blocked waiting for a message. The activity diagram shows the data flow during normal
operation where the connection to the server is stable.

Read message
{act:read_msg}

Msg not valid

act:main_loop

Decode message

else

Format into message
to server

else

Msg content not valid

Send message via
Modem/Wi-Fi

Figure 5.4: Activity diagram illustrating one iteration of the main system loop

24

5.3 Server

5.3 Server

The server implementation is very simple and serves a proof of concept. The server re-
ceives connections from clients using the TCP protocol and stores the data portion of the
TCP packets in a file. A higher level application layer protocol was not implemented in
this project.

5.3.1 Programming language

The server software was implemented using the Go(golang) programming language. Go
has excellent support and libraries for creating concurrent programs, hence creating a
server which takes in connections from multiple clients is trivial using Go.

5.3.2 Implementation

A flow chart illustrating the server implementation is shown in fig. 5.5. The server starts
listening for TCP connections, and when a new connection is established a thread is started
to receive data from that connection. As a result of this design, the server is able to receive
data from multiple clients at the same time. The data listener threads expect the first
message to be a meter info message where the content is as defined in table 5.1 and the
following messages should be as defined in section 5.2.5. As the messages received are
already in a comma-separated values(CSV) format, the server uses a CSV file for data
storage.

Client listener

Data listener

Start Listen for
connections

Connection
established

Starting thread
for receiving

data

Wait for
Meterinfo

MSG

Open/crete
data file

Receive
AMS-data

Write data to
file

Figure 5.5: Flow chart showing the server software

25

Chapter 5. Implementation

5.3.3 Hosting service

The server software can be hosted on any device which architecture and operating system
are supported by Go. For the purpose of testing the server was hosted on vultr.com which is
an online VPS service. The Debian Linux distribution was chosen as the server operating
system mainly because of its stability.

5.4 AMS simulator

An AMS simulator was implemented in C in order to test the system without needing
an actual AMS meter. This was very helpful in the starting phase because there was no
meter available for testing at that time. The simulator software was made to be run on a
PC running Linux, which is connected to the embedded system using an USB to UART
converter.

5.5 Complete system

The complete system includes the embedded system and the server implementation. The
data flow between these is only in the direction to the server. The interactions between
an AMS meter, the embedded system and the server during normal operation is shown in
fig. 5.6 where the AMS Meter is considered an actor, that is it’s interacting with the system
while not being a part of the implemented system.

<<Actor>>
:AMS Meter

:Embedded
System :Server

1:DLMS_MSG
2:Decode_MSG

3:Send_data
4:Write_data_to_file

Figure 5.6: Sequence diagram showing communication between modules for normal operation

To summarize, the AMS meter sends out DLMS/COSEM application layer messages using
the HDLC link layer protocol and the M-Bus physical layer standard. Subsequently, the

26

5.5 Complete system

embedded system extracts the measurement values if the message received was valid, and
the data is formatted into a message to be sent to the server. The message is sent using the
TCP/IP protocol, and lastly the server stores the received data in a file corresponding to
the meter which the values are taken from.

27

Chapter 6
Testing and Results

The complete system has been tested with both a three-phase AMS meter and a single-
phase meter, both from Kaifa. Testing and verification of the hardware is described in
[10]. This chapter presents some results from data collection and explains how the system
was tested against the specification and requirements set in chapter 4.

6.1 Testing procedure

As the meter set up for testing at NTNU wasn’t working properly at the start of the project,
initial testing used the simulator described in section 5.4. Testing of the hardware function-
ality of the system is discussed in [10]. The firsts test were conducted without connection
to a server.

Several full system tests to verify all the requirements set in chapter 4 were conducted.
The system was tested using both the A6 modem module and the ESP8266 Wi-Fi module.
The system was tested over a period of several days on the three-phase meter at NTNU. In
addition the system was tested over a period of approximately two hours in the apartment
of the author. This last test used the ESP8266 module to interact with the server. Unfortu-
nately the AMS meter for the apartment is located in the hallway, hence long term-testing
on this meter is inconvenient.

The server was tested by establishing multiple TCP connections to it in order to simulate
multiple connections from embedded systems.

28

6.2 Results

6.2 Results

The data presented in this section is server data received from the last test described in the
previous section. The system was tested for a longer time period at NTNU, however the
measurement values from that test were not very interesting, as no loads were connected
to the meter.

6.2.1 Server message reception

The server message reception was successful in receiving all measurement values sent out
from the AMS meter. This was confirmed by checking all the UNIX timestamps in the
messages, and verifying that no interval between timestamps was larger than two seconds.

1544310010,676,0,0,198,3397,2255,9283286,0,53060,1289268

Table 6.1: Message for List 3, received 12.08.2018 23:00

The system managed to receive all three messages correctly. An example of the larges
message received is shown in table 6.1 which corresponds to List 3 in Appendix A. This
message shows an active power consumption of 676W, a current consumption of 3397mA
and a voltage of 225.5V. Notice that the last values in the message which shows cumulative
energy imported/exported does not seem to comply with the Kaifa HAN specification.
This issue elaborated on in chapter 7.

6.2.2 Plots of collected data

All plots in this subsection are taken from the results of the system test conducted at the
apartment of the author. Since a way of representing the data graphically from the server
was not yet implemented, the plots in this section were made after the testing ended, from
the collected data.

The active power consumption values are plotted in fig. 6.1. The active power measure-
ment value is present in all three messages, hence this plot contains the most data points.
As can be seen from the plot the power consumption varies all the way from approximately
600W to approximately 1400W if the spikes are disregarded.

The instantaneous current draw for the same time period is shown in fig. 6.2. The current
measurement value is only present in the second and third list types and is sent out every
10 seconds. The instantaneous current draw coincides with the active power in fig. 6.1.

The instantaneous line voltage is shown in fig. 6.3. As with the current, the voltage values
are only sent out every 10 seconds. The voltage values do not seem to correlate at all with
the active power. As is shown the voltage values increased towards the end of the test.

29

Chapter 6. Testing and Results

Dec 08, 22:30 Dec 08, 23:00 Dec 08, 23:30 Dec 09, 00:00 Dec 09, 00:30

Time 2018

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
A

c
ti
v
e

 P
o

w
e

r
[W

]

Power

Figure 6.1: Plot showing active power consumption

Dec 08, 22:30 Dec 08, 23:00 Dec 08, 23:30 Dec 09, 00:00 Dec 09, 00:30

Time 2018

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

C
u

rr
e

n
t

[m
A

]

Current

Figure 6.2: Plot showing instantaneous current(RMS value)

30

6.2 Results

Dec 08, 22:30 Dec 08, 23:00 Dec 08, 23:30 Dec 09, 00:00 Dec 09, 00:30

Time 2018

223.5

224

224.5

225

225.5

226

226.5

227

227.5

228

228.5

V
o

lt
a

g
e

 [
V

]

Voltage

Figure 6.3: Plot showing instantaneous voltage(RMS value)

31

Chapter 7
Discussion

This chapter discusses the testing and results, and compare the results with the specifica-
tions, requirements and acceptance criteria in chapter 4. In addition a short analysis of
the collected data is performed. Furthermore some inconsistencies and problems found
with the Kaifa AMS HAN implementation are discussed. Lastly, a discussion on potential
improvements and future work for the system is presented.

7.1 Results

7.1.1 Embedded system

The embedded software was able to satisfy all requirements and acceptance criteria set
in chapter 4. The testing without connection to a server showed that the system received
all AMS messages, verified the checksum of the messages and was able to extract the
measurement values from these messages, thus satisfying acceptance criteria 1 and 5. The
system successfully received all three message types and formatted the values into the
format shown in section 5.2.5.

7.1.2 Complete system

From the testing described in chapter 6, the result confirmed that the server satisfied its
requirements. More testing should have been done to confirm that the server can handle
disconnects and reconnects, however the prepositions for future work in chapter 9 will
require substantial changes to the current server implementation. Thus extensive testing
of the server reliability was not prioritized.

32

7.2 Collected data

From the results presented in chapter 6 it can be concluded that the system was able to
fulfill it’s functional specification and acceptance criteria. It was able to send measure-
ment values to the server using both the Wi-Fi module and modem module which satisfies
acceptance criteria 2 and 3. Although the modem and Wi-Fi module were successful in
sending data, the modem proved much less reliable and would sometimes respond with
generic error messages. Due to the lack of documentation for this cheap modem module,
the reason for this problem was not found.

The test ran over several days at NTNU verified that acceptance criteria 4 were satisfied.
The results from logging at the apartment of the author partly verified acceptance crite-
ria 6, however testing over a longer time period must be done in order to further verify
acceptance criteria 6. The reason for not prioritizing this is that substantial changes are
suggested for the future work which will be considered implemented as a part of a master
thesis.

7.2 Collected data

As stated in section 6.2.2 the power usage coincides with the current draw. This is clearly
seen by comparing the two graphs. At the start of the logging the kitchen stove in the
apartment was on, hence the high power consumption and current draw. There are some
dramatic spikes in the power consumption where the largest spike showed a power con-
sumption of 2215W. It’s not known what caused these spikes, though it could be caused
by some common home appliance like an electric oven or dishwasher.

The voltage values in fig. 6.3 shows a steady increase towards the end of the logging
period. A possible explanation for this is that late in the evening the load on the power
network decreases as people go to sleep. The decreased load could in turn lead to a lower
voltage drop between a transformer and the households connected to it. Despite the trend
shown in voltage, data collection over a longer time period would be needed in order to
conclude that the cause of the voltage increase is the decrease in power consumption.

The messages containing the most data are sent out every hour. This message is shown
in table 6.1 and contains additional information about the energy consumption from the
previous hour. This is valuable information for keeping track of the energy consumption
of a consumer. Unfortunately the values received for the energy consumption is not in
accordance with the Kaifa standard in Appendix A. The standard states that the unit of the
cumulative hourly active import energy value is Wh. This doesn’t make sense when look-
ing at the value in table 6.1 which shows an hourly energy consumption of 9283.286kWh,
which is closer to a normal yearly energy use than an hourly one. Tests have been con-
ducted to ensure that this was not an error in the embedded software implementation, as
a result it was confirmed that the values received are correct. This could be a problem
with the Kaifa firmware or an error with the specification. The last case is more likely
since some errors from an earlier Kaifa specification have been corrected with the newest
specification.

33

Chapter 7. Discussion

7.3 Inconsistencies between AMS suppliers

Unfortunately at the time of writing this report the interpretation of the DLMS/COSEM
standard varies between the three suppliers of AMS meters, consequently the actual AP-
DUs are different from what is shown in listing 3.1 depending on the supplier. This can be
seen from the specifications found at [1]. It’s interesting to note that Kaifa has not included
the actual OBIS code in the messages while both Kamstrup and Aidon have included this
code. As a result the current Kamstrup and Aidon messages are significantly larger than
Kaifa messages.

A problem was found with the original implementation of the message reading procedure.
There were a considerable amount of messages which did not return a successful read.
It turned out that the message reading reported a bad checksum calculation. The reason
for this is that the current Kaifa HDLC implementation allows for a start/stop byte in
the two checksum bytes at the end of the message. This is not in accordance with the
HDLC frame transmission standard explained in section 3.4.3. The implementation of
the message reading had to be changed to using the length of message field in the HDLC
frame to decide how many bytes to read in, as opposed to only using the start/stop bytes.

Hopefully some changes will be made in order to get to a common agreement of how
the DLMS/COSEM standard should be interpreted. The deadline for when the HAN port
must be ready to be opened for all consumers is set to January 1. 2019, which means that
the suppliers still have some time left to make changes and updates. If the suppliers don’t
implement the same message format, development of a system which works with all AMS
meters will be harder to implement.

7.3.1 Impact on implementation

Because of the inconsistencies and uncertainties about the AMS specification and imple-
mentation, the process of decoding the messages was made very simple. As explained in
chapter 5 the current implementation uses constants defined at compile time for finding
the position of desired measurement values in the HDLC frames received. An alternative
method is to implement a more dynamic software which recognizes what type of meter
the messages are from, and then decode the message content depending on meter type.
Although this is possible to implement it was decided not to focus on a general dynamic
implementation, mostly because there will probably be multiple changes made to the cur-
rent implementations from all three suppliers.

7.4 Potential for improvements

In this section some possible improvements that can be made are discussed. The points in
chapter 9 are based on the points discussed here.

34

7.4 Potential for improvements

7.4.1 Message format to server

Currently all messages are formatted into strings and sent to the server as shown in sec-
tion 5.2.5. This is an inefficient way to represent the data, especially for the UNIX times-
tamp value which is originally a 32-bit unsigned integer, and it’s represented by a 10-byte
long string. That is 6 extra bytes are needed to send the timestamp as a string as opposed
to sending it as raw byte data. Another problem with this approach is that the length of
the messages sent is not deterministic since the length of a string representation of a 32-bit
unsigned integer varies.

7.4.2 Message sending interval

At the moment all measurement values received from an AMS meter are sent immediately
to the server. As a result of this, there is a larger number of messages sent to the server
when the system is logging data. This process can be improved by temporarily storing
measurement values in the MCU RAM and then send more values in each message. For
example, the system could have been set up to send one message every minute contain-
ing all measurement values for the previous minute. This could in turn lead to further
optimization in the size of data sent as only one timestamp would be needed for a single
message, while the other timestamps can be calculated by adding or subtracting 2 seconds
since the AMS message interval for Kaifa is 2 seconds.

7.4.3 Application layer protocol

It would be beneficial for the system to use some application layer protocol on top of
TCP/IP for the server communication. Because of the limitations of the ATmeaga324PB
MCU, a chosen application layer protocol must be able to be implemented with a small
code size and low complexity. There are several protocols designed for lightweight mes-
sage transmission with embedded systems and simple IoT devices. Examples of such pro-
tocols are the Advanced Message Queuing Protocol(AMQP) and the Message Queuing
Telemetry Transport(MQTT) protocol.

7.4.4 Server data processing

The current server implementation only stores the messages received in a file. Research
should be done on better methods of storing data, possibly utilizing some database. In
addition to a better method of storing data, it should also be possible to get a graphical
representation of the measurement values.

35

Chapter 8
Conclusion

In this project an, embedded system for logging AMS data via wired M-Bus has been
designed and implemented. The system implemented is able to receive messages over
M-Bus in accordance with the standards used in the Norwegian AMS specification and
extract measurement values from these messages.

The system stores the logged data by transferring data messages to a server using either a
Wi-Fi module or a GSM/GPRS modem, using the TCP/IP protocol suite. The implemen-
tation was successful in logging data over longer time periods and storing these values in
a file on the server. A method of graphically representing the real-time data has not been
implemented in this project.

The system is developed and tested for use with a Kaifa AMS meter, although it can easily
be extended to work with Kamstrup and Aidon meters as well. Because of inconsistencies
between the three AMS suppliers, this has not been prioritized in this project.

All requirements, acceptance criteria and functional specifications were satisfied by the
implemented system. Although all requirements were satisfied, more development and
testing is needed before this can be considered a finished product. Nevertheless the work
done in this project forms a solid basis for further work.

36

Chapter 9
Further work

This chapter contains a list of suggestions for improvements and additions which should
be considered in the master thesis following this specialization project.

9.1 Suggestions

• Application layer protocol for data transfer and two-way
communication (possibly MQTT).

• Find a better method of storing data on the server.

• Graphical representation of AMS data.

• Encryption of AMS data.

• Larger scale data collection.

• Perform a data analysis.

• Look into possible hardware improvements.

37

Bibliography

[1] Informasjon til utviklere Norsk Elektroteknisk Komite (NEK). https://www.
nek.no/info-ams-han-utviklere/.

[2] Informasjon til brukere Norsk Elektroteknisk Komite (NEK). https://www.
nek.no/info-ams-han-brukere/.

[3] DLMS User Association. DLMS/COSEM Architecture and Proto-
cols/Green Book (Excerpt). https://www.dlms.com/files/
Green-Book-Ed-83-Excerpt.pdf.

[4] Enova og AMS. https://www.enova.no/privat/
smarte-strommalere-ams/enova-og-ams/.

[5] Erlend Grande. Data gathering and -assembling from several smart meter HAN ports.
Master’s thesis, NTNU, 2018.

[6] Network Working Group. COSEM Interface Classes and OBIS Object Iden-
tification System/Blue Book (Excerpt). https://www.dlms.com/files/
Blue-Book-Ed-122-Excerpt.pdf.

[7] Network Working Group. Ppp in hdlc-like framing. https://tools.ietf.
org/html/rfc1662.

[8] Jixuan Zheng, David Wenzhong Gao, and Li Lin. Smart Meters in Smart Grid: An
Overview. In 2013 IEEE Green Technologies Conference (GreenTech), pages 57–64.
IEEE, apr 2013.

[9] Norsk Elektroteknisk komite. AMS + HAN Om å gjøre sanntid måledata tilgjen-
gelig for forbruker, 2015. https://www.nek.no/wp-content/uploads/
2017/01/AMS-HAN-utredning-NEK-20150122.pdf.

[10] Marius Lervik. TTK8 - PCB for processing AMS-data, 2018.

[11] M-Bus Usergroup. The M-Bus: A Documentation Rev. 4.8. http://www.
m-bus.com/mbusdoc/default.php.

38

https://www.nek.no/info-ams-han-utviklere/
https://www.nek.no/info-ams-han-utviklere/
https://www.nek.no/info-ams-han-brukere/
https://www.nek.no/info-ams-han-brukere/
https://www.dlms.com/files/Green-Book-Ed-83-Excerpt.pdf
https://www.dlms.com/files/Green-Book-Ed-83-Excerpt.pdf
https://www.enova.no/privat/smarte-strommalere-ams/enova-og-ams/
https://www.enova.no/privat/smarte-strommalere-ams/enova-og-ams/
https://www.dlms.com/files/Blue-Book-Ed-122-Excerpt.pdf
https://www.dlms.com/files/Blue-Book-Ed-122-Excerpt.pdf
https://tools.ietf.org/html/rfc1662
https://tools.ietf.org/html/rfc1662
https://www.nek.no/wp-content/uploads/2017/01/AMS-HAN-utredning-NEK-20150122.pdf
https://www.nek.no/wp-content/uploads/2017/01/AMS-HAN-utredning-NEK-20150122.pdf
http://www.m-bus.com/mbusdoc/default.php
http://www.m-bus.com/mbusdoc/default.php

[12] VaasaETT. Assessing the Potential of Home Automation in Norway. Technical
report, NVE, 2017.

39

Meter type

Norwegian HAN spesification - OBIS List Information

B

Item
A

Baudrate M-BUS (HAN)

List 1 Stream out every

2400

2 seconds

C

J

K

D

RemarksDescription Value
File name

List version - date

M List 2 Stream out every 10 seconds

N

O

P

List 3 Stream out every

HAN maximum power to HEMS (mW)

HAN maximum current to HEMS (mA)

1 hour

500 mW

21 mA

All

Filename : OBIS List identifier.xlsx . Format for publication is pdf.

DD.MM.YYYY

Shall be identical to corresponding OBIS code value in the meterOBIS List version identifier

KFM_001.xlsx

09.11.2018

KFM_001

The values is generated at XX:00:00 and streamed out from the HAN interface 10

seconds later (XX:00:10)

The largest power that the customer equipment (HEMS or display) can consume

from the meter HAN interface

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 1

Appendix A: Kaifa HAN specification

40

1 2 3 A B C D E F Unit Scaler

1 1 0 1 7 0 255 W 0

1 1 1 1 0 2 129 255

2 2 0 0 96 1 0 255

3 3 0 0 96 1 7 255

4 4 1 0 1 7 0 255 W 0

5 5 1 0 2 7 0 255 Active power - (Q2+Q3) W 0

6 6 1 0 3 7 0 255 Var 0

7 7 1 0 4 7 0 255 Var 0

8 8 1 0 31 7 0 255 A -3

9 9 1 0 51 7 0 255 A -3

10 10 1 0 71 7 0 255 A -3

11 11 1 0 32 7 0 255 V -1

12 12 1 0 52 7 0 255 V -1

13 13 1 0 72 7 0 255 V -1

14 0 0 1 0 0 255

15 1 0 1 8 0 255 Wh 0

16 1 0 2 8 0 255 Wh 0

17 1 0 3 8 0 255 VArh 0

18 1 0 4 8 0 255 VArh 0

KFM_001

Norwegian HAN spesification - OBIS Codes

OBIS List version identifier:

1

2

3

OBIS List version identifier

Meter -ID (GIAI GS1 -16 digit)

List number Attributes Item
Object name

OBIS Code - Group Value

Active power+ (Q1+Q4)

Numb.

9

10

11

12

13

4

5

6

7

8

double-long-unsigned

double-long-unsigned

double-long-unsigned

double-long-unsigned 14

15

16

17

18

double-long-unsigned

octet-String

Data type

octet-String

octet-String

double-long-unsigned

double-long-unsigned

double-long-unsigned

double-long-unsigned

Meter type

Active power+ (Q1+Q4)

Reactive power + (Q1+Q2)

Reactive power - (Q3+Q4)

octet-String

double-long-unsigned

double-long-unsigned

double-long-unsigned

double-long-unsigned

ULN3 Phase voltage 4W meter , Line voltage 3W meter

Clock and date in meter

Cumulative hourly active import energy (A+) (Q1+Q4)

Cumulative hourly active export energy (A-)(Q2+Q3)

Cumulative hourly reactive import energy (R+) (Q1+Q2)

IL1 Current phase L1

IL2 Current phase L2

IL3 Current phase L3

ULN1 Phase voltage 4W meter , Line voltage 3W meter

ULN2 Phase voltage 4W meter , Line voltage 3W meter

19

double-long-unsigned

double-long-unsigned

Cumulative hourly reactive export energy (R-) (Q3+Q4)

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 2

41

1 2 3 A B C D E F

1 1 0 1 7 0 255

1 1 1 1 0 2 129 255 X X X X X

2 2 0 0 96 1 0 255 X X X X X

3 3 0 0 96 1 7 255 X X X X X

4 4 1 0 1 7 0 255 X X X X X

5 5 1 0 2 7 0 255 Active power - (Q2+Q3) X X X X X

6 6 1 0 3 7 0 255 X X X X X

7 7 1 0 4 7 0 255 X X X X X

8 8 1 0 31 7 0 255 X X X X X

9 9 1 0 51 7 0 255 NA X X M1 X

10 10 1 0 71 7 0 255 NA X X X X

11 11 1 0 32 7 0 255 X X X X X

12 12 1 0 52 7 0 255 NA M2 X M2 X

13 13 1 0 72 7 0 255 NA X X X X

14 0 0 1 0 0 255 X X X X X

15 1 0 1 8 0 255 X X X X X

16 1 0 2 8 0 255 X X X X X

17 1 0 3 8 0 255 X X X X X

18 1 0 4 8 0 255 X X X X X

M1

M2DCM

DCM

DCM

CTM

CTM

Meter type Voltage Current Connection

3x230/400V

MA105H2E

3x230 V

3x230 V

3x230/400V

5(80) A

5(100)A

5(100)A

1(6)A

1(6)A

M
A

1
0

5
H

2
E

M
A

3
0

4
H

4

M
A

3
0

4
T3

M
A

3
0

4
T4

Meter TypesOBIS codes available in different meter types
OBIS List version identifier: KFM_001

List number OBIS Code - Group Value
Object name

Active power+ (Q1+Q4)

OBIS List version identifier

Meter -ID (GIAI GS1 -16 digit)

Meter type

Active power+ (Q1+Q4)

Reactive power + (Q1+Q2)

Reactive power - (Q3+Q4)

IL1 Current phase L1

Cumulative hourly active import energy (A+) (Q1+Q4)

Cumulative hourly active export energy (A-)(Q2+Q3)

Cumulative hourly reactive import energy (R+) (Q1+Q2)

Cumulative hourly reactive export energy (R-) (Q3+Q4)

IL3 Current phase L3

ULN1 Phase voltage 4W meter , Line voltage 3W meter

ULN2 Phase voltage 4W meter , Line voltage 3W meter

ULN3 Phase voltage 4W meter , Line voltage 3W meter

Clock and date in meter

IL2 Current phase L2

M
A

3
0

4
H

3
E

MA304H3E

MA304H4

MA304T3

MA304T4

1x230 V

Meter types

Value is alllways 0 V

Value is alllways 0 A

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 3

42

Cumulativeactive export reactive energy (R-) displayed hourly

Reactive power in import direction (VAr)

Reactive power in export direction (VAr)

Item

Number
Active power in import direction (W) 1

10

11

12

5

6

9

2

3

4

7

8

19

Norwegian HAN spesification - OBIS Codes

Long description OBIS Code

Version number of this OBIS list to track the changes

Serial number of the meter point:16 digits (69706314xxxxxxxx)

Type number of the meter: For example "MA304H3E"

Active power in import direction (W)

Active power in export direction (W)

Instantaneous current of L1(mA) (RMS Value based on 1 second integration period)

Instantaneous current of L2 (mA) (RMS Value based on 1 second integration period)

Instantaneous current of L3 (mA) (RMS Value based on 1 second integration period)

Instantaneous voltage L1-L2 (Phase voltage 4W meter , Line voltage 3W meter) (dV / 0,1V) (RMS Value based on 1 second integration period)

Instantaneous voltage L1-L3 (Phase voltage 4W meter , Line voltage 3W meter) (dV / 0,1V) (RMS Value based on 1 second integration period)

Instantaneous voltage L2-L3 (Phase voltage 4W meter , Line voltage 3W meter) (dV / 0,1V) (RMS Value based on 1 second integration period)

 Local date and time of Norway (Winter: CET (UTC+1) - Summer: CEST (UTC+2)) http://www.timeanddate.com/worldclock/norway/oslo

16

17

18

Cumulativeactive import active energy (A+) displayed hourly

Cumulativeactive export active energy (A-) displayed hourly

Cumulativeactive import reactive energy (R+) displayed hourly

13

14

15

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 4

43

14:59:56 List 1

List Interval
List interval

List 2

3600 sec

List 3

10 secClock

15:00:10

15:00:12

15:00:14

15:00:16

15:00:18

15:00:20

15:00:22

2 sec

List 1

List 1

List 1

List 1

List 1

List 1

List 1

List 1

List 1

List 1

14:59:58

15:00:00

15:00:02

15:00:04

15:00:06

15:00:08

List 2

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 5

44

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

PB5(MOSI0/ICP3)1

PB6(MISO0/OC3A)2

PB7(SCK0/OC3B)3

RESET4

VCC5

GND6

PE0(XTAL2)7

PE1(XTAL1)8

PD0(RXD0/CLK3)9

PD1(TXD0)10

PD2(RXD1/INT0)11

PD
3(

TX
D

1/
IN

T1
)

12

PD
4(

X
CK

1/
O

C
1B

)
13

PD
5(

O
C1

A
)

14
PD

6(
IC

P1
/O

C
2B

/S
S1

)
15

PD
7(

X
CK

2/
O

C
2A

/S
CK

1)
16

PE
2(

RX
D

2/
M

IS
O

1)
17

PE
3(

TX
D

2/
M

O
SI

1)
18

PC
0(

SC
L0

)
19

PC
1(

SD
A

0)
20

PC
2(

TC
K

/C
LK

4)
21

PC
3(

TM
S/

IC
P4

)
22

(TDO/OC4A)PC4 23(TDI/ACO)PC5 24(TOSC1)PC6 25(TOSC2)PC7 26AVCC 27GND 28(AREF)PE4 29(ADC7)PA7 30(ADC6)PA6 31(ADC5)PA5 32(ADC4)PA4 33

(A
D

C
3)

PA
3

34
(A

D
C

2)
PA

2
35

(A
D

C
1)

PA
1

36
(A

D
C

0)
PA

0
37

(S
D

A
1)

PE
5

38
(S

CL
1)

PE
6

39
(X

CK
0/

C
LK

0)
PB

0
40

(C
LK

O
/C

LK
1)

PB
1

41
(A

IN
0/

IN
T2

)P
B

2
42

(A
IN

1/
O

C
0A

)P
B

3
43

(S
S0

/O
C0

B
)P

B
4

44

U1
ATmega324PB

VBUS 1

D- 2

D+ 3

ID 4

GND 5

SHLD1 6

SHLD2 7

SHLD3 8

SHLD4 9

SHLD6 11SHLD5 10

J2

10118194-0001LF

GND

GND

VCC

220ΩR5

220ΩR4

22kΩ
R6

GND

BUSL21

VB2

STC3

RIDD4

PF 5

SC6

TXI7

TX 8

BAT 9
VS10

VDD 11

RX 12

RXI13

RIS14

GND 15

BUSL116
U2

TSS721AD

470Ω
R7

VCC

100kΩ
R8

TCK1 GND 2

TDO3 VTG 4

TMS5 RESET 6
(NC)7 (TRST) 8

TDI9 GND 10

P4

JTAG_header

VCC

GND

RST

RST

PC
2

TC
K

PC
3

TM
S

PC2 TCK

PC3 TMS

PC4 TDO
PC5 TDI

PC5 TDI

PC4 TDO

PB2 INT2

PB
2

IN
T2

GND

100kΩ
R1

VCC

VCC

VCC

RST

GND

GND

PE0 XTAL2

PE1 XTAL1

PE0 XTAL2
PE1 XTAL1

Reset Pullup

PD2 RXD1

PD
3

TX
D

1
PD

4
O

C1
B

PD
5

O
C1

A
PD

6
SS

1
PD

7
SC

K
1

PE
2

RX
D

2
PE

3
TX

D
2

PC
0

SC
L0

PC
1

SD
A

0

1 2
3 4
5 6
7 8
9 10
11 12

P2

Header 6X2

VCC

GND

PD3 TXD1

PD2 RXD1

PD4 OC1B PD5 OC1A
PD6 SS1 PD7 SCK1

PE2 RXD2 PE3 TXD2
PC0 SCL0 PC1 SDA0

PB7 SCK0
PB6 MISO0
PB5 MOSI0

PB
4

SS
PB

3
O

C
0A

PB
1

C
LK

O
PB

0
X

C
K

0

1 2
3 4
5 6
7 8
9 10

P1

Header 5X2

VCC

GND

PB7 SCK0
PB6 MISO0PB5 MOSI0
PB4 SS

PB3 OC0A PB1 CLKO
PB0 XCK0

750Ω

R2

750Ω

R3

1
2

P3

Header 2GND

VCC

Pin 2 2Pin 1 1
J1

rj45 C6
10µF

C10
220µF

18pFC3

18pFC1

100nF
C7

100nF
C8

0.47µF
C11

100nF
C4

100nF

C2

100nFC9

100nF
C5

1
2

Y1
12Mhz

D1

TLMS1000
D2

TLMS1000

D3
TLMS1000

750Ω

R9

GND

IN1 OUT 3

GND 2TAB4

U3 LM3940IMPX-3.3

PIC101 PIC102

COC1

PIC201 PIC202

COC2

PIC301 PIC302

COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PIC801

PIC802
COC8

PIC901 PIC902

COC9

PIC1001

PIC1002
COC10

PIC1101

PIC1102
COC11

PID101 PID102

COD1

PID201 PID202

COD2

PID301
PID302

COD3

PIJ101

PIJ102

COJ1

PIJ201

PIJ202

PIJ203

PIJ204

PIJ205

PIJ206

PIJ207

PIJ208

PIJ209

PIJ2010

PIJ2011

COJ2

PIP101 PIP102

PIP103 PIP104

PIP105 PIP106

PIP107 PIP108

PIP109 PIP1010

COP1

PIP201 PIP202

PIP203 PIP204

PIP205 PIP206

PIP207 PIP208

PIP209 PIP2010

PIP2011 PIP2012

COP2

PIP301
PIP302

COP3

PIP401 PIP402

PIP403 PIP404

PIP405 PIP406

PIP407 PIP408

PIP409 PIP4010

COP4

PIR101

PIR102

COR1

PIR201 PIR202
COR2

PIR301 PIR302

COR3

PIR401 PIR402

COR4

PIR501 PIR502

COR5

PIR601

PIR602

COR6
PIR701

PIR702

COR7

PIR801

PIR802

COR8

PIR901 PIR902

COR9

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108

PIU109

PIU1010

PIU1011

PIU1012 PIU1013 PIU1014 PIU1015 PIU1016 PIU1017 PIU1018 PIU1019 PIU1020 PIU1021 PIU1022

PIU1023

PIU1024

PIU1025

PIU1026

PIU1027

PIU1028

PIU1029

PIU1030

PIU1031

PIU1032

PIU1033

PIU1034 PIU1035 PIU1036 PIU1037 PIU1038 PIU1039 PIU1040 PIU1041 PIU1042 PIU1043 PIU1044
COU1

PIU201

PIU202

PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209

PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015

PIU2016

COU2

PIU301

PIU302

PIU303

PIU304

COU3

PIY101
PIY102

COY1

PIC101

PIC202

PIC301

PIC401

PIC501

PIC602 PIC701

PIC801

PIC901

PIC1002 PIC1101

PID102

PID202

PID302
PIJ205

PIJ206

PIJ207

PIJ208

PIJ209

PIJ2010

PIJ2011

PIP102

PIP1010

PIP207

PIP301

PIP402

PIP4010

PIR602 PIR702

PIR802

PIU106 PIU1028

PIU2015

PIU302

PIC601

PIU203

PIC702

PIU206

PIC802 PIR801

PIU2011

PIC1102

PIJ201 PIU301

PID101 PIR202

PID201 PIR302

PID301
PIR901

PIJ101 PIR402

PIJ102 PIR502

PIJ202

PIJ203

PIJ204

PIP407 PIP408

PIR201

PIU1033

PIR301
PIU1032

PIR401 PIU2016

PIR501 PIU201

PIR601

PIU204

PIR701 PIU2014

PIU109

PIU208

PIU1010

PIU2012

PIU1025

PIU1026

PIU1029

PIU1030

PIU1031

PIU1034 PIU1035 PIU1036 PIU1037 PIU1038 PIU1039

PIU202

PIU207

PIU2010

PIU2013

PIU304

PIP109

PIU1040

NLPB0 XCK0
PIP108

PIU1041

NLPB1 CLKO

PIU1042

PIU205

NLPB2 INT2 PIP107

PIU1043

NLPB3 OC0A
PIP106

PIU1044

NLPB4 SS
PIP103

PIU101

NLPB5 MOSI0
PIP104

PIU102

NLPB6 MISO0

PIP105

PIU103

NLPB7 SCK0

PIP209

PIU1019
NLPC0 SCL0

PIP2010

PIU1020
NLPC1 SDA0

PIP401

PIU1021
NLPC2 TCK

PIP405

PIU1022
NLPC3 TMS

PIP403

PIU1023 NLPC4 TDO

PIP409

PIU1024 NLPC5 TDI

PIP208

PIU1011

NLPD2 RXD1

PIP201

PIU1012
NLPD3 TXD1

PIP203 PIU1013 NLPD4 OC1B
PIP204 PIU1014 NLPD5 OC1A

PIP205 PIU1015 NLPD6 SS1
PIP206 PIU1016 NLPD7 SCK1

PIC102

PIU107

PIY101

NLPE0 XTAL2

PIC302

PIU108

PIY102

NLPE1 XTAL1

PIP2011

PIU1017
NLPE2 RXD2

PIP2012

PIU1018
NLPE3 TXD2

PIC201

PIP406

PIR102

PIU104

NLRST

PIC402

PIC502

PIC902

PIC1001

PIP101

PIP202

PIP302

PIP404

PIR101

PIR902

PIU105

PIU1027

PIU209

PIU303

Appendix B: PCB schematic

45

	Problem description
	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation
	Report structure

	Literature Review
	Smart meters and smart grids
	Enova AMS project
	Earlier work

	Standards and Protocols
	OSI
	Standards used in AMS
	M-Bus
	Physical layer

	HDLC
	LLC layer frame format
	MAC layer frame format
	Frame transmission

	DLMS/COSEM
	Specification
	Architecture
	OBIS
	DLMS/COSEM and AMS

	Specification and Design
	Overview
	Hardware
	Specification
	Design

	Embedded software
	Specification
	Requirements

	Server software
	Specification
	Requirements

	Acceptance criteria

	Implementation
	Hardware
	Components
	Implementation result

	Embedded Software
	Language and toolchain
	Interrupts
	AMS message reception
	AMS message decoding
	Message format to server
	Initialization procedure
	Complete embedded software

	Server
	Programming language
	Implementation
	Hosting service

	AMS simulator
	Complete system

	Testing and Results
	Testing procedure
	Results
	Server message reception
	Plots of collected data

	Discussion
	Results
	Embedded system
	Complete system

	Collected data
	Inconsistencies between AMS suppliers
	Impact on implementation

	Potential for improvements
	Message format to server
	Message sending interval
	Application layer protocol
	Server data processing

	Conclusion
	Further work
	Suggestions

	Bibliography
	Appendix A: Kaifa HAN specification
	Appendix B: PCB schematic

