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Abstract

Using elements of existing automatic inspection methods, the aim of this project was to
design a system for automatic inspection of bridge constructions, with focus on evaluating
corrosion damages. The system is designed to be used in testing and development. Manual
inspection methods have safety challenges and limitations related to both efficiency and
subjectivity, and therefore this project explored the possibilities of using automatic inspec-
tion methods, including elements such as mobility hardware, inspection sensors and data
handling and analysis. Necessary requirements and modifications to elements in existing
automatic inspection methods were explained before designing the system. The proposed
system consists of a drone as mobility hardware with a camera as sensor for inspection,
and cloud computing is the main method for data handling. Sensors for autonomy are also
suggested, but only briefly discussed. Previous work on identifying the existence of corro-
sion using computer vision techniques and deep learning approaches has inspired the work
in this report. A method for both identifying the existence of corrosion and classification
of corrosion damages using computer vision techniques and deep learning approaches, was
proposed in the designed system. First, computer vision techniques are used for identify-
ing the existence of corrosion. Next, through using deep learning approaches, including
labeling images from previous inspections of bridge constructions combined with training
of a neural network, one can create a method for classification of corrosion damages. The
proposed system for automatic inspection of bridge constructions was not implemented or
tested during this project. Testing of the method for classification of corrosion damages is
considered future work, and will be performed in a master thesis next year.
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Chapter 1

Introduction

1.1 Background

In Norway there are more than 17500 bridges to be inspected and maintained by The Nor-
wegian Public Roads Administration [1]. Corrosion damages, cracks and faults in sur-
face treatment are examples of elements of interest during inspection of bridges. Every
year there are high economic costs related to inspection of bridge constructions, and there
are also safety challenges related to implementation of certain types of manual inspection
methods that require use of access equipment. Manual inspection methods also have chal-
lenges in terms of subjectivity when evaluating corrosion damages, which are eliminated
when using automatic analysis methods instead. Therefore, it is important to investigate the
potential in automatic inspection methods. This report is a result of a specialization project
at NTNU, Department of Engineering Cybernetics, autumn 2018. The project assignment
was given by SINTEF Digital and SINTEF Industry in a collaboration called the RINVE
network.

1.2 The aim of the project

The aim of this project is to design a robotic inspection system for bridge constructions with
focus on detecting and evaluating corrosion damages. This will be done through combining
elements in existing automatic inspection methods and suggesting necessary modifications.
The proposed robotic system is to be used in testing and development, and could potentially
reduce inspection costs, as well as remove challenges with safety and subjectivity related
to manual inspection methods.
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Automatic Inspection of Bridge Constructions 1.3. CONTRIBUTIONS

1.3 Contributions

There are three main contributions in this report. One of the contributions is the design of
a robotic system for inspection of bridge constructions combining elements from existing
automatic inspection methods such as a drone, camera, data handling and data analysis
methods. A robotic inspection system such as this eliminates safety challenges related to
manual inspection methods using access equipment like lifts. A second contribution is
the explanation of requirements and necessary modifications to be performed on standard
products to function in a robotic inspection system. Possible challenges in implementation
of such a system are also explained. The third contribution is a method for data analy-
sis proposed in the design of the robotic system, showing how corrosion damages can be
classified using deep learning approaches. Thus, subjectivity related to analysis is elimi-
nated and necessary time for data analysis will be reduced. The method classifies images
of corrosion in terms of severity, giving an overview of a bridge’s condition.

1.4 Outline of the report

The report is structured as follows; chapter 1 introduces bridge inspection and why it is
interesting to look at automatic inspection methods. In chapter 2 it is explained in more
detail how inspection of bridge constructions is performed today, followed by chapter 3
where a selection of existing automatic inspection methods are presented. The aim of this
project has been to design a robotic inspection system with sensors for use in testing and
development, that could potentially reduce costs and eliminate both safety challenges and
subjectivity related to inspection of bridges. The proposed system is described in chapter 4
before a discussion is given in chapter 5, and finally a conclusion is made.
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Chapter 2

Inspection of bridge constructions

In this chapter the different elements in an inspection of bridge constructions are explained.
First, types of inspections are introduced, followed by explanations of stages in planning of
inspections. Next, equipment used in manual inspections, including access equipment, is
shown, and the last section explains how results from inspections are evaluated in terms of
severity and consequence of damages. Procedures and desriptions in this chapter are mainly
obtained from [2], an inspection manual by The Norwegian Public Roads Administration.
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Automatic Inspection of Bridge Constructions 2.1. TYPES OF INSPECTIONS

2.1 Types of inspections

The inspection manual [2] refers to four types of routine inspections explained in table 1.

Table 1: The four types of routine inspections on bridges [2].
Type of inspection Description

Simple inspection

The purpose of a simple inspection is to check if any serious
damages have occurred that in short term may affect the

load capacity of the bridge, road safety,
future maintenance and inspection as well as bridge esthetics.

Main inspection
A main inspection consists of a condition monitoring of the
bridge construction above water. This is done to verify that

the bridge meets necessary function requirements.

Main inspection of cables
The purpose of this inspection is to check that

load cables, rods and fasteners fulfill specified requirements.

Main underwater inspection
Consists of a condition monitoring of the

bridge underwater construction.

A simple inspection is carried out by simple visual inspection of the bridge construction
above water. A simple visual inspection means that there is no use of access equipment
like lifts, so the construction is inspected at a certain distance. Measurements and material
testing is usually not required, but in case of great wear and tear some measurements may
be nescessary [2]. This type of inspection is carried annualy except from the year a main
inspection is performed [3].

Main inspections are carried out every third year for ferry bridges and moving bridges,
and every fifth year for all other types of bridge constructions [3]. In a main inspection
the entire bridge construction above water, except from cables, is visually inspected. The
visual inspection must be close visual, which means that operators must be able to touch
the construction that is inspected. If expected damages are detected with complete certainty
from a further distance, a close visual inspection is not necessary.

A main inspection of cables is carried out by close visual inspection as in a main inspection.
The same applies for a main underwater inspection where the diver has to be able to touch
the underwater bridge construction that is inspected.

Damages and causes of damages that are discovered during inspections like the four ex-
plained in table 1 can be further inspected through what is called a special inspection. A
special inspection can also be carried out to acheive a basis for describing expensive and
complicated measures [2].
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Automatic Inspection of Bridge Constructions 2.2. PLANNING OF INSPECTIONS

2.2 Planning of inspections

The planning of inspections includes all tasks from deciding which bridges should be in-
spected to explaining how the inspection itself is to be performed. The Norwegian Public
Roads Administration has their own management system for bridges called
BRUTUS [4] that is used in planning of inspections, and where, among other things, infor-
mation about maintenance and inspection plans, load capacities, security management and
bridge condition is stored. Examples of tasks related to planning of inspections are shown
in the list below [2]:

• Submission of inspection plans

• Processing of an inspection program

• Choice of inspection and acess equipment

• Safeguarding of HSE (Health, Safety, Environment) requirements

Table 2 explains the key parts of inspection planning in more detail.

Table 2: The tasks related to planning of inspections [2].
Task Explanation

Inspection plan

All bridges must have an inspection plan stored in BRUTUS. This plan
contains information about, for example, which type of inspection that

should be performed and when, necessary measurements and test,
and acess equipment needed.

Inspection program
This is a list of inspections, measurements and tests to be performed
a certain year. The program is used to plan the annual inspections.

Forms from BRUTUS Inspection forms made from the inspection programs.

Notifying of work

There has to be made a notification that contains information about
when and for how long inspections are to be performed in such a way

that the road traffic does not get unnecessarily delayed. A plan
for the use of road signs is also made.

HSE

Work related to HSE contains making sure that personal safety equipment
is used during inspection, that necessary safety training is given to

executive personell, that a contingency plan is made and that
a risk assessment is completed before inspection begins.
Other elements regarding HSE are also included here.
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Automatic Inspection of Bridge Constructions 2.3. INSPECTION EQUIPMENT

2.3 Inspection equipment

Required equipment for the different types of inspections introduced in chapter 2.1 is shown
in table 3. This is equipment used in today’s inspections with operators performing inspec-
tion manually.

Table 3: Equipment for different inspection types [2].
Type of inspection Equipment

Simple inspection
Flashlight, camera, binoculars, compass, measuring tape,

knife, hammer, chisel, chalk, color spray, yardstick.

Main inspection
In addition to the equipment required for a simple inspection:

Work alert equipment, dictaphone, video camera, thermometer,
caliper, crack width gauge.

Main inspection of cables Normally the same equipment as for a main inspection.

Main underwater inspection
Underwater camera, video equipment, hammer, chisel,

measuring tape (50 meters), yardstick, leveling equipment.

In addition, different types of access equipment are used in inspection of bridges:

• Ladder.

• Scissor lift.

• Basket lift.

• Lift with a platform.

Inspection of a bridge using a basket lift and a lift with a platform is shown in figure 1 and
2 respectively.

6



Automatic Inspection of Bridge Constructions 2.3. INSPECTION EQUIPMENT

Figure 1: Example of inspection using a basket lift [5].

Figure 2: Example of inspection using a lift with a platform [6].
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Automatic Inspection of Bridge Constructions 2.4. EVALUATION OF FAULTS

2.4 Evaluation of faults

When evaluating faults or damages on the bridge construction it has to be decided what
type of fault one is dealing with, and considerations on how serious the faults are, as well
as on main causes of the faults, has to be made.

The Norwegian Public Roads Administration uses the terms severity and consequence of
damage in the evaluation of faults [2]. Table 4 and 5 explain the two terms in more detail.

Table 4: Severity related to damage [2].
Code/numbering Explanation Measures necessary

1 Small damage No
2 Medium damage Yes, within 4-10 years
3 Large damage Yes, within 1-3 years
4 Critical damage Yes, latest within 6 months

Table 5: Consequence of damage [2].
Code/numbering Explanation

B Damage that affects the load capacity
T Damage that affects traffic and road safety
V Damage that may increase maintenance costs
M Damage that may affect bridge estetics and surroundings

8



Chapter 3

Existing methods for automatic
inspection

Automatic solutions can potentially reduce costs related to inspection as well as improve
safety conditions by avoiding the use of access equipment like lifts shown in section 2.3.
In this chapter, existing methods for automatic inspection of bridge constructions and au-
tomatic inspection methods in general will be shown. The chapter is divided into five main
sections; mobility hardware, sensors for inspection, sensors for autonomy, data handling
and data analysis. The existing methods within these sections will not be limited to meth-
ods used for bridge inspection only, but will show solutions used in other industries as well
to get a greater overview of inspection possibilities. In the end of the sections regarding
mobility hardware and sensors for inspection an evaluation of the methods will be done
because choices made from these evaluations affect the focus in the next sections of the
report regarding data handling and analysis. Sensors for autonomy are not evaluated in this
chapter, but will be further discussed in section 4.3.1 when designing a robotic system for
inspection.

9



Automatic Inspection of Bridge Constructions 3.1. MOBILITY HARDWARE

3.1 Mobility hardware

Mobility hardware is in this report defined as a vehicle or robot carrying sensors. The list
below shows types of existing mobility hardware used in automatic inspection that will
be further explained in this section. These types of mobility hardware are chosen because
some of them, like UAVs and cable inspection robots, are already being used for bridge
inspection, while others have a great potential for this application.

• Unmanned Aerial Vehicle (UAV)

• Remotely Operated Underwater Vehicle (ROV)

• Autonomous Underwater Vehicle (AUV)

• Crawling robots

• Cable inspection robots

10



Automatic Inspection of Bridge Constructions 3.1. MOBILITY HARDWARE

3.1.1 Unmanned Aerial Vehicle (UAV)

UAV is the actual flying unit in a larger system called Unmanned Aircraft System (UAS)
which consists of both the flying unit, in this case a drone, and all systems controlling and
communicating with the drone from the ground [7]. There exists several types of drones
made for different applications. Three main categories of UAVs will be presented in this
section; fixed wing drones, multirotor drones and single rotor drones.

Fixed wing drones have the longest range of these three categories, and are able to lift quite
heavy objects. These drones are similar to a small aeroplane, so a suitable landing point is
required [8]. A typical fixed wing drone is shown in figure 3.

Figure 3: Illustration of a fixed wing drone [9].

Multirotor drones are characterized by a relatively small range and a low loading capacity.
These drones normally have four rotors or more, making them easy to maneuver and control
in the air [8]. Multirotor drones are already used in inspection of bridge constructions by
companies like Orbiton [10] and Aas-Jakobsen [11]. Figure 4 shows an illustration of a
multirotor drone.

11



Automatic Inspection of Bridge Constructions 3.1. MOBILITY HARDWARE

Figure 4: Illustration of a multirotor drone [12].

Single rotor drones, also called helicopter drones, are very similar to a traditional helicopter.
Range and load capacities of these drones can be said to be somewhere in between those for
fixed wing drones and multirotor drones [8]. Figure 5 shows a typical single rotor drone.

Figure 5: Illustration of a single rotor drone [13].

Table 6 classifies performances for the three categories of UAVs and some specific types of
these.

12
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Table 6: Classification of UAV performace from 1 to 3 (low:1, medium:2, high:3) [8].
UAV Range Flying time Withstanding of weather Maneuverability

Fixed wing drone
with engine 3 3 2 2

Fixed wing drone
without engine 3 2 2 2

Single rotor/
helicopter drone 2 2 2 3

Multirotor drone,
4 rotors 1 1 1 3

Multirotor drone,
4+ rotors 2 2 2 3

3.1.2 Remotely Operated Underwater Vehicle (ROV) and Autonomous
Underwater Vehicle (AUV)

ROVs are widely used for performing underwater maintenance and inspections, especially
in the oil and gas industry where they are used for tasks such as inspecting welds and
pipelines, and operating valves on subsea constructions [14]. A typical ROV is illustrated
in figure 6. ROVs are divided into five different classes by the NORSOK standard U-102
[15]. An autonomous underwater vehicle (AUV) is defined by this standard as a class 5
ROV. The classification is shown in table 7.

Figure 6: Illustration of a typical ROV. This is the Falcon ROV by DeepOcean [16].
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Table 7: Classification of ROVs by the NORSOK standard U-102 [15].
Class Description Details

1
Pure

observation

Vehicles limited to video observation. These ROVs
have, in general, a video camera, lights and
thrusters mounted. In order to perform other

tasks these ROVs need modifications.

2
Observation with
payload option

These ROVs can, in addition to a camera, carry
sensors for inspection. For example measurement
systems for cathodic protection and sonar systems.

A class 2 ROV should be able to carry at
least two additional sensors without loss of

original functions when operated.

3
Work class

vehicles

Class 3 ROVs are both larger and more powerful than the
two first classes above. These ROVs can carry

additional sensors and also manipulators. There are
three types of class 3 ROVs classified by the

amount of horsepower (hp); A (<100 hp),
B (100 to 150 hp) and C (>150 hp).

4
Seabed-working

vehicles

Class 4 ROVs maneuver on the seabed by thruster
propellers, a water jet, wheels or a belt traction system.

A combination of these methods is also possible.
A class 4 ROV is typically both larger and heavier
than a class 3, and they are made for tasks such as

cable and pipeline trenching, excavation and dredging.

5
Prototype or

development vehicles

Vehicles being developed, as well as prototypes.
ROVs for special purposes that do not fit the previous

classes are also assigned to class 5.
AUVs are defined as a class 5 ROV.

Some examples of existing underwater vehicles are Hugin AUV by KONGSBERG [17]
(figure 7), Magnum ROV by Oceaneering [18] (figure 8), the Eelume vehicle [19] (figure
9) and Falcon ROV by DeepOcean previously shown in figure 6.
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Figure 7: The Hugin AUV by Kongsberg [17].

Figure 8: The Magnum ROV by Oceaneering [18].

Figure 9: The Eelume underwater vehicle [19].
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3.1.3 Crawling robots

Unmanned ground vehicles (UGV) is a category containing unmanned vehicles that can
perform certain operations on the ground [8]. Examples of UGVs are humanlike robots
with legs, autonomous transport vehicles and crawling robots. Crawling robots can be
robots driven by wheels or belts that move along a surface. Some types are able to stick to
a vertical surface and drive along it, for example using magnetic wheels, while others are
made to move only on a horizontal surface. The FAST RVI by GE Inspection Robotics [20]
(figure 10) is an example of a crawling robot. It is equipped with a pan-tilt-zoom camera
(PTZ) for effective visual inspection, and has magnetic wheels so that it is able to perform
overhead inspections.

A different crawling robot that has been tested on “Storebæltsbroen” [21] [22], a bridge
in Denmark, is a robot made by Force Technology for inspection of nonmagnetic surfaces
[23]. Using belts with a vacuum based concept the robot is able to stick to a nonmagnetic
surface and drive along it.

Figure 10: The FAST RVI by GE Inspection Robotics [20].
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3.1.4 Cable inspection robots

A typical cable inspection robot is clamped over the cable to be inspected, and wheels
makes it possible to move the robot up and down the cable. This is illustrated in figure
11. These types of robots equipped with, for example, a camera makes it possible to do
thorough inspection of cables on cable-stayed bridges. In [24], a robotic wheel based
cable inspection system is proposed. The suggested cable inspection robot is equipped
with permanent magnets, CCD cameras for visual inspection and Hall effect sensors for
detecting magnetic flux leakage in a cable. In [25], the development of both a robot for
inspection of cable-suspension bridges and for cable-stayed bridges is presented, and non-
destructive inspection techniques in combination with the robot are discussed. Figure 12
shows the CableScan inspection robot by a company called IPC [26].

Figure 11: Typical cable inspection robot clamped over a cable [27].

Figure 12: Inspection using the cable inspection robot CableScan by IPC [26].
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3.1.5 Evaluation and choice of mobility hardware

Ideally, one should have looked at several possible combinations of mobility hardware and
sensors for inspection of bridge constructions, but due to limitations in time available for
implementation of this project it is decided to choose one specific type of mobility hardware
from those presented in this section. When choosing what type of hardware the rest of this
report should focus on, an important aspect is what hardware has the potential of inspecting
most parts of a bridge construction.

Both crawling robots and cable inspection robots have a great potential in inspection of
the bridge construction above water. Crawling robots can give close visual images of a
surface, for example on the bridge deck, piers and beams. However, on the sides of a
bridge, underneath and high up in towers, using a crawling robot can bring some safety
challenges. For example, certain parts underneath and above a bridge can be difficult for
the robot to reach or drive to without being placed there by a human operator. Then one
does not avoid using access equipment like lifts shown in section 2.3. Cable inspection
robots are well suited for inspection of main and suspender cables, but not any other parts
of the bridge construction.

Using an ROV or AUV could be a good solution for bridge underwater inspection as men-
tioned in section 2.1, and these types of mobility hardware are the only ones from this
section suited for underwater inspection. Since it is decided to choose only one type of
mobility hardware, one must also choose between looking at either inspection above water,
or under water. In this case, focus will be on inspection of a bridge’s construction above
water.

UAVs are able to reach most, if not all, parts of a bridge construction above water. Either
by using a remotely operated drone or an autonomous drone, safety challenges related to
the use of lifts or climbers to reach different areas of a bridge are eliminated. In table 6
multirotor drones with more than four rotors and single rotor/helicopter drones are given
the highest performance score on maneuverability of UAVs. These types of drones also get
a high score on withstanding of weather. These properties are considered important when
it comes to inspection of bridges.

Based on the evaluations above, it is chosen to proceed with UAVs as mobility hardware,
thus examples of sensors for inspection and autonomy in the next two sections will be based
on sensors having a potential application on UAVs.
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3.2 Sensors for inspection

Material testing is normally divided into two groups called destructive testing (DT) and
non-destructive testing (NDT). The sensors in this section will be based on methods for
non-destructive testing, and a selection of sensors considered most suited for use on a UAV
are explained further. Examples of NDT methods used in industrial inspections are shown
and briefly explained in table 8.

Table 8: Common methods for non-destructive testing [28].
Method Explanation

Ultrasonic
Testing (UT)

Ultrasonic waves are sent from a probe into the material.
Internal faults in the material is detected by the reflection

of the waves back to the probe.

Eddy Current
Testing (ET)

ET is a method used on electrically conductive materials.
A coil is applied a current and this results in a magnetic field

around the coil. This magnetic field creates a second
magnetic field in the material inspected. Changes in this

second field reveals faults in the materials surface.
Visual

testing (VT)
A visual inspection, manually or automatically. Using a camera

images and videos can be taken and further analyzed.

Penetrant
Testing (PT)

The method can be used on practically all types of materials.
The surface of the material is cleaned, and a coloured,

penetrating liquid is applied. After some time the liquid is removed.
A different chemical is then applied to absorb the remaining

liquid. In this way cracks in the surface are detected.

Magnetic
Particle Testing (MP)

A method used for ferromagnetic materials to detect cracks in the
surface. Iron powder is applied and the test object is magnetized.

The powder will be drawn to the fault to be detected.
Radiography
Testing (RT)

X-rays or gamma rays are sent through a material
to check, for example, welds and internal faults.
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3.2.1 Inspection cameras

There are different types of cameras made for inspection purposes, an the list below shows
some types of inspection cameras. The list is made with inspiration from cameras as sensors
mentioned in [8].

• RGB camera

• Multispectral camera

• Hyperspectral camera

• Time-of-flight camera

An RGB camera, most commonly known as a digital camera, has a reference to the colours
red, green and blue (RGB). Through what is called photogrammetry, shapes and sizes of
objects in images can be measured [8].

The principle of a multispectral camera is filtering of specific wavelengths on the electro-
magnetic spectrum, and capturing of image data within these wavelengths [8]. Examples
of multispectral cameras made for drones are MAIA multispectral camera [29] and Sentera
Double 4K sensor [30].

A hyperspectral camera combines digital imaging and spectroscopy, and it works very
similar to a multispectral camera [8]. Table 9 shows examples of hyperspectral cameras
made for UAVs.

Table 9: Examples of common hyperspectral cameras made for UAVs [31].

Manufacturer
and model

Resolution
[Mpx]

Size
[mm2]

Pixel size
[µm]

Weight
[kg]

Spectral
range
[nm]

Spectral bands
and resolution

[nm]
Rikola Ltd.

Hyperspectral
Camera

CMOS 5.6× 5.6 5.5 0.6 500-900 40 and 10

Headwall
Photonics,

Micro-Hyperspec
X-series NIR

InGaAs 9.6× 9.6 30 1.025 900-1700 62 and 12.9

Using an infrared light source and a sensitive photon detector called a CCD detector, a
time-of-flight camera (ToF camera) is able to measure the depth of a 3D scene and create
an image of this [32]. Real time 3D data and video mode without post processing can be
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obtained with a ToF camera. These type of cameras can work as an alternative to LiDAR
sensors, that will be introduced in section 3.3.2, but ToF cameras have a limited range of
around 10 meters [8].

3.2.2 Ultrasonic sensors

Ultrasonic sensors or probes can, as mentioned in table 8, be used to detect internal faults in
a material. Typical applications of ultrasonic testing are inspection of steel constructions,
welds and machine components. The frequencies for ultrasonic waves are between 0.5 to
10 MHz. An ultrasonic sensor sends a pulse of high frequency waves into an object, as
shown in figure 13, and the time delay from transmitting to receiving the echo of waves
indicates the distance to a fault within the object inspected [33].

Figure 13: Principle of an ultrasonic sensor[34].

An ultrasonic sensor, also called an ultrasonic probe, consists of both a transmitter and
receiver that are combined in the same tranducer. This is possible trough the use of what
is called a piezoelectric material in the probe that can convert between electrical and me-
chanical signals. The high frequency, ultrasonic waves are attenuated in air. Therefore, to
create a good acoustic connection, it is normally applied a type of gel so that it always is a
film of liquid between the probe and the surface being inspected. [33]. Figure 14 shows a
design of an ultrasonic probe.
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Figure 14: Illustration of a common ultrasonic probe design [33].

3.2.3 Eddy current sensors

An eddy current sensor consists of a coil being applied a current, which results in the radia-
ton of a magnetic field. When placing the coil close to a electrically conductive material the
magnetic field creates what is called eddy currents in the material that results in a second,
opposing magnetic field. This opposing magnetic field impacts the magnetic field in the
coil, which can be detected as changes in the coils impedance. Some applications of eddy
current sensors are within wire inspections, surface crack detection, and thickness layer
measurements [33]. The principle of an eddy current sensor is shown in figure 15.

Figure 15: Eddy current sensor principle [33].
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3.2.4 Evaluation and choice of sensor for inspection

In the same way as it would have been interesting to look at several combinations of mobil-
ity hardware and sensors for inspection, it would certainly be of value to look at methods
for analysis of data provided by all the sensors for inspection mentioned in this section.
However, in this project assignment it was necessary to limit the amount of methods to be
explained. Therefore, it is chosen to proceed with only one of the sensors for inspection
introduced in this section. When choosing what sensor to continue with, evaluations on
how suited the sensor is in combination with an UAV must be done.

Ultrasonic sensors are well suited for detecting internal faults in a material, and this method
is absolutely relevant for bridge inspection. When it comes to using an ultrasonic sensor
in combination with a drone, one challenge would be the fact that the ultrasonic sensor
needs to be in contact with the construction surface inspected, since ultrasonic waves are
attenuated in air, as mentioned earlier. This would require the drone to be very close to the
bridge construction. Some parts of a bridge it might not be able to reach since there might
not be enough space for the drones rotors to move freely, for example underneath a bridge.

Some applications of eddy current sensors were mentioned in this section, and the sensors
suitability for detecting surface cracks and for measuring thickness of surface protective
layers, definitely makes it relevant for inspection of bridges. However, mounted on a drone,
a similar challenge as in the case of using an ultrasonic sensor may occur.

An inspection camera mounted on a drone makes it possible to perform close visual in-
spection of practically the entire bridge construction above water. Of course, limitations on
image quality depending on the camera must be taken into consideration. Especially when
it comes to corrosion detection, visual inspection is one of the most used methods. Using a
drone with a camera makes it possible to perform close visual inspection of areas otherwise
hard to reach, and images can be analyzed either manually or automatically later.

The aim of this evaluation is not to make a conclusion that ultrasonic sensors and eddy
current sensors are not at all suited in combination with a drone, but that using a camera
overall seems to be a better solution for inspection of bridge constructions, in particular for
inspection of corrosion. In a complete inspection system, it would most likely be preferable
to use drones equipped with different sensors depending on the area to be inspected.

Based on the evaluation above it is decided to proceed with a camera as a sensor for in-
spection, thus section 3.5.2 regarding inspection data analysis will explain methods for
analyzing images, with focus on automatic corrosion detection.
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3.3 Sensors for autonomy

This section will briefly explain some types of sensors used on autonomous vehicles for
finding their position, avoidance of obstacles and for example for being able to keep a cer-
tain distance to known objects. For example, if an autonomous UAV is used for inspection
of a bridge it is important with a sensor that prevents it from colliding with the construc-
tion. Some examples of previous work on obstacle detection and avoidance will also be
presented.

3.3.1 Ultrasonic sensors

Ultrasonic sensors, explained in section 3.2.2, can also be used on autonomous vehicles
to measure distances from objects, thus preventing the vehicle form colliding with objects
in its path. In [35], a method using ultrasonic sensors on UAVs for obstacle detection is
shown. The paper presents a solution using time-of-flight data from ultrasonic sensors and
four signal metrics to determine the position of an obstacle; maximum frequency, cross
correlation of raw data and PSD, power and energy spectral density. In [36], a method for
solving collision problems for a quad-rotor UAV with low flight altitude using ultrasonic
sensors is devised.

3.3.2 Light detection and ranging (LiDAR)

Through measuring properties of scattered and reflected light, information about a distant
object can be found. This optical sensing technology is called LiDAR, and the principle is
shown in figure 16. To determine the distance to a certain object laser pulses are emitted,
and the time delay between transmission and detection of the reflected pulses becomes
a measurement for distance [37]. In [31], examples of short range LiDAR sensors for
obstacle detection and avoidance being used on UAVs are given. Table 10 shows parts of a
table taken from this article, and describes specific LiDAR based sensors used on UAVs.
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Figure 16: Principle and usage of LiDAR based sensors [38].

Table 10: Examples of common LiDAR based scanners/sensors for UAVs [31].
Manufacturer

and model Scanning pattern Range [m] Weight [kg] Laser class
and wavelength [nm]

Ibeo
Automotive

Systems
Ibeo LUX

4 scanning,
parallell lines 200 1 Class A, 905

Velodyne
HDL-32E

32 laser
pairs 100 2 Class A, 905

RIEGL
VQ-820-GU

1 scanning
line > 1000 - Class 3B, 532

3.3.3 Stereo cameras

Estimation of a 3D model can be done using two or more cameras, which makes it possible
to measure the depth of the scene one is interested in. This is done through finding matching
pixels in images and then converting 2D position into 3D depth, a process called stereo
matching [39]. Measuring depth makes it possible to decide the distance to objects, thus
stereo cameras mounted on a drone can prevent the drone from colliding with obstacles.
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As an example, the Intel RealSense R200 camera [40] uses two IR cameras to measure
depth. It actually has a third camera as well, an RGB camera, to provide colour images.
The Intel RealSense R200 is equipped with a IR laser projector, making it possible to
perform 3D scanning for scene perception and improving photography [40]. There are also
newer versions of this camera, like the Intel RealSense Depth Camera D400-Series [41].
[42] shows an Intel RealSense camera mounted on a Tyhoon H drone, making autonomous
flights and obstacle detection possible.

3.3.4 Event cameras

Event cameras are inspired by the human vision system, and they output changes in pixel-
level brightness rather than standard intensity frames. Compared with standard cameras,
advantages of these cameras are high dynamic range, low latency and no motion blur. A
disadvantage related to event cameras is that traditional computer vision algorithms can
not be applied when processing their outputs. This is because the output is made out of a
sequence of asynchronous events, and not intensity images like for regular cameras. There-
fore, new algorithms are required to process the data provided by event cameras. Example
of an event camera is the Dynamic Vision Sensor (DVS) [43].

3.3.5 Radar

The general principle of a radar can be explained through the illustration in figure 17, where
the distance to an object can be measured by using radio waves being transmitted and re-
ceived by an antenna. In [44] performance simulations of obstacle detection and collision
avoidance using a radar sensor on an UAV are done. In this paper, obstacle awareness per-
formance is analyzed by the probability of detecting obstacles through radar cross-section
(RCS) models, and collision avoidance performance is evaluated through information like
range and range rate during flights.

Figure 17: Illustration of the radar principle [45].
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3.3.6 GNSS

GNSS (Global Navigation Satellite System) is a common term for satellite based systems
for positioning and navigation, such as GPS (Global Positioning Sytem) and Galileo [46].
These systems consist of three segments; a space segment, control segment and a user
segment [47]. The three segments are illustrated in figure 18. The space segment consists
of satellites sending signals regarding distance and time to users. The control segment are
ground centrals that follow and send data to the satellites to be forwarded to users. Finally,
the user segment are receivers, for example on a drone, that collect data from the satellites
and from this are able to calculate position, velocity and time [47].

Figure 18: Illustration of the GNSS principle [48].

3.3.7 IMU

IMU (Inertial Measurement Unit) is a sensor or an instrument that senses translation or
rotational motion. An example of IMUs that sense linear translation are accelerometers.
To sense angular rate, IMUs called gyroscopes are used. An IMU has three axes associated
with it called input, output and a third axis related to the instrument. The sensing axis is
the input axis [49]. An IMU with the three axes is illustrated in figure 19.

Figure 19: Illustration of an IMU with three axes; roll, pitch, yaw [50].
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3.4 Data handling

This section will present some existing methods for handling large quantities of data, in-
cluding the process from reception of data to transferring, processing and storing. For
bridge inspection it is important how data is stored during and after inspection in such a
way that it is easily obtained for analysis. This chapter will be very brief because the project
assignment does not have strong emphasis on data handling. However, general knowledge
of data handling and existing methods for this is important when designing a robotic system
for inspection, therefore this chapter is included. Relevant theory for data handling is first
presented before some existing methods for reception, transferring and storage of data are
explained.

3.4.1 Background theory and definitions

The term Internet of Things (IoT) is widely used today when it comes to data handling. IoT
describes objects with a digital functionality such that they are able to communicate through
the Internet. In many industres, IoT has become a useful concept that eases information
flow to different parts of the world. [51]. Examples of objects communicating through the
Internet are cars, smartwatches and industrial sensors for measuring physical properties.
Through IoT, useful information from these objects are gathered and passed to other devices
or storing units using the Internet [52]. A second term commonly used in the context of
industrial applications of IoT is the Industrial Internet of Things (IIoT).

3.4.2 Existing methods for data handling

Existing methods for reception, processing and transferring of data can be be explained
through a process or system containing three different layers; cloud, fog and edge. An il-
lustration of these layers and the connection between them is shown in figure 20. The edge
layer can, for example, consist of embedded systems, industrial computers and gateways.
Processing of data in this layer is often done through embedded computing platforms con-
nected directly to the sensor or controller [53]. Since computations and data processing is
performed close to the data source without being sent to other systems, the performance of
data transport can be improved [54].
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Figure 20: Illustration of the layers cloud (blue), fog (green) and edge (orange) in data
processing[53]. The red circles illustrates sensors and controllers, and could, for example,
be sensors detecting corrosion on a bridge.

In the fog layer data is typically transmitted through a local area network (LAN) to a source
performing computations and analysis. The location of computational tools or systems are
therefore the key difference between edge and fog computation. The cloud layer consists
of a collection of servers that together make a distributed network. A cloud-based system
can collect data from multiple locations, store it and make it easily accessible from almost
anywhere. Data can be transmitted between the layers. For example, data from the cloud
layer can be passed to the fog or edge layer for local processing, or large quantities of data
retrieved from a sensor to an edge device can be passed to a cloud for computations in
a different geographical location [53]. As illustrated with the black arrow on the right in
figure 20 the processing speed increases the closer one is to the data source.

Examples of existing digital platforms for data handling are KONGSBERGs Kognifai plat-
form [55], Microsoft Azure [56] and Watson IoT [57].
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3.5 Inspection data analysis

In this section some existing methods for analyzing inspection data will be explained with
focus on analysis of corrosion damages on bridge constructions from images. Important
aspects like how the data is analyzed, types of software used for analysis, what type of
information is relevant and how it is interpreted will be covered in this section. A brief
introduction to relevant theory is included before some existing methods for data analysis
are explained.

3.5.1 Introduction and definitions

There are several definitions of the term Artificial Intelligence (AI). One definition de-
scribes AI as “the study of how to make computers do things at which, at the moment,
people are better” [58]. For example, in fast execution of many computational tasks com-
puters outperform humans, but in the ability to enter an unfamiliar room and, within less
than a second, being able to recognize surroundings and plan actions, humans clearly out-
perform computers today [58]. AI can also be defined as “the capability of a machine to
imitate intelligent human behaviour” [59]. The branch of AI that makes computers able
to learn, without explicitly being programmed to do so, is called Machine Learning (ML).
The term deep learning is important in this context. Through the use of algorithms in-
spired by the human brain called Artificial Neural Networks (ANN) deep learning can give
a computer the ability to self-learn models and patterns [59].

Computer Vision (CV) is a field of science where one seeks to describe the world through
the analysis of images, and to reconstruct properties like shape, illumination and color dis-
tributions. Humans easily recognize, for example, people and different three-dimensional
shapes, but for computers vision is more difficult. One of the reasons is that vision is an
inverse problem where unknowns must be recovered to be able to fully specify a solution.
Models based on physics and probability are used to differentiate between the potential
solutions [39].
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3.5.2 Existing methods for inspection data analysis

This section will focus on existing methods for analysis of data from cameras, more spe-
cific two approaches for automatic detection of corrosion; computer vision and deep learn-
ing techniques. First, some general methods will be explained, then examples of tests and
results from previous work using elements from one, or both, of these approaches for cor-
rosion detection will be presented.

Computer vision techniques

Computer vision was briefly introduced in section 3.5.1. In this section, computer vision
techniques will be explained in more detail. The discrete colour values red, green and
blue (RGB) that can be seen in a digital image comes from light, from different parts of
the spectrum, being integrated into these colour values when incoming light hits an image
sensor [39]. There exist alternative representations of the RGB colour space, for example:
HSV- hue, saturation and value, and HSL- hue, saturation and lightness [60]. There is also
a representation called HSI-hue, saturation and intensity.

The first stage in most computer vision applications is pre-processing and conversion of
images into a form that is suitable for further analysis. Point operators, or point-wise
operations, are simple types of image transforms where a pixel output value only depends
on the value of the corresponding input pixel [39]. A point-wise operation does not change
the spatial relationships in an image [60]. Examples of point-wise operations are contrast
and brightness adjustment, colour transformations, image matting and compositing, and
histogram equalization. Matting is the process of extracting a certain object from an image,
and compositing is the process of inserting this object into a different image [39]. An image
histogram can, for example, be a plot of colour channels, and this function could then
show the amount of pixels having a certain value or intensity. Normalized, the function
in an image histogram is also called a pdf - probability density function [60]. Histogram
equalization is a process of finding an intensity mapping function that results in a “flat”
histogram [39]. Figure 21 shows a very general example of an image histogram.
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Figure 21: Illustration of a general image histogram showing the pixel intensity on the
x-axis and the number of pixels with a specific intensity on the y-axis [61].

A neighbourhood operator, or a local operator, uses pixel values near a certain pixel to
determine what its final output value should be. These operators can used to filter images,
for example to remove noise. In linear filtering, the value of an output pixel is a weighted
sum of the input pixel values. A kernel, containing the filter coefficients, is placed over
some chosen values [39]. Figure 22 shows how a linear filtering process can be completed.

Figure 22: Illustration of linear filtering using a specific kernel, a 3× 3 matrix [60].

Examples of existing computer vision libraries are OpenCV [62], VXL [63] and SOD [64].
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Deep learning approaches

In section 3.5.1 an introduction to ANNs and deep learning was given. These two terms
will be further explained in this section. ANNs consist of neurons, processing units, that are
connected through synapses. Since ANNs are inspired by the human brain, expressions are
based on physiological terms [65]. Neurons and synapses in ANNs are illustrated in figure
23, where the circles in the different layers are neurons, and the links (arrows) between
them are synapses.

Figure 23: Illustration of a multi-layer artificial neural network [66].

When an artificial neural network has more than one hidden layer, as shown in figure 23, the
term deep learning is used. Each neuron has a certain capacity for processing information,
and they influence each other through the synapses. The learning process for ANNs consists
of deciding how much one neuron should affect the other, and this is referred to as deciding
the synaptic weightings. Data, called a training set, is provided the network in the input
layer (figure 23), and the synaptic weightings are adjusted until the network is able to
separate the given data in a desired way [65]. For example, if images of corrosion are the
input to the ANN, one would need to adjust the synaptic weightings in such a way that
the network is able to separate between the images that contain corrosion, and the ones
that do not. Once the weightings have been adjusted based on the training set, the network
performance is verified through providing it with what is called a validation set, containing
data that is new to the ANN [65]. In the case of corrosion detection, a validation set would
be a data set containing images of corrosion that the network has never seen before.

There is a class of neural networks called convolutional neural networks (CNN or Con-
vNets) that provides popular tools for image analysis. CNNs are highly suitable for analyz-
ing inputs like images, text, and different continuous signals. This class of neural networks
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is inspired by the biological structure of a visual cortex, consisting of cells that are acti-
vated by subregions of a visual field called receptive fields. Unlike other types of neural
networks, neurons in a convolutional layer connect to a subregion of a layer before the
layer. Subregions may overlap, resulting in neurons producing spatially-correlated results.
This is characteristic for CNNs, since neurons in other neural networks, like the type illus-
trated in figure 23, produce independent outputs because they are not connected. Examples
of layers in a CNN are convolutional layers, average-pooling layers and fully-connected
layers [67]. MATLABs Deep Learning Toolbox [68] is an example of software that uses
CNNs, as well as other networks. Figure 24 illustrates several convolutional layers produc-
ing output suggestions based on the input image.

Figure 24: Illustration of convolutional layers in a CNN [67].

Examples of existing deep learning network models are Google AIs GoogLeNet [69],
SqueezeNet [70] and Inception-v3 [71].
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Previous work on automatic corrosion detection

In [72] two different approaches for automatic detection of corrosion (rust) are compared;
standard computer vision techniques and a deep learning model. The paper is written by
employees of the two companies Broentech Solutions AS and Orbiton AS. Orbiton AS is
providing bridge inspection services using drones, and the corrosion detection methods ex-
plained in the paper are highly relevant for analysing images taken by these drones. The
first approach, refered to in the paper as the classical approach, is a method based on classic
CV tecniques that counts the amount of pixels in an image containing specific red compo-
nents. The code for the classic approach was written in the programming language Python
[73] using OpenCV libraries. Through a filtering process changing the image colour space
from RGB to HSV and, briefly explained, a conversion of the image to black and white,
the amount of white pixels could be used as a measure for corrosion. The classification of
corrosion was set to images containing more than 0.3% white pixels [72].

The second approach was the use of deep learning methods. A framework called Caffe [74]
was chosen beacuse of its suitability for image processing. A data set containing 1300 and
2200 images with and without corrosion respectively, was collected. Approximately 80%
of the data set was used as a training set for the deep learning network, the rest was used
as a validation set. An existing model called “bvlc_reference_caffenet” pre-trained with
about one millon images was used to fine tune the network. Using pre-trained models is
beneficial because it saves time through the reuse of information [72].

Figure 25: Examples of pictures used in tests of automatic corrosion detection [72].
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Figure 26: Pictures of rust classified as non-rust by the deep learning algorithm [72].

Figure 25 shows examples of images used in the testing of the two approaches for corrosion
detection. Images without corrosion, but with red or brown details were included to check
if the two approaches detected this as corrosion or not. For the tests a total of 100 images
were used. The total amount of images included 37 images of rust and 63 of non-rust. The
total accuracy was found to be 69% for the approach using OpenCV, and 78% for the deep
learning model, with accuracy defined as the ratio between correctly classified images and
the total amount of images.

The OpenCV method classified all the four pictures in figure 25 as rust because all pictures
had a large enough amount of red components to be detected as corrosion. The deep learn-
ing algorithm, on the other hand, was able to correctly classify all the pictures in figure 25
even though images of a desert or an apple were not used in the training set for the algo-
rithm. Even though the overall accuracy for the classical approach was lower than for the
one using deep learning, this approach had a higher accuracy in classifying images that ac-
tually contained rust as positive for corrosion. As an example, the deep learning algorithm
classified the pictures in figure 26 as non-rust even though there was present of rust.

The papers conclusion mentions a combination of the two approaches as a possible solution
for a real application, with the OpenCV model removing images that are non-rust and
passing the remaining to the deep learning algorithm for further analysis [72].
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In [75] deep learning approaches based on CNNs for corrosion detection are evaluated. The
study presented in this paper aims to quantify performance of corrosion classification and
find optimal inputs for a CNN to create robust systems for automatic corrosion detection.
Figure 27 shows a basic structure of a CNN with output predictions “non-corroded” and
“corrosion”, and this is the type of structure used in the study to classify image regions as
corroded or not.

Figure 27: Illustration of a basic CNN architecture [75].

Two types of existing networks called VGG16 [76] and ZF Net [77] were used. Different
colour spaces such as RGB, YCbCr, CbCr and grayscale were tested to find the optimal
colour space for corrosion detection. A sliding window approach was used to classify
different regions of an image. This is illustrated in figure 28.

Figure 28: Illustration of region classification using a sliding window approach [75].

Through testing the two networks with different colour spaces and sliding window sizes it
was found that the best input parameters were the RGB and YCbCr colour spaces, using
a sliding window size of 128 × 128. After fine-tuning, the VGG16 network turned out
to be the most robust architecture. However, with no fine-tuning, the two networks per-
formed equally. For future work, the paper suggests using the results found to look at the
possibilities for classification of different types of corrosion using CNNs [75].
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Chapter 4

Design of robotic inspection system with
sensors

In this chapter a robotic system for inspection of bridge constructions is designed. The sug-
gested system is designed for use in testing and development. Specific UAVs and sensors
for inspection will be evaluated, and brief considerations regarding sensors for autonomy
and data handling will be done. In this chapter a method for data analysis, with focus on
analysis of images of corrosion using CV techniques and deep learning, will also be pre-
sented. The data analysis method includes both corrosion detection and classification of
corrosion damages, and relevant software and networks for this are suggested.

38



Automatic Inspection of Bridge Constructions 4.1. SYSTEM CONCEPT

4.1 System concept

In this section the general concept of the robotic inspection system will be described. A
suggested combination of mobility hardware and sensors, data handling and analysis is
explained, giving an overall system architecture with requirements to be decided.

In section 3.1.5 and 3.2.4 evaluations of existing mobility hardware and inspection sensors
were done. An UAV with camera as sensor for inspection was chosen to be in focus for
this assignment. This is the combination of mobility hardware and sensor for inspection to
be used in this suggested system for bridge inspection. A selection of existing methods for
data handling and analysis introduced in section 3.4 and 3.5, respectively, will be used to
retrieve and process data from the inspection camera mounted on the UAV.

The UAV and the inspection camera should be able to withstand rough weather conditions
to a certain degree. In Norway, the weather during autumn and winter can be challenging,
and it is not expected that bridge inspection is to be performed on the coldest days, or on
days with heavy snowfall or rain. However, both the UAV and the inspection camera should
be waterproof to withstand rain and a moderate amount of snow. A certain wind tolerance
must also be required for the UAV so that it is able to maintain stable flights when exposed
to moderate to strong wind speed. It must be required a certain resolution, megapixels
(Mpx), on the inspection camera. This is because a high image quality is necessary when
performing data analysis. The UAV should be able to reach most parts of a bridge’s con-
struction, preferably all. For example, both areas underneath a bridge and on the highest
parts of the construction must be inspected. Therefore, an important feature for the UAV is
maneuverability.

The UAV could be controlled manually by an operator, or it could be fully autonomous.
In section 3.3, examples of existing sensors for autonomy were introduced. For the sug-
gested system, there will be done brief evaluations regarding sensors for autonomy and
what would be required for the UAV to be fully autonomous. It is important to specify that
the UAV does not necessarily have to be fully autonomous, so it will be facilitated for man-
ual control of the UAV as well. Manual control of the UAV is also considered preferable
in the beginning, during testing of data handling and analysis performance of the robotic
inspection system.

In section 3.4.2, three different methods for data handling, explained as layers in a data
handling process, called cloud, fog and edge layers, were presented. For the robotic in-
spection system, inspection data provided by the camera on the UAV should, preferably, be
accessible for analysis at all times from a different location than where the bridge is being
inspected, for example in a different city or country. To achieve this, the data can be trans-
ferred from the inspection sensor (camera) through a fog layer, for example a LAN, to a

39



Automatic Inspection of Bridge Constructions 4.1. SYSTEM CONCEPT

cloud for storing and further analysis. If it’s preferable for the end user of the system to do
data analysis directly on the inspection site, it should also be possible to analyze inspection
data through directly connecting to the camera with the use of embedded computing plat-
forms. A challenge in data handling could occur if there is poor, or no, Internet coverage
in the area a bridge is located. Therefore, the UAV must have a data storage device for
temporarily storage of inspection data when it is not possible to send the data directly to a
cloud, or to a computer through a LAN.

Methods for data analysis, with emphasis on automatic corrosion detection through im-
age processing and classification, were presented in section 3.5.2. After inspection data
have been transferred to a cloud or a local computer, it will be analyzed using relevant
software, libraries and networks for image processing. The two methods for data analysis
and automatic corrosion detection will be computer vision techniques and deep learning
approaches. For automatic corrosion detection on bridge constructions to be able to fully
replace today’s methods with engineers visually evaluating images manually, a high preci-
sion detection system must be developed. Therefore, requirements on the accuracy of the
system for automatic corrosion detection must be set.

Figure 29 shows a simple, self made illustration of the system concept, consisting of an
UAV with sensors for both inspection and autonomy, and minimum one storage device.
The system for data handling uses one, or more, of the three layers cloud, fog and edge,
depending on the conditions for data transferring. The last part of the robotic inspection
system is data analysis, using computer vision techniques and deep learning approaches.

Figure 29: A simple illustration of the robotic inspection system concept. Images are
passed, either directly from the inspection camera or from a storage device on the UAV,
to a cloud or a local computer. Then, images are analyzed using CV techniques, deep
learning, or a combination of these approaches.
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4.2 Requirements specification

There are several requirements that need to be fulfilled for a well functioning robotic in-
spection system. Technical specifications and requirements to reliability and safety are
examples of important factors in the work of designing a robotic system. Table 11 con-
tains the requirements specification for the robotic inspection system to be designed in this
chapter, based on the system concept described in the previous section.

Table 11: Requirements specification for the robotic inspection system. XX are numbers
that need to be decided through testing, or that depend on combinations of sensors and
equipment.

Number Requirement Comment

1
The UAV should be able to

withstand rough weather conditions
Challenges due to rain, wind and

snow must be handled

2
The UAV shall have a high
degree of maneuverability

Important for being able to maneuver
the UAV between the different
areas of a bridge construction

3
A payload capacity of min. XX kg

is required for the UAV

To be able to carry both
a sensor for inspection (camera)

and sensor(s) for autonomy.
XX must be defined

depending on what sensors are used

4
The UAV shall have min. one

data storage device

For the possibiliy of temporarily
storage of inspection data on the UAV.

For example MicroSD, USB, or similar.

5
The inspection camera should

be able to withstand
rough weather conditions

As the UAV itself, the sensor
for inspection must be robust.

For example, waterproof

6
The inspection camera shall

have a resolution of
min. XX Mpx

A certain image quality is
required for data analysis. Several

cameras may have to be
tested to find XX

7

Data analysis methods shall be
accurate and reliable enough

to make corrosion
detection fully automatic

Combinations of analysis
methods must be considered
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4.3 System description

The first part of the system that will be described is mobility hardware and sensors. Next,
considerations regarding data handling will be done. Finally, a method for analysis of
images of corrosion using both CV techniques and deep learning approaches is presented.
Choices in this chapter are based on the requirements set in table 11 and existing hardware,
sensors and methods for data handling and analysis presented in previous chapters in this
report.

4.3.1 Mobility hardware and sensors

This section is structured into three parts, including considerations and choices for the
UAV, inspection camera and sensors and methods for autonomy to be used in the robotic
inspection system.

UAV

In table 6 a classification of UAV performance is shown, and two types of drones that
have an overall high score are single rotor drones and multirotor drones with more than
4 rotors. However, drones with four rotors are also relevant for bridge inspection. Two
important characteristics for a drone to be used for bridge inspection is withstanding of
weather and maneuverability, and both types of drones score high on these characteristics.
As mentioned in section 3.1.1, multirotor drones are already being used for bridge inspec-
tion, which confirms that this is a type of drone well suited for the task. It is important
to specify that there exists many different manufacturers of multirotor drones, so it is cru-
cial to choose those most reliable and suited for mounting sensors for both inspection and
autonomy.

In table 11 requirements 1-4 are set for the UAV to be used in this robotic system for
inspection. From requirement 1, the use of a reliable and durable UAV is advised. With
durable it is meant an UAV that withstands demanding conditions such as rain, wind (to a
certain degree), snow and freezing temperatures. Examples of relevant multirotor drones
to be used in the robotic inspection system are the Intel Falcon 8+ [78] and Action Drone
USA’s AD2 Inspection [79]. These two drones are shown in figure 30 and 31, respectively.
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Figure 30: Illustration of the Intel Falcon 8+ [78]

Figure 31: Illustration of Action Drone USA’s AD2 Inspection drone[80]

From [81] and [82] technical specifications on the Intel Falcon 8+ and Action Drone AD2
Inspection are gathered, respectively. A selection of technical specifications for the two
drones are compared in table 12.
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Table 12: Technical specifications for the Intel Falcon 8+ and Action Drone AD2 Inspection
[81][82]. X is unknown information.

Intel Falcon 8+ Action Drone AD2
Inspection

Max. wind tolerance 16 m/s (35.8 mph) 11.2 m/s (25 mph)
Rain/water tolerance X X

Operating temperature −5◦C to 40◦C X

Storage device
Yes. Made with slots

for USB and Micro SD.
X

Flight time 16-26 min 10-30 min

Take-off weight 2.8 kg (6.17 lbs)
5.4-13.5 kg (12-30 lbs)

Depending on configuration

Requirement 1 in table 11 says that the UAV should be able to withstand rough weather
conditions. Table 12 shows the maximum wind tolerance for the two drones. From [83],
wind speeds between 10.8-13.8 m/s and 13.9-17.1 m/s are classified as a strong breeze and
near gale, respectively. Both drones can operate in the category strong breeze, and the Intel
Falcon 8+ can also be used when near gale. For an UAV to be used in a system for testing
and development, the wind tolerance for both drones in table 12 are considered accept-
able. Regarding tolerance against rain, it is not explicitly stated in technical specifications
how well these drones can withstand rain, or water in general. It might be necessary to
cover parts of the drone with a protective film, or similar, to prevent water from damag-
ing electrical components. The Intel Falcon 8+ can be operated at temperatures as low
as −5◦C. Operating temperature for the Action Drone AD2 Inspection is not specified in
[82]. Regarding maneuverability, requirement 2 in table 11, both the Intel Falcon 8+ and
the Action Drone AD2 Inspection are multirotor drones made for inspection purposes, and
are therefore expected to have a sufficient degree of maneuverability for bridge inspection.

The UAVs payload capacity, requirement 3, is important because it should be possible to
mount both a sensor for inspection and autonomy. However, the two drones introduced in
this section are delivered with a complete setup for inspection, so they are made to be able
to carry sensors. Of course, if the drones are to be fit with other sensors than the original
ones, the weight of the new sensors must not exceed the weight limit of the drone. When
it comes to storage devices, requirement 4, the Intel Falcon 8+ has slots for both USB and
MicroSD, while it is uncertain if the Action Drone AD2 Inspection is made with similar
solutions for data retrieval.
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Inspection camera

The inspection camera is an important part of the inspection system, since this is the sensor
providing relevant inspection data to be analyzed. Therefore, requirements 5-6 in table 11
are set for the inspection camera. Both the Intel Falcon 8+ and the Action Drone AD2
Inspection are delivered with different setups of cameras, batteries, GPS sensors and re-
mote control systems. For example, the Intel Falcon 8+ has two different payload options
including the cameras Sony Alpha 7R* and Panasonic ZS50 [78]. The Action Drone AD2
Inspection is delivered with a Sony a6000 camera [80]. Some technical specifications for
the three different cameras are shown in table 13.

Table 13: Technical specifications for Sony Alpha 7R*, Panasonic ZS50 and Sony a6000
[84] [85] [86].

Sony Alpha 7R* Panasonic ZS50 Sony a6000
Image

resolution [Mpx]
36.8 12.1 24.3

Lens Sony E-mount
LEICA DC

VARIO-ELMAR
Sony E-mount

Sensor
35 mm full frame

Exmor CMOS sensor

1/2.3-inch Large
Pixel Sized High

Sensitivity MOS Sensor

APS-C type
(23.5 x 15.6 mm)

Waterproof No No No

The image resolution of the three cameras is quite different, varying from approximately
12 to 36 Mpx. Requirement 6 in table 11 says that a certain image resolution is required
to ensure a high enough image quality for analysis. In a case study of bridge inspection by
Orbiton [87], a camera with 24 Mpx was chosen after testing several cameras and lenses.
Choosing an exact amount of Mpx to be required for the inspection camera is difficult.
Therefore, testing of the three cameras in table 13 is advised to find the optimal combina-
tion of sensors and lenses for bridge inspection. The other requirement for the inspection
camera, requirement 5 in table 11, is that it shall be able to withstand rough weather condi-
tions. Table 13 shows that non of the three cameras originally mounted on the Intel Falcon
8+ or the Action Drone AD2 Inspection are waterproof. To fulfill requirement 5, one could
either use a type of underwater housing on the camera or simply choose a different, water-
proof camera. If modifications are done to the drone, one should be able to fit a different
camera than the drone was delivered with originally. For example, GoPro delivers durable
cameras like the GoPro Hero 7, which is waterproof and has an image resolution of 12 Mpx
[88].
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Sensors and methods for autonomy

Sensors for autonomy were introduced in section 3.3. As stated in section 4.1 when ex-
plaining the concept of the robotic inspection system, the UAV does not necessarily have
to be autonomous. In the beginning, when testing system functions such as data handling
and analysis it is considered preferable to control the UAV manually. Autonomy can be a
later step for creating a fully automatic inspection system. However, it is of value to look
at what sensors are available, and what is required to make the UAV autonomous.

The Intel Falcon 8+ is delivered with navigation sensors, both GPS and a triple redundant
IMU [81]. The Action Drone AD2 Inspection is also delivered with systems for GPS sup-
ported flights [82]. To make one of these UAVs fully autonomous one can for example
mount an Intel RealSense camera, introduced in section 3.3.3. The Intel RealSense Depth
Camera D400-Series is made for both indoor and outdoor environments, and has a max-
imum range of approximately 10 meters, depending on calibration and light conditions.
Regarding software, Intel RealSense Software Development Kit 2.0 is an open source,
cross-platform library, including software wrappers that support programming languages
such as Python and Matlab [89].

LiDAR based sensors are also relevant as sensors for autonomy. Velodyne HDL-32E was
mentioned in table 10, section 3.3, as a common LiDAR based sensor for UAV. The Velo-
dyne HDL-32E sensor has a range of 80 to 100 meters and 360 degrees horizontal field of
view [90].

A potential challenge could be integrating new sensors, such as the Intel RealSense, in
the existing control system for the UAV. This potential issue is not investigated further in
this project assignment, but is considered an important factor in making a standard UAV
autonomous. [89] explains some guidelines for integration of Intel RealSense D400-series
into a system.

The use of VSLAM (Visual Simultaneous Localization and Mapping) is a possible exten-
sion of the robotic inspection system.
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4.3.2 Data handling

This section will briefly explain what is required of a data handling method to function
properly as a part in the robotic inspection system, and there will be done some considera-
tions regarding data handling in general.

Existing methods for data handling were explained in section 3.4.2. The three methods
cloud, fog and edge computing were explained as different layers in a data handling pro-
cess. As explained in section 4.1, the main method for data handling in the robotic inspec-
tion system will be cloud computing, so that data can be easily accessed from different
locations, both during and after bridge inspection. In case of poor, or no, Internet connec-
tion, inspection data will be temporarily stored on a storage device mounted on the UAV.

It is important to have a reliable system for data transferring and storage so that no inspec-
tion data is damaged or lost. Data availability is also a priority, since one should be able to
access inspection data easily for further analysis. The robotic inspection system proposed
in this chapter is made for use in testing and development, so for testing, any available data
handling platform at time of implementation could be used. However, for an end user such
as The Norwegian Public Roads Administration, it must be facilitated for a data handling
platform that is compatible with their inspection management system. In section 3.4.2,
examples of existing digital data handling platforms were mentioned. Among these were
Microsoft Azure that provide cloud based services within, for example, storage, data anal-
ysis and machine learning [56]. Microsoft Azure is considered to be a good choice for a
data handling platform.
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4.3.3 Data analysis

In section 3.5.2 computer vision techniques and deep learning approaches for data analysis
were introduced. Examples of previous work using one or both of these methods were
also given in the same section. Requirement 7 in table 11 states that data analysis meth-
ods in the robotic inspection system shall be accurate enough to make corrosion detection
fully automatic. To create a reliable method for automatic corrosion detection one must
explore the possibilities of combining existing techniques and image libraries if that proves
preferable. In this section, there will be suggested a data analysis process of three steps
for automatic corrosion detection consisting of both computer vision techniques and deep
learning approaches. A simple illustration of the suggested data analysis process is shown
in figure 32.

Figure 32: A self made illustration of the three steps in the robotic inspection system’s data
analysis process, where p is the number of red pixels and t is the threshold set for what is
classified as corrosion.

The first step in evaluating the images provided by the inspection camera is to separate
them into two categories; corrosion and not corrosion. In [72], the amount of red pixels
(white pixels after conversion to black and white) in an image was counted, and if the the
sum exceeded a certain threshold the image was classified as corrosion. This approach
clearly does utilize the reddish colour which is characteristic for corrosion, but a challenge
is that images of other objects containing a large amount of red pixels could be wrongly
classified as corrosion. One could argue that this is not a great issue on a bridge since there,
most likely, are not many foreign objects on the construction that could be interpreted as
corrosion. However, leaves, objects thrown out of passing cars, or similar, are potential
sources of error in image classification. An advantage with classifying images through
counting red pixels is that one gets a high accuracy on discovering corrosion, so the chance
of missing out on a case that could potentially be corrosion is minimal. The images that are
wrongly classified as corrosion can be filtered out in the second step of the data analysis
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process. Therefore, the approach from [72] is considered to be a good choice for the first
step in automatic corrosion detection in the robotic inspection system. What type of soft-
ware that will be used depends on what is available at the stage of system implementation,
but Python and MATLAB are both considered relevant choices of software.

After having classified images as positive for corrosion through the technique mentioned
above, there could be that some of the images are wrongly classified. To deal with this
issue, a second step in the data analysis process is applied. In this step the images will
become inputs to a convolutional neural network, such as the one described in [75] and
shown in figure 27. A CNN pre-trained with thousands of images, or more, would provide
a strong basis for filtering out images that were wrongly classified as corrosion in the first
step of the data analysis process. The Norwegian Public Roads Administration has many
images from earlier bridge inspections that could be gathered in a data set and used to train
a CNN. Other existing CNNs such as VGG16 and ZF Net, mentioned in [75], can also be
used in this second step of automatic corrosion detection.

The two first steps suggested for the data analysis process of the robotic inspection system
provides information about the existence of corrosion on the bridge construction, but does
not tell what type of corrosion one is dealing with or what the extent of the corrosion
damage is. A third step in the data analysis process is therefore suggested, where the type
and severity of the corrosion damage seeks to be uncovered. This third step is also an
analysis of images in a CNN, but with focus on classifying the severity of the corrosion
damage found in the previous steps.

The severity of a corrosion damage is one of the elements in evaluations of faults done by
the Norwegian Public Roads Administration. Table 4 from section 2.4 shows how severity
is divided into four interpretations of a damage; small, medium, large and critical. To
decide the severity of a corrosion damage using a CNN, it is necessary to have a data set
of representative images for comparison with the retrieved inspection data. This data set
can, for example, be generated from images in BRUTUS, the Norwegian Public Roads
Administration’s management system mentioned in section 2.2. By using images from
BRUTUS, one can perform comparisons between images from previous inspections and
new images from current inspection, taken of the same bridge. This is expected to give
the CNN a relatively high accuracy, since the data set used to train the network becomes
very similar to the input. In order to make the CNN capable of indicating the severity of
the corrosion damage, the images in BRUTUS from previous inspections are labeled with
one of the four classifications in table 4. The output of the CNN will then be four different
folders containing images with the different degrees of severity. Thus, an overview of the
bridge’s condition is given. This is illustrated in figure 33.
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Figure 33: Illustration of outputs from neural network in step 3 of the data analysis pro-
cess. The outputs are sorted in classes from 1-4 depending on the severity of the corrosion
damage, as explained previously in table 4.

VSLAM was mentioned previously as a possible extension of the robotic inspection sys-
tem, and this could be very relevant in the data analysis process as well. If the results from
classification of corrosion damages in a neural network could be stored in a map of the
relevant bridge, it would be possible to visit the exact same areas of a bridge during future
inspections, to see if a damage has evolved or if it stays at the same level of severity as at
the last inspection.
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Discussion

This chapter contains a discussion on choices done in this report and on the robotic inspec-
tion system designed in chapter 4. As stated previously, the inspection system is designed
for use in testing in development, so further investigation of solutions in existing automatic
inspection methods is advised before implementation of the system.

When mobility hardware was evaluated in section 3.1.5 it was mentioned that since only
one type of mobility hardware is chosen, it is also chosen between either inspection above
water or under water. In a complete robotic system for inspection it could definitely be
of interest to be able perform inspection of the bridge construction both above and under
water. However, due to limitations in time working with this project, only one of these
solutions was possible to focus on.

An evaluation of sensors for inspection was carried out in section 3.2.4. Camera was cho-
sen as sensor for inspection because of the possibilities for close visual inspection and
image analysis. Especially since the focus in this report was set on inspection of corrosion
damages, visual inspection, hence a camera, became the optimal choice. Use of ultrasonic
sensors and eddy current sensors on an UAV requires that functional and reliable methods
are developed for this. For special inspections of bridges, mentioned in section 2.1, use of
ultrasonic sensors and eddy current sensors on an UAV is considered relevant to be able to
perform an even better condition monitoring of the bridge construction.

Two specific UAVs, Intel Falcon 8+ and Action Drone AD2 Inspection, were given as
examples of an UAV that can be used in the designed robotic inspection system. One may
argue that there exist other UAVs as well that are suited for bridge inspection, and perhaps
even better suited than the two examples given here. This might of course be the case, but
the main purpose of giving these examples was to show some of the specific alternatives
that exist, and what modifications are necessary in order to meet system requirements. In
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addition, there is an economic question to the choice of UAV, so one would have to choose
the UAV affordable and available at the point of system implementation.

The two UAVs suggested in chapter 4 are delivered with a certain camera setup. It is
difficult to decide exactly what camera would be best for bridge inspection, since testing
is required to decide, for example, what type of lens gives the best image result. However,
the cameras mentioned in section 4.3.1 are considered relevant candidates, except from the
fact that they are not waterproof, which is a potential challenge.

Data handling is only briefly explained in the system description due to the fact that details
around data handling are not emphasized in this project assignment. However, it was nec-
essary to mention a possible data handling solution, such as using Microsoft Azure. When
testing the system, one can use the data handling solution provided by employer or univer-
sity, or whatever solution fits the chosen software and control system on sensors and UAV
best.

The data analysis process described in section 4.3.3 shows a combination of computer
vision techniques and deep learning approaches for both corrosion detection and classifica-
tion. The first step in the data analysis process consists of counting red pixels in an image,
but other computer vision methods may be relevant here. Also, not all corrosion damages
have a reddish colour. The colour and look of a corrosion damage depends on the material.
For example, zinc, which is used as coating material on bridge constructions, often gets a
white-like colour when corroded. Step 1 in this process using computer vision techniques
may not even be necessary if a neural network is trained to a high enough accuracy for
performing this task alone. Thus, three steps can be reduced to only two. Also, it might be
possible to do both corrosion detection and classification in a combined operation inside a
neural network, but this solution has not been investigated.
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Conclusion

In this project report a robotic system for automatic inspection of corrosion damages on
bridge constructions has been designed. The designed system includes elements from ex-
isting automatic inspection methods, and consists of four main parts; UAV, sensors, data
handling and data analysis. Existing mobility hardware, sensors for both inspection and au-
tonomy, methods for data handling and data analysis were introduced. Regarding data han-
dling in the robotic inspection system, cloud computing was chosen as the main solution.
Through evaluations considering important aspects such as inspection equipment access,
safety and inspection data quality, it was decided to focus on an UAV as mobility hardware
with a camera as sensor for inspection. Thus, for data analysis, emphasis was placed on
image analysis, specifically on images of corrosion. The designed robotic inspection sys-
tem includes a method for data analysis combining computer vision techniques and deep
learning approaches for corrosion detection and classification. The robotic system was not
implemented during this project. Testing of the method for corrosion damage classification
using deep learning is considered future work, and will be performed in a master thesis next
year at the Department of Engineering Cybernetics, NTNU in collaboration with SINTEF.
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