
Egil H
olm

C
lassification of C

orrosion and C
oating D

am
ages on B

ridge C
onstructions using D

eep Learning

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Egil Holm

Classification of Corrosion and
Coating Damages on Bridge
Constructions using Deep Learning

Master’s thesis in Industrial Cybernetics

June 2019

Classification of Corrosion and Coating
Damages on Bridge Constructions using Deep
Learning

Egil Holm

Master’s thesis in Industrial Cybernetics
Submission date: June 2019
Supervisor: Annette Stahl, NTNU
Co-supervisor: Aksel Andreas Transeth, SINTEF
Co-supervisor: Ole Øystein Knudsen, SINTEF

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This master’s thesis is the final assignment in the two-year master’s degree programme In-
dustrial Cybernetics at the Department of Engineering Cybernetics, NTNU. The work in
this thesis has made it possible to combine knowledge from my B.Sc in Materials Science
and Engineering with engineering cybernetics in order to investigate possibilities in auto-
matic inspection of corrosion and coating damages. The duration of the project presented
in this thesis was from January 7th to June 3rd 2019.

The aim of this thesis has been to present a comparison of image classification perfor-
mances for different convolutional neural networks, in order to evaluate the potential in
using deep learning as an automatic analysis method for corrosion and coating damages
on bridge constructions. This thesis is a continuation of my specialization project written
autumn 2018, where methods for automatic inspection of bridge constructions were investi-
gated. The Department of Engineering Cybernetics has provided both necessary hardware
and software for performing the experiments in this thesis, which includes a computer,
GPU and a MATLAB license.

I would like to thank Sølvi Austnes from the Norwegian Public Roads Administration
(Statens Vegvesen) for providing a data set of images from previous bridge inspections.
This data set was a necessary basis in the work of categorizing relevant images of corrosion
and coating damages. I would also like to thank my co-supervisor Ole Øystein Knudsen
from SINTEF Industry for advice regarding corrosion damages and bridge inspections. A
special thank you to my supervisor Annette Stahl from NTNU and co-supervisor Aksel
Andreas Transeth from SINTEF Digital for giving me feedback on this thesis, and for
regular meetings in the project period.

Egil Holm
Trondheim, 03.06.2019

i

Abstract

This master’s thesis presents a comparison of performance for different convolutional neu-
ral networks on image classification of corrosion and coating damages on bridge construc-
tions. A total of 9300 images, divided into four classes; paint flaking, red corrosion on
rebar, red corrosion on steel construction and not corrosion, were collected through man-
ual categorization and image augmentation. Four different convolutional neural networks
called AlexNet, GoogLeNet, ResNet-50 and VGG-16 were trained and tested on the col-
lected images in order to evaluate the potential in using neural networks for automatic
analysis of damages on bridge constructions. Each neural network was trained and tested
using both three and four classes for comparison of performance scores depending on the
number of images used in training and testing. Evaluations and comparisons were done
through the performance metrics recall, precision, accuracy and F1 score. The neural net-
works were also evaluated on the ability of detecting damages, meaning that the number
of false positives for not corrosion were studied. In this thesis, VGG-16 with four classes
gave the overall best performance results with average values for recall, precision, accuracy
and F1 score being 95.45%, 95.61%, 97.74% and 95.53%, respectively. The highest score
on damage detection was achieved with AlexNet, which was trained and tested with four
classes, where a detection accuracy of 99.14% was achieved. From the results obtained
in this thesis, it is concluded that convolutional neural networks have a great potential in
automatic analysis of corrosion and coating damages on bridge constructions. In combi-
nation with a drone and a 3D program for localization of images taken during inspections,
a data analysis system using convolutional neural networks will give a complete overview
of bridge construction condition. Thus, necessary measures related to repairs and main-
tenance can be performed efficiently. Regarding further work, collection of more relevant
images of damages for network training is recommended in order to improve classification
performance for convolutional neural networks. In addition, utiliziation of regions of inter-
est or segmentation for better labeling of relevant areas of an image is considered to be a
suitable approach.

iii

Sammendrag

Denne masteroppgaven presenterer en sammenligning av ytelse for forskjellige nevrale
nettverk på bildeklassifisering av korrosjon og beleggskader på brukonstruksjoner. Totalt
9300 bilder, delt inn i fire klasser; malingsavflaking, rød korrosjon på armering, rød kor-
rosjon på stålkonstruksjon og ikke korrosjon, ble samlet gjennom manuell kategorisering
og augmentasjon. Fire forskjellige nevrale nettverk, kalt AlexNet, GoogLeNet, ResNet-
50 og VGG-16 ble trent og testet på de kategoriserte bildene for å evaluere potensialet
i bruk av nevrale nettverk for automatisk analyse av skader på brukonstruksjoner. Hvert
nettverk ble trent og testet ved å bruke både tre og fire klasser for å sammenligne ytelse
avhengig av antall bilder som ble brukt til trening og testing. Evalueringer og sammen-
ligninger ble gjort gjennom ytelsesmålinger kalt recall, presisjon, nøyaktighet og F1. De
nevrale nettverkene ble også evaluert på evnen til å oppdage skader, noe som innebar at an-
tall falske positiver for ikke korrosjon ble undersøkt. I denne oppgaven ga VGG-16 med fire
klasser de beste resultatene med gjennomsnittlige verdier for recall, presisjon, nøyaktighet
og F1 på henholdsvis 95.45%, 95.61%, 97.74% og 95.53%. Nettverket med beste resultat
på evnen til å oppdage skader ble oppnådd med AlexNet, trent og testet med fire klasser,
hvor deteksjonsnøyaktigheten ble 99.14%. Fra resultatene som er oppnådd i denne opp-
gaven, konkluderes det med at nevrale nettverk har et stort potensial i automatisk analyse
av korrosjon og overflateskader på brukonstruksjoner. I kombinasjon med en drone og et
3D-program for lokalisering av bilder tatt under inspeksjon, vil et dataanalysesystem som
bruker nevrale nettverk gi en fullstendig oversikt over tilstanden til en brukonstruksjon.
Dermed kan nødvendige tiltak knyttet til reparasjoner og vedlikehold utføres effektivt. Når
det gjelder videre arbeid, anbefales det å samle inn flere relevante bilder av skader til bruk
i nettverksopplæring for å forbedre ytelsen for nevrale nettverk. I tillegg betraktes utnyt-
telse av såkalte “regions of interest” eller segmentering, for å bedre kunne merke relevante
områder av et bilde, som en egnet tilnærming i videre arbeid.

iv

Contents

Preface i

Abstract iii

Sammendrag iv

1 Introduction 1
1.1 Motivation and background . 1
1.2 The aim of the thesis . 4
1.3 Limitations . 4
1.4 Contributions . 5
1.5 Outline of the thesis . 6
1.6 Abbreviations . 6

2 Background theory 7
2.1 Corrosion and corrosion damages . 8

2.1.1 General principles of corrosion . 8
2.1.2 Forms of corrosion damages . 9
2.1.3 Specific metals and corrosion appearance 14

2.2 Corrosion protection and inspection of bridges 17
2.2.1 Corrosion protection of steel bridges 17
2.2.2 Types of inspections and implementation 18
2.2.3 Evaluation of faults and damages 19

2.3 Machine learning . 20
2.3.1 Introduction to artificial intelligence 20
2.3.2 Principles of machine learning . 22
2.3.3 Artificial neural networks and deep learning 26

3 Previous work and literature study 41
3.1 Existing neural networks and relevant software 42

v

CONTENTS

3.2 Previous work on classification of corrosion damages 48

4 Methods 53
4.1 Data collection . 54
4.2 Setup of training and tests . 60

4.2.1 Training and validation . 60
4.2.2 Testing . 62

4.3 Implementation of classification system in MATLAB 67
4.3.1 Loading CNNs . 67
4.3.2 Image labeling and data sets . 67
4.3.3 Image pre-processing . 68
4.3.4 Modification of layers in existing CNNs 70
4.3.5 Training of CNNs . 71
4.3.6 Testing of CNNs . 72

5 Results 73
5.1 Network 1-AlexNet . 74

5.1.1 Training, validation and test of network 1 74
5.1.2 Discussion of network 1 . 76

5.2 Network 2-AlexNet . 77
5.2.1 Training, validation and test of network 2 77
5.2.2 Discussion of network 2 . 79

5.3 Network 3-GoogLeNet . 80
5.3.1 Training, validation and test of network 3 80
5.3.2 Discussion of network 3 . 81

5.4 Network 4-ResNet-50 . 82
5.4.1 Training, validation and test of network 4 82
5.4.2 Discussion of network 4 . 83

5.5 Network 5-VGG-16 . 84
5.5.1 Training, validation and test of network 5 84
5.5.2 Discussion of network 5 . 85

5.6 Network 6-AlexNet . 86
5.6.1 Training, validation and test of network 6 86
5.6.2 Discussion of network 6 . 88

5.7 Network 7-GoogLeNet . 89
5.7.1 Training, validation and test of network 7 89
5.7.2 Discussion of network 7 . 90

5.8 Network 8-ResNet-50 . 91
5.8.1 Training, validation and test of network 8 91
5.8.2 Discussion of network 8 . 92

vi

CONTENTS

5.9 Network 9-VGG-16 . 93
5.9.1 Training, validation and test of network 9 93
5.9.2 Discussion of network 9 . 94

5.10 Summary and comparison of results . 95
5.10.1 Networks 2-5 . 97
5.10.2 Networks 6-9 . 99
5.10.3 Networks 2-9 . 101

6 Discussion 111

7 Conclusion and further work 115

Bibliography 117

Appendix 125

vii

Chapter 1

Introduction

1.1 Motivation and background

In the western part of the world, costs related to corrosion damages are estimated to be
3-4 percent of a country’s Gross Domestic Product (GDP) [1] [2], and the global cost was
estimated to be 3.4 percent of the global GDP in 2013 [3]. Corrosion damages are common
challenges in many industries and on elements of infrastructure like bridges, tunnels and
vehicles. In Norway, the GDP in 2016 was approximately 3119 billion NOK [4]. Assuming
3-4 percent of the Norwegian GDP in 2016 was related to corrosion damages, this equals
a cost of 94-125 billion NOK. In this thesis, focus will be placed on corrosion and coating
damages on bridge constructions in Norway. Regarding coating damages, paint flaking is
the only type of coating degradation that is studied in this thesis.

In Norway there are more than 17500 bridges to be inspected and maintained by The Nor-
wegian Public Roads Administration [5]. Corrosion damages, cracks and faults in sur-
face treatment are examples of elements of interest during inspection of bridges. Every
year there are high economic costs related to inspection of bridge constructions, and there
are also safety challenges related to implementation of certain types of manual inspection
methods that require use of access equipment. Manual inspection methods also have chal-
lenges in terms of subjectivity when evaluating corrosion damages, which are eliminated
when using automatic analysis methods instead. Therefore, it is important to investigate
the potential in automatic inspection methods [6].

The focus in previous work on detection of corrosion damages from images using deep
learning approaches has mainly been on binary classification problems, with prediction of
two classes; corrosion and not corrosion [7] [8]. The previous work in [7] did use images

1

1.1. MOTIVATION AND BACKGROUND

from previous bridge inspections; a total of 3500 images divided into two classes. However,
in order to develop a complete automatic analysis system for damages on bridge construc-
tions, it is necessary to be able to detect more than corrosion or not corrosion. In this thesis,
a total of 9300 images from previous bridge inspections, divided into four classes, are used
for training and testing of convolutional neural networks. The four classes are paint flaking,
red corrosion on steel construction, red corrosion on rebar, and not corrosion.

A specialization project [6] was introduced in the preface. In this specialization project,
the student presented existing methods, sensors and software for automatic inspection of
bridge constructions, and a design of a robotic inspection system was suggested. The de-
signed system consists of three main modules; data collection, handling and analysis. This
master thesis is a continuation of the project, where emphasis is put on data analysis. Figure
1 shows a simple, self made illustration of the system concept presented in the specializa-
tion project. The suggested system consists of a drone, also known as an Unmanned Aerial
Vehicle (UAV), with sensors for both inspection and autonomy, and minimum one storage
device. The module for data handling uses one, or more, of three layers called cloud, fog
and edge, depending on the conditions for data transferring. The last module of the robotic
inspection system is data analysis, using computer vision techniques or deep learning ap-
proaches.

Figure 1: A simple illustration of a robotic inspection system concept. Images are passed
from the inspection camera or from a storage device on an UAV, to a cloud or a local com-
puter. Next, images are analyzed using computer vision (CV) techniques, deep learning, or
a combination of these approaches [6].

Deep learning is the chosen approach for image analysis in this thesis, and figure 2 illus-
trates the relevant concept for automatic image analysis using what is called convolutional
neural networks. The concept of data analysis suggested in figure 2 can, in combination
with a localization system for images taken by a drone, give a complete overview of a
bridge construction and automatically tell what type of damage one is dealing with. A
system based on, for example, Visual Simultaneous Localization and Mapping (VSLAM)
and 3D models of bridges, used in combination with the analysis system proposed in this

2

1.1. MOTIVATION AND BACKGROUND

thesis, would provide information on exactly where detected damages are located. Thus,
damage development can be observed over time in order to find the best suited measures
related to maintenance and repair.

Figure 2: Illustration of the concept of automatic image analysis that will be further inves-
tigated in this thesis. The illustration is self made, and shows how an image from bridge
inspection is to be analyzed and classified by convolutional neural networks into one of
the four classes paint flaking, red corrosion on steel construction, red corrosion on rebar,
and not corrosion. The three elements, or layers, in the grey modules; filtering, threshold
and down-sampling, are called convolution, activation function and pooling, respectively.
A convolutional neural network typically has several such modules. The last layers where
classification is performed are called fully-connected layer and output layer. The different
layers will be further explained in the theory chapter of this thesis.

3

1.2. THE AIM OF THE THESIS

1.2 The aim of the thesis

The aim of this thesis is to compare performance of different convolutional neural networks
on classification of corrosion and coating damages on bridge constructions, in order to
evaluate the potential for creating a system for automatic image analysis to be used in
bridge inspections. A relevant data set of images must be collected, and suitable software
tools for image pre-processing, training and testing of neural networks, is to be found. The
thesis consists of the following subtasks:

• Search for, and write about previous work/methods on corrosion detection and clas-
sification of images using deep learning. Write theory on artificial intelligence, ma-
chine learning, deep learning and corrosion.

• Find a relevant data set containing images of corrosion damages. Images from pre-
vious bridge inspections in Brutus are relevant. Label and pre-process images using
appropriate software tools.

• Choose software and networks for image classification. Modify existing neural net-
works, add/remove layers and choose training options. Perform training of neural
networks and comparison of these through testing.

• Present results in a suitable way using graphs and tables. Find and express metrics
of performance for the trained neural networks.

• Discuss results from testing of the neural networks. Explain what the results show
and how this can be used, also what could have been done differently. Suggest ele-
ments for further work.

1.3 Limitations

The limitations related to this master’s thesis are listed below:

• The available time for implementation of this master’s thesis was between January
7th and June 3rd 2019.

• In this thesis, the studied corrosion and coating damages are damages on elements of
bridge constructions above water only. Also, the majority of images used in training
of convolutional neural networks are taken in daylight.

• The available hardware for training of convolutional neural networks was Intel Core
i7-8700 CPU 3.20 GHz, Intel Core i7-6850K CPU 3.60 GHz and NVIDIA Titan X
(Pascal) Single GPU.

4

1.4. CONTRIBUTIONS

1.4 Contributions

The aim of this thesis is to compare convolutional neural networks in order to evaluate the
potential for creating an automatic analysis system for damages on bridge constructions.
Because the work performed in this master’s thesis is considered highly relevant for further
work within automatic inspection and maintenance, it was decided to write a scientific
paper based on the obtained results in this thesis. The scientific paper will be submitted to
the 12th International Conference on Machine Vision (ICMV 2019)[9], and is added in the
appendix in section B.

The main contributions in this thesis are listed below:

1. Development of a resource for further work within image classification through col-
lection and categorization of relevant images in a data set. Such a data set for clas-
sification of corrosion and coating damages does not exist from before, to the best
of my knowledge. The images that have been categorized in this thesis form a basis
for further work on training of convolutional neural networks to be used in automatic
inspection of bridge constructions in general. Over 7500 images of corrosion and
surface damages from bridges in Norway were manually categorized. Through the
use of data augmentation techniques, the data set was increased to a total of approx-
imately 9300 images. The collected data set is the basis for work in this thesis, but it
is also highly relevant for future work on automatic analysis of corrosion and coating
damages in general.

2. Extension of previous work by classification of four categories of corrosion and coat-
ing damages, compared to only two in previous work. In this thesis, images of sur-
face and corrosion damages were divided into four different classes to be used for
training of convolutional neural networks. In previous work on automatic corrosion
detection on bridge constructions [7], the focus has been on studying two classes;
corrosion and not corrosion. Using more than two classes gives a better overview of
a bridge construction’s condition, thus eases the work of finding relevant measures
related to maintenance and repair. Approximately 240 000 images received from
The Norwegian Public Roads Administration were manually evaluated in order to
find relevant images to be used in this thesis. The images were categorized in folders
into the classes; paint flaking, red corrosion on steel construction, red corrosion on
rebar, and not corrosion. From the respective folder names the images were labeled
to serve as a data set for training and testing of convolutional neural networks in this
master thesis.

3. The results in thesis show that convolutional neural networks have a great potential in
classifying images from bridge inspections automatically, thus providing a condition

5

1.5. OUTLINE OF THE THESIS

monitoring of the entire bridge construction. Images taken by a drone can be passed
directly to a trained neural network, removing challenges with subjectivity related to
manual evaluation of images performed by an engineer, while significantly increasing
efficiency of inspections.

4. This master’s thesis creates a basis for development of a data analysis system for
automatic detection and classification of damages on bridge constructions. All con-
volutional neural networks trained and tested in this thesis obtained results showing
an average classification accuracy of over 95 %.

1.5 Outline of the thesis

First, an introduction to the thesis is given in chapter 1, including the background and aim
of the thesis, as well as contributions. Next, chapter 2 explains relevant background theory
on corrosion and machine learning. Chapter 3 introduces previous work on classification
of corrosion damages using deep learning, as well as existing neural networks and relevant
software. Chapter 4 explains the process of data collection and implementation of a classi-
fication system, including categorization and labeling of images, and how the chosen CNNs
were trained and tested. Training and tests of networks performed in this thesis, along with
obtained results and discussions, are presented in chapter 5. A more general discussion of
tests, results and choices made in this thesis is made in chapter 6. Finally, a conclusion of
the thesis and a summary of suggestions for further work are given in chapter 7.

1.6 Abbreviations

AI Artificial intelligence

CNN Convolutional neural network

CV Computer vision

MSE Mean square error

ReLU Rectified linear unit

SGD Stochastic gradient descent

UAV Unmanned aerial vehicle

VSLAM Visual Simultaneous Localization and Mapping

6

Chapter 2

Background theory

This chapter includes relevant theory on principles of corrosion, types of damages, artificial
intelligence and machine learning. In addition, theory on corrosion protection and inspec-
tion procedures for bridge constructions are included in this chapter. First, theory on the
basic principles of corrosion is introduced, and different types of corrosion damages are
explained and illustrated. Next, corrosion protection and inspection procedures for bridge
constructions are introduced. Principles of artificial intelligence and machine learning are
presented to create a basis for understanding the work in this thesis and the main elements
of previous work. The theory on machine learning includes several topics such as defining
a learning problem, types of machine learning, deep learning and artificial neural networks.
Some of the paragraphs regarding neural networks are taken directly from the specializa-
tion project [6]. This is made clear through citation of the project and explanations in the
text.

7

2.1. CORROSION AND CORROSION DAMAGES

2.1 Corrosion and corrosion damages

In this section, corrosion and types of corrosion damages will be introduced. First, the
general principles of corrosion are explained, including the electrochemical process and
relevant chemical reactions. Section 2.1.1 is included to give a brief introduction to the
basics of corrosion, for understanding of why and how it occurs. Next, forms of corrosion
damages and appearances are introduced and illustrated. This is important for knowledge
about how corrosion damages can be categorized and included in formulation of a machine
learning problem.

2.1.1 General principles of corrosion

Corrosion can be defined as “an attack on a metallic material through reaction with its sur-
rounding medium” [10]. For metals, the most common type of corrosion is wet corrosion,
where the surrounding medium typically is water containing different dissolved substances.
Water becomes an electrolyte in what is called an electrochemical reaction, typically on the
surface of the metal. An electrochemical reaction is a chemical reaction including trans-
ferring of electrons through a common medium, an electrolyte, between the materials and
substances involved. For metals, this reaction is called an oxidation reaction [10] [11]. A
typical oxidation reaction for some theoretical metal, M, is shown in (1), where it is ob-
served that the metal “loses” electrons, e−. In this reaction, n is the number of electrons
and n+ indicates that the metal, M, becomes a positively charged ion after oxidation [11].

M →Mn+ + ne− (1)

Examples of typical oxidation reactions for iron (Fe), zinc (Zn) and aluminium (Al) are
shown in (2).

Fe→ Fe2+ + 2e− (2a)
Zn→ Zn2+ + 2e− (2b)
Al→ Al3+ + 3e− (2c)

The electrons from an oxidation reaction are transferred to what is called a reduction reac-
tion. The locations where oxidation and reduction occur are also called anode and cathode,

8

2.1. CORROSION AND CORROSION DAMAGES

respectively [11]. Examples of typical reduction reactions for corrosion in acid, neutral or
basic solutions, are shown in (3).

2H+ + 2e− → H2 (3a)
O2 + 4H+ + 4e− → 2H2O (3b)
O2 + 2H2O + 4e− → 4(OH−) (3c)

Reactions shown in (2) and (3) are termed half-reactions since they show only half of the
total electrochemical reaction that occurs. In (4), the total reaction for corrosion of zinc in
an acid solution is given by the sum of the reactions in (2b) and (3a) [11]. This reaction is
also illustrated in figure 3.

Zn+ 2H+ + 2e− → Zn2+ + 2e− +H2 (4a)
⇒ Zn+ 2H+ → Zn2+ +H2 (4b)

Figure 3: Corrosion of zinc in an acid solution [12].

2.1.2 Forms of corrosion damages

In this section the following forms of corrosion damages will be explained and illustrated:

• General/uniform corrosion

• Pitting

9

2.1. CORROSION AND CORROSION DAMAGES

• Crevice corrosion

• Galvanic corrosion

General/uniform corrosion

General, or uniform, corrosion is a form of corrosion damage that is quite evenly distributed
over the exposed surface, leading to a uniform thickness reduction of the material. This is
the most common form of corrosion damage, but at the same time it is predictable, so
necessary measures and design choices can be made early to prevent or reduce damages.
For example, if the corrosion rate for a specific material in a construction is known, it
can be designed with extra thickness to make sure strength requirements are met even
after a severe corrosion damage [10] [11]. Figure 4 and 5 both illustrate a typical uniform
corrosion damage.

Figure 4: Illustration of a uniform corrosion damage on a surface [13]. The dots represent
the corroded part of the surface, which is uniform.

Figure 5: A typical uniform corrosion damage where the damage is evenly distributed over
the surface [14].

10

2.1. CORROSION AND CORROSION DAMAGES

Pitting

Pitting is a local corrosion damage, meaning that corrosion occurs as local pits or holes in
the surface of the material. This form of corrosion damage is common on passivated metals
and alloys in mediums containing, for example, chlorine, bromine or iodine. Passivity is
a result of the formation of a thin, protective oxide film on the surface of a metal, which
happens under specific environmental conditions. This is very common for metals like
chromium, iron, nickel and titanium, including their alloys. Pitting is a form of corrosion
damage that, in general, is difficult to detect and predict, and it is therefore considered dan-
gerous [10] [11]. Examples of different holes and shapes common for pitting is illustrated
in figure 6. Figure 7 shows an example of pitting on steel.

Figure 6: Illustration of different types of pitting corrosion damages. The illustration shows
that some pitting corrosion damages are difficult to detect, and it can also be a challenge to
evaluate the extent of the damage from just looking at the surface of the metal [15].

Figure 7: Example of pitting corrosion on steel, with the characteristic local pits or holes
in the surface [16].

11

2.1. CORROSION AND CORROSION DAMAGES

Crevice corrosion

Corrosion that occurs in occluded regions, like in the crevice illustrated in figure 8, is
called crevice corrosion [17]. This form of corrosion can also occur under deposits of dirt
or corrosion products. In general one can say that crevice corrosion is a local form of
corrosion where “the opening of the crevice is wide enough for a liquid to enter, and at
the same time tight enough for the liquid to be stagnant inside the crevice” [10]. The most
distinct crevice corrosion occurs on materials that easily passivates, like stainless steels and
aluminium, when the materials are exposed to substances like chlorides that can destroy the
passivity locally [10]. Figure 9 shows an example of crevice corrosion between two bolted
plates.

Figure 8: Illustration of a typical situation causing crevice corrosion. The gap, g, is the
distance between the metallic substrate and the crevice former [17].

Figure 9: An example of crevice corrosion occurring between two bolted plates [10].

12

2.1. CORROSION AND CORROSION DAMAGES

Galvanic corrosion

Galvanic corrosion is a form of corrosion that can occur when two metallic materials of
different composition are connected, both physically and through a common electrolyte.
The more reactive material of the two will experience more corrosion than the less reactive,
or more inert, which gets a reduced corrosion rate [10] [11]. In other words, the more
reactive material (anode) will corrode more than it would without connection to the less
reactive, while the less reactive (cathode) experiences less corrosion than it would by itself
[18]. Figure 10 shows an overview of a variety of metals and alloys, and their activity, or
reactivity, in seawater. An example of galvanic corrosion on fasteners of carbon steel is
shown in figure 11.

Figure 10: The galvanic series of a number of metals and alloys. This overview shows rel-
ative reactivity of some metals and alloys in seawater [19]. The red arrows illustrate which
ones are increasingly cathodic or anodic. If, for example, components of 316 stainless steel
and zinc are connected in a construction surrounded by seawater, the zinc component will
experience most corrosion.

13

2.1. CORROSION AND CORROSION DAMAGES

Figure 11: Galvanic corrosion on fasteners of carbon steel used on bolts of stainless steel
[20]. In this case, one can compare with the overview in figure 10 and see that cast iron
and steel in general are more anodic than stainless steel (316 and 304), and therefore the
carbon steel fasteners are more exposed to corrosion than the bolts of stainless steel.

2.1.3 Specific metals and corrosion appearance

The appearance of corrosion depends on the form, as shown in the previous section, but
it also depends on the type of metal corroding. Examples of specific metals and corrosion
appearance on these are shown in this section.

The most well known corrosion appearance is probably “red rust”, which is common on
iron and steel alloys. The reddish or brown colour is characteristic for this corrosion ap-
pearance, and two examples from corrosion damages on a bridge’s steel construction are
given in figure 12 and 13.

“White rust” is a term used primarily for corrosion on zinc and zinc alloys. Corrosion on
aluminium also results in a white-like colour. The steel surface on a bridge construction is
often applied a zinc coating for corrosion protection. This is explained further in the next
section. Figure 14 and 15 shows examples of typical corrosion appearances when the zinc
coating on a bridge construction is damaged.

14

2.1. CORROSION AND CORROSION DAMAGES

Figure 12: Illustration of corrosion on the steel construction of a bridge. This type of
corrosion damages is often referred to as “red rust” because of the characteristic reddish
colour. The image is downloaded from Brutus management system [21].

Figure 13: Illustration of corrosion on the steel construction of a bridge. This type of
corrosion damages is often referred to as “red rust” because of the characteristic reddish
colour. The image is downloaded from Brutus management system [21].

15

2.1. CORROSION AND CORROSION DAMAGES

Figure 14: Illustration of corrosion on the steel construction of a bridge. This type of
corrosion damages is often referred to as “white rust” because of the characteristic white-
like colour. The image is downloaded from Brutus management system [21].

Figure 15: Illustration of corrosion on the steel construction of a bridge. This type of
corrosion damages is often referred to as “white rust” because of the characteristic white-
like colour. The image is downloaded from Brutus management system [21].

16

2.2. CORROSION PROTECTION AND INSPECTION OF BRIDGES

2.2 Corrosion protection and inspection of bridges

This section will introduce corrosion protection of steel bridges and will also explain the
different types of bridge inspections, how inspections are implemented and evaluation of
faults and damages.

2.2.1 Corrosion protection of steel bridges

Since the late 1960s, the Norwegian Public Roads Administration has used surface treat-
ment systems on steel bridges called “duplex” systems, which consist of both metallic
coating and paint layers. Earlier, a paint with lead oxide, also called read lead, was used
[22]. Over the years, different compositions of coating and paint have been utilized, but
thermal sprayed zinc (TSZ) is the metallic coating that has been used [23]. TSZ is zinc
applied to a surface, commonly through the use of arc or flame spraying processes [24].
Figure 16 shows how the layers in a duplex surface treatment system typically are applied
a steel construction.

Figure 16: An illustration of typical coating and paint layers on a steel bridge construction
[25]. At the bottom of the figure, the steel (in Norwegian:stål) is illustrated. Next, TSZ
is applied, followed by a sealer. The two last paint layers illustrated here are epoxy and
polyurethane. This figure also shows typical faults or damages on the protective surface
layers. These are shown as a damage through the three first layers, to the top right, so that
the TSZ is potentially exposed for corrosion, and as pores in the sealer, approximately in
the middle of the illustration.

17

2.2. CORROSION PROTECTION AND INSPECTION OF BRIDGES

2.2.2 Types of inspections and implementation

The Norwegian Public Roads Administration has their own management system for bridges
called Brutus [21] that is used in planning of inspections. Brutus contains, among other
things, information about maintenance and inspection plans, load capacities, security man-
agement and images from inspections for overview of bridge condition. [26] refers to four
types of routine inspections explained in table 1. Everything in this section is taken directly
from [6].

Table 1: The four types of routine inspections on bridges [26].

Type of inspection Description

Simple inspection

The purpose of a simple inspection is to check if any serious
damages have occurred that in short term may affect the

load capacity of the bridge, road safety,
future maintenance and inspection as well as bridge esthetics.

Main inspection
A main inspection consists of a condition monitoring of the
bridge construction above water. This is done to verify that

the bridge meets necessary function requirements.

Main inspection of cables
The purpose of this inspection is to check that

load cables, rods and fasteners fulfill specified requirements.

Main underwater inspection
Consists of a condition monitoring of the

bridge underwater construction.

A simple inspection is carried out by simple visual inspection of the bridge construction
above water. A simple visual inspection means that there is no use of access equipment
like lifts, so the construction is inspected at a certain distance. Measurements and material
testing is usually not required, but in case of great wear and tear some measurements may
be necessary [26]. This type of inspection is carried annually except from the year a main
inspection is performed [27].

Main inspections are carried out every third year for ferry bridges and moving bridges,
and every fifth year for all other types of bridge constructions [27]. In a main inspection
the entire bridge construction above water, except from cables, is visually inspected. The
visual inspection must be close visual, which means that operators must be able to touch
the construction that is inspected. If expected damages are detected with complete certainty
from a further distance, a close visual inspection is not necessary.

A main inspection of cables is carried out by close visual inspection as in a main inspection.
The same applies for a main underwater inspection where the diver has to be able to touch

18

2.2. CORROSION PROTECTION AND INSPECTION OF BRIDGES

the underwater bridge construction that is inspected.

Damages and causes of damages that are discovered during inspections, like the four ex-
plained in table 1, can be further inspected through what is called a special inspection. A
special inspection can also be carried out to achieve a basis for describing expensive and
complicated measures [26].

2.2.3 Evaluation of faults and damages

When evaluating faults or damages on the bridge construction it has to be decided what type
of fault one is dealing with, and considerations on how serious the faults are, as well as on
main causes of the faults, has to be made. The Norwegian Public Roads Administration
uses the terms severity and consequence of damage in the evaluation of faults [26]. Table 2
and 3 explain the two terms in more detail [6].

Table 2: Severity related to damage [26].

Code/numbering Explanation Measures necessary
1 Small damage No
2 Medium damage Yes, within 4-10 years
3 Large damage Yes, within 1-3 years
4 Critical damage Yes, latest within 6 months

Table 3: Consequence of damage [26].

Code/numbering Explanation
B Damage that affects the load capacity
T Damage that affects traffic and road safety
V Damage that may increase maintenance costs
M Damage that may affect bridge esthetics and surroundings

19

2.3. MACHINE LEARNING

2.3 Machine learning

This section will first give an introduction to artificial intelligence, definitions and some
general applications. Next, principles of machine learning are explained, including how
to identify elements in a learning problem and what design choices have to be made. The
different categories of machine learning and the main differences between them are intro-
duced. In this thesis, deep learning approaches are used for classification of images, and
the principles of artificial neural networks and deep learning are therefore described in this
section. The descriptions include relevant functions and algorithms, as well as theory on
how artificial neural networks are trained, validated and tested. Convolutional neural net-
works are introduced, which are the type of neural networks used for image classification
in this thesis.

2.3.1 Introduction to artificial intelligence

There are several definitions of the term artificial intelligence (AI). One definition describes
AI as “the study of how to make computers do things at which, at the moment, people
are better” [28]. For example, in fast execution of many computational tasks computers
outperform humans, but in the ability to enter an unfamiliar room and, within less than a
second, being able to recognize surroundings and plan actions, humans clearly outperform
computers today [28]. AI can also be defined as “the capability of a machine to imitate
intelligent human behaviour” [29] [6]. In [30], eight definitions of AI are introduced and
organized into four different categories. This is illustrated in figure 17. The different
approaches for the four categories are further explained in table 4.

The foundation of AI is build on knowledge and methods from many different disciplines,
such as mathematics, economics, neuroscience, computer science, psychology and cyber-
netics. Applications of AI today are for example in robotics, driverless vehicles and au-
tonomous planning and scheduling [30]. A different application of AI is in learning, or
more specific, in machine learning. Machine learning is a specialization within AI where
a computer is trained to find patterns in data, and in this way learns instead of being pro-
grammed [31]. Section 2.3.2 will explain the principles of machine learning.

20

2.3. MACHINE LEARNING

Figure 17: Eight definitions of artificial intelligence, organized into four categories; think-
ing humanly, acting humanly, thinking rationally and acting rationally [30].

Table 4: Four different approaches based on definitions of artificial intelligence [30].

Approach Explanation

Thinking humanly:
The cognitive modeling approach

It is necessary to first determine how humans think
in order to say that some program thinks like a human.

This can be done through three methods; introspection,
psychological experiments and brain imaging.

Acting humanly:
The Turing Test approach

The Turing Test was designed to give a well functioning
definition of intelligence. The test was proposed by

Alan Turing [32], where a human interrogator evaluates,
after some written questions, if the response comes from
a human or a computer. If the interrogator can not tell,

then the computer passes the test.

Thinking rationally:
The “laws of thought” approach

This approach is related to the field known as logic.
In building intelligent systems, the logistic tradition in

AI is of importance, but it has its challenges.

Acting rationally:
The rational agent approach

The definition of an agent here is just “something that acts”.
Computer agents are expected to have capabilities like
adapting to changes, pursuing own goals and operating
autonomously. An agent that acts in ways to achieve the

best, or best expected, outcome, is called a rational agent.

21

2.3. MACHINE LEARNING

2.3.2 Principles of machine learning

In this section, the principles of machine learning will be introduced, including relevant
terms and methods, how to define a learning problem, and different categories of machine
learning.

In machine learning, one seeks to create computer programs that improve with experience
automatically. Concepts and results from fields like artificial intelligence, statistics, cog-
nitive science and control theory are examples of elements that machine learning is based
on. The definition of a computer program’s learning from [33] says: “A computer program
is said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience E”.
To define a learning problem, E, T and P must be identified, being the source of experience,
the class of tasks and the measure of performance, respectively. Consider the following ex-
ample of a learning problem, with inspiration from [33]: A computer program learning to
play chess. E, T and P can then, for example, be identified as in the list below.

• Task, T: Learn how to play chess.

• Performance measure, P: Amount of games won/lost against an opponent.

• Training experience, E: Play practice games of chess against itself.

An example of a learning problem more relevant to this thesis would be: A computer pro-
gram learning to detect corrosion from images. E, T and P can then be identified as follows:

• Task, T: Learn to identify corrosion from images.

• Performance measure, P: Percentage correctly classified images from total amount
of evaluated images.

• Training experience, E: Exposing the program to various types of images with and
without corrosion.

When designing a machine learning system there are several design choices that have to be
made. For example, it must be decided what exactly should be learned, what training expe-
rience the system should learn from, how the learning problem should be represented and
what algorithm is most suited. The choice of what is called a target function is considered
a key design choice. The target function can be explained as a function representing the
problem of improving the performance, P, at the task, T. Using the example given earlier
of a computer program learning to detect corrosion from images, a target function could be
defined as F (i), where i is the current image evaluated. Next, target function values could
be F (i) = 1 if the image is correctly classified, and F (i) = −1 if the image is wrongly
classified. Similarly, for the chess example, a target function can be defined as F (b), where

22

2.3. MACHINE LEARNING

b is a board state. The target function value can be F (b) = 100 if the board state results in
victory, F (b) = −100 in the case of loss and F (b) = 0 if the result is a draw [33].

In general, it can be difficult for an algorithm to learn the exact target function, so an
approximation is often used. Thus, the process of learning the target function is also called
function approximation. For the chess example, the approximation of the target function
can be denoted F̃ (b). One possibility is to represent the approximation as a linear function,
a combination of features and weights. An example of a target function approximation,
here F̃ (b) from the chess example, expressed as a linear combination of features is shown
in (5). The features are denoted x1, x2, ...xn, and weights are denoted w0, w1, ...wn [33].

F̃ (b) = w0 + w1x1 + w2x2 + w3x3 + ...+ wnxn (5)

The features represent certain type of information about the learning problem. The weights
are numerical coefficients that the learning algorithm chooses, or learns to choose to de-
termine what value the different board states have [33]. In the case of the chess learning
problem, some relevant features are listed below:

• The number of white chess pieces: x1

• The number of black chess pieces: x2

• The number of pawns in black or white: x3

• The number of knights in black or white: x4

• and so on...

The next steps for a complete design of a learning system are first to choose a function
approximation algorithm, which includes elements such as estimating training values and
adjusting the weights, and second to create a final design of program modules to represent
components in the learning system. Typical modules are the performance system, the critic,
the generalizer and the experiment generator. The module that solves the performance task,
using one or more target functions, is called the performance system. The output from the
performance system is given as input to the critic, which produces training examples of
the target function. The training examples are then used as inputs to the generalizer, the
module that produces a hypothesis, or estimates the target function. This estimate is sent to
the experiment generator, which creates a new problem to be an input to the performance
system [33].

23

2.3. MACHINE LEARNING

It is common to define three categories of machine learning; supervised, unsupervised
and reinforcement learning. These three categories are illustrated in figure 18. A fourth
category, semi-supervised learning, is sometimes mentioned in machine learning literature.
The focus in this thesis will be on supervised learning.

Figure 18: Three categories of machine learning; supervised, unsupervised and reinforce-
ment learning [34].

In supervised learning the machine finds an unknown function from examples given as
input in order to learn how to predict the output [31]. The training data is labeled, and
consists of a input vector, x, and an output vector, y, with labels. Labels in y can be
described as explanations of the inputs in x, thus the combination of the vectors x and y
form training examples for the machine. The supervisor is a human or a machine that
provides the labels [35]. Figure 19 shows some unlabeled examples and suggestions for
labels and supervisors that can be used. A different example could be Photo:Existence of
corrosion, with labels corrosion/not corrosion or yes/no.

Figure 19: Unlabeled examples and suggestions for labels and supervisors [35].

24

2.3. MACHINE LEARNING

Examples of common approaches and algorithms for supervised machine learning are de-
cision trees, rule-based algorithms, the k-nearest neighbour algorithm, support vector ma-
chine (SVM) and neural networks. Decision tree is used in classification of data, and it is a
statistical model where results are represented in a chart like a tree structure. Rule-based al-
gorithms use so-called “if-then” rules to classify data, which means that if some condition
is fulfilled then a decision is made. The k-nearest neighbour algorithm is a method used in
pattern recognition where the input is the k nearest training examples in a feature space. It is
common to assign weights to the examples in such a way that the closest “neighbours” con-
tribute most to the decision making. Support vector machines are learning models where
the training examples are represented as points in space and mapped for explicit separa-
tion between different categories [35]. Neural networks are explained in detail in the next
section.

Supervised learning uses labeled training data, but in unsupervised learning the machine
works with unlabeled data. Instead of training a machine on labeled data to be able to
evaluate the inputs it is given, the key in unsupervised learning is to find some hidden
structure in the provided input data [35]. Reinforcement learning is a method where the
machine or program has interaction with an environment that gives feedback as rewards or
penalties, depending on the performance of the model. In this way, the desired behaviour
of the program is reinforced, without directly telling it what to do [31].

25

2.3. MACHINE LEARNING

2.3.3 Artificial neural networks and deep learning

This section contains the following topics on artificial neural networks (ANNs) and deep
learning:

1. Introduction to the term deep learning and artificial neural networks

2. Principles of neural networks

3. Gradient descent and stochastic gradient descent

4. The backpropagation algorithm

5. Training, validation and common challenges related to ANN

6. Convolutional neural networks

7. Transfer learning

1. Introduction to the term deep learning and artificial neural networks

Deep learning is a class of techniques in machine learning with an increasing amount of
applications in for example speech recognition and object detection in images. Learning
methods called representation learning allow a machine to automatically find the repre-
sentations needed to detect or classify the input it is given. Deep learning methods can
be described as representation learning methods with several representation levels. These
levels are obtained by composing non-linear modules, where each module transforms the
representation of its input at one level into a representation at a higher level, more abstract
than the previous [36].

Figure 20: Illustration of a multi-layer artificial neural network [37]. The first layer is the
input layer, followed by two hidden layers, and finally the output layer.

26

2.3. MACHINE LEARNING

The learning process of deep learning consists of training what is called artificial neural
networks (ANNs). ANNs consist of neurons, processing units, that are connected through
synapses. Since ANNs are inspired by the human brain, expressions are based on physio-
logical terms [38]. Neurons and synapses in ANNs are illustrated in figure 20, where the
circles in the different layers are neurons, and the links (arrows) between them are synapses
[6].

When an artificial neural network has more than one hidden layer, as shown in figure 20, the
term deep learning is used. Each neuron has a certain capacity for processing information,
and they influence each other through the synapses. The learning process for ANNs consists
of deciding how much one neuron should affect the other, and this is referred to as deciding
the synaptic weightings. Data, called a training set, is provided the network in the input
layer, and the synaptic weightings are adjusted until the network is able to separate the
given data in a desired way [38] [6]. The learning process for ANNs will be explained in
more detail later in this section.

2. Principles of neural networks

To understand the working principle of neural networks, a type of ANN system based on
units called perceptrons will first be explained.

Figure 21: Illustration of a perceptron with inputs, x, and weightings, w. A weighted sum of
the inputs is generated, and the output from the step function depends on the set threshold
[39].

Figure 21 illustrates a perceptron which takes a vector of binary inputs, x, and calculates a
linear combination of the inputs using the weightings, w. The output of the step function is
typically equal to 1 if the weighted sum exceeds a certain threshold, otherwise it is equal
to -1 (or 0) [33]. The mathematical expression for the output, y, is shown in (6). For the

27

2.3. MACHINE LEARNING

output to be 1, the weighted sum of inputs from x1 to xn must be larger than the quantity
−w0, also called a bias [33] [40].

y(x1, ..., xn) =

{
1, if w0 + w1x1 + w2x2 + ...+ wnxn > 0.

−1, otherwise.
(6)

A challenge with perceptrons is that a successful weight vector may not be found if the
training data is not linearly separable. It is preferable that a small change in the weights
results in a small, corresponding change in the output [40]. This is illustrated in figure 22.
For perceptrons, a minor change in some of the weights, or the bias, may suddenly result in
the output changing from 1 to -1, and this may again impact the rest of the network in un-
desirable ways. A different, newer type of neuron called a sigmoid neuron that overcomes
the challenge related to perceptrons is therefore very common [40].

Figure 22: The illustration shows how a small change in the weights, ∆w, changes the
output with ∆output [40].

The inputs of sigmoid neurons does not have to be exactly 0 or 1, like for perceptrons, but
can also be values in between. Sigmoid neurons also have a weight associated with each
input value, as well as a bias, b. However, the output is not only 1 and -1, or 1 and 0,
but a sigmoid function, defined in (7) [40]. The sigmoid function is also called the logistic
function [33]. A plot of the sigmoid function is shown in figure 23.

σ(z) =
1

1 + e−z
, z = w1x1 + w2x2 + ...+ wnxn + b (7)

28

2.3. MACHINE LEARNING

Figure 23: A plot of the sigmoid function. It is observed that the value of the sigmoid
function goes toward zero for small values of z, and that it tends to 1 for larger values of z
[41].

The smoothness of the sigmoid function makes it produce a small change in output, ∆output,
when small adjustments to the weights and bias are done. As mentioned earlier, this is
preferable in the training process of neural networks, and the case was illustrated in figure
22. An approximation of ∆output is given by (8), as a linear function of ∆wj , change in
weights, and ∆b, change in bias [40].

∆output ≈
∑

j

∂output

∂wj

∆wj +
∂output

∂b
∆b (8)

Functions like the step function and the sigmoid function are called activation functions.
The main difference in using a different activation function is that the values of the partial
derivatives in (8) will change [40]. Examples of some other activation functions are the hy-
perbolic tangent function, (9) and the Rectified Linear Unit (ReLU), (10). The hyperbolic
tangent function and the ReLU are illustrated in figure 24 and 25, respectively.

f(x) = tanh(x) =
(ex − e−x)

(ex + e−x)
(9)

f(x) = max(0, x) =

{
0 for x < 0

x, for x ≥ 0
(10)

29

2.3. MACHINE LEARNING

Figure 24: A plot of the hyperbolic tangent function, tanh(x) [42].

Figure 25: A plot of the Rectified Linear Unit [43]. It is observed that the value of the
ReLU is equal to zero for all negative values of x, and otherwise equal to x.

3. Gradient descent and stochastic gradient descent

Consider a neural network for classification of images with an input vector, x, and a desired
output vector y(x). To find weights and biases for approximation of the desired output y(x)
for the training inputs in x, a cost function is defined. A quadratic cost function can be
defined as in (11), where n is the total amount of training inputs and a is the actual output
from the neural network, given x, w and b. The cost function in (11) is also known as the
mean square error (MSE) [40]. In the field of optimization, a cost function is often referred
to as an objective function.

30

2.3. MACHINE LEARNING

C(w,b) =
1

2n

∑

x

‖y(x)− a‖2 (11)

The delta rule is a training rule that converges to the best approximation, given training
examples that are not linearly separable. To find weights and biases that fit the training
examples best, the delta rule uses what is called a gradient descent algorithm to search a
hypothesis space for possible weight and bias vectors [33]. The aim of using a gradient de-
scent algorithm is to minimize the training error, (11). Thus, C(w,b) ≈ 0, is the preferable
result from using a gradient descent algorithm. For explanation of this algorithm in general,
imagine a theoretical cost function of weights, J(w), similar to (11), where each element
in w could be a function of n variables, w = w0, w1, ..., wn. The objective is to minimize
J(w), to find its global minimum [40]. To illustrate what a global minimum is, lets assume
one of the elements in w has two variables, w0 and w1. The error surface created by the two
variables and the corresponding values of the cost function could take on a form similar to
the one in figure 26.

Figure 26: A simple illustration of what is desirable to achieve with the gradient descent
algorithm [44]. Assuming w0 and w1 are the variables on the two horizontal axes in the
figure, while J(w0, w1), the cost, is on the vertical axis. Then, point A can be a point
corresponding to the initial weight values of w0 and w1, while point B illustrates the global
minimum of the cost function.

In order to find the global minimum, the direction on the error surface in which to go

31

2.3. MACHINE LEARNING

must be found, often referred to as the steepest descent direction. Through computing the
gradient of the cost function,∇J(w), the derivative of the cost function with respect to the
components of w, this direction can be found [33]. For line search methods, the steepest
descent direction is considered the most obvious choice because it is the direction where
J(w) has the quickest decrease [45]. The gradient of J(w) is given in (12), and −∇J(w)
specifies the steepest descent direction. A training rule for gradient descent is shown in
(13), where η is the learning rate or the step size, a positive constant, in the search for the
global minimum [33]. The gradient descent algorithm is illustrated in figure 27.

∇J(w) =

[
∂J

∂w0

,
∂J

∂w1

, ...,
∂J

∂wn

]
(12)

w←− w + ∆w (13a)
∆w = −η∇J(w) (13b)

Figure 27: The gradient descent algorithm for training of a linear unit [33].

Stochastic gradient descent (SGD) is a variation of gradient descent. The main difference
between these two approaches is that in SGD the error for each training example is calcu-
lated and weights are updated incrementally, while gradient descent sums over all training
examples and then calculates the weight updates. SGD is also called incremental gradi-
ent descent [33]. The SGD algorithm chooses a mini-batch, a sample of randomly chosen

32

2.3. MACHINE LEARNING

training examples, and approximates the gradient descent search by estimating (12) as the
average gradient for all the training examples in the chosen mini-batch [40]. Summing
over all training examples and then computing the gradient is in general computationally
expensive, and SGD is therefore often a preferred approach. Concurrently, since gradient
descent utilizes the real gradient, a larger step size can be used compared with the stochas-
tic gradient descent approach where the gradient is approximated [33]. Stochastic gradient
descent with momentum (SGDM) is an extension of SGD. A momentum is added as a fac-
tor to an extra term in the training rule in (13), deciding how much the previous step should
contribute to the next. The momentum is added to reduce oscillations, which can occur
using SGD [46].

4. The backpropagation algorithm

A common algorithm used for training multi-layer networks, such as the one illustrated in
figure 20, is the backpropagation algorithm. The backpropagation algorithm makes these
types of networks able to express a large variation of nonlinear decision surfaces. The algo-
rithm uses SDG to minimize a quadratic cost function, and thus learn the optimal weights
for a neural network [33]. The complete details and mathematics of backpropagation will
not be explained here, but the general concept and some relevant equations are introduced.

The cost function in (11) is slightly rewritten in (14) to serve as an example for explanation
of backpropagation. The number of training examples are denoted n, x are inputs and y the
desired outputs, L denotes the number of network layers and aL(x) are the actual outputs
or activations, given x [40].

C(w,b) =
1

2n

∑

x

‖y(x)− aL(x)‖2 (14)

The aim of using backpropagation is to determine ∂C
∂w

and ∂C
∂b

, for all weights and bi-
ases. Some assumptions about (14) have to be made, specifically that it can be written
as 1

n

∑
xCx, an average of cost functions for all individual inputs, x, and that it also can

be formulated as costC = C(aL), a function of the output activations only (illustrated in
figure 28) [40].

33

2.3. MACHINE LEARNING

Figure 28: Illustration of two output activations , aL1 and aL2 , and a cost function as a
function of these [40].

As illustrated in figure 28, activations in the output layer become inputs to a cost function,
which tells how close to the desired output the activations are. There are four fundamental
equations of backpropagation that together explain how the error and the gradient of the
cost function is calculated and propagated backwards, starting from the final output layer.
These four equations will not be explained in detail, but are shown in the algorithm for
backpropagation below (step 3-5) [40]. A simple illustration of error propagating back-
wards in a neural network is given in figure 29.

1. Input, x: Set the corresponding activation, al, for the input layer.

2. Feedforward: For each l = 2, 3, ..., L, calculate zl = wlal−1 + bl and al = σ(zl).

3. Output error, δL: Compute δL = ∇aC � σ′
(zL).

4. Backpropagate the error: For each l = L− 1, L− 2, ..., 2 calculate
δl = ((wl+1)T δl+1)� σ′

(zl).

5. Output: ∂C
∂wl

jk
= al−1

k δlj and ∂C
∂blj

= δlj , provides the gradient of the cost function.

Figure 29: Illustration of the backpropagation principle in an ANN with one hidden layer
[47]. The principle is the same for networks with multiple hidden layers, where errors then
propagate back through several layers.

34

2.3. MACHINE LEARNING

5. Training, validation and common challenges related to ANN

The underlying process for training an ANN is shown through the introduction of gradient
descent, SGD and the backpropagation algorithm. Provided labelled training examples, the
objective is to train a neural network so that it is capable of separating, or classifying, the
inputs it is given in a desirable manner. There are some challenges related to this that will
be introduced here, as well as existing techniques to address these challenges. Common
methods for testing and evaluating performance of a neural network are also explained.

A common challenge related to supervised machine learning, thus also deep learning, is
called overfitting. Overfitting occurs when weights and biases are tuned so that the neural
network learns details, or peculiarities, about the training examples which makes it unable
to generalize the given input. This is because the method of backpropagation can become
overly complex after sufficiently many iterations of weight tuning, making it fit noise and
unrepresentative properties in the training data [33].

Figure 30: Illustration of curves for training and validation error over a certain number of
epochs. The dashed line illustrates a point where the validation error increases even if the
training error still decreases. This is the point where the validation error is at its lowest,
and where early stopping is recommended to prevent overfitting [48]. The figure is made
using Lucidchart [49].

In general, the original training data is split into three sets; a training set, validation set
and a test set. The validation set is used to evaluate performance during training, while the
test set is a final measure of performance after training. A common approach for detecting
overfitting is utilization of the validation set and a method called early stopping, which says
to stop training when the validation error increases, since this indicates overfitting of the
training examples. Early stopping is a regularization technique for improving the ability
of generalization in ANNs. It is common to use the validation error as an estimate of the

35

2.3. MACHINE LEARNING

generalization error [48]. Figure 30 illustrates how both the training and validation error is
decreasing, but suddenly the validation error increases after a certain number of iterations,
or epochs. A complete run through of the entire training set by a training algorithm is often
referred to as an epoch.

Other examples of regularization techniques are data augmentation, L1 and L2 regulariza-
tion, and dropout. Overfitting is a challenge that is most severe for small training sets,
because generalization can be difficult when few examples are available [33]. Data aug-
mentation is a technique for increasing the size of the training data through transformations
and deformations like rotations, translations, mirroring and scaling of training examples.
The labels on training examples are not changed after data augmentation [50]. L1 and
L2 regularization are common techniques for reducing overfitting. In both techniques, an
extra term, a penalty or regularization term, is added to the cost function. The difference
between these two techniques is the regularization term, shown in (15) an (16), where cost
functions for the two techniques are defined. λ is a strictly positive parameter known as the
regularization parameter [40] [51].

C =
1

2n

∑

x

‖y − aL‖2 +
λ

2n

∑

w

|w| (15)

C =
1

2n

∑

x

‖y − aL‖2 +
λ

2n

∑

w

w2 (16)

Dropout regularization is also a technique for reducing or preventing overfitting, where
the method is to generate a probability, p, as number between 0 and 1 for each neuron.
A neuron is “dropped out” from the neural network if the probability associated with the
neuron is less than p. This also means that all connections from the neuron are blocked
[52]. Figure 31 illustrates how flow from neurons in a layer is blocked with probability p
when dropout is activated.

36

2.3. MACHINE LEARNING

Figure 31: Illustration of the dropout technique, where information both forward and back-
ward through neurons in a layer is blocked with probability, p, when dropout is activated
[52].

Other challenges related to backpropagation and training of neural networks are vanishing
and exploding gradients. In networks with many layers, gradients may be become very
small, and even vanish, because of a long signal flow [48]. The opposite challenge is ex-
ploding gradients, when gradients become very large in early layers of a network. The
challenges with vanishing and exploding gradients can be seen as a result of a more fun-
damental problem; unstable gradients. Vanishing gradients can in general be prevented by
using an activation function that has a sufficient range [40]. One example of an activation
function that can be used to prevent vanishing gradients is the ReLU. Exploding gradients
can be prevented by reducing the learning rate, or by the use of batch normalization [51].
For convolutional neural networks, batch normalization is often placed between what is
callled the fully connected layer and the associated activation function [52].

37

2.3. MACHINE LEARNING

6. Convolutional neural networks

This part of the section regarding ANNs and deep learning will introduce convolutional
neural networks, including a brief description of the concept and explanation of common
layers and architectures of these types of neural networks. The next paragraph is taken
directly from [6].

There is a class of neural networks called convolutional neural networks (CNN or Con-
vNets) that provides popular tools for image analysis. CNNs are highly suitable for an-
alyzing inputs like images, text, and different continuous signals. This class of neural
networks is inspired by the biological structure of a visual cortex, consisting of cells that
are activated by subregions of a visual field called receptive fields. Unlike other types of
neural networks, neurons in a convolutional layer connect to a subregion of a layer before
the layer. Subregions may overlap, resulting in neurons producing spatially-correlated re-
sults. Figure 32 illustrates several different layers producing output suggestions based on
the input image [53] [6].

Figure 32: Illustration of typical modules in a CNN, each consisting of three layers; convo-
lution, activation function (here:ReLU) and pooling. CNNs also have layers called fully-
connected (FC) layers, the final layer in this illustration [53].

In general, a CNN consists of multiple layers. Some of the main types of layers are ex-
plained below [54]:

• Input layer: For an image input layer, this is where the type of network is specified,
and choices regarding image size and data augmentation are made.

• Convolution: In a 2D convolutional layer, sliding filters are applied to the input to
extract relevant information that is passed further into the network. This layer can
consist of several components like: filters and stride, dilated convolution, feature
maps, zero padding and learning parameters. A filter can be explained as a set of
weights performing an operation on a region of the input. The input is convolved by
the filter, using a matrix commonly called a kernel. Stride is a name for the step size
of the filter, how it moves on the input. Figure 33 illustrates how a theoretical 3 × 3
filter is applied some input and creates a new output.

38

2.3. MACHINE LEARNING

• ReLU: It is common to use the ReLU as an activation function. The ReLU was
introduced earlier in this section under Principles of neural networks and illustrated
in figure 25. The activation function performs a threshold operation to all elements
of the input.

• Pooling: In a pooling layer, down-sampling is performed in order to reduce the num-
ber of connections and parameters, to simplify learning for the layers that follow.
Examples of pooling techniques are max-pooling and average-pooling. Max-pooling
divides the input into rectangular regions, and calculates the maximum of all these re-
gions, while average-pooling calculates the average value of all regions after dividing
the input.

• Fully connected: In a fully connected layer, each neuron is connected to the neu-
rons in the preceding layer. Features from the preceding layer are combined by the
fully connected layer to identify larger patterns. In image classification, this layer
combines features to be able to perform the classification.

• Output layers: Examples of output layers are softmax and classification layers, or
regression layers. The softmax activation function is defined in (17), where aLj is
the activation of the jth neuron, zLj are the weighted inputs, and the denominator is
the sum of all output neurons. The sum of all output activations from the softmax
function is equal to 1 [40].

Figure 33: Illustration of a filtering example, where a 4×4 input is applied a 3×3 filter, and
a 2× 2 output is made. The theoretical filter, or kernel, shown here multiplies all numbers
in the 3 × 3 region of the input with zero, except from the number in the middle which is
multiplied by one. All multiplications are summed, and since 65 is the only element not
multiplied with zero, this becomes one of the elements in the new output. The first part of
this figure to the left is taken from [54], while the rest showing the filter operation is made
using Lucidchart [49].

39

2.3. MACHINE LEARNING

aLj =
exp zLj∑
k exp zLk

,
∑

j

aLj = 1 (17)

7. Transfer learning

The idea behind transfer learning is to reuse a previously trained neural network, and train it
to be able to classify a new set of inputs. Transfer learning is often referred to as fine-tuning
an existing network, and this is in general faster than having to train a network from the
beginning with arbitrarily initialisation of weights. For image classification, an important
advantage with transfer learning is that fewer training images are required, because features
are transferred from the existing network to solve the new classification problem [55].
Figure 34 illustrates a typical workflow for transfer learning.

Figure 34: Illustration of a typical workflow for transfer learning. A pre-trained network,
for example trained on 1 million images and 1000 classes, is first modified to fit the number
of classes in the new classification problem. This involves replacing final layers, and maybe
it is necessary to add or remove certain layers. Next, the network can be trained on much
less images than the original network was (for example 100s of images and 10s of classes),
and tested and fine-tuned until the desired accuracy is achieved [55].

40

Chapter 3

Previous work and literature study

This chapter will introduce existing neural networks, software and previous work relevant
for image classification using deep learning approaches. Regarding networks, emphasis
will be placed on pre-trained CNNs for image classification, and some of the most well
known existing network architectures are presented here. Relevant software and frame-
works for deep learning are also introduced. Previous work on automatic corrosion detec-
tion and evaluation using deep learning is presented, including types of neural networks
used, software and results from image classifications.

41

3.1. EXISTING NEURAL NETWORKS AND RELEVANT SOFTWARE

3.1 Existing neural networks and relevant software

In section 2.3.3, neural networks and deep learning was introduced. There are many types
of neural networks, and both their size and design can vary. Furthermore, there exists sev-
eral combinations of software and network, depending on factors like the type and difficulty
of the learning problem. This section will introduce existing convolutional neural networks
and relevant software used in deep learning, to gain an overview of the possibilities in im-
age classification. A selection of existing neural networks are introduced and explained,
before relevant software is presented.

AlexNet

In 2010, a deep convolutional neural network, later called AlexNet, was trained to classify
1.2 million images into 1000 categories in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [56]. Approximately 50 000 images were used for validation, and
150 000 for testing. This neural network has 60 million parameters and 650 000 neurons.
A version of this model also won the ILSVRC in 2012 [57]. AlexNet consists of five con-
volutional layers, max-pooling layers and three fully-connected layers. The input images
to the network has to be RGB images and have a size of 256 × 256 pixels. Images of a
different dimension can be resized before used as input. From inside the 256×256 images,
random crops of size 227 × 227 are generated and used in the first layer of the network
[58]. The architecture of AlexNet is illustrated in figure 35. Regarding the approach for
network training, SGD was used with an initial learning rate of 0.01 which was reduced
three times during training. The learning rate was adjusted manually and divided by 10
when validation error did not improve with current learning rate. The mini-batches con-
tained 128 training examples each. Network training was set to approximately 90 epochs,
or cycles, and this took between five to six days to complete using two graphics processing
units (GPUs) of the type NVIDIA GTX 580 3GB [57].

42

3.1. EXISTING NEURAL NETWORKS AND RELEVANT SOFTWARE

Figure 35: The architecture of AlexNet, consisting of five convolutional layers, max-
pooling layers and three fully-connected layers [58]. Both the first and the second con-
volutional layer are followed by a ReLU and a normalization layer before max pooling.
The third, fourth and fifth convolutional layer are followed by a ReLU only before max
pooling. The first fully-connected layer is followed by a ReLU and a dropout layer. After
the last fully-connected layer there is a softmax activation function that produces a distri-
bution over the 1000 labels [57].

ZF Net

The architecture of ZF Net is very similar to AlexNet. However, some modifications to
layer 3, 4 and 5 were done through changing from sparse to dense connections. This is
related to the choice of GPU. An illustration of the network architecture is given in figure
36. SDG was used, with a mini-batch size of 128 images and initial learning rate 0.01. The
network was trained for 70 epochs which took 12 days using a single GTX580 GPU [59].

Figure 36: Illustration of the ZF Net architecture [59].

43

3.1. EXISTING NEURAL NETWORKS AND RELEVANT SOFTWARE

Inception (GoogLeNet)

In ILSVRC 2014, a convolutional neural network called GoogLeNet, based on the Inception
architecture, became the new state of the art in detection and classification of images. This
network was, like AlexNet, trained on 1.2 million images, but the validation and test sets
contained 50 000 and 100 000 images, respectively. GoogLeNet has 22 layers and 12 times
fewer parameters than AlexNet. Inputs to the network are RGB images with size 224×224
pixels. The network architecture consists of “Inception modules” stacked on top of each
other. These modules contain several convolutions and max pooling, and are illustrated in
figure 37 [60].

Figure 37: Illustration of an Inception architecture module containing convolutions and
max pooling [60]. The filtered output from one module becomes the input to the next.

VGG

A different submission for the ILSVRC 2014 was two convolutional networks with an ar-
chitecture of 16 and 19 layers, presented by a team called VGG. These two network archi-
tectures are sometimes referred to as VGG-16 and VGG-19. The inputs to both networks
are RGB images with size 224 × 224 pixels. The distribution of images in training, vali-
dation and test sets was the same as for GoogLeNet explained previously. Regarding the
training procedure, this was very similar to the one for AlexNet. However, the size of the
mini-batches was 256, and training was stopped after approximately 74 epochs [61]. The
VGG network architecture is illustrated in figure 38.

44

3.1. EXISTING NEURAL NETWORKS AND RELEVANT SOFTWARE

Figure 38: Illustration of the VGG network architecture. Two architectures, VGG-16 and
VGG-19, was mentioned earlier, and the difference is the number of layers. The archi-
tecture illustrated here has 16 convolutional layers and 3 fully-connected layers, and is
therefore denoted the VGG-19 network [62].

ResNet

A deep residual learning framework, hence the name ResNet, was designed to address the
problem of degradation in deep network architectures. Degradation refers to the problem
of accuracy saturation as the network depth increases. Adding more layers to an architec-
ture can therefore lead to higher training error. The building block of residual learning is
illustrated in figure 39.

Figure 39: A “building block” of residual learning [63]

Considering an input, x. The desired underlying mapping can be denoted H(x), while the
nonlinear layers fit a mapping denoted F (x) = H(x)− x. Thus, the original mapping can
be written as H(x) = F (x) + x. This is achieved through the use of a feed forward neural
network with so called “shortcut connections” that skip one or more layers, as illustrated
in figure 39 where the input, x, skips the weight layers and ReLU, and is added to the
filtered input. This type of shortcut connection performs an identity mapping. One thought
related to residual learning is that it is easier to optimize the residual mapping, F (x), and
drive this to zero, rather than to optimize the original mapping through fitting it by nonlinear
layers. [63] presents several residual network architectures, from 18 to 152 layers. Network
architectures without shortcut connections are often referred to as plain networks [63].

45

3.1. EXISTING NEURAL NETWORKS AND RELEVANT SOFTWARE

A brief comparison of networks

The networks presented in this section differs in size and architecture, and have also per-
formed differently on tests. This part of the section aims to give a brief comparison of the
networks that have been introduced. The comparisons here will be made from test results
in image classification from ILSVRC.

Figure 40 compares the test error and number of layers for some of the network architec-
tures that have competed in ILSVRC throughout the years. In ILSVRC 2012, AlexNet had
a test error of 16.4 % when averaging the results from five similar CNNs, and a test error of
15.3% when averaging the predictions of seven similar CNNs [57]. Ensembles of ResNet
architectures competed in ILSVRC 2015, and won the image classification task with a test
error of 3.57 %. For comparison, GoogLeNet and VGG had a test error of 6.66 % and
7.32% respectively in ILSVRC 2014 [63]. Other networks that have shown great results in
image classification the last years are Trimps-Soushen, winner of ILSVRC 2016 with a test
error of 2.99% [64], and WMW, winner of ILSVRC 2017 with a test error of 2,25% [65].

Figure 40: Illustration of how the number of layers and test error in image classification for
networks competing in ILSVRC have changed throughout the years [66]. The value on the
top of the bars show the test error in percent.

46

3.1. EXISTING NEURAL NETWORKS AND RELEVANT SOFTWARE

Relevant software and frameworks

There exists a large variety of software and frameworks for implementation of neural net-
works. In this part of the section, examples of commercial software and frameworks rele-
vant for deep learning are presented.

Python [67] is a programming language with applications in fields like web-and Internet de-
velopment, scientific and numeric computing, and software development. Tensorflow [68]
is an open source machine learning library that is compatible with Python, and Keras [69]
is an application programming interface (API) often used in combination with TensorFlow.
PyTorch [70] is an open source deep learning platform also compatible with Python.

MATLAB [71] is a programming platform that provides solutions within, for example, data
analytics, signal processing, robotics, computer vision and deep learning. A framework for
design and implementation of neural networks is provided by the Deep Learning Tool-
box [72], and pre-trained networks like AlexNet, ResNet, VGG-19 and GoogLeNet are
accessible for performance of transfer learning. Originally Python based frameworks like
Keras+TensorFlow and PyTorch are also accesble in MATLAB, either directly or through
ONNX [73], an open format for representation of deep learning models. Caffe [74], an-
other example of an existing deep learning framework, can be used with both MATLAB
and Python.

Figure 41: Interoperability in MATLAB using ONNX, which makes it possible to access
frameworks like Caffe2, PyTorch, MXNet, Core ML and CNTK. The figure also shows that
frameworks like Caffe and Keras-TensorFLow are directly available in MATLAB [75].

47

3.2. PREVIOUS WORK ON CLASSIFICATION OF CORROSION DAMAGES

3.2 Previous work on classification of corrosion damages

This section will introduce previous work on automatic detection and evaluation of cor-
rosion damages, including software and networks used, methods and modifications, and
results from image classifications. First, previous work on corrosion detection is intro-
duced, where the goal is to detect if corrosion exists on an image, or not. Next, previous
work on evaluation of corrosion damages is presented. Evaluations can for example be
done through labelling images after the severity on the corrosion damage, or after forms of
corrosion damages, as introduced in section 2.1.2.

Corrosion detection using deep learning

In [7] and [8], different approaches for corrosion detection from images using deep learning
are tested. Some of the methods and results presented in these two papers will be introduced
in this section. Most of the summary from [8] presented here is taken directly from [6].

[7] compares standard computer vision techniques using OpenCV [76] with a deep learn-
ing approach for detection of corrosion from images taken during bridge inspections. The
OpenCV approach, concerning counting of red pixels/components in images, will not be
further explained here. For the deep learning approach, Python and the Caffe framework
was used. A network called “bvlc_reference_caffenet”, based on AlexNet, was tuned
for corrosion detection. A dataset of 3500 images, 2200 without corrosion and 1300 con-
taining corrosion, was used for training and validation of the network (80% for training and
20% for validation). Regarding the training process, the learning rate was set to 5 × 10−5

and the number of iterations was 100 000. Using Ubuntu 14.04 with GPU CUDA support,
a i7 Skylake CPU and a Nvidia GTX 980 Ti GPU, the network was trained for approxi-
mately two days. The test set included 100 images, with 37 of these containing corrosion.
Examples of images in the test set are shown in figure 42. Results from tests performed
in [7] are given in table 5. The positive class is corrosion, while the negative class is not
corrosion. Thus, a false positive is an image that does not contain corrosion being classified
as corrosion, while a false negative is an image that contains corrosion being classified as
not corrosion.

48

3.2. PREVIOUS WORK ON CLASSIFICATION OF CORROSION DAMAGES

Table 5: Results from OpenCV approach and network testing in [7].

OpenCV Deep learning Deep learning
Probability>0.8

False positives 27/63 14/63 5/51
Partial accuracy for “not corrosion” 57 % 78 % 90 %

False negatives 4/37 8/37 7/34
Partial accuracy for “corrosion” 89 % 78 % 79.4 %

Total accuracy 69 % 78 % 88 %

Figure 42: Examples of images in the test set used in [7].

Table 5 presents a total accuracy of 78 % for the deep learning approach. Out of 100
images, 15 images in the test set gave a confidence level on classification of less than 80 %.
When these images were disregarded, the network had an accuracy of 88 %. The network
classified all images in figure 42 correctly, even though images of for example apples were
not included in the training set. For future work, the paper suggests refining the created
deep learning model for corrosion detection, and to train it with even more images for
possibly achieving a higher accuracy than obtained with the existing model.

49

3.2. PREVIOUS WORK ON CLASSIFICATION OF CORROSION DAMAGES

In [8], deep learning approaches based on CNNs for corrosion detection are evaluated. The
study presented in this paper aims to quantify performance of corrosion classification and
find optimal inputs for a CNN to create robust systems for automatic corrosion detection.
Figure 43 shows a basic structure of a CNN with output predictions “non-corroded” and
“corrosion”, and this is the type of structure used in the study to classify image regions as
corroded or not.

Figure 43: Illustration of a basic CNN architecture for corrosion detection on images [8].

A total of 926 original images were cropped in order to generate even more images. Through
cropping regions of corrosion and non-corrosion, 33039 images of corrosion and 34148 of
non-corrosion were created. The distribution of images in a training, validation and test set
was 70%, 10%, and 20%, respectively. Two types of existing networks, VGG16 and ZF
Net, were used. The paper also proposes two network architectures named Corrosion5 and
Corrosion7. Different colour spaces such as RGB, YCbCr, CbCr and grayscale were tested
to find the optimal colour space for corrosion detection. A sliding window approach was
used to classify different regions of an image. This is illustrated in figure 44.

Figure 44: Illustration of region classification using a sliding window approach [8].

50

3.2. PREVIOUS WORK ON CLASSIFICATION OF CORROSION DAMAGES

The following training options for the CNNs were chosen:

• Number of epochs: 22 (8800 iterations)

• Mini-batch size: 256

• Learning rate: 1× 10−3

Through testing the two networks with different colour spaces and sliding window sizes it
was found that the best input parameters were the RGB and YCbCr colour spaces, using a
sliding window size of 128× 128. After fine-tuning, the VGG16 network turned out to be
the most robust architecture. However, with no fine-tuning, the two networks performed
equally. Results after testing of the different CNN architectures on RGB images are shown
in figure 45. For future work, the paper suggests using the results found to look at the
possibilities for classification of different types of corrosion using CNNs [8] [6].

Figure 45: Performance for different CNN architectures from testing on RGB images [8].

51

3.2. PREVIOUS WORK ON CLASSIFICATION OF CORROSION DAMAGES

Corrosion evaluation using deep learning

In [77], tests on classification of grounding grid corrosion damages from images using
CNNs were performed. For implementation of the CNNs, the authors used MATLAB and
the Deep Learning Toolbox. Four different categories of corrosion damages were chosen as
labels for the images; very mild, mild, moderate and severe. Through the use of Photoshop
[78] image processing software, 2500 images of each category were pre-processed and
given the size of 32 × 32 pixels. The data set of images was divided into a training set
and a test set, containing 80% and 20% of the images respectively. A convolutional neural
network architecture called LeNet-5 [79] was modified for use in this paper. Two different
classifiers were used; Softmax and SVM. Results from training and tests of original and
improved CNNs performed in [77] are shown in table 6. The training options were set to
the following, using the SGD algorithm:

• Number of epochs: 50

• Mini-batch size: 20

• Learning rate: 0.1

• Momentum: 0.95

Table 6: Results from network training and testing in [77].

Algorithm Pre-processing sample bank
Training set

recognition rate
Test set

recognition rate
CNN-Softmax 83.14 % 79.26 %

CNN-SVM 85.21 % 81.55 %
Improved CNN-Softmax 87.58 % 84.09 %

Improved CNN-SVM 91.25 % 89.37 %

The improved CNNs differ from the original LeNet-5 architecture through use of the ReLU
activation function, and the number of convolutional layers were changed from two to three.
More details regarding the improved network architecture is found in [77]. The results in
table 6 show that the improved CNNs have a higher accuracy both for training and testing,
and that using a SVM classifier gave the highest overall accuracy.

52

Chapter 4

Methods

In this chapter, the methods for data collection and image categorization based on classes
of corrosion and coating damages are explained. The setup of training and tests of con-
volutional neural networks is presented. MATLAB is the chosen software to be used in
this thesis. The approach for implementation of networks in MATLAB is given, including
image pre-processing, labeling of images, modifications on network layers and choice of
training options such as the training algorithm, learning rate, mini-batch size and number
of epochs.

53

4.1. DATA COLLECTION

4.1 Data collection

This section will explain the methods of data collection. A hard drive containing approxi-
mately 240 000 images from previous bridge inspections was received from The Norwegian
Public Roads Administration, and this serves as the main source of images used in this the-
sis. Some images were downloaded directly from Brutus, a management system for bridges
in Norway introduced in section 2.2.2. The data set from the hard drive contains images
such as; corrosion damages on steel construction and rebar, deformation damages, missing
construction elements, bridge overview images and vegetation around bridges. All the 240
000 images were manually evaluated, and applicable images were categorized in folders.
This section will explain in detail how data collection and categorization was carried out.

For the very first network training and test, approximately 400 images were downloaded
directly from Brutus and categorized into two classes; corrosion and not corrosion. The
corrosion class contained images of corrosion both on steel construction and rebar. These
images were collected before the hard drive was received, and served as a first set of images
for setup and test of a script in MATLAB. The results from training and tests of the first
network are shown in section 5.1.

Damages on bridge constructions like deformations, cracks, paint flaking, and corrosion
on rebar and steel all vary in scope and shape within their respective categories. In the
category of corrosion damages, the variation is quite large, and it is therefore necessary to
choose reasonable classes of corrosion damages to be used as labels in network training.
Table 7 shows different degrees of damages related to corrosion and coating damages on
bridge constructions.

Table 7: Degrees of damages related to corrosion as classified by The Norwegian Public
Roads Administration [80].

Degree of damage Explanation
Degree 1 Discoloration of the surface
Degree 2 Pores/ crazing/ flaking
Degree 3 Decomposition to zinc or aluminium primer
Degree 4 Exposure of metal surface

With inspiration from table 7, it was chosen to categorize images from previous bridge
inspections into five classes; (1) paint flaking, (2) white corrosion, (3) red corrosion on
steel construction, (4) red corrosion on rebar and (5) not corrosion, as shown in table 8.
The main focus in this thesis is classification of corrosion damages, but it is also of great
importance to be able to detect a potential start of a corrosion damage. If a coating damage

54

4.1. DATA COLLECTION

is detected early, necessary measures related to maintenance can be implemented in order
to avoid a corrosion damage. Therefore, paint flaking is added as a class to be identified
by neural networks. The white corrosion class is also useful because corrosion directly on
the steel construction of a bridge can be avoided if damage on the TSZ coating is detected
and repaired. The different coating layers used on the steel construction of a bridge were
previously illustrated in figure 16, section 2.2.1. However, because very few images of
white corrosion were found in the available data set, this class will not be used in network
training. Classification of damages like cracks or deformations are not investigated in this
thesis, but will be mentioned as possible future work later in the report. Table 9 shows the
amount of images collected for each of the five classes. Figures 46, 47, 48, and 49 illustrate
image examples within the categories 1, 3, 4 and 5.

Table 8: Classes of corrosion and surface damages manually categorized from the 240 000
images received from the Norwegian Public Roads Administration. All classes except from
class 2-white corrosion will be used in network training and testing.

Number Class/label Description

1 Paint flaking

Flaking or peeling paint on steel.
Some images contain small areas
of beginning corrosion damages

due to paint flaking.
2 White corrosion Corrosion on zinc coating.

3 Red corrosion, steel construction
Corrosion on exposed steel on
construction elements such as

beams, wires and railings.

4 Red corrosion, rebar
Corrosion on exposed rebar

in concrete of varying degrees.

5 Not corrosion

Everything that does not
contain elements of the other
classes above. Examples are;
intact/undamaged concrete,

cracks in concrete, undamaged
steel, leaves, flowers,

graffiti, trees, roads and cars.
(for example: a red car,
autumn leaves, and steel

or woodwork painted red).

55

4.1. DATA COLLECTION

Table 9: Amount of images collected of each class and in total. The number in parentheses
denotes the amount of images including augmented images.

Number Class/label Amount of images
1 Paint flaking 248 (2050)
2 White corrosion 31
3 Red corrosion, steel construction 2557
4 Red corrosion, rebar 2380
5 Not corrosion 2307

Total 7523 (9325)

Figure 46: Examples of images collected in the class paint flaking.

56

4.1. DATA COLLECTION

Figure 47: Examples of images collected in the class red corrosion, steel construction.

57

4.1. DATA COLLECTION

Figure 48: Examples of images collected in the class red corrosion, rebar.

58

4.1. DATA COLLECTION

Figure 49: Examples of images collected in the class not corrosion.

59

4.2. SETUP OF TRAINING AND TESTS

4.2 Setup of training and tests

This section will explain the setup of training and tests for different convolutional neural
networks. Relevant networks are AlexNet, GoogLeNet, ResNet-50 and VGG-16. The
trained CNNs are named networks 1-9. The motivation for training and testing of network
1 was to become familiar with the setup of code in MATLAB, as well as to get an initial idea
of how accurate a CNN could classify images of corrosion and not corrosion. Networks 2-5
were trained with three classes of images; red corrosion on steel construction, red corrosion
on rebar and not corrosion, while networks 6-9 were trained with four classes, including
the class paint flaking, in addition to the three classes used in networks 2-5. Available
hardware and training options used for each CNN is presented in this section. The setup of
tests is also explained, including relevant methods for testing of CNNs, and which metrics
are used to evaluate classification performance for the different classes of images.

4.2.1 Training and validation

Table 10 shows the setup of CNN training, including relevant network architectures and
the classes that are used for training of networks 1-9 in this thesis. The existing CNN
architectures AlexNet, GoogLeNet, ResNet and VGG were introduced in section 3.1, and
are some of the most well known neural networks for image classification. Each of these
four CNNs have previously provided state of the art results within image classification, and
were therefore considered highly relevant for comparison in this master’s thesis. ResNet-50
and VGG-16 are the chosen versions of ResNet and VGG.

Table 10: Setup of network training through transfer learning using existing pre-trained
networks. The class numbers with description are given in table 8.

Name Pre-trained network Classes

Network 1 AlexNet
Corrosion

Not corrosion
Network 2 AlexNet 3,4,5
Network 3 GoogLeNet 3,4,5
Network 4 ResNet-50 3,4,5
Network 5 VGG-16 3,4,5
Network 6 AlexNet 1,3,4,5
Network 7 GoogLeNet 1,3,4,5
Network 8 ResNet-50 1,3,4,5
Network 9 VGG-16 1,3,4,5

60

4.2. SETUP OF TRAINING AND TESTS

Table 11: Available hardware for training of convolutional neural networks.

Name Pre-trained network Hardware
Network 1 AlexNet Intel Core i7-8700 CPU 3.20 GHz
Network 2 AlexNet Intel Core i7-8700 CPU 3.20 GHz
Network 3 GoogLeNet Intel Core i7-8700 CPU 3.20 GHz
Network 4 ResNet-50 Intel Core i7-8700 CPU 3.20 GHz
Network 5 VGG-16 Intel Core i7-8700 CPU 3.20 GHz
Network 6 AlexNet NVIDIA Titan X (Pascal) Single GPU
Network 7 GoogLeNet NVIDIA Titan X (Pascal) Single GPU
Network 8 ResNet-50 Intel Core i7-6850K CPU 3.60 GHz
Network 9 VGG-16 Intel Core i7-6850K CPU 3.60 GHz

Table 12: Training options for network training, including training algorithm and parame-
ters such as learning rate, momentum, mini-batch size and the number of epochs.

Network Training options
Learning algorithm

(MATLAB notation)
Initial

learning rate Epochs
Mini-batch

size Momentum

Network 1
SGD with momentum

(’sgdm’) 3× 10−4 6 10 0.90 (default)

Network 2-training 1
SGD with momentum

(’sgdm’)
1× 10−1 10 20 0.95

Network 2-training 2
SGD with momentum

(’sgdm’)
1× 10−5 10 20 0.95

Networks 3-9
SGD with momentum

(’sgdm’)
1× 10−5 10 20 0.95

The collected images, introduced in section 4.1, were divided in such a way that 80% were
used as a training set and 10% as a validation set for the CNNs. The remaining 10% of
all images were assigned to a test set. The partitioning of images into different sets using
MATLAB is further explained in section 4.3.2. Table 11 shows the available hardware
for training of each of the networks 1-9, and relevant training options with values used in
MATLAB are given in table 12.

61

4.2. SETUP OF TRAINING AND TESTS

4.2.2 Testing

In order to test a trained CNN, relevant terms and metrics for evaluation of multi-class
classification problems must first be defined. For a binary classification problem, such as
in [7] where the objective is to classify images as corrosion or not corrosion, one of the
classes can be defined as positive, while the other is defined as negative. Results from
classifications are often evaluated in what is called a confusion matrix. A confusion matrix
for a binary classification problem is shown in figure 50.

Figure 50: Illustration of a confusion matrix for a binary classification problem. Defining a
true positive, false positive, true negative and false negative. The true classifications, being
TP and TN, are on the diagonal of the 2 × 2 confusion matrix. The illustration is made
using Lucidchart [49], with inspiration from [81].

In this thesis, a maximum number of four classes is to be classified, which makes it a
multi-class classification problem. Figure 51 illustrates a confusion matrix containing the
four relevant classes from table 8. In the multi-class case, the definition of TP, TN, FP
and FN requires some more explanation than in the binary case illustrated in figure 50. A
TP is defined very similar in both cases, specifically as a class being correctly classified,
or predicted, as the true class. For example, an image of paint flaking being classified as
paint flaking is a TP. The TNs for a class in the multi-class case are defined as the sum of
predictions in all columns and rows of the confusion matrix, except from the ones included
in rows and columns related to that specific class. The total amount of FPs for a class is
the sum of all predictions in the column related to that specific class, except from the TPs.
The total amount of FNs for a class is the sum of all predictions in its corresponding row,

62

4.2. SETUP OF TRAINING AND TESTS

except from the TPs. Figure 52 illustrates a confusion matrix generated after classification
of images performed in this thesis. This confusion matrix serves as a basis for a calculation
example to show how TPs, TNs, FPs and FNs, as well as performance metrics called recall,
precision, accuracy and F1 score, are calculated.

Figure 51: Illustration of a confusion matrix for classification of the four classes paint
flaking, red corrosion, steel construction, red corrosion, rebar and not corrosion. The
correct classifications, TPs for all classes, are observed on the green diagonal of the 4 × 4
confusion matrix. The illustration is made using Lucidchart [49].

An explanation of the performance metrics that will be used to evaluate CNNs after testing
is given below:

Recall: says what proportion of actual positives was correctly identified.

Precision: says what proportion of positive identifications was correct.

Accuracy: the fraction of predictions the network classified correctly.

F1 score: a metric that combines recall and precision as shown in (21).

63

4.2. SETUP OF TRAINING AND TESTS

Equations for recall, precision, accuracy and F1 score, (18), (19), (20) and (21), are taken
from [81], where i denotes the number of classes that are evaluated.

Recall =

∑I
i=1

TPi

TPi+FNi

I
(18)

Precision =

∑I
i=1

TPi

TPi+FPi

I
(19)

Accuracy =

∑I
i=1

TPi+TNi

TPi+FNi+FPi+TNi

I
(20)

F1 =
2×Recall × Precision
Recall + Precision

(21)

Figure 52: Confusion matrix for use in calculation example. This is an actual confusion
matrix for test of network 6 on 930 images. Seen from a bridge inspection perspective, the
matrix elements inside the red frame are considered the most critical of wrong classifica-
tions. This is because these numbers represent images of damages on a bridge construction
that are not detected, since they are classified as not corrosion. The elements inside the red
frame are called the false positives (FPs) of not corrosion.

64

4.2. SETUP OF TRAINING AND TESTS

Calculation example using results from confusion matrix in figure 52

This calculation example shows how the different performance metrics are calculated from
results of CNN testing in this thesis. The confusion matrix in figure 52 serves as the basis
for this example. The example will go through calculation of TPs, TNs, FPs and FNs, as
well as recall, precision, accuracy and F1 score for the class Not corrosion in figure 52. It
will also be explained how average values for recall, precision, accuracy and F1 score are
calculated.

True positives (TPs)

The first element on the blue diagonal of the confusion matrix shows the number of images
that are predicted as Not corrosion, and that also belong to the true class Not corrosion.
Thus, TP = 203.

True negatives (TNs)

The sum of elements on all rows and columns, excluding the ones belonging to the class
Not corrosion, shows the number of true negatives (TNs). TN = 201 + 0 + 3 + 1 + 218 +
15 + 2 + 12 + 241 = 693.

False positives (FPs)

The number of false positives for the class Not corrosion is the sum of all elements on the
column related to this class, except from the TPs. Thus, the number of false positives is:
FP = 1+4+1 = 6. All the false positives are marked with a red frame in figure 52 because
these are wrong classifications that are considered most critical for bridge inspections, since
FPs for Not corrosion means that there are damages on the bridge that are not detected as a
damage. In this example, there would be 6 damages that are not detected, thus 6 FPs.

False negatives (FNs)

The number of false negatives for the class Not corrosion is the sum of all elements on
the row related to this class, except from the TPs. Thus, the number of false negatives is:
FN = 6 + 18 + 4 = 28.

The sum of all TPs, TNs, FPs and FNs should equal to the total number of test images,
which is 930: Total amount of test images = TP+TN+FP+FN = 203+693+6+28 =
930→ OK.

Recall

Using (18) and the results found above: Recall =
∑I

i=1
TPi

TPi+FNi

I
=

203
203+28

1
≈ 0.8788.

65

4.2. SETUP OF TRAINING AND TESTS

Precision

Using (19) and the results found above: Precision =
∑I

i=1
TPi

TPi+FPi

I
=

203
203+6

1
≈ 0.9713.

Accuracy

Using (20) and the results found above: Accuracy =
∑I

i=1
TPi+TNi

TPi+FNi+FPi+TNi

I
=

203+693
203+28+6+693

1
≈

0.9634.

F1 score

Using (21) and the values of recall and precision found above: F1 = 2×Recall×Precision
Recall+Precision

=
2×0.8788×0.9713
0.8788+0.9713

≈ 0.9227.

Average values

Average values, considering all classes in a network, are calculated the following way for
all CNNs in this thesis:

Average recall =
∑I

i=1
TPi

TPi+FNi

I
= Sum of recall for all classes

Number of classes

Average precision =
∑I

i=1
TPi

TPi+FPi

I
= Sum of precision for all classes

Number of classes

Average accuracy =
∑I

i=1
TPi+TNi

TPi+FNi+FPi+TNi

I
= Sum of accuracy for all classes

Number of classes

Average F1 score = 2×Average recall×Average precision
Average recall+Average precision

66

4.3. IMPLEMENTATION OF CLASSIFICATION SYSTEM IN MATLAB

4.3 Implementation of classification system in MATLAB

This section will explain how convolutional neural networks for classification of corrosion
and coating damages were implemented in MATLAB using the Deep learning Toolbox.
The implementation consists of loading networks, labeling images, image pre-processing
and network training and testing. Some lines of code are added in this chapter to support
explanations related to implementation of CNNs, and the MATLAB code in its entirety is
given in the appendix in section C.

4.3.1 Loading CNNs

A CNN is loaded in MATLAB using the command net = “network”, for example
net = alexnet or net = googlenet. In order to run this command, the Deep
learning Toolbox must be installed, and it is also necessary to download specific packages
for each network. In addition to the Deep Learning Toolbox, the following toolboxes for
the specific networks were installed:

• Deep Learning Toolbox Model for AlexNet Network [82]

• Deep Learning Toolbox Model for GoogLeNet Network [83]

• Deep Learning Toolbox Model for ResNet-50 Network [84]

• Deep Learning Toolbox Model for VGG-16 Network [85]

4.3.2 Image labeling and data sets

Images recieved from The Norwegian Public Roads Administration were categorized into
folders, as explained in section 4.1. From the folder names the images were labeled using
imageDatastore() [86]. The code for image labeling is given in listing 4.1. In this
code example the folder ThreeLabels is used as input, and the names of its subfolders are
set as the label source for all images.

Listing 4.1: MATLAB code for labeling of images from folder names made during catego-
rization of images.

5 %Loading images to a image datastore, label images from
foldernames:

6 images=imageDatastore(’ThreeLabels’,’IncludeSubfolders’,true
,’LabelSource’,’foldernames’);

67

4.3. IMPLEMENTATION OF CLASSIFICATION SYSTEM IN MATLAB

The images were divided into training, validation and test sets as shown in listing 4.2. The
different sets were denoted imageTrain, imageValidation and imageTest, and the command
splitEachLabel() [87] was used to split the total amount of images into proportions.
As listing 4.2 shows, 80% of all images were assigned to the training set, and 10% to the
validation set. The remaining 10% of the images were automatically put aside to be used
as a test set.

Listing 4.2: MATLAB code for dividing the images into training, validation and test sets.
8 %The data is divided into three sets;training(80%),

validation(10%) and
9 %testing (10%):

10 [imageTrain,imageValidation,imageTest]=splitEachLabel(images
,0.8,0.1);

4.3.3 Image pre-processing

Cropping and rotation of images

The amount of images for each class of damages to be used in this thesis was given in
table 9. It was decided not to continue with class 2-white corrosion, because very few
images were found of this class during data collection. Class 1, paint flaking, also has
few images compared with the remaining classes. Using only the original 248 images in
class 1 together with the classes 3, 4 and 5 would give an unbalanced data set. Therefore,
data augmentation, in the form of image cropping and rotations, was performed to increase
the number of images in class 1. To perform image cropping, the MATLAB command
imCrop() [88] was used, which opens a new window with the image and an area can be
chosen to crop. Figure 53 illustrates an example of how an image was cropped and rotated.
Images were rotated using imrotate() [89], and the two inputs to this command were
the relevant image and the desired angle of rotation.

68

4.3. IMPLEMENTATION OF CLASSIFICATION SYSTEM IN MATLAB

Figure 53: Example of how image cropping and rotation was performed to create more
images in class 1-paint flaking.

Image resizing and colour pre-processing

The size of all images had to be scaled down to fit the input layer of the networks, for exam-
ple to 227× 227 pixels for AlexNet, and to 224× 224 pixels for GoogLeNet and ResNet-
50. Both image resizing and colour pre-processing was performed using the command
augmentedImageDatastore() [90]. The operation ’ColorPreprocessing’
was used to ensure that all input images had the same amount of colour channels, here
three channels. Although all collected images were RGB images, some of the images had
a type of grayscale representation. Thus, it became necessary to use this operation with the
input ’gray2rgb’. The MATLAB code for changing image input size and for colour
pre-processing is shown in listing 4.3. The augmented training set in listing 4.3 is denoted
AugTrain. The exact same operation was performed on the validation and training set, and
the augmented sets were denoted AugValidation and AugTest, respectively.

Listing 4.3: MATLAB code for changing image input size to fit the first layer of a network
and for colour processing of images.

12 %Define image input size for the network:
13 inputSize = net.Layers(1).InputSize;
14

15 %Change input image size and perform colour pre-processing:
16 AugTrain = augmentedImageDatastore(inputSize(1:2),imageTrain

,’ColorPreprocessing’,’gray2rgb’);

69

4.3. IMPLEMENTATION OF CLASSIFICATION SYSTEM IN MATLAB

4.3.4 Modification of layers in existing CNNs

The pre-trained CNNs AlexNet, GoogLeNet, ResNet-50 and VGG-16 used for transfer
learning are all originally trained to classify 1000 classes of images. In this thesis, the
maximum number of classes to be classified is four. Therefore, it was necessary to modify
some of the last layers in the pre-trained CNNs to make them fit the new classification
problem. More specifically, the three last layers of the existing networks were modified as
explained by the MATLAB code in listing 4.4. New layers were specified in newLayers,
including a fully-connected layer where the damage categories specified in classes were
used as input to define the new classification task.

Listing 4.4: MATLAB code for modifying layers in CNNs.
23 %Modifying network layers:
24 layersExtract = net.Layers(1:end-3);
25 classes = numel(categories(imageTrain.Labels));
26 newlayers = [
27 layersExtract
28 fullyConnectedLayer(classes,’WeightLearnRateFactor’,20,’

BiasLearnRateFactor’,20)
29 softmaxLayer
30 classificationLayer];

The code in listing 4.4 was sufficient for modifying the layers in the AlexNet network,
but for all the other CNNs, an additional function was required due to these networks being
DAG (Directed Acyclic Graph) networks. The function called findLayersToReplace.m
was downloaded from [91], and is given in the appendix in section C.

70

4.3. IMPLEMENTATION OF CLASSIFICATION SYSTEM IN MATLAB

4.3.5 Training of CNNs

Figure 54 illustrates a typical workflow for transfer learning in MATLAB. Three main
elements creates the basis for CNN training through transfer learning; modified network,
training data and training algorithm options. Modification of a network was performed as
described in section 4.3.4, and the set of images introduced in section 4.1 serves as both
training and test data. The final element is the training algorithm options, which contain
information on parameters such as what type of learning algorithm is used, the learning
rate, mini-batch size and the number of epochs. Chosen training options for each CNN were
shown in table 12, and specified in MATLAB using the command trainingOptions()
[46] as shown in listing 4.5.

Figure 54: Transfer learning workflow in MATLAB as specified by MathWorks [92].

Listing 4.5: MATLAB code for deciding the training options for a CNN.
32 %Specifying training options:
33 optionsTrain = trainingOptions(’sgdm’,’MiniBatchSize’,20,’

MaxEpochs’,10,’Momentum’,0.95,’InitialLearnRate’,1e-5, ’
Shuffle’,’every-epoch’,’ValidationData’,AugValidation,’
ValidationFrequency’,3, ’Verbose’,false,’Plots’,’training
-progress’);

71

4.3. IMPLEMENTATION OF CLASSIFICATION SYSTEM IN MATLAB

4.3.6 Testing of CNNs

The setup for testing of CNNs in this thesis was explained previously in section 4.2.2.
This section will show how tests were performed in MATLAB using relvant commands,
including how to make use of a defined test set to classify images using a trained CNN, and
how to create confusion matrices for illustrating test results.

After training a CNN, the network was saved as a .mat-file in MATLAB. Listing 4.6 shows
how a saved CNN is loaded in MATLAB as a .mat-file, and the command classify()
[93] is used with the two inputs being the trained CNN and the augmented test set of
images. Predictions and scores are extracted as Pred and scores. A confusion matrix
is created using confusionchart, which is a MATLAB command that automatically
generates an illustration of true and predicted classes, given labels from test images and the
predictions found using classify().

Listing 4.6: MATLAB code for testing of trained CNN, and for obtaining a confusion
matrix.

42 %Classify test images:
43 load (’Network.mat’)
44 [Pred,scores] = classify(Network,AugTest);
45

46 %Creating a confusion matrix after classifying test images:
47 Test = imageTest.Labels;
48 confusionchart(Test,Pred)

72

Chapter 5

Results

This chapter will show the obtained results after training and test of CNNs performed as
explained in section 4.2. Training progress for each network is illustrated by accuracy and
loss for both training and validation. Results from testing of the different CNNs are illus-
trated with confusion matrices, showing both true and predicted classes. The metrics recall,
precision, accuracy and F1 score are used as performance measurements when evaluating
the results. All calculations of these metrics were performed as shown in the detailed exam-
ple in section 4.2.2, using equations (18), (19), (20) and (21). The CNNs are also evaluated
on damage detection accuracy, meaning that the number of false positives for not corrosion
are studied. A summary and comparison of results for the different CNNs are given in in
the last section of this chapter, section 5.10. The scope of the discussion for each network,
from section 5.1 to 5.9, will vary and is quite brief for some of the networks. The major-
ity of discussion related to the results will be given in the summary and comparison of all
CNNs in section 5.10. Relevant terms used to present and discuss the results in this chapter
were explained in detail in section 4.2.2, and a brief recap of some of the terms is given
below:

• Recall: The amount of actual positives for a class that are correctly classified.

• Precision: The amount of positive predictions that are correct.

• F1 score: A metric that combines results from recall and precision, shown in (21).

• Accuracy: The fraction of predictions that are correctly classified.

73

5.1. NETWORK 1-ALEXNET

5.1 Network 1-AlexNet

5.1.1 Training, validation and test of network 1

The training progress for network 1, including accuracy and loss related to both training and
validation, is shown in figure 55. A total of 376 images, 188 of each category (corrosion
and not corrosion) were used for training, validation and testing of network 1. Out of 376
images, 80 % were used as a training set, and the remaining images were divided equally
into a validation set and a test set.

Figure 55: Training progression. 97,37% validation accuracy. Learning rate 3×10−4. Total
of 6 epochs. Elapsed time: 7 min and 4 sec on single CPU.

74

5.1. NETWORK 1-ALEXNET

Network 1 was tested on two different test sets as explained below:

• The first test set contained a total of 38 images, 19 of each category corrosion and
not corrosion. Figure 56 illustrates the confusion matrix for this test, showing a total
test accuracy of 100%.

• The second test was performed using a test set containing 100 images of the corrosion
class only. Figure 57 illustrates the confusion matrix for this test, showing a total test
accuracy of 83.00%.

Figure 56: Confusion matrix for test set of 38 images (19 of each label). There are 19 TPs
for corrosion and 19 TPs for not corrosion.

Figure 57: Confusion matrix for test set of 100 images containing the corrosion class only.
There are 83 TPs for corrosion and 17 FPs for not corrosion.

75

5.1. NETWORK 1-ALEXNET

5.1.2 Discussion of network 1

The results from training and testing of network 1 are not considered very relevant for con-
clusions to be made in this thesis, but a few interesting observations are worth discussing.
This network training and testing was performed mainly to set up a MATLAB script and to
become familiar with how network training is carried out. Since a relatively small amount
of images was used and no data augmentation was performed, the chance is high that over-
fitting did occur. When comparing the results from the two tests, it is observed that the
38 test images in figure 56 were all correctly classified, while for the 100 images of only
corrosion in figure 57 the results are different. Out of 100 images of corrosion, 17 were
wrongly classified as not corrosion. The network clearly is not able to classify such a rela-
tively large amount of test images with the same accuracy as obtained in the first test with
38 images. The validation accuracy during training was 97.37% as shown in figure 55,
while the test accuracy for the 100 images was 83.00%. This result supports the theory of
overfitting occurring in network 1.

From the presented results it was observed that having images of red corrosion on ele-
ments of steel construction and on rebar in the same class called corrosion seemed to be
a challenge. This is because many of the 17 wrongly classified images in the second test
contained corrosion on rebar. The reason is assumed to be the fact that differences in ap-
pearance between these two categories of corrosion damages can be quite large, resulting in
images of corrosion on rebar being classified as not corrosion because these images often
contain smaller areas of corrosion compared with those of elements of steel constructions.
To avoid this potential challenge in further training of neural networks, it was chosen to
divide these types of corrosion damages into two separate classes. One could of course
argue that a neural network trained on more images than network 1 could be able to clas-
sify images of corrosion on rebar as corrosion with higher accuracy, while being defined as
the same class as corrosion on steel construction. However, corrosion on rebar has a very
characteristic appearance with horizontal and vertical “lines” as shown in figure 48, which
makes it reasonable to define it as an own class of corrosion damages. In addition, if any
of the neural networks trained in this thesis can be used in an actual system for automatic
damage detection on bridge constructions, being able to separate between different types of
corrosion damages is considered to be preferable in order to get the best possible overview
of a construction and what measures of maintenance are required.

76

5.2. NETWORK 2-ALEXNET

5.2 Network 2-AlexNet

5.2.1 Training, validation and test of network 2

The training progresses for network 2-training 1 and 2, including accuracy and loss related
to both training and validation, are shown in figures 58 and 59, respectively. The confusion
matrix after testing of network 2-training 2 is shown in figure 60, and table 13 shows the
result for the different metrics used to evaluate CNN performance.

Figure 58: Training progression for network 2-training 1. 32.80% validation accuracy.
Learning rate 1× 10−1 .Training stopped after 4 epochs. Elapsed time: 403 min and 25 sec
(∼ 7 hours) on single CPU.

77

5.2. NETWORK 2-ALEXNET

Figure 59: Training progression for network 2-training 2. 92,67% validation accuracy.
Learning rate 1 × 10−5 . Total of 10 epochs. Elapsed time: 1017 min and 0 sec (∼ 17
hours) on single CPU.

Not C
orro

sion

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted class

Not Corrosion

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 c

la
s
s

7

2

8

13

3

20

220

211

241

Figure 60: Confusion matrix for test of network 2-training 2 on 725 images.

78

5.2. NETWORK 2-ALEXNET

Table 13: Results from testing of network 2 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Red corrosion,

steel construction
0.9414 0.9129 0.9476 0.9269

Red corrosion,
rebar

0.8866 0.9095 0.9338 0.8979

Not corrosion 0.9524 0.9607 0.9724 0.9565
Average, all classes 0.9268 0.9277 0.9513 0.9272

5.2.2 Discussion of network 2

The validation accuracy for training 1 remained constant during training as shown in figure
58. This is most likely due to the SGD algorithm reaching a local minimum, and interpret-
ing this as a global one, because the learning rate was set too high. Training 1 was stopped
after four epochs since there were no signs of the validation accuracy increasing with time.
There was something wrong with illustration of the training loss curve for training 1 (or-
ange curve in figure 58); it did not appear during training. It is not known exactly what
caused this, but the plot command in MATLAB must have frozen in some way, causing the
plot to stop in the very beginning of the training.

From the observations on validation accuracy made in training 1 (figure 58), a new network
training was performed. The learning rate was first changed to 1×10−3, but it was not a suf-
ficiently small value because after only a few iterations the validation accuracy decreased
and the training loss increased rapidly. This network training was therefore cancelled, and
the learning rate was changed to 1× 10−5. With this learning rate the training progression
improved significantly, as illustrated in figure 59.

Results from testing of network 2-training 2 are shown both in the confusion matrix in
figure 60 and in table 13. From these results it is observed that the class not corrosion
has the highest scores for all performance metrics, while the results for red corrosion,
rebar show the overall lowest scores of all three predicted classes. As illustrated in the
first column of the confusion matrix in figure 60, there are a total of 9 (7+2) FPs for not
corrosion. This means that 9 corrosion damages were not detected by network 2.

79

5.3. NETWORK 3-GOOGLENET

5.3 Network 3-GoogLeNet

5.3.1 Training, validation and test of network 3

The training progress for network 3 is illustrated in figure 61. The confusion matrix after
testing of network 3 is shown in figure 62, and table 14 shows the result for the different
metrics used to evaluate CNN performance.

Figure 61: Training progression for network 3. 91,70% validation accuracy. Learning rate
1 × 10−5 . Total of 10 epochs. Elapsed time: 1133 min and 19 sec (∼ 19 hours) on single
CPU.

80

5.3. NETWORK 3-GOOGLENET

Not C
orro

sion

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted class

Not Corrosion

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 c

la
s
s

5

6

4

12

6

13

221

220

238

Figure 62: Confusion matrix for test of network 3 on 725 images.

5.3.2 Discussion of network 3

The validation accuracy is approximately 1 percent lower for network 3 compared with
network 2. However, the average test scores for all metrics shown in table 14 are higher
than those for network 2 shown in table 13. From table 14 it is observed that the class not
corrosion has the highest performance scores of all classes in network 3. The confusion
matrix for network 3, illustrated in figure 62, show that there are a total of 11 (5+6) FPs for
not corrosion. This is given in the first column of the confusion matrix. These FPs represent
5 cases of red corrosion on rebar and 6 cases of red corrosion on steel construction that are
not detected as a damage by network 3.

Table 14: Results from testing of network 3 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Red corrosion,

steel construction
0.9297 0.9261 0.9490 0.9279

Red corrosion,
rebar

0.9244 0.9322 0.9531 0.9283

Not corrosion 0.9567 0.9526 0.9710 0.9546
Average, all classes 0.9369 0.9370 0.9577 0.9369

81

5.4. NETWORK 4-RESNET-50

5.4 Network 4-ResNet-50

5.4.1 Training, validation and test of network 4

The training progress for network 4 is illustrated in figure 63. The confusion matrix after
testing of network 4 is shown in figure 64, and table 15 shows the result for the different
metrics used to evaluate CNN performance.

Figure 63: Training progression for network 4. 92,95% validation accuracy. Learning rate
1 × 10−5 . Total of 10 epochs. Elapsed time: 1490 min and 18 sec (∼ 25 hours) on single
CPU.

82

5.4. NETWORK 4-RESNET-50

Not C
orro

sion

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted class

Not Corrosion

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 c

la
s
s

15

6

2

3

2

15

227

208

247

Figure 64: Confusion matrix for test of network 4 on 725 images.

5.4.2 Discussion of network 4

The recall related to classifying not corrosion is higher compared with both network 2 and
network 3. Only four out of 231 images in this class were wrongly classified as either
red corrosion on rebar or steel construction, meaning there are four FNs for not corrosion.
Table 15 shows that the average performance scores for all metrics are higher for network
4, compared with both network 2 and 3. As illustrated in the first column of the confusion
matrix in figure 64, there are a total of 21 (15+6) FPs for not corrosion. This means that 21
corrosion damages were not detected by network 4, making it the CNN with most FPs for
not corrosion of all networks introduced until now.

Table 15: Results from testing of network 4 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Red corrosion,

steel construction
0.9648 0.9356 0.9641 0.9500

Red corrosion,
rebar

0.8739 0.9765 0.9517 0.9224

Not corrosion 0.9827 0.9153 0.9655 0.9478
Average, all classes 0.9405 0.9425 0.9605 0.9415

83

5.5. NETWORK 5-VGG-16

5.5 Network 5-VGG-16

5.5.1 Training, validation and test of network 5

The training progress for network 5 is illustrated in figure 65. The confusion matrix after
testing of network 5 is shown in figure 66, and table 16 shows the result for the different
metrics used to evaluate CNN performance.

Figure 65: Training progression for network 5. 94,88% validation accuracy. Learning rate
1 × 10−5 . Total of 10 epochs. Elapsed time: 2301 min and 34 sec (∼ 38 hours) on single
CPU.

84

5.5. NETWORK 5-VGG-16

Not C
orro

sion

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted class

Not Corrosion

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 c

la
s
s

2

3

9

15

4

8

218

228

238

Figure 66: Confusion matrix for test of network 5 on 725 images.

Table 16: Results from testing of network 5 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Red corrosion,

steel construction
0.9297 0.9520 0.9586 0.9407

Red corrosion,
rebar

0.9580 0.9048 0.9531 0.9306

Not corrosion 0.9437 0.9776 0.9752 0.9604
Average, all classes 0.9438 0.9448 0.9623 0.9443

5.5.2 Discussion of network 5

Network 5 has the highest validation accuracy obtained so far, being 94.88 %, as shown in
figure 65. With a training duration of approximately 38 hours on a single CPU, network 5
was also the CNN that took the longest time to train of networks 2-5. As illustrated in the
first column of the confusion matrix in figure 66, there are a total of 5 (2+3) FPs for not
corrosion. This means that 5 corrosion damages were not detected by network 5, making it
the CNN with fewest FPs for not corrosion of networks 2-5. The average values for metrics
in the last row of table 16 also show that all values are higher compared with network 2-4.

85

5.6. NETWORK 6-ALEXNET

5.6 Network 6-AlexNet

5.6.1 Training, validation and test of network 6

The training progress for network 6 is illustrated in figure 67. The confusion matrix after
testing of network 6 is shown in figure 68, and table 17 shows the result for the different
metrics used to evaluate CNN performance.

Figure 67: Training progression for network 6. 92,78 % validation accuracy. Learning rate
1 × 10−5 . Total of 10 epochs. Elapsed time: 1525 min and 59 sec (∼ 25 hours) on single
GPU.

86

5.6. NETWORK 6-ALEXNET

Not C
orro

sion

Paint fl
aking

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted Class

Not Corrosion

Paint flaking

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 C

la
s
s 1

4

1

6

1

2

18

12

4

3

15

203

201

218

241

Figure 68: Confusion matrix for test of network 6 on 930 images. The blank cell in the
confusion matrix means that there are zero wrongly classified images for the specific class.
In this case, no images of paint flaking were wrongly classified as red corrosion, rebar.

Table 17: Results from testing of network 6 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Paint flaking 0.9805 0.9571 0.9860 0.9687

Red corrosion,
steel construction

0.9414 0.9163 0.9602 0.9287

Red corrosion,
rebar

0.9160 0.8790 0.9462 0.8971

Not corrosion 0.8788 0.9713 0.9634 0.9227
Average, all classes 0.9292 0.9310 0.9640 0.9301

87

5.6. NETWORK 6-ALEXNET

5.6.2 Discussion of network 6

First, a learning rate of 5× 10−5 was set in the training options for the network, in order to
see if a slightly higher learning rate than the one used for networks 2-5 could be beneficial.
It was observed a much more unstable progress in accuracy and loss for both the training
and validation set, so the learning rate was set back to 1×10−5, giving a smoother progress
and a stable increase towards higher accuracy, as well as stable decrease towards lower
loss. This is illustrated in figure 67.

Network 6 was the first CNN in this thesis to be trained with four classes, as the class paint
flaking was not included in networks 2-5. As shown in the first row of table 17, the results
for classification of paint flaking are promising. For example, out of 205 test images in this
class only four images of paint flaking were wrongly classified as either not corrosion or
red corrosion, steel construction, which can be observed in the confusion matrix illustrated
in figure 68. The high scores on the metrics for classification of paint flaking in table 17 are
worth a few comments. Since the majority of the images in this class are generated through
image cropping and rotation, some images are relatively similar to each other, however not
identical. The crops were generated in such a way that areas of focus from the original
images were changed for each new crop. It might be that the crops still became too similar
for the CNN or that there were too few images, leading to overfitting. However, there are
no indications of overfitting in the training progress illustrated in figure 67, which would
have given a sudden increase in the validation loss. In addition, the validation accuracy
does not exceed the average test accuracy, being 92.78 % and 96.40 % respectively. The
test accuracy for paint flaking was 98.60 %, as shown in table 17. If the validation accuracy
was higher than the average test accuracy, this would also have indicated overfitting. Paint
flaking has a very characteristic appearance, and is quite unlike the images in the other
classes, so this is expected to be the main reason for the high performance scores. Wrongly
classified images of paint flaking are further discussed in the summary and comparison of
networks in section 5.10.

As illustrated in the confusion matrix for network 6 in figure 68, there are a total of 6
(1+4+1) FPs for not corrosion. This means that 6 images containing damages were not
detected by network 6.

88

5.7. NETWORK 7-GOOGLENET

5.7 Network 7-GoogLeNet

5.7.1 Training, validation and test of network 7

The training progress for network 7 is illustrated in figure 69. The confusion matrix after
testing of network 7 is shown in figure 70, and table 18 shows the result for the different
metrics used to evaluate CNN performance.

Figure 69: Training progression for network 7. 91,70 % validation accuracy. Learning rate
1 × 10−5 . Total of 10 epochs. Elapsed time: 1543 min and 32 sec (∼ 26 hours) on single
GPU.

89

5.7. NETWORK 7-GOOGLENET

Not C
orro

sion

Paint fl
aking

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted Class

Not Corrosion

Paint flaking

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 C

la
s
s 4

6

7

3

1

4

13

5

3

20

219

198

212

235

Figure 70: Confusion matrix for test of network 7 on 930 images. The blank cells in
the confusion matrix means that there are zero wrongly classified images for the specific
classes. In this case, no images of paint flaking were wrongly classified as red corrosion,
rebar, and no images of red corrosion on rebar were wrongly classified as paint flaking.

5.7.2 Discussion of network 7

It is observed that the average performance scores are higher for network 7 than for network
6 when comparing table 17 and 18. However, the number of FPs for not corrosion illus-
trated in the confusion matrix in figure 70, show that network 7 miss out on more damages.
In fact, a total of 17 (4+6+7) images of damages are not detected by network 7, compared
to only 6 for network 6.

Table 18: Results from testing of network 7 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Paint flaking 0.9659 0.9802 0.9882 0.9730

Red corrosion,
steel construction

0.9180 0.8935 0.9473 0.9056

Red corrosion,
rebar

0.8908 0.9258 0.9538 0.9079

Not corrosion 0.9481 0.9280 0.9688 0.9379
Average, all classes 0.9307 0.9319 0.9645 0.9313

90

5.8. NETWORK 8-RESNET-50

5.8 Network 8-ResNet-50

5.8.1 Training, validation and test of network 8

The training progress for network 8 is illustrated in figure 71. The confusion matrix after
testing of network 8 is shown in figure 72, and table 19 shows the result for the different
metrics used to evaluate CNN performance.

Figure 71: Training progression for network 8. 94,18 % validation accuracy. Learning rate
1 × 10−5 . Total of 10 epochs. Elapsed time: 2343 min and 56 sec (∼ 39 hours) on single
CPU.

91

5.8. NETWORK 8-RESNET-50

Not C
orro

sion

Paint fl
aking

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted Class

Not Corrosion

Paint flaking

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 C

la
s
s 7

15

7

3

1

1

4

10

1

3

12

223

195

210

238

Figure 72: Confusion matrix for test of network 8 on 930 images. The blank cell in the
confusion matrix means that there are zero wrongly classified images for the specific class.
In this case, no images of paint flaking were wrongly classified as red corrosion, rebar.

5.8.2 Discussion of network 8

Comparison of table 18 and 19 show that the average performance scores are higher for
network 8 than for network 7. Thus, network 8 has the highest average performance scores
of all trained CNNs so far. Concurrently, the confusion matrix in figure 72 shows that
network 8 has a total of 29 (7+15+7) FPs for not corrosion. Network 8 has the highest
average performance scores so far, but out of the CNNs trained with four classes, it is also
the network which misses out on most damages.

Table 19: Results from testing of network 8 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Paint flaking 0.9512 0.9750 0.9839 0.9630

Red corrosion,
steel construction

0.9297 0.9370 0.9634 0.9333

Red corrosion,
rebar

0.8824 0.9375 0.9548 0.9091

Not corrosion 0.9654 0.8849 0.9602 0.9234
Average, all classes 0.9322 0.9336 0.9656 0.9329

92

5.9. NETWORK 9-VGG-16

5.9 Network 9-VGG-16

5.9.1 Training, validation and test of network 9

The training progress for network 9 is illustrated in figure 73. The confusion matrix after
testing of network 9 is shown in figure 74, and table 20 shows the result for the different
metrics used to evaluate CNN performance.

Figure 73: Training progression for network 9. 94,61 % validation accuracy. Learning rate
1 × 10−5 . Total of 10 epochs. Elapsed time: 3245 min and 10 sec (∼ 54 hours) on single
CPU.

93

5.9. NETWORK 9-VGG-16

Not C
orro

sion

Paint fl
aking

Red C
orro

sion, R
ebar

Red C
orro

sion, S
teel C

onstru
ctio

n

Predicted Class

Not Corrosion

Paint flaking

Red Corrosion, Rebar

Red Corrosion, Steel Construction

T
ru

e
 C

la
s
s 6

2

2

3

1

9

1

5

3

2

8

216

196

228

248

Figure 74: Confusion matrix for test of network 9 on 930 images. The blank cell in the
confusion matrix means that there are zero wrongly classified images for the specific class.
In this case, no images of red corrosion on rebar were wrongly classified as paint flaking.

5.9.2 Discussion of network 9

Table 20 shows the performance metrics after testing of network 9. When comparing with
table 19 for network 8, it is observed that all average performance scores are higher for
network 9. Thus, network 9 using VGG-16 is the CNN which obtains the highest average
performance scores out of all networks trained in this thesis. The confusion matrix for
network 9 in figure 74 illustrates that there are a total of 10 (6+2+2) FPs for not corrosion.

Table 20: Results from testing of network 9 presented with the metrics recall, precision,
accuracy and F1 score. The average values show the overall performance of the CNN for
all classes.

Class/label Recall Precision Accuracy F1 score
Paint flaking 0.9561 0.9800 0.9860 0.9679

Red corrosion,
steel construction

0.9688 0.9502 0.9774 0.9594

Red corrosion,
rebar

0.9580 0.9383 0.9731 0.9480

Not corrosion 0.9351 0.9558 0.9731 0.9453
Average, all classes 0.9545 0.9561 0.9774 0.9553

94

5.10. SUMMARY AND COMPARISON OF RESULTS

5.10 Summary and comparison of results

In this section, a summary of the results from CNN training and testing presented in this
chapter is given. The test results for the different networks are compared using graphs and
tables in order to give a more clear overview of strength and weaknesses for each CNN.
This section includes an extensive discussion of the obtained results, and relevant elements
for further work are suggested based on the results and discussion of these. Further work
is summarized in chapter 7, together with the conclusion of this thesis. Networks 2-5 and
networks 6-9 are compared in order to observe how well the CNNs perform depending on
the number of classes, here three or four classes. Examples of images that were wrongly
classified by several or all of the networks 2-9 are shown and discussed in this section.

A comparison of average values for recall, precision, accuracy and F1 scores for networks
2-9 is given in table 21. In an actual analysis system for damages on bridge constructions, it
is important that corrosion damages and paint flaking is detected so that necessary measures
of maintenance can be performed. Therefore, a comparison of how well networks 2-9
recognize a damage is given in table 22.

Table 21: Comparison of results from the different networks given as a comparison of
average values for recall, precision, accuracy and F1 score for networks 2-9.

Network Average recall Average precision Average accuracy Average F1 score
Network 2 0.9268 0.9277 0.9513 0.9272
Network 3 0.9369 0.9370 0.9577 0.9369
Network 4 0.9405 0.9425 0.9605 0.9415
Network 5 0.9438 0.9448 0.9623 0.9443
Network 6 0.9292 0.9310 0.9640 0.9301
Network 7 0.9307 0.9319 0.9645 0.9313
Network 8 0.9322 0.9336 0.9656 0.9329
Network 9 0.9545 0.9561 0.9774 0.9553

The example on the next page, using the confusion matrix illustrated in figure 75, will
show in detail what is meant by damage detection accuracy, and how it is calculated for all
networks 2-9.

95

5.10. SUMMARY AND COMPARISON OF RESULTS

Figure 75: Illustration of a confusion matrix for use in calculation example. This is an
actual confusion matrix for test of network 6 on 930 images. The elements inside the red
frame are the false positives (FPs) of not corrosion.

Example: The total number of images containing a damage is the sum of all test images
in the classes paint flaking, red corrosion, steel construction and red corrosion, rebar;
205 + 256 + 238 = 699. There are 6 FPs for not corrosion, as illustrated in the red frame
in figure 75. The damage detection accuracy is calculated as: 699−6

699
∗ 100 ≈ 99.14%.

Table 22: Comparison of how well networks 2-9 detect images that contain a damage
(corrosion and paint flaking). The proportion of damages not detected are the number of
FPs for not corrosion divided on the number of test images containing damages. Damage
detection accuracy is the percentage of all test images containing a damage that actually
were detected.

Network Proportion of damages
not detected

Damage detection
accuracy [%]

Network 2 9/494 98.18
Network 3 11/494 97.77
Network 4 21/494 95.75
Network 5 5/494 98.99
Network 6 6/699 99.14
Network 7 17/699 97.57
Network 8 29/699 95.85
Network 9 10/699 98.57

96

5.10. SUMMARY AND COMPARISON OF RESULTS

5.10.1 Networks 2-5

A comparison of networks 2-5 is given in figure 76. Networks 2-5 were trained and tested
with the three classes red corrosion, steel construction, red corrosion, rebar and not cor-
rosion. Figure 76 illustrates average values from results of image classification, using the
metrics recall, precision, accuracy and F1 score. It is observed that VGG-16 has the over-
all highest performance scores, while AlexNet has the lowest scores of networks 2-5 after
testing. A comparison of damage detection accuracy for networks 2-5 is shown in figure
77, from results in table 22.

Average recall for networks 2-5

Netw
ork 2-A

lexNet

Netw
ork 3-G

oogLeNet

Netw
ork 4-R

esNet-5
0

Netw
ork 5-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

A
v
e

ra
g

e
 r

e
c
a

ll

(a) Average recall

Average precision for networks 2-5

Netw
ork 2-A

lexNet

Netw
ork 3-G

oogLeNet

Netw
ork 4-R

esNet-5
0

Netw
ork 5-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

A
v
e

ra
g

e
 p

re
c
is

io
n

(b) Average precision

Average accuracy for networks 2-5

Netw
ork 2-A

lexNet

Netw
ork 3-G

oogLeNet

Netw
ork 4-R

esNet-5
0

Netw
ork 5-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

A
v
e

ra
g

e
 a

c
c
u

ra
c
y

(c) Average accuracy

Average F1 Score for networks 2-5

Netw
ork 2-A

lexNet

Netw
ork 3-G

oogLeNet

Netw
ork 4-R

esNet-5
0

Netw
ork 5-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

A
v
e

ra
g

e
 F

1
 S

c
o

re

(d) Average F1 score

Figure 76: Comparison of average recall, precision, accuracy and F1 score for networks 2-5.

97

5.10. SUMMARY AND COMPARISON OF RESULTS

Damage detection accuracy for networks 2-5

Netw
ork 2-A

lexNet

Netw
ork 3-G

oogLeNet

Netw
ork 4-R

esNet-5
0

Netw
ork 5-V

GG-16

Networks

95

96

97

98

99

100

D
a
m

a
g
e
 d

e
te

c
ti
o
n
 a

c
c
u
ra

c
y
 [
%

]

Figure 77: A comparison of damage detection accuracy for networks 2-5.

Figure 77 illustrates that network 5 has the highest damage detection accuracy of all net-
works 2-5. This means that network 5 has fewer FPs for not corrosion compared with
network 2, 3, and 4, thus detects images containing a damage better. A FP for not cor-
rosion means that an image containing a damage is wrongly classified as not corrosion,
which results in an actual damage not being detected. Therefore, a high damage detection
accuracy for a CNN is important so that damages on a bridge construction are detected and
can be repaired. The damage detection accuracy does not say how well the network sep-
arate between different types of damages, only how well any type of damage is detected.
However, as illustrated in figure 76, network 5 using the VGG-16 architecture also has the
highest overall performance scores from testing.

98

5.10. SUMMARY AND COMPARISON OF RESULTS

5.10.2 Networks 6-9

A comparison of networks 6-9 is given in figure 78. Networks 6-9 were trained and tested
with the four classes red corrosion, steel construction, red corrosion, rebar, paint flaking
and not corrosion. Figure 78 illustrates average values from results of image classification,
using the metrics recall, precision, accuracy and F1 score. As for networks 2-5, VGG-16
has the overall best performance scores of networks 6-9. A comparison of damage detection
accuracy for networks 6-9 is shown in figure 79, from results in table 22.

Average recall for networks 6-9

Netw
ork 6-A

lexNet

Netw
ork 7-G

oogLeNet

Netw
ork 8-R

esNet-5
0

Netw
ork 9-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

A
v
e

ra
g

e
 r

e
c
a

ll

(a) Average recall

Average precision for networks 6-9

Netw
ork 6-A

lexNet

Netw
ork 7-G

oogLeNet

Netw
ork 8-R

esNet-5
0

Netw
ork 9-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

A
v
e

ra
g

e
 p

re
c
is

io
n

(b) Average precision

Average accuracy for networks 6-9

Netw
ork 6-A

lexNet

Netw
ork 7-G

oogLeNet

Netw
ork 8-R

esNet-5
0

Netw
ork 9-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
v
e

ra
g

e
 a

c
c
u

ra
c
y

(c) Average accuracy

Average F1 score for networks 6-9

Netw
ork 6-A

lexNet

Netw
ork 7-G

oogLeNet

Netw
ork 8-R

esNet-5
0

Netw
ork 9-V

GG-16

Network

0.9

0.91

0.92

0.93

0.94

0.95

0.96

A
v
e

ra
g

e
 F

1
 s

c
o

re

(d) Average F1 score

Figure 78: Comparison of average recall, precision, accuracy and F1 score for networks 6-9.

99

5.10. SUMMARY AND COMPARISON OF RESULTS

Damage detection accuracy for networks 6-9

Netw
ork 6-A

lexNet

Netw
ork 7-G

oogLeNet

Netw
ork 8-R

esNet-5
0

Netw
ork 9-V

GG-16

Networks

95

96

97

98

99

100

D
a
m

a
g
e
 d

e
te

c
ti
o
n
 a

c
c
u
ra

c
y
 [
%

]

Figure 79: A comparison of damage detection accuracy for networks 6-9.

Figure 79 illustrates that network 6 has the highest damage detection accuracy of all net-
works 2-5. This means that network 6 has fewer FPs for not corrosion compared with
network 7, 8, and 9, thus detects images containing a damage better. As explained previ-
ously, a FP for not corrosion means that an image containing a damage is wrongly classified
as not corrosion, which results in an actual damage not being detected. Therefore, a high
damage detection accuracy for a CNN is important so that damages on a bridge construc-
tion are detected and can be repaired. The damage detection accuracy does not say how
well the network separate between different types of damages, only how well any type of
damage is detected. For networks 6-9, network 6 has highest damage detection accuracy,
but the lowest average performance scores, as illustrated in figure 78. Network 9 has the
highest average performance scores of networks 6-9, and the second highest damage detec-
tion accuracy. Thus, the overall best results from testing was obtained with network 9 and
the VGG-16 architecture.

100

5.10. SUMMARY AND COMPARISON OF RESULTS

5.10.3 Networks 2-9

A comparison of CNN performance for all networks 2-9 is given in figure 80 by average
values for the metrics recall, precision, accuracy and F1 score. This comparison illustrates
how the average test results change depending on the number of classes for each of the
CNNs AlexNet, GoogLeNet, ResNet-50 and VGG-16. A comparison of damage detection
accuracy for networks 2-9 is shown in figure 81, from results in table 22.

Average recall for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

A
v
e

ra
g

e
 r

e
c
a

ll

3 classes

4 classes

(a) Average recall

Average precision for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

A
v
e

ra
g

e
 p

re
c
is

io
n

3 classes

4 classes

(b) Average precision

Average accuracy for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
v
e

ra
g

e
 a

c
c
u

ra
c
y

3 classes

4 classes

(c) Average accuracy

Average F1 score for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

A
v
e

ra
g

e
 F

1
 s

c
o

re

3 classes

4 classes

(d) Average F1 score

Figure 80: Comparison of average recall, precision, accuracy and F1 score for networks 2-9. The
illustrations give an overview of CNN performance for 3 versus 4 classes.

101

5.10. SUMMARY AND COMPARISON OF RESULTS

Damage detection accuracy for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

D
a
m

a
g
e
 d

e
te

c
ti
o
n
 a

c
c
u
ra

c
y
 [
%

]
3 classes

4 classes

Figure 81: A comparison of damage detection accuracy for all networks 2-9.

It is of importance to investigate how the CNNs perform depending on the number of
classes used in training. From figures 80a, 80b and 80d it is observed that the CNNs trained
using GoogLeNet and ResNet-50 has lower recall, precision and F1 score when trained
with four classes. The accuracy for both GoogLeNet and ResNet-50 is however higher
than in the case with three classes, as shown in figure 80c. For the CNNs AlexNet and
VGG-16, all performance metrics are higher when training and testing with four classes.

Figure 81 illustrates a comparison of damage detection accuracy for all networks 2-9, and
shows how the accuracy changes depending on the number of classes used in training. As
for the other performance metrics illustrated in figure 80, it is difficult to say if an additional
class, thus more images, in general results in higher damage detection accuracy since the
networks trained using AlexNet and ResNet-50 obtains higher accuracy with four classes,
while GoogLeNet and VGG-16 performs better with three classes.

102

5.10. SUMMARY AND COMPARISON OF RESULTS

(a) Not corrosion classified as Red cor-
rosion, steel construction by all net-
works 2-9.

(b) Red corrosion, rebar classified as
Red corrosion, steel construction by
networks 2-9.

(c) Red corrosion, steel construction
classified as Red corrosion, rebar by all
networks 2-9.

(d) Red corrosion, steel construction
classified as Red corrosion, rebar by
networks 2,3,5,6,7 and 9.

(e) Red corrosion, steel construction
classified as Not corrosion by all net-
works, except network 6 (paint flaking).

(f) Not corrosion classified as Red cor-
rosion, rebar by networks 3,4,5, 8 and
9.

Figure 82: Examples of images that were wrongly classified by several, or all, of the networks 2-9.

103

5.10. SUMMARY AND COMPARISON OF RESULTS

It is observed that the images in figures 82a, 82b and 82c were wrongly classified by all
networks 2-9. The image in figure 82a is labeled not corrosion, and contains rocks and
plants with a brown colour. This image was chosen during data collection because it was
expected to become a challenge for a CNN. The brown plants on the lighter background
of rocks have both the colour and shape similar to a corrosion damage, and it is therefore
not too surprising that all CNNs classify this image as red corrosion, steel construction.
One can argue that images of plants are not relevant during bridge inspections, an thus
probably wont occur in an actual analysis system. However, a wrong classification such as
this should not be ignored. Therefore, collection of a even larger variety of images in the
class not corrosion to be used in CNN training is considered a relevant element for further
work.

The image in figure 82b is labeled red corrosion, rebar, but all networks classify this image
as red corrosion, steel construction. One reason for this is expected to be that the pieces of
corroded rebar are very close to each other, and a solution of corrosion products and water
has begun to run down on the concrete, increasing the area that looks corroded. Thus, the
corroded rebar looks quite like a larger area of corrosion on steel construction. As in all the
other classes of images, red corrosion, rebar contains a variety of images with corroded
rebar. A second reason for the wrong classification might be that there were not enough
images of different types of corroded rebar. Thus, collecting even more images to be used in
CNN training is expected to be a relevant measure for increasing the level of generalization
in this class. In general, collection of more images in all classes is considered to be one of
the best steps in future work for increasing performance of CNNs.

Figure 82c illustrates an image of red corrosion on steel construction that was wrongly
classified as red corrosion, rebar by all networks 2-9. The image contains several elements
of vertical and horizontal “lines” that could be interpreted as rebar. Figure 83 shows nine
different activations from the third last layer in VGG-16 called fully-connected layer 8. It
is observed that the original image is filtered in such a way that most edges become very
visible. The light edges result in longer lines which looks quite similar to the characteristic
lines created by corrosion on rebar in concrete.

The image in figure 82f was wrongly classified as red corrosion, rebar, but differs from
the images in figures 82c and 82d, that were also classified as red corrosion on rebar,
because it does not contain corrosion at all. Figure 84 illustrates nine activations from
fully-connected layer 8 in VGG-16, and these images give quite a reasonable explanation
for why the image of a glove and a longer crack in concrete is classified as red corrosion,
rebar. Both the crack and the glove in figure 82f is filtered by the CNN in such a way
that the characteristics of corrosion on rebar in concrete is observed. An argument for
this not being a challenge in an actual inspection system for bridge constructions, is that a
drone will not take images from the same view as in figure 82f. Thus, a hand or a glove

104

5.10. SUMMARY AND COMPARISON OF RESULTS

is not expected to be observed on images of bridge constructions. However, images of
cracks are definitely expected on images from inspections, and can be a challenge since the
activations in figure 84 clearly makes it look like corrosion on rebar. In this thesis, damages
like cracks in concrete or steel have not been assigned to an own class, but show up in the
class not corrosion. One way to deal with the challenge of cracks being wrongly classified
as red corrosion, rebar is to collect images of cracks and create an own class to be used in
training of a CNN. A technique like creating regions of interest (ROI) in the images is then
expected to be preferable, so that cracks in an image are found and specified instead of the
entire image being labeled as, for example, crack in concrete. In general, utilizing ROIs
could be an approach for improving the results in this thesis, since the specific areas of an
image containing corrosion damages or paint flaking then are marked and labeled, instead
of the entire image.

Figure 83: Examples of nine activations from the original image in figure 82c after fully-
connected layer 8 in VGG16. This is the third last layer in the CNN. The characteristic
vertical lines often seen for red corrosion on rebar results in this image of red corrosion on
steel construction being classified as red corrosion, rebar.

105

5.10. SUMMARY AND COMPARISON OF RESULTS

Figure 84: Examples of nine activations from the original image in figure 82f after fully-
connected layer 8 in VGG16. This is the third last layer in the CNN. The characteristic
vertical lines often seen for red corrosion on rebar results in this image of a glove and a
long crack in concrete being classified as red corrosion, rebar.

Table 23: Comparison of scores from the Softmax activation function for all classes related
to classification of the image of red corrosion on steel construction in figure 82e. Networks
2-5 were not trained with images of paint flaking. Therefore, "-" is placed in the columns
for these networks.

Network Not corrosion Red corrosion
steel construction

Red corrosion
rebar Paint flaking

Network 2 0.70239055 0.22553548 0.072073989 -
Network 3 0.74095970 0.040013120 0.21902709 -
Network 4 0.97803819 0.014278459 0.0076833963 -
Network 5 0.99992251 4.7976435× 10−5 2.9519224× 10−5 -
Network 6 0.088003285 0.13495609 0.015899600 0.76114100

Network 7 0.47708878 0.11149754 0.31681144 0.094602264

Network 8 0.91197115 0.0065946043 0.016795645 0.064638525

Network 9 0.99893183 1.6765011× 10−5 1.4550410× 10−5 0.0010368616

106

5.10. SUMMARY AND COMPARISON OF RESULTS

The image in figure 82e is perhaps the most surprising of all the wrongly classified images.
For the human eye, it is clear that the steel construction has corrosion damages, but all
networks, except for network 6, classifies the image as not corrosion. Network 6 classifies
the image as paint flaking. Table 23 shows scores from the Softmax activation function
for each class related to the image in figure 82e. The Softmax activation function returns
a score between 0 and 1 for each class, which is to be interpreted as a probability for the
image belonging to a specific class. The sum of all scores belonging to an image is equal
to 1. The Softmax activation function was introduced previously in section 2.3.3.

As the scores in table 23 show, the image of red corrosion, steel construction in figure
82e is classified as not corrosion with over 70% certainty by most networks. Networks
5 and 9, both VGG-16, have over 99% certainty in the classification of the image as not
corrosion even though the image does contain large areas of corrosion. It is of importance
to point out that even though this is somewhat of a critical wrong classification, the trained
CNNs in this thesis have high performance scores in general, so this is not a common
fault for the networks. However, wrong classifications such as this should not appear in
an actual analysis system for bridge constructions. Therefore, the classification requires
further analysis; The reason for the image in figure 82e being classified as not corrosion is
expected to have connections to the appearance of the corrosion damages. As introduced
previously in section 2.1.2, there are different types of corrosion damages, and appearances
can vary a lot. The corrosion damages on the beams in figure 82e are quite spread across
the surfaces, and there are areas in between that seem undamaged and therefore have a
lighter colour than the corroded areas. As mentioned in some of the other cases of wrong
classifications, a solution to this challenge is expected to be training of CNNs with even
more images than in this thesis, and with an even larger variety in appearance.

107

5.10. SUMMARY AND COMPARISON OF RESULTS

(a) Paint flaking classified as Red corro-
sion, steel construction by all networks
6-9.

(b) Paint flaking classified as Not corro-
sion by networks 7, 8 and 9. Correctly
classified as Paint flaking by network 6.

(c) Paint flaking classified as Not corro-
sion by networks 7, 8 and 9. The image
was correctly classified as Paint flaking
by network 6.

(d) Paint flaking classified as Red cor-
rosion, steel construction by networks
6, 7 and 8, and as Red corrosion, rebar
by network 9.

Figure 85: Examples of images containing paint flaking that were wrongly classified by several, or
all, of the networks 6-9.

Figure 85 shows four examples of images containing paint flaking that were wrongly clas-
sified by several, or all, of the networks 6-9. Figure 85a was wrongly classified as red
corrosion, steel construction by all networks 6-9. This image contains a large area of a
reddish colour, being the paint on an element of steel construction. It is likely that this
colour, which is similar to colours seen on corrosion, results in the networks classifying the
image as red corrosion, steel construction. However, the image in figure 85b, which has a

108

5.10. SUMMARY AND COMPARISON OF RESULTS

very similar paint colour to the image in figure 85a, is wrongly classified as not corrosion
by network 7, 8 and 9. This observation weakens the theory of the reddish colour being the
main reason for the wrong classification. The image in figure 85c is also classified as not
corrosion by networks 7-9, and correctly classified as paint flaking by network 6.

Figure 86: Examples of nine activations from the original image in figure 85d after fully-
connected layer 8 in VGG16. This is the third last layer in the CNN. The characteristic
vertical lines often seen for red corrosion on rebar are being classified as red corrosion,
rebar.

The image in figure 85d was wrongly classified as red corrosion, steel construction by
networks 6-8, and as red corrosion, rebar by network 9. If the image in figure 85d is
studied a bit closer, one can see that it actually contains small areas of initial corrosion
damages on the left from the image centre. The image was assigned to the class paint
flaking because paint flaking is the most prominent damage in the image. The area of
corrosion was considered so small that it was not expected to become a challenge. However,
the classification result indicates that having two different damages in the same image can
be a challenge for a CNN. Network 9 classifies the image in figure 85d as red corrosion,
rebar, which may be explained by the transition between steel and concrete that creates
a long line on the image diagonal, similar to a crack or rebar. To study the reason for
this wrong classification, an image of different activations from fully-connected layer 8 in
VGG-16 is given in figure 86. It is difficult to tell from these activations why networks
6-8 classify the image in figure 85d as red corrosion, steel construction. However, the
diagonal lines on all activations in figure 86 give a reasonable explanation for the wrong
classification red corrosion, rebar by network 9.

As stated previously in the discussion of results in this section, utilization of ROIs is con-
sidered relevant in further work for improvement of test results, through labeling of the
specific areas of an image containing paint flaking, and not the entire image.

109

Chapter 6

Discussion

This chapter will discuss the main elements of the master’s thesis such as data collection
and categorization, the choice of software and CNNs, choices regarding setup of CNN
training and testing, results and further work. The majority of discussion related to obtained
results was given in section 5.10, so this section includes a more general discussion of
training, testing and results. Relevant elements for further work were also given in section
5.10, and are suggested here as well. Further work is summarized in chapter 7, together
with the conclusion of this master’s thesis.

Data collection and choices regarding images

The images received from the Norwegian Public Roads Administration were manually
evaluated and categorized, which means that the choice of images for CNN training and
testing was somehow subjective. However, it was put great effort in ensuring a variety of
images in all classes to reflect the many types of damage appearances that exist within each
category. In addition, images with very poor image quality or no relevant information were
manually filtered and put aside during data collection. Even though a critical evaluation
and choice of images was performed, it was also considered important to choose some im-
ages that were difficult to classify even for a human. In that way, the images used to train
and test the CNNs became both realistic and challenging, similar to damage classification
during real inspections of bridge constructions.

Regarding image quality, the received data set contained images from bridge inspections
taken with several different camera types, depending on the year of inspection and by whom
it was performed. Thus, the training, validation and test sets used for the CNNs contain
images with varying resolution. As mentioned, images with very poor quality were not
chosen. In addition, light conditions on images differ to a certain degree, meaning that
some images are taken in daylight while others are taken at evening or night. The majority

111

of images used in this thesis were taken in daylight. The images used in this thesis also
differ in terms of how close to a bridge construction they were taken. All images in the
received data set were taken manually by bridge inspectors, not by drones. In a potential
application for inspection, using a drone with a camera to provide images to be classified
by a CNN, it is considered preferable to set requirements related to how close to the bridge
construction an image should be taken. If an image is taken from a relatively far distance,
relevant information regarding a damage may not be captured. For example, corrosion
might not be detected if a corrosion damage makes up a too small amount of the total area
in an image. On the other hand, an image taken too close to the construction may not either
be preferable.

The types of images in the category not corrosion vary a lot, from images of concrete and
steel with and without cracks to images of multi coloured graffiti, leaves and trees. The
reason that so many different categories of images were assigned to a single class was to
“challenge” the CNNs. During the manual categorization of images, autumn leaves and
reddish graffiti were expected to be difficult for a CNN to classify because it sometimes
can remind of corrosion in appearance. It was considered important to not only choose
“obvious” images of not corrosion, since this could have questioned the CNNs’ ability of
generalizing not corrosion and separating it from an actual corrosion and coating damage.
As for example the images in figure 82a and 82f show, a brown plant and a glove combined
with a crack in concrete were apparently not easy to classify as not corrosion for the CNNs
in these two specific cases. However, as mentioned earlier, one can question how likely
it is that images of plants will occur in an actual analysis system for damages on bridge
constructions, but at the same time this is not a classification fault that should be ignored.
Collecting more images of not corrosion containing elements very similar to corrosion, and
utilization of ROIs or segmentation, are considered relevant measures to avoid classification
faults like those illustrated in figures 82a and 82f. It would have been preferable to create
an own class for cracks in concrete, since this also is a surface damage. Unfortunately,
not enough images of this category were found to realize an additional class. However,
through the use of data augmentation techniques on the images of cracks collected during
this thesis, one could perhaps be able to generate enough images for creating such a class.

Regarding the class white corrosion that was not included in this thesis due to few collected
images; this class is considered important for an inspection analysis system because it
reveals damages on zinc coating, damages that have evolved from for example paint flaking,
but not yet reached a point of red corrosion on steel. In further work, the collection of
more such images should therefore be investigated in order to create an own class in CNN
training for this damage category. The Norwegian Public Roads Administration should be
consulted for perhaps finding even more relevant classes, since they are the potential end
user of a damage analysis system such as the one evaluated in this master’s thesis using
CNNs.

112

Choice of software and CNNs

MATLAB was the utilized software for deep learning in this thesis, and one reason for this
choice of software is that MATLAB provides very practical and understandable user inter-
faces on software tools for tasks like image pre-processing, and neural network training and
testing. Also, because MATLAB is the software in which the student has most program-
ming experience, this became the reasonable choice of programming language. Python
is perhaps the most popular programming language for deep learning, but there were not
experienced any limitations with the use of MATLAB in this thesis.

The CNNs that were compared in this thesis were chosen because each of these network
architectures are some of the most well known CNNs, and all have contributed to the state
of the art in image classification throughout the years. It would definitely been interesting
to study even more CNNs in this thesis, but at the same time the chosen four are some of the
best CNN architectures throughout the years. In addition, if more tuning is performed, these
could obtain even better performance scores than shown from results in this thesis. Also,
more training images could help. Regarding future work, it is considered relevant to both
test other CNN architectures than the four used here, and to create a network architecture
from scratch, using results obtained here to modify layers in a preferable manner.

Training and testing

The training options were chosen to be equal for all networks. This means that the same
learning algorithm was used, here SGDM, and options such as learning rate, mini-batch
size and number of epochs were the same for all networks 2-9. This was done in order to
ensure a best possible basis for comparison of the CNNs. Because the same training options
were used for all networks, the optimal performance of each network is not expected to
have been achieved. It means that CNNs like AlexNet and GoogLeNet, which have lowest
performance scores in this thesis, not necessarily have the lowest performance scores in
general. However, finding the optimal training options for each CNN was not the aim of
this thesis. This thesis presents a comparison of different CNN architectures in order to say
something about how well CNNs can classify corrosion and coating damages on bridge
constructions, and the presented results are promising. Testing of other training algorithms
and parameters could be relevant for further work, if one is interested to find the optimal
training options for a CNN.

The partitioning of training, validation and test sets were chosen as 80%, 10% and 10%
of all categorized images, respectively. In MATLAB, the images were then automatically
divided into each set by assigning the first 80 % of the images in all folders to the training
set, and then dividing the remaining 20% equally into the two sets for validation and testing.
It could be that a different partitioning of training, validation and test set would have been
preferable, and given different results than those obtained in this thesis. However, more

113

training images are in general expected to be of greater significance for the results than the
partitioning of images itself.

The available hardware for training of CNNs in this thesis was shown in table 11, and
specifies exactly what hardware was used for training of each network 1-9. The reason
most networks were trained on a single CPU is that this was the only available hardware at
the time. Network 6 and 7 were trained using a computer with GPU, while the rest of the
networks were trained on a single CPU.

Results

The obtained results in this thesis show that CNNs have a great potential in analyzing
corrosion and coating damages on bridge constructions. For evaluation of classification
results from the CNNs in this thesis, the performance metrics recall, precision, accuracy
and F1 score were chosen. These are very common performance metrics for evaluation of
both binary and multi-class classification problems in machine learning. The obtained test
results for all networks were compared and discussed in section 5.10. Network 9 (VGG-16)
obtained the highest average performance scores, while network 6 (AlexNet) obtained the
highest damage detection accuracy of all CNNs trained and tested in this thesis. Even if a
CNN has higher average scores on metrics, a different CNN could do better on classification
of a certain class. For example, network 7 (GoogLeNet) has higher performance scores on
classification of paint flaking compared with network 8 (ResNet-50), even though network
8 has higher average performance scores for all metrics.

Each of the networks 2-9 were trained once on the categorized data sets, thus the perfor-
mance scores for each network show results based on a single CNN training. In general,
it would be preferable to perform more than one training per network in order to calculate
an average and standard deviation, thus being able to say with higher confidence that the
results for each network are representative for the CNNs AlexNet, GoogLeNet, ResNet-50
and VGG-16. However, since training CNNs is quite time consuming and the time for im-
plementation of the master’s thesis is limited, the chosen setup of training and testing was
considered to give a sufficient comparison of CNNs to reach the aim of the thesis.

114

Chapter 7

Conclusion and further work

This master’s thesis has presented a comparison of performance for the convolutional neu-
ral networks AlexNet, GoogLeNet, ResNet-50 and VGG-16 on image classification of cor-
rosion and coating damages from bridge constructions. A total of 9300 images were col-
lected through manual categorization and augmentation techniques, and divided into four
classes; paint flaking, red corrosion on rebar, red corrosion on steel construction and not
corrosion, which were used to train and test the convolutional neural networks. The aim
of the thesis was to compare performance for convolutional neural networks in order to
evaluate the potential in using deep learning for automatic analysis of damages on bridge
constructions found during inspections. From the presented results, it is concluded that
convolutional neural networks are well suited for use in an automatic analysis system for
corrosion and coating damages. VGG-16 was the network architecture with highest perfor-
mance scores on recall, precision, accuracy and F1 score, being 95.45%, 95.61%, 97.74%
and 95.53%, respectively. Training and testing of AlexNet with four classes gave the high-
est score on general damage detection with an accuracy of 99.14%. This thesis show that
convolutional neural networks can be used in bridge inspection to both detect and analyze
corrosion and coating damages. In combination with a drone and localization system us-
ing a 3D model of a bridge, an automatic analysis system based on a convolutional neural
network can provide information automatically regarding where maintenance and repairs
are needed. Regarding further work, the following elements are considered relevant based
on discussion of results: (1) Collection of more images in the four classes used in this the-
sis, and evaluation of the need for additional classes such as white corrosion and cracks in
concrete. (2) Utilization of regions of interest for labeling and/or segmentation of images
to improve the results presented in this thesis. More images may not be necessary if the
use of such techniques proves to be successful. (3) Testing of other training algorithms and
parameters, and optionally modification of layers in CNN architectures.

115

Bibliography

[1] SafeControl AS. Fakta om korrosjon og kostander. https://
safecontrolgruppen.no/frosio-ns-476/. (Accessed: 08.01.2019).

[2] Overflateportalen. Kort om korrosjon. https://www.overflateportalen.
no/kort-om-korrosjon/. (Accessed: 08.01.2019).

[3] NACE Intenational. International measures of prevention, application and eco-
nomics of corrosion technology (impact). http://impact.nace.org/
economic-impact.aspx. (Accessed: 08.01.2019).

[4] Statistisk Sentralbyrå (Statistics Norway). Årlig nasjonalregnskap, 1970-, tabell
9. https://www.ssb.no/nasjonalregnskap-og-konjunkturer/
tabeller/nr-tabeller. (Accessed: 29.01.19).

[5] Statens Vegvesen. Bruer. https://www.vegvesen.no/fag/teknologi/
bruer. (Accessed: 07.02.2019).

[6] E. Holm. Automatic inspection of bridge constructions. TTK4551 Specialization
project, NTNU, 2018.

[7] L. Petricca, T. Moss, G. Figueroa, and S. Broen. Corrosion detection using a.i : A
comparison of standard computer vision techniques and deep learning model. Com-
puter Science and Information Technology, 6, 2016.

[8] D.J. Atha and M.R. Jahanshahi. Evaluation of deep learning approaches based on
convolutional neural networks for corrosion detection. SAGE journals, 17(5), 2018.

[9] ICMV. Icmv 2019 official website. http://icmv.org/. (Accessed: 16.05.19).

[10] E. Bardal. Korrosjon og korrosjonsvern. Tapir Akademisk Forlag, Trondheim, 1994.

[11] W.D. Callister and D.G. Rethwisch. Materials Science and Engineering. John Wiley
and Sons, 2015.

[12] Unknown. Corrosion electrochemistry. https://corrosion-doctors.org/

117

https://safecontrolgruppen.no/frosio-ns-476/
https://safecontrolgruppen.no/frosio-ns-476/
https://www.overflateportalen.no/kort-om-korrosjon/
https://www.overflateportalen.no/kort-om-korrosjon/
http://impact.nace.org/economic-impact.aspx
http://impact.nace.org/economic-impact.aspx
https://www.ssb.no/nasjonalregnskap-og-konjunkturer/tabeller/nr-tabeller
https://www.ssb.no/nasjonalregnskap-og-konjunkturer/tabeller/nr-tabeller
https://www.vegvesen.no/fag/teknologi/bruer
https://www.vegvesen.no/fag/teknologi/bruer
http://icmv.org/
https://corrosion-doctors.org/Electrochemistry-of-Corrosion/Introduction.htm
https://corrosion-doctors.org/Electrochemistry-of-Corrosion/Introduction.htm
https://corrosion-doctors.org/Electrochemistry-of-Corrosion/Introduction.htm

BIBLIOGRAPHY

Electrochemistry-of-Corrosion/Introduction.htm. (Accessed:
22.01.19).

[13] Nada Al-Eidan. Types of corrosion. https://www.researchgate.net/
post/What_are_the_most_dangerous_types_of_corrosion_and_
does_the_dangerous_vary_depending_on_the_type_of_metal.
(Accessed: 22.01.19).

[14] NACE International. Uniform corrosion. https://www.nace.org/
corrosion-central/corrosion-101/uniform-corrosion/. (Ac-
cessed: 22.01.19).

[15] Gibson Stainless and Speciality Inc. Corrosion types and prevention. https://
www.gibsonstainless.com/types-of-corrosion.html. (Accessed:
23.01.19).

[16] Steel Fabrication Services. Pitting corrosion and how
to treat it. https://steelfabservices.com.au/
pitting-corrosion-how-to-treat-it/. (Accessed: 23.01.19).

[17] Burt Victoria. Corrosion in the Petrochemical Industry. ASM International, 2015.

[18] NACE International. Galvanic corrosion. https://www.nace.org/
corrosion-central/corrosion-101/galvanic-corrosion/. (Ac-
cessed: 28.01.19).

[19] M.G Fontana. Corrosion Engineering. McGraw-Hill Book Company, 3rd edition,
1986.

[20] STRUCTURE Magazine. Fastener corrosion. https://www.structuremag.
org/?p=9609. (Accessed: 28.01.19).

[21] Statens Vegvesen. Bruforvaltningssystemet brutus. https://www.vegvesen.
no/fag/teknologi/bruer/bruforvaltning. (Accessed: 07.02.2019).

[22] Statens Vegvesen. Overflatebehandling av stål. https://www.vegvesen.
no/fag/fokusomrader/forskning+og+utvikling/Avsluttede+
FoU-program/Varige+konstruksjoner/Prosjekter/Fremtidens+
bruer/overflate-stal/fb-9-overflatebehandling-av-st%C3%
A5l. (Accessed: 12.02.19).

[23] Statens Vegvesen. Varige konstruksjoner, tilstandsutvikling bruer. https:
//www.vegvesen.no/_attachment/433872/binary/729734?fast_
title=Overflatebehandling+av+st%C3%A5lbruer.pdf. (Accessed:
12.02.19).

118

https://corrosion-doctors.org/Electrochemistry-of-Corrosion/Introduction.htm
https://corrosion-doctors.org/Electrochemistry-of-Corrosion/Introduction.htm
https://corrosion-doctors.org/Electrochemistry-of-Corrosion/Introduction.htm
https://www.researchgate.net/post/What_are_the_most_dangerous_types_of_corrosion_and_does_the_dangerous_vary_depending_on_the_type_of_metal
https://www.researchgate.net/post/What_are_the_most_dangerous_types_of_corrosion_and_does_the_dangerous_vary_depending_on_the_type_of_metal
https://www.researchgate.net/post/What_are_the_most_dangerous_types_of_corrosion_and_does_the_dangerous_vary_depending_on_the_type_of_metal
https://www.nace.org/corrosion-central/corrosion-101/uniform-corrosion/
https://www.nace.org/corrosion-central/corrosion-101/uniform-corrosion/
https://www.gibsonstainless.com/types-of-corrosion.html
https://www.gibsonstainless.com/types-of-corrosion.html
https://steelfabservices.com.au/pitting-corrosion-how-to-treat-it/
https://steelfabservices.com.au/pitting-corrosion-how-to-treat-it/
https://www.nace.org/corrosion-central/corrosion-101/galvanic-corrosion/
https://www.nace.org/corrosion-central/corrosion-101/galvanic-corrosion/
https://www.structuremag.org/?p=9609
https://www.structuremag.org/?p=9609
https://www.vegvesen.no/fag/teknologi/bruer/bruforvaltning
https://www.vegvesen.no/fag/teknologi/bruer/bruforvaltning
https://www.vegvesen.no/fag/fokusomrader/forskning+og+utvikling/Avsluttede+FoU-program/Varige+konstruksjoner/Prosjekter/Fremtidens+bruer/overflate-stal/fb-9-overflatebehandling-av-st%C3%A5l
https://www.vegvesen.no/fag/fokusomrader/forskning+og+utvikling/Avsluttede+FoU-program/Varige+konstruksjoner/Prosjekter/Fremtidens+bruer/overflate-stal/fb-9-overflatebehandling-av-st%C3%A5l
https://www.vegvesen.no/fag/fokusomrader/forskning+og+utvikling/Avsluttede+FoU-program/Varige+konstruksjoner/Prosjekter/Fremtidens+bruer/overflate-stal/fb-9-overflatebehandling-av-st%C3%A5l
https://www.vegvesen.no/fag/fokusomrader/forskning+og+utvikling/Avsluttede+FoU-program/Varige+konstruksjoner/Prosjekter/Fremtidens+bruer/overflate-stal/fb-9-overflatebehandling-av-st%C3%A5l
https://www.vegvesen.no/fag/fokusomrader/forskning+og+utvikling/Avsluttede+FoU-program/Varige+konstruksjoner/Prosjekter/Fremtidens+bruer/overflate-stal/fb-9-overflatebehandling-av-st%C3%A5l
https://www.vegvesen.no/_attachment/433872/binary/729734?fast_title=Overflatebehandling+av+st%C3%A5lbruer.pdf
https://www.vegvesen.no/_attachment/433872/binary/729734?fast_title=Overflatebehandling+av+st%C3%A5lbruer.pdf
https://www.vegvesen.no/_attachment/433872/binary/729734?fast_title=Overflatebehandling+av+st%C3%A5lbruer.pdf

BIBLIOGRAPHY

[24] S. Kuroda. Thermal spray coatings for corrosion protection in atmospheric and aque-
ous environments. ASM Handbook, 13B, 2005.

[25] O.Ø. Knudsen. Korrosjonsbeskyttelse for stålbruer. Statens Vegvesen, Etatsprogram-
met Varige konstruksjoner 2012-2015, 2015.

[26] Statens Vegvesen. Inspeksjonshåndbok for bruer V441. Vegdirektoratet, 2000.

[27] Statens Vegvesen. Bruforvaltning riksveg:Forvaltning av bærende konstruksjoner på
riksveg. Vegdirektoratet, 2018.

[28] W. Ertel. Introduction to Artificial Intelligence. Springer International Publishing,
Cham, 2017.

[29] A. Gupta. Introduction to deep learning: Part 1. American Institute of Chemical
Engineers, 2018.

[30] S.J. Russel and P. Norvig. Artificial Intelligence: A Modern Approach, Third Edition.
Pearson, Boston, 2016.

[31] A. Tidemann and A.C. Elster. Maskinlæring. https://snl.no/maskinl\T1\
aering. (Accessed: 16.01.19).

[32] Ola Nordal. Alan turing. https://snl.no/Alan_Turing. (Accessed:
23.01.19).

[33] T. Mitchell. Machine learning. McGraw Hill, 1997.

[34] Md.Rezaul Karim and Giancarlo Zaccone. Deep Learning with TensorFlow. Packt
Publishing, second edition, 2018.

[35] Mohssen Mohammed, Muhammad Badruddin Khan, and Eihab Bashier Mohammed
Bashier. Machine learning. Taylor and Francis Group, 2017.

[36] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521, 2015.

[37] Unknown. How neural networks work. https://chatbotslife.com/
how-neural-networks-work-ff4c7ad371f7. (Accessed: 16.01.19).

[38] A. Tidemann. Dyp læring. https://snl.no/dyp_l\T1\aering. (Accessed:
16.01.19).

[39] Knoldus. Introduction to perceptron: neural network. https://blog.knoldus.
com/introduction-to-perceptron-neural-network/. (Accessed:
24.01.19).

[40] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

119

https://snl.no/maskinl\T1\ae ring
https://snl.no/maskinl\T1\ae ring
https://snl.no/Alan_Turing
https://chatbotslife.com/how-neural-networks-work-ff4c7ad371f7
https://chatbotslife.com/how-neural-networks-work-ff4c7ad371f7
https://snl.no/dyp_l\T1\ae ring
https://blog.knoldus.com/introduction-to-perceptron-neural-network/
https://blog.knoldus.com/introduction-to-perceptron-neural-network/

BIBLIOGRAPHY

[41] Nahua Kang. Multi-layer neural network with sig-
moid function. https://towardsdatascience.com/
multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f.
(Accessed: 24.01.19).

[42] Wikimedia Commons. Hyperbolic tangent. https://commons.wikimedia.
org/wiki/File:Hyperbolic_Tangent.svg. (Accessed: 30.01.19).

[43] Sebastian Raschka. Machine learning faq. https://sebastianraschka.
com/faq/docs/relu-derivative.html. (Accessed: 30.01.19).

[44] Mwamba Capital. Simple gradient descent. https://www.youtube.com/
watch?v=riplXsNf_zs. (Accessed: 31.01.19).

[45] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, second
edition, 2006.

[46] MathWorks. Options for training deep learning neural network. https://se.
mathworks.com/help/deeplearning/ref/trainingoptions.html.
(Accessed: 09.05.19).

[47] M. Mahmoud, A. Bukhary, A. G Ramadan, and M. Al-Zahrani. Prediction of breach
peak outflow and failure time using artificial neural network approach. In Proceed-
ings of the 2nd World Congress on Civil, Structural, and Environmental Engineering
(CSEE’17), 2017.

[48] G.B. Orr and K.R Muller. Neural Networks: Tricks of the Trade. Springer, 1998.

[49] Lucidchart. Official website. https://www.lucidchart.com. (Accessed:
15.02.19).

[50] J. Ahmad, K. Muhammad, and S.W. Baik. Data augmentation-assisted deep learning
of hand-drawn partially colored sketches for visual search. PLoS ONE, 12, 2017.

[51] Google. Machine learning crash course. https://developers.google.com/
machine-learning/crash-course/. (Accessed: 15.02.19).

[52] H.H. Aghdam. Guide to convolutional neural networks : a practical application to
traffic-sign detection and classification. Springer, 2017.

[53] MathWorks. Learn about convolutional neural networks.
https://se.mathworks.com/help/deeplearning/ug/
introduction-to-convolutional-neural-networks.html. (Ac-
cessed: 18.02.19).

120

https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
https://commons.wikimedia.org/wiki/File:Hyperbolic_Tangent.svg
https://commons.wikimedia.org/wiki/File:Hyperbolic_Tangent.svg
https://sebastianraschka.com/faq/docs/relu-derivative.html
https://sebastianraschka.com/faq/docs/relu-derivative.html
https://www.youtube.com/watch?v=riplXsNf_zs
https://www.youtube.com/watch?v=riplXsNf_zs
https://se.mathworks.com/help/deeplearning/ref/trainingoptions.html
https://se.mathworks.com/help/deeplearning/ref/trainingoptions.html
https://www.lucidchart.com
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://se.mathworks.com/help/deeplearning/ug/introduction-to-convolutional-neural-networks.html
https://se.mathworks.com/help/deeplearning/ug/introduction-to-convolutional-neural-networks.html

BIBLIOGRAPHY

[54] MathWorks. Specify layers of convolutional neural network.
https://se.mathworks.com/help/deeplearning/ug/
layers-of-a-convolutional-neural-network.html. (Accessed:
18.02.19).

[55] MathWorks. Get started with transfer learning. https:
//se.mathworks.com/help/deeplearning/examples/
get-started-with-transfer-learning.html. (Accessed: 18.02.19).

[56] ImageNet. Official website. http://www.image-net.org/. (Accessed:
21.02.19).

[57] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60, 2017.

[58] Sunita Nayak. Understanding alexnet. https://www.learnopencv.com/
understanding-alexnet/. (Accessed: 30.01.19).

[59] M.D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
In ECCV, 2014.

[60] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
07-12-, 2015.

[61] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[62] K. He, Y. Wang, and J.E. Hopcroft. A powerful generative model using random
weights for the deep image representation. CoRR, abs/1606.04801, 2016.

[63] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[64] ImageNet. Large scale visual recognition challenge 2016 (ilsvrc2016). http:
//image-net.org/challenges/LSVRC/2016/results. (Accessed:
25.02.19).

[65] ImageNet. Large scale visual recognition challenge 2017 (ilsvrc2017). http:
//image-net.org/challenges/LSVRC/2017/results. (Accessed:
25.02.19).

[66] K. Nguyen, C. Fookes, A. Ross, and S. Sridharan. Iris recognition with off-the-shelf
cnn features: A deep learning perspective. IEEE Access, 6, 2018.

121

https://se.mathworks.com/help/deeplearning/ug/layers-of-a-convolutional-neural-network.html
https://se.mathworks.com/help/deeplearning/ug/layers-of-a-convolutional-neural-network.html
https://se.mathworks.com/help/deeplearning/examples/get-started-with-transfer-learning.html
https://se.mathworks.com/help/deeplearning/examples/get-started-with-transfer-learning.html
https://se.mathworks.com/help/deeplearning/examples/get-started-with-transfer-learning.html
http://www.image-net.org/
https://www.learnopencv.com/understanding-alexnet/
https://www.learnopencv.com/understanding-alexnet/
http://image-net.org/challenges/LSVRC/2016/results
http://image-net.org/challenges/LSVRC/2016/results
http://image-net.org/challenges/LSVRC/2017/results
http://image-net.org/challenges/LSVRC/2017/results

BIBLIOGRAPHY

[67] Python. Official website. https://www.python.org/. (Accessed: 30.01.19).

[68] TensorFlow. An open source machine learning framework for everyone. https:
//www.tensorflow.org/. (Accessed: 30.01.19).

[69] Keras. Keras: The python deep learning library. https://keras.io/. (Ac-
cessed: 25.02.19).

[70] PyTorch. From research to production. https://pytorch.org/. (Accessed:
30.01.19).

[71] MATLAB. Official website. https://se.mathworks.com/products/
matlab.html. (Accessed: 30.01.19).

[72] MATLAB. Deep learning toolbox. https://se.mathworks.com/
products/deep-learning.html. (Accessed: 30.01.19).

[73] ONNX. Open neural network exchange format. https://onnx.ai/. (Accessed:
25.02.19).

[74] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[75] MathWorks. Deep learning. https://se.mathworks.com/solutions/
deep-learning.html. (Accessed: 25.02.19).

[76] OpenCV Team. Opencv website. https://opencv.org/. (Accessed: 15.01.19).

[77] J. Du, L. Yan, H. Wang, and Q. Huang. Research on grounding grid corrosion classi-
fication method based on convolutional neural network. MATEC Web of Conferences,
160, 2018.

[78] Adobe. Adobe photoshop cc. https://www.adobe.com/products/
photoshop.html. (Accessed: 11.03.19).

[79] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86, 1998.

[80] Statens Vegvesen. Na rundskriv 2018/4 endringer til håndbok v441 inspeksjon-
shåndbok for bruer. https://www.vegvesen.no/_attachment/
2265596/binary/1251794?fast_title=NA-rundskriv+2018%2F4+
-+Endringer+til+h%C3%A5ndbok+V441+Inspeksjonshandbok+
for+bruer.pdf. (Accessed: 25.01.19).

[81] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing and Management, 45, 2009.

122

https://www.python.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/deep-learning.html
https://se.mathworks.com/products/deep-learning.html
https://onnx.ai/
https://se.mathworks.com/solutions/deep-learning.html
https://se.mathworks.com/solutions/deep-learning.html
https://opencv.org/
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.vegvesen.no/_attachment/2265596/binary/1251794?fast_title=NA-rundskriv+2018%2F4+-+Endringer+til+h%C3%A5ndbok+V441+Inspeksjonshandbok+for+bruer.pdf
https://www.vegvesen.no/_attachment/2265596/binary/1251794?fast_title=NA-rundskriv+2018%2F4+-+Endringer+til+h%C3%A5ndbok+V441+Inspeksjonshandbok+for+bruer.pdf
https://www.vegvesen.no/_attachment/2265596/binary/1251794?fast_title=NA-rundskriv+2018%2F4+-+Endringer+til+h%C3%A5ndbok+V441+Inspeksjonshandbok+for+bruer.pdf
https://www.vegvesen.no/_attachment/2265596/binary/1251794?fast_title=NA-rundskriv+2018%2F4+-+Endringer+til+h%C3%A5ndbok+V441+Inspeksjonshandbok+for+bruer.pdf

BIBLIOGRAPHY

[82] MathWorks. Deep learning toolbox model for alexnet network.
https://se.mathworks.com/matlabcentral/fileexchange/
59133-deep-learning-toolbox-model-for-alexnet-network?s_
tid=FX_rc1_behav. (Accessed: 18.03.19).

[83] MathWorks. Deep learning toolbox model for googlenet network.
https://se.mathworks.com/matlabcentral/fileexchange/
64456-deep-learning-toolbox-model-for-googlenet-network?
s_tid=FX_rc3_behav. (Accessed: 18.03.19).

[84] MathWorks. Deep learning toolbox model for resnet-50 network.
https://se.mathworks.com/matlabcentral/fileexchange/
64626-deep-learning-toolbox-model-for-resnet-50-network?
s_tid=FX_rc2_behav. (Accessed: 18.03.19).

[85] MathWorks. Deep learning toolbox model for vgg-16 network.
https://se.mathworks.com/matlabcentral/fileexchange/
61733-deep-learning-toolbox-model-for-vgg-16-network.
(Accessed: 24.03.19).

[86] MathWorks. Datastore for image data. https://se.mathworks.com/help/
matlab/ref/matlab.io.datastore.imagedatastore.html. (Ac-
cessed: 25.03.19).

[87] MathWorks. Split imagedatastore labels by proportions. https:
//se.mathworks.com/help/matlab/ref/matlab.io.datastore.
imagedatastore.spliteachlabel.html. (Accessed: 13.05.19).

[88] MathWorks. Crop image. https://se.mathworks.com/help/images/
ref/imcrop.html. (Accessed: 25.03.19).

[89] MathWorks. Rotate image. https://se.mathworks.com/help/images/
ref/imrotate.html. (Accessed: 02.04.19).

[90] MathWorks. Transform batches to augment image data.
https://se.mathworks.com/help/deeplearning/ref/
augmentedimagedatastore.html. (Accessed: 25.03.19).

[91] MathWorks. Train deep learning network to classify new images.
https://se.mathworks.com/help/deeplearning/examples/
train-deep-learning-network-to-classify-new-images.html.
(Accessed: 02.04.19).

[92] MathWorks. Deep learning onramp course- transfer learning workflow.
https://matlabacademy.mathworks.com/R2018b/portal.html?

123

https://se.mathworks.com/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-alexnet-network?s_tid=FX_rc1_behav
https://se.mathworks.com/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-alexnet-network?s_tid=FX_rc1_behav
https://se.mathworks.com/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-alexnet-network?s_tid=FX_rc1_behav
https://se.mathworks.com/matlabcentral/fileexchange/64456-deep-learning-toolbox-model-for-googlenet-network?s_tid=FX_rc3_behav
https://se.mathworks.com/matlabcentral/fileexchange/64456-deep-learning-toolbox-model-for-googlenet-network?s_tid=FX_rc3_behav
https://se.mathworks.com/matlabcentral/fileexchange/64456-deep-learning-toolbox-model-for-googlenet-network?s_tid=FX_rc3_behav
https://se.mathworks.com/matlabcentral/fileexchange/64626-deep-learning-toolbox-model-for-resnet-50-network?s_tid=FX_rc2_behav
https://se.mathworks.com/matlabcentral/fileexchange/64626-deep-learning-toolbox-model-for-resnet-50-network?s_tid=FX_rc2_behav
https://se.mathworks.com/matlabcentral/fileexchange/64626-deep-learning-toolbox-model-for-resnet-50-network?s_tid=FX_rc2_behav
https://se.mathworks.com/matlabcentral/fileexchange/61733-deep-learning-toolbox-model-for-vgg-16-network
https://se.mathworks.com/matlabcentral/fileexchange/61733-deep-learning-toolbox-model-for-vgg-16-network
https://se.mathworks.com/help/matlab/ref/matlab.io.datastore.imagedatastore.html
https://se.mathworks.com/help/matlab/ref/matlab.io.datastore.imagedatastore.html
https://se.mathworks.com/help/matlab/ref/matlab.io.datastore.imagedatastore.spliteachlabel.html
https://se.mathworks.com/help/matlab/ref/matlab.io.datastore.imagedatastore.spliteachlabel.html
https://se.mathworks.com/help/matlab/ref/matlab.io.datastore.imagedatastore.spliteachlabel.html
https://se.mathworks.com/help/images/ref/imcrop.html
https://se.mathworks.com/help/images/ref/imcrop.html
https://se.mathworks.com/help/images/ref/imrotate.html
https://se.mathworks.com/help/images/ref/imrotate.html
https://se.mathworks.com/help/deeplearning/ref/augmentedimagedatastore.html
https://se.mathworks.com/help/deeplearning/ref/augmentedimagedatastore.html
https://se.mathworks.com/help/deeplearning/examples/train-deep-learning-network-to-classify-new-images.html
https://se.mathworks.com/help/deeplearning/examples/train-deep-learning-network-to-classify-new-images.html
https://matlabacademy.mathworks.com/R2018b/portal.html?course=deeplearning#chapter=4&lesson=2§ion=2
https://matlabacademy.mathworks.com/R2018b/portal.html?course=deeplearning#chapter=4&lesson=2§ion=2
https://matlabacademy.mathworks.com/R2018b/portal.html?course=deeplearning#chapter=4&lesson=2§ion=2

BIBLIOGRAPHY

course=deeplearning#chapter=4&lesson=2§ion=2. (Accessed:
14.01.2019).

[93] MathWorks. Classify data using a trained deep learning neural network. https://
se.mathworks.com/help/deeplearning/ref/classify.html. (Ac-
cessed: 02.04.19).

124

https://matlabacademy.mathworks.com/R2018b/portal.html?course=deeplearning#chapter=4&lesson=2§ion=2
https://matlabacademy.mathworks.com/R2018b/portal.html?course=deeplearning#chapter=4&lesson=2§ion=2
https://matlabacademy.mathworks.com/R2018b/portal.html?course=deeplearning#chapter=4&lesson=2§ion=2
https://se.mathworks.com/help/deeplearning/ref/classify.html
https://se.mathworks.com/help/deeplearning/ref/classify.html

Appendix

• A: Tasks and progress plan

• B: Scientific paper

• C: MATLAB code
-AlexNet
-GoogLeNet, ResNet-50 and VGG-16
-findLayersToReplace.m (downloaded from [91])

• D: MATLAB course certificate

125

Tasks	and	progress	plan	for	master’s	thesis,	spring	2019	
Student:	Egil	Holm	
	
	
Tasks	
	

• Read	and	write	about	previous	work/methods	on	corrosion	detection	and	
classification	from	images	using	deep	learning.	Write	theory	on	artificial	intelligence,	
machine	learning,	deep	learning	and	corrosion.		
	

• Find	a	relevant	dataset	containing	images	of	corrosion	damages.	Images	from	
previous	bridge	inspections	in	Brutus	are	relevant.	Label	images	using	appropriate	
software	tools.			

	
• Choose	software	and	networks	for	the	classification	tasks.	Modify	existing	neural	

network,	add/remove	layers	and	adjust	parameters/weights.	Perform	training	and	
testing	of	neural	networks.		

	
• Present	results	in	a	suitable	way	using	graphs	and	tables.	Find	and	express	

measurements	of	performance	for	the	trained	neural	networks.	
	

• Discuss	results	from	testing	of	the	neural	network,	explain	what	the	results	show	and	
how	this	can	be	used,	and	what	could	have	been	done	differently.	Suggest	relevant	
elements	for	further	work.		

	
In	addition,	the	student	will	follow	relevant	lectures	in	the	three	courses;	
	

o TDT4171-	Artificial	Intelligence	Methods	
	

o TDT4173-	Machine	Learning	and	Case-Based	Reasoning	
	

o TDT4265-	Computer	Vision	and	Deep	Learning	
	
	
	
	
	
	
	
	
	
	
	
	

A: Tasks and progress plan

Progress	plan	
Week	 Progress	
2	 January	and	February:	
3	 	Read	and	write	about	previous	work	and	
4	 theory	(corrosion	and	machine	learning)	
5	 Start	working	with	images;	gathering	and	
6	 labelling	of	images	from	Brutus	and	the	

Norwegian	Public	Roads	Administration.	
7	 End	of	February:	finish	work	with	theory,	
8	 previous	work	and	image	collection	and	

labelling.		
Deliver	1.	draft	of	report.	

9	 March:	
10	 Setup	of	code	for	neural	networks,	
11	 modify	existing	networks.		
12	 End	of	March:	finish	general	setup	of	code	

and	modification	of	CNNs			
13	 	
14	 April:	
15	 Training	and	testing	of	neural	networks.	
16	 Gather	results	and	calculate	metrics.	

Compare	results.	
17	 End	of	April:	finish	training	and	testing	of	

networks.	Deliver	2.	draft	of	report.	
18	 May:	
19	 Write	discussion	of	results,	conclusion	and	

further	work	
20	 	
21	 	
22	 	
23	 Submission	of	master	thesis:	03.06.2019	

	

Classification of Corrosion and Coating Damages on Bridge Constructions from
Images using Convolutional Neural Networks

Egil Holm1

1M.Sc student, Department of Engineering Cybernetics, NTNU

The global cost related to corrosion damages was estimated to be 3.4 percent of the global GDP
in 2013. To properly handle corrosion damages at an asset we need to understand the state of
the assets - such as bridges. Unmanned vehicles can gather large amount of imagery from bridges
and such data could improve asset management. However, it can be very labour intensive to go
through all the data manually. To this end, in this paper, we present a comparison of performance
for different convolutional neural networks for automatic classification of corrosion and coating
damages on bridge constructions from images taken during previous inspections. Through manual
categorization and data augmentation, a total of 9300 images were collected and divided into five
classes; (1) paint flaking, (2) white corrosion, (3) corrosion on steel construction, (4) corrosion on
rebar, and (5) not corrosion. All classes except from (2) white corrosion were used for training
and testing of convolutional neural networks. Four different convolutional neural networks called
AlexNet, GoogLeNet, ResNet-50 and VGG-16 were trained using transfer learning in MATLAB.
We have evaluated test performance through the metrics recall, precision, accuracy and F1 score.
Test performance was also evaluated on damage detection accuracy, meaning how well the networks
detect images that contain a damage. The convolutional neural network trained with four classes
using VGG-16 had the overall best performance results, with average recall, precision, accuracy and
F1 score being 95.45%, 95.61%, 97.74% and 95.53%, respectively. AlexNet, trained and tested with
four classes, had the highest score on damage detection with 99.14% accuracy. The obtained results
are promising, and make it possible to conclude that convolutional neural networks have a great
potential in bridge inspections for automatic analysis of corrosion and coating damages.

I. INTRODUCTION

In the western part of the world, costs related to corro-
sion damages are estimated to be 3-4 percent of a coun-
try’s Gross Domestic Product (GDP) [1] [2], and the
global cost was estimated to be 3.4 percent of the global
GDP in 2013 [3]. Corrosion damages are common chal-
lenges in many industries and on elements of infrastruc-
ture like bridges, tunnels and vehicles. In Norway there
are more than 17500 bridges to be inspected and main-
tained by The Norwegian Public Roads Administration
[4]. Corrosion damages, cracks and faults in surface treat-
ment are examples of elements of interest during inspec-
tion of bridges. Every year there are high economic costs
related to inspection of bridge constructions, and there
are also safety challenges related to implementation of
certain types of manual inspection methods that require
use of access equipment. Manual inspection methods also
have challenges in terms of subjectivity when evaluating
corrosion damages, which are eliminated when using au-
tomatic analysis methods instead. Therefore, it is impor-
tant to investigate the potential in automatic inspection
methods.

There are three main contributions in this paper:

1. The collected data set is the basis for the work
introduced in this paper, but is also highly rele-
vant for future research and work on image classi-
fication and development of an automatic analysis
method for damages on bridge constructions. All
the collected images are considered a basis for fur-
ther work within training of convolutional neural

networks to be used for automatic inspection pur-
poses. Through manual categorization and image
pre-processing, a total of 9300 images from previ-
ous bridge inspections were collected to be used
in training and testing of convolutional neural net-
works.

2. A maximum of four classes were used in the train-
ing process for the convolutional neural networks
in this paper. In previous work [5] on analysis of
damages on bridge construction using deep learn-
ing, two classes; corrosion and not corrosion were
used. In bridge inspection, it is of importance to
get the best possible overview of a construction to
decide relevant measures of maintenance and re-
pair. This paper introduces convolutional neural
networks trained on four classes; paint flaking, red
corrosion on steel construction, red corrosion on re-
bar and not corrosion. Thus, more information re-
garding the type of damage is obtained compared
with the case of using only two classes.

3. Training, testing and comparison of image classifi-
cation performance of four different convolutional
neural networks; AlexNet, GoogLeNet, ResNet-50
and VGG-16. The obtained results in this paper
are relevant for creating an automatic analysis sys-
tem for bridge constructions. In combination with
a drone and a localization system based on, for ex-
ample, Visual Simultaneous Localization and Map-
ping (VSLAM), an analysis system based on con-
volutional neural networks would give a complete
overview of the state of a bridge construction.

B: Scientific paper

2

II. PREVIOUS WORK ON CONVOLUTIONAL
NEURAL NETWORKS

Convolutional neural networks (CNNs) belong to a
class of neural networks that is popular for classifica-
tion tasks such as classifying different categories of im-
ages. CNNs are inspired by the structure of a visual
cortex, which consists of cells that are activated by what
is called receptive fields [6]. A more technical explana-
tion of CNNs can be done through introducing the main
layers of such neural networks. The main layers of a CNN
for image classification purposes are listed and briefly ex-
plained below [7]. Figure 1 illustrates the general concept
for classifying images from bridge constructions using a
CNN.

• Input layer: The first layer of a CNN where
choices regarding elements such as image input size,
the type of neural network and data augmentation
are made.

• Convolution: Considering a 2D convolutional
layer, this is a type of layer where sliding filters are
applied an image to extract relevant information.

• ReLU: The ReLU is a very common activation
function for CNNs. In general, an activation func-
tion works as a threshold operation to inputs, de-
ciding what information is passed further into the
network.

• Pooling: Down-sampling is performed in what is
called a pooling layer to reduce the number of con-
nections and parameters, to simplify the learning
process.

• Fully connected: Features from the previous lay-
ers are combined in this layer in order to recognize
a larger pattern for performing classification.

• Output layers: Output layers can be what is
called softmax or classification layers. The soft-
max function is very common, a function where the
sum of all output activations are equal to one. The
function can be interpreted as a way of assigning a
probability to each class for deciding what class an
image most likely belongs to.

One of the most well known CNN architectures is
AlexNet [8], and this is by many considered the first real
state of the art CNN for image classification. AlexNet
has five convolutional layers, overlapping pooling layers
and three fully-connected layers. Since AlexNet won the
2010 and 2012 ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC)[9], the number of existing CNN
architectures have increased significantly. In ILSVRC,
CNNs are trained on approximately 1.2 million images
divided into 1000 classes, and compete in different clas-
sification tasks. ZF Net [10] is a CNN that is quite simi-
lar to AlexNet, but with modifications in certain layers.

In 2014, a CNN called GoogLeNet, based on the Incep-
tion architecture [11], won the ILSVRC. Compared with
AlexNet, GoogLeNet has a total of 22 layers and 12 times
fewer parameters. A team called VGG also competed in
ILSVRC 2014, and introduced both a 16 and a 19 layer
CNN architecture named VGG-16 and VGG-19, respec-
tively [12]. ResNet [13] is another example of a CNN
architecture that has competed in ILSVRC and obtained
state of the art results within image classification.

Corrosion detection from images of bridge construc-
tions using deep learning has been investigated previ-
ously in [5]. The authors used Python and a framework
called Caffe for the implementation of a CNN based on
AlexNet. A total of 3500 images were used in CNN train-
ing, and 100 images for testing, divided into two classes;
corrosion and not corrosion.

In [14], corrosion detection performance from images
for different CNNs are evaluated. As in [5], two classes;
corrosion and not corrosion were utilized. VGG-16 and
ZFNet were the two CNN architectures mainly used, but
the authors also proposed their own network architec-
tures.

Classification of different degrees of corrosion damages
on grounding grids using CNNs was performed in [15].
A total of 10000 images equally divided into four classes;
very mild, mild, moderate and severe, were used. The au-
thors modified a CNN architecture called LeNet-5 [16] for
use in the paper, and the utilized software was MATLAB
and the Deep Learning Toolbox.

III. METHODS

A. Data collection and categorization

A hard drive containing approximately 240 000 images
was received from the Norwegian Public Roads Admin-
istration (Statens Vegvesen), and the images were man-
ually evaluated and categorized into the following five
classes; (1) paint flaking, (2) white corrosion, (3) corro-
sion on steel construction, (4) corrosion on rebar, and
(5) not corrosion. However, because few images of white
corrosion were found in the provided data set, it was cho-
sen not to continue with this class. Thus, the remaining
four classes served as labels in training of CNNs. Table
I explains the different classes in more detail, and table
II shows the amount of images for each class that were
manually evaluated and categorized. For the paint flak-
ing class, data augmentation was used to generate more
images from the 248 originally collected images. Image
cropping and rotations were the utilized augmentation
techniques.

B. Software, hardware and implementation

In this section, relevant software tools and methods for
implementation of CNNs are introduced and explained

3

FIG. 1: Illustration of typical modules in a CNN, each
consisting of three layers; convolution, activation

function (here:ReLU) and pooling. CNNs also have
layers called fully-connected (FC) layers, the final layer
in this illustration. The input is an image of a corrosion

damage from a bridge, and the CNN can classify the
image as paint flaking, red corrosion on rebar, red

corrosion on steel construction or not corrosion. The
illustration is made using Lucidchart, with inspiration

from [6].

in detail. Training and testing of CNNs was performed
through transfer learning on existing neural networks in
MATLAB using the Deep Learning Toolbox [17]. The
available hardware for CNN training was Intel Core i7-
8700 CPU 3.20 GHz, Intel Core i7-6850K CPU 3.60 GHz
and NVIDIA Titan X (Pascal) Single GPU. All networks
were trained using the following training algorithm and
parameters in MATLAB:

• Training algorithm: Stochastic gradient descent
with momentum (SGDM)

• Learning rate: 1× 10−5

• Momentum: 0.95

• Epochs: 10

• Mini-batch size: 20

TABLE I: Classes of corrosion and surface damages
manually categorized from the 240 000 images received
from the Norwegian Public Roads Administration. All
classes except from class 2-white corrosion was used in

network training and testing.

Number Class/label Description

1 Paint flaking

Flaking or peeling paint on steel.
Some images contain small areas
of beginning corrosion damages

due to paint flaking.
2 White corrosion Corrosion on zinc coating.

3
Red corrosion,

steel construction

Corrosion on exposed steel on
construction elements such as

beams, wires and railings.

4
Red corrosion,

rebar
Corrosion on exposed rebar

in concrete of varying degrees.

5 Not corrosion

Everything that does not
contain elements of the other
classes above. Examples are;
intact/undamaged concrete,

cracks in concrete, undamaged
steel, leaves, flowers,

graffiti, trees, roads and cars.

TABLE II: Amount of images collected of each class
and in total. The number in parentheses denotes the

amount of images including augmented images.

Number Class/label Amount of images
1 Paint flaking 248 (2050)
2 White corrosion 31

3
Red corrosion,

steel construction
2557

4
Red corrosion,

rebar
2380

5 Not corrosion 2307
Total 7523 (9325)

FIG. 2: Illustration of transfer learning workflow in
MATLAB [18].

C. Setup of training and test of the neural
networks

This section will explain how training and testing of
CNNs are performed, including which existing CNNs are
used, the training options and relevant hardware, how
many classes that are to be classified and which metrics
are relevant for evaluating the performance of the differ-
ent CNNs.

4

Table III shows the setup of CNN training. Network 1
was trained mainly to become familiar with the setup of
convolutional neural networks in MATLAB, and training
was performed using approximately 400 images and two
classes; corrosion and not corrosion. The results from
training and testing of network 1 are not considered very
relevant for conclusions to be made in this paper, but
were evaluated in a process of deciding to divide the class
corrosion into two classes; red corrosion, rebar and red
corrosion, steel construction. Thus, networks 2-9 are the
CNNs that will be evaluated and compared in this pa-
per. Networks 2-5 are trained and tested on three classes,
while four classes were used for networks 6-9.

TABLE III: Setup of network training through transfer
learning using existing pre-trained networks. The class

numbers with description are given in table I.

Name Pre-trained network Classes

Network 1 AlexNet
Corrosion

Not corrosion
Network 2 AlexNet 3,4,5
Network 3 GoogLeNet 3,4,5
Network 4 ResNet-50 3,4,5
Network 5 VGG-16 3,4,5
Network 6 AlexNet 1,3,4,5
Network 7 GoogLeNet 1,3,4,5
Network 8 ResNet-50 1,3,4,5
Network 9 VGG-16 1,3,4,5

The metrics recall, precision, accuracy and F1 score
were chosen as performance measurements for the CNNs.
Equations (3.1), (3.2), (3.3) and (3.4) show how the met-
rics were calculated. All equations are taken from [19].
The notation is as follows; TP: true positive, FP: false
positive, TN: true negative, FN: false negative and I:
number of classes.

Recall =

∑I
i=1

TPi

TPi+FNi

I
(3.1)

Precision =

∑I
i=1

TPi

TPi+FPi

I
(3.2)

Average accuracy =

∑I
i=1

TPi+TNi

TPi+FNi+FPi+TNi

I
(3.3)

F1 =
2×Recall × Precision

Recall + Precision
(3.4)

IV. RESULTS

This section will introduce the obtained results
from testing of the four convolutional neural networks
AlexNet, GoogLeNet, ResNet-50 and VGG-16.

Table IV shows the results from testing of networks 2-9,
and a comparison of performance metrics is illustrated in
figure 3. A comparison of damage detection accuracy for
networks 2-9 is shown in table V and in figure 4. Figure
3 show that network 9, trained on the VGG-16 architec-
ture, has the highest average performance scores of all
networks 2-9. Network 6, trained with four classes using
AlexNet, has the highest damage detection accuracy, as
illustrated in figure 4.

TABLE IV: Comparison of results from the different
CNNs, denoted networks 2-9. The average metric values

were calculated using equations (3.1), (3.2), (3.3) and
(3.4).

Network
Average
recall

Average
precision

Average
accuracy

Average
F1 score

Network 2 0.9268 0.9277 0.9513 0.9272
Network 3 0.9369 0.9370 0.9577 0.9369
Network 4 0.9405 0.9425 0.9605 0.9415
Network 5 0.9438 0.9448 0.9623 0.9443
Network 6 0.9292 0.9310 0.9640 0.9301
Network 7 0.9307 0.9319 0.9645 0.9313
Network 8 0.9322 0.9336 0.9656 0.9329
Network 9 0.9545 0.9561 0.9774 0.9553

Average recall for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

A
v
e

ra
g

e
 r

e
c
a

ll

3 classes

4 classes

(a) Average recall for
networks 2-9

Average precision for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

A
v
e

ra
g

e
 p

re
c
is

io
n

3 classes

4 classes

(b) Average precision for
networks 2-9

Average accuracy for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
v
e

ra
g

e
 a

c
c
u

ra
c
y

3 classes

4 classes

(c) Average accuracy for
networks 2-9

Average F1 score for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

A
v
e

ra
g

e
 F

1
 s

c
o

re

3 classes

4 classes

(d) Average F1 score for
networks 2-9

FIG. 3: Comparison of performance metrics for
networks 2-9.

5

TABLE V: A comparison of how well networks 2-9
detect images that contain a damage (corrosion and

paint flaking). The proportion of damages not detected
are the number of FPs for not corrosion divided on the

number of test images containing damages. Damage
detection accuracy is the percentage of all test images

containing a damage that actually were detected.

Network
Proportion of damages

not detected
Damage detection

accuracy [%]
Network 2 9/494 98.18
Network 3 11/494 97.77
Network 4 21/494 95.75
Network 5 5/494 98.99
Network 6 6/699 99.14
Network 7 17/699 97.57
Network 8 29/699 95.85
Network 9 10/699 98.57

Damage detection accuracy for networks 2-9

AlexNet GoogLeNet ResNet-50 VGG-16

CNN

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

D
a
m

a
g
e
 d

e
te

c
ti
o
n
 a

c
c
u
ra

c
y
 [
%

]

3 classes

4 classes

FIG. 4: A comparison of damage detection accuracy for
networks 2-9. The values for each network is given in

table V.

V. DISCUSSION

The obtained results show that there is a quite large
variation in performance scores depending on both the
CNN architecture and the number of classes, thus the
number of images, used in training and testing. In this
section, obtained results from testing of the CNNs will
be compared and discussed.

From table IV and figure 3 it is observed that networks
5 and 9, both trained on the VGG-16 architecture, have
the highest average performance scores of all networks 2-
9. The second highest scores were obtained with network
4 and 8, trained on ResNet-50. Regarding the differ-
ence in performance depending on the number of classes,
figure 3 illustrate that all networks trained on ResNet-
50 and VGG-16 have higher average performance scores
when trained with four classes (red bars) compared with
three classes (blue bars). At the same time, networks
trained on AlexNet and GoogLeNet have lower perfor-
mance scores when the number of classes are increased

from three to four. Table V shows how well the differ-
ent networks detect a damage in the test set of images,
and a comparison of this is illustrated in figure 4. Since
only a single training per network was performed, it is
difficult to say if the obtained results necessarily are rep-
resentative for each of the CNN architectures. If each of
the networks 2-9 had been trained and tested three or
five times, an average total score and standard deviation
could be calculated, and one would be able to say with
higher confidence that the results were representative for
AlexNet, GoogLeNet, ResNet-50 and VGG-16. However,
training of CNNs is time consuming, and it was therefore
considered more relevant to perform training and testing
as shown in this paper to give a clear overview of the
possibilities in corrosion and surface damage classifica-
tion using CNNs. The presented results in table IV and
figure 3 show that values for performance metrics are gen-
erally high for all networks 2-9, so the results are promis-
ing and show a great potential in the use of CNNs for
classification of damages on bridge constructions during
inspections.

FIG. 5: Example of an image of not corrosion wrongly
classified as red corrosion, steel construction by all

networks 2-9.

FIG. 6: Example of an image of not corrosion wrongly
classified as red corrosion, rebar by networks 3, 4, 5, 8

and 9.

6

FIG. 7: Illustration of nine activations from
fully-connected layer 8 in VGG-16 of the image in figure

6.

Even though the trained CNNs in this paper have over-
all high performance scores, there are a few of the wrong
classifications that are worth discussing in order to evalu-
ate how the performance can be improved. Figure 5 and
6 show examples of images that were wrongly classified
by several, or all, of the networks 2-9.

The image of rocks and brown, or reddish, plants in
figure 5 was classified as red corrosion, steel construction
by all networks 2-9. This image, and others similar, were
chosen during data collection because they were expected
to become a challenge for the CNNs. The reason for this
wrong classification is most likely connected to the fact
that both the colour and shape of the plants are very
similar to a corrosion damage, especially when the rocks
in the background are so much brighter. One can argue
that images like the one in figure 5 probably will not oc-
cur in an actual analysis system for bridge constructions,
and thus not become a challenge. However, to increase
the robustness in classification for the CNNs, collection
of more images with larger variety in appearance to be
used in CNN training is considered relevant in further
work to avoid such wrong classifications.

Figure 6 illustrates an image of a glove and a long crack
in concrete that was wrongly classified as red corrosion,
rebar by several of the CNNs. To study this classification
further, activations from fully-connected layer 8 in VGG-

16 were extracted, and these are illustrated in figure 7.
It is observed from these activations that the appearance
of both the glove and the crack becomes very similar to
red corrosion on rebar, with characteristic darker ”lines”
on a brighter background.

Regarding the choice of training algorithm and pa-
rameters, this was chosen with inspiration from previous
work [14], and through a trial and error approach un-
til parameters that gave sufficient training progress were
found.

VI. CONCLUSION AND FURTHER WORK

This paper has presented a comparison of image clas-
sification performance for the convolutional neural net-
works AlexNet, GoogLeNet, ResNet-50 and VGG-16.
The highest average performance scores were obtained
with VGG-16, trained and tested with four classes. The
values for the performance metrics recall, precision, ac-
curacy and F1 score were 95.45%, 95.61%, 97.74% and
95.53%, respectively. A damage detection accuracy of
99.14% was achieved with AlexNet, trained on four dif-
ferent classes. From the obtained results in this paper it
is concluded that convolutional neural networks have a
great potential in classification of surface and corrosion
damages on bridge constructions, and thus can be used
to create an automatic analysis system to be used during
bridge inspections.

The following elements are suggested for further work:
(1) Collection of even more images containing damages to
be used in training of CNNs. Evaluate the need for more
classes such as white corrosion and cracks in concrete.
(2) Utilize regions of interest (ROI) and/or segmentation
techniques for labeling of specific areas of an image that
contain damages instead of labeling the entire image as
a damage. If such techniques are successful, collection
of more images might not be necessary to obtain better
results. (3) Investigate how other training parameters
on CNNs affect the classification results, and if larger
modifications on CNN architecture is preferable.

ACKNOWLEDGMENTS

Thanks to Sølvi Austnes from the Norwegian Public
Roads Administration for providing images from previ-
ous bridge inspections. This paper is partially funded by
the RINVE network (Co-funded by the BIA program by
the Norwegian Research Council, 277234)

[1] SafeControl AS. Fakta om korrosjon og kostander.
https://safecontrolgruppen.no/frosio-ns-476/.
(Accessed: 08.01.2019).

[2] Overflateportalen. Kort om korrosjon. https://

www.overflateportalen.no/kort-om-korrosjon/. (Ac-
cessed: 08.01.2019).

[3] NACE Intenational. International measures of preven-

tion, application and economics of corrosion technology
(impact). http://impact.nace.org/economic-impact.

aspx. (Accessed: 08.01.2019).
[4] Statens Vegvesen. Bruer. https://www.vegvesen.no/

fag/teknologi/bruer. (Accessed: 07.02.2019).
[5] L. Petricca, T. Moss, G. Figueroa, and S. Broen. Corro-

sion detection using a.i : A comparison of standard com-

7

puter vision techniques and deep learning model. Com-
puter Science and Information Technology, 6, 2016.

[6] MathWorks. Learn about convolutional neural networks.
https://se.mathworks.com/help/deeplearning/ug/

introduction-to-convolutional-neural-networks.

html. (Accessed: 18.02.19).
[7] MathWorks. Specify layers of convo-

lutional neural network. https://se.

mathworks.com/help/deeplearning/ug/

layers-of-a-convolutional-neural-network.html.
(Accessed: 18.02.19).

[8] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60, 2017.

[9] ImageNet. Official website. http://www.image-net.

org/. (Accessed: 21.02.19).
[10] M.D. Zeiler and R. Fergus. Visualizing and understand-

ing convolutional networks. In ECCV, 2014.
[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. Proceedings of
the IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 07-12-, 2015.

[12] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.
[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual

learning for image recognition. CoRR, abs/1512.03385,
2015.

[14] D.J. Atha and M.R. Jahanshahi. Evaluation of deep
learning approaches based on convolutional neural net-
works for corrosion detection. SAGE journals, 17(5),
2018.

[15] J. Du, L. Yan, H. Wang, and Q. Huang. Research on
grounding grid corrosion classification method based on
convolutional neural network. MATEC Web of Confer-
ences, 160, 2018.

[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86, 1998.

[17] MATLAB. Deep learning toolbox. https://se.

mathworks.com/products/deep-learning.html. (Ac-
cessed: 30.01.19).

[18] MathWorks. Deep learning onramp course- trans-
fer learning workflow. https://matlabacademy.

mathworks.com/R2018b/portal.html?course=

deeplearning#chapter=4&lesson=2§ion=2. (Ac-
cessed: 14.01.2019).

[19] M. Sokolova and G. Lapalme. A systematic analysis of
performance measures for classification tasks. Informa-
tion Processing and Management, 45, 2009.

C: MATLAB code

AlexNet

1 %Loading Alexnet:
2 net=alexnet;
3 %analyzeNetwork(net)
4

5 %Loading images to a image datastore, label images from
foldernames:

6 images=imageDatastore(’ThreeLabels’,’IncludeSubfolders’,true
,’LabelSource’,’foldernames’);

7

8 %The data is divided into three sets;training(80%),
validation(10%) and

9 %testing (10%):
10 [imageTrain,imageValidation,imageTest]=splitEachLabel(images

,0.8,0.1);
11

12 %Define the image input size for AlexNet:
13 inputSize = net.Layers(1).InputSize;
14

15 %Change image size of images to fit AlexNet:
16 AugTrain = augmentedImageDatastore(inputSize(1:2),imageTrain

,’ColorPreprocessing’,’gray2rgb’);
17

18 AugValidation = augmentedImageDatastore(inputSize(1:2),
imageValidation,’ColorPreprocessing’,’gray2rgb’);

19

20 AugTest = augmentedImageDatastore(inputSize(1:2),imageTest,’
ColorPreprocessing’,’gray2rgb’);

21

22

23 %Modifying network layers:
24 layersExtract = net.Layers(1:end-3);
25 classes = numel(categories(imageTrain.Labels));
26 newlayers = [
27 layersExtract

28 fullyConnectedLayer(classes,’WeightLearnRateFactor’,20,’
BiasLearnRateFactor’,20)

29 softmaxLayer
30 classificationLayer];
31

32 %Specifying training options:
33 optionsTrain = trainingOptions(’sgdm’,’MiniBatchSize’,20,’

MaxEpochs’,10,’Momentum’,0.95,’InitialLearnRate’,1e-5, ’
Shuffle’,’every-epoch’,’ValidationData’,AugValidation,’
ValidationFrequency’,3, ’Verbose’,false,’Plots’,’training
-progress’,’OutputFcn’,@(info)savetrainingplot(info));

34

35 %Train the network:
36 %newNet = trainNetwork(AugTrain,newlayers,optionsTrain);
37

38 %NetworkSix=newNet;
39 %save NetworkSix
40

41 function stop=savetrainingplot(info)
42 stop=false; %prevents this function from ending

trainNetwork too early
43 if info.State==’done’ % to check if all iterations/epochs

are completed
44

45 figHandles = findall(0, ’Type’, ’figure’);
46 saveas(figHandles,’TrainingProgressNetSix.eps’,’epsc

’) % save figure in desired file format
47 end
48 end
49

50

51 %Classify test images:
52 %load (’NetworkTwo.mat’)
53 %[Pred,scores] = classify(NetworkTwo,AugTest);
54

55 %Calculate accuray after classifying test images, and
creating a confusion matrix:

56 %Test = imageTest.Labels;
57 %accuracy = mean(Pred == Test)
58

59 %confusionchart(Test,Pred)
60

61 %trained_net_vars = load(’NetworkThree.mat’);
62 %handles.neural_net = trained_net_vars.NetworkThree;

GoogLeNet, ResNet-50 and VGG-16

1 net=googlenet; %net=vgg16, net=resnet50
2

3 %Loading images to a image datastore, and label images after
4 %foldernames:
5 images=imageDatastore(’ThreeLabels’,’IncludeSubfolders’,true

,’LabelSource’,’foldernames’);
6

7 %The data is divided into three sets;training(80%),
validation(10%) and

8 %testing (10%):
9 [imageTrain,imageValidation,imageTest]=splitEachLabel(images

,0.8,0.1);
10

11 %Define the image input size for GoogLeNet:
12 inputSize = net.Layers(1).InputSize;
13

14 %Change image size of images to fit GoogLeNet:
15 AugTrain = augmentedImageDatastore(inputSize(1:2),imageTrain

,’ColorPreprocessing’,’gray2rgb’);
16

17 AugValidation = augmentedImageDatastore(inputSize(1:2),
imageValidation,’ColorPreprocessing’,’gray2rgb’);

18

19 AugTest = augmentedImageDatastore(inputSize(1:2),imageTest,’
ColorPreprocessing’,’gray2rgb’);

20

21

22 %Modifying network layers:
23 if isa(net,’SeriesNetwork’)
24 NewLayersReplace = layerGraph(net.Layers);
25 else

26 NewLayersReplace = layerGraph(net);
27 end
28

29 [learnableLayer,classLayer] = findLayersToReplace(
NewLayersReplace);

30

31 numClasses = numel(categories(imageTrain.Labels));
32

33 if isa(learnableLayer,’nnet.cnn.layer.FullyConnectedLayer’)
34 newLearnableLayer = fullyConnectedLayer(numClasses, ...
35 ’Name’,’new_fc’, ...
36 ’WeightLearnRateFactor’,20, ...
37 ’BiasLearnRateFactor’,20);
38

39 elseif isa(learnableLayer,’nnet.cnn.layer.Convolution2DLayer
’)

40 newLearnableLayer = convolution2dLayer(1,numClasses, ...
41 ’Name’,’new_conv’, ...
42 ’WeightLearnRateFactor’,20, ...
43 ’BiasLearnRateFactor’,20);
44 end
45

46 NewLayersReplace = replaceLayer(NewLayersReplace,
learnableLayer.Name,newLearnableLayer);

47

48 newClassLayer = classificationLayer(’Name’,’new_classoutput’
);

49 NewLayersReplace = replaceLayer(NewLayersReplace,classLayer.
Name,newClassLayer);

50

51 %Specifying training options:
52 optionsTrain = trainingOptions(’sgdm’,’MiniBatchSize’,20,’

Momentum’,0.95, ’MaxEpochs’,10,’InitialLearnRate’,1e-5, ’
Shuffle’,’every-epoch’,’ValidationData’,AugValidation,’
ValidationFrequency’,3, ’Verbose’,false,’Plots’,’training
-progress’,’OutputFcn’,@(info)savetrainingplot(info));

53

54 %Train the network:
55 %newNet = trainNetwork(AugTrain,NewLayersReplace,

optionsTrain);

56

57 %NetworkSeven=newNet;
58 %save NetworkSeven
59

60 function stop=savetrainingplot(info)
61 stop=false; %prevents this function from ending

trainNetwork too early
62 if info.State==’done’ % to check if all iterations/epochs

are completed
63

64 figHandles = findall(0, ’Type’, ’figure’);
65 saveas(figHandles,’TrainingProgressNetSeven.eps’,’

epsc’) % save figure in desired file format
66 end
67 end
68

69

70 %load (’NetworkThree.mat’)
71 %Classify test images:
72 %[Pred,scores] = classify(NetworkThree,AugTest);
73

74 %Calculate accuray after classifying test images, and
creating a confusion matrix:

75 %Test = imageTest.Labels;
76 %accuracy = mean(Pred == Test)
77

78 %confusionchart(Test,Pred)
79

80 % trained_net_vars = load(’NetworkThree.mat’);
81 %handles.neural_net = trained_net_vars.NetworkThree;
82 %[Pred,scores] = classify(handles.neural_net,AugTest);

findLayersToReplace.m

1 % findLayersToReplace(lgraph) finds the single
classification layer and the

2 % preceding learnable (fully connected or convolutional)
layer of the layer

3 % graph lgraph.
4 function [learnableLayer,classLayer] = findLayersToReplace(

NewLayersReplace)
5

6 if ~isa(NewLayersReplace,’nnet.cnn.LayerGraph’)
7 error(’Argument must be a LayerGraph object.’)
8 end
9

10 % Get source, destination, and layer names.
11 src = string(NewLayersReplace.Connections.Source);
12 dst = string(NewLayersReplace.Connections.Destination);
13 layerNames = string({NewLayersReplace.Layers.Name}’);
14

15 % Find the classification layer. The layer graph must have a
single

16 % classification layer.
17 isClassificationLayer = arrayfun(@(l) ...
18 (isa(l,’nnet.cnn.layer.ClassificationOutputLayer’)|isa(l

,’nnet.layer.ClassificationLayer’)), ...
19 NewLayersReplace.Layers);
20

21 if sum(isClassificationLayer) ~= 1
22 error(’Layer graph must have a single classification

layer.’)
23 end
24 classLayer = NewLayersReplace.Layers(isClassificationLayer);
25

26

27 % Traverse the layer graph in reverse starting from the
classification

28 % layer. If the network branches, throw an error.
29 currentLayerIdx = find(isClassificationLayer);
30 while true
31

32 if numel(currentLayerIdx) ~= 1
33 error(’Layer graph must have a single learnable

layer preceding the classification layer.’)
34 end
35

36 currentLayerType = class(NewLayersReplace.Layers(
currentLayerIdx));

37 isLearnableLayer = ismember(currentLayerType, ...
38 [’nnet.cnn.layer.FullyConnectedLayer’,’nnet.cnn.

layer.Convolution2DLayer’]);
39

40 if isLearnableLayer
41 learnableLayer = NewLayersReplace.Layers(

currentLayerIdx);
42 return
43 end
44

45 currentDstIdx = find(layerNames(currentLayerIdx) == dst)
;

46 currentLayerIdx = find(src(currentDstIdx) == layerNames)
;

47

48 end
49

50 end

Egil Holm

has successfully completed

100%

of the

Deep Learning Onramp

self-paced training course

07-Jan-2019

D: MATLAB course certificate

Egil H
olm

C
lassification of C

orrosion and C
oating D

am
ages on B

ridge C
onstructions using D

eep Learning

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Egil Holm

Classification of Corrosion and
Coating Damages on Bridge
Constructions using Deep Learning

Master’s thesis in Industrial Cybernetics

June 2019

	Preface
	Abstract
	Sammendrag
	Introduction
	Motivation and background
	The aim of the thesis
	Limitations
	Contributions
	Outline of the thesis
	Abbreviations

	Background theory
	Corrosion and corrosion damages
	General principles of corrosion
	Forms of corrosion damages
	Specific metals and corrosion appearance

	Corrosion protection and inspection of bridges
	Corrosion protection of steel bridges
	Types of inspections and implementation
	Evaluation of faults and damages

	Machine learning
	Introduction to artificial intelligence
	Principles of machine learning
	Artificial neural networks and deep learning

	Previous work and literature study
	Existing neural networks and relevant software
	Previous work on classification of corrosion damages

	Methods
	Data collection
	Setup of training and tests
	Training and validation
	Testing

	Implementation of classification system in MATLAB
	Loading CNNs
	Image labeling and data sets
	Image pre-processing
	Modification of layers in existing CNNs
	Training of CNNs
	Testing of CNNs

	Results
	Network 1-AlexNet
	Training, validation and test of network 1
	Discussion of network 1

	Network 2-AlexNet
	Training, validation and test of network 2
	Discussion of network 2

	Network 3-GoogLeNet
	Training, validation and test of network 3
	Discussion of network 3

	Network 4-ResNet-50
	Training, validation and test of network 4
	Discussion of network 4

	Network 5-VGG-16
	Training, validation and test of network 5
	Discussion of network 5

	Network 6-AlexNet
	Training, validation and test of network 6
	Discussion of network 6

	Network 7-GoogLeNet
	Training, validation and test of network 7
	Discussion of network 7

	Network 8-ResNet-50
	Training, validation and test of network 8
	Discussion of network 8

	Network 9-VGG-16
	Training, validation and test of network 9
	Discussion of network 9

	Summary and comparison of results
	Networks 2-5
	Networks 6-9
	Networks 2-9

	Discussion
	Conclusion and further work
	Bibliography
	Appendix

