
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s
M

as
te

r’
s

th
es

is

Marius Lervik

System for acquisition and analyzing
of data from smart meters

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen

June 2019

Marius Lervik

System for acquisition and analyzing of
data from smart meters

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

Master Thesis

Candidate: Marius Lervik

Course: TTK4900 Engineering Cybernetics, Master’s Thesis

Thesis title (Norwegian): System for innsamling og tolking av måledata fra

smarte strømmålere
Thesis title (English): System for acquisition and analyzing of data from

smart meters

Thesis description:

To modernize the power grid, most Norwegian electricity consumers have gotten smart meters
installed by the start of 2019. The meters transmit data automatically to the distribution
network operator using RF signals. Additionally, the smart meters provide real-time data to
the consumer through a HAN port on the meter.

We want to design a system for acquisition and analyzing of data from smart meters. The data
analyzing should focus on extracting information about the outdoor distribution grid.

The tasks will be:

1. Conduct a literature study concerning methods for acquiring data from in
general embedded systems, and especially from smart meters. What kind of
(abnormal) states of the distribution grid can data from smart meters identify?

2. Design and produce a custom embedded system needed for data acquisition.
3. Acquire data from several smart meters for at least a couple of weeks.
4. Perform an analysis and state estimation of the distribution network using the

collected data.

Start date: January 7th, 2019
Due date: June 3th, 2019

Thesis performed at: Department of Engineering Cybernetics
Supervisor: Professor Geir Mathisen

i

Abstract

The ongoing modernization of the Norwegian electricity grid has led to the installation of
smart electricity meters (AMS) for all power consumers. The AMS meters automatically
send data concerning power usage directly to the distribution network operator, while per-
sonal data for the consumer has been made available through a port on the front of the
meters.

In this thesis, two embedded systems for the acquisition of consumer data from AMS me-
ters have been designed and implemented. Both systems use Wi-Fi to transfer measure-
ment data to a cloud service for further processing and storage. Multiple units of one of
the system designs were produced and successfully used for data collection from multiple
sources.

Although not enough data were collected to perform a thorough analysis and state estima-
tion of the distribution network, a significant trend in the variation in voltage values was
found. The trend showed that voltage values were consistently highest during the night and
lowest during the morning and evening, which corresponds to the times with the lowest
and highest network load.

ii

Sammendrag

Den pågående moderniseringen av strømnettet i Norge har ført til installasjon av smarte
strømmålere (AMS) for alle strømkunder. AMS-målerne sender automatisk data til nettsel-
skapet om strømforbruket til kunden. Personlig data er blitt gjort tilgjengelig for kunden
gjennom en port på framsiden av meterne.

To systemer for å samle inn personlig data fra AMS-målere har blitt designet og imple-
mentert i denne oppgaven. Begge systemene bruker Wi-Fi til å sende data til en skytjeneste
for videre prosessering og lagring. Flere enheter ble produsert av et av systemene. Disse
enhetene ble brukt til å samle inn data fra flere kilder.

Datamengden som ble samlet inn ga ikke et godt nok grunnlag til å utføre en nøye anal-
yse og tilstandsestimering av distribusjonsnettet, men en signifikant trend i variasjonen av
spenningsverdier ble oppdaget. Trenden viste at spenningsnivået var konsekvent høyest på
natta og lavest på morgenen og kvelden. Disse tidspunktene tilsvarer tidene det er minst
og størst belastning på distribusjonsnettet.

iii

iv

Table of Contents

Thesis description i

Abstract ii

Sammendrag iii

Preface iv

Table of Contents v

List of Tables ix

List of Figures xi

Abbreviations xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Electric power systems . 1
1.1.2 Smart grids . 3
1.1.3 Advanced Metering System . 4

1.2 Limitations . 4
1.3 Thesis structure . 5

2 Literature Review 7
2.1 Error detection using smart meters . 7

2.1.1 Validation of distribution system topology 7
2.1.2 High impedance fault detection 9

2.2 Existing AMS logging solutions . 12
2.3 A survey on protocols for use with IoT devices 13

v

3 Relevant Standards and Protocols 15
3.1 Standards for AMS meters . 15
3.2 M-Bus . 15

3.2.1 Physical layer . 16
3.3 HDLC . 17

3.3.1 MAC layer frame format . 18
3.3.2 Frame transmission . 19

3.4 DLMS/COSEM . 19
3.4.1 Specification . 20
3.4.2 Architecture . 20
3.4.3 OBIS . 20

3.5 MQTT . 22
3.5.1 Overview . 22
3.5.2 Control packets . 22
3.5.3 Quality of Service . 24

4 Specification and Design 25
4.1 Overview . 25
4.2 Specification . 26

4.2.1 Embedded hardware . 26
4.2.2 Embedded software . 27
4.2.3 Cloud solution . 28

4.3 Acceptance criteria . 28
4.4 PCB design . 30
4.5 Design of data collection scheme . 31

5 Implementation 33
5.1 Hardware ATmega system . 33

5.1.1 Components . 33
5.1.2 Power circuit . 35
5.1.3 ADC circuit . 37
5.1.4 M-Bus conversion circuit . 37
5.1.5 Headers and peripherals . 38
5.1.6 PCB result . 38

5.2 Software ATmega system . 38
5.2.1 Interrupts and atomic access . 39
5.2.2 Timer . 40
5.2.3 Watchdog timer . 40
5.2.4 Drivers . 41
5.2.5 AMS message reception . 42
5.2.6 Power failure . 42
5.2.7 MQTT implementation . 43
5.2.8 Main program operation . 45

5.3 Hardware ESP32 system . 47
5.3.1 Components . 47
5.3.2 PCB result . 48

vi

5.4 Software ESP32 system . 48
5.5 Cloud solution . 50
5.6 Data collection . 50

6 Testing and Results 53
6.1 Testing procedure . 53

6.1.1 PCB and hardware test . 53
6.1.2 Power failure test . 53
6.1.3 Full System test . 54
6.1.4 ESP32 system . 54

6.2 Testing results . 54
6.2.1 ESP32 system . 55

6.3 Data collection . 56
6.3.1 Data sources . 56
6.3.2 Graphs . 57

7 Discussion 63
7.1 System results . 63

7.1.1 Power failure . 64
7.1.2 Loss of Wi-Fi connection . 64
7.1.3 ESP32 system . 64

7.2 Data analysis . 65
7.3 AMS standards inconsistencies . 66
7.4 Improvement potential . 67

8 Conclusion 69

9 Further work 71

Bibliography 73

Appendix A: Kaifa HAN specification 76

Appendix B: Hardware ATmega 81
B1: Schematic . 81
B2: Component list . 82

Appendix C: Hardware ESP32 83
C2: Schematic . 83
C2: Component list . 84

Appendix D: NEK email 85

vii

viii

List of Tables

3.1 HDLC MAC layer frame format. 18
3.2 OBIS code structure and use of value groups [4]. 21
3.3 Description of all MQTT control packets [18]. 23
3.4 Description of the MQTT QoS levels. 24

4.1 List of acceptance criteria for the complete system. 29

5.1 Software actions corresponding to the MQTT packet received. 45

6.1 Power fail data for a single-phase Kamstrup meter. 55
6.2 Average, minumum and maximum values received from a three-phase

Kamstrup meter. 55
6.3 Average, minumum and maximum values received from a single-phase

Kamstrup meter. 55
6.4 Hourly cumulative energy values received from a single-phase Kamstrup

meter. 56
6.5 Description of the three consumers used for data collection. 56

ix

x

List of Figures

1.1 Traditional electric power system [20]. 1
1.2 Radial power distribution. 2

2.1 NIS topology error showing an incorrect connection [3]. 8
2.2 Low voltage circuit with five consumers connected. 9
2.3 High Impedance Fault causing an electric arc [10]. 10
2.4 Location and detection of a HIF using smart meter data [23]. 12
2.5 Relationship between payload size and transmitted bytes for the MQTT

and HTTP protocols [25]. 14

3.1 Illustration of the standards used in AMS meters [14]. 16
3.2 M-Bus physical layer bit representation [22]. 17
3.3 DLMS/COSEM client-server model [5]. 21
3.4 MQTT server and clients example. 23

4.1 High-level overview of the complete system. 26
4.2 High-level design of PCB. 30
4.3 Flowchart illustrating one cycle of data collection for the embedded system. 31

5.1 Harvard computer architecture used in AVR MCUs. 34
5.2 Power circuit schematic for the ATmega PCB. 35
5.3 ADC circuit for the ATmega PCB. 37
5.4 M-Bus conversion schematic. 38
5.5 Assembled ATmega PCB with an ESP-01 Wi-Fi module connected. . . . 39
5.6 Storage of voltage measurement values in EEPROM. 43
5.7 Flowchart showing the power failure check at startup. 43
5.8 Flowchart illustrating one iteration of the mqtt loop function. 44
5.9 UML state diagram for the embedded software. 46
5.10 Flowchart showing one iteration in the Not connected state. 46
5.11 Flowchart showing one iteration in the Connected state. 47

xi

5.12 Assembled ESP32 PCB. 49
5.13 Flowchart showing the actions of the implemented FreeRTOS task. 49
5.14 Illustration of the AMS data collection. 51

6.1 Average, minimum and maximum imported active power from meter 2 for
one day. 57

6.2 Normalized average imported active power, instantaneous current (RMS)
and voltage from meter 2 for one day. 58

6.3 Average voltage from all three meters for one day. 59
6.4 Normalized average voltage from all three meters for one day. 59
6.5 Correlation plot for the average voltage values in fig. 6.4. 60
6.6 Average voltage from two meters for one week. 60
6.7 Normalized average voltage from two meters for one week. 61
6.8 Correlation plot for the average voltage values in fig. 6.7. 61

xii

Abbreviations

AMS = Advanced Metering System
HAN = Home Automation Network
MCU = Microcontroller Unit
PCB = Printed Circuit Board
IC = Integrated Circuit
TLS = Transport Layer Security
IoT = Internet of Things
AP = Access Point
UART = Universal Asynchronous Receiver-Transmitter
API = Application Programming Interface
RF = Radio Frequency
ESD = Electrostatic Discharge
EEPROM = Electrically Erasable Programmable Read-only Memory
SDK = Software Development Kit
LDO = Low-dropout
ISR = Interrupt Service Routine
VPS = Virtual Private Server

xiii

Chapter 1
Introduction

1.1 Background

1.1.1 Electric power systems

An electric power system can be roughly divided into three parts, power generators, the
transmission system, and the distribution system. An illustration of a traditional electric
power system is shown in fig. 1.1. The complete electric power system connects many
power generators to the transmission system, which connects to distribution systems where
most consumers are located.

Transmission lines
765, 500, 345, 230, and 138 kV

Transmission Customer
138 kV or 230 kV

Generating Station

Generating
Step Up

Transformer

Substation
Step Down
Transformer

Generation

Green:
Blue:

Subtransmission
Customer

26 kV and 69 kV

Primary Customer
13 kV and 4 kV

Secondary Customer
120 V and 240 V

Transmission
Distribution

Color Key:
Red:

CustomerBlack:

Figure 1.1: Traditional electric power system [20].

The generators produce electric power from mechanical power, for instance, hydropower
or thermal power. In Norway, the majority of power generation comes from hydropower.
In order to transfer the electrical power over vast distances, the voltage is transformed into
high voltage, typically in the range of 100kV to 500kV, although transmission lines with a

1

Chapter 1. Introduction

voltage higher than 1000kV exist. The high voltage results in smaller losses and is essential
when transferring power over long distances. Although high-voltage DC transmission
systems exist, most transmission lines use high-voltage AC.

For the Norwegian power network, the transmission system consists of two parts, a cen-
tral transmission network (132kV-420kV) and a regional transmission network (66kV-
132kV) [16]. The central transmission network is mostly owned by Statnett and it connects
large power producers and the regional networks from all over the country. The regional
transmission networks are owned by local network companies and serve as connections
between the central transmission network and the distribution networks. Some smaller
producers and industries that require a large amount of power are connected directly to
regional networks [16].

The distribution network is the final stage in the delivery of electrical power, and it is
where power is delivered to most consumers. The distribution network consists of both
high voltage (11kV or 22kV in Norway) and low voltage (230V or 400V in Norway)
lines. The typical low voltage parts of the distribution network are radial connections,
which means there is a single power source delivering power to multiple consumers. A
radial system is illustrated in fig. 1.2 where the two circles symbols a transformer and the
rectangles are consumers. Although other topologies exist, the radial distribution is the
most common topology used to connect consumers to the distribution network. A radial
distribution system can consist of one or more main radials with a larger power transfer,
which branches into smaller radials.

11kV
22kV

Figure 1.2: Radial power distribution.

The radial topology will typically result in a small voltage drop along the line, where
the consumers furthest away from the transformer will have the lowest voltage values.
This relationship becomes more complicated if the radial has multiple branches or if some
consumers are producing power and delivering this power into the network. Customers
producing power and feeding this into the network is becoming more common as a result
of research, commitment, and awareness concerning renewable energy.

The transformer station decreasing the voltage into low voltage (230-400V) has tradition-
ally been the last point where the distribution network operator can monitor measurement
values like voltage, current, power, and energy in real time.

2

1.1 Background

1.1.2 Smart grids

Traditionally there has been a one-way power transfer from the generation point to the
consumers. In addition to only being unidirectional, a considerable amount of power is lost
along the transmission lines, and some of the generation capabilities exist only to be able
to meet peak demand [8]. The development and progress made in the fields of information
technology and big data analysis allow for a different network structure commonly referred
to as a smart grid. The smart grid is a grid which allows for the multi-directional transfer of
energy and data as opposed to the traditional electricity grid. A smart grid can have a wide
variety of power generation options and can result in less waste of power by distributing
power in a more efficient way than the traditional electric power system.

As renewable energy sources are getting more common, the amount of customers deliv-
ering energy to the network is increasing. Most of these customers are located in the
distribution network, which is also where most of the power outages and disturbances oc-
cur [8]. A smart grid contains several power generation options, including distributed and
intermittent power generation. Hence, a smart grid would help to mitigate problems with
power outages and disturbances by using these additional power generation sources.

Closely related to the concept of smart grids are smart microgrids, commonly called mi-
crogrids. A microgrid can be defined as a local network of distributed energy systems,
including both generators and consumers, where the local network can function both when
connected or disconnected to the broader electricity grid [8]. It follows that a microgrid
must have some source of distributed power generation, which is often a renewable energy
source. Additionally, a microgrid must handle supplying emergency power and transition-
ing between being connected and disconnected to the electricity grid. Multiple microgrids
can be interconnected with each other to form a smart grid where data and electric power
are transferred between the microgrids.

The main motivational factors for developing smart grids are the need to handle increased
complexity in the grid and to be able to have a complete overview and control of the grid
[19]. This includes the ability to monitor the network in real-time, where the analyzed
information can be used to create control systems in order to optimize the operation of the
grid. A complete overview and control of the grid require a large number of sensors and
control components to be placed throughout the distribution network. The sensors must
be able to measure a multitude of parameters, for instance, power consumption, voltages,
and currents.

In addition to sensors at essential points in the distribution network, smart metering equip-
ment at the consumer is beneficial for both the network operator and the consumer. Elec-
tricity meters with two-way communication to the network operator are called smart me-
ters. Consumption data from the meter can be presented to the consumer in real-time,
which makes it possible to monitor and regulate electricity usage. Moreover, smart meters
automatically send consumption data and other event messages to the network operator,
which leads to more accurate billing of customers and improved monitoring capabilities.

3

Chapter 1. Introduction

1.1.3 Advanced Metering System

In Norway, smart meters named Advanced Metering System (AMS) have been installed
for almost all electricity customers by the start of 2019. The meters send measurement and
power usage data to the network operator at least once an hour [17]. In addition to mea-
surement data, the meter logs some events. These events include loss of power, voltage
unbalance, over-voltage, and under-voltage [3]. The meters are also able to detect ground-
ing faults, and immediately send a corresponding alarm to the operator [3]. There are three
suppliers of the Norwegian AMS meters, Kaifa (Nuri/Kaifa), Kamstrup and Aidon.

The AMS meters are equipped with a HAN-port with an RJ45 (8P8C) connector. The
consumer can get access to consumer data and measurement values through this port. A list
of the measurement values available for Kaifa meters is shown in Appendix A where the
contents of the different meter messages are divided into different lists. List 1 only contains
an active import power measurement and is the most frequent message sent. List 2 is sent
every tenth second and contains more values including, active and reactive power (both
import and export), the instantaneous current draw for the different phases and voltage
values. The final message containing List 3 is sent every hour and contains all the values
in List 2 in addition to hourly cumulative energy usage values. The HAN specification
is similar for Kaifa and Aidon, while Kamstrup have omitted List 1 in their specification.
Consequently, Kamstrup meters only send out information every tenth second as opposed
to Kaifa (every 2s) and Aidon (every 2.5s) [2].

The measurement values sent out depends on the meter type. For single-phase meters,
which are more common in apartment blocks, there is only one current and one voltage
value available, as opposed to three-phase meters, which have three current and voltage
measurement values (one for each phase). In order to utilize the HAN data, one has to con-
tact the network operator and request the activation of the HAN port as it is not activated
by default.

1.2 Limitations

The data collection performed in this thesis was not extensive enough to perform a com-
prehensive analysis of the distribution network. Ideally, data should be collected from
consumers connected to the same transformer/radial in order to perform a more thorough
analysis of the state of the surrounding distribution network. Only three systems collecting
AMS data were initially set up. Four additional systems were set up very late during the
thesis work, which resulted in the data from these meters not being analyzed because of
time limitations.

4

1.3 Thesis structure

1.3 Thesis structure

Chapter 2 Literature Review contains a literature review on error detection and distri-
bution network topology estimation using smart meter data, existing solutions for logging
AMS data, and protocols for use with IoT.

Chapter 3 Relevant Standards and Protocols describes standards and protocols relevant
to the thesis work and the AMS meters. The purpose of this chapter is to present an
overview of all standards related to AMS meters, and it is not necessary to read in its
entirety as it contains very detailed information.

Chapter 4 Specification and Design presents a functional specification for the hardware,
software, and the complete system. The chapter contains a high-level design of the hard-
ware and data collection scheme. Acceptance criteria for the complete system are included
in this chapter.

Chapter 5 Implementation contains implementation details for both hardware and soft-
ware for the two embedded systems implemented. Implementation details for the cloud
service and data collection are also included.

Chapter 6 Testing and Results describes the testing procedure, testing results, and the
setup for the data collection. The chapter presents graphs of the collected AMS data.

Chapter 7 Discussion discusses the results and performance of the system compared to
the acceptance criteria. It contains a discussion of the graphs presented in the results sec-
tion. Additionally, some inconsistencies with the AMS standards and potential improve-
ments are discussed.

Chapter 8 Conclusion concludes the thesis work, results, and findings.

Chapter 9 Further work contains a bullet point list of suggested further work.

Appendix A contains the Kaifa HAN specification. Appendix B and Appendix C con-
tains complete schematics and component lists for the implemented embedded systems.
Lastly, Appendix D contains an email received from the Norwegian Electrotechnical
Committee (NEK).

5

Chapter 1. Introduction

6

Chapter 2
Literature Review

2.1 Error detection using smart meters

This section contains a literature review on the usage of smart meter data to detect errors
and faults in the low voltage part of the distribution network. A literature review has been
performed on two different topics, high impedance faults and network topology errors at
the distribution network operator.

2.1.1 Validation of distribution system topology

A distribution network operator must have information about the topology of the low volt-
age distribution network. This information is stored in a Network Information System
(NIS), which consists of two other systems, namely the Geographic Information System
(GIS) containing the geographical location of all objects, and the Customer Information
System (CIS) containing information about the customers and other relevant information
[3]. The topology information consists of the electrical connections of network stations,
conductors, and customers. Additionally, information concerning cable properties and
information about the position of electrical switches are also part of the topology informa-
tion.

It is essential that the topology information stored in the NIS is correct in order to utilize the
potential of smart meter data and other measurement data collected, as incorrect topology
information could result in incorrect results from computations and algorithms using the
smart meter data. There can be multiple errors in the topology information stored in the
NIS. One common type of error is that the NIS contains wrong connection information,
for instance, that a customer is connected to an incorrect radial. This error is illustrated
in fig. 2.1, which shows that in the NIS, the red customer is connected to the transformer
NS1, while it is in reality connected to NS2.

7

Chapter 2. Literature Review

Figure 2.1: NIS topology error showing an incorrect connection [3].

Other NIS errors include wrong electrical switch position, wrong information about cable
lengths and customers not connected to the network. For customers not connected to the
network, the error is only in the NIS, while in reality, they are connected. There can be
multiple sources for these errors, for example, data import errors, lacking information, or
simply an error with manual entry of information.

Multiple methods have been developed to estimate and validate the topology information
for low voltage distribution networks. A method called Distribution system Topology Esti-
mation (DSTE) is presented in [10]. The algorithm uses voltage values and current values,
both real and imaginary, to estimate impedance and connections. It is based on linearized
voltage drop approximation and linear regression in order to estimate the topology of the
network downstream of a transformer. Real and imaginary current values are not avail-
able from the AMS meters. However, they may be estimated using the other measurement
values available.

A less complex method than the DSTE method is the voltage drop method explained in
[3]. The method is based on the fact that there will be a voltage drop outward in a radial
where the highest voltage values are close to the transformer. An example is shown in
fig. 2.2, which shows five customers connected to a radial. Based on the cable lengths
and locations in the figure, one would expect that V1 > V2 > V3 > V4 > V5. If this
is not the case, there is a possibility that there is a topology error in the NIS. There are
some limitations to this method. If there is a consumer producing power and delivering
this to the network, the voltage values may not be as expected from using the voltage drop
method.

Other methods for validating network topology are presented in [3], where more advanced
algorithms using these methods are also described. The algorithms developed to validate
topology are split into three categories where each category uses some different basic
properties, which are, sum, affiliation, and sequence.

For the sum property, an energy balance calculation is used to check that the amount
of customers in the low voltage circuit is correctly documented in the NIS. The method

8

2.1 Error detection using smart meters

1 3 5

2
4

Figure 2.2: Low voltage circuit with five consumers connected.

described summarizes the energy usage of all customers and checking this against the
measured energy consumption at the transformer station. For the affiliation property, two
methods are used, the ground fault method and the Total Harmonic Distortion (THD)
method to check that a customer belongs to the circuit documented in the NIS. Lastly, for
the sequence property, the voltage drop method was used to validate that the sequence of
the customers is correct.

The thesis in [3] uses the data sent to the network operator, however much of this data
is also available for the customer through the HAN port. Additionally, the HAN data
contains exact values sent out every tenth second, while the data to the network operator
contains an average in addition to maximum and minimum values [3]. If the data from the
HAN port should be used to detect errors, the data collection must be done with a separate
system from the data sent to the network operator. If this data were to be used to detect
errors in real-time, this separate data acquisition system has to be reliable.

2.1.2 High impedance fault detection

A high impedance fault (HIF) is the result of when an energized conductor comes in direct
contact with a high impedance surface, such as concrete, asphalt, or tree branches [23].
Conventional protection mechanisms have a hard time detecting these errors since the
high impedance will limit the amount of current, and as a result, over-current protection
mechanisms, such as fuses and over-current relays will not easily detect the fault [24].

Although HIFs represents little threat to the electrical equipment, they represent a threat to
the surroundings. It is typical for a HIF to be accompanied by an electric arc. This effect
is shown in fig. 2.3. The arc ignition occurs if the voltage of the conductor in contact with
the surface becomes sufficiently high and exceeds a voltage threshold required to create an
electric arc. Since most distribution systems use AC, the magnitude of the voltage varies,
and multiple arc re-ignitions and extinctions can occur with a high impedance fault [9]. If
a HIF occurs in a hazardous area, the accompanying electric arc could case result in fire or
explosion. Therefore, it is important to detect and handle high impedance faults.

9

Chapter 2. Literature Review

Figure 2.3: High Impedance Fault causing an electric arc [10].

Several existing HIF detection techniques are summarized in [9] where various measure-
ment values are used. The simplest of the techniques uses voltage and current measure-
ments to detect faults. The current measurement is most effective in distribution networks
where the frequency components of the current waveform are not significantly attenuated
[9]. In order to develop more robust detection techniques, a higher order analysis have to
be performed on the measurement values. The electric arc associated with a HIF results
in high and low-frequency components in the current spectrum, which can be used for de-
tection of HIFs. Time-Scale analyses (wavelet transform) is a common technique used in
many approaches to detecting HIFs [9]. This method uses both frequency information and
the time information where those frequencies occurred, to analyze the current waveforms.
Some other methods also exist, including using classifiers and artificial neural networks
[9].

In [23], a method for detecting HIFs using smart meters is presented. The method sug-
gests detecting a voltage unbalance which will occur downstream from a HIF, using a
three-phase smart meter. The method proposed uses a method called the symmetrical
components method. With three-phase power, both voltage and current consists of three
components which can be represented as three phasors. In a balanced three-phase power
system, the phasors have equal magnitudes and are 120 degrees apart. In an unbalanced
power system, the magnitudes of the phasors are different, and they are not exactly 120
degrees apart. Decomposing the phasors into symmetrical components is used for this
method as shown in eq. (2.1), where the 0, 1, and 2 components are called zero, positive
and negative sequence components respectively. The sequence components are symmetri-
cal and have a 120 degrees difference in phase angle.

10

2.1 Error detection using smart meters

2

4
Va

Vb

Vc

3

5 =

2

4
Va,0

Vb,0

Vc,0

3

5+

2

4
Va,1

Vb,1

Vc,1

3

5+

2

4
Va,2

Vb,2

Vc,2

3

5 (2.1)

The method proposed in [23] uses symmetric voltage components to calculate a degree
of unbalance. This is done by calculating the relationship between the negative sequence
voltage (V2) and the positive sequence voltage (V1). The equation for calculating voltage
unbalance in percentage is shown in eq. (2.2).

K% =
|V2|
|V1|

(2.2)

For smart meters, the phase voltage, line voltage, or possibly both are available as a mea-
surement value. The phase voltage is the voltage between a phase and a neutral while
the line voltage is the voltage between two phases. If the line voltages are available, the
voltage unbalance can be calculated with the equations in eq. (2.3) and eq. (2.4) found in
[23]. The subscripts on the voltages indicate which line voltage to use where a, b, and c
are the three phases.

K% =

s
1�

p
3� 6�

1 +
p
3� 6�

(2.3)

� =
V 4
ab

+ V 4
bc
+ V 4

ca

(V 2
ab

+ V 2
bc
+ V 2

ca
)2

(2.4)

Since the smart meters are installed at consumers, a selection of smart meters could be
used for the detection and identification of HIFs. Knowledge of meters and their respective
transformers are needed to detect a HIF. The calculated voltage unbalances and knowledge
of the meters respective transformers, both upstream and downstream of where the fault
occurred, can be used to develop a methodology to detect and locate the fault. This is
possible since a HIF will cause a high voltage unbalance downstream from the location of
the fault.

A case study using simulated data was performed in [23]. A case is shown in fig. 2.4,
where SE is a distribution substation, TR are transformers and a smart meter is placed
downstream of every transformer. In the case of fig. 2.4, a HIF has occurred between point
4 and 5. The method presented in eq. (2.3) and eq. (2.4) resulted in a unbalance factor of
approximately 50-99% for the smart meters located downstream of TR3 and TR4 using
simulated data. The reason for the large range in the unbalance factor is that different
parameters were used in the simulation. For the other smart meters, the unbalance factor
was significantly lower at approximately 1-5%.

Another method for detecting HIFs using smart meter data is suggested in [6]. This method
detects HIFs by using an Even Harmonic Distortion Index calculated over the voltage
waveforms. This method requires the smart meters to be able to perform an even harmonic

11

Chapter 2. Literature Review

Figure 2.4: Location and detection of a HIF using smart meter data [23].

estimation algorithm, as opposed to the calculation in eq. (2.3), which only requires values
already available from smart meters.

2.2 Existing AMS logging solutions

At the time of writing [14] there was no commercially available solution for logging AMS
data through the HAN port. Since then, a device available for purchase has surfaced, called
Tibber Pulse from Tibber. Tibber Pulse is made to work with smart meters from all three
suppliers in Norway. The only connection needed is a standard twisted pair ethernet cable
between the device and the smart meter.

The device uses Wi-Fi to upload data to a cloud service controlled by Tibber. The user
can get this data by using a mobile app from Tibber or by using an API. Only power and
energy values are made available for the consumer using this device.

From images posted on a forum [21], it seems like the Tibber Pulse does not make use
of an M-Bus slave transceiver chip to receive data from the M-Bus lines. Furthermore,
it looks like a large capacitor, rechargeable battery or a supercapacitor is used to store
electric energy for backup power. It can also be seen from the images that the Tibber
Pulse uses an ESP32-WROOM-32D module from espressif as a processing unit [21]. This
module contains an ESP32 chip as the MCU and an antenna which can be used for Wi-Fi,
Bluetooth, and Bluetooth Low Energy.

12

2.3 A survey on protocols for use with IoT devices

The module draws power solely from the HAN port of the smart meter, which means that
no external power supply is necessary. For the Kamstrup smart meters, the maximum
power draw is only 144mW with a maximum current draw of 6mA [2]. The ESP32 chip
uses between 180-240mA when transmitting using Wi-Fi [7]. If all RF capabilities of
the unit are turned off and the CPU is on, the current draw is approximately 20-31mA
according to [7]. This very high current consumption compared to the maximum current
draw of the smart meters must mean that the Tibber Pulse device utilizes some of the sleep
modes available on the MCU. Furthermore, the sending frequency of the device must be
low enough such that enough time has passed in order to charge the local power storage
on the board.

2.3 A survey on protocols for use with IoT devices

The IoT has been enabled by the latest development and research into smart sensors, com-
munication technologies, and communication protocols. An overview of technologies,
protocols, and possible applications related to IoT is given in [1]. The paper provides
a thorough summary of several different application layer protocols, and it explores the
relation between IoT and other emerging technologies such as big data analytics, cloud
computing, and fog computing.

Several application layer protocols including Constrained Application Protocol (CoAP),
Message Queue Telemetry Transport (MQTT), Extensible Messaging and Presence Pro-
tocol (XMPP), Advanced Message Queuing Protocol (AMQP), Hyper Text Transfer Pro-
tocol (HTTP) and Data Distribution Service(DDS) are presented and compared. Both
MQTT and AMQP are based on sending messages which have to go through a server
(broker). AMQP contains more advanced functionality than MQTT, for instance, reliable
queuing and flexible routing. Despite its name, MQTT does not support queues. Hence, it
is a more lightweight protocol than AMQP.

A comparison of the overhead and performance of HTTP and MQTT is presented in [25].
The paper concluded that the performance of MQTT is superior to HTTP, particularly
when the number of devices is large, the overhead and performance of HTTP are signif-
icantly worse than MQTT. The overhead is illustrated in fig. 2.5, which shows the total
bytes sent compared to the payload length sent for a different number of devices.

13

Chapter 2. Literature Review

Figure 2.5: Relationship between payload size and transmitted bytes for the MQTT and HTTP
protocols [25].

14

Chapter 3
Relevant Standards and Protocols

This chapter contains descriptions of various standards and protocols relevant to the work
done in this thesis. This includes standards and protocols adhered to by the AMS meters
and protocols used with the embedded system and cloud solution implemented in this
project. Some of the content in this chapter is a summary of theory presented in [14],
including section 3.1, section 3.2, section 3.3 and section 3.4. A detailed understanding of
the standards related to AMS meters is not required in order to understand the rest of the
thesis.

3.1 Standards for AMS meters

The AMS meters adhere to various standards and protocols summarized in fig. 3.1. The
physical layer protocol used in the AMS meters is the physical layer of the M-Bus standard
described in EN 13757-2. The data link layer protocol is the HDLC protocol as described
in IEC 62056-46. Finally, the meters adhere to various standards from the DLMS/COSEM
set of standards. The international standard version of the DLMS/COSEM standard is
described in the IEC 62056 series of standards.

3.2 M-Bus

M-Bus (Meter-Bus) is a European standard developed for the remote reading of utility
meters. It is included in the EN 13757 standard for communication systems for utility
meters. The M-Bus standard consists of standards for the physical layer, data link layer,
application layer, and an optional network layer. An old documentation of the standard is
freely available at [22]. Furthermore, a wireless version of the standard is specified in EN
13757-4.

15

Chapter 3. Relevant Standards and Protocols

M-Bus physical layer
 EN 13757-2

HDLC data link layer
IEC 62056-46

DLMS/COSEM application layer
IEC 62056

Figure 3.1: Illustration of the standards used in AMS meters [14].

M-Bus is based on a master-slave topology consisting of one master and several slaves
where all slaves are connected to the same transmission lines. In the case of the AMS
meters, the meter itself acts as a master while any device connected must be an M-Bus
slave device. For the AMS meters, only the physical layer of the M-Bus standard is used,
thus only the physical layer of the standard is presented in this section.

3.2.1 Physical layer

The physical layer of the M-Bus standard is a bus consisting of two wires, where transmis-
sion is possible in one direction at a time, that is either master to slave or slave to master.
In the case of data transfer from master to slave, a logical 1 is represented by a voltage dif-
ference of 36V, and a logical 0 is represented by a 24V difference. This choice of voltage
levels allows powering of slave devices directly from the bus lines. Data can be transferred
from slave to master by modulating the current consumption of the slave. A logical 1 is
represented by a constant current draw of up to 1.5mA whereas a logical 0 is represented
by an increased current drain by the slave of additional 11-20mA. This bit representation
scheme is illustrated in fig. 3.2. As seen from the figure, the increased current draw from
the slave transmitting a 0 to the master causes a small voltage drop on the transmission
lines.

The quiescent (inactive) bus state is when the bus voltage is 36V, and the current draw of
slaves is less than 1.5mA. As a result of cable loss, the voltage levels at the slave will be
lower than 24-36V. Hence, slaves must detect a voltage difference of approximately 12V
and not the absolute voltage in order to differentiate between a logical 0 and 1.

The physical layer makes some demands on the data link layer that will be used. It re-
quires half-duplex asynchronous serial transmission with a baud rate of 300-9600 Baud.

16

3.3 HDLC

Figure 3.2: M-Bus physical layer bit representation [22].

Furthermore, there must be a master-slave structure where the slaves cannot communicate
with each other, and at least every eleventh bit sent on the bus should be a logical 1.

3.3 HDLC

High-Level Data Link Control (HDLC) is a data link layer protocol developed by the In-
ternational Organization for Standardization (ISO). Although multiple network topologies
are possible, HDLC is mainly used for point to point connections.

The version of HDLC described in this section is the version described in IEC 62056-46,
where an excerpt of this standard is available in [5]. The IEC 62056-46 standard defines
that this specification supports asynchronous start/stop transmission, with 1 start bit, 8
data bits, no parity bit and 1 stop bit. These conditions satisfy the demands by the physical
layer of the M-Bus protocol presented in section 3.2.1.

The HDLC protocol consists of two sublayers, the Logical Link Control (LLC) upper sub-
layer and the Medium Access Control (MAC) sublayer. The LLC sublayer is based on the
ISO/IEC 8802-2 standard, and the MAC sublayer is based on the ISO/IEC 13239 standard.
The LLC sublayer acts as an interface between the MAC sublayer and an optional network
layer, making it possible for several network layer protocols to coexist in a network. The
MAC layer is the layer that ensures the link layer connection and contains the data pay-
load. Only the MAC sublayer format is presented, as the LLC sublayer is not important
for AMS messages.

17

Chapter 3. Relevant Standards and Protocols

3.3.1 MAC layer frame format

The MAC layer for DLMS/COSEM uses the HDLC frame format type 3 defined in ISO/IEC
13239. This frame format is shown in table 3.1 where the field length is shown in bytes in
the second row. The role of the fields is explained below the table.

Flag Frame
format

Dest.
address

Src.
address Control HCS Information FCS Flag

1B 2B 1-4B 1-4B 1B 2B xB 2B 1B

Table 3.1: HDLC MAC layer frame format.

Flag field

Contains a start/stop byte for frames. The value of this field is always 0x7E. If two or
more frames are transmitted consecutively, a single flag is used as the start and stop byte
in between the frames.

Frame format field

This field contains three sub-fields. The first sub-field is the frame format type and consists
of the first four bits. In the case of DLMS/COSEM, the frame type is 3. The fifth bit is a
segmentation bit. The 11 remaining bits contain the length of the frame in bytes excluding
start and stop flags.

Destination and source address field

Contains the destination and source address of the frame.

Control field

The control field indicates the type of commands or responses, and it contains sequence
numbers where appropriate.

Header check sequence (HCS) field

The header check sequence is a checksum that is applied only to the header. That is the
bits between the start flag and the HCS. The HCS is calculated in the same way as the
frame check sequence.

18

3.4 DLMS/COSEM

Information field

This field contains the data that is sent using the HDLC protocol if a data frame is sent.
The LLC sublayer frame is included at the start of the information field.

Frame check sequence (FCS) field

The frame check sequence contains a 16-bit checksum calculated on the entire length of
the frame excluding the start and stop flags. An example of an implementation of the 16-
bit FCS is found in [12]. The FCS was originally designed to be implemented in hardware.
Hence it can be calculated bytewise on a transmitted or received byte stream. The receiver
has no way of determining when it has finished calculating the FCS until it detects the stop
flag. Consequently, the FCS is designed so that a particular pattern results when the FCS
calculation operation passes over the complemented FCS in the frame. The frame content
can then be verified by checking that the final result of the FCS calculation is equal to a
specific value defined in [12].

3.3.2 Frame transmission

HDLC frames can be transmitted over both synchronous and asynchronous communica-
tion links. For both synchronous and asynchronous framing, measures are added to avoid
sending a start/stop flag in the middle of a message. The method of solving this is different
for synchronous and asynchronous communication, and it is described in ISO/IEC 13239.

In the case of synchronous transmission, the transmitter uses bit stuffing, which works
by inserting a 0 bit following all sequences of five consecutive 1 bits. The receiver must
examine the content of the frame and discard any 0 bit which comes after five consecutive
1 bits. Consequently, the sequence of bits which forms the flag byte will never be present
in the message.

Asynchronous framing sends one byte at a time and utilizes byte stuffing, alternatively
called control-octet transparency. The standard defines a control octet (byte) as 0x7D. Ev-
ery occurrence of the control octet or flag byte is replaced with the control octet followed
by the original byte with bit number 5 complemented, where bit number 0 is the LSB.
This method results in a 0x7E being replaced by 0x7D 0x5E and a 0x7D being replaced
by 0x7D 0x5D. Consequently, if a receiver receives a control octet, it knows that this byte
is not part of the message, and the fifth bit in the next byte received must be complemented
in order to get the correct value.

3.4 DLMS/COSEM

The EN 13757-1 standard together with IEC 62056, is the most widely accepted interna-
tional standard for utility meter data exchange, and is commonly referred to as DLMS/-

19

Chapter 3. Relevant Standards and Protocols

COSEM. The DLMS/COSEM set of standards is large and complex, and only a small part
of it is presented in this section. The information presented here is mostly based on the
excerpts in [5] and [4]. A deeper understanding of the DLMS/COSEM standards is not
required in order to understand the rest of this thesis.

3.4.1 Specification

Device Language Message Specification (DLMS) is a concept for structured modelling of
the interface of a utility meter. Companion Specification for Energy Metering (COSEM)
sets rules for data exchange with energy meters, including specifications that define the
transport and application layers of the DLMS standard. A three-step approach is specified
by the standard where the steps are as follows.

1. Modelling

2. Messaging

3. Transporting

The modelling step covers the model of the metering equipment and rules for data iden-
tification. This includes specifications of COSEM interface classes, and the OBIS object
identification system, which is a naming system used on COSEM interface objects.

The messaging step covers the communication services and the protocols used to map ele-
ments of the data model from the modelling step to an application layer message. Finally,
the transporting step covers the services and protocols for transportation of messages.

3.4.2 Architecture

The DLMS/COSEM standard is based on a client-server architecture where information is
exchanged between meters and data collection systems. The metering device has the role
of a server while a data collection system is a client. A client can send service requests
to the server, which will respond with a service response. Furthermore, the server can
send unsolicited service requests to the clients containing information about events, or
send data on some conditions, such as a preconfigured time interval. An illustration of the
client-server model and communication is shown in fig. 3.3.

3.4.3 OBIS

An OBIS code is used to identify data items in smart meter equipment, which provides
a unique identifier for all data within a meter. The data includes measurement values
and also includes abstract values used for obtaining information or configuration of the
metering equipment. OBIS codes consist of the six value groups A-F defined in table 3.2,
where value groups D-F are mostly used for further classification of abstract data.

20

3.4 DLMS/COSEM

Figure 3.3: DLMS/COSEM client-server model [5].

Group Use of value Group

A
Identifies the media (energy type) to which the meter is related. Data
not related to a media is handled as abstract and represented by a 0 in
this group.

B

Generally used for identifying the measurement channel number where
a meter has several inputs for the same energy type. Used to identify
data from different sources. It may also identify the communication
channel or some other elements. The definitions in this group are inde-
pendent of value group A.

C
Identifies abstract or physical data items related to the information
source. Examples are current, voltage, power, and temperature. The
definitions depend on the value in group A.

D
Identifies types or the result of the processing of physical quantities
identified by values in value groups A and C, according to various spe-
cific algorithms.

E Identifies further processing or classification of quantities identified by
value groups A-D.

F
Identifies historical values of data identified in value groups A-E ac-
cording to different billing periods. If this is not relevant, this value
group can be used for further classification. Set to 255 if not used.

Table 3.2: OBIS code structure and use of value groups [4].

21

Chapter 3. Relevant Standards and Protocols

An example of OBIS codes is shown in Appendix A, which shows the OBIS codes for the
Kaifa HAN specification together with the corresponding meter measurement values.

3.5 MQTT

MQTT stands for Message Queuing Telemetry Transport and is a publish-subscribe-based
message protocol. It is a lightweight protocol designed with simplicity in mind. As a
result, it is well suited for settings where a small code footprint is required, and network
bandwidth is limited. It follows that MQTT is a protocol well suited for IoT and embedded
devices. There are two major versions of the standard, version 3.1.1 and version 5.0. The
information presented here is based on MQTT version 3.1.1. Documentation for both
versions is available at [18].

3.5.1 Overview

An MQTT system consists of at least one server and clients communicating with the server.
An MQTT server is commonly referred to as an MQTT message broker. All MQTT mes-
sages must go through the server, which means that clients cannot communicate directly
with each other. The MQTT protocol requires the use of transmission protocols that pro-
vides ordered, lossless, bi-directional connections [18].

Data is transmitted using a publish-subscribe pattern, where senders publish a message
which is then transmitted from the server to other clients called subscribers. Information
sent is organized into topics where a publish message must contain a specific topic. When
the server receives this message, it will forward it to any clients subscribed to the same
topic.

An illustration of an MQTT server and clients is shown in fig. 3.4, which shows three
clients connected to an MQTT server. When client1 publishes a message with the topic
temp/room1 it will be received by both client2 and client3. The subscription message from
client2 contains a wildcard character, which means that client2 subscribes to all topics
where the characters before the wildcard character match. For instance, if another client
would publish a message with topic temp/kitchen client2 would receive this message while
client3 would not.

3.5.2 Control packets

A description of all MQTT control packets is shown in table 3.3. The connect packet
includes a keepalive value in seconds. If the client has not sent any control packet to the
server for the duration of the keepalive, the server will disconnect the client. It is the
client’s responsibility to send a packet within the keepalive interval, and in the absence of
any other control packet sent, it can send a ping request (PINGREQ) packet.

22

3.5 MQTT

Server/BrokerClient1 Client2

Client3

Publish
temp/room1

Subscribe temp/room1

Subscribe
temp/#

Figure 3.4: MQTT server and clients example.

Packet type Direction Description
CONNECT Client to server Client request connect
CONNACK Server to client Connect acknowledgment
PUBLISH Both Publish a message
PUBACK Both Publish acknowledgment
PUBREC Both Publish received(only for QoS2)
PUBREL Both Publish released(only for QoS2)

PUBCOMP Both Publish complete(only for QoS2)
SUBSCRIBE Client to server Client subscribe request

SUBACK Server to client Subscribe acknowledgment
UNSUBSCRIBE Client to server Unsubscribe request

UNSUBACK Server to client Unsubscribe acknowledgment
PINGREQ Client to server Ping request
PINGRESP Server to client Ping response

DISCONNECT Client to server Client disconnect from server

Table 3.3: Description of all MQTT control packets [18].

23

Chapter 3. Relevant Standards and Protocols

3.5.3 Quality of Service

MQTT has three different Quality of Service (QoS) levels that can be used with message
delivering. The delivery is symmetric, which means that both the server and a client can
take the role of a sender or receiver. The different delivery protocols in this section are used
for the delivery of a message from a single sender to a single receiver. Consequently, when
the server is forwarding messages to multiple clients, each client is treated as a separate
independent transmission. The QoS levels are explained in table 3.4.

QoS level Description

0
At most once delivery. Message is sent once and de-
livery is as reliable as the underlying transport layer
protocol.

1 At least once delivery. Send the message multiple
times until an acknowledgement is received.

2 Exactly once delivery.

Table 3.4: Description of the MQTT QoS levels.

24

Chapter 4
Specification and Design

This chapter contains a high-level overview of the complete system specification and de-
sign, including the embedded system and the cloud solution. Functional specifications are
included for the embedded system, both hardware, and software and the cloud solution. A
list of acceptance criteria based on the specification is presented for the complete system.
Lastly, the design of the embedded hardware and data collection scheme is presented.

The hardware design presented is mostly based on the design and the results from the
specialization project in [14]. The hardware shall be realized by designing and producing
a custom Printed Circuit Board (PCB).

4.1 Overview

A high-level overview of the system is shown in the context diagram in fig. 4.1, where the
main interactions between the different components are shown. The system is connected
to an AMS meter and a cloud solution. The tasks of the cloud solution are data storage,
monitoring, and possibly data analysis. The embedded system receives HDLC messages
sent using the M-Bus physical layer standard from the AMS meter. The messages trans-
ferred between the system and the cloud are MQTT messages sent using either the TCP or
TLS protocols.

The MQTT protocol should be used as the application layer protocol for communication
between the system and the cloud solution. This choice is based on the low complexity and
resource requirements of the protocol as shown in section 2.3, and more importantly since
almost all popular IoT cloud platform services support or require the usage of MQTT.
The desired transport layer protocol is the TLS protocol, which provides both encryption,
authentication, and reliable transmission [13]. Real-time data concerning power usage is

25

Chapter 4. Specification and Design

AMS messages

Embedded systemAMS meter Cloud solution

AMS data

Figure 4.1: High-level overview of the complete system.

considered sensitive data and should be encrypted. Consequently, the TLS protocol should
be used for data transmission.

The functional specification for the complete system is summarized in the list below.

• Measurement data from the AMS meter is received and processed on the embedded
system.

• The system must be able to send and receive MQTT messages to a cloud solution.

• The TLS protocol is supported.

4.2 Specification

4.2.1 Embedded hardware

The hardware must be able to receive and process messages sent using the physical layer of
the M-Bus standard. This includes the conversion of the M-Bus voltages into appropriate
voltage levels for the MCU chosen. Moreover, it should be able to detect a power loss,
and subsequently, be able to store the most recent measurement values in non-volatile
memory. Notably, the most recent voltage values are of interest when a power loss occurs.
Consequently, the system must be able to have a certain amount of backup power that can
supply the MCU with power while the MCU stores the most recent meter values after a
power loss.

The embedded system hardware should also be able to interact with several different pe-
ripheral units, including a modem/Wi-Fi module. It follows that the PCB to be designed
should be designed as more of a development board than as a finished product. Addition-
ally, by request of the thesis supervisor, the system should also be able to interact with
analog signals, which means that ADC capabilities are required.

The HAN port of the AMS meters is capable of delivering a small amount of power.
Considering that the PCB to be developed should be more of a development board than a
finished product, the power supply should be made external. As a result, the board should
not require an AMS meter for power, and it can be used for other applications as well.

26

4.2 Specification

The hardware specification is summarized in the list below.

• Convert M-Bus voltages down to appropriate levels.

• Must be able to detect a power loss.

• Contain a backup power source for use when a power loss occurs.

• Have some form of non-volatile storage used to store values after a power loss.

• Differential ADC capabilities.

• Enough peripherals to facilitate easy debugging and connection to other devices/-
modules, including 2-3UARTs, SPI and I2C.

4.2.2 Embedded software

The software must be able to process the HDLC messages sent from the AMS meter, and
subsequently extract the measurement values from the messages. A CRC calculation as
described in section 3.3.1 should be performed on the message to verify the correctness
of the content. Additionally, the software must be able to handle two-way communication
with the cloud service using the MQTT protocol, which includes sending measurement
values and receiving control messages from the cloud service. The software must be able
to reconnect to the cloud in the case of a network failure or disconnect.

As sending all measurement values received from the AMS meters would result in a con-
siderable amount of MQTT messages and measurement data sent, the software should
only keep track of average, minimum, and maximum values within some specified time
interval.

The software must also be able to handle a power failure, and subsequently, store the most
recent measurement values in non-volatile memory. On the next startup, the software
should check if there are any measurement values written to non-volatile memory because
of a power failure. If there are any values present, these values must be published to the
cloud service before the system can continue with regular operation.

In addition to the values included in both List 1 and List 2 in Appendix A, there are four
energy usage values sent out every hour which is included in List 3. These values contain
cumulative hourly import and export energy. As these values are only sent out every hour,
a separate MQTT message containing these values should be published to the cloud service
when they are received from the AMS meter.

A summary of the software specification is presented in the list below.

• Process, extract, and verify measurement values from AMS messages.

• Should work with different types of AMS meters.

• Must be able to reliably send and receive messages to the cloud solution using the
MQTT protocol.

27

Chapter 4. Specification and Design

• Keeps track of average, minimum, and maximum values for every measurement
value.

• Should reconnect to the cloud if disconnected.

• Handle a power fail by storing the most recent measurement values in non-volatile
storage.

• Detect a previous power fail at startup and send the power fail data to the cloud.

• Send hourly energy measurement data to the cloud.

4.2.3 Cloud solution

The cloud solution must be able to handle the reception of data from numerous clients at a
time using the MQTT protocol. Additionally, it should have some features for monitoring
and data visualization. It should be reliable with minimal downtime.

Another important factor for choosing a cloud solution is pricing. Ideally, a free IoT cloud
service should be used in the thesis work. Furthermore, the cloud solution should be easy
to use and set up in order to avoid spending too much time on getting the cloud service to
work.

4.3 Acceptance criteria

Based on the functional specifications presented earlier in this chapter, a list of acceptance
criteria for the complete system can be made. An implementation of the system can be
considered successful if all the acceptance criteria presented in table 4.1 are satisfied.
Throughout the thesis, the acceptance criteria are referred to by their label in table 4.1.

28

4.3 Acceptance criteria

Label Acceptance criteria

AC1 The system is able to work with different AMS meter types. That is both
three-phase meters and single-phase meters from different suppliers.

AC2
AMS HDLC messages are received by the embedded system and the
measurement values are extracted from these messages if the message
checksum calculation is correct.

AC3 The system can be connected to a cloud service using the MQTT appli-
cation layer protocol together with the TLS protocol.

AC4 Using the MQTT protocol with support for QoS1 message delivery is
possible.

AC5 The system correctly calculates average, minimum and maximum val-
ues for all meter measurements within some time interval.

AC6
Two-way communication with the cloud is supported, where the mea-
surement sending frequency can be adjusted by sending a message to
all clients from the cloud service.

AC7 In the case of connection/network loss, the system continues to receive
AMS measurement values.

AC8 In the case of connection/network loss, the system will reconnect if pos-
sible.

AC9
Power failures are detected and the most recent voltage values are stored
in non-volatile memory. The system must have enough backup power
to function properly until these values have been stored.

AC10
After a power failure, the voltage values written to non-volatile memory
are sent the the cloud solution before the system continues operating
normally.

AC11 The hourly cumulative energy values in List 3 shown in Appendix A are
sent to the cloud.

AC12 The embedded systems contains extra peripheral interfaces including
UART, SPI, I2C and differential ADC capabilities.

Table 4.1: List of acceptance criteria for the complete system.

29

Chapter 4. Specification and Design

4.4 PCB design

A high-level overview of the PCB design is shown in fig. 4.2. The block containing the
voltage regulator and backup power is responsible for regulating the input from the power
supply and containing some backup power in case of a power outage. The M-Bus to TTL
block must convert the M-Bus voltage, and it must also be able to detect a power loss on
the M-Bus lines. The board should also have some status LEDs for state indication, and
headers for connecting to various peripheral units. This is included in the block containing
IO and LEDs.

PCB

M-Bus to TTL

Voltage regulator
/Backup power

MCU

AMS meter

Power supply

Power
LED

IO and leds

Figure 4.2: High-level design of PCB.

30

4.5 Design of data collection scheme

4.5 Design of data collection scheme

The system should send average, minimum, and maximum values within a time interval
as specified earlier in this chapter. The messages from the embedded system to the cloud
should contain the average, minimum, and maximum for every measurement value the
meter sends out. A list of these values is included in Appendix A. One cycle of this
process for the embedded system is illustrated in fig. 4.3, where the Should send choice
checks if the sending period has been reached and if it is time to send the data. After being
received by the cloud service, the measurement values should be stored for later analysis.

Start

Receive AMS
data

Extract
measurements

Should send?

End

Yes

No

Publish MQTT
message

Figure 4.3: Flowchart illustrating one cycle of data collection for the embedded system.

31

Chapter 4. Specification and Design

32

Chapter 5
Implementation

This chapter contains details on how two embedded systems have been designed and im-
plemented. One of the systems was used for data collection from multiple sources, while
the other system serves as an alternative implementation with different features. The pri-
mary system implemented and used for data collection contains an ATmega324PB as the
MCU. The alternative implementation contains a much more powerful ESP32 chip which
has built-in Wi-Fi capabilities. Throughout the rest of the thesis, the system containing
the ATmega324PB is referred to as the ATmega system, while the system containing the
ESP32 is referred to as the ESP32 system.

Altium Designer has been used to create the schematics and designing the boards presented
in this chapter. Both PCB designs have been implemented as 2-layer PCBs where the
bottom layer has been used as a ground plane. Most of the components chosen are surface
mount, resulting in smaller PCBs and fewer drill holes.

5.1 Hardware ATmega system

The complete schematic for this PCB design is included in Appendix B1, and the corre-
sponding list of components is included in Appendix B2. This design is based on the work
done in [14] with some additions and improvements, for instance, removing dead copper
on the board, changing the power circuit, adding ADC inputs, and improving the routing
of the PCB.

5.1.1 Components

This section presents an overview of the components chosen for the PCB design shown
in Appendix B1. An 11.0592MHz crystal oscillator was chosen as the clock source for

33

Chapter 5. Implementation

the MCU. This frequency was chosen such that the system can easily work with several
different standard baud rate values as this frequency is a multiple of these baud rates.
The three LEDs on the PCB are low-current LEDs which only draws a current of 2mA
each. LEDs D1 and D2 are intended as status LEDs, which can be used by the embedded
software to signal or show the state of the system.

MCU - ATmega324PB

The ATmega324PB was chosen as the MCU for the system as it was in [14]. It is a
high performance 8-bit RISC-based MCU from the AVR family of microcontrollers with
32 KiB flash program memory, 2KiB SRAM, and 1KiB EEPROM. It includes plenty
of digital communication peripherals, for instance, three hardware UART modules, I2C,
SPI, JTAG, and differential ADC. Based on the requirements of the embedded system,
the ATmega324PB should be well suited for implementing the data acquisition software.
Furthermore, all the peripherals result in multiple debugging and connection possibilities.

The AVR microcontroller architecture is based on a modified Harvard architecture, which
means that instruction memory and data memory are separate. An illustration of this ar-
chitecture is shown in fig. 5.1, which shows that flash memory and SRAM memory are
physically separated. The AVR architecture allows for storage of constant values in flash
memory (program memory) which is much larger than the SRAM data memory. This fea-
ture is very useful for storing look-up tables and strings, as they will not take up any of
the SRAM space when stored in program memory. Values stored in the program mem-
ory must be received through special macros defined in the avr-libc library. The software
implementation in section 5.2 has thoroughly placed all strings and constant tables in pro-
gram memory to avoid unnecessary usage of SRAM.

Control unit
Instruction
memory
(FLASH)

Data memory
(SRAM)

Figure 5.1: Harvard computer architecture used in AVR MCUs.

M-Bus transceiver - TSS721A

The TSS721A is an M-Bus transceiver IC developed by Texas Instruments in accordance
with the M-Bus specification. The most important feature of this IC is the conversion of
the M-Bus voltages down to a level which is acceptable for the MCU, that is it works as a
level shifter. In addition to voltage conversion, it has a built-in power failure functionality
that triggers when there is a loss of voltage on the M-Bus lines connected to it, which will
pull one of the pins of the chip low. Additionally, it has an integrated LDO regulator which
can be used to power a low power MCU.

34

5.1 Hardware ATmega system

LDO regulator - LM3940

The voltage regulator chosen is an LDO regulator specifically designed for 5V to 3.3V
conversion, and it can output 1A. The typical dropout voltage of the regulator is 0.5V,
which means it will be able to keep an output voltage of 3.3V with an input voltage as low
as 3.8V.

Wi-Fi module - ESP8266

In order to be able to upload data to the cloud solution, a module containing an ESP8266
chip was chosen. It is a low-cost Wi-Fi module which has support for the TLS 1.2 protocol.
It can be interfaced using AT commands in order to connect and transfer data. The module
chosen for this project is an ESP-01 module which has 1MiB built-in flash memory and the
ESP8266 chip. An SDK is available from espressif which is the producers of the ESP8266
chip. The SDK adds support for flashing custom software to the chip, or modification of
the default software running on the chip.

5.1.2 Power circuit

The schematic for the power circuit is shown in fig. 5.2. The power connector chosen is
a micro-USB connector which should be supplied from a 5V power supply. Both D5 and
D4 are Schottky diodes, where the role of D5 is to prevent the backup power stored in
capacitor C13 to drive the VBUS line backward when the power supply is disconnected.
The D6 diode is a transient-voltage-suppression (TVS) diode used for ESD protection.
The purpose of the resistor R10 is to limit the amount of current used for charging C13.
Schottky diode D4 provides a low-impedance path from C13 to the input of the LDO in
the case of power failure. Both C11 and C12 are capacitors chosen from the information
in the LDO regulator datasheet. Lastly, the power circuit contains the low-current power
LED D3, which should emit light whenever the circuit has power.

VBUS 1

D- 2

D+ 3

ID 4

GND 5

SHLD1 6

SHLD2 7

SHLD3 8

SHLD4 9

SHLD6 11SHLD5 10

J2

10118194-0001LF

GND

GND

VCC

C11
0.47µF D3

TLMS1000

R9

750Ω
IN1 OUT 3

GND 2TAB4

U3 LM3940IMPX-3.3

C13
47000µF

R10
470Ω

D4

LSM115J

C12
220µF

Power

2
1

D6
PESD5V0U1UA

D5

LSM115J

PIC1101
PIC1102

COC11
PIC1201
PIC1202

COC12

PIC1301
PIC1302

COC13

PID301
PID302

COD3

PID401 PID402

COD4

PID501 PID502

COD5

PID601
PID602

COD6

PIJ201
PIJ202
PIJ203
PIJ204

PIJ205

PIJ206

PIJ207
PIJ208

PIJ209

PIJ2010

PIJ2011

COJ2

PIR901 PIR902
COR9

PIR1001

PIR1002

COR10

PIU301

PIU302

PIU303

PIU304

COU3

PIC1102

PID402

PID502

PIR1001
PIU301

PIC1301
PID401

PIR1002
PID301

PIR901 PID501

PID601

PIJ201
PIJ202
PIJ203
PIJ204

PIU304

PIC1101

PIC1201
PIC1202

PIC1302

PID302 PID602
PIJ205

PIJ206

PIJ207
PIJ208

PIJ209

PIJ2010

PIJ2011

PIR902

PIU302

PIU303

Figure 5.2: Power circuit schematic for the ATmega PCB.

The power circuit includes backup power stored in the supercapacitor C13 such that AC9
in section 4.3 can be satisfied. Alternatively, a small battery could have been used as

35

Chapter 5. Implementation

backup power. However, in the case of a power failure, there is no need to keep the
MCU running after storing voltage measurement values in non-volatile memory, as there
is nothing meaningful the MCU can keep doing. The assumption that a power failure
means that the AMS meter will temporarily stop sending data is made. Consequently, the
MCU only needs power for the amount of time it will take to store the most recent voltage
values in MCU EEPROM.

The supercapacitor is located before the LDO regulator as opposed to after for several rea-
sons. The voltage difference tolerated is higher at the regulator input than output. With the
chosen crystal oscillator the MCU will be able to operate until the voltage drops below ap-
proximately 2.7V [15], which gives a voltage difference on the output of 3.3V-2.7V=0.6V.
With a regulator dropout voltage of 0.5V, the voltage difference on the input is approx-
imately 5V-3.8V=1.2V, which means that more energy can be stored in the capacitor by
placing it before the regulator. Additionally, placing the capacitor before allows the regu-
lator to operate normally until the voltage drops below the dropout voltage.

It is important that the supercapacitor can store enough power for the time it will take to
store the voltage values in the EEPROM of the ATmega. The current-voltage relation for
an ideal capacitor is given in eq. (5.1) and eq. (5.2). Further, if the current is constant
and we set t0 = 0, the voltage-current relation is linear and given in eq. (5.3). With the
component values shown in fig. 5.2 and if the part of the circuit after the supercapacitor is
ignored, the time constant of the RC circuit is given by ⌧ = RC = 470⌦ · 47000µF =
22.09s. This number is not accurate since the LDO connected after the capacitor will
affect the electrical characteristics of the circuit when it is activated. However, based on
the calculated time constant, the capacitor should be able to reach its maximum energy
stored in a reasonable amount of time.

I(t) = C
dV (t)

dt
(5.1)

V (t) =
1

C

Z
t

t0

I(⌧)d⌧ + V0 (5.2)

V (t) =
I

C
t+ V0 (5.3)

The Schottky diode D5 has a small forward voltage drop which varies with the amount of
current passing through. Under normal operation conditions at 25�C the voltage drop will
be ranging from approximately 0.1V to 0.2V according to the datasheet. To calculate the
discharge time for the supercapacitor, the V0 voltage is assumed to be 4.8V, and a constant
current draw of 50mA is assumed. This high of a current draw is a high estimate as
the ATmega324PB draws approximately 5-6mA when active with an 11.0592MHz crystal
oscillator [15], the LEDs draw 2mA each, and the voltage regulator will also draw some
current. Using eq. (5.3) the discharge time is calculated to:

t =
C

I
(V � V0) =

47000µF

�50mA
(3.8V � 4.8V) = 0.94s

36

5.1 Hardware ATmega system

By setting the EEPROM write mode of the ATmega to write only, the time to write a
single byte to EEPROM is approximately 1.8ms [15]. Hence, in 0.94s, approximately 522
bytes can be written to EEPROM, which should be more than enough to store multiple
measurement values.

5.1.3 ADC circuit

The possibility of connecting analog signals to the board has been added by request of the
thesis supervisor for possible use in future projects. The schematic is shown in fig. 5.3
where the resistors R11-R14 are protection resistors connected to the differential ADC
input pins of the ATmega. As the ATmega can only handle positive voltages for the ADC
inputs, the resistors R15-R20 serve as voltage dividers. Hence, differential ADC signals
with one negative input can be handled by choosing appropriate resistor values. If there
is no need for differential ADC channels, resistors R15-R16 can be omitted, resulting in
four single channels available for the ADC. Input signals are to be connected to the header
P5 which also has connections to ground. The header P6 shown in Appendix B1 is for
connecting an external ADC reference voltage if this is required.

1 2
3 4
5 6

P5

Header 3X2

R16

R15

R11

R12

R13

R14

R17

R18

R19

R20

GND

ADC3

ADC2

ADC0

ADC1

ADC input

ADC3ADC2
ADC1ADC0

PIP501 PIP502

PIP503 PIP504

PIP505 PIP506

COP5 PIR1101 PIR1102

COR11

PIR1201 PIR1202

COR12

PIR1301 PIR1302

COR13

PIR1401 PIR1402

COR14

PIR1501

PIR1502
COR15

PIR1601

PIR1602
COR16

PIR1701 PIR1702

COR17

PIR1801 PIR1802

COR18

PIR1901 PIR1902

COR19

PIR2001 PIR2002

COR20

PIP503

PIR2001
NLADC0

PIP504

PIR1901
NLADC1

PIP505 PIR1801
NLADC2

PIP506

PIR1701
NLADC3

PIR1101 PIR1502 PIR1702 PIR1102

PIR1201 PIR1501 PIR1802 PIR1202

PIR1301 PIR1602 PIR1902 PIR1302

PIR1401
PIR1601

PIR2002 PIR1402

PIP501 PIP502

Figure 5.3: ADC circuit for the ATmega PCB.

5.1.4 M-Bus conversion circuit

The schematic for the conversion of M-Bus signals is shown in fig. 5.4. This part of the
design is the same as the one used in [14]. The values of resistors and capacitors are
chosen according to the values specified in the datasheet of the TSS721A IC. The BAT pin
on the TSS721A is used to adjust the voltage level of the conversion, and it is connected
to VCC (3.3V). As a result, the M-Bus signals are converted down to 3.3V and sent out
on the TSS721A TX pin. The PF pin is the output of the power failure functionality and is
directly connected to one of the hardware interrupt pins of the ATmega.

Both the TX and RX signals are connected to one of the hardware UARTs of the ATmega.
It is not necessary to connect the RX pin of the TSS721A, as the AMS meters only outputs

37

Chapter 5. Implementation

C

B

R5 220Ω

R4 220Ω

R6

22kΩ

GND

BUSL21

VB2

STC3

RIDD4

PF 5

SC6

TXI7

TX 8

BAT 9

VS10

VDD 11

RX 12

RXI13

RIS14

GND 15

BUSL116
U2

TSS721AD

R7

470Ω VCC

PB2 INT2

P
P

Pin 2 2Pin 1 1
J1

rj45 C7
0.1µF

C10
0.1µFC8

0.1µF

C6
10µF

R8
100kΩ

M-Bus conversion

PIC601
PIC602

COC6
PIC701
PIC702

COC7

PIC801
PIC802

COC8 PIC1001
PIC1002

COC10

PIJ101

PIJ102

COJ1
PIR401 PIR402

COR4

PIR501 PIR502

COR5

PIR601

PIR602
COR6

PIR701

PIR702
COR7

PIR801

PIR802

COR8

PIU201
PIU202
PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209

PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015

PIU2016

COU2

PIC601

PIU203

PIC702

PIU206

PIC802 PIR801

PIU2011

PIJ101 PIR402

PIJ102 PIR502
PIR401 PIU2016

PIR501 PIU201

PIR601

PIU204

PIR701 PIU2014

PIU208

PIU2012

PIU202

PIU207

PIU2010

PIU2013

PIU205

NLPE0 XTAL2
NLPE1 XTAL1

PIC602 PIC701

PIC801
PIC1001
PIC1002 PIR602 PIR702

PIR802

PIU209

PIU2015

Figure 5.4: M-Bus conversion schematic.

data and will not accept any messages from M-Bus slaves. It is worth noting that resistors
R4 and R5 are rated for 0.5W because of the high voltage on the M-Bus lines. Lastly,
the output from the internal LDO on the TSS721A IC is connected to ground through the
resistor R8 as power from the M-Bus lines is not utilized.

5.1.5 Headers and peripherals

Multiple headers are included in the design of the PCB shown in Appendix B2. Header P1
contains general IO pins, I2C, and SPI. P3 is a power header with VCC and GND, and P4
is a JTAG header for programming and debugging. The header P2 has been designed such
that the ESP-01 Wi-Fi module can be inserted directly without the use of any extra wires.
Moreover, P2 contains UART and I2C peripherals.

5.1.6 PCB result

A prototype of the PCB was ordered from JLCPCB in China, and soldering and testing of
the board were performed at NTNU. After the prototype was confirmed working, a batch
of PCBs with all components assembled was ordered from Chinese company Elecrow.
The result is shown in fig. 5.5 which shows the complete system used for data collection
in chapter 6. The dimension of the board is 68.5mm x 44.3mm. The top layer contains
traces and a power plane, while the bottom layer is a ground plane with only a few short
traces.

5.2 Software ATmega system

All the software for ATmega324PB has been developed from the ground up without the
use of any external libraries or operating system. This approach results in a complete

38

5.2 Software ATmega system

Figure 5.5: Assembled ATmega PCB with an ESP-01 Wi-Fi module connected.

understanding of every part of the software and the interactions between software modules.
This section contains an overview of the different software modules and the complete
embedded software. The software modules described in section 5.2.4 and section 5.2.5
are based on work performed in [14] with significant changes and redesigns. The main
program operations is described in section 5.2.8.

The software is written mostly in C with a few inline assembly functions. AVR-GCC is the
toolchain used for compiling and the avrdude tool has been used to flash the program and
set fuse bits using an Atmel-ICE programmer. The software has only been tested with the
ESP-01 Wi-Fi module. However, it should not be too complicated to add support for other
modules as long as they support using AT commands.

Documentation for the code has been added in the form of Doxygen comments in the
source code. The use of Doxygen allows documentation to be generated in an HTML or
PDF file, which can be used to find documentation for all the different module interfaces.

5.2.1 Interrupts and atomic access

The 8-bit architecture of the ATmega324PB means that only operations on 8-bit variables
are guaranteed to be executed atomically. Consequently, any variable larger than 8-bit,
which is modified from an interrupt service routine (ISR), requires interrupts to be disabled
while the program is accessing the variable to guarantee atomic access. This has been
implemented by using the macros for creating atomic blocks defined in util/atomic.h from
the avr-libc library.

39

Chapter 5. Implementation

5.2.2 Timer

The embedded software must be able to handle IO-data from both the AMS meter and
the Wi-Fi module. Therefore, it is useful to have a method of keeping track of time. An
interrupt driven timer which ticks approximately every millisecond has been implemented
using the 8-bit timer/counter module of the ATmega. This module contains a Compare
Match Output Unit which can be used to generate an interrupt when an 8-bit counter
reaches a specific value [15]. With a crystal oscillator frequency of 11.0592MHz and the
timer prescaler set to 64, the match value of the counter to get one tick per millisecond is
calculated below.

0.001s
64

11059200Hz

= 172.8 ⇡ 173

As the compare match register must be set to an 8-bit value, the timer interrupt will ac-
tivate marginally slower than every millisecond when the compare match is set to 173.
This issue is accounted for by adding an extra millisecond to the timer variable every 864
time the interrupt activates, which is precisely when the extra time has added up to one
millisecond. The timer module stores the current timer value in an unsigned 32-bit inte-
ger value, which can be accessed by calling a function called timer ms which returns this
value. Additionally, a delay function using this timer has been implemented, which will
delay for a certain amount of milliseconds.

5.2.3 Watchdog timer

The ATmega324PB contains a watchdog timer which uses an internal separate 128kHz
oscillator. The watchdog has three different operating modes, interrupt, system reset, and
combined interrupt and system reset mode. In interrupt mode, an interrupt is activated
when the counter reaches a time-out value. In system reset mode, the watchdog resets the
system when the timer expires. The third mode is a combination of the two other modes.

The maximum value the watchdog timer can be set to will generate a watchdog time-out
approximately every 8 second. In order to increase the amount of time before a system
reset, the watchdog timer is first activated in interrupt mode. An Interrupt Service Routine
(ISR) which increases a counter is run when the watchdog times-out. If the counter reaches
a set value, the mode of the watchdog timer is switched to system reset mode, and the next
time-out will result in a system reset. Consequently, the watchdog reset timer can be set to
a multiple of 8 seconds if this is desirable.

The primary usage of the watchdog timer is to reset the system after a power failure hap-
pens. Usually a power failure should reset the MCU when the brown-out detection detects
a too low voltage value, however, if the cause of the power failure interrupt is not an actual
power failure, the watchdog is used to reset the MCU. Additionally, it serves as a safety
mechanism if the software gets stuck in an unknown state or infinite loop.

40

5.2 Software ATmega system

5.2.4 Drivers

EEPROM

A simple driver for writing and reading bytes to EEPROM has been implemented. Since
the EEPROM has a limited write/erase cycles of 100,000, unnecessary writes should be
avoided. Reading from EEPROM does not affect the life cycle of the EEPROM. Therefore,
a function called eeprom update, which first checks the current value in the EEPROM
address to be written, has been implemented. If the current value is the same as the one to
be written, the write will not be performed, thus avoiding unnecessary writes.

LEDs

The driver for the status LEDs consists of simple macros for initialization, toggle, set, and
clear functionality. These macros are used to control the two status LEDs on the board,
one yellow and one orange.

UART

The ATmega324PB contains three hardware UART modules. The UART0 is connected
to the TSS721A chip, while UART1 and UART2 are available from the header P2 on the
PCB. The implementation uses UART1 for communication with the Wi-Fi module, while
UART2 is used for printing debugging information. Interrupt driven receive functionality
has been implemented for both UART0 and UART1 inspired by an existing library [11].
The receive interrupt generated when a byte is received will put the byte into a circular
buffer. The module interface includes functions for getting available bytes in the buffer,
flushing the buffer, extracting the byte at the tail end of the buffer, and functions for sending
strings and data through the UART.

AT commands

The AT command set (Hayes command set) is a specific command language originally
developed to interact with modems. The ESP8266 chip used in this system is controlled
by using AT commands. A module for sending AT commands and receiving responses
through UART1 has been implemented. The commands to be sent are strings which are
required to be located in the program memory of the ATmega. Functionality for waiting
for a specific response has also been implemented. Consequently, the result of an AT
command can be confirmed by waiting for a specific response from the Wi-Fi module.
The most common response expected is OK, which indicates that the AT command sent
was executed successfully by the module. Alternatively, an error message is received from
the module.

41

Chapter 5. Implementation

5.2.5 AMS message reception

The AMS messages are received in HDLC frames and are extracted from the UART0
buffer. A function which reads in a complete HDLC frame into a buffer and performs a
checksum calculation as explained in section 3.3.1, has been implemented. The function
has been implemented with a time-out parameter, which means it will return an error code
after the duration of the time-out has passed without receiving a message.

The procedure of reading a message will return a value to indicate if the reception was
successful or not. Reception of a message is successful only if a whole message is received
and the calculated checksum is correct, which results in the value 0 being returned.

An initialization procedure is required for this module to be able to handle messages from
multiple different meter types. The initialization will try to read in HDLC messages until
a message with known length is successfully received. The length of the received message
is used to identify the meter type and used to initialize an array containing offset values.
Subsequently, the offset values are used for measurement value extraction from the HDLC
frames received. Every AMS message contains a timestamp value which is converted into
a UNIX time value.

5.2.6 Power failure

When the power failure interrupt of the TSS721A IC is activated, the most recent voltage
measurement values are stored in the EEPROM of the ATmega. The corresponding ISR
will loop through all the voltage values in a buffer containing recent voltage values, and
write them to EEPROM. After all values have been written, the system will enter an infinite
loop which will cause the system to reset because of the watchdog timer if not reset by
brown-out detection.

The scheme used for storing the data is shown in fig. 5.6 where the size of each field in
bytes is indicated. The flag byte contains two flags, one to indicate if the meter is a three-
phase meter and one to indicate that a power failure has happened. In that way, at system
startup, only the flag byte has to be read to check if a power failure has occurred. The
timestamp values are 32-bit UNIX time values, and each voltage value is a 16-bit value.
Three-phase meters have three voltage values, while single-phase meters only have one.
Consequently, the three-phase flag in the flag byte indicates how many voltage values are
stored for each timestamp. The total number of voltage measurement values to be stored
at a power failure is configurable in the software.

The CRC checksum is calculated using the same method as in section 3.3.1. The checksum
is used to validate the correctness of the measurement data stored in EEPROM, which
is useful if the system was in the middle of writing values to EEPROM when voltage
brown-out detection activated. A measurement is ignored if the CRC calculation fails
when reading the measurement data from EEPROM. Each 16-bit CRC value is associated
with a single timestamp and the voltage values for this timestamp.

42

5.2 Software ATmega system

Start address
EEPROM address

Flag byte
1B

Timestamp 1
4B

Voltage 1-3
2-6B

CRC
2B

Timestamp 2
2-6B

Voltage 1-3
2-6B

CRC
2B

Figure 5.6: Storage of voltage measurement values in EEPROM.

At startup, the system will check for a power failure by extracting the first byte at the
start address for power fail data from EEPROM. This process is illustrated in a flowchart
in fig. 5.7. The process is blocking, which means that if a power failure happens, the
system will continue to try connecting to the MQTT server and uploading the data until
it succeeds. After the data has been successfully sent, the EEPROM will be cleared, and
the EEPROM write mode is set to write only. This halves the writing time of a byte to
EEPROM as the system does not have to perform an erase before a write [15]. After the
power failure process, the system will enter the normal initialization mode explained in
section 5.2.8.

Start Power fail? Goto Init
No

Yes

Extract
measurements
from EEPROM

Connect to MQTT
server Send data Clear EEPROM

Mode= Write only

Figure 5.7: Flowchart showing the power failure check at startup.

5.2.7 MQTT implementation

An MQTT client for communication and transfer of data to the cloud solution has been
implemented. The client supports subscribing and publishing messages using either QoS0
or QoS1. Two buffers are used in the implementation; one send buffer and one receive
buffer. No queuing features are implemented. Hence, the client supports at most one un-
confirmed outgoing message when publishing using QoS1. When using the implemented
client, one should connect to the MQTT server and subscribe to topics before starting to
publish messages.

43

Chapter 5. Implementation

Start

Connected?

End

Check for
received
packets

Check if
connected

Received

Handle packetResend
pending sends

Send PING

Check time
since last

communication

Yes

Time >
KEEPALIVE/2

No

Yes

Yes

No

No

Figure 5.8: Flowchart illustrating one iteration of the mqtt loop function.

44

5.2 Software ATmega system

A function called mqtt loop has been implemented to easily integrate MQTT functionality
into the main program. This function should be called periodically to check for received
packets and maintain the MQTT connection. The tasks of this function are shown in a
flowchart in fig. 5.8. First, the connection will be checked by comparing the time after the
last message sent/received and the MQTT keepalive value. If the client has timed out, the
function will return a value to indicate that a disconnect happened. Multiple actions can
be executed in the handle packet step in fig. 5.8 depending on the packet type received. An
explanation for each packet action is included in table 5.1. Finally, the function checks the
time passed since the last communication with the server. If this time in seconds exceeds
half the value of the keepalive time, an MQTT PINGREQ packet is sent to avoid getting
disconnected.

Packet Action

PUBLISH

If the client has subscribed with QoS1, a publish ac-
knowledgment message is sent back. The payload re-
ceived is written into a receive buffer which must be pro-
vided by the function caller.

PUBACK Clear a pending send flag since the message to be sent has
been acknowledged by the server.

PINGRESP No action needed other than record the time of the re-
ceived packet.

Table 5.1: Software actions corresponding to the MQTT packet received.

5.2.8 Main program operation

A state diagram showing the states of the main program is shown in fig. 5.9. After ini-
tialization is complete, there are only two states the system can be in, the Connected state
and Not connected state. Although the power failure process presented in fig. 5.7 can be
considered a state, it is not included in the state diagram as there are not any software tran-
sitions to this state. The state diagram explains the usage of the status LEDs, where the
orange LED shows if the AMS message initialization process has been completed, while
the yellow one shows if the system is connected to the cloud.

The Init state is reached after initializing all drivers and peripherals and after the power
failure process in section 5.2.6. In this state, the system will continue to try initializing the
AMS message reception module. There is no need for a transition back to the Init state,
as a stop of messages from the AMS meter implies that a power failure has happened, or
the cable to the meter has been pulled out. Both of these events would result in a power
failure interrupt causing a system reset.

In the Not connected state the system will continue to receive AMS messages while it
tries to connect to the cloud. This is illustrated in fig. 5.10, which shows one iteration
of the program in this state. The Handle msg step consists of updating the minimum
and maximum value and adding to a cumulative variable for each of the measurement

45

Chapter 5. Implementation

Init

Not connected

entry/orange LED on

Connected

entry/yellow LED on
exit/yellow LED off

initialize ok

connected

disconnected

Figure 5.9: UML state diagram for the embedded software.

values present in the message. The minimum, maximum, and cumulative values are stored
in a buffer which also holds the timestamp of the latest received message. Only when
the system is connected and manages to subscribe to the MQTT topic freq for receiving
changes to the sending frequency, will the program transition to the Connected state.

Start

AMS msg read Received msg?

Handle msg

Yes

Check if
connected to

Wi-FI AP

No

End

Connected to AP?

Connect to Wi-Fi
AP

Connect to MQTT
server

Yes

No

Connected to
server?

No

Subscripte to
"freq" topic

and set
state=Connected

Yes

Figure 5.10: Flowchart showing one iteration in the Not connected state.

Normal system operation in the Connected state is shown in fig. 5.11. The process of
receiving and extracting measurement values is the same as in the Not connected state.
Following the handling of a possible new AMS message, is a check if the system should
send values to the cloud. This check compares the number of AMS messages received
since the last send to the number of AMS messages expected within the current send
period, where the default send frequency is set to once every minute. If the system should
send the values to the cloud, it will compute the average values for the last period and

46

5.3 Hardware ESP32 system

send the average, minimum and maximum values to the cloud together with the timestamp
value for the most recent AMS message received. All data is sent as raw byte data, which
means the receiver must decode the data in the payload. The MQTT loop block performs
the functionality shown in section 5.2.7. After running the mqtt loop function, the software
checks if an MQTT message was received. If an MQTT message is received on the freq
topic, the software will change the data sending frequency to the value specified in the
message payload. The software only accepts a sending frequency of once every 1-60
minutes.

Start

Connected?Check if still
connected

EndState = Not
connected

No

AMS msg read

Yes

Received msg?

Handle msg

Yes

Check if should
sendNo

Should send?

Calculate
average values

Yes

Send data

MQTT loop
No

Received new
send frequency?

Update send
frequency

Yes

No

Figure 5.11: Flowchart showing one iteration in the Connected state.

5.3 Hardware ESP32 system

The schematic for an alternative hardware implementation for the embedded system is
shown in Appendix C1, and the corresponding component list is included in Appendix
C2. This implementation purposely does not satisfy all the acceptance criteria set in sec-
tion 4.3. It serves as an alternative implementation containing a more powerful process-
ing unit and made exclusively for connecting to the cloud using Wi-Fi. The processing
unit chosen is an ESP32-WROOM-32D module from espressif which contains a powerful
dual-core CPU and is built for use with Bluetooth and Wi-Fi applications. It is the same
processing unit as used in the module presented in section 2.2.

It is worth noting that this module requires a time delay of minimum 50µs in between
when 3.3V is applied to the chip and when the enable pin EN is brought high [7]. This
is accomplished with the capacitor C3 shown in Appendix C1. A tactile push-button is
connected to the EN pin to allow easy resetting of the module, while another button is
connected between IO0 and ground that must be pushed in at startup to enter programming
mode.

5.3.1 Components

The choice of components is very similar to the design in section 5.1. The TSS721A
chip is still used together with a micro-USB and an RJ45 connector. The LDO 5V-3.3V

47

Chapter 5. Implementation

regulator was changed to a cheaper module than the one used in section 5.1. A power
LED, and two status LEDs are included as in section 5.1. Lastly, IO headers connected
to the IO pins of the ESP32-WROOM-32D are included together with a power header,
programming header, and JTAG header.

MCU - ESP32

The ESP32-WROOM-32D module contains an ESP32 chip which designed for use with
2.4GHz Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE). Moreover, it integrates a rich
set of peripherals and sensors, for instance, UART, I2C, SPI, Ethernet, and hall sensors [7].
A list of some of the features of the ESP32-WROOM-32D module is presented below.

• 4MiB flash program memory

• 520KiB SRAM

• Dual core Xtensa 32-bit LX6 microprocessors

• 802.11 b/g/n 2.4GHz Wi-Fi support

• Bluetooth and BLE support

• Ultra low power (ULP) co-processor

5.3.2 PCB result

A PCB prototype was ordered from JLCPB, and soldering was performed at NTNU. The
result is shown in fig. 5.12. The dimension of the board is 63.8mm x 32.9mm. The top
layer contains traces and a wider power trace, while the bottom layer is a ground plane
with only a few traces.

5.4 Software ESP32 system

The software for this system has been developed using the ESP-IDF framework, which is
the official SDK for the ESP32 chip. The SDK uses FreeRTOS as the operating system,
and it includes modules for several protocols, including an MQTT module which was used
in this implementation. The module has been programmed by using the ESP32 toolchain
and a CP2102 USB to UART bridge to flash the program.

The message reading and decoding have been implemented as a FreeRTOS task illustrated
in fig. 5.13. AMS messages are received, converted to the JSON format, and sent to
the cloud. The MQTT module is running as a separate FreeRTOS task which supports
buffering of multiple messages and reliable sending.

48

5.4 Software ESP32 system

Figure 5.12: Assembled ESP32 PCB.

Initialize AMS
msg_reader Start

Receive msg

msg ok?
Yes

No

Convert to
JSON

MQTT send

Figure 5.13: Flowchart showing the actions of the implemented FreeRTOS task.

49

Chapter 5. Implementation

This software implementation relies heavily on the SDK provided as opposed to the imple-
mentation in section 5.2. The AMS message reader module from section 5.2 was ported
to the ESP32 and the ESP-IDF SDK.

5.5 Cloud solution

Amazon Web Services(AWS) IoT was used as the cloud solution for the data collection.
The features available in AWS IoT Core and the AWS management console makes it easy
to register new devices and monitor the activity of the clients. All clients are required
to connect using TLS version 1.2 and have valid credentials which are received when
registering a new device.

AWS IoT allows for easy integration with other AWS features, including cloud computing,
data storage, analytics, machine learning, and more. This is achieved by creating an AWS
lambda rule which can either send the MQTT message received directly to another AWS
service or call a custom function, inputting in data from the MQTT message that triggered
the rule.

5.6 Data collection

Initially, the entire data collection system was planned to be implemented using AWS
services. However, only some of the services are available for free users, and there are
additional limitations for free users. For instance, there is a limit to how many MQTT
messages can be sent and how many data points can be stored in the storage service (Ama-
zon S3). These limitations, together with the time which had to be spent to get familiar
with the different services and implementation methods, resulted in AWS IoT only being
used for monitoring and as the MQTT server.

The figure shown in fig. 5.14 shows the setup for the data collection. An additional client
shown as the data collector is connected to the cloud. The data collector uses the MQTT
topic wildcard character # to subscribe to all data received on the topics avg/, hr/ and pf/
corresponding to average data, hourly energy data and power failure data. As shown in the
figure, all clients have been given a unique identifier added in the topic name(id1 and idn).
This identifier allows the data collector to recognize the sender a message.

The data collector was implemented in python, using the paho-mqtt python package to
connect to the AWS IoT. The python script subscribes to the topics shown in fig. 5.14, re-
ceives MQTT messages, converts the raw data into strings and stores the strings in comma-
separated values (CSV) files. A folder structure is created, where a folder is created for
each client. Subfolders for average, hourly, and power fail data are created, where the CSV
files are stored. Each file contains data for one day where the filename is set to the date
of data reception. This approach to data collection requires a PC or server that can run the
data collector software.

50

5.6 Data collection

AWS IoT

Client 1 Client n

Publish avg/id1 Publish avg/idn

Data collector

subscribe avg/#
subscribe hr/#
subscribe pf/#

Figure 5.14: Illustration of the AMS data collection.

51

Chapter 5. Implementation

52

Chapter 6
Testing and Results

The main focus of this chapter is the testing and results of the ATmega system, as this
was the system used for data collection. The system was tested and verified against the
acceptance criteria in section 4.3. Graphs and plots of data collected are included at the
end of this chapter. Some of the results in section 6.2 are taken from the data collection in
section 6.3 as no data were saved from the tests described in section 6.1.

6.1 Testing procedure

6.1.1 PCB and hardware test

Voltage levels were tested by using a multimeter to measure the voltage at multiple places
on the board. For the testing of the M-Bus converter, the UART0 of the ATmega was used
to read in bytes and printing them to a PC serial console using a UART to USB converter
chip. The ADC circuit was not tested as it was not used in this thesis work.

6.1.2 Power failure test

The power failure functionality testing included a test for the backup power to test against
AC9, and a test of the power failure interrupt functionality testing against AC10. Backup
power was tested by connecting a power supply and charging the supercapacitor for several
minutes before removing power. Subsequently, the time before the system stopped func-
tioning was observed. This was done by continuously printing text to a PC serial console
and checking when the PC would stop to receive proper values. Criteria AC10 was tested
by removing the cable to the AMS meter to simulate a power fail, and wait for the system
to upload the voltage measurement data to the cloud, provided Wi-Fi was available.

53

Chapter 6. Testing and Results

6.1.3 Full System test

A full system test was performed using the smart meter provided by the supervisor and
using a Wi-Fi network shared from a mobile phone. Certificates and keys for the TLS
connection were downloaded from AWS IoT and flashed to the ESP8266 Wi-Fi module.
In addition to monitoring incoming data from the AWS IoT management console, the data
collector software was set up to run on a virtual private server (VPS) hosted at vultr.com.

The test included changing the sending frequency by publishing messages to the topic freq
from the AWS IoT console with different values in the range 1-60 to test against AC6.
Reconnect capabilities were tested by turning the Wi-Fi off and on and checking if the
system would be able to reconnect to AWS IoT, to test against AC7 and AC8. Testing of
the data collector software checked that the software correctly decoded the raw byte data
received and stored the values in CSV files.

Connection to AWS IoT and subscribing and publishing messages with QoS1 tested the
system against AC3 and AC4. Normal running conditions tested the system against AC2,
AC5, and AC11. The criteria AC1 was tested when setting up systems for data collection
in section 6.3.

6.1.4 ESP32 system

A full system test was not performed on this system. The hardware and AMS message
reception were tested by connecting to an AMS meter and confirming the reception of the
messages. Wi-Fi and MQTT functionality were tested by connecting the device to AWS
and subscribing and publishing to different topics.

6.2 Testing results

Not all of the assembled PCBs ordered were tested, although, the hardware of all the tested
boards have been confirmed working. The backup power test confirmed that the backup
power lasted at least one second, which is longer than estimated in section 5.1.2. Correct
uploading of power failure data to the cloud was confirmed by checking that the data
collector received the data and stored it into a CSV file. An example of this is shown in
table 6.1, which shows the power fail data containing the ten latest voltage values, received
from a single-phase meter. The first value is the timestamp in UNIX time, and the second
is the voltage value for the single-phase meter for that timestamp. A three-phase meter
would have three voltage values instead of one.

The system was able to receive MQTT messages on the freq topic and subsequently change
the sending frequency for the measurement values. Connecting to AWS IoT using the TLS
protocol through the ESP8266 chip was successful. After a Wi-Fi disconnect, the system
was able to reconnect to the Wi-Fi AP and AWS IoT.

54

6.2 Testing results

1555567890,227
1555567900,227
1555567910,227
1555567920,227
1555567930,227
1555567940,228
1555567950,227
1555567960,227
1555567970,227
1555567980,227

Table 6.1: Power fail data for a single-phase Kamstrup meter.

AMS data were successfully sent to the cloud, and subsequently, received by the data
logger software and stored in CSV files. Examples of this are shown in table 6.2 and
table 6.3, which shows the average, minimum, and maximum values for both a three-phase
and single-phase meter. The values are sent once every minute, which can be seen from
the difference in the timestamp values. The three-phase meter data contains more values as
there are three current values and three voltage values as opposed to a single-phase meter,
which has only one of each. The values shown in table 6.2 and table 6.3 corresponds to
the measurement values listed in Appendix A where active power in import direction is
the first value after the timestamp. Hourly energy data received is shown in table 6.4.

1557012050,188,187,189,0,0,0,0,0,0,50,49,50,9,9,9,10,10,10,79,79,79,245,244,245,245,245,245,245,245,245
1557012110,187,186,188,0,0,0,0,0,0,49,49,50,9,9,9,10,10,10,79,79,79,244,244,245,245,244,245,245,245,245
1557012170,157,134,187,0,0,0,0,0,0,54,50,56,9,9,9,10,10,10,67,58,79,245,244,245,245,244,245,245,245,245

Table 6.2: Average, minumum and maximum values received from a three-phase Kamstrup meter.

1555975290,901,639,1782,0,0,0,166,165,166,0,0,0,395,284,772,233,232,234
1555975350,708,636,1058,0,0,0,165,164,166,0,0,0,313,283,460,233,233,234
1555975410,948,801,1242,0,0,0,213,157,233,0,0,0,424,367,548,233,233,233

Table 6.3: Average, minumum and maximum values received from a single-phase Kamstrup meter.

6.2.1 ESP32 system

The hardware was confirmed working together with Wi-Fi and MQTT functionality. The
system could successfully subscribe, publish, and receive MQTT messages using the TLS
protocol. The implementation of the FreeRTOS task for reading in AMS messages, con-
verting the message to JSON and sending it to the cloud was only partially completed.
The task implemented caused random crashes, and time limitations were the main rea-
son for not completing the software. However, the individual components were confirmed
working.

55

Chapter 6. Testing and Results

1555830005,3186295,0,534246,1076
1555833605,3186486,0,534302,1076
1555837205,3186641,0,534351,1076

Table 6.4: Hourly cumulative energy values received from a single-phase Kamstrup meter.

6.3 Data collection

6.3.1 Data sources

Three systems were used to collect AMS data from consumers described in table 6.5.
Data were collected from mid-April to approximately the end of May. While two of the
consumers had a Wi-Fi AP very close to the AMS meter, the Wi-Fi AP of the last house
was not placed close to the AMS meter. Therefore, the system would occasionally get
disconnected from the Wi-Fi AP. The meter numbers in table 6.5 are referred to throughout
the rest of the thesis.

The consumers were not in close geographical proximity to each other, where the mini-
mum air distance between any of them was approximately three kilometers. All the prop-
erty owners have agreed to the usage of their AMS meter data in this thesis.

Number Meter type Description Wi-Fi proximity

1 Three-phase
Kamstrup

An apartment in a new
apartment complex with
one resident.

Very close

2 Single-phase
Kamstrup

An older house with two
residents. Far

3 Three-phase
Kamstrup

An older house with two
residents. Very close

Table 6.5: Description of the three consumers used for data collection.

Four additional systems were set up to collect data from Granåsen Toppidrettssenter.
These systems were set up very late during the thesis work in collaboration with another
master’s student. Hence, data from these meters are not presented here. All these meters
were three-phase meters from Kaifa.

A single system was also set up to acquire data from a smart meter at Pirbadet in Trond-
heim in collaboration with another master’s student. The meter is located deep in the
basement without the possibility of Wi-Fi or mobile signals. As a result, the system was
connected directly to a PC through a UART to USB converter chip in order to store the
measurement data locally on the PC.

56

6.3 Data collection

6.3.2 Graphs

Most of the graphs in this section have been smoothed using a moving average filter to
reduce noise and spikes in the graphs. The span of this moving average filter is set to the
last 50 values for all graphs except fig. 6.7 which uses a span of 210 values. The graphs
showing the correlation between variables in fig. 6.5 and fig. 6.8 use non-smoothed data.
Correlation data is presented together with the Pearson Correlation Coefficient, which is
a measure of the linear correlation between two variables. A correlation coefficient of 0
indicates no correlation, -1 indicates a total negative linear correlation, while 1 indicates a
total positive linear correlation.

Figure 6.1 shows active power data collected from meter number 2 during April 28 and
fig. 6.2 shows normalized average active power, current and voltage data from the same
day. The values have been normalized between 0 and 1, where 0 is the minimum value
from the data set, and 1 is the maximum value.

Apr 28, 06:00 Apr 28, 12:00 Apr 28, 18:00 Apr 29, 00:00

Time 2019

1500

2000

2500

3000

3500

4000

4500

A
ct

iv
e

 P
o

w
e

r
[W

]

Active Power

Average

Minimum

Maximum

Figure 6.1: Average, minimum and maximum imported active power from meter 2 for one day.

In fig. 6.3 the average voltage values for all three meters is shown for April 28. Since the
two three-phase meters contain one voltage value for each phase, the average of these three
average values is calculated and used in the graph. Figure 6.4 shows the same data when
each data set is normalized in the range 0 to 1 where 0 is minimum, and 1 is maximum.
The plot in fig. 6.5 shows the correlation between the normalized voltage values shown
in fig. 6.4 where V1 is the voltage values from meter 1, V2 is from meter 2 and V3 is
from meter 3. Histograms of the variables are along the diagonal of the figure and scatter
plots between the variables appear off the diagonal. The reason for the larger intervals

57

Chapter 6. Testing and Results

Apr 28, 06:00 Apr 28, 12:00 Apr 28, 18:00 Apr 29, 00:00

Time 2019

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Active Power, Current and Voltage Normalized

Active power

Current

Voltage

Figure 6.2: Normalized average imported active power, instantaneous current (RMS) and voltage
from meter 2 for one day.

between the histogram bars for the data from meter 2, is that these voltage values are
integer numbers while the values from meter 1 and meter 3 are not integer values because
of the average calculation performed on these values.

The graphs in fig. 6.6 and fig. 6.7 shows average voltage and normalized average voltage
data from meter 1 and meter 3 for one week. Correlation between the two data sets is
shown in fig. 6.8 which uses the average voltage data shown in fig. 6.7. The histogram x-
axis in fig. 6.8 and fig. 6.5 is somewhat misleading. The rightmost bar is always a bucket
up to and including 1 while the leftmost is always a bucket from 0. This relation is not
shown clearly in these two figures.

58

6.3 Data collection

Apr 28, 06:00 Apr 28, 12:00 Apr 28, 18:00 Apr 29, 00:00

Time 2019

226

228

230

232

234

236

238

240

242

244

246

V
o

lta
g

e
 [

V
]

Average Voltage

Meter1

Meter2

Meter3

Figure 6.3: Average voltage from all three meters for one day.

Apr 28, 06:00 Apr 28, 12:00 Apr 28, 18:00 Apr 29, 00:00

Time 2019

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
o

lta
g

e

Average Voltage Normalized

Meter1

Meter2

Meter3

Figure 6.4: Normalized average voltage from all three meters for one day.

59

Chapter 6. Testing and Results

Figure 6.5: Correlation plot for the average voltage values in fig. 6.4.

Apr 29 Apr 30 May 01 May 02 May 03 May 04 May 05

Time 2019

225

230

235

240

245

250

V
o

lta
g

e
 [

V
]

Average Voltage

Meter1

Meter3

Figure 6.6: Average voltage from two meters for one week.

60

6.3 Data collection

Apr 29 Apr 30 May 01 May 02 May 03 May 04 May 05

Time 2019

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
o

lta
g

e

Average Voltage Normalized

Meter1

Meter3

Figure 6.7: Normalized average voltage from two meters for one week.

Figure 6.8: Correlation plot for the average voltage values in fig. 6.7.

61

Chapter 6. Testing and Results

62

Chapter 7
Discussion

The discussion chapter contains a discussion of the ATmega system results and perfor-
mance, comparing it to the acceptance criteria set in section 4.3. A discussion of the
results and potential of the ESP32 system is included. A discussion and a short analysis
concerning the data collected and presented in section 6.3 is included. Furthermore, in-
consistencies with the AMS standards are discussed, and lastly, a discussion on potential
improvements is presented.

7.1 System results

The data collection and the testing results proved that the system was able to satisfy most
of the acceptance criteria in section 4.3. AMS data were collected from single-phase
and three-phase meters from both Kaifa and Kamstrup, proving that the system was able
to work with different meter types, thus satisfying AC1. The data processing and AMS
message reception were implemented successfully, which is shown from the data presented
in fig. 6.1, satisfying AC2 and AC5. Both AC3 and AC4 were satisfied by connecting to
AWS and subscribing and publishing messages using QoS1. The power fail functionality
was proven working by the results of the testing, satisfying AC9 and AC10. However, one
issue discussed in section 7.1.1 was discovered during data collection.

The ability to adjust the data sending frequency was successful during testing, thus satisfy-
ing AC6. During the data collection, the sending frequency was kept at the default value,
which is set to once every minute. Criteria AC7 and AC8 were satisfied by the perfor-
mance of the system connected to meter 2. Although frequently losing Wi-Fi connection,
it was always able to reconnect and continue to send data. Network loss is discussed more
thoroughly in section 7.1.2, where a connection issue is also discussed.

Criteria AC12 was satisfied by choosing the ATmega324PB as the MCU of the system.

63

Chapter 7. Discussion

The hourly energy values received from the AMS meters were successfully sent to the
cloud, thus satisfying AC11.

7.1.1 Power failure

No power fail data were received from meter 1 and meter 3, while power failure data were
received from meter 2 eleven times during the data collection. It is known for a fact that
the household did not experience power outages as often as indicated by the power failure
data, which means at least some of the power failures were false. Nothing of interest
was found when inspecting the voltage values in the power failure data, which contained
voltage values from the 90 seconds before a power failure.

It is unknown why the system reported this many power failures. The system would en-
ter power failure mode only if the power failure interrupt pin on the TSS721A chip was
activated, which limits the possible causes of these power fails. One possible explanation
could be as simple as a weak cable from the AMS meter to the embedded system. This
could possibly cause the M-Bus voltages to drop momentarily, causing the power failure
functionality of the TSS721A to activate. Alternatively, it could be an issue with this spe-
cific meter or embedded hardware since the systems at the other two meters never sent in
power failure data.

7.1.2 Loss of Wi-Fi connection

The system set up at meter 2 had a weak Wi-Fi connection causing the connection to drop
out occasionally. Usually, it managed to reconnect quickly, although, on some occasions,
the system lost connection for several hours. Despite the frequent loss of Wi-Fi connec-
tion, the system was always able to reconnect and never had to be manually reset, thus
confirming that AC8 was satisfied.

Although two of the systems set up never had any problems with reconnecting, the system
set up at meter 3 had to be manually restarted once. It was confirmed that the yellow LED
was turned off, indicating that the system was in the Not connected state and unable to
reconnect. Although the cause of this problem was not identified, one possible explanation
is that the Wi-Fi module failed to reconnect to the Wi-Fi AP. Another possible cause could
be an issue with the wireless router. After discovering this issue, a reconnect counter was
added in the software. If this counter reaches a specific value, the Wi-Fi module will be
reset by the ATmega.

7.1.3 ESP32 system

Although this system was not finished and will not be able to satisfy all of the accep-
tance criteria, the integrated Wi-Fi functionality results in several advantages compared
to the system with the ATmega. The SDK available for the ESP32 chip allows to easily
integrate several protocols and components into the software. The SDK support for the

64

7.2 Data analysis

MQTT protocol and Wi-Fi functionality made it easy to use these features for this system.
Additionally, the SDK is very actively developed with new features and improvements
getting added regularly. The SDK supports registering event handlers to handle specific
events like a Wi-Fi event handler and MQTT event handler. In this way, automatic Wi-Fi
reconnecting can easily be implemented. The MQTT event handler can be used to auto-
matically subscribe to specific topics when the client manages to connect to the server.
These features can result in the system satisfying AC8.

As a result of the usage of FreeRTOS in the SDK, multiple tasks can be created. The
AMS message reception was separated into a task, which can satisfy AC7. The multi-
core architecture also allows for running tasks in parallel in addition to concurrently.
The large size of the flash memory and SRAM available makes it possible to implement
more advanced functionality requiring more resources than what is possible with the AT-
mega324PB MCU. This was utilized by using the JSON format to send data to the cloud.
By sending every single AMS message to the cloud, the data processing part is moved
from the embedded system to the cloud solution.

This system does not include backup power to handle a power failure. Hence AC9 and
AC10 are not satisfied. Criteria AC12 is satisfied by this system, except for differential
ADC capabilities. The rest of the acceptance criteria could be considered satisfied if the
software were to be finished, although, more development and testing of the system should
have been conducted to verify this.

Despite not being used for data collection, this system contains a powerful processor and
a large SDK which can be used to implement more complex software. An additional
supported feature is over the air (OTA) updates, which means that firmware updates can
be distributed to active systems through the internet. This feature can be very useful if a
large number of active systems needs a software update. When collecting AMS data using
Wi-Fi, this system might be considered a better solution than the ATmega system despite
satisfying less of the acceptance criteria. If this system is to be used, it should be relatively
easy to complete the embedded software and get a fully working system.

7.2 Data analysis

The main focus of the data presented in section 6.3 is voltage values, as these can be used
to analyze the state and load of the distribution network. Other measurement values like
instantaneous current, power values, and cumulative energy values are more of interest
when analyzing a consumers power usage as opposed to analyzing the distribution net-
work. Power values would be more interesting if data were collected from geographically
adjacent consumers, as the relationship between power usage and voltage values could be
analyzed for that area. The voltage values for an entire week was only plotted for meter 1
and meter 3 since the data sets contained considerably more data points than the data set
from meter 2. The weak Wi-Fi connection from the system at meter 2 was the reason for
this.

The graph in fig. 6.2 shows that the active power is very closely related to the instantaneous

65

Chapter 7. Discussion

current draw as expected. Figure 6.3 and fig. 6.4 shows that the variation in the voltage
values are very similar for all three meters. The correlation plot in fig. 6.5 shows that
there is a high correlation between the voltage values from the different meters, especially
between meter 1 and meter 3. All three correlation coefficients are significantly higher
than 0, which confirms the strong correlation seen in the graphs.

A larger amount of data is shown in fig. 6.6 and fig. 6.7 which shows the average voltage
values from meter 1 and meter 2 for one week. As can be seen from the graphs, there is
a clear trend of higher voltage values at night and lower voltage levels in the morning and
afternoon/evening. This trend is as expected since the distribution network load normally
peaks during the times where the voltage is the lowest. The correlation in fig. 6.8 is not as
high as fig. 6.5, however, the correlation coefficient is still significant enough to conclude
that there is a clear trend between the two voltage values. If the correlation coefficient is
computed using the smoothed data used to plot fig. 6.7, it increases from 0.46 to 0.54.

From the analysis of the collected data, it is apparent that there is a trend in the variation
of the voltage values for the three meters. It is reasonable to assume that this trend is
the same independent of geographical location, as it is highly related to the network load
caused by power consumption. A higher network load causes a higher voltage drop from
transformers to the consumers. The network load is lowest during the night when the least
amount of power is consumed, and highest during the morning and afternoon/evening,
which is when power consumption reaches a high point.

The methods for error detection and topology estimation presented in section 2.1 could
not be applied to the data collected. A HIF as discussed in section 2.1 seldom happens,
and the methods presented for detecting a HIF are best suited for simulations. Detecting
topology errors in the distribution network require information concerning the topology
data of the distribution operator, which is not freely available. However, the work done in
[3] indicates that the smart meter data can be used for this purpose.

7.3 AMS standards inconsistencies

The inconsistencies between AMS suppliers in the implementation of the different AMS
standards were also discussed in [14]. It seems as the three AMS meter suppliers have
interpreted the DLMS/COSEM standards differently, which has resulted in different AMS
message format for each supplier. This issue is confirmed by checking the different OBIS
lists available at [2]. As an example of these inconsistencies, the OBIS codes for each
measurement value is included in messages from Kamstrup and Aidon meters, while they
are omitted from Kaifa messages. Furthermore, the Kamstrup and Aidon formats are not
similar at all.

Another problem discussed in [14] was that the HDLC message format was not in ac-
cordance with the HDLC message format as described in IEC 62056-46. This issue was
clarified in an email correspondence with ”Norsk Elektroteknisk Komite” (NEK) which is
responsible for the Norwegian AMS standard. Appendix D shows the email received from
NEK with all names anonymized. The full version of the DLMS/COSEM standard is not

66

7.4 Improvement potential

freely available, and the chapter containing the information in Appendix D is not available
in the free excerpt in [5].

Overall, these issues did not have a significant impact on the implementation. Making the
software able to handle different meter types required some extra work. The initialization
procedure will now handle detecting the meter type and initializing variables later used to
extract meter values from the AMS messages. The implementation supports both Kaifa
and Kamstrup meters, and support for Aidon meters can easily be added.

7.4 Improvement potential

Connectivity

The usage of Wi-Fi requires a Wi-Fi AP nearby to where the AMS meter is located. An-
other possibility is to use the cellular network instead as this can be considered more
reliable than using Wi-Fi. The new nRF91 series from Nordic Semiconductor is a system-
in-package with integrated cellular network functionality which can be considered for this
application. This would require the development of a new PCB containing a nRF91 mod-
ule as the processing unit. A disadvantage of 4G equipment is the increased price of
components. Alternatively, if neither Wi-Fi or 4G reception is available, a form of local
flash storage could be used to hold some measurement values. This option would also
require a redesign of the PCB.

If Wi-Fi is to be used for data collection, the system containing the ESP32 chip can be
considered more reliable and has more features and possibilities than the ATmega system
used for data collection in this thesis. The completion of development and testing and
possibly redesigning the ESP32 system should be considered if Wi-Fi is going to be used.

Despite the weaknesses of using Wi-Fi, it has some advantages as well. If a smart meter is
located in a basement or another location without cellular reception, Wi-Fi might still be
available. The systems set up at Granåsen Toppidrettssenter are located in a room in the
basement with limited cellular reception. The systems were here connected to a 4G LTE
modem using Wi-Fi. It is unknown if a built-in cellular modem and antenna on the PCB
would be powerful enough to connect to the cellular network from this room. The 4G LTE
modem used was able to establish a connection despite the weak cellular reception in the
room.

Software ATmega

Although the ATmega system was able to satisfy all acceptance criteria, there is potential
for improving the software. One rare bug was detected, which caused the system to send
the same MQTT message twice to the cloud. As a result, the python script used to store
measurement values to CSV files, stored two identical measurements. The source of this
bug was not found. However, it did not cause any other problems. There are several

67

Chapter 7. Discussion

modules and sections of software with improvement potential, where most of them have
been marked with a ”TODO” comment in the source code.

Hardware

The possibility of powering the system directly from the M-Bus lines should be explored.
Drawing power solely from the M-Bus lines would most likely require a significant re-
design where the TSS721A chip is dropped, as its maximum LDO regulator current output
is less than 1mA. Furthermore, if the PCB should contain either cellular or Wi-Fi capa-
bilities, drawing power from the M-Bus would require the usage of sleep or low-power
modes for the processing unit and a chargeable power source on the board. This is re-
quired since the maximum current which can be drawn from the meter can be as low as
6mA for Kamstrup meters. However, the solution reviewed in section 2.2 shows that this
is possible with a Wi-Fi module. Powering directly from the M-Bus is advantageous as
there would be no need for an external power supply, and only one cable would be needed
to set up the system. Lastly, a protective cover should be produced to protect the hardware
from damage and coming into contact with other surfaces.

Utilization of Cloud service

The AWS cloud service was mainly used as an MQTT server and as a monitoring tool in
this thesis work. The other possibilities of this cloud service can be explored. Alterna-
tively, a different cloud service could be used. Data analysis and visualization in the cloud
should be looked into, although the data collection scheme storing data in CSV files were
very useful for data analysis. Real-time visualization of measurement data performed by
the cloud service could be useful for further monitoring.

68

Chapter 8
Conclusion

Two embedded system designs for data acquisition from AMS meters have been suggested
and implemented in this thesis. Both systems can receive and process data from an AMS
meter and send this data to a cloud service using Wi-Fi and the MQTT protocol over a
secure TLS connection.

Several complete assembled boards were ordered for the ATmega system, which were used
for data collection from multiple sources. The software development for the alternative
ESP32 system was not finished, while the hardware of this system was confirmed working.
The data collection was implemented by calculating the average, minimum, and maximum
values of all the meter measurement values within some time interval. Subsequently, these
values were sent to the cloud solution and received by a program which stored the values
in CSV files.

All the acceptance criteria defined for the complete system were mostly satisfied by the
ATmega system used for data collection. However, some smaller issues were found related
to loss of Wi-Fi connection and the power failure functionality of the system. Overall,
these issues did not impact the results of data collection in a significant way.

Although not enough data were collected to perform a more extensive analysis of the dis-
tribution network, a significant trend in the variation in voltage values at consumers was
found from the collected data. A larger scale data collection from consumers in close prox-
imity to each other should be performed to be able to perform a more thorough analysis of
the surrounding distribution network.

69

Chapter 8. Conclusion

70

Chapter 9
Further work

The list of suggested work presented below is mostly based on the discussions in sec-
tion 7.4. Two of the points are related to data collection in order to analyze the distribution
network using the AMS data.

Suggestions

• A redesign of hardware containing a built-in cellular module for com-
municating with the cloud.

• Look into the possibility of powering the board from the M-Bus lines.

• Utilize features of a cloud service for visualization and analysis in
real-time.

• Collect data from more consumers, preferably in close proximity and
connected to the same transformer.

• Collect data from a consumer delivering power to the distribution net-
work through local energy production.

• Create a cover enclosing the PCB to protect the hardware.

71

Chapter 9. Further work

72

Bibliography

[1] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. Internet of Things: A Survey on Enabling Technologies, Protocols,
and Applications. IEEE Communications Surveys & Tutorials, 17(4):2347–2376,
2015.

[2] Informasjon til utviklere — Norsk Elektroteknisk Komite (NEK). https://www.
nek.no/info-ams-han-utviklere/. Last visited 2019-05-20.

[3] Anders Hylen Klippenberg. Bruk av nye sensorer og AMS i distribusjonsnettet for a
validere netttopologi. Master’s thesis, NTNU, 2018.

[4] DLMS User Association. COSEM Interface Classes and OBIS Object Iden-
tification System/Blue Book (Excerpt). https://www.dlms.com/files/
Blue-Book-Ed-122-Excerpt.pdf. Last visited 2019-03-18.

[5] DLMS User Association. DLMS/COSEM Architecture and Proto-
cols/Green Book (Excerpt). https://www.dlms.com/files/
Green-Book-Ed-83-Excerpt.pdf. Last visited 2019-03-18.

[6] Soham Chakraborty and Sarasij Das. Application of Smart Meters in High
Impedance Fault Detection on Distribution Systems. IEEE Transactions on Smart
Grid, 10(3):3465–3473, may 2019.

[7] Espressif Systems. ESP32 Series Datasheet. https://www.espressif.
com/sites/default/files/documentation/esp32_datasheet_
en.pdf. Last visited 2019-05-10.

[8] H. Farhangi. The path of the smart grid. IEEE Power and Energy Magazine, 8(1):18–
28, jan 2010.

[9] Amin Ghaderi, Herbert L. Ginn, and Hossein Ali Mohammadpour. High impedance
fault detection: A review. Electric Power Systems Research, 143:376–388, feb 2017.

[10] Amin Ghaderi, Hossein Ali Mohammadpour, Herbert L. Ginn, and Yong-June

73

https://www.nek.no/info-ams-han-utviklere/
https://www.nek.no/info-ams-han-utviklere/
https://www.dlms.com/files/Blue-Book-Ed-122-Excerpt.pdf
https://www.dlms.com/files/Blue-Book-Ed-122-Excerpt.pdf
https://www.dlms.com/files/Green-Book-Ed-83-Excerpt.pdf
https://www.dlms.com/files/Green-Book-Ed-83-Excerpt.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

Shin. High-Impedance Fault Detection in the Distribution Network Using the Time-
Frequency-Based Algorithm. IEEE Transactions on Power Delivery, 30(3):1260–
1268, jun 2015.

[11] Andy Gock. avr-uart. https://github.com/andygock/avr-uart. Last
visited 2019-05-24.

[12] Network Working Group. PPP in HDLC-like Framing. https://tools.ietf.
org/html/rfc1662. Last visited 2019-04-25.

[13] Internet Engineering Task Force (IETF). The Transport Layer Security (TLS) Pro-
tocol Version 1.3. https://tools.ietf.org/html/rfc8446. Last visited
2019-04-25.

[14] Marius Lervik. Development of an embedded system for reading a wired M-Bus.
Specialization project report, 2018.

[15] Microchip. ATmega324PB Datasheet. http://ww1.microchip.com/
downloads/en/DeviceDoc/40001908A.pdf. Last visited 2019-05-07.

[16] Energi Norge. Nettstruktur og organisering. https://www.
energinorge.no/fagomrader/stromnett/kraftsystemet/
nettstruktur-og-organisering/. Last visited 2019-03-07.

[17] NVE. Smarte strømmålere (AMS). https://www.nve.no/stromkunde/
smarte-strommalere-ams/. Last visited 2019-03-21.

[18] OASIS. MQTT documentation. http://docs.oasis-open.org/mqtt/
mqtt/. Last visited 2019-04-25.

[19] Øivind Kristian Rue. Smarte Nett. https://www.statnett.
no/contentassets/18e85c65282144d4af72f7ccf805cf2c/
smarte-nett.pdf. Last visited 2019-03-14.

[20] Electricity grid simple. https://commons.wikimedia.org/wiki/File:
Electricity_grid_simple-_North_America.svg. Last visited 2019-
05-09.

[21] Tibber Pulse - MQTT? - Strømsparing - Hjemmeautomasjon.
https://www.hjemmeautomasjon.no/forums/topic/
4255-tibber-pulse-mqtt/. Last visited 2019-03-17.

[22] M-Bus Usergroup. The M-Bus: A Documentation Rev. 4.8. http://www.
m-bus.com/mbusdoc/default.php. Last visited 2019-01-25.

[23] Francinei L. Vieira, Jose M. C. Filho, Paulo M. Silveira, Carlos A. V. Guerrero,
and Marino P. Leite. High impedance fault detection and location in distribution
networks using smart meters. In 2018 18th International Conference on Harmonics
and Quality of Power (ICHQP), pages 1–6. IEEE, may 2018.

[24] C.G. Wester. High impedance fault detection on distribution systems. In 1998 Rural

74

https://github.com/andygock/avr-uart
https://tools.ietf.org/html/rfc1662
https://tools.ietf.org/html/rfc1662
https://tools.ietf.org/html/rfc8446
http://ww1.microchip.com/downloads/en/DeviceDoc/40001908A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001908A.pdf
https://www.energinorge.no/fagomrader/stromnett/kraftsystemet/nettstruktur-og-organisering/
https://www.energinorge.no/fagomrader/stromnett/kraftsystemet/nettstruktur-og-organisering/
https://www.energinorge.no/fagomrader/stromnett/kraftsystemet/nettstruktur-og-organisering/
https://www.nve.no/stromkunde/smarte-strommalere-ams/
https://www.nve.no/stromkunde/smarte-strommalere-ams/
http://docs.oasis-open.org/mqtt/mqtt/
http://docs.oasis-open.org/mqtt/mqtt/
https://www.statnett.no/contentassets/18e85c65282144d4af72f7ccf805cf2c/smarte-nett.pdf
https://www.statnett.no/contentassets/18e85c65282144d4af72f7ccf805cf2c/smarte-nett.pdf
https://www.statnett.no/contentassets/18e85c65282144d4af72f7ccf805cf2c/smarte-nett.pdf
https://commons.wikimedia.org/wiki/File:Electricity_grid_simple-_North_America.svg
https://commons.wikimedia.org/wiki/File:Electricity_grid_simple-_North_America.svg
https://www.hjemmeautomasjon.no/forums/topic/4255-tibber-pulse-mqtt/
https://www.hjemmeautomasjon.no/forums/topic/4255-tibber-pulse-mqtt/
http://www.m-bus.com/mbusdoc/default.php
http://www.m-bus.com/mbusdoc/default.php

Electric Power Conference Presented at 42nd Annual Conference, pages c5–1–5.
IEEE, 1998.

[25] Tetsuya Yokotani and Yuya Sasaki. Comparison with HTTP and MQTT on required
network resources for IoT. In 2016 International Conference on Control, Electronics,
Renewable Energy and Communications (ICCEREC), pages 1–6. IEEE, sep 2016.

75

Meter type

Norwegian HAN spesification - OBIS List Information

B

Item
A

Baudrate M-BUS (HAN)
List 1 Stream out every

2400
2 seconds

C

J
K

D

RemarksDescription Value
File name
List version - date

M List 2 Stream out every 10 seconds
N

O

P

List 3 Stream out every

HAN maximum power to HEMS (mW)
HAN maximum current to HEMS (mA)

1 hour

500 mW
21 mA

All

Filename : OBIS List identifier.xlsx . Format for publication is pdf.
DD.MM.YYYY
Shall be identical to corresponding OBIS code value in the meterOBIS List version identifier

KFM_001.xlsx
09.11.2018
KFM_001

The values is generated at XX:00:00 and streamed out from the HAN interface 10
seconds later (XX:00:10)
The largest power that the customer equipment (HEMS or display) can consume
from the meter HAN interface

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 1

Appendix A: Kaifa HAN specification

76

1 2 3 A B C D E F Unit Scaler

1 1 0 1 7 0 255 W 0
1 1 1 1 0 2 129 255
2 2 0 0 96 1 0 255
3 3 0 0 96 1 7 255
4 4 1 0 1 7 0 255 W 0
5 5 1 0 2 7 0 255 Active power - (Q2+Q3) W 0
6 6 1 0 3 7 0 255 Var 0
7 7 1 0 4 7 0 255 Var 0
8 8 1 0 31 7 0 255 A -3
9 9 1 0 51 7 0 255 A -3

10 10 1 0 71 7 0 255 A -3
11 11 1 0 32 7 0 255 V -1
12 12 1 0 52 7 0 255 V -1
13 13 1 0 72 7 0 255 V -1

14 0 0 1 0 0 255
15 1 0 1 8 0 255 Wh 0
16 1 0 2 8 0 255 Wh 0
17 1 0 3 8 0 255 VArh 0
18 1 0 4 8 0 255 VArh 0

KFM_001

Norwegian HAN spesification - OBIS Codes
OBIS List version identifier:

1
2
3

OBIS List version identifier
Meter -ID (GIAI GS1 -16 digit)

List number Attributes Item Object nameOBIS Code - Group Value

Active power+ (Q1+Q4)

Numb.

9
10
11
12
13

4
5
6
7
8

double-long-unsigned
double-long-unsigned
double-long-unsigned
double-long-unsigned 14

15
16
17
18

double-long-unsigned
octet-String

Data type

octet-String
octet-String
double-long-unsigned
double-long-unsigned
double-long-unsigned
double-long-unsigned

Meter type
Active power+ (Q1+Q4)

Reactive power + (Q1+Q2)
Reactive power - (Q3+Q4)

octet-String
double-long-unsigned
double-long-unsigned
double-long-unsigned
double-long-unsigned

ULN3 Phase voltage 4W meter , Line voltage 3W meter
Clock and date in meter
Cumulative hourly active import energy (A+) (Q1+Q4)
Cumulative hourly active export energy (A-)(Q2+Q3)
Cumulative hourly reactive import energy (R+) (Q1+Q2)

IL1 Current phase L1
IL2 Current phase L2
IL3 Current phase L3
ULN1 Phase voltage 4W meter , Line voltage 3W meter
ULN2 Phase voltage 4W meter , Line voltage 3W meter

19

double-long-unsigned
double-long-unsigned

Cumulative hourly reactive export energy (R-) (Q3+Q4)

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 2

77

1 2 3 A B C D E F
1 1 0 1 7 0 255

1 1 1 1 0 2 129 255 X X X X X
2 2 0 0 96 1 0 255 X X X X X
3 3 0 0 96 1 7 255 X X X X X
4 4 1 0 1 7 0 255 X X X X X
5 5 1 0 2 7 0 255 Active power - (Q2+Q3) X X X X X
6 6 1 0 3 7 0 255 X X X X X
7 7 1 0 4 7 0 255 X X X X X
8 8 1 0 31 7 0 255 X X X X X
9 9 1 0 51 7 0 255 NA X X M1 X

10 10 1 0 71 7 0 255 NA X X X X
11 11 1 0 32 7 0 255 X X X X X
12 12 1 0 52 7 0 255 NA M2 X M2 X
13 13 1 0 72 7 0 255 NA X X X X

14 0 0 1 0 0 255 X X X X X
15 1 0 1 8 0 255 X X X X X
16 1 0 2 8 0 255 X X X X X
17 1 0 3 8 0 255 X X X X X
18 1 0 4 8 0 255 X X X X X

M1
M2DCM

DCM
DCM
CTM
CTM

Meter type Voltage Current Connection

3x230/400V

MA105H2E
3x230 V

3x230 V
3x230/400V

5(80) A
5(100)A
5(100)A

1(6)A
1(6)A

M
A1

05
H2

E

M
A3

04
H4

M
A3

04
T3

M
A3

04
T4

Meter TypesOBIS codes available in different meter types
OBIS List version identifier: KFM_001

List number OBIS Code - Group Value
Object name

Active power+ (Q1+Q4)
OBIS List version identifier
Meter -ID (GIAI GS1 -16 digit)
Meter type
Active power+ (Q1+Q4)

Reactive power + (Q1+Q2)
Reactive power - (Q3+Q4)
IL1 Current phase L1

Cumulative hourly active import energy (A+) (Q1+Q4)
Cumulative hourly active export energy (A-)(Q2+Q3)
Cumulative hourly reactive import energy (R+) (Q1+Q2)
Cumulative hourly reactive export energy (R-) (Q3+Q4)

IL3 Current phase L3
ULN1 Phase voltage 4W meter , Line voltage 3W meter
ULN2 Phase voltage 4W meter , Line voltage 3W meter
ULN3 Phase voltage 4W meter , Line voltage 3W meter
Clock and date in meter

IL2 Current phase L2

M
A3

04
H3

E

MA304H3E
MA304H4
MA304T3
MA304T4

1x230 V

Meter types

Value is alllways 0 V
Value is alllways 0 A

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 3

78

Cumulativeactive export reactive energy (R-) displayed hourly

Reactive power in import direction (VAr)
Reactive power in export direction (VAr)

Item
Number

Active power in import direction (W) 1

10
11
12

5
6

9

2
3
4

7
8

19

Norwegian HAN spesification - OBIS Codes

Long description OBIS Code

Version number of this OBIS list to track the changes
Serial number of the meter point:16 digits (69706314xxxxxxxx)
Type number of the meter: For example "MA304H3E"
Active power in import direction (W)
Active power in export direction (W)

Instantaneous current of L1(mA) (RMS Value based on 1 second integration period)
Instantaneous current of L2 (mA) (RMS Value based on 1 second integration period)
Instantaneous current of L3 (mA) (RMS Value based on 1 second integration period)
Instantaneous voltage L1-L2 (Phase voltage 4W meter , Line voltage 3W meter) (dV / 0,1V) (RMS Value based on 1 second integration period)
Instantaneous voltage L1-L3 (Phase voltage 4W meter , Line voltage 3W meter) (dV / 0,1V) (RMS Value based on 1 second integration period)
Instantaneous voltage L2-L3 (Phase voltage 4W meter , Line voltage 3W meter) (dV / 0,1V) (RMS Value based on 1 second integration period)
 Local date and time of Norway (Winter: CET (UTC+1) - Summer: CEST (UTC+2)) http://www.timeanddate.com/worldclock/norway/oslo

16
17
18

Cumulativeactive import active energy (A+) displayed hourly
Cumulativeactive export active energy (A-) displayed hourly
Cumulativeactive import reactive energy (R+) displayed hourly

13
14
15

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 4

79

14:59:56 List 1

List Interval
List interval

List 2

3600 sec

List 3

10 secClock

15:00:10
15:00:12
15:00:14
15:00:16
15:00:18
15:00:20
15:00:22

2 sec

List 1

List 1
List 1
List 1
List 1

List 1
List 1
List 1
List 1

List 1

14:59:58
15:00:00
15:00:02
15:00:04
15:00:06
15:00:08

List 2

Kaifa KFM_001.xlsx - Kaifa OBIS Codes HAN Page 5

80

Appendix B: Hardware ATmega
B1: Schematic

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

PB5(MOSI0/ICP3)1

PB6(MISO0/OC3A)2

PB7(SCK0/OC3B)3

RESET4

VCC5

GND6

PE0(XTAL2)7

PE1(XTAL1)8

PD0(RXD0/CLK3)9

PD1(TXD0)10

PD2(RXD1/INT0)11

PD
3(

TX
D

1/
IN

T1
)

12

PD
4(

X
CK

1/
O

C
1B

)
13

PD
5(

O
C1

A
)

14

PD
6(

IC
P1

/O
C

2B
/S

S1
)

15

PD
7(

X
CK

2/
O

C
2A

/S
CK

1)
16

PE
2(

RX
D

2/
M

IS
O

1)
17

PE
3(

TX
D

2/
M

O
SI

1)
18

PC
0(

SC
L0

)
19

PC
1(

SD
A

0)
20

PC
2(

TC
K

/C
LK

4)
21

PC
3(

TM
S/

IC
P4

)
22

(TDO/OC4A)PC4 23(TDI/ACO)PC5 24(TOSC1)PC6 25(TOSC2)PC7 26AVCC 27GND 28(AREF)PE4 29(ADC7)PA7 30(ADC6)PA6 31(ADC5)PA5 32(ADC4)PA4 33

(A
D

C
3)

PA
3

34
(A

D
C

2)
PA

2
35

(A
D

C
1)

PA
1

36
(A

D
C

0)
PA

0
37

(S
D

A
1)

PE
5

38
(S

CL
1)

PE
6

39
(X

CK
0/

C
LK

0)
PB

0
40

(C
LK

O
/C

LK
1)

PB
1

41
(A

IN
0/

IN
T2

)P
B

2
42

(A
IN

1/
O

C
0A

)P
B

3
43

(S
S0

/O
C0

B
)P

B
4

44

U1
ATmega324PB

VBUS 1

D- 2

D+ 3

ID 4

GND 5

SHLD1 6

SHLD2 7

SHLD3 8

SHLD4 9

SHLD6 11SHLD5 10

J2

10118194-0001LF

GND

GND

VCC

R5 220Ω

R4 220Ω

R6

22kΩ

GND

BUSL21

VB2

STC3

RIDD4

PF 5

SC6

TXI7

TX 8

BAT 9

VS10

VDD 11

RX 12

RXI13

RIS14

GND 15

BUSL116
U2

TSS721AD

R7

470Ω VCC

TCK1 GND 2

TDO3 VTG 4

TMS5 RESET 6

(NC)7 (TRST) 8

TDI9 GND 10

P4

JTAG_header

VCC

GND

RST

RST

PC
2

TC
K

PC
3

TM
S

PC2 TCK

PC3 TMS

PC4 TDO
PC5 TDI

PC5 TDI

PC4 TDO

PB2 INT2

PB
2

IN
T2

GND

R1
100kΩ

VCC

VCC

VCC

RST

GND

GND

PE0 XTAL2

PE1 XTAL1

PE0 XTAL2
PE1 XTAL1

Reset Pullup

PD2 RXD1

PD
3

TX
D

1
PD

4
O

C1
B

PD
5

O
C1

A
PD

6
SS

1
PD

7
SC

K
1

PE
2

RX
D

2
PE

3
TX

D
2

PC
0

SC
L0

PC
1

SD
A

0

1 2
3 4
5 6
7 8
9 10
11 12

P2

Header 6X2

VCC

GND

PD3 TXD1

PD2 RXD1

PD4 OC1B PD5 OC1A
PD6 SS1 PD7 SCK1

PE2 RXD2 PE3 TXD2
PC0 SCL0 PC1 SDA0

PB7 SCK0
PB6 MISO0
PB5 MOSI0

PB
4

SS
PB

3
O

C
0A

PB
1

C
LK

O
PB

0
X

C
K

0

R2

750Ω

R3

750Ω

1
2

P3

Header 2GND

VCC

Pin 2 2Pin 1 1
J1

rj45

C3

18pF

C1

18pF

C7
0.1µF

C11
0.47µF

1
2

Y1
11.0592Mhz

D1

TLMS1000
D2

TLMS1000

D3
TLMS1000

R9

750Ω

GND

IN1 OUT 3

GND 2TAB4

U3 LM3940IMPX-3.3

VCC
PB5 MOSI0
PB7 SCK0
PB3 OC0A
PB0 XCK0

GND

PB6 MISO0
PB4 SS
PB1 CLKO

PE
6

PE
5

PE6
PE5

C10
0.1µFC8

0.1µF

C2

0.1µF

C4
0.1µF

C9

0.1µF

C5
0.1µF

C6
10µF

R8
100kΩ

C13
47000µF

R10
470Ω

D4
C12
220µF

1 2
3 4
5 6

P5

Header 3X2

R16

R15

R11

R12

R13

R14

R17

R18

R19

R20

GND

ADC3

ADC2

ADC0

ADC1

Crystal

ADC input

Power

M-Bus conversion

1 2
3 4
5 6
7 8
9 10
11 12

P1

Header 6X2

AREF

AREF

GND

C14
0.1µF

R21

1
2

P6

Header 2

ADC3ADC2
ADC1ADC0

2
1

D6
PESD5V0U1UA

D5

PIC101 PIC102

COC1

PIC201 PIC202

COC2

PIC301 PIC302

COC3

PIC401

PIC402
COC4

PIC501
PIC502

COC5

PIC601
PIC602

COC6
PIC701
PIC702

COC7

PIC801
PIC802

COC8

PIC901 PIC902

COC9

PIC1001
PIC1002

COC10

PIC1101

PIC1102
COC11

PIC1201
PIC1202

COC12

PIC1301
PIC1302

COC13

PIC1401
PIC1402

COC14

PID101 PID102

COD1

PID201 PID202

COD2

PID301
PID302

COD3

PID401 PID402

COD4

PID501 PID502

COD5

PID601
PID602

COD6

PIJ101

PIJ102

COJ1

PIJ201

PIJ202

PIJ203

PIJ204

PIJ205

PIJ206

PIJ207

PIJ208

PIJ209

PIJ2010

PIJ2011

COJ2

PIP101 PIP102

PIP103 PIP104

PIP105 PIP106

PIP107 PIP108

PIP109 PIP1010

PIP1011 PIP1012

COP1

PIP201 PIP202

PIP203 PIP204

PIP205 PIP206

PIP207 PIP208

PIP209 PIP2010

PIP2011 PIP2012

COP2

PIP301
PIP302

COP3

PIP401 PIP402

PIP403 PIP404

PIP405 PIP406
PIP407 PIP408
PIP409 PIP4010

COP4

PIP501 PIP502

PIP503 PIP504

PIP505 PIP506

COP5

PIP601
PIP602

COP6

PIR101

PIR102

COR1
PIR201 PIR202

COR2

PIR301 PIR302

COR3

PIR401 PIR402

COR4

PIR501 PIR502

COR5

PIR601

PIR602
COR6

PIR701

PIR702
COR7

PIR801

PIR802

COR8

PIR901 PIR902

COR9

PIR1001

PIR1002

COR10

PIR1101 PIR1102

COR11

PIR1201 PIR1202

COR12

PIR1301 PIR1302

COR13

PIR1401 PIR1402

COR14

PIR1501

PIR1502
COR15

PIR1601

PIR1602
COR16

PIR1701 PIR1702

COR17

PIR1801 PIR1802

COR18

PIR1901 PIR1902

COR19

PIR2001 PIR2002

COR20

PIR2101 PIR2102
COR21

PIU101

PIU102
PIU103
PIU104

PIU105
PIU106
PIU107
PIU108

PIU109

PIU1010
PIU1011

PIU1012 PIU1013 PIU1014 PIU1015 PIU1016 PIU1017 PIU1018 PIU1019 PIU1020 PIU1021 PIU1022

PIU1023
PIU1024
PIU1025

PIU1026

PIU1027
PIU1028
PIU1029
PIU1030

PIU1031
PIU1032

PIU1033

PIU1034 PIU1035 PIU1036 PIU1037 PIU1038 PIU1039 PIU1040 PIU1041 PIU1042 PIU1043 PIU1044
COU1

PIU201
PIU202
PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209

PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015

PIU2016

COU2

PIU301

PIU302

PIU303

PIU304

COU3

PIY101
PIY102

COY1

PIP503

PIR2001

NLADC0
PIP504

PIR1901

NLADC1
PIP505 PIR1801
NLADC2

PIP506

PIR1701

NLADC3

PIC1402 PIR2101

PIU1029 NLAREF

PIC101

PIC202

PIC301

PIC401

PIC501

PIC602 PIC701

PIC801

PIC901

PIC1001

PIC1101 PIC1202

PIC1302

PIC1401

PID102

PID202

PID302 PID602
PIJ205

PIJ206

PIJ207

PIJ208

PIJ209

PIJ2010

PIJ2011

PIP102

PIP1012

PIP207

PIP301

PIP402

PIP4010

PIP501 PIP502

PIP602

PIR602 PIR702

PIR802

PIU106 PIU1028

PIU2015

PIU302

PIC601

PIU203

PIC702

PIU206

PIC802 PIR801

PIU2011

PIC1102

PID402

PID502

PIR1001
PIU301

PIC1301
PID401

PIR1002

PID101 PIR202

PID201 PIR302

PID301
PIR901 PID501

PID601

PIJ201

PIJ101 PIR402

PIJ102 PIR502

PIJ202

PIJ203

PIJ204

PIP407 PIP408

PIP601

PIR2102

PIR201

PIU1033

PIR301
PIU1032

PIR401 PIU2016

PIR501 PIU201

PIR601

PIU204

PIR701 PIU2014

PIR1101 PIR1502 PIR1702 PIR1102

PIU1034

PIR1201 PIR1501 PIR1802 PIR1202

PIU1035
PIR1301 PIR1602 PIR1902 PIR1302

PIU1036 PIR1401
PIR1601

PIR2002 PIR1402 PIU1037

PIU109

PIU208

PIU1010

PIU2012

PIU1025

PIU1026

PIU1030

PIU1031

PIU202

PIU207

PIU2010

PIU2013

PIU304

PIP109

PIU1040
NLPB0 XCK0 PIP108

PIU1041
NLPB1 CLKO

PIU1042

PIU205 NLPB2 INT2

PIP107

PIU1043
NLPB3 OC0A PIP106

PIU1044
NLPB4 SS

PIP103

PIU101 NLPB5 MOSI0

PIP104

PIU102 NLPB6 MISO0

PIP105

PIU103
NLPB7 SCK0

PIP209

PIU1019
NLPC0 SCL0 PIP2010

PIU1020
NLPC1 SDA0

PIP401

PIU1021

NLPC2 TCK

PIP405

PIU1022

NLPC3 TMS PIP403

PIU1023

NLPC4 TDO

PIP409

PIU1024

NLPC5 TDI

PIP208

PIU1011 NLPD2 RXD1

PIP201 PIU1012
NLPD3 TXD1

PIP203 PIU1013
NLPD4 OC1B

PIP204 PIU1014
NLPD5 OC1A

PIP205 PIU1015
NLPD6 SS1

PIP206 PIU1016
NLPD7 SCK1

PIC102

PIU107

PIY101
NLPE0 XTAL2

PIC302

PIU108

PIY102
NLPE1 XTAL1

PIP2011

PIU1017
NLPE2 RXD2 PIP2012

PIU1018
NLPE3 TXD2

PIP1011

PIU1038
NLPE5

PIP1010

PIU1039
NLPE6

PIC201

PIP406

PIR102

PIU104

NLRST

PIC402

PIC502

PIC902

PIC1002

PIC1201

PIP101

PIP202

PIP302

PIP404

PIR101

PIR902

PIU105

PIU1027

PIU209

PIU303

81

B2: Component list

Designator Value Description Package
C1,C3 18pF Capacitor 0603
C2,C4,C5,C7-C10,C14 0.1uF Capacitor 0603
C6 10uF Capacitor Radial Can SMD, D=4mm
C11 0.47uF Capacitor 0603
C12 220uF Capacitor Radial Can SMD, D=6.3mm
C13 47000uF SuperCapacitor Radial, Can TH
D1 2mA Red LED 0603
D2 2mA Yellow LED 0603
D3 2mA Orange LED 0603
D4,D5 15V,1A LSM115JE3/TR13 Schottky Diode DO-214BA
D6 TVS Diode SOD-323
J1 Rj45 Conn
J2 Micro USB Conn
P1,P2 HDR,6x2 Headers Female, 2.54mm
P3 HDR,1x2 Headers Female, 2.54mm
P4 HDR,5x2 Headers Male, 1.27mm
P5 HDR,3x2 Headers 2.54mm
P6 HDR,1x2 Headers 2.54mm
R1,R8 100k⌦ Resistor 0603
R2,R3,R9 750⌦ Resistor 0603
R4,R5 220⌦, 1/2W Resistor 0805
R6 22k⌦ Resistor 0603
R7,R10 470⌦ Resistor 0603
U1 ATMega324PB MCU 44-TQFP
U2 TSS721AD M-Bus slave 16-SOIC
U3 3.3V 1A LM3940IMPX LDO regulator SOT-223-4
Y1 11.0592Mhz Crystal oscillator HC-49/US SMD

82

Appendix C: Hardware ESP32
C1: Schematic

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 01.05.2019 Sheet of
File: C:\Users\..\AMS-ESP.SchDoc Drawn By:

R5220Ω

R6 220Ω
Pin 2 2Pin 1 1

U3

rj45

BUSL21

VB2

STC3

RIDD4

PF 5

SC6

TXI7

TX 8

BAT 9

VS10

VDD 11

RX 12

RXI13

RIS14

GND 15

BUSL116
U4

TSS721AD

GND 39GND 38GND 15GND 1

IO35 7IO34 6IO33 9IO32 8IO27 12IO26 11IO25 10IO23 37IO22 36IO21 33IO19 31IO18 30IO17 28IO16 27IO15 23IO14 13IO13 16IO12 14IO5 29IO4 26IO2 24IO0 25

3V3 2

SWP/SD318 SHD/SD217

SDI/SD122 SDO/SD021 SCL/CLK20 SCS/CMD19

RXD034 TXD035

SENSOR_VN5 SENSOR_VP4

EN3

U1

ESP32-WROOM-32D

VBUS 1

D- 2

D+ 3

ID 4

GND 5

SHLD1 6

SHLD2 7

SHLD3 8

SHLD4 9

SHLD6 11SHLD5 10

J1

10118194-0001LF

GND

R1
10k

VCC

C6
10µF

GND

R8
470Ω

C7
0.1µF

R7
22kΩ R9

100kΩ C9
0.1µF

VCC

C8
0.1µF

C3
0.1µF

GND

VIN3

1

VOUT 2

GND
VOUT 4

U2

LD1117AS33TR

GND

C4
0.1µF

C5
50µF

VCC

D2
LED1

R2750Ω

1
2

3
4

SW1

PTS645SM43SMTR92 LFS

GND

VCC

1 2
3 4

P3

UART

GND

C2

10µF
1
2

P1

Header 2

GND

VCC

1
2
3
4

P5

JTAG

IO14
IO13
IO12

IO15

IO14
IO12
IO13
IO15

IO4
IO5

IO17
IO18
IO19
IO21
IO22
IO23
IO25

IO32
IO33
IO34
IO35

1 2
3 4
5 6
7 8
9 10

P2

IO1

IO22
IO21IO19

IO4

GND

1 2
3 4
5 6

P4

Header 3X2

GND

IO34 IO35
IO32 IO33

IO25

R3 750Ω

R4 750Ω

D1

LED1
D3

LED1

GND

GND

C1

0.1µF

1
2

3
4

SW2

PTS645SM43SMTR92 LFS

GND IO18 IO5
IO17

IO23

D4

RXD2

RXD2
RXD2

PIC101 PIC102

COC1

PIC201 PIC202

COC2

PIC301
PIC302

COC3

PIC401
PIC402

COC4 PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701
PIC702

COC7

PIC801
PIC802

COC8
PIC901
PIC902

COC9

PID101 PID102

COD1 PID201
PID202

COD2

PID301 PID302

COD3
PID401
PID402

COD4

PIJ101

PIJ102

PIJ103

PIJ104
PIJ105
PIJ106

PIJ107

PIJ108
PIJ109

PIJ1010

PIJ1011

COJ1

PIP101

PIP102

COP1

PIP201 PIP202

PIP203 PIP204

PIP205 PIP206

PIP207 PIP208
PIP209 PIP2010

COP2

PIP301 PIP302

PIP303 PIP304

COP3

PIP401 PIP402

PIP403 PIP404

PIP405 PIP406

COP4

PIP501
PIP502

PIP503

PIP504

COP5

PIR101

PIR102
COR1

PIR201 PIR202

COR2

PIR301 PIR302
COR3

PIR401 PIR402
COR4

PIR501 PIR502
COR5

PIR601 PIR602

COR6

PIR701

PIR702
COR7

PIR801

PIR802
COR8

PIR901

PIR902
COR9

PISW101

PISW102

PISW103

PISW104

COSW1

PISW201

PISW202

PISW203

PISW204

COSW2

PIU101

PIU102

PIU103

PIU104
PIU105

PIU106

PIU107

PIU108

PIU109

PIU1010

PIU1011
PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

PIU1017

PIU1018

PIU1019

PIU1020
PIU1021
PIU1022

PIU1023

PIU1024

PIU1025

PIU1026

PIU1027
PIU1028

PIU1029

PIU1030

PIU1031

PIU1033

PIU1034
PIU1035

PIU1036
PIU1037

PIU1038
PIU1039

COU1

PIU201

PIU202 PIU203

PIU204

COU2

PIU301
PIU302

PIU303

PIU304

PIU305
PIU306
PIU307

PIU308

COU3

PIU401

PIU402

PIU403

PIU404

PIU405

PIU406

PIU407

PIU408

PIU409

PIU4010

PIU4011

PIU4012

PIU4013

PIU4014

PIU4015

PIU4016

COU4

PIC101

PIC201

PIC301

PIC401 PIC502

PIC602 PIC701
PIC801 PIC901

PID102 PID202
PID302

PID401
PIJ105
PIJ106

PIJ107

PIJ108
PIJ109

PIJ1010

PIJ1011

PIP101

PIP202

PIP2010

PIP301

PIP303

PIP405

PIR701 PIR801 PIR901

PISW104

PISW201

PIU101

PIU1015

PIU1038
PIU1039

PIU201

PIU4015

PIP209

PIU1026
NLIO4

PIP206

PIU1029 NLIO5

PIP502

PIU1014

NLIO12
PIP503

PIU1016

NLIO13

PIP501

PIU1013

NLIO14

PIP504

PIU1023

NLIO15

PIP207

PIU1028
NLIO17

PIP205

PIU1030
NLIO18

PIP203

PIU1031
NLIO19

PIP204

PIU1033
NLIO21

PIP201

PIU1036 NLIO22
PIU1037

PIU405
NLIO23

PIP406

PIU1010
NLIO25

PIP403

PIU108
NLIO32

PIP404

PIU109
NLIO33

PIP401

PIU106
NLIO34

PIP402

PIU107
NLIO35

PIC302

PIR101

PISW203 PIU103

PIC402 PID402

PIJ101 PIU203

PIC601

PIU403

PIC702

PIU406

PIC902 PIR902
PIU4011

PID101 PIR302

PID201

PIR202

PID301 PIR402

PIJ102

PIJ103

PIJ104
PIP302

PIU1035

PIP304

PIU1034

PIR301 PIU1011

PIR401

PIU1012

PIR501 PIU301 PIR502 PIU4016
PIR601 PIU302 PIR602 PIU401

PIR702

PIU404

PIR802

PIU4014

PISW101

PIU1025

PISW102

PISW103

PISW202 PISW204

PIU104
PIU105

PIU1017

PIU1018

PIU1019

PIU1020
PIU1021
PIU1022

PIU1024

PIU204

PIU303

PIU304

PIU305
PIU306
PIU307

PIU308

PIU402

PIU407

PIU4010

PIU4012

PIU4013

PIP208
PIU1027

PIU408
NLRXD2

PIC102

PIC202

PIC501

PIC802

PIP102 PIR102

PIR201

PIU102

PIU202

PIU409

83

C2: Component list

Designator Value Description Package
C1,C3,C4,C7-C9 0.1uF Capacitor 0805
C2 10uF Capacitor 0805
C5 50uF Capacitor Radial Can SMD, D=4mm
C6 10uF Capacitor Radial Can SMD, D=4mm
D1,D2,D3 2mA LED 0805
D4 TVS diode 0805
J1 Rj45 Conn
J2 Micro USB Conn
P1 HDR,1x2 Headers 2.54mm
P2 HDR,5x2 Headers 2.54mm
P3 HDR,2x2 Headers 2.54mm
P4 HDR,3x2 Headers 2.54mm
P5 HDR,1x4 Headers 2.54mm
R1 10k⌦ Resistor 0805
R2,R3,R4 750⌦ Resistor 0805
R5,R6 220⌦, 1/2W Resistor 0805
R7 22k⌦ Resistor 0805
R8 470⌦ Resistor 0805
R9 100k⌦ Resistor 0805
SW1,SW2 Tactile switch button SMD
U1 ESP32-WROOM-32D
U2 3.3V 1A LD1117AS33TR LDO regulator SOT-223-4
U3 TSS721AD M-Bus slave 16-SOIC

84

Appendix D: NEK email

85

	Thesis description
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Electric power systems
	Smart grids
	Advanced Metering System

	Limitations
	Thesis structure

	Literature Review
	Error detection using smart meters
	Validation of distribution system topology
	High impedance fault detection

	Existing AMS logging solutions
	A survey on protocols for use with IoT devices

	Relevant Standards and Protocols
	Standards for AMS meters
	M-Bus
	Physical layer

	HDLC
	MAC layer frame format
	Frame transmission

	DLMS/COSEM
	Specification
	Architecture
	OBIS

	MQTT
	Overview
	Control packets
	Quality of Service

	Specification and Design
	Overview
	Specification
	Embedded hardware
	Embedded software
	Cloud solution

	Acceptance criteria
	PCB design
	Design of data collection scheme

	Implementation
	Hardware ATmega system
	Components
	Power circuit
	ADC circuit
	M-Bus conversion circuit
	Headers and peripherals
	PCB result

	Software ATmega system
	Interrupts and atomic access
	Timer
	Watchdog timer
	Drivers
	AMS message reception
	Power failure
	MQTT implementation
	Main program operation

	Hardware ESP32 system
	Components
	PCB result

	Software ESP32 system
	Cloud solution
	Data collection

	Testing and Results
	Testing procedure
	PCB and hardware test
	Power failure test
	Full System test
	ESP32 system

	Testing results
	ESP32 system

	Data collection
	Data sources
	Graphs

	Discussion
	System results
	Power failure
	Loss of Wi-Fi connection
	ESP32 system

	Data analysis
	AMS standards inconsistencies
	Improvement potential

	Conclusion
	Further work
	Bibliography
	Appendix A: Kaifa HAN specification
	Appendix B: Hardware ATmega
	B1: Schematic
	B2: Component list

	Appendix C: Hardware ESP32
	C2: Schematic
	C2: Component list

	Appendix D: NEK email

