
Sondre Sortland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

sA
utonom

ous thickness m
easurem

ent from
 m

ultirotor U
AV

M
as

te
r’

s
th

es
is

Sondre Sortland

Autonomous contact-based thickness
measurement from a multirotor UAV

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen

June 2019

Sondre Sortland

Autonomous contact-based thickness
measurement from a multirotor UAV

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name: Sondre Sortland
Department: Engineering Cybernetics
Thesis title: Autonomous contact-based thickness measurement from a

multirotor UAV

Thesis Description:

A key point in inspection of marine infrastructure and tanks is steel thickness measurements. Today,

inspectors must climb or build time-consuming scaffolding to reach high and other hard-to-reach

locations.

Recent advancement in sensor technology has enabled small, light-weigh ultrasonic thickness

measurement gauges that can be mounted on small multirotor UAVs, that require only seconds of

contact to take reliable measurements.

The thesis aims to investigate mounting such a sensor on an arm in front of the UAV, and develop

models and control algorithms for automatic measurements.

The project is conducted in cooperation with Scout Drone Inspection AS, and the student will sign the

NTNU “Standardavtale” with the company.

The following items should be considered:

1. Perform a literature review on ultrasonic thickness measurement performed from UAVs

2. Conduct simplified mathematical modelling of the interactions between the wall and the UAV, and

investigate methods to model the constraints between the wall and UAV.

3. Design and review control algorithm strategies for automatic measurements, given an initial drone

position some distance from the wall. Incorporate information about available local navigation

systems.

4. Investigate and review techniques for local navigation (heading, distance) using on-board sensors.

5. Implement and test the automated test procedure on a test-drone supplied by Scout DI. The test should

include:

a. Interface and drivers to the necessary navigation and UTM measurement sensors.

b. A one-press button to initiate the measurement maneuver, when the drone is steady an

unknown distance from the wall.

c. The drone shall then pe rform the measurement maneuver automatically and return to the

initial distance from the wall after the maneuver.

d. The drone should automatically detect (and possibly recover) from misalignments during the

maneuver.

e. After the maneuver is complete, the result of the thickness measurement is presented.

6. Conclude findings in a report.

Start date: 2019-01-07
Due date: 2019-06-03

Thesis performed at: Department of Engineering Cybernetics, NTNU

Supervisor: Professor Tor Arne Johansen, Dept. of Eng. Cybernetics, NTNU
Co-Supervisor: Dr. Kristian Klausen, Scout Drone Inspection AS

ii

iii

Abstract

This thesis investigates the automation of thickness measurements using an
ultrasonic probe mounted on a drone. The use of unmanned aerial vehicles
(UAVs) for non-destructive testing (NDT) in industrial environments have great
potential for time and cost savings. Great success has been demonstrated in the
area of visual inspection using drones, and is moving towards fully autonomous
operations. Recent advancements in sensor technology has enabled small, light-
weight ultrasonic thickness measurement gauges that can be mounted on small
multirotor UAVs. These sensors require only seconds of contact to take reliable
measurements, opening for the opportunity to do thickness measurements from
multirotor UAVs.

This thesis has developed models and control algorithms for contact based
interactions, inspired by related work on the topic. These controllers have
further been validated using a high performance physics engine. The controllers
are based on theory from force control, utilizing the impedance control framework,
together with passivity based control. Furthermore, a method using tracking of
pre-computed optimal trajectories have been developed and tested in the same
physics engine setup. In addition, methods for local navigation based on data
from a 2D scanning LIDAR using regression and RANSAC has been developed
and tested.

Furthermore, complete scenarios with autonomous thickness measurements have
been tested on multiple drone platforms for industrial inspection. In addition to
the implementation of the impedance controllers mentioned above, this includes
integration of an ultrasonic thickness measurement gauge, as well as sensors and
methods for local navigation.

The results from both simulations in a physics engine and experimental validation
shows that the controllers are capable of stable interaction with the environment,
with solid robustness against disturbances. In conclusion, the controllers and
navigation methods developed in this thesis, along with the integration carried
out, have demonstrated a functioning solution for autonomous thickness mea-
surements. This enables inspectors to carry out advanced inspection scenarios
without prior experience or extensive pilot training.

iv

v

Sammendrag

Denne avhandlingen undersøker automatiseringen av tykkelsesmålinger ved hjelp
av en ultralydssonde montert på en drone. Bruk av ubemannede luftfartøyer
(Unmanned Aerial Vehicle (UAV)) for ikke-destruktiv testing (Non Destructive
Testing (NDT)) i industrielle miljøer har stort potensial for tid- og kostnads-
besparelser. Stor suksess er oppnådd innenfor visuelle inspeksjoner ved hjelp
av droner, og nærmer seg helt autonome operasjoner. Nylige fremskritt innen
sensorteknologi har gjort det mulig å montere små, lette ultralydsensorer for
tykkelsesmåling på ubemannede multikopter. Disse sensorene krever kun sekun-
der med kontakt for å ta pålitelige målinger, og åpner for muligheten til å gjøre
tykkelse målinger fra ubemannede multikopter.

Denne avhandlingen har utviklet modeller og kontrollalgoritmer for kontakt-
baserte operasjoner, inspirert av relatert arbeid på emnet. Disse kontrollerne
har videre blitt validert ved hjelp av en høyytelses fysikkmotor. Kontrollerne er
basert på teori fra kraftkontroll, og tar i bruk rammeverk for impedansbasert
kontroll, samt passivitet. Videre er en metode for følging av forhåndsgenererte
optimale baner blitt utviklet og testet i samme fysikkmotoroppsett. I tillegg til
dette har metoder for lokal navigasjon basert på regresjon og RANSAC på data
fra en 2D, roterende LIDAR blitt utviklet og testet.

Videre har komplette scenarier med autonome tykkelsesmålinger blitt testet
på flere droneplattformer for industriell inspeksjon. I tillegg til implementerin-
gen av impedanskontrollene nevnt ovenfor inkluderer dette integrering av en
ultralydtykkelsesmåler, samt sensorer og metoder for lokal navigasjon.

Resultatene fra både simuleringer i fysikkmotor og utførte eksperimenter viser
at kontrollerne opnnår stabil kontakt med omgivelsene, med solid robusthet mot
forstyrrelser. Til slutt har kontrollerne og navigasjonsmetodene utviklet i denne
oppgaven, sammen med den utførte integrasjonen, vist en fungerende løsning
for autonome tykkelsesmålinger. Dette gjør det mulig for inspektører å gjen-
nomføre avanserte inspeksjonsscenarier uten tidligere erfaring eller omfattende
pilotopplæring.

vi

vii

Preface

The work conducted during this thesis has been carried out at the Department
of Engineering Cybernetics, in collaboration with Scout Drone Inspection AS
(abbreviated Scout DI in this thesis). Scout DI has provided the necessary
hardware to conduct the experiments in this thesis, along with guidance and
introduction to the software systems used along with this hardware. Detailed
information about what has been provided by Scout DI and what has been
created as a part of this thesis will be presented in part V (Hardware, see
introduction of chapter 14) and part VI (Software, see section 16.1). Scout DI
has also provided facilities to conduct the experiments.

Contributions and related work are presented in the introduction.

This thesis is the continuation of a specialization project carried out in the fall of
2018. This was an exploratory simulation-study of the contact based inspection
scenario, and includes the initial development of the controllers used in this
thesis. Since the reader cannot be expected to have read the report from the
specialization project, some parts have been adapted and included from this
earlier work. Note that this is common practice at NTNU, but not commonly
mentioned in theses. This applies to the parts about modeling, control and
simulation (see outline in section 1.4). However, these parts have also been
subject to improvements, revisions and further work during this thesis, along with
new implementations into the software frameworks used on the drone hardware.

All illustrations and figures in this thesis are created by the author, unless
explicitly stated otherwise.

Sondre Sortland
Trondheim, June, 2019

viii

ix

Acknowledgments

I would like to thank my supervisor, Professor Tor Arne Johansen, for the support
and guidance provided during this thesis. I would also like to thank everyone
involved with Scout Drone Inspection AS for allowing me to work on this thesis.
A special thanks to Nicolai for the enthusiasm and encouragement throughout the
process, Kristian for the continued guidance and fruitful discussions, Morten for
his DUNE insight and intriguing C++ discussions, and Kristoffer for hardware
guidance, pilot lessons and rendering of the image used on the cover of this thesis.
Finally, I would also like to thank Arnt Erik Stene for his work on proof reading
this thesis.

x

Contents

Abstract iii

Sammendrag v

Preface vii

Acknowledgments ix

Table of Contents xi

Acronyms xix

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Related Work . 6
1.3 Contributions and Scope of This Thesis 8
1.4 Outline and Organization . 9

I System Overview 13

2 System Overview 15
2.1 The Development Drone . 15
2.2 Sensor Overview . 18

2.2.1 Navigation Sensors . 18
2.2.2 Steel Thickness Measurement 19

2.3 Scout 135 Platform . 20

xi

xii CONTENTS

II Modeling 21

3 Introduction 23

4 2D UAV Model 25
4.1 2D Model Basics . 25
4.2 Contact Force Augmentation . 28

4.2.1 Compliant Behavior Considerations 30
4.3 Simulation Validation . 30

5 3D UAV Model 33
5.1 3D Model Basics . 33

5.1.1 Kinematics . 34
5.1.2 Kinetics . 35
5.1.3 Dominant Multirotor Dynamics 36

5.2 Contact Force Augmentation . 37
5.2.1 Compliant Behavior . 38

5.3 Simulation Validation . 38

6 Udwadia Kalaba 43
6.1 Background . 44

6.1.1 Principle . 44
6.1.2 A Simple Example . 45

6.2 Derivation . 48
6.2.1 Constraint Equation Derivation 49

6.3 Discussion and Future Work . 52

III Control 53

7 Background Theory 55
7.1 Force Control . 55

7.1.1 Interaction Control . 56
7.2 Impedance Control . 57

8 Controller 2D 59
8.1 Controller Derivation . 59
8.2 Results . 62

9 Controller 3D 65

CONTENTS xiii

9.1 Controller Derivation . 65
9.2 Results . 68

10 Tracking Of Pre-computed Optimal Trajectory 73
10.1 Motivation . 73
10.2 Background . 74

10.2.1 Optimization Problems 75
10.2.2 Optimization of Dynamic Systems 75

10.3 Optimal Trajectory for UAVs . 77
10.4 Trajectory Generation Results . 77
10.5 Simulation Results . 80
10.6 Discussion . 82

IV Navigation 85

11 Background 87
11.1 Navigation in Indoor Environments 87
11.2 Random Sample Consensus (RANSAC) 89

11.2.1 Choosing the Iteration Number 90

12 Methods for Relative Heading Estimation 91
12.1 ToF Sensors . 92

12.1.1 Solution Description . 93
12.2 RADAR . 94

12.2.1 Solution Description . 95
12.3 2D Scanning Lidar . 96

12.3.1 Solution Description . 97

13 Implementation and Evaluation 99
13.1 Adaptive Field of View . 99
13.2 Regression . 100
13.3 RANSAC . 102
13.4 Results of Experimental Verification 103

13.4.1 Controlled Environment 103
13.4.2 Circular Room . 109
13.4.3 Flight Test . 112

13.5 Conclusion . 114

xiv CONTENTS

V Hardware 117

14 Drone Platform 119
14.1 Frame, Motors and Power Supply 123

14.1.1 Motor Controllers . 124
14.2 Flight Controller and Computer Module 125

14.2.1 Pixhawk CUBE . 126
14.2.2 Toradex iMX6 Colibri . 126
14.2.3 Motherboard . 126

14.3 Range Sensor . 127
14.4 IMU . 128
14.5 Ultrasonic Probe . 129

14.5.1 Background . 129
14.5.2 Integration . 130

14.6 LIDAR . 132
14.7 The Scout 135 Hardware Platform 134

VI Software 137

15 Background 139
15.1 The LSTS Toolchain . 139
15.2 DUNE . 140

15.2.1 Run Configurations . 141
15.3 IMC . 142
15.4 Neptus . 144
15.5 Linux Distribution . 145

16 DUNE Implementation 147
16.1 Existing Framework and Modules 150
16.2 Sensor Integration . 150

16.2.1 2D LIDAR . 150
16.2.2 Thickness Measurement Probe 151

16.3 Navigation systems . 152
16.3.1 Relative Heading . 153
16.3.2 LIDAR Distance . 153
16.3.3 Distance Filter . 153

16.4 User Interface . 154
16.4.1 Neptus Plugins . 154

CONTENTS xv

16.4.2 Mobile Application . 155

17 Control System 157
17.1 Introduction . 157
17.2 Plan Integration . 158

17.2.1 Controller Implementation 159

VII Results 163

18 Results 165
18.1 Test Facilities and Setup . 166

18.1.1 Test Room . 166
18.1.2 Falck Nutec Tank . 167

18.2 Flight Test I - Test Room . 168
18.3 Flight Test II - Falck Nutec Field Test 172
18.4 Flight Test III - Automatic Abort 176
18.5 Flight Test IV - Simulation Comparison 180
18.6 Summary . 182

Conclusion and Future Work 184

19 Conclusion and Future Work 185
19.1 Conclusions . 185
19.2 Future work . 187

Bibliography 191

Appendices 201

Appendix Part I Simulation 201

A Background 203
A.1 System Overview . 203
A.2 Robot Operating System . 204

A.2.1 Tools and Features . 204

xvi CONTENTS

A.3 Gazebo . 205
A.3.1 Tools and Features . 205

A.4 RotorS . 206

B Implementation 209
B.1 Simulation Framework Overview 209
B.2 Drone Implementation Using RotorS 212

B.2.1 URDF Description . 212
B.3 Environment in Gazebo . 215

B.3.1 Creating a World for Interaction 215
B.3.2 Simulating Interaction in Gazebo and ROS 216

B.4 DUNE-ROS Interface . 220

C Simulation Results 221
C.1 Scenario I . 224
C.2 Scenario II . 226

C.2.1 Simulation II.1 . 226
C.2.2 Simulation II.2 . 228
C.2.3 Simulation II.3 . 230

C.3 Scenario III . 232
C.3.1 Simulation III.1 . 232
C.3.2 Simulation III.2 . 234
C.3.3 Simulation III.3 . 236

C.4 Scenario IV . 238
C.4.1 Simulation IV.1 . 238
C.4.2 Simulation IV.2 . 240

C.5 Summary . 242

CONTENTS xvii

xviii CONTENTS

Acronyms

COG Center of Gravity
COM Computer on Module

DOF Degrees of Freedom
DUNE Unified Navigation Environment

ESC Electronic Speed Control

GCS Ground Control System
GNSS Global Navigation Satellite Systems
GPS Global Positioning System

I2C Inter-Integrated Circuit
IMC Intermodule Communication
IMU Inertial Measurement Unit
IR infrared

LIDAR Light Detection And Ranging

MAV Micro Air Vehicle
MAVLink Micro Air Vehicle Link
MEMS Micro Electromechanical Systems
MPC Model predictive control

NDT Non Destructive Testing
NED North-East-Down
NLP Nonlinear Program

xix

xx Acronyms

ODE Open Dynamics Engine

QP Quadratic Programming

RADAR RAdio Detection And Ranging
RANSAC Random Sample Consensus
ROS Robot Operating System

SDF Simulation Description Format
SLAM Simultaneous Location And Mapping
SPI Serial Peripheral Interface

ToF Time of Flight

UART Universal Asynchronous Receiver-Transmitter
UAV Unmanned Aerial Vehicle
URDF Unified Robot Description Format
USB Universal Serial Bus
UTM Ultrasonic Thickness Measurement

Acronyms 1

2 Acronyms

Chapter 1

Introduction

This chapter will first present the motivation for the research, before briefly
discussing related work. Finally, a list of main contributions are presented, as
well as an outline of the remainder of the thesis.

1.1 Background and Motivation

Industrial inspection is time intensive, costly and often imposes severe risk to
the inspector. This holds true for inspection of cargo holds and tankers in the
marine sector, where scaffolding is needed in order to reach all surfaces for
inspection. A key point in inspection of marine infrastructure and tanks is steel
thickness measurements. Mounting an ultrasonic thickness sensor on Unmanned
Aerial Vehicles (UAVs) using a fixed end effector and developing models, control
algorithms and navigation methods for reliable, automatic measurements, is a
big step in the direction of making these inspections fully autonomous.

UAVs have a rich history in both research and engineering. The development of
improved solutions for inertial sensors, satellite positioning and battery technol-
ogy have a huge role in the shift from mainly military, to strongly increasing
variety of civilian applications. Another strong contributor to this shift has
been the development of lightweight and cheap Micro Electromechanical Systems
(MEMS), for example accelerometers and gyroscopes.

Recent advancements in sensor technology have enabled small, lightweight ultra-
sonic thickness measurement gauges that can be mounted on small multirotor

3

4 CHAPTER 1. INTRODUCTION

UAVs. These require only seconds of contact to take reliable measurements, and
a few also include mechanisms for automatic application of gel to the probe, in
order to ensure better contact and more reliable measurements.

Figure 1.1: Inspection drone with camera. (Image courtesy of Scout DI)

Since contact with physical objects pose a huge risk for UAVs, control algorithms
for safe interaction with the environment is needed. An extensive amount of
work has been done in the field of force and contact based control for robots with
fixed base. These robots have the benefit of being able to dissipate contact forces
through the fixed base link. One particular challenge for most UAVs, including
quadrotors, helicopters or ducted fans, are that these systems are mechanically
underactuated, meaning that not all of their Degrees of Freedom (DOF) can
be simultaneously controlled. This affects the control law design, as stability
needs to be preserved in the presence of disturbances from physical interaction.
This thesis will investigate controllers for stable interaction, enabling thickness
measurements using drones.

Most drones available for commercial use require some sort of Global Navigation
Satellite Systems (GNSS), such as the Global Positioning System (GPS) to solve
the drift problem in dead reckoning in inertial navigation. Another common
approach to the problem is the use of visual navigation, such as visual odometry
based on camera or an optical flow sensor. However, neither of these are available
in most industrial environments, as the weak GNSS signals fail to penetrate
most building surfaces, and poor lighting render visual techniques useless in
most situations. Hence, this thesis will also investigate local navigation solutions
based on sensors that are able to operate in such environments, in order to

https://www.scoutdi.com/

1.1. BACKGROUND AND MOTIVATION 5

successfully carry out contact based inspections.

To harness the potential for time and cost savings, an end-to-end system for
autonomous thickness measurements needs to be both robust and user-friendly.
This puts strong requirements on the quality and security of the system. Drone
operators with little to no prior experience or training should be able to carry out
the same operations as an experienced drone operator could perform manually.
A visualization of the automatic thickness measurement operation can be seen
in fig. 1.2. This thesis will develop such a system by integrating automatic
thickness measurements into an industrial drone platform, using the control and
navigation solutions developed, along with operator interfaces for easy access.

Figure 1.2: The inspection scenario

It should be noted that the meaning of the word autonomous in this context is
not intended as a fully autonomous operation from takeoff to landing. As many
industries have discovered in recent years, it is more beneficial to view autonomy
as different levels, each taking a step towards the goal of fully autonomous
operations. Hence, in this thesis, the operation will be autonomous from the
moment the operator request a thickness measurement at a surface of interest,
until the drone has returned safely to the original position. The methods
developed will also focus on facilitating for future, fully autonomous inspection
scenarios.

6 CHAPTER 1. INTRODUCTION

1.2 Related Work

In this section, the most relevant work for this thesis is presented. Note that the
literature directly applicable to this thesis, will be covered in greater detail in
the background chapters in their respective parts.

Automated inspections in general is a topic that has been researched thoroughly,
mainly because of the obvious potentials for time and cost savings. An area that
has received a lot of attention, is the use of drones to conduct visual inspections.
Inspection of wind turbines is among the applications for visual inspections, and
[66] proposes a method for visual navigation, while [64] presents a concept based
on priori 3D mapping and spline-based flight path planning. In [73], Zhang et al.
uses a photogrammetry payload to provide a 3D visual reconstruction of the
blade profile, while [36] presents a feasibility study for defect detection using
infrared thermography.

In recent years, visual inspections of buildings using drones have also been heavily
researched. In [23], Eschmann et al. developed a rotary wing octocopter Micro
Air Vehicle (MAV) system to scan buildings using a high resolution camera. A
possibility study on building inspection is presented in [47], using a range of
different sensors that are mounted on a drone, while [56] created motion corrected
images used to form a facade map of the building. In [24], a complete system
for use in indoor visual inspection is presented. Localization, mapping and
navigation is achieved using only the embedded sensors and with the perception
and control loop running on-board the MAV.

The EU funded R&D project MINOAS [14, 10, 55] is specifically concerned with
the development of solutions for autonomous inspection of marine vessels. Their
approach combines a drone for visual inspection [13] and a robotic crawler [21]
for contact based inspections. Among the contributions are a mosaic approach
for stitching images [37] for visual inspection and vision-based corrosion detection
[54].

The AEROWORKS1 project aims to develop drones equipped with robotic
arms for advanced manipulation capabilities. Most relevant to this thesis is an
LQR controller for substantial and sustained force introduced in [71]; however,

1http://www.aeroworks2020.eu/

http://www.aeroworks2020.eu/

1.2. RELATED WORK 7

it assumes that the drone is equipped with an actuator that is able to move
the end effector to help counteract disturbances. Other control research under
this project, summarized in [4], is mainly directed towards the use of a robotic
manipulator arm mounted on a UAV.

The AEROARMS [5] project (EU funded R&D project) has tested a large drone
conducting thickness measurements. The drone has 6 tilted rotors, making it
able to produce forces in all directions and overcome the underactuation problem.
The sensor arm is also rotatable, making it easier to conduct measurements
at different angles. Even more recently, more work has been done on control
approaches for fully actuated systems. A cascaded PID controller in free flight,
while switching to an angular rate stabilizing control in contacts is presented in
[72]. In [67], a PD control law for an elastic jointed manipulator model is used,
and introduces integral effects in all directions except along the contact axis.
Finally, [11] presents a selective impedance control strategy for omni-directional
platforms.

More related to this thesis, work has also been done in the area of physical
contact by rigid contact mechanisms. In the papers [2] and [3], a hybrid MPC
solution, which enables a drone to draw on surfaces, is presented. The main
drawbacks of this method is the complexity and the computation power required
for the solution of the MPC problem. Drones utilizing horizontal propellers to
achieve contact with the environment have been developed, such as in [1].

In [41] the mechanical design of a drone endowed with a small manipulator
is developed. The drone generates horizontal forces by changing its attitude,
similar to what is necessary to achieve the goals of this thesis. In [32], Fumagalli
et al. proposes a control law based on the simplified 2D model of the drone,
while [33] proposes a control law based on the full 3D model. In [65] a hybrid
impedance and force controller is proposed for the same drone. While these
papers use a stabilizing manipulator structure mounted on the drone, the theory
is very relevant to this thesis and forms the basis for the control derivations in
part III.

8 CHAPTER 1. INTRODUCTION

1.3 Contributions and Scope of This Thesis

The objective of this work is the design and implementation of control structures
enabling automatic thickness measurements using an ultrasonic probe, in addition
to navigation solutions in industrial environments based on available sensors.
Integration of these methods and necessary sensors will together form a complete
system for automatic thickness measurements. This thesis is the continuation
of a simulation study carried out as part of the specialization project in the
fall of 2018. Hence, the following contributions are partitioned based on which
project they primarily can be attributed to. However, it should be noted that
the elements from specialization project have been subject to improvements,
revisions and further work in this thesis.

Specialization Project
• Dynamic models in both 2D and 3D, along with impedance based controllers

for robust interaction with the environment, inspired by [32, 33].
• An exploratory derivation of a constraint model using the Udwadia Kalaba

equations.
• Complete simulation scenario in Gazebo and ROS, and incorporating the

UAV, measurement probe dynamics, inspection surface and interactions
between the aforementioned parts.

• Implementation and validation of the impedance based control algorithms
in ROS and Gazebo.

• A framework for control implementations in DUNE with simulations in
ROS and Gazebo.

This Thesis
• Derivation of pre-computed trajectories for interaction in the framework

of optimal control.
• Implementation and validation of pre-computed, optimal trajectories in

ROS and Gazebo.
• Derivation and verification of algorithms for estimation of relative heading

based on both RANSAC and regression.
• Experimental validation of impedance based control algorithms on multiple

hardware platforms.
• Experimental validation of the developed methods for local navigation.
• Integration and verification of a complete, robust and user-friendly system

for autonomous thickness measurements in an industrial context.

1.4. OUTLINE AND ORGANIZATION 9

1.4 Outline and Organization

This thesis is split into several parts, categorized by important aspects for
successful development of automatic thickness measurements. Modeling is
concerned with finding models for control synthesis and basic simulations, but
also more accurate models that can provide insight into key aspects of the
interaction. In the control part, different approaches for stable control of the
interaction will be presented. Thereafter, algorithms and methods for gathering
necessary navigation information about the environment is presented. The two
following parts will then describe the more practical sides of implementing the
platform used in this thesis, and will detail the hardware and software used
respectively. Finally, the simulation part is included in the appendix, which
outlines the development of a framework for accurately simulating contact-based
inspection from UAV in a physics engine. This simulation framework provides
capabilities of thorough and realistic evaluation of a wide range of controllers
before they are tested experimentally. Hence, ordered chronologically, this
belongs before the experimental results from the flight tests, but has been moved
to the appendix in order to give more room for experimental results in this thesis.
However, the interested reader is highly encourage to also look into this part.

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

Figure 1.3: Overview of the main parts
of the thesis

Seen from a broader perspective the
modeling, control and navigation
parts will provide the theoretical foun-
dation of this thesis, while the software
and hardware parts will provide infor-
mation about the implementation on
an industrial drone platform. The re-
sult and simulation parts will present
the achieved results, and will give a
thorough discussion about strengths
and weaknesses of the developed solu-
tions and overall system.

10 CHAPTER 1. INTRODUCTION

Detailed outline

Part I — System Overview:
Presents an overview of the drone and systems used.. This includes a description
of the ultrasonic thickness measurement sensor, along with the most important
characteristics of the drone.

Part II — Modeling:
This part presents the 2D and 3D dynamics models for the quadrotor, before
augmenting the models with interaction forces and implementing them in MAT-
LAB/Simulink as a simulator. Also, general theory and an introductory example
for the Udwadia Kalaba equations are presented, along with derivations for the
constrained interaction during contact-based inspection.

Part III — Control:
First, a brief introduction to the general force control theory is presented. Sec-
ondly, impedance based control algorithms are derived based on the models devel-
oped in part II, before initial validation is carried out in the MATLAB/Simulink
simulators. Lastly, an approach using optimal trajectories are presented as an
alternative to the impedance based controllers.

Part IV — Navigation:
This part will first present theory on RANSAC, before a brief discussion on
navigation solutions based on available sensors. Thereafter, navigation methods
based on data from a 2D scanning LIDAR using RANSAC and regression is
presented.

Part V — Hardware:
In this part the hardware components of the UAV are presented, along with a
short description of the integration process. This part will also detail the sensor
and mission payloads used throughout this thesis.

Part VI — Software:
First, The LSTS Toolchain is presented, with special focus on the runtime
environment DUNE. Thereafter, the development and integration of the different
components described in this thesis is outlined, along with other components
and application that were developed in order to create a complete solution for
contact-based thickness measurement.

1.4. OUTLINE AND ORGANIZATION 11

Part VII — Results:
In this part the results of the experimental validation are shown. Four different
scenarios are shown, and the results are discussed and compared to results
achieved in simulation.

Chapter 19 — Discussion and Conclusion:
An overall discussion of the achieved results is conducted and a conclusion is
drawn with respect to the goals of this thesis. Finally, possible future work
following this thesis is presented.

Appendix Part I — Simulation:
Background theory on the ROS and Gazebo framework is presented. Thereafter
follows a full description of the setup and extensions made to the simulator
to replicate the inspection scenario. Then, simulation results from different
scenarios using impedance based control are presented and discussed. Finally,
the simulation result of using pre-computed optimal trajectories is presented
and discussed.

Notes about wording used in this thesis

The acronym UAV (Unmanned Aerial Vehicle) incorporates all types of unmanned
aerial vehicles, including fixed-wing, helicopters and multirotors. Some ambiguity
also applies to the word drone, which is the word most commonly used about
quadrotors on the commercial market. However, in the following the words UAV
and drone will be used interchangeably to mean a quadrotor, unless explicitly
stated otherwise.

The word ”environment” is used to describe the inspection surfaces the drone
interacts with. This is slightly ambiguous, as ”environment” usually incorporates
much more than just the physical objects of the surroundings; however, it follows
the phrasing used in the literature about physical interaction for aerial platforms,
such as [32].

12 CHAPTER 1. INTRODUCTION

Part I

System Overview

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

13

Chapter 2

System Overview
This chapter gives a brief introduction to the drone characteristics, navigation
sensors and the ultrasonic probe system. This is presented first, as the specifica-
tions are important for the modeling and control system synthesis in the following
parts, but also to give the reader a more intuitive and visual understanding of
the system.

2.1 The Development Drone

This thesis is conducted in collaboration with Scout Drone Inspection AS,
who has designed the UAVs used throughout this thesis. The development
drone is shown in fig. 2.1, with the probe mounted in front of the drone. An
approximated set of parameters for mass and moments of inertia are given in
table 2.1. These parameters will be the basis for all simulations created during
this thesis. Figure 2.2 shows an exploded view, revealing all the components of
the drone. The integration of hardware components will be detailed in part V.

Parameter Value
Muav 2.5 kg
Ixx 0.01 kgm2

Iyy 0.01 kgm2

Izz 0.02 kgm2

Table 2.1: Approximated drone parameters

15

16 CHAPTER 2. SYSTEM OVERVIEW

Figure
2.1:

Fully
assem

bled
drone

w
ith

allsensors
and

m
ission

payload

2.1. THE DEVELOPMENT DRONE 17

Fi
gu

re
2.

2:
Ex

pl
od

ed
vi

ew
of

th
e

dr
on

e
an

d
al

lh
ar

dw
ar

e
co

m
po

ne
nt

s.
(C

ou
rt

es
y

of
Sc

ou
t

D
I)

18 CHAPTER 2. SYSTEM OVERVIEW

2.2 Sensor Overview

This section presents an overview of the most important navigation sensor and
mission payload on board the drone. This includes a Light Detection And
Ranging (LIDAR) system for horizontal positioning and a range sensor for
vertical positioning, as well as the mission payload used to conduct thickness
measurements. Together, these provide the essential capabilities needed to carry
out an inspection scenario in an indoor, industrial environment.

Range Sensor

2D Scanning Lidar

Measurement Probe

Figure 2.3: Overview of the most important navigation sensors and mission
payload

2.2.1 Navigation Sensors

LIDAR
The main navigation sensor used for positioning and orientation in the xy-plane
is a 2D scanning LIDAR. The LIDAR is mounted on top of the drone (as seen
in fig. 2.2 and fig. 2.1). It provides a laser scan of the environment aligned with
the body xy-plane, as illustrated on the left side in fig. 2.3.

Navigation solutions for indoor environments based on a 2D scanning LIDAR
are developed in part IV, while more details about the sensor and software
integration will be given in section 14.6 and section 16.2 respectively.

2.2. SENSOR OVERVIEW 19

Range Sensor

The drone features a Time of Flight (ToF) range sensor to measure the altitude
above ground. The sensor is mounted to the bottom side of the drone, and can
be seen in black and yellow in the lower part of fig. 2.2. More details on the
sensor specification and integration will be given in section 14.3. Combining the
scanning LIDAR aligned with the xy-plane, and the range sensor pointing along
the z-axis, this gives enough information to do 3D position estimation in poorly
lit, GPS denied environments.

2.2.2 Steel Thickness Measurement

In this thesis, Ultrasonic Thickness Measurement (UTM) is carried out using
a probe made by Tritex NDT1, which is especially designed to be mounted
on drones. It features a probe and a small box used for data processing and
collection, which can be seen in fig. 2.4.

The mounting of the probe onto the hardware platform is described in section 14.5,
while section 16.2 focuses on the integration into the software framework used
on the drone. In addition, section 14.5 will also give an introduction to thickness
measurements using ultrasound, and describe the theory behind the measurement
technique used in the probe.

Figure 2.4: The UTM probe. Image courtesy of Tritex NDT

1https://www.tritexndt.com/

https://www.tritexndt.com/product/multigauge-6000-drone-thickness-gauge
https://www.tritexndt.com/

20 CHAPTER 2. SYSTEM OVERVIEW

The probe system includes a mechanical compliance device to help the drone
interact with the environment. The compliance device depicted in fig. 2.4 is
included in the standard product. However, introductory experiments also
showed that in order to maximize the probability of a valid measurement, a small
angle between the probe and surface was needed. The mechanical compliance
system is designed to compensate for this by having a flexible joint near the
end of the probe. In order to get the desired disturbance rejection, a custom
probe mounting was developed by Scout DI (seen in both fig. 2.1 and fig. 2.2).
Such mechanical compliance devices have also been included in the simulations
developed in this thesis, in order to ensure as precise replication of the physical
system as possible.

The control system developed focuses on creating a stable interaction, while at
the same time providing sufficient contact forces and minimize any orientation
errors in order to get a valid measurement from the probe. In part VII, the
results of this thesis is presented, and a thorough analysis is given with respect
to these performance metrics.

2.3 Scout 135 Platform

Figure 2.5: The Scout 135 platform

The controllers and navigation meth-
ods developed are also tested on a
another drone platform developed by
Scout DI. These experiments are car-
ried out to show that the solutions are
hardware agnostic, but also give more
detailed insight into how the hardware
design affect the performance of the
control systems.

The drone can be seen in fig. 2.5, and
a detailed description of the differ-
ences between the two platforms will
be given in section 14.7.

Part II

Modeling

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

21

Chapter 3

Introduction

As this thesis will present multiple different models for the same scenario, this
chapter will briefly give the motivation and reasoning behind this, their use-cases
and how they fit in with the rest of this thesis.

Figure 3.1 illustrates how different models can fit into the same control scenario,
and shows a typical ecosystem for developing models and controllers for a general
application. An accurate and advanced model can usually be derived based
on the physical system, and forms the basis for an precise simulation of the
system. These models usually encompass all of the detailed physical behavior of
a system; however, they are in most cases not suitable for control synthesis. In
fact, it might not even be feasible as the model might be implicit, too complex to
analyze or appear as a black box from a control perspective (such as data driven
models). In order to create a model more suitable for control, simplifications are
made, such as linearization or reduction of the model.

In this part, two models for control synthesis will be presented: One reduced
model in two dimensions and one 3D model. Simulators are also developed
in MATLAB/Simulink to do an initial verification of the control approach.
Another model, based on the Udwadia Kalaba equations, are also presented in
chapter 6; however, not for the purpose of control synthesis, but rather as a
more accurate model that might be used to build simulators in software such as
MATLAB/Simulink.

Based on the simplified design models, controllers can be derived. It is important
to emphasize the possibility to use the same model to develop different controllers

23

24 CHAPTER 3. INTRODUCTION

by utilizing other control techniques. Part III will present control approaches
based on the models derived in this part. Afterwards, these will be tested in
MATLAB/Simulink simulators, as an initial validation of the approach.

Control design #1 Design model #1

Control design #N Design model #N

Physical system

Simulation model

Newton’s law, etc.

Test in simulator

Implementation

Linearization,
Model reduction,
Simplification, etc.

...... ...

Figure 3.1: Ecosystem of model designs for control

After the initial verification of the controller, a more thorough verification can
be done using the advanced simulation model. In this thesis, this is done using
a physics engine. This usually gives a more realistic scenario compared to the
models used for control design, as it includes more of the key characteristics,
behaviors and functions of the physical system. In the ideal case this will represent
an almost identical case as the physical system, and only small adjustments are
needed to implement the controller on the physical system. Verifications on the
simulation model will be carried out in part Appendix Part I, when the system
and controller are implemented in ROS/Gazebo.

Finally, the developed controllers can be tested on the physical system itself. In
this thesis these results are presented in part VII. In section 18.5 a comparison
is made between the simulated scenarios and the flight tests, highlighting the
key similarities and differences between them, both in terms of the modeling
accuracy and controller performance.

Chapter 4

2D UAV Model

This chapter will introduce an approximated 2D dynamical model for the drone
and then augment the model for planar interaction to include contact forces.
After that, simulations are performed to show the validity of the model. A
lot can be learned about this scenario using only a simplified 2D model as a
representation, which will be used to get experience and insight before the full
3D model is derived. Also, the model will be used for control synthesis later.
The following derivations adopts the conventions used in most of the literature,
such as [29].

4.1 2D Model Basics

The 2D model considers a planer view of the scenario, as seen in fig. 4.1. This
section will very briefly cover the basics of a simple 2D model for a drone.

The coordinate frames are given in fig. 4.1 and follows the NED coordinate frame
convention (the y-axis completes the right-hand rule and points outwards in this
example). NED is also assumed inertial.

25

26 CHAPTER 4. 2D UAV MODEL

xn

zn

pn
b

xb

zb

Figure 4.1: 2D model of the drone

Symbol Description
fi, i ∈ {1, 2, 3, 4} Magnitude of motor thrusts (enumerated clockwise

from front left motor)
Lf Lever arm front
Lb Lever arm back
f b Resulting thrust from rotors in body frame
τ b Resulting torque from rotors in body frame

Table 4.1: A definition of the symbols used in the 2D model

Consider a UAV with lever arm Lb for the two back propellers and Lf for the
front propellers. Using the variables described in table 4.1, f b and τ b are then
given by

f b = f1 + f2 + f3 + f4 (4.1)
τ b = Lff1 + Lff2 − Lbf3 − Lbf4 (4.2)

Which can be represented in a more convenient vector-form as

[
f b

τ b

]
=

[
−1 −1 −1 −1
Lf Lf −Lb −Lb

]
f1
f2
f3
f4

 (4.3)

In the case of the planer dynamics where only the pitch dynamics are considered,
it does not matter which of the rotors in the front pair or back pair that produces

4.1. 2D MODEL BASICS 27

the force. Hence, given f b and τ b, this set of equations can be solved for all fi
by constraining f1 = f2 and f3 = f4.

Let fe =
[
fe,x fe,y τe

]> be any interaction from the environment. The
unconstrained dynamics can be written as [32]:

Muavẍ = f b sin θ + fe,x

Muav z̈ = f b cos θ +Muavg + fe,y

Juav θ̈ = τ b + τe

(4.4)

Or in vector formMuav 0 0
0 Muav 0
0 0 Juav


︸ ︷︷ ︸

Muav

ẍz̈
θ̈


︸︷︷︸

ẍ

=

sin θ 0
cos θ 0
0 1


︸ ︷︷ ︸

R(x)

[
f b

τ b

]
︸︷︷︸

u

+

 0
Muavg

0


︸ ︷︷ ︸

g

+fe (4.5)

Looking at the top two rows of R(x), the underactuation of the system becomes
apparent. The sub-matrix defined by the x and z-dynamics can never have full
rank, and hence cannot be independently controlled. To summarize, the total
system can be written as

Muavẍ = R(x)u+ g + fe (4.6)

Where Muav is the mass-matrix of the system, x =
[
x z θ

]>
=

[
pn>
b θ

]>
is the state vector, u is the forces and moments from the rotors and g is the
gravitational force.

28 CHAPTER 4. 2D UAV MODEL

4.2 Contact Force Augmentation

xn

zn

pn
b

xb

zb

xp

zp

pb
p

Figure 4.2: 2D model with contact

This section is inspired by [32], but differs with respect to the coordinate systems
used, drone setup and the model of compliant behavior.

Equation (4.6) is now augmented with external forces and moments (fe), such
that

Muavẍ = R(x)u+ g + fe (4.7)

The external forces can be found as [32]:

fe =

−fc cos (θ + θp)
fc sin (θ + θp)
hfc − (r − η)mg

 (4.8)

Where m is the mass of the sensor, θp is the angle between the probe and the
x-axis, r is the length of the probe, η is the deformation of the compliance device,
fc is the contact force, assumed to work along the vector of the probe pb

p and h
is the lever arm for contact forces. One note is that the relationship between r,

4.2. CONTACT FORCE AUGMENTATION 29

η, θp, h and pb
p =

[
pbp,x pbp,y

]> is given by∥∥pb
p

∥∥ = r − η (4.9)
θp = atan2

(
pbp,y, p

b
p,x

)
(4.10)

h =
pbp,zr

b
p,x − pbp,xr

b
p,z∥∥pb

p

∥∥ (4.11)

Where rbp =
[
rbp,x rbp,y

]> is the vector from the origin to the point where the
probe is attached in the body frame.

By assuming that the mass of the sensor is small compared to the mass of the
UAV, such that m << Muav, eq. (4.8) simplifies to

fe =

−fc cos (θ + θp)
fc sin (θ + θp)

hfc

 = fc

− cos (θ + θp)
sin (θ + θp)

h

 (4.12)

kx

η

Figure 4.3: Interaction model

The contact force fc is found by modeling the environment as a compliant surface
such that the force is proportional to the deformation of the material [32]. This
is equivalent to modeling the compliant behavior of the probe.

fc :=

{
−kxη if η > 0

0 if η ≤ 0
(4.13)

where kx is the collision stiffness and η = xp−xw is the collision distance between
the probe placement xp and the wall placement xw.

30 CHAPTER 4. 2D UAV MODEL

4.2.1 Compliant Behavior Considerations

An important note in this derivation, is that the interaction forces are modeled
as directly affecting the dynamics of the drone. This is reasonable when the
compliant behavior is simple, such as in this case. However, another possibility
is to model the compliant behavior of the drone as a separate subsystem, such
that the system becomes a cascaded interconnection of the environment, the
compliance device, and the lateral/vertical dynamics of the vehicle. The environ-
ment would then influence the manipulator dynamics through the force fc, and
this propagates to the lateral and vertical dynamics of the quadrotor through
a force fcompliant. This approach is more beneficial if the compliant device is
more complex, and incorporates the scenario where a small manipulator is used
as compliance device, such as in [32].

4.3 Simulation Validation

In this section simulations are carried out to verify that the model works as
expected and forms the basis of a simulator for validation of the controllers.
A low-level PD attitude controller and altitude control controller with gravity
compensation was also used to enable verification of the interaction model in
simulation.

In the following simulation the pitch reference is set to −3° for 5 seconds, starting
at t = 10 s. This causes the UAV to accelerate towards the inspection surface
placed at x = 0.75m. In fig. 4.4 it can be seen from the pitch angle θ that
the contact causes the UAV to rotate backwards. The rotation along with the
compliance forces from the interaction, results in a backward motion. Figure 4.5
shows the drone before, during and after the interaction and confirms this
behavior. Afterward the first interaction, the attitude controller corrects the
pitch and the drone accelerates towards the inspection surface again for another
bounce. As the probe is angled slightly upwards during the interaction, it can
also be seen that the drone is pushed down in the interaction. All of the described
behavior is in accordance with physical interpretations, and the model seems to
capture the most prominent effects of the interaction.

A side note is that these simulations needs to be run with a fixed step solver, as
the performance of a variable step solver is sub-optimal due to the switching
behavior of the contact forces in the interaction.

4.3. SIMULATION VALIDATION 31

Figure 4.4: State variables, contact forces and control variables during simulation

32 CHAPTER 4. 2D UAV MODEL

Figure 4.5: Planer view of the UAV before, during and after interaction

Chapter 5

3D UAV Model

This section will introduce a full 3D model for the drone and augment this
model to include contact forces based on [33]. Thereafter, simple simulations
are performed to validate the model. The model will also be used for control
synthesis in section 9.1. The following derivations adopts the conventions used
in most of the literature, for example [29].

5.1 3D Model Basics

This section covers the basics of modeling the dominant dynamics of a multirotor
UAV, and is based on [29] and [43]. This is a topic that has been well studied in
the literature, and hence this will only be a brief introduction. There are different
choices of kinematic representation of attitude to be considered. Euler angles
are commonly used for the easy interpretation and will be used throughout this
thesis. However, other representations exists, such as quaternions, which has
the advantage of being singularity free. As the main purpose of this thesis is
developing a model for stable control, the singularity caused by the Euler-angle
representation is easily avoided. As with the 2D model, the NED frame is
assumed inertial in the following derivations.

33

34 CHAPTER 5. 3D UAV MODEL

xn

zn

yn

pn
b

xb

zb
yb

Figure 5.1: 3D model

5.1.1 Kinematics

Coordinates in the NED frame are given by η =
[
xn yn zn Θ>]> =[

pb>
n Θ>]> ∈ R6. Here Θ =

[
φ θ ψ

]> are the Euler-angles defined by
the zyx-convention [29]. The body-fixed coordinate system, {b}, is attached to
the rigid body. The body-velocities is given by

ν =
[
u v w p q r

]> (5.1)

where ν1 =
[
u v w

]> is the translational velocities and ν2 =
[
p q r

]> are
the rotational velocities.

It is convenient to define the rotation matrix [29], describing the rotation of the
frame {b} relative to a frame {n} subject to the rotation Θ.

Rn
b :=

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ


where c· = cos(·) and s· = sin(·). Also, let the skew symmetric matrix [29] be
defined as

S(λ) :=

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 (5.2)

5.1. 3D MODEL BASICS 35

where λ ∈ R3, and S satisfies S(λ)> = −S(λ) and v1 × v2 = S(v1)v2.

The transformation matrix TΘ [29], relates the angular velocities in {n} and {b}
by Θ̇ = TΘν2, and is defined as

TΘ :=

 1 sφsθ/cθ cφsθ/cθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 ,∀θ 6= π

2
+ kπ, k ∈ Z (5.3)

To conclude, the velocities in {n} and {b} are related by the equation

η̇ = JΘν (5.4)

where

JΘ =

[
Rn

b (Θ) 03×3

03×3 TΘ

]
(5.5)

5.1.2 Kinetics

According to [29], the rigid body kinetics can be written as

m (ν̇1 + ν2 × ν1) = τ 1 (5.6)
ICGν̇2 + ν2 × (ICGν2) = τ 2 (5.7)

where m is the mass of the body, ICG ∈ R3×3 is the moment of inertia about the
centre of gravity. τ 1 ∈ R3 and τ 2 ∈ R3 is external forces and external moments
respectively. Under the assumption that {b} is located in the center of gravity,
then eqs. (5.6) and (5.7) can be written as

Mν̇ +Cν = τRB (5.8)

where

M =

[
mI3×3 03×3

03×3 ICG

]
C =

[
mS (ν2) 03×3

03×3 −S (ICGν2)

] (5.9)

The gravitational forces is easily defined in NED as fG =
[
0 0 mg

]>. Rotating
them into body frame yields

gb = −
[

(Rn
b)

>
fG

03×1

]
(5.10)

36 CHAPTER 5. 3D UAV MODEL

To summarize, the kinematics and kinetics of the rigid body can be written as
([29])

η̇ = JΘν (5.11)
Mν̇ +Cν + gb = τA (5.12)

where τA consist of all external forces, except for gravity.

5.1.3 Dominant Multirotor Dynamics

In the literature, such as [43, 33], it is common to leave the translational dynamics
represented in {n}, rather than {b}. This is because a multirotor UAV has the
ability to generate thrust in any direction by changing it’s roll- and pitch-angle.
Consider the following

ṗ = v (5.13)
Θ̇ = T(Θ)ω (5.14)

where p = pn
b =

[
xn yn zn

]
∈ R3 is the position in NED.

As in [33], the multirotor dynamics can be written in the following form

ṗ = v (5.15)
muavv̇ = muavg +Rn

b (Θ)f (5.16)
Θ̇ = T(Θ)ω (5.17)
Iω̇ = S(Iω)ω +M (5.18)

Where f =
[
0 0 −f

]> and M =
[
Mx My Mz

]> are the force vector and
moments created by the motors respectively. The conversion between motor
forces and equivalent forces and moments in {b} is given by

f
Mx

My

Mz

 =


1 1 1 1
Ls −Ls −Ls Ls

Lf Lf −Lb Lb

−c c −c c



f1
f2
f3
f4

 (5.19)

The force allocation matrix is specific for this particular configuration of rotors,
and the constants are defined in table 5.1.

5.2. CONTACT FORCE AUGMENTATION 37

Symbol Description
fi, i ∈ {1, 2, 3, 4} Magnitude of motor thrusts (enumerated clockwise

from front left motor)
Lf Lever arm front
Lb Lever arm back
Ls Lever arm side

Table 5.1: A definition of the symbols used in the 3D model

5.2 Contact Force Augmentation

This section is inspired by [33]; however, it differs with respect to the coordinate
systems used and model of compliant behavior.

xn

zn

yn

pn
b

xb

zb
yb

xp

zp
yp

pb
p

Figure 5.2: 3D model for contact

In this section, eq. (4.6) is augmented with external forces fe and moments Me,
such that

ṗ = v

muavv̇ = muavg +Rn
b (Θ)f + fe

Θ̇ = T(Θ)ω

Iω̇ = S(Iω)ω +M+Me

(5.20)

38 CHAPTER 5. 3D UAV MODEL

According to the coordinate frames in fig. 5.2, these forces and moments can be
found as [33]

fe = Ri
bR

b
pf

p
c (5.21)

Me = Ri
bR

b
pM

p
c +Ri

b

(
Rb

pf
p
c × pb

p

)
(5.22)

This includes the entire wrench applied from the environment to the drone.
However, the moments Mc that are directly applied by the environment are
very small for the interactions considered in this thesis, and are omitted in the
following. The forces and moments created by the gravitational force of the
probe are also assumed negligible.

5.2.1 Compliant Behavior

The contact force is given by fpc = Rp
ee

[
−fc 0 0

]>, where Rp
ee is the rotation

matrix between two frames with origin in the end-effector. The first frame {p}
is shown in fig. 5.2, and is the frame with x-axis aligned with the vector from the
origin to the end-effector tip. The second frame {ee} is the frame with x-axis
aligned with the vector from the probe attachment point and the end-effector tip.
The magnitude fc is found the same way as in previous chapter, and is given by
equation eq. (4.13)

As with the 2D model, it is a possibility to model the compliant behavior of the
drone as a separate subsystem to include more advanced compliant subsystems
as in [33].

5.3 Simulation Validation

Similar to the previous chapter, the model is implemented as a simulator in
MATLAB/Simulink. To get the simulation as accurate as possible, realistic
motor simulations have been included. The input to the UAV model is the
individual motor voltages. The model is implemented according to the common
motor model [12]

İm =
1

Lm
(−RmIm,i + Vm −KeΩm,i) (5.23)

Ω̇m =
1

Jm
(−BmΩm,i +KtIm,i −KqΩ

2
m,i) (5.24)

5.3. SIMULATION VALIDATION 39

Where Im,i and Vm is the individual motor currents and voltages and Ωm,i are
the angular velocities of the rotors. The motor thrusts are then given by

fi = KTΩ
2
m,i (5.25)

The values of the constants used in the simulations are adapted from [6] and
given in table 5.2.

Symbol Description Value
Lm Electrical inductance 8.4× 10−4 H
Rm Electrical resistance 0.168Ω
Ke EFM constant 1.248× 10−2 V s rad−1

Jm Inertia seen by the motor 4.2× 10−7 kgm2

Bm Viscous damping ratio 4.2× 10−5 Nms
Kt Motor torque constant 1.0608× 10−2 NmA−1

Kq Motor thrust constant 9.2041× 10−8 kgm2 rad−2

KT Thrust constant 2.7517× 10−5 kgm rad−1

Table 5.2: Numerical values of constants in motor and propeller models

A low-level attitude controller was also implemented according to [17].

In the following simulation, the pitch reference is set to −5° for 1 second starting
at t = 11.5 s and the yaw reference ψ was set constant at 5°. This causes the
drone to collide with the inspection surface at an angle. The placement of the
inspection surface can be seen in fig. 5.4.

As with the 2D simulations, fig. 5.3 the interaction pushes the drone backwards,
and causes a rotation of the pitch angle θ. The velocity of the drone in combina-
tion with the angled approach causes the drone to rotate towards the inspection
surface. These effects can also clearly be seen in fig. 5.4, which depicts the
drone before, during and after the interaction. The roll angle is also slightly
perpetuated as a result of the interaction. Afterwards the attitude controller
corrects the attitude and the drone drifts away from the wall. This behavior fits
well with the physical interpretation and validates the performance of the model.

Friction was not included in the model; however, the contact forces are modeled
to work along the probe, instead of normal to the surface. This is slightly
non-physical, but the resulting behavior is similar to having friction. Modeling
and simulating the friction correct is very difficult. Hence, this has not been
the focus in this part, as the model is mainly used for control synthesis and

40 CHAPTER 5. 3D UAV MODEL

initial validation. As mentioned, a more thorough evaluation of the controller
performance will be conducted in part Appendix Part I, where correct friction
simulations are included.

Figure 5.3: State variables during simulation

5.3. SIMULATION VALIDATION 41

(a) Time step t = 14.0 s

(b) Time step t = 14.3 s

(c) Time step t = 14.5 s

Figure 5.4: Momentary snapshots of the UAV before, during and after interaction

42 CHAPTER 5. 3D UAV MODEL

Chapter 6

Udwadia Kalaba

In 1992, Udwadia and Kalaba [69] proposed a way of dealing with constraints
on dependent generalized coordinates. This method uses the equations for
the constrained acceleration to directly compute the constraint forces. The
framework is flexible, and the transition from constrained interaction to free
flight can be handled by removing the constraint from the equation when the
velocity is no longer in the direction of the constraining object. The most
prominent downside to this method, is that analytical expressions are usually
more complex than for independent coordinates, and therefore less suitable for
control purposes.

The motivation for using the Udwadia Kalaba equations, is that they will provide
an accurate method for simulating the constrained motion during interaction.
An example of where this could be relevant, is detailed studies of how attempts
at correcting positional errors in the direction parallel to the inspection surface
influences the stability of the interaction. However, the following will only present
the derivation of the necessary equations, and simulation implementation is left
as future work.

This chapter will first present the necessary background for the Udwadia Kalaba
equations, before giving a simple example showcasing the main differences to
more standard methods. Thereafter, the Udwadia Kalaba constraint equations
are derived for a UAV interacting in constrained motion with an inspection
surface and finally a short discussing is presented.

43

44 CHAPTER 6. UDWADIA KALABA

6.1 Background

In this section the necessary background for the Udwadia Kalaba equations is
presented along with an explanatory example.

6.1.1 Principle

This section follows the derivation in [43]. Let the unconstrained system be
defined as

Mq̈u = Q (6.1)

where qu ∈ Rn is the unconstrained generalized coordinates, and Q ∈ Rn are
generalized forces. The system has p constraints, such that it can be written on
the form

A(q, q̇, t)q̈ = b(q, q̇, t) (6.2)

where A ∈ Rp×n and b ∈ Rp are matrices and q ∈ Rn are the generalized
coordinates of the constrained motion of eq. (6.1).

The system in eq. (6.1) can be converted to a constrained system by adding
constraint forces Qc ∈ Rn , such that

Mq̈ = Q+Qc (6.3)

In [25], eq. (6.3) is solved by applying Gauss’s principle of Least Constraints.
This principle states that the acceleration of the constrained system follows the
vector closest to the unconstrained acceleration, that satisfies the constraints.
The minimization problem that follows from this can be solved using the Moore-
Penrose pseudoinverse. Moreover, the constrained system’s acceleration q̈ can
be found from (see [25]):

q̈ = q̈u +M−1/2
(
AM−1/2

)+

(b−Aq̈u) (6.4)

where (·)+ denotes the Moore-Penrose pseudoinverse. From this the constraint
force Qc can be found as

Qc = M1/2
(
AM−1/2

)+

(b−Aq̈u) (6.5)

For a complete derivation with proofs see [69].

6.1. BACKGROUND 45

6.1.2 A Simple Example

This section is adapted from the example given in [43], and the purpose is to
give the reader insight into some of the key differences of the Udwadia Kalaba
approach to other, more used methods.

θ

F

g

Figure 6.1: Pendulum system

Consider the classical pendulum system illustrated in fig. 6.1, where a pendulum
of mass m is attached to a point. In order to model the system, a set of
coordinates must be chosen to describe the configuration. The classical choice is
to use the angle θ, which uniquely describes the position of the pendulum. Then,
by defining q = θ, q becomes the independent coordinates of this 1 DOF system.

However, another choice is to describe the system using (x, y), i.e. the position
of the point-mass in cartesian coordinates. From many perspectives this is the
intuitive way of describing the system, as the mass inherently has a position in
cartesian space that might be of great interest. However, the point-mass cannot
move freely in the cartesian space and not all configurations (x, y) are reachable.
More specifically, it is restricted to the circle x2 + y2 = L2

s. If q = [x, y]> is
chosen as the generalized coordinates, the system is described with 2 coordinates.
However, it is important to note that our system still only has 1 DOF, and thus
1 constraint is also present.

46 CHAPTER 6. UDWADIA KALABA

This type of generalized coordinates are called constrained generalized coordi-
nates, or dependent generalized coordinates.

The following shows the derivation of equations of motion for a different choice
of generalized coordinates and methods of derivation.

Lagrange With Independent Coordinates

The Lagrangian of the system can be defined as

L =
1

2
mL2

s q̇
2︸ ︷︷ ︸

Kinetic

−mgLs(1− cos q)︸ ︷︷ ︸
Potential

(6.6)

with q = θ. Using Euler-Lagrange Equations, d
dt

(
∂L
∂q̇j

)
= ∂L

∂qj
, the equations of

motions are found as

θ̈ +
g

Ls
sin θ = 0 (6.7)

These equations are simple; however, they do not provide immediate insight
into the (x, y) placement of the point-mass. For more complicated systems the
relation between the independent coordinates and the position in the cartesian
space become even more convoluted.

Lagrange With Cartesian Coordinates

When using Lagrange mechanics, the constraints are usually written on the form

N∑
j=1

aij(q, t)q̇j + bi(q, t) = 0 (6.8)

The constraint is given as

x2 + y2 = L2
s (6.9)

However, differentiating once with respect to time yields

xẋ+ yẏ = 0 (6.10)

6.1. BACKGROUND 47

And by inspection it is seen that a11 = x and a22 = x and all other functions a
and b are zero. The Lagrangian can in this case be written as.

L =
1

2
m(ẋ2 + ẏ2)︸ ︷︷ ︸

Kinetic

−mg(Ls − y)︸ ︷︷ ︸
Potential

(6.11)

And once again using Euler-Lagrange equations, d
dt

(
∂L
∂q̇j

)
= ∂L

∂qj
, the equations

of motion are found as

mẍ = λax = λx (6.12)
mÿ = mg + λay = mg + λy (6.13)

where λ is the constraint factor. This can be written in a more convenient vector
form as [

m 0
0 m

] [
ẍ
ÿ

]
=

[
0
mg

]
− λ

[
x
y

]
(6.14)

The tricky part about this method is to find λ, which in general is non-trivial.

Using Udwadia Kalaba’s Equations

Also here, q is chosen as q =
[
x y

]> under the constraint x2+y2 = L2
s. Accord-

ing to eq. (6.2), the second derivatives of the constraints are need. Differentiating
the constraint with respect to time yields

2xẋ+ 2yẏ = 0 (6.15)

And once more

2ẋ2 + 2xẍ+ 2ẏ2 + 2yÿ = 0 (6.16)[
x y

]︸ ︷︷ ︸
:=A

[
ẍ
ÿ

]
= −ẋ2 − ẏ2︸ ︷︷ ︸

:=b

(6.17)

The equations of the unconstrained system is[
m 0
0 m

]
︸ ︷︷ ︸

:=M

a =

[
0
mg

]
(6.18)

48 CHAPTER 6. UDWADIA KALABA

as gravity is the only force working.

Inserting into the Udwadia Kalaba equations yields[
ẍ
ÿ

]
=

[
0
g

]
+M−1/2

(
AM−1/2

)+
(
b−A

[
0
g

])
(6.19)

Evaluating the Moore-Penrose psudoinverse gives

(
AM−1/2

)+

=
1

m−1x2 +m−1y2

[
m−1/2x
m−1/2y

]
(6.20)

inserting and rearranging the equations yield

M

[
ẍ
ÿ

]
=

[
0
mg

]
−m

ẋ2 + ẏ2 + gy

L2
s

[
x
y

]
(6.21)

This is similar as the previous section; however, λ is now given explicitly as

λ = −mẋ2 + ẏ2 + gy

L2
s

(6.22)

6.2 Derivation

In this section the Udwadia Kalaba equations will be derived for UAV contact
with the environment.

The general coordinates are defined as

q =
[
pn
b Θ

]> (6.23)

And the model of the unconstrained motion of the drone is given as in section 5.1.

Mbν̇b +Cν = τRB (6.24)

6.2. DERIVATION 49

xn

zn

yn

pn
b

xb

zb
yb

rbee

pi

Figure 6.2: Frames and vectors used in the Udwadia Kalaba equations

However, ν̇b is differentiated in body-frame, hence it cannot be used as generalized
acceleration. The solution to this is given in [43], by using that the equations of
motion can be written on the form

Mb

[
abb
αb

b

]
= τRB

where abb is the acceleration represented in the body-fixed frame (specific force),
and αb

b is specific torque. This will be used as generalized acceleration in the
derivation in the following section.

6.2.1 Constraint Equation Derivation

Referring to fig. 6.2, the point-of-impact pi is the vector between the end-effector
and the point-of-impact can be written as

Ln = pn
b + rnee − pi (6.25)

50 CHAPTER 6. UDWADIA KALABA

Inserting the rotation matrix this gives

Ln = pn
b +Rn

b r
b
ee − pI (6.26)

Constrain the end effector at the point of impact yields

0 = g = ‖Ln‖2 = (Ln)
>
Ln (6.27)

Differentiating g w.r.t. time gives

ġ =
nd

dt
g = 2L̇>L = 0 (6.28)

And one more differentiation yields

g̈ = 2L̈>L+ 2L̇>L̇ = 0 (6.29)

Then the derivative of L is found as

L̇ = ṗn
b + Ṙn

b r
b
ee (6.30)

where it has been used that ṗi = 0, since the point of impact is stationary.
Differentiating L once more then gives

L̈ = p̈n
b + R̈n

b r
b
ee (6.31)

The first and second derivative of Rn
b r

b
ee can be found as

Ṙn
b r

b
ee =

nd

dt
Rn

b r
b
ee = Rn

b S
(
ωb

b/n

)
rbee = −Rn

b S
(
rbee

)
ωb

b/n (6.32)

R̈n
b r

b
ee = −Ṙn

b S
(
rbee

)
ωb

b/n −Rn
b S

(
rbee

) nd

dt
ωb

b/n (6.33)

Then it can be utilized that
nd
dt ω

b
b/n =

bd
dtω

b
b/n , such that

R̈n
b r

b
ee = Rn

b S
(
ωb

b/n

)
S
(
ωb

b/n

)
rbee −Rn

b S
(
rbee

)
ω̇b

b/n (6.34)

This makes L a function of p̈n
b and ω̇b

b/n. This needs to be converted to generalized
coordinates, represented in {b}. Following [43], this can be done by

abb = Rn
b p̈

n
b (6.35)

6.2. DERIVATION 51

Then, by using Ibα
b
b = mb

rb, where mb
rb are the moments in the body fixed frame,

the equations become

Ibω̇
b
b/n = mb

rb − S
(
ωb

b/n

)
Ibω

b
b/n (6.36)

ω̇b
b/n = I−1

b mb
rb︸ ︷︷ ︸

:=αb
b

−I−1
b S

(
ωb

b/n

)
Ibω

b
b/n (6.37)

Inserting eqs. (6.35) and (6.37) into eq. (6.34) yields

R̈n
b r

b
ee = Rn

b S
(
ωb

b/n

)
S
(
ωb

b/n

)
rbee

−Rn
b S

(
rbee

)
αb

b

−Rn
b S

(
rbee

)
I−1
b S

(
ωb

b/n

)
Ibω

b
b/n

(6.38)

Further, inserting this into eq. (6.29) reveals that

g̈ = 2L̇>L̇+ 2L̈>L

= 2L̇>L̇+ 2L>L̈

= 2L̇>L̇+ 2L>
(
p̈n
b + R̈n

b r
b
ee

)
= 2L̇>L̇+ 2L>

(
p̈n
b +Rn

b S
(
ωb

b/n

)
S
(
ωb

b/n

)
rbee

−Rn
b S

(
rbee

)
αb

b −Rn
b S

(
rbee

)
I−1
b S

(
ωb

b/n

)
Ibω

b
b/n

)
= 2L̇>L̇

+ 2L> (
p̈n
b −Rn

b S
(
rbee

)
αb

b

)
+ 2L>Υb

= 2L̇>L̇+ 2L> (
Rn

b a
b
b −Rn

b S
(
rbee

)
αb

b

)
+ 2L>Υb

where:

Υb = Rn
b S

(
ωb

b/n

)
S
(
ωb

b/n

)
rbee −Rn

b S
(
rbee

)
I−1
b S

(
ωb

b/n

)
Ibω

b
b/n (6.39)

This can be factored as

Aq̈ = b (6.40)

52 CHAPTER 6. UDWADIA KALABA

With A and b as

A = 2L> [
Rn

b −Rn
b S

(
rbee

)]
(6.41)

b = 2L̇>L̇+ 2L>Υb (6.42)

This concludes the derivation of the Udwadia Kalaba equations for the con-
strained motion of the drone.

6.3 Discussion and Future Work

As mentioned previously, the models based on the Udwadia Kalaba is not well
suited for control synthesis. In [43], the algebraic complexity in the resulting
dynamic equations are shown. As mentioned in the introduction of this chapter,
the motivation behind these derivation is that this provide an accurate method
for simulating the constrained motion during interaction. This has not yet been
implemented for simulations, but the derivations made in this thesis lays a solid
foundation for future work on the topic.

Part III

Control

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

53

Chapter 7

Background Theory
This chapter contains a very brief introduction to force control and hereunder
impedance control relevant to this thesis. For a more thorough introduction, the
reader is referred to [70] and [39], which the following sections are based on.

7.1 Force Control
Force control is an essential part of robots if they are to accomplish tasks at the
same or higher level as humans. In everything from grasping an egg, via polishing
a car, to pushing a cart, the concept of force is essential for a safe and successful
completion of the mission. Too much force, and the egg breaks; too little force,
and the egg falls out of the robotic arm. Force control differs from motion control
with regards to the sensitivity to errors in the desired trajectory. If a perfect
model of the environment and the controlled system can be obtained, a trajectory
can be planned and executed successfully without any errors. However, assume
now that a screw is to be tightened using a positional approach. The relative
positioning of the parts needs to have an accuracy significantly larger than the
tolerance of the mechanical parts. Given the exact location of the screw, the
manipulator needs to guide all the parts (its own links/joints and the screw)
with the same level of accuracy. However, in practice small errors may give
rise to contact forces and moments, which causes the end effector to deviate
from the desired trajectory. The control system reacts to reduce such deviations,
which causes a build-up of the contact force until something breaks. The higher
the stiffness of the environment or the end effector the more prominent these
challenges will be.

55

56 CHAPTER 7. BACKGROUND THEORY

To better understand the different scenarios, [70] classifies four different types of
interactions with the environment:

Constrained motion:
Corresponds to the situation where the robot is in contact with a stiff surface.
This will constrain the paths that the end effector can follow, also know as
kinematic constraints.

Inertial:
Dynamic interaction between the robot and the environment, for example pushing
a box.

Dissipative:
Also dynamic interaction between the robot and the environment, but here the
robot experiences friction when it is sliding along the surface.

Elastic:
Dynamic interaction between the robot and the environment, where the environ-
ment is elastically compliant.

The four types are characterized by the need for different types of control. The
scenario studied in this thesis is clearly in the first category, as the environment
does not exhibit any dynamic behavior. Admittance control and impedance
control are examples of control types applicable for this category. These will
be discussed further; however, first a distinction between passive and active
interaction control is made.

7.1.1 Interaction Control

In interaction control, a clear distinction is drawn between passive and active
interaction control, mainly on the basis of the sensors available ([70]):

Passive interaction control
The trajectory of the end effector is modified by the compliant behavior when
the robot interacts with the environment. This compliant behavior might be due
to the structural compliance and/or to the compliance of the controllers. The
simplicity of this method is its largest strength, as it is cheaper and easy to make
and also does not require any additional sensors. However, This method does
lack flexibility, since for every task a specific robot has to be designed. Since no
forces/torques are measured, it also cannot guarantee that high contact forces
will not occur.

7.2. IMPEDANCE CONTROL 57

Active interaction control
Requires a feedback-controller with force measurements to modify desired tra-
jectories to achieve compliant behavior of the end effector. This helps overcome
the disadvantages with passive interaction control, but is slower, more expensive
and more complex. It is essential that this method is used in combination
with passive compliance to achieve better task execution speed and disturbance
rejection capability at a hardware level.

It should be noted that in this context the word passive is not a reference to
the general area of passivity based control [42], but rather to the fact that the
interaction forces are not directly measured and compensated for.

7.2 Impedance Control
Both force control in general and impedance especially is concerned with handling
interaction between systems, and therefore it is essential to understand how the
relations between subsystems can be expressed.

One of the ways these interactions can be described, is using the concept of flow
and effort variables. The effort can for example be a force for a translational
system or a voltage for an electrical system, while the flow is a velocity or a
current respectively. The main idea is that for each degree of freedom in the
interaction between two or more physical systems, the effort has to be equal,
while the flows has to sum to zero. This approach to modeling is not uncommon
and can among others be used for mechanical, electrical, thermal and fluid
systems. In fact, many advanced simulation engines uses this to facilitate a
modular and flexible system of components. One example of this is the Modelica1

programming language used in the simulation software Dymola2.

Several important constraints on the behavior of physical systems can be identi-
fied using this approach. The instantaneous power flow between systems (e.g.,
a physical system and its environment) is always definable as the product of
the two conjugate variables, effort and flow. Another very important physical
constraint is that no one system may determine both variables. For example,
for a general translational system along any degree of freedom, the system may
impose a force on its environment or impose a displacement or velocity on it,
but not both. Seen from the environment, physical systems can only be one of
two types ([70]):

1https://www.modelica.org/
2https://www.3ds.com/products-services/catia/products/dymola/

https://www.modelica.org/
https://www.3ds.com/products-services/catia/products/dymola/

58 CHAPTER 7. BACKGROUND THEORY

Admittances: Accept effort (e.g. force) as inputs and yields corresponding flow
(e.g. motion) as outputs.

Impedances: Accept flow (e.g., motion) as inputs and yield effort (e.g., force)
as outputs.

When considering typical motion control, the system is modeled as an admit-
tance. The system yields its own flow variable while accepting effort as input.
However, as discussed above, this is not optimal when the interaction forces
are of importance. The interaction is executed without considerations for the
interactions forces. In contrast, impedance control is better suited for these
situations, because during interaction it will accept the motion constraints given
by other systems and rather yield the force. Impedance is a well known concept
in the area of robotic manipulations, and the following presents a brief exam-
ple of impedance control for a classic manipulator. Consider the state space
formulation of a robotic arm ([70])

Λ(q)v̇e + Γ(q, q̇)ve + η(q) = hc − he (7.1)

where ve = J(q)q̇ is the velocity of the end effector, the matrix J is the 6× n

end effector geometric Jacobian. Also, Λ(q) =
(
JH(q)−1J>)−1 is the 6 × 6

operational space matrix, Λ(q,q) = J−>C(q,q)J−1 −Λ(q)̇JJ−1 is the wrench
including centrifugal and Coriolis forces, η(q) = J−>g(q) is the wrench of
gravitational effects. H(q), C(q,q) and g(q) are the corresponding quantities
defined in the joint-space. The control law is defined as ([70])

hc = Λ(q)α+ Γ(q, q̇)q̇+ he (7.2)

where he is a new virtual input. The details of the derivations from [70] are
skipped here; however, by choosing he carefully this results in a state-space
formulation in the end effector frame as

KM∆v̇e
de +KD∆vede + he

∆(∆pe
de) = he

e (7.3)

Here the equivalence to an 6-DOF impedance is clear. In the case of a robotic
arm, it is possible to dissipate forces through the base of the arm; however, for
an underactuated system such as an UAV this is not necessarily possible. For
a drone, this means that the coupling between forces and attitude has to be
handled. One of the benefits of the impedance controller is that the impedance
control is a passive force control technique, allowing for a simpler hardware
design as no force/torque-measurements are needed.

Chapter 8

Controller 2D

This chapter will present an impedance based controller for the 2D model, and
as mentioned in section 4.2, the following is inspired by [32]. After that, the
simulation results will be presented along with a short discussion.

8.1 Controller Derivation

By first assuming that an attitude controller is in place, such that θ = θ∗, the
model can be considered to have virtual inputs u =

[
θ f b

]T . Based on eq. (4.4),
the dynamics can then be written as

Muavẍ = −f b sin θ − fc cos (θ + θp) (8.1)
Muav z̈ = −f b cos θ +Muavg + fc sin (θ + θp) (8.2)

For each degree of freedom ζ, this can be generalized as [32]

Mζ ζ̈ = uζ + dζ (8.3)

59

60 CHAPTER 8. CONTROLLER 2D

for ζ ∈ {x, z}, where

Mζ =Muav (8.4)
ux = −f b sin θ (8.5)
uz = −f b cos θ +Muavg (8.6)
dx = fc cos (θ + θp) (8.7)
dz = fc sin (θ + θp) (8.8)

Then, let the control law be given as

uζ = −kζp(ζ − ζ∗)− kζd ζ̇ (8.9)

Where ζ∗ is the desired placement. For each degree of freedom, this yields the
following dynamics:

Mζ ζ̈ + kζd ζ̇ + kζp(ζ − ζ∗) = dζ (8.10)

And the impedance equivalence becomes apparent. This equivalence is illustrated
in fig. 8.1, where it is shown how the drone reacts to a disturbance from the
environment when controlled as an impedance. By tuning the parameters in the
controller, the stiffness and damping of the equivalent impedances are adjusted.
This will in turn determine the resulting reaction to the disturbance dζ from the
environment.

x∗

z∗

Figure 8.1: Impedance model of drone

8.1. CONTROLLER DERIVATION 61

The virtual inputs can then be found solving eqs. (8.5) and (8.6) for θ and f b

θ = atan2 (ux, uz −Muavg) (8.11)

f b =
√
u2x + (uz −Muavg)2 (8.12)

This is valid for all ux, uz ∈ R, except when uz =Muavg. This corresponds to a
free-fall scenario. This is easily avoided, since this is far from standard operating
conditions. However, care should be taken when implementing and tuning the
controller to avoid numerical instabilities.

Passivity Proof

The controller above can also be interpreted as a passivity based controller, and
the following will present a proof of passivity.

The storage function is defined as [32]

V = K(ζ̇) + P(ζ) (8.13)

where K(ζ̇) is the kinetic energy and P(ζ) is the potential energy defined as

K(ζ̇) =
1

2
Mζ ζ̇

2 (8.14)

P(ζ) =
1

2
kζp(ζ − ζ∗)2 (8.15)

Such that V ≥ 0.

Differentiating along the trajectory yields

V̇ =Mζ ζ̇ ζ̈ + kζp(ζ − ζ∗)ζ̇ (8.16)

= ζ̇(uζ + dζ) + kζp(ζ − ζ∗)ζ̇ (8.17)

= ζ̇(−kζp(ζ − ζ∗)− kζd ζ̇ + dζ) + kζp(ζ − ζ∗)ζ̇ (8.18)

= −ζ̇kζp(ζ − ζ∗)− ζ̇kζd ζ̇ + ζ̇dζ + kζp(ζ − ζ∗)ζ̇ (8.19)

= −kζd ζ̇
2 + ζ̇dζ (8.20)

≤ ζ̇dζ (8.21)

Choosing input u = dζ and output y = ζ̇ yields

V̇ ≤ yTu (8.22)

62 CHAPTER 8. CONTROLLER 2D

And thus the control system is passive with input u = dζ and output y = ζ̇.

According to [42], asymptotic stability is connected to passivity by zero-state
observability. Given that u = 0 and y = 0, the following implications can be
made

y = 0 =⇒ ζ̇ = 0 (8.23)

u = 0 =⇒ −kζp(ζ − ζ∗)− kζd ζ̇ = 0 =⇒ ζ = ζ∗ (8.24)

Hence, the only solution to ζ̇ = f(ζ, 0) that can stay identically in
S = {ζ ∈ R2|y = 0} is ζ(t) ≡

[
ζ∗ 0

]>, where ζ =
[
ζ ζ̇

]>. Thus the sys-
tem is zero-state observable for ζ∗ =

[
ζ∗ 0

]>, and by extension ζ∗ is also
globally asymptotically stable (globally since the storage function V is radially
unbounded).

The reason why the passivity property is desirable, is because in practice these
systems have shown a strong resistance to noise. Since both the environment
and drone are passive, this means that the interaction between them will also be
passive [42]. In addition, the summary paper of the AEROARMS project [5]
mentions passivity based controllers as a good way to tackle the trade-off between
performance and stability, and also allow for stable control via teleoperation
with potential time delay.

8.2 Results
In chapter 9 the full 3D controller will be presented, based on the same methods
used in this chapter. However, the results from the two different models are
similar, so only the main points will be presented in this section, while section 9.2
will provide a more thorough discussion.

From fig. 4.4 it can be seen that the controller is successfully able to maintain a
stable contact force of 3.5N. However, simulations also showed that the controller
also was capable of handling stronger interaction forces, but this requires the
probe angle to be adjusted approximately to the steady-state pitch angle for a
stable interaction.

The initial contact forces contains small oscillations, due to the idealistic sim-
ulation of the interaction model as a pure spring. This causes a non-physical,
transient behavior. However, realistic simulations of this interaction model is

8.2. RESULTS 63

difficult, and since this is only used as an initial validation, it will be prioritized
here. A more realistic interaction will be simulated in part Appendix Part I,
when the system is implemented in a physics engine. In fig. 4.5 the equivalence
of simulating the compliant behavior in the probe and the interaction model
becomes apparent in the steady-state. The drone appears to be penetrating the
wall as a result of the compliant environment.

As mentioned, the mass of the probe was omitted from the design of the controller,
but included in the simulator. The validity of this assumption was validated by
the simulation, and the controller has no problem compensating for it.

One of the challenges using this approach is the need to manipulate the set-points
to adjust the behavior of interaction. In this simulation, the simple technique of
gradually increasing the set-point to a point about 2m beyond the inspection
surface is applied, yielding good results.

Another disadvantage in this simulation is the lack of realistic actuator simulation.
This causes a very quick response in the attitude dynamics when input is applied,
as can be seen in the plot of θ in fig. 4.4 when the drone detaches from the
wall. To counter this problem, a realistic motor simulation was added to the 3D
simulations, which will be presented in the next chapter.

Figure 8.2: Visualization of the steady state interaction with the inspection
surface

64 CHAPTER 8. CONTROLLER 2D

Figure 8.3: State variables, contact forces and control variables during simulation

Chapter 9

Controller 3D

This chapter will present an impedance based controller for the full 3D model of
the drone, inspired by the derivations in [33]. Afterwards, simulation results are
presented along with discussions.

9.1 Controller Derivation

Building on the same ideas and principles as for the 2D model, it is possible to
develop a controller for the full 3D model.

The first assumption that is made is that a high-gain attitude controller imple-
mented, such that Θ ≈ Θ∗. This is a common assumption and also fits well with
the interface to low-level controllers such as the Pixhawk1. Most UAV platforms
comes with such an attitude control out-of-the-box. Another, more advanced,
attitude controller is presented in [48].

By making this assumption it is possible to define new virtual inputs Θ =[
φ θ ψ

]> and f , such that u =
[
φ θ ψ f

]>, and eq. (5.20) simplifies to

ṗ = v

muavv̇ = muavg +Rn
b (Θ)f + fe

(9.1)

1http://pixhawk.org/

65

http://pixhawk.org/

66 CHAPTER 9. CONTROLLER 3D

F is first defined as [33]

F = muavg +Rn
b (Θ)f (9.2)

It is important to note that this is well defined, as long as |F−muavg| > 0. This
means that the mapping is valid for all configurations except free fall, which
is a scenario that is far from the operating points of the UAV as discussed in
chapter 8.

Rewriting eq. (9.1) using F yields

ṗi
b = vi (9.3)

muavv̇
i = F+ fe (9.4)

where according to eq. (5.21)

fe = Ri
bR

b
mfmc (9.5)

Then, as in [33], let the control law be given

F = −Kp(p
i
b − pi∗

b)−Kdv
i (9.6)

where Kp,Kd � 0 are the gain matrices and pi∗
b is the desired position. As with

the 2D controller, the impedance equivalence is made apparent by rewriting the
system as

muavp̈
i
b +Kdṗ

i
b +Kp(p

i
b − pi∗

b) = fe (9.7)

This equivalence can be illustrated in the same way as before (fig. 8.1); however,
this is a 3 DOF impedance with the possibility of cross-coupling (as long as
Kp,Kd � 0). By tuning Kp and Kd it is possible adjust the stiffness and
damping of the equivalent impedances reaction to the disturbance fe. This
tuning is not trivial for the general case of an unknown, possibly unbounded,
disturbance fe. However, only the specific scenario of docking to the inspection
surface for thickness measurements are considered, which means that fe will be
similar for each run and the controller can be tuned to robustly handle the forces
during these interactions.

Passivity Proof

Again, this controller can also be interpreted as a passivity based controller, and
the following will present a proof of passivity.

9.1. CONTROLLER DERIVATION 67

The storage function V (vi,pi
b) is defined as [33]

V (vi,pi
b) = K(vi) + P(pi

b) (9.8)

where K(vi) is the kinetic energy and P(pi
b) the potential energy defined as

K(vi) =
1

2
muav(v

i)Tvi (9.9)

P(pi
b) =

1

2
(pi

b − pi∗
b)TKp(p

i
b − pi∗

b) (9.10)

Such that V ≥ 0.

Differentiating along the trajectory yields

V̇ (vi,pi
b) = muav(v

i)T v̇i + (pi
b − pi∗

b)TKpṗ
i
b (9.11)

= (vi)T (F+ fe) + (pi
b − pi∗

b)TKpv
i (9.12)

= (vi)T (−Kp(p
i
b − pi∗

b)−Kdv
i + fe) + (pi

b − pi∗
b)TKpv

i (9.13)
= −(vi)TKdv

i + (vi)T fe (9.14)
≤ (vi)T fe (9.15)

Choosing input up = fe and output yp = vi yields

V̇ ≤ yT
p up (9.16)

And thus the control system is passive with input up = d and output yp = vi.

Again, zero-state observability [42] is proven by letting up = 0 and yp = 0. This
gives

yp = 0 =⇒ vi = 0 (9.17)
up = 0 =⇒ −Kp(p

i
b − pi∗

b) = 0 =⇒ pi
b = pi∗

b , since Kp � 0 (9.18)

Hence the only solution to ẋ = f(x, 0) that can stay identically in
S = {x ∈ R6|yp = 0} is x(t) ≡

[
pi∗
b 0

]>, where x =
[
pi
b vi

]>. Thus the
system is zero-state observable for x∗ =

[
pi∗
b 0

]>, and by extension x∗ is also
globally asymptotically stable (globally since the storage function V is radially
unbounded) [42].

See section 8.1 for the discussion of why the passivity property is desirable.

68 CHAPTER 9. CONTROLLER 3D

Generating Desired Attitude

In order to get the input to the low level attitude controller, the desired force F
must be converted to desired Euler angles φd , θd and ψd. This section outlines
this process. Since a multirotor is able to produce forces in x- and y-direction
no matter the yaw angle, the desired yaw angle ψd can be found independently
of the desired force. By first rotating F around the z-axis with the current yaw
ψ, the body-oriented forces f b are found. This can be used to find the roll- and
pitch angles as follows

F b
x = −

∣∣f b∣∣ cosφ sin θ (9.19)
F b
y =

∣∣f b∣∣ sinφ (9.20)
F b
z = −

∣∣f b∣∣ cosφ cos θ (9.21)

By first solving eq. (9.21) for f =
∣∣f b∣∣ using the current values for φ and θ,

then solving eqs. (9.19) and (9.20) for φ and θ, desired angles can be obtained.
However, by assuming low vertical accelerations this can be further simplified.
The desired roll and pitch angles can then be found as

θd = atan2
(
−F b

x ,mcg
)

(9.22)
φd = atan2

(
F b
y cos θd,mcg

)
(9.23)

These angles can then be used as input to the low-level attitude controller.

9.2 Results

From fig. 5.3 it can be seen that the controller is successfully able to maintain a
stable contact force of 3.5N. Simulations also showed that the drone was able
to handle interaction forces up to 5N without noticeable problems. Beyond this
the pitch angle and interaction forces becomes large, and only small disturbances
causes the drone to loose control, especially for the yaw angle.

From the plot of the contact forces in fig. 5.3, it can be seen that the initial contact
forces contains small oscillations. This is caused by the idealistic simulation of
the interaction model as a pure spring, and is not the best representation of a
real world simulation. Similar to the 2D model, the equivalence of simulating the
compliant behavior in the probe and the interaction model can be seen in fig. 5.4,

9.2. RESULTS 69

as the drone appears to be penetrating the wall as a result of the compliant
environment.

Also, the 3D position controller is very dependent on the set-points of the desired
position. If the point is set far beyond the inspection, the drone will get into a
situation with large interaction forces, causing too much stress on the compliance
device. The same technique where, a ramp function to gradually increase to
the desired position at a point about 1.5m into the wall, is applied here. From
fig. 5.3 it can be seen that this method causes no large spikes in the interaction
forces during the initial contact, and enables the drone to get into a good and
stable contact with the environment. However, simulations done using large steps
in set-points show that this causes a bouncing behavior, as the torque created
by the initial contact pitches the drone backwards and away from the inspection
surface. This shows that care must be taken when choosing the set-points to
avoid large interaction forces.

There exist augmentations to the way of choosing set-points, for example [31].
Here the desired set-point is modeled as a dynamic system that is coupled
with the actual position of the drone. The idea is that the dynamics of the
desired position guides the position of the drone towards the set-point of the
user. However, if the drone is unable to continue (i.e. the drone is in contact
with the environment) the dynamics of the desired point will also stabilize. This
is done to avoid high interaction forces as a result of large velocities, and avoid
scenarios where the desired position is far outside the area constrained by the
environment. Depending on the specific application of the controller, this could
be a potential solution if the current method of set-point creation is inadequate.

The mass of the probe and the moments created by its gravity was omitted
from the modeling of the controller; however, it is included in these simulations.
The results validates the assumption that the mass of the probe has little to no
influence on the behavior of the drone.

70 CHAPTER 9. CONTROLLER 3D

Figure 9.1: State variables, contact forces and control variables during simulation

9.2. RESULTS 71

Figure 9.2: Visualization of the steady state interaction with the inspection
surface

The disturbances in the attitude Θ caused by the moments from the interaction
forces were explicitly addressed in the controller derivation, and the assumption
was made that a low level attitude controller was implemented such that Θ ≈ Θd.
The plot of θ in fig. 5.3 shows that this assumption is violated; however, as a
result of the impedance behavior of the drone this does not create any large
problems, as the drone stabilizes with constant deviation in both attitude and
position. However, the desired total thrust is calculated based on the assumption
that Θ ≈ Θd, but since |θ| < |θ|d the desired vertical thrust becomes a little
to large. This causes the drone to rise slightly above the desired set-point as
seen by the z-position in fig. 5.3. The larger the interaction forces are, the larger
this problem becomes, and this is a contributing factor to destabilization in
the scenarios with strong contact forces. However, the impedance behavior in
the z-direction helps to stabilize this, as it tries to compensate for the effect by
lowering the vertical thrust. Another solution to minimize these errors is to use
the actual pitch and roll angles to compute the desired force, and not the desired
ones. (When the simplified method in section 9.1 is used, the desired angles are
used to find f)

From the results presented here it is clear that one of the main drawbacks of

72 CHAPTER 9. CONTROLLER 3D

this controller is the adjustment of the impedance parameters. Even though the
impedance of the drone is tuned, it is not obvious how this affects the contact
forces. This is especially true for the transient phase, where high peaks in
interaction forces could cause violation of the assumptions of the controller. An
immediate idea to solve this non-trivial relationship between position and force,
is to rather create a velocity-controller, as this has a more direct connection
to the forces experienced during interaction. However, such a controller also
neglects to directly address an important part of the scenario, namely the
attitude during the interaction. The coupling between velocities and attitudes
are generally not trivial, as the drone might for instance have a large velocity
in the x-direction while the pitch angle is still zero. Hence, if more fine-grained
control of the interaction is required, a better solution would be to look into
creating trajectories, giving both the desired velocities and attitudes required
to facilitate a stable interaction. The next chapter will look into creating such
trajectories.

This simulation is used as an initial validation of the controller, and only one
scenario is considered. In part Appendix Part I the controller is implemented
in ROS/Gazebo, which represents a more accurate simulation of the drone
and interaction. Hence, this part will present several scenarios and a more
thorough discussion of the qualities of the controller (see chapter C), before
the implementation and testing of the controllers on the hardware platform
(part VII).

To summarize, the largest drawbacks of using the impedance based position
controller is the need for set-point manipulation and accurate impedance tuning to
ensure stable interaction. However, for set-point manipulations simple techniques,
such as a ramp function or inserting an intermediate set-point, seems to suffice.
Beyond this, the impedance controller is able to ensure stable interaction in
simulations and it is a desirable solution due to its simplicity.

Chapter 10

Tracking Of Pre-computed
Optimal Trajectory

This chapter will present a different approach to the problem, by looking at
pre-generating trajectories for the interaction. This chapter will first present the
motivation behind this approach, before giving the necessary background theory.
Thereafter, the UAV interaction problem is formulated in this framework, before
results and discussions are presented.

10.1 Motivation

The controllers mentioned in the chapters above provides convenient passivity
proofs and constitutes a controller that is capable of performing free-flight
maneuvers and interaction tasks simultaneously. However, the performance of
the controller during interaction heavily depends on the choice of the set-point
p∗i
b . This is not a problem if the probe and compliance device is designed robust

enough to handle all relevant interactions, but this is not always the case. The
drone might be dependent on a specific entry angle θ in the initial phase of
the interaction to make sure that the probe comes in sufficient contact to get
a valid measurement. Entry velocity also plays a major role, as a large entry
velocity will result in a bouncing behavior in the best case, or a damage to the
compliance device or sensor in the worst case.

73

74CHAPTER 10. TRACKING OF PRE-COMPUTED OPTIMAL TRAJECTORY

While the simplicity of the position controller is appealing, a more advanced
framework might be necessary. As a solution to the drawbacks mentioned above,
a more problem-oriented solution would be to generate a trajectory for the
interaction with the environment. This would allow for tuning entry velocity
and pitch angle of during the impact, to facilitate the best possible change of a
successful interaction. One solution is to use on-line Model predictive control
(MPC) to control the drone, similar to what is done in [3]. However, this requires
a lot of on-board computation power, which might not be available on the
drone platform described in this thesis. The drone platform is running other
important applications that require computational resources, rendering MPC as
an undesirable solution strategy.

Another approach to this problem would be to pre-generate a trajectory from a
certain set-point from the inspection surface. During operations the drone would
fly to this set-point, before trying to execute the given maneuver. During the
trajectory following it is possible to use different control mechanisms such as LQR
or PD trajectory control. This could also facilitate the creation of an abort system
for more robust and safe interaction, as the drone would abort the interaction
attempt and retry if it deviates too much from the pre-generated trajectory.
This approach will give a more fine-grained control over the interaction as a
whole, compared to the position controller. However, as discussed in section 7.1,
a controller that strictly enforces the trajectory during interaction, without
considering unknown forces, might cause a large build-up of interaction forces
and cause breakage.

Physics engine simulations presented in section 10.5 prove that it is possible to
get the desired interaction; however, the experimental validation of the following
controller is left as future work.

10.2 Background

This section will introduce the basic of optimization for dynamic models. For a
more thorough treatment of the subject, the reader is referred to [53] for general
optimization and [28] for optimization from a control perspective. The following
is based on these two books.

10.2. BACKGROUND 75

10.2.1 Optimization Problems

A subset of optimization problems are called Quadratic Programming (QP)
problems. These can in general be formulated as [53]

min
z∈Rn

f(z) = z>Qz+ d>z (10.1)

subject to

ci(z) = a>i z− bi = 0, i ∈ E (10.2)
ci(z) = a>i z− bi ≥ 0, i ∈ I (10.3)

where E is the equality constraints, and I are the inequality constraints.

If Q is positive semidefinite, i.e., Q � 0, then the objective function is convex.

If in addition the equality constraints are linear and ci are convex functions
for i ∈ I, then the QP-problem is a convex programming problem. Convex
QP-problems can be solved very efficiently, with guarantees for a globally optimal
solution.

If the function f(z) and/or the constraint functions ci(z) are nonlinear, then the
optimization is a Nonlinear Program (NLP). If only the inequality constraints
are nonlinear then the problem might still be convex, depending on the feasible
region. However, nonlinear equality constraints always give rise to non-convex
problems. The feasible region is defined as [53]

Ω = {z ∈ Rn| (ci(z) = 0, i ∈ E) ∧ (ci(z) ≥ 0, i ∈ I)} (10.4)

General NLP problems and non-convex problems are much harder to solve, and
even with convergence there is no guarantees of a globally optimal solution.

10.2.2 Optimization of Dynamic Systems

Assume a model is given as

xt+1 = Axt +But (10.5)

Then the following QP problem can be formulated [28]

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x>
t+1Qtxt+1 +

1

2
u>
t Rtut +

1

2
∆u>

t R∆t∆ut (10.6)

76CHAPTER 10. TRACKING OF PRE-COMPUTED OPTIMAL TRAJECTORY

subject to

xt+1 = Atxt +Btut (10.7)
x0,u−1 = given (10.8)

xlow ≤ xt ≤ xhigh (10.9)
ulow ≤ ut ≤ uhigh (10.10)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (10.11)

where

Qt � 0 (10.12)
Rt � 0 (10.13)

R∆t � 0 (10.14)
∆ut = ut − ut−1 (10.15)
z> =

(
x>
1 , . . . ,x

>
N ,u

>
0 . . . ,u

>
N−1

)
(10.16)

n = N · (nx + nu) (10.17)

To find the optimal solution in a solver such as MATLAB, this has to be
formulated on standard form. This is done by using the model as equality
constraints such that Aeqz = Beq where

Aeq =



I 0 · · · · · · 0 −B0 0 · · · · · · 0

−A1 I
. . .

... 0
.

...

0
.

...
...

.
...

...
. 0

...
. 0

0 · · · 0 −AN I 0 · · · · · · 0 −BN


(10.18)

and

beq =


A0x0
0
...
0

 (10.19)

The Q and R matrices are also put into a block diagonal form. For more details
see [28].

10.3. OPTIMAL TRAJECTORY FOR UAVS 77

10.3 Optimal Trajectory for UAVs

Using the model for the dominant multirotor dynamics from section 9.1

ṗ = v

muavv̇ = muavg +Rn
b (Θ)f

(10.20)

This is a non-linear model, and hence would give raise to an NLP optimization
problem. However, the trick is to realize that it is not necessary to include the
attitude in the optimization problem, and by defining

F = muavg +Rn
b (Θ)f (10.21)

the resulting model is linear, which is far more suited to optimization on (F is
the new input):

ṗi
b = vi (10.22)

muavv̇
i = F (10.23)

The desired angles can be generated from F by utilizing the technique described
in section 9.1. A potential pitfall using this method is that the trajectories will
not become feasible to perform, as the attitude dynamics are not considered
and F could have rapid changes in direction and magnitude. To overcome this,
a penalty was added to the changes in each component of F (tuning R∆t), to
facilitate the generation of feasible trajectories.

This model was then converted to the standard form described in section 10.2.2
and solved using MATLAB. The desired force against the inspection surface
can be implemented by constraining the last input uN−1 to produce the desired
force. Other limitations, such as no horizontal velocity in the direction parallel
to the surface can also easily be implemented.

10.4 Trajectory Generation Results

In this experiment the inspection surface was placed such that the drone would
come in contact with it when it reaches p =

[
0 0 0

]T and with θ equal to the
probe angle. This was done by constraining the last state xn to the point of the
Center of Gravity (COG) of the drone during impact. Penalty was added to Rt

78CHAPTER 10. TRACKING OF PRE-COMPUTED OPTIMAL TRAJECTORY

for using forces in x and y directions; however, no penalty was added in the z
direction to allow the drone to use the necessary force to maintain altitude. Qt

was set such that all states were penalized equally, but also smaller relative to
Rt such that the optimal solution would include a low approach velocity. R∆t

was created to penalize changes in the input forces as discussed in the section
above. The desired interaction force was set to uN−1,x = 4N. The time horizon
was set to 3 s, with a time step of 0.1 s.

The resulting trajectories are shown in fig. 10.1, where the attitudes required to
generate the desired forces are shown in the bottom left. Only θ is shown, as the
trajectory depicted takes place in the xz-plane. Figure 10.2 shows the trajectory
of the drone with faded colors and the end pose in solid.

Both figs. 10.1 and 10.2 shows that trajectory created constitutes a path with
reasonable approach velocity, and that the attitude changes to get the correct
force during interaction towards the end off the defined time horizon.

Figure 10.1: Solution to the optimization problem

10.4. TRAJECTORY GENERATION RESULTS 79

Figure 10.2: Visualization of the optimal trajectory

Figure 10.3: Visualization of cone of optimal trajectories

80CHAPTER 10. TRACKING OF PRE-COMPUTED OPTIMAL TRAJECTORY

Figure 10.3 shows how this framework can be used to generate paths from a
wide range of different starting positions. The velocity parallel to the surface
was constrained to be zero for the last time steps, and the figure shows how all
trajectories converge to one common path the final approach towards the wall.

10.5 Simulation Results

In this section, the tracking of the generated trajectory was implemented in a
physics engine framework, as detailed in part Appendix Part I. The simulation
below shows a pure feed-forward of the attitude, and the reference attitudes was
passed directly to the low-level attitude controller.

The reader is strongly recommended to watch the video of the simulation by
following the QR-code or link given in fig. 10.4. This will give a more intuitive
understanding of the results presented in fig. 10.5 and fig. 10.6.

Figure 10.4: QR-code for the simulation (https://youtu.be/DetFfxNkz9g)

During free-flight, the generated trajectory is tracked well by the low-level
attitude controller. However, during the impact, there are clear deviations from
the trajectory. The trajectory was constrained to hold a constant force towards
to surface; however, due to the complex constraints imposed by the environment,
this interaction is far from constant. While the results are expected, they also
show the biggest drawback of this solution, as it does not give an explicit way
to handle these deviations. However, as mentioned before, it is important for
any controller not to cause build-up of interaction forces, as this could lead to
breakage.

https://youtu.be/DetFfxNkz9g

10.5. SIMULATION RESULTS 81

After the initial transient effect from the compliance device in the probe has
settled, the force towards the surface is stable around 3.5N, as see in the top
graph in fig. 10.5. This is very similar to the results in chapter C from the
position based controllers developed in chapter 9. The behavior of the yaw angle
during interaction is also similar for the two controllers.

To summarize the simulation results, the method described in this chapter shows
promising results to give more accurate control of the interaction than the
position based controllers provide. However, more advanced tracking methods
should be implemented in order to properly evaluate the full potential of the
method.

Figure 10.5: Attitude and force for simulation with feed-forward control of
trajectory. (Red area shows the duration of contact)

82CHAPTER 10. TRACKING OF PRE-COMPUTED OPTIMAL TRAJECTORY

Figure 10.6: Trajectory simulation.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

10.6 Discussion

To implement these trajectories on the actual drone, a trajectory controller is
beneficial. Since the path is pre-generated, it is possible to feed-forward the
desired velocities and accelerations along the path to get a more precise tracking
of the trajectory. This was not done in the results shown in the previous section,

10.6. DISCUSSION 83

and such controller could improve the tracking further. As mentioned in the
beginning of this chapter, the error correction between the actual and desired
path can be done by a PD-controller, or using more advanced techniques like
LQR.

Another approach related to the ideas of the above solutions, is the use of
explicit MPC [8]. The idea is to solve the QP-problem off-line for all x ∈ Rn

to find en explicit control law u = u(x). The technique uses a multiparametric
QP algorithm, and the resulting control law is a continuous piecewise affine
function. The benefit of this approach is that it eliminates the need to solve the
optimization problem on-board; however, with the drawback of the additional
storage space required.

The trajectories created are clearly feasible maneuvers for the drone, as demon-
strated by the above simulations. The benefit of this over the position controller
approach, is that it captures more of the essential dynamics prior to the impact.
While the position controller can be proven stable in steady state, the trajectory
allows for detailed tuning of the initial impact. This allows to better relate
the attitude, velocity and force against the inspection surface, and allows for
planning and control at a more precise level. However, a tracking controller
needs to address the deviations that occur during impact in a way that does not
cause build-up of interaction forces in order to ensure stable interaction.

To summarize, the position based controllers provides proof of stable interaction
in the contact phase of the interaction, while they lack explicit control of the
approach phase. The trajectory controller does, however, allow for more tuning
of the approach phase, but fails to address the stability during the contact.
The priority of stability during contact supersedes most other performance
criteria, and in addition the approach phase for the impedance based position
controllers can be implicitly controlled by set-point manipulations, as discussed
in section 9.2. Hence, this was the method chosen to be implemented on the
hardware platform. In part VII the performance of the position based controllers
developed in chapter 5 are shown to be satisfactory for successful docking in
flight tests, and thus the implementation and experimental validation of the
trajectory tracking on a hardware platform has been left as future work.

84CHAPTER 10. TRACKING OF PRE-COMPUTED OPTIMAL TRAJECTORY

Part IV

Navigation

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

85

Chapter 11

Background

This chapter will first define and motivate the necessary concepts for indoor
navigation and clarify the scope of the navigation solutions developed in this
thesis. Thereafter, relevant theory for the upcoming chapters is presented.
After a discussion about methods for relative heading estimation in chapter 12,
chapter 13 will implement and compare methods for relative heading estimation.
These are based on regression and RANSAC, and while background theory for
the latter will be presented below, theory on regression is not included. However,
the reader is referred to [30] for more information on the subject.

11.1 Navigation in Indoor Environments

Most drones available for commercial use require some sort of GNSS, such as
the GPS to solve the drift problem in dead reckoning in inertial navigation.
Another common approach to the problem is visual navigation, such as visual
odometry based on camera or an optical flow sensor. However, neither of these
are available in most industrial environments, as the weak GNSS signals fail
to penetrate most building surfaces, and poor lighting render visual techniques
useless in most situations.

There exist an extensive amount of literature on the topic of navigation, and it
is common to distinguish between the following concepts [18]:

87

88 CHAPTER 11. BACKGROUND

• Global navigation - Determine the position in absolute or map-referenced
terms. Commonly used to move to a target destination.

• Local navigation - Determine the position relative to landmarks in the
surrounding environment. Commonly used to provide information in order
to interact with these objects or landmarks.

The two terms are not strictly separate, e.g. global navigation methods using
the relative position to multiple local landmarks to determine its global position,
such as [51]. A common misconception is that local navigation is memoryless, in
the sense that it only uses the momentarily available sensor data to determine
its surroundings. However, local navigation also incorporates more advanced
techniques, such as smoothing of raw sensor measurements via filtering or sensor
fusion, and detection of a new tracked obstacle.

This thesis is concerned with integrating autonomous thickness measurements
into an existing inspection scenario. The pilot will fly to an area of interest, and
request a thickness measurement. Hence, the operation is restricted to a local
area, and the most critical information to successfully execute the maneuver is
information about the range and relative orientation to the inspection surface
of interest. In addition, range information about obstacles in the direction
parallel to the inspection surface is helpful to avoid drift and sideways movement
during the operation. While a robust global navigation solution would allow for
fully autonomous inspections from takeoff to landing, this thesis will focus on
developing local solutions in order to successfully integrate autonomous thickness
measurements into a pilot assisted inspection scenario. This is to keep the scope
within a reasonable range, and also the local solutions developed will provide
useful information to future global methods.

As mentioned above, the orientation relative to the inspection surface in the
horizontal plane is of great interest during the thickness measurement, and in
the following this is called the relative heading with respect to the inspection
surface. A common approach is to use a camera to find the heading relative to
some object or feature, such as in [35]. As mentioned, this approach will not be
feasible for a big part of the inspection scenarios considered in this thesis, as
they will be conducted in poorly lit environments, with dust and other particle
pollution. Chapter 12 will describe methods for relative heading estimation
based on sensors capable of operating in these conditions.

11.2. RANDOM SAMPLE CONSENSUS (RANSAC) 89

11.2 Random Sample Consensus (RANSAC)
This section will cover the necessary background theory on Random Sample
Consensus (RANSAC). For a more thorough introduction the reader is referred
to the original RANSAC publication [26]. RANSAC is often used in the field
of computer vision, and books such as [27] gives a good introduction to the
algorithm in this context.

Given a set of observed data containing outliers, RANSAC is an iterative method
that estimate parameters of a mathematical model from a set of data points.
The basic assumption is that the data points come from two different groups:

1. Inliers: Data that can be explained/generated by some set of model
parameters; however, they may be subject to noise.

2. Outliers: Data points that does not fit the model, such as data from
extreme noise values, measurement errors or incorrect interpretation of
data. These have no influence on the values of the model that generated
the data.

RANSAC belongs to the set of non-deterministic algorithms as it produces a
good result only with a certain probability. The probability of finding a good
solution increases with the number of iterations.

A summary of the RANSAC algorithm can be given as follows [26]:
Given n data points and the error threshold et. For every iteration k, pick m
(where m << n usually) of the data points at random. Based on the random
data points estimate the model Mi, and compute the distance of all the data
points from the new model Mi. All data points with a distance smaller than
et are marked as inliers, and if the current ratio of inliers are better than the
current best model then Mi is set as the new best model. After k iterations the
best model is returned.

Hence, RANSAC also assumes that given a (usually small) set of inliers, there
exists a procedure which can estimate the parameters of a model that optimally
explains or fits this data. In fig. 11.1 the data was generated by half the points
coming from a line with additive Gaussian noise, while the other points were
sampled randomly from a uniform distribution of the same space. The result of
fitting a line model using RANSAC is seen on the left side of fig. 11.1.

The greatest advantages of the RANSAC algorithm is the robust estimation of
the model parameters [40], and this holds true even with a large ratio of outliers,
as demonstrated by the example in fig. 11.1.

90 CHAPTER 11. BACKGROUND

Figure 11.1: RANSAC used for line estimation on test data

A disadvantage of RANSAC is that there is no upper bound on the number
of iterations required to compute the optimal solution (except exhausting all
permutations of selecting m data points). Thus, since k is chosen much smaller,
the solution obtained may not be optimal; or in the worst case it may fit the
data poorly. Hence, RANSAC represent a trade-off between computing power
(number of iterations) and the probability of a reasonable model being returned.

11.2.1 Choosing the Iteration Number
It is possible to calculate an estimate of the number of iterations k needed to
produce a good model. Let w be the ratio between inliers and the total number
of data points. Assuming that n points are selected independently each iteration
for model estimation, then 1 − wn is the probability that at least one of the
n points is an outlier (which is assumed to results in a bad model). Let p be
the probability of returning a successful model. Then the following relationship
holds:

1− p = (1− wn)k (11.1)

Solving for k yields

k =
log(1− p)

log(1− wn)
(11.2)

Hence, the number of iterations may be chosen as in eq. (11.2). This will be
utilized when the algorithm is implemented in section 13.3.

Chapter 12

Methods for Relative
Heading Estimation
This chapter will discuss different solutions for relative heading estimation, based
on available sensors that are capable of functioning in poorly lit, industrial
environments. The three solutions considered are based on sensors that are
available to be mounted on the development drone:

• ToF sensors (section 12.1)
• RAdio Detection And Rangings (RADARs) (section 12.2)
• 2D scanning LIDAR (section 12.3)

For each of the sensors, a short introduction to the sensor technique will be
given, before a solution for relative heading estimation is discussed.

It should be noted that a solution based on fusion of the methods suggested in
this chapter is possible. However, for the scenario considered in this thesis, the
advantages this provides is not outweighed by the disadvantage of added weight
from multiple redundant sensors. Hence, only methods based on one sensor type
will be discussed in the following.

91

92 CHAPTER 12. METHODS FOR RELATIVE HEADING ESTIMATION

12.1 ToF Sensors

Time of Flight (ToF) is a method used for measuring the distance along a line
from the sensor to some object. A signal is sent from the transmitter, reflected
by an object and returned back to the sensor. Different types of carrier signals
can be utilized with this principle; however, the two most common are light and
sound. Based on the knowledge of the speed of light or sound in the current
medium, it is possible to calculate the range to the reflecting object.

The specific sensors considered in this thesis are the TeraRanger sensors, which
uses infrared (IR) light (described in more detail in section 14.3). The biggest
drawback of using IR light is usually the disturbance from natural ambient light.
However, this is not a problem for the indoor inspection scenarios in question,
but other disturbance sources might be present, such as large dust particles or
highly reflective surfaces.

Figure 12.1: Illustration of solution using ToF

12.1. TOF SENSORS 93

12.1.1 Solution Description
The basic principle is to use two forward facing ToF sensors separated by a
baseline, to measure two different ranges. The relative heading can then be
estimated by simple geometrical considerations.

Given the two range measurements rl (left) and rr (right), and the displacement
d of the ToF from the body x-axis, the relative heading with respect to the
inspection surface is given by:

ψrel = atan2(rr − rl, 2d) (12.1)

However, if noise is present in the system we get the following measurements r̃d

r̃d = rd + εd (12.2)

for d ∈ {l, r}, where εd ∼ N(0, σ2
d) and N(µ, σ2) is a normal distribution with

mean µ and variance σ2.

Hence,
r̃r − r̃l = rr − rl + εt (12.3)

where εt ∼ N(0, σ2
r + σ2

l). Under the assumption that the noise has the same
variance for both sensors(σr = σl = σ) this simplifies to εt ∼ N(0, 2σ2). Hence
the difference used in eq. (12.1) will be affected by a noise with twice the variance
of the ToF sensors.

However, pure sensor noise is not the only problem for this solution. Small
irregularities in the geometry of the surface will also directly influence the relative
heading estimation. Also, if one of the sensors are unable to get a measurement
at some time instances, no heading estimate will be available.

Pros:
• Simple
• Cheap

Cons:
• Poor robustness to sensor noise
• Poor robustness to surface geometry
• Poor robustness to temporary sensor failure.

In conclusion, the simplicity of the above solution is outweighed by the poor
robustness against all error sources. Hence, the ToF sensor will not be chosen as
the main method for relative heading estimation.

94 CHAPTER 12. METHODS FOR RELATIVE HEADING ESTIMATION

12.2 RADAR

Recent advancements in sensor technology have allowed small RADARs to be
mounted on UAVs, such as in [38] and [15]. The basic principle behind RADAR, is
to emit electromagnetic waves and observe the incoming echoes from surrounding
objects. The specific RADAR sensor available is a XeThru X41, which returns
both amplitude and phase information from the returning waves. Then, range
information can be extracted from the amplitude, while the phase shift will
reveal information about the relative velocity between the sender and reflecting
object.

While RADARs provide a lot of useful information about the surrounding
environment, they are also prone to a range of error sources. Examples of
such are receiver noise generated by random motions of electrons at the input,
clutter generated by non-important objects in the vicinity of the RADAR, and
multi-path errors from signals bouncing of nearby objects. For a more thorough
review and explanation of RADAR related error sources the reader is referred to
[19].

Figure 12.2: Illustration of solution using RADAR

1https://www.xethru.com/x4-radar-chip.html/

https://www.xethru.com/x4-radar-chip.html/

12.2. RADAR 95

12.2.1 Solution Description

There are several different approaches for navigation using RADAR sensors.
The simplest is using two forward mounted RADARs, and take an approach
similar to the calculation method used for the ToF sensors. However, the beam
width will significantly influence the results. Earlier tests conducted by Scout DI
indicate that the most significant reflection is returned for the distance normal
to the inspection surface, and hence it is not the distance along the sensor
direction that is detected. While it is still possible to calculate the relative
heading based on this, problems arise when other obstacles are nearby. Since the
amplitude information is not strictly directional, this could lead to ambiguities
about which range measurements are used. However, compared to the other
methods discussed in this chapter the beam width also gives an advantage, as
the range estimate is less affected by deviations in roll and pitch.

Amplitude and phase information from the X4 sensor is also returned in different
bins based on range. Hence, the accuracy of the heading estimate is also
dependent on the resolution determined by the bin size. The X4 can have bins
as small as 5mm, which provide more accuracy than most ToF sensors.

More advanced methods such as an occupancy grid [22] or Synthetic Aperture
RADAR (SAR) [15] might also be possible. However, these usually require
precise location information about the drone, which make them less suitable for
the scenarios considered in this thesis.

Pros:

• More robust
• Can incorporate velocity information
• Work for larger deviations in roll and pitch

Cons:

• Complex signal processing
• Large minimum distance for measurement
• Unpredictable error sources
• Ambiguities in which range is measured due to beam width

In conclusion, the advanced signal processing, along with the uncertainty in
the accuracy of the methods proposed above renders RADARs a less attractive
choice for the purpose of this thesis.

96 CHAPTER 12. METHODS FOR RELATIVE HEADING ESTIMATION

12.3 2D Scanning Lidar

The last option considered is to use a 2D scanning LIDAR. This solution features
a spinning laser that measures ranges around the entire sensor. An illustration
of the principle is shown in fig. 12.3. 3D LIDAR exists, but the amount of data
generated and the computing power required to process this data leaves this as
an undesirable method on the hardware used on the development drone. The
specific LIDAR available is an RPLIDAR A2, and will be described in detail in
section 14.6.

One drawback of using a scanning LIDAR is timing issues. Since the laser is
spinning, there will be a time delay between each successive scan points. In
cases where high precision is needed, this means that every scan point needs to
be rotated into some common reference system using the precise attitude at the
exact moment of measurement. This requires very precise synchronization of
attitude estimates and laser scans.

Figure 12.3: Illustration of solution using LIDAR

12.3. 2D SCANNING LIDAR 97

12.3.1 Solution Description

The basis of the solution is using the range measurements provided to estimate
the inspection surface as a line. When the line has been found, the relative
heading and range can be found with respect to the estimated line. Several
techniques exist for line estimation based on data points, and the next chapter
will present solutions based on regression and RANSAC.

It should be noted that both the solution based on ToF and LIDAR are dependent
on the roll and pitch angle. If this assumption is severely violated, it is difficult
to interpret the data in any meaningful way. However, since the contact based
inspection scenarios will be performed with low horizontal velocities and hence
small displacements in roll and pitch, this drawback will not be significant in
most situations.

More advanced navigation techniques for a 2D LIDAR are possible, such as
Simultaneous Location And Mapping (SLAM)[46]. However, the fact that
multirotors do not operate in a single plane, such as ground robots, will affect
the robustness of the solutions.

Pros:

• More robust to sensor noise
• More robust to surface geometry
• More robust to temporary, spatial sensor failure
• Easier signal processing than RADAR based solutions

Cons:

• More complex data processing than ToF sensors
• Poor performance on highly reflective or absorptive surfaces
• Time synchronization for data points needs to be solved for methods

requiring high precision
• Dependency on pitch and roll angle

98 CHAPTER 12. METHODS FOR RELATIVE HEADING ESTIMATION

At the core, the methods based on ToF sensors and LIDAR both operate on
detected points on the inspection surface. Further, both methods attempts the
find a line based on the points provided; however, the LIDAR provides more
data points than the minimum of two needed to create a line model. This gives
increased robustness to noisy sensor measurement and provides some redundancy
in case of a faulty measurement. It also provides some robustness against dents
and bumps in the surface geometry, as the line can be estimated based on points
in other regions.

Based on the pros and cons presented for the different sensors, the decision
was made to use LIDAR as the main navigation sensor for range and relative
heading estimation. The main arguments were that the additional data points
from the LIDAR enables a more robust solution compared to using ToF sensors.
The LIDAR solution also offers easier signal processing and data interpretation
compared to RADARs, without obvious compromise in the robustness of the
overall solution.

Chapter 13

Implementation and
Evaluation
This chapter will develop, implement and compare different solutions for relative
heading estimation based on data from a 2D scanning LIDAR. First, a method
for adaptive selection of a section of interest is discussed, before surface detection
methods based on regression and RANSAC are presented. Thereafter, the
results from experimental validation is presented. While the visualizations in
this chapter was done using Matlab, the implementations have been done in the
DUNE framework, described in part VI.

It should be noted that when the ultrasonic measurement probe and the LIDAR
are mounted on the drone, some of the vision in front LIDAR is obstructed. The
sector affected by this is roughly ±4° in front of the drone. Hence, the methods
developed in this thesis should perform satisfactory within these restrictions.
The LIDAR and the mounting of the sensors will be described in detail in
section 14.6.

13.1 Adaptive Field of View
Since the LIDAR gives measurements around the entire drone, a method was
developed to adaptively choose a sector of interest and filter out points that was
not within this sector. This is to reduce the impact of differences in geometry
along the surface. This is a reflection of the fact that the section of the surface
straight in front of the drone, is the most important information for the contact
operation.

99

100 CHAPTER 13. IMPLEMENTATION AND EVALUATION

Figure 13.1: Adaptive
sector

First, faulty measurements are filtered away by dis-
carding elements outside the valid range specified by
the sensor. Secondly, a sector is adaptively chosen
based on the distance from the surface. Given the tar-
get width of the inspection surface wt and the previous
range rp, the sector field of view angle α is chosen as

α = 2atan2
(wt

2
, rp

)
(13.1)

In addition, each sector α is limited by αmin and αmax.

Hence, the sector chosen tries to cover the same target
width of the surface in front. When the drone is close
to the surface, this will result in a wider angular field
of view being chosen, while the angular field of view
will be smaller when the drone is further from the
inspection surface. An illustration of this is seen in
fig. 13.1. Since the exact distance to the target surface
may not be available, the range solution of the previous
iteration is used.

All points outside the sector are discarded before the
information is passed along to the algorithms devel-
oped in the following sections.

13.2 Regression
This section will describe an algorithm based on regression used to find the
relative heading with respect to the inspection surface. Points remaining after
the sector selection are used in a linear regression model [30] to find the vector
parallel to the inspection surface and the distance from the surface to the
Unmanned Aerial Vehicle (UAV). Given the scan points, the following matrices
can be defined:

Y =


1 y1
1 y2
...

...
1 yn

 , X =


x1
x2
...
xn

 , β =

[
β1
β2

]
(13.2)

13.2. REGRESSION 101

where (xi, yi) is the coordinate of the i’th scan point in the body frame (x-axis
forward, y-axis right) and β1 and β2 are the regression solution. β1 and β2 can
be interpreted as the line’s x-axis crossing (range) and slope respectively. Then
the solution to the regression problem Yβ = X is given as [30]:

β = Y+X (13.3)

where {·}+ is the Moore-Penrose psudoinverse. The relative heading can be
calculated from the line slope as

ψrel = atan2 (β1, 1) (13.4)

Based on this model, data points that are outside a certain error threshold
are filtered out. To minimize the effect of obscuring obstacles, such as the
measurement probe, a second regression is performed on the remaining points to
form the solution. This process is visualized in fig. 13.2. An extreme outlier can
be seen in the point cloud in front of the drone, which affects the first regression
solution (orange). However, the extreme outlier is outside the error threshold,
and is thus filtered out. A second regression solution (blue) is then fitted, which
corresponds better to the expected result. The error threshold was set at 0.05 cm,
based on experiments conducted. In addition, no solution will be reported if the
number of points after the first regression is too low.

ψrel

Figure 13.2: The effect of running two regressions. The first regression is shown
in orange and the second regression is shown in blue

102 CHAPTER 13. IMPLEMENTATION AND EVALUATION

13.3 RANSAC
RANSAC is described in section 11.2 and the following will describe the model,
parameter estimation and distance metric used. The line model is given as:

x = β2y + β1 (13.5)

Given two scan points pi = (xi, yi) and pj = (xj , yj) in the body frame (x-axis
forward, y-axis right), the line parameters can be estimated as

β2 =
xj − xi
yj − yi

, β1 = xi − β2yi; (13.6)

Given another external point pe = (xe, ye), the distance to the line is given as

d =
|β2ye − xe + β1|√

β2
2 + 1

(13.7)

The case when yj − yi = 0 (vertical line) is handled separately. The number
of iterations k must also be chosen. Investigation of the laser scan points from
the LIDAR showed that the inlier ratio varied between 95% in the best case to
45% in the worst cases. Based on eq. (11.2) it is possible to find the number
of iterations needed to find a good solution with some probability. Setting the
desired probability p = 0.9999, the inlier ratio w = 0.45 and the model order
n = 2 in eq. (11.2) yields:

k =
log(1− 0.9999)

log(1− 0.452)
≈ 40.7 (13.8)

Experiments showed that any k larger than this yielded good result, with linear
increase in computation time. With k = 50 the computation time on the on-board
embedded computer was approximately 0.003 s with some fluctuation due to the
Linux scheduler (the embedded computer is described in section 14.2.2). The
error threshold was set to 0.05 cm, based on initial experiments and geometrical
considerations. In addition, no solution will be reported if the number of inliers
are lower than 50% of the total number of points in the sector of interest.

In implementations of RANSAC it is recommended to do a regression on the
inlier points after the algorithm has finished. This is because the solution model
from the RANSAC algorithm is constructed from only two points (in the case
of a line model). However, all inlier points are assumed to be generated by the
same model, and doing regression on the inlier points gives a solution that is
more robust to noise. Hence, this was also included in the implementation of
this method.

13.4. RESULTS OF EXPERIMENTAL VERIFICATION 103

13.4 Results of Experimental Verification
Different test scenarios were carried out to evaluate and verify the capabilities
of the implemented solutions:

• Controlled Environment (section 13.4.1): Presents and compares the results
of both algorithms in a controlled test setup. Sensor was not mounted on
the drone platform.

• Circular Room (section 13.4.2): Discusses the performance of the methods
in circular rooms and evaluate them using simulated data.

• Flight Test (section 13.4.3): Presents and discusses results from flights
conducted in the test room described in section 18.1.1.

13.4.1 Controlled Environment
The test setup is shown in fig. 13.3. A printed protractor and a table was used to
simulate different relative headings. The protractor and the LIDAR was aligned
using floor markings.

(a) Overview (b) Protractor

Figure 13.3: Test setup for controlled environment

104 CHAPTER 13. IMPLEMENTATION AND EVALUATION

Test I: Close Proximity

The LIDAR was placed 0.45m from the surface, with the sensors starting out
perpendicular to the surface. The surface was then turned according to fig. 13.4.
The dashed black lines marks the relative heading measured by the protractor,
and it should be noted that the blue and orange line are difficult to separate as
they are almost identical. Both methods showed excellent tracking of the surface,
and a snapshot of the laser scan with the solution of the regression algorithm at
t = 56.14 s can be seen in fig. 13.5.

Figure 13.4: Relative heading to test surface

13.4. RESULTS OF EXPERIMENTAL VERIFICATION 105

Figure 13.5: Scan image at t = 56.14 s. Front of LIDAR is facing towards positive
x

Test II: Obstruction

A test was also conducted with an object in front of the LIDAR to simulate
the effect of the probe obstructing a small sector in front of the LIDAR. The
obstruction can be seen in fig. 13.7, approximately 0.25 cm along the x-axis from
the LIDAR position. It is essential that the methods are able to perform with
these limitations, as the probe mounting will cause a similar blockage of the
LIDAR sensor.

106 CHAPTER 13. IMPLEMENTATION AND EVALUATION

Figure 13.6: Relative heading to test surface

Once again the surface was rotated to simulate different relative headings as seen
in fig. 13.6. The dashed lines displays the measurements from the protractor.
Once again both methods are generally able to perform as expected; however,
some differences between the methods become apparent. This is particularly
visible from t = 90 s to t = 110 s, where spikes of about 5° can be seen in the
regression estimate. These spikes are also visible at other time instances of the
experiment.

This was similar to other experiments conducted, where it was apparent that the
RANSAC method is able perform better at lower inlier ratios compared to the
regression method. This is linked with the fundamental assumptions of the two
methods, as regression assumes that all points are generated by the same model,
as opposed to RANSAC where the outliers comes from a different generative
distribution. This will be discussed further in section 13.5.

13.4. RESULTS OF EXPERIMENTAL VERIFICATION 107

Figure 13.7: Scan image at t = 45.23 s. Front of LIDAR is facing towards positive
x

Variance comparison

To better quantify the quality of the solution, an experiment was also carried
out to determine the variance of each of the methods. The relative heading was
adjusted from −30° to 30° with steps of 5°. No obstruction was present. The
variance was found at each step, and the experiment was carried out both close
to the surface (distance of 0.45m) and further away (distance of 2.65m). The
results are shown in fig. 13.8.

108 CHAPTER 13. IMPLEMENTATION AND EVALUATION

Figure 13.8: Variance plotted against heading

The overall results show that the variance is small for all scenarios; however,
there are differences correlated with both distance and method. The RANSAC
method perform generally better with respect to variance. On short distances
the RANSAC method has very small variance (Purple line in fig. 13.8), and
shows no clear correlation with the magnitude of the angle. From the results, it
is apparent that the variance increases with the distance to the surface (blue and
yellow line are furthest away). This is expected, as the noise on each individual
scan point increases with the distance from the sensor. From fig. 13.8 in can also
be seen that the RANSAC method performs similar on the longer distance as
the regression method on the short distance. However, the regression method
performs significantly worse on the longer distance, with variance also being
clearly linked to the magnitude of the angle. This shows that the RANSAC
method has the most robust performance with noisy measurements.

13.4. RESULTS OF EXPERIMENTAL VERIFICATION 109

13.4.2 Circular Room

This section will briefly discuss some of the problems related to the definition
of relative heading in circular rooms, and evaluate the performance of the two
methods in these conditions.

The definition of relative heading with respect to a circular room is clearly not
well defined. However, it is still possible to define the desired behavior in this
situation. In the contact based inspection scenario, the relative heading is used
to guide the drone to an orientation where it is facing perpendicular to the
surface. A more general definition of this configuration, is that the drone is
facing in the direction of the shortest distance to the inspection surface. Hence,
a reasonable behavior for the heading estimation in the case of a circular room is
to give the relative heading with respect to the tangent line at the closest point
on the inspection surface. In fig. 13.9 this corresponds to the situation when the
drone is orientated directly along the x-axis in the global view.

Figure 13.9: Global view of the drone position and environment

110 CHAPTER 13. IMPLEMENTATION AND EVALUATION

However, on the simulated data, it is apparent that both methods will slightly
underestimate the heading relative to the tangent line. This can be seen in
fig. 13.10, where the estimated heading is about 6°, while the true relative
heading with respect to the tangent line is 7.2°. It should be noted that the
tangent line in fig. 13.10 has been translated center of the laser scan, to better
illustrate the heading difference.

However, the underestimation of the heading is not a problem if relative heading
is used as the control variable, with the goal of driving it to zero. While the
feedback variable is slightly lower than reality, the controller will still drive
it towards 0°, giving the desired behavior of aligning the drone to the closest
surface. This is similar to controllers based on linearized models driving a
processes towards the operating point used in the linearization process.

Figure 13.10: Body view. Forward direction along the xb- axis. Only showing
LIDAR scan points inside the adaptive sector

13.4. RESULTS OF EXPERIMENTAL VERIFICATION 111

For the regression method a guarantee can be made under the assumption of
idealistic data, that the method will only give 0° when looking straight at the
tangent line at the closest point on the circular surface. This is because this is
the only time the algorithm will see the scan points as symmetric around the
body x-axis, which results in the regression algorithm giving a heading of 0°.

For the RANSAC method it is more difficult to make the same arguments and
guarantees about the behavior of the algorithm, since it is based on probabilistic
methods. However, the most optimal model will be the same as the model found
by the regression algorithm. The problem is that during the k iterations of
RANSAC, there is no guarantee that this solution is found. Nevertheless, the
RANSAC method shows equally good performance in the simulated scenario in
this section. It also shows the same behavior of underestimating the heading as
the regression method.

112 CHAPTER 13. IMPLEMENTATION AND EVALUATION

13.4.3 Flight Test
A manual flight test was also conducted in the test room described in sec-
tion 18.1.1. In this test, the algorithm was configured with a sector of interest
in all four cardinal directions of the body frame. This is because it was also
desirable to find the range to all surfaces, in order to track the relative placement
of the drone in the environment. According to the definition in section 11.1 this
gives a local position estimate, which can be used for control purposes. The
implementation of this will be discussed in section 16.3.

The result can be seen by following the video in the QR-code in fig. 13.11. A
snapshot of the result is also showed in fig. 13.13. As the previous sections
revealed that the RANSAC algorithm gave the most robust results, only the
results of this method is shown in this video, represented by the blue lines. The
regression method was also tested using the same dataset; however, it showed
far worse performance, and thus it was not included in this report. The reader
is highly recommended to watch the video to fully understand the interpretation
of the results.

The room is cluttered with desks and a net to protect to operator in the backward
direction, which causes loss of tracking at some instances during the flight. Since
the inlier ratio for an accepted solution was set high, this is to be expected.

In the forward direction two separate surfaces are present. From t = 38 s to
t = 48 s in the video it can be seen that the algorithm does not produce any
answer when the surface in front of the drone switches from the metal plates
in the front to the wall in the back. This is desired behavior, as ambiguities
should not produce a valid result. For the same reason, tracking is lost in the left
direction when the drone is close to the surface (t = 25 s), as the pilot struggles
to control the orientation of the drone.

Figure 13.11: QR-code for manual flight test (https://youtu.be/RvXeqMnb9z8)

https://youtu.be/RvXeqMnb9z8

13.4. RESULTS OF EXPERIMENTAL VERIFICATION 113

Figure 13.12: Relative heading and ranges during the manual test flight

Figure 13.13: Screenshot of the RANSAC algorithm running in all four sectors

114 CHAPTER 13. IMPLEMENTATION AND EVALUATION

13.5 Conclusion

The most noteworthy drawback of regression comes from the linear model used.
The model implicitly assumes that the points in the laser scan comes from a
planar surface, which might not be the case in the presence of obstacles or other
distinct features in the surface. The adaptive adjustment of the field of view
angle is an attempt to lower the impact of these issues, and helps select the
points used to form the regression solution from the most relevant regions of
the scan. However, if the violation of the planar assumptions is to extreme, the
performance of the regression will be poor.

Generally, the RANSAC method are able to handle a much higher outlier
ratio then the regression method. This comes from the fundamental underlying
assumption of the two methods: Regression assumes all data points are generated
by some model (with noise), while the RANSAC method assumes that the data
points can be classified as either inliers or outliers to a certain model. The latter
assumption clearly fits the data coming from the LIDAR better. Hence, both
methods provide robustness against sensor noise, while the RANSAC model
gives better rejection against surface geometry and obscuring obstacles, despite
the attempt to filter outliers by doing a double regression.

The behavior in circular rooms is also satisfactory for both algorithms, under
the assumption that the control objective is to regulate the heading to 0°. This
will suppress the slight underestimation of the heading that was described in
section 13.4.2. It is also possible to extend the RANSAC implementation to fit
a circular model instead; however, this is left as future work.

Pitch and roll angles will also affect the performance of the algorithms described
in this part. For the relative heading estimate based on a 2D scanning LIDAR,
the assumption is that the roll and pitch angle will be small. If this is not the
case, it is difficult to interpret the result of the algorithm in any meaningful
way. Since the contact based inspection scenarios will be performed with low
horizontal velocities and hence small displacements in roll and pitch, this was
concluded to be a reasonable limitation.

13.5. CONCLUSION 115

The solution technique described in the above chapters also has a potential for
further extension:

Assumption about the geometry of the surrounding environment can be done,
where a flat surface assumption is the most obvious. Thus, the orthogonal
distance to the surfaces in all sectors can be used instead. This would give a
global position estimate relative to a coordinate system attached to the room,
under the assumption that it is rectangular. However, in an attempt to make
the solution as general as possible with respect to the geometry of the room,
this has not been done in this thesis.

The lines extracted in the regression algorithm can also be used as features in
a SLAM algorithm, such as in [68]. As the number of features are small, this
can be done in a SLAM algorithm based on an extended Kalman Filter [16].
It is also possible to use the entire scan in a SLAM algorithm, such as in [46].
However, these techniques are advanced and considered beyond the scope of this
thesis.

It should also be noted that the solution based on the 2D scanning LIDAR
potentially introduces a time delay into the system. The sensor used in this
thesis dispatches a scan of 360° every 0.1 s, which means that some parts of the
laser scan potentially is more than 0.1 s old. If a Kalman Filter is used to filter
these measurements it should be formulated on error form in order to give better
rejection against these time delays [63].

116 CHAPTER 13. IMPLEMENTATION AND EVALUATION

Part V

Hardware

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

117

Chapter 14

Drone Platform
This chapter will provide details about the hardware of the drone used in this
thesis. First, a brief overview will be presented, before the main components of
the drone are described in the order below.

1. Frame and Motors (section 14.1)
• Motor Controllers (section 14.1.1)

2. Flight controller and Computer Module (section 14.2)
• Pixhawk CUBE (section 14.2.1)
• Toradex iMX6 Colibri (section 14.2.2)
• Motherboard (section 14.2.3)

3. Range Sensor (section 14.3)
4. IMU (section 14.4)
5. Ultrasonic Probe (section 14.5)
6. LIDAR (section 14.6)

The design of the platform, as well as all hardware components, have been
supplied by Scout DI. During this thesis, the ultrasonic probe and 2D scanning
LIDAR has been integrated onto the platform, as well as general maintenance
and assembly of the rest of the platform. Section 14.7 will briefly present another
hardware platform used for additional testing.

First, an exploded view of the drone and all its parts are shown, followed by
block diagram showing the connections and communication protocols for the
different hardware components. Finally, a picture of the fully assembled drone
with all mission payloads is shown. The intent of the following is to provide the
reader with an overview of the capabilities of the platform used to conduct the
experiments in this thesis. Hence, it is kept intentionally brief to not overwhelm
the reader with the implementation details.

119

120 CHAPTER 14. DRONE PLATFORM

Figure
14.1:

Exploded
view

ofthe
drone

and
allhardw

are
com

ponents.
(C

ourtesy
ofScout

D
I)

121

M
ot

or
C

on
tr

ol
le

r
M

ot
or

s

Te
ra

R
an

ge
r

Tr
ite

x
G

au
ge

C
on

ve
rt

er

R
pL

id
ar

C
on

ve
rt

er

A
di

sI
M

U
B

oa
rd

U
SB

H
ub

To
ra

de
x

IM
X

6
B

re
ak

ou
ts

Pi
xh

aw
k

B
re

ak
ou

ts

M
ot

he
rB

oa
rd

Pi
xh

aw
k

C
U

B
E

To
ra

de
x

IM
X

6

PW
M

T
hr

ee
-p

ha
se

U
A

RT

PW
M

U
SB

Se
ria

l

U
SB

Se
ria

l

U
SB

U
A

RT

R
S2

32
U

SB
Se

ria
l

U
A

RT

Et
he

rn
et

R
C

R
ec

ie
ve

r

P
P

M

Fi
gu

re
14

.2
:

H
ar

dw
ar

e
co

nn
ec

tio
n

an
d

co
m

m
un

ic
at

io
n

pr
ot

oc
ol

s

122 CHAPTER 14. DRONE PLATFORM

Figure
14.3:

Fully
assem

bled
drone

w
ith

allm
ission

payloads

14.1. FRAME, MOTORS AND POWER SUPPLY 123

14.1 Frame, Motors and Power Supply

The drone frame consist mostly of carbon fiber plates in conjunction with 3D
printed plastic, such as for the 3D printed casings for the motors and the landing
gear.

The motors are brushless AC motors of the type KDE2315XF-2050 manufactured
by KDE Direct1. This motor is more powerful than what is commonly used with
drones of this size. This comes at the expense of a higher power consumption,
resulting in shorter flight time. The reason for this design choice was that during
initial tests with less powerful motors, the drone would experience temporary falls
in quick maneuvers. This was due to some of the motors experiencing saturation
in thrust potential, meaning that attitude could only be corrected by lowering
the thrust of all motors, and thus resulting in loss of altitude. Since this drone
platform is intended for development, the choice was made to have excessive
thrust potential rather than do premature optimization on the combination of
weight, motors and propellers.

The propellers are 9.5 inch in diameter with two blades at a pitch of 45°.

The drone is supplied power from a 3S LiPo battery, which has a nominal voltage
of 12V. In addition, the drone is equipped with a BEC (Battery Eliminator
Circuit)2 to convert the input voltage from the main battery to different voltages
levels, and a Power Line (PL)3 sensor to measure the voltage and current
consumption.

1https://www.kdedirect.com/products/kde2315xf-2050
2https://www.mauch-electronic.com/apps/webstore/products/show/7588500
3https://www.mauch-electronic.com/apps/webstore/products/show/7594481

https://www.kdedirect.com/products/kde2315xf-2050
https://www.mauch-electronic.com/apps/webstore/products/show/7588500
https://www.mauch-electronic.com/apps/webstore/products/show/7594481

124 CHAPTER 14. DRONE PLATFORM

14.1.1 Motor Controllers

The drone is equipped with a T-Motor F55A Pro4 Electronic Speed Control
(ESC). The ESC controls all four motors, and is capable of delivering 75A burst
and 55A sustained current. Inputs to ESC comes from the Pixhawk CUBE
described in section 14.2.1.

The full integration of the motors, ESC and power modules can be seen in
fig. 14.4.

Figure 14.4: The drone frame including motors, motor controller and RC-receiver

4https://www.getfpv.com/t-motor-f55a-pro-55a-3-6s-blheli32-4-in-1-esc.html

https://www.getfpv.com/t-motor-f55a-pro-55a-3-6s-blheli32-4-in-1-esc.html

14.2. FLIGHT CONTROLLER AND COMPUTER MODULE 125

14.2 Flight Controller and Computer Module

This section will describe the specification of the computational hardware used
on the drone platform. First, the flight controller is presented, followed by the
main computer module. The last section shows the motherboard, which features
breakouts for both of the aforementioned computational modules.

(a) All components (b) Motherboard (front)

(c) Motherboard (back) (d) Assembled on drone

Figure 14.5: The Motherboard (designed and developed by Scout DI), Pixhawk
CUBE and Toradex iMX6 Colibri

126 CHAPTER 14. DRONE PLATFORM

14.2.1 Pixhawk CUBE
The low-level autopilot running on the drone is the Pixhawk CUBE5 hardware
with Ardupilot6 software stack. The hardware platform is popular and adopted
for both recreational and professional purposes. Ardupilot includes software
specific for both multirotors and fixed wings, called ArduCopter and ArduPlane
respectively. Ardupilot is open-source and alterations to the code has been made
by Scout DI to enable indoor flight without compass aiding, and control of the
desired attitude of the multirotor using outputs from an on-board computer.

In addition to the attitude control, the most important features of the Ardupilot
is that it also provides attitude estimates and relays Remote Control (RC)
receiver inputs to the on-board computer. The RC-receiver communicates with
the Pixhawk using Pulse Position Modulation (PPM).

14.2.2 Toradex iMX6 Colibri
The Toradex iMX6 Colibri is a Computer on Module (COM), which is a subtype
of an embedded computer system. This module runs all of the frameworks and
high-level control software on the drone. The iMX6 is capable of running a range
of different operating systems, but in this case it runs a Linux distribution which
will be described in section 15.5.

The Toradex iMX6 is powered by a Cortex A9 dual core CPU at 1GHz, and
features interfaces such as Inter-Integrated Circuit (I2C), Universal Serial Bus
(USB), and Universal Asynchronous Receiver-Transmitter (UART). The full spec-
ifications for the Toradex iMX6 Colibri can be found online7. The Toradex iMX6
can bee seen in fig. 14.5a and is mounted on the backside of the motherboard,
as seen in fig. 14.5c.

14.2.3 Motherboard
The motherboard is designed and developed by Scout DI, and is the glue of
all the hardware components on the platform. It provides power at different
voltages and connects the main on-board computer and the low-level Pixhawk
together over a UART interface. In addition, the motherboard also allows for
easier integration of different sensors by exposing interfaces for common hardware

5https://docs.px4.io/en/flight_controller/pixhawk-2.html
6http://ardupilot.org/ardupilot/
7https://www.toradex.com/computer-on-modules/colibri-arm-family/

nxp-freescale-imx6

https://docs.px4.io/en/flight_controller/pixhawk-2.html
http://ardupilot.org/ardupilot/
https://www.toradex.com/computer-on-modules/colibri-arm-family/nxp-freescale-imx6
https://www.toradex.com/computer-on-modules/colibri-arm-family/nxp-freescale-imx6

14.3. RANGE SENSOR 127

communication protocols such as I2C, UART and USB from the iMX6. The
motherboard and the integration with the iMX6 and Pixhawk can be seen in
fig. 14.5.

No wireless modules are installed on this development drone, and thus a Ethernet
cable was connected to the drone during flight to ensure communication with
control applications and transmission of debug data to the ground station.

14.3 Range Sensor
The range sensor used in this thesis is a TeraRanger Evo8 3m produced by
TeraBee, as seen in fig. 14.6a. It is a ToF sensor, and uses IR light to measure
the range.

(a) TeraRanger Evo 3m with custom UART cable

(b) TeraRanger mounting

Figure 14.6: TeraRanger
8https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-evo-3m/

https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-evo-3m/

128 CHAPTER 14. DRONE PLATFORM

The TeraRanger features a range of backboards to expose different connection
interfaces, such as USB 2.0 Micro-B, UART and I2C. In this case the UART
interface was chosen, and a custom cable was soldered to connect to the serial
interface of the iMX6 through the motherboard. The sensor has a field of view
of 2°, and produces range measurement within 0.1− 3m at an update rate of
100Hz.

The TeraRanger was mounted in a downward facing direction to measure the
altitude of the drone, as shown in fig. 14.6b.

14.4 IMU
A high grade Inertial Measurement Unit (IMU) was also mounted on the drone.
This was done using a circuit board designed and developed by Scout DI, and
features an ADIS 164659 IMU and a Teensy10 microcontroller to handle the
low-level communication and timing with the IMU. The Teensy microcontroller
communicates with the IMU over Serial Peripheral Interface (SPI) and forwards
messages to the iMX6 over USB.

The board can be seen in fig. 14.7, and was mounted below the Pixhawk in order
to keep it as close to the center of mass as possible.

Figure 14.7: The ADIS IMU and the carrier board with the Teensy microcon-
troller. Designed and developed by Scout DI

9https://www.analog.com/en/products/adis16465.html
10https://www.pjrc.com/store/teensy32.html

https://www.analog.com/en/products/adis16465.html
https://www.pjrc.com/store/teensy32.html

14.5. ULTRASONIC PROBE 129

14.5 Ultrasonic Probe
This section will give a more thorough introduction to the ultrasonic probe used
to measure the metal thickness of inspection surfaces in this thesis. Since the
reader is assumed not to be familiar with the ultrasound technology, a brief
introduction will be given in the next section. Thereafter, specifications of the
Tritex Gauge11 will be presented, along with the modifications needed to mount
the probe system onto the drone platform.

14.5.1 Background
The principle behind ultrasonic thickness measurements are similar to any time
of flight technique. Ultrasonic sound waves are transmitted into a material and
reflected back to the sender when they hit areas with different densities. If the
speed of sound in the material is known, the thickness can be calculated using
the measured time between sending and reception of the sound waves.

However, there exist a couple of challenges to get reliable measurements. Since
air have significantly different properties from most other solid materials, it is
ideal to have complete contact between the probe and the target material. This
is normally done using a special gel that ensures contact, much like examinations
for pregnant women. However, there is still a difference in the properties of the
gel and the target material that causes reflection of the sound waves.

Figure 14.8: Illustration of ultrasound principle for thickness measurement

The sensor uses a technique called multiple echo to ignore the thickness of the
coating during measurements, as illustrated in fig. 14.8. In simplistic terms this
means that the reflections of all the different materials are measured, but time
traveled in other materials than the target are subtracted away. Hence, it is
possible to get valid readings even with the presence of coating and corrosion.

11https://www.tritexndt.com/product/multigauge-6000-drone-thickness-gauge

https://www.tritexndt.com/product/multigauge-6000-drone-thickness-gauge

130 CHAPTER 14. DRONE PLATFORM

14.5.2 Integration
In order to mount the probe onto the drone, Scout DI 3D designed and printed
a custom bracket and holder for the probe head. The holder in front was
printed using a flexible plastic material in a gimbal-like structure, such that the
holder becomes a flexible joint at the tip of the probe. This ensures sufficient
mechanical compliance in the structure, while the plastic also gives a weight
advantage compared to other methods based on metal springs. The mounting
bracket and probe front can be seen in the top left part of fig. 14.9.

All parts necessary to mount and power the ultrasonic probe can be seen in
fig. 14.9. Enumerated from left to right starting at the top row, the parts are:

1. Custom 3D printed mounting for probe head with flexible joint and carbon
fiber tubes

2. 3D printed bracket for attaching the probe
3. Serial to USB converter
4. Custom created power supply cable
5. Probe head
6. Probe cable
7. Probe electronics box

Figure 14.9: All parts of the ultrasonic probe and mounting brackets

14.5. ULTRASONIC PROBE 131

The serial interface was exposed by soldering an RS232 cable to the internal
breadboard of the ultrasonic hardware. Furthermore, an RS232 to USB converter
was used to connect to the motherboard, since the motherboard does not
feature circuitry to handle the differential voltage of the RS232 interface. The
packets coming from the probe hardware containing the measurements are then
interpreted by the on-board software. This is done using a custom driver, which
will be further described in section 16.2.2. The finished mounting of the ultrasonic
probe can be seen in fig. 14.10.

(a) Top view of the ultrasonic probe integrated on the drone

(b) Bottom view of the ultrasonic probe integrated on drone

Figure 14.10: Overview of the integration of the ultrasonic the probe

132 CHAPTER 14. DRONE PLATFORM

14.6 LIDAR

The LIDAR used is an RPLIDAR A212 developed by SLAMTEC. It is a 2D
scanning LIDAR, powered by a motor that causes the upper part of the LIDAR
housing to rotate.

According to the specifications, the LIDAR has a measurement range of 0.15−
12m, with an angular resolution of 1°. The full 360° laser scan is provided at a
frequency of 10Hz.

To mount the LIDAR on the drone, Scout DI 3D designed and printed a custom
bracket, as seen in fig. 14.11. The drone was connected to the motherboard
using a USB Hub, and the fully integrated LIDAR can be seen in fig. 14.3.

A custom sensor driver was created in order to communicate with the hardware
components of the LIDAR, using an SDK provided by SLAMTEC. This is
described in detail in section 16.2.1.

One issue with this specific LIDAR model became apparent when the LIDAR was
used at the Falck Nutec facilties (described in section 18.1.2). The performance of
the LIDAR in the tank was significantly worse compared to all other environments
where the LIDAR was tested. Even though the max range is specified as 12m,
the LIDAR was unable to get readings of surfaces more than 4.5m away. One
possible source of the issue is that the range specifications are given for highly
light emitting surfaces, such as a white wall. A darker colored surface will absorb
more of the light emitted from the LIDAR, and thus reducing the maximum
range. However, since the problem was not detectable when the drone was on
ground, it is likely also correlated with the vibrations caused by the motors
when the drone is airborne. It appears that these two error sources combined
highly degrades the sensor performance. As an example, no range information
was available in the lateral direction when the drone was facing the tank walls.
Despite the limitations this poses on the navigation methods, several successful
flights were carried out in the tank environment (see section 18.3).

12https://www.slamtec.com/en/Lidar/A2

https://www.slamtec.com/en/Lidar/A2

14.6. LIDAR 133

(a) All parts for the LIDAR

(b) RPLIDAR on custom mounting

Figure 14.11: RPLIDAR integration

134 CHAPTER 14. DRONE PLATFORM

14.7 The Scout 135 Hardware Platform

During the work on this thesis Scout DI developed a new version of their
inspection drone, called the Scout 135. This drone is closer to the intended
production version, and all controllers and navigation solutions developed in
this thesis will also be tested using this platform. This is done to show that
the methods developed are hardware agnostic, but also provide insight into how
the hardware design influence the performance of the controllers and interaction
with the environment. The Scout 135 can be seen in fig. 14.12, and this section
will describe the main differences between the two platforms. It should be noted
that all design and hardware integration has been done by Scout DI, and only
platform specific tuning of controllers has been done during this thesis. The
results of flight tests with Scout 135 can be found in section 18.3.

The platform addresses many of the concerns of indoor flight by integrating
the propellers into the chassis itself, and generally improving robustness in case
of contact or crash. Since this drone is closer to the production model, more
optimization has been done on the combination of weight, motors and propellers.
The propellers are 6 inch in diameter with three blades at a pitch of 42°, and is
powered by 4S LiPo batteries with a nominal voltage of 14.8V.

With respect to the sensor and computational hardware, there are almost
no differences between the two platforms, except that the downwards facing
TeraRanger has been replaced with a Garmin LIDAR-Lite v3HP13. Other than
having longer range, this sensor provides the exact same capabilities as the
TeraRanger used on the development platform.

In addition, the platform also has a camera mounted on a gimbal, which allows
for streaming of live video from the drone. The drone has also been fitted with
Light Emitting Diods (LEDs) to provide some vision in poorly lit environments.

13https://buy.garmin.com/en-US/US/p/578152

https://buy.garmin.com/en-US/US/p/578152

14.7. THE SCOUT 135 HARDWARE PLATFORM 135

Figure 14.12: The Scout 135 platform

136 CHAPTER 14. DRONE PLATFORM

Part VI

Software

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

137

Chapter 15

Background
This chapter will provide a short introduction to the software framework used for
the implementation and experimental validation of the controllers and navigation
methods in this thesis. First, an overview of the LSTS Toolchain will be given,
before the most relevant components are presented in more detail.

15.1 The LSTS Toolchain
The LSTS toolchain [57] is a software framework designed for operations with
multiple, heterogeneous vehicles. The toolchain is developed by the Underwater
Systems and Technology Laboratory (LSTS) at the University of Porto, Portugal.
While the toolchain originally was designed for use with underwater vehicles,
the software is now used by researchers and commercial companies to facilitate
advanced operations with surface vessels, UAVs and underwater vehicles.

The LSTS toolchain consists of the following components. Note that only the
items in bold will be covered, as these are the most relevant for this thesis.

• DUNE: Software developing framework (section 15.2)
• IMC: Communication protocol (section 15.3)
• Neptus: Ground Control Station (section 15.4)
• GLUED: A minimal Linux distribution
• Ripples: Communications hub for data (cloud service)
• ACCU: Android Command and Control Unit

In addition, a quick overview of the Linux distribution running on-board the
drone will be presented in section 15.5.

139

140 CHAPTER 15. BACKGROUND

15.2 DUNE

Unified Navigation Environment (DUNE) [58] is a software framework that
provides a runtime environment for unmanned systems. It is written in C++
and runs on all major operating systems. The DUNE source code can be found
online at github1.

Task are the base concept in DUNE, and are effectively configurable submodules
that run in parallel. A DUNE task can serve many different purposes, interfacing
with hardware; translating higher-level goals to low-level actuator commands;
and monitoring the state of the vehicle.

An important feature of DUNE is that all tasks are compiled together to form
a single binary executable. This separates DUNE from other popular runtime
frameworks such as the Robot Operating System (ROS) (see section A.2), where
nodes or modules are run as separate executables. Compared to system level
communication sockets, task communication using shared memory is much
faster. The tasks communicate using a message protocol called Intermodule
Communication (IMC), which will be detailed in section 15.3.

The benefit of the modular approach is the ease which a task may be replaced
or improved. Seen from a system perspective, a new task need only provide the
same information to the system as the ones it replaces. Hence, a task estimating
position using beacons can easily be replaced with a task estimating position
based on visual odometry, as long as they both broadcast the same position
estimate messages. Since all broadcasted messages are available to all tasks, new
tasks can easily access information it needs to perform its purpose. However,
care should be taken when designing the complete system to ensure minimal
information dependency for easier maintenance.

The DUNE framework provides core tasks that keeps track of the state of the
vehicle, in addition to essential functionality such as logging and transmission
of data to the ground station (Neptus, see section 15.4). DUNE also has
support for the Micro Air Vehicle Link (MAVLink) protocol [60], which is a
popular communication protocol for small unmanned vehicles. MAVLink is for

1https://github.com/LSTS/dune/

https://github.com/LSTS/dune/

15.2. DUNE 141

example used to communicate with low-level controllers, such as the Pixhawk
(see section 14.2.1).

15.2.1 Run Configurations

Configuration files specify which tasks are executed, in addition to configuration
parameters for each of these. Thus, different vehicles may use the same tasks,
but with different parameters. Configuration files can include other configuration
files, and form a tree-like structure. An illustration of the configuration file
structure is shown in fig. 15.1. This allows a task to specify a set of default
parameters, while certain parameters can be overridden in parent files to target
a specific vehicle or use case.

uav.ini

sensor.ini navigation.ini . . . control.ini

imu.ini

sonar.ini
. . .

path-planner.ini

slam.ini
. . .

attitude-
controller.ini
. . .

Figure 15.1: Configuration file structure for an example UAV

DUNE can be run in different profiles, which either alters the behavior of
some tasks or choose which tasks are executed. A typical setup will usually
include at least a simulation profile and hardware profile. Sensor driver tasks are
started when the hardware profile is active, while the simulation profile will start
simulator tasks instead. This allows the same configuration file to be used for
both real missions and simulations, without altering the behavior of the system.

142 CHAPTER 15. BACKGROUND

15.3 IMC

At the core of the LSTS Toolchain is the Intermodule Communication (IMC)
protocol [49], which describes all data and messages being exchanged between
different tasks, programs and systems. All message types are specified in an
XML file named IMC.xml, which can be compiled into classes in C++ and
Java, or used as object templates in Python. The IMC protocol is language and
platform agnostic, and thus makes few assumptions about the data except for
the structure defined in the XML file. The LSTS Toolchain already implements
IMC for common use cases, but the user may also extend this with custom IMC
messages if needed. An example IMC message can be seen in listing 15.1.
...

<message id="45" name="Desired Throttle" abbrev="DesiredThrottle">
<description>
 Desired throttle e.g. for Plane in FBWA-mode.
</description>
<field name="Value" abbrev="value" type="fp64_t" unit="%">
 <description>
 The value of the desired throttle.
 </description>
</field>
</message>

...

Listing 15.1: Example IMC message from the IMC.xml file

The IMC protocol facilitates a modular and encapsulated software design. An
IMU sensor driver may read from a serial interface and publish IMC::Acceleration
measurements to the IMC bus. Furthermore, an estimator uses the acceleration
measurements along with other information, such as distance measurements, to
create an estimated state of the vehicle, and broadcasts these as IMC::Estimat-
edState. These estimates can then be used by a controller to calculate output
for actuators. One such example is a velocity controller broadcasting the desired
thrust of an underwater vehicle using the IMC::DesiredThrottle messages. All
subscription and broadcasting of IMC messages in DUNE are handled by the
IMC bus. An illustration of the message passing described above can be seen in
fig. 15.2

15.3. IMC 143

IMC Bus

IMU Driver
Acceleration

Estimator
Acceleration

EstimatedState

Controller
EstimatedState

DesiredThrottle

...

Figure 15.2: Message passing using the IMC bus

144 CHAPTER 15. BACKGROUND

15.4 Neptus

The LSTS toolchain also includes a Ground Control System (GCS) called Neptus
[59]. Neptus is intended as the main operator interface for vehicles developed
using the LSTS toolchain. Neptus is written in Java, and hence runs on platforms
that support the Java VM.

Figure 15.3: Neptus operation console for a UAV mission

All parameters and configurations running on the vehicle can be viewed in
real-time, along with visualizations of flight data and plotting of any general
time series. This gives the operator an overview of the situation, by showing
all vehicles and entities involved, along with important mission data. Neptus is
also able to change settings and display status for every task running on-board
any of the vehicles. All communication with the vehicles is done over IMC. An
example of a Neptus console is shown in fig. 15.3.

15.5. LINUX DISTRIBUTION 145

Figure 15.4: Neptus MRA. Roll, pitch and yaw from a test flight is plotted

The GCS also includes features for planing, executing and reviewing mission
plans. Inspection and analysis of the mission data is done using a specialized
application, called Neptus Mission Review and Analysis (MRA) [58]. After an
operation is finished, Neptus can request a log of all messages sent and received
by DUNE and display information back to the user. An example is illustrated
in fig. 15.4, showing the estimated attitude of a drone during flight.

15.5 Linux Distribution

The operating system running on-board the drone is called the Ångström distri-
bution, and is a light-weight Linux-distribution which aims to create a stable,
user friendly Linux distribution for embedded devices. The distribution allows
for configurations of the vehicle, such as hostname and network address, as well
as specific programs or services to run at boot2. It should be noted that the
Ångström distribution is not a part of the LSTS toolchain, contrary to the rest
of the tools described in this chapter.

2http://www.angstrom-distribution.org/

http://www.angstrom-distribution.org/

146 CHAPTER 15. BACKGROUND

Chapter 16

DUNE Implementation

This chapter presents the process of implementing the automatic thickness
measurement on the DUNE software framework running on-board the UAV
system. This first section will provide an overview of the entire system, to give
the reader a broader view before details are presented in their respective sections.

Hardware Layer Software Layer Operator Interface

Ardupilot

Sensor
Drivers

DUNE

Navigation
Systems

Control
Systems

Neptus

Android/Win-
dows Application

Figure 16.1: Visualization of the major components of the system

147

148 CHAPTER 16. DUNE IMPLEMENTATION

Figure 16.2 gives a more detailed view of the tasks and information flow between
them. Tasks are visualized as rectangular boxes, and the arrows connecting the
different modules in fig. 16.2 describe IMC messages dispatched and received by
the different modules.

Since the creation of a complete software platform from scratch is beyond the
scope of this thesis, some components developed by Scout DI have been reused.
Section 16.1 will detail which modules this includes, but these tasks are also
displayed with a dashed border in fig. 16.2.

The basis for almost all information in the software layer comes from sensors
and mission payloads. In order to interpret the data received via the different
hardware interfaces described in chapter 14, sensor drivers are needed. In fig. 16.2,
these are showed in green, and section 16.2 will describe the drivers developed
in this thesis.

As illustrated in fig. 16.1, the raw sensor measurements are transformed into
navigation data by the navigation system in order to be utilized by the controllers.
These are represented by the light blue boxes in fig. 16.2. The navigation system
is an implementation of the navigation methods described in part IV, and will
be detailed in section 16.3.

The two circles on the left side represents information sinks, rather then specific
tasks. The blue circle is the operator interface, and represents the interfaces
through which the user controls and operates the drone. In section 16.4, exten-
sions made in this thesis to existing interfaces will be detailed. Finally, chapter 17
will provide a more detailed description of the integration of the control system,
represented by the gray circle in fig. 16.2.

It should be noted that the information described in the following chapters is
only intended as an overview, and is kept intentionally brief to not overwhelm the
reader with the extensive amount of implementation details needed to develop
the complete system.

149

Te
ra

R
an

ge
r

D
riv

er

Tr
ite

x
G

au
ge

D
riv

er

Li
da

rD
riv

er

R
el

at
iv

eH
ea

di
ng

Li
da

rD
ist

an
ce

D
ist

an
ce

Fi
lte

r

O
bs

ta
cl

eT
ra

ck
er

St
at

eE
st

im
at

or

Co
nt

ro
l

sy
st

em
s

O
pe

ra
to

r
In

te
rfa

ce

IM
U

D
riv

er

A
rd

up
ilo

t
D

riv
er

La
se

rS
ca

n

D
ist

an
ce

D
ist

an
ce

Tr
ac

ke
dO

bs
ta

cl
e

R
oo

m
R

el
at

iv
eS

ta
te

Eu
le

rA
ng

le
s

M
et

al
T

hi
ck

ne
ss

D
ist

an
ce

A
cc

el
er

at
io

n
A

ng
ul

ar
Ve

lo
ci

ty

E
st

im
at

ed
St

at
e

A
ng

ul
ar

V
el

oc
ity

Es
tim

at
ed

St
at

e

Fi
gu

re
16

.2
:

In
fo

rm
at

io
n

flo
w

in
se

ns
or

dr
iv

er
s

an
d

na
vi

ga
tio

ns
sy

st
em

150 CHAPTER 16. DUNE IMPLEMENTATION

16.1 Existing Framework and Modules
This section will describe the modules made available by Scout DI, and highlight
what information these systems need to function correctly.

Scout DI has made many extensions to DUNE, such as improved logging and
convenience functions for common operations that were utilized during this thesis.
In addition to the core functionality, Scout DI also provided core modules for
handling pilot inputs and custom commands to the Ardupilot software. Drivers
for reading information from the downward facing TeraRanger and the Adis
IMU was also made available.

Modules were also provided on the navigation side. As seen in fig. 16.2, this
includes an obstacle tracker and a state estimator. The obstacle tracker receives
distance measurements to obstacles in the horizontal plane and fuses it with
IMU measurements to create a tracking filter. These tracked obstacles are then
combined in a state estimator to provide relative distances to obstacles in 5
sectors around the drone (front, left, right, back and down), as visualized in
fig. 16.3. The IMC::RoomRelativeState from the state estimator form the basic
control variables used in all control systems. Tuning and adjustments of the
obstacle tracking filters has been a part of this thesis.

Control systems with functionality for take-off, landing and pilot assisted flight
were also made available. These will be described in more detail in chapter 17.

16.2 Sensor Integration
This section will present the sensor driver developed as a part of this thesis. This
includes software interfaces for the RPLIDAR (see section 14.6) and the Tritex
thickness measurement probe (see section 14.5).

16.2.1 2D LIDAR
The 2D scanning LIDAR used in this thesis comes with an SDK to handle the
low level-communication over the serial interface. This SDK was included in the
DUNE framework, and a task was created to handle all communication through
the SDK, to encapsulate all low-level communications.

16.2. SENSOR INTEGRATION 151

A custom IMC message named IMC::LaserScan was created to transmit the
LIDAR measurement, modeled after a similar message in ROS1. The message
includes information about the start and angle increments between measurements,
in addition to the raw range measurements.

It should be noted that the LIDAR does not provide any timing information
about the laser scans, and hence all timestamps are generated in the driver.
This is problematic if high accuracy scan information is needed, for example for
transforming points using the attitude of the drone during acrobatic maneuvers.

A simulator was also created to mimic the behavior of the LIDAR in a rectangular
room, which gives the possibility to test the LIDAR behavior in combination
with a flight dynamic simulator from Ardupilot.

16.2.2 Thickness Measurement Probe
The thickness measurement probe exposes a serial interface via an RS232 cable.
The protocol used for this serial interface is not public; however, documentation
was provided by Tritex NDT such that it could be utilized. The probe can
transmit either raw timing measurements or actual thickness measurements if
the probe has been calibrated with the correct speed of sound for the material
of interest. The probe is pre-calibrated for steel by the manufacturer, thus the
transmitted measurements are based on this.

The probe alternates between sending two different package types every 250ms.
The first package is a status packet, containing information about the probe
type, firmware version and other practical information. The second type is the
measurement package, containing either an invalid reading or the thickness of the
material measured. The downside to this approach is that measurements are only
sent 0.5 s, which is suboptimal in case of a short contact. The exact timing of the
measurement appears to be linked with the timing of the message sending, which
means that the probe needs to have good contact exactly before the message is
sent. After the experimental results in this thesis was finished, Tritex shipped a
new probe with a firmware version that allows only measurement packages to be
sent. Hence, measurements are sent every 250ms, which increases the chance of
measurement during shorter contacts. The driver was updated to support this
option as well.

A custom IMC message named IMC::MetalThickness was created to transmit
the result of the thickness measurement.

1http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html

http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html

152 CHAPTER 16. DUNE IMPLEMENTATION

16.3 Navigation systems

The following sections will present the navigation tasks in fig. 16.2. The existing
framework of obstacle trackers described in section 16.1 works by tracking
obstacles in sectors around the drone, as shown in fig. 16.3. These tracked
obstacles are then combined to produce IMC::RoomRelativeState, which all
control systems use as input. The trackers need distance measurements to
detected obstacles in order to fuse this information with the IMU data. This
is provided by the task described in section 16.3.2, but also filtered though
the task described in section 16.3.3. An alternative to the above solutions is
to use the distance measurements directly; however, the LIDAR only provides
measurements at 10Hz. Thus fusing it with IMU data at 100Hz allows for both
filtering of the distance signals and providing distance estimates at a higher rate
to the control system.

In addition, a relative heading estimate for the forward sector was required
to align the drone to the inspection surface. This was provided by the task
described in section 16.3.1.

Relative Heading

Distance

Distance Distance

Distance

Figure 16.3: Visualization of the tracked sectors. Downward sector is not shown

16.3. NAVIGATION SYSTEMS 153

16.3.1 Relative Heading
Receives the IMC::LaserScan information from the LIDAR driver, and dispatches
relative headings to the surface in front of the drone. This is the implementation
of the methods for relative heading estimation developed in section 13.3 and
section 13.2. Configuration files decides which of the methods that should be
run; however, the RANSAC method is default.

16.3.2 LIDAR Distance
Receives IMC::LaserScan information from the LIDAR driver, and dispatches
distances to the closest surface in all four horizontal sectors.

Two different solutions where implemented: averaging a few measurements
in the center of the sector and detecting surfaces using the RANSAC and
regression methods from chapter 12. The current implementation is chosen in
the configuration files. While averaging range measurements in the center of a
sector makes no assumptions about the surroundings, it fails to provide rejection
to faulty measurements and sensor noise. Hence, running RANSAC gave the
most robust performance, and in the results shown in part VII this is the active
implementation.

16.3.3 Distance Filter
As mentioned, RADARs provide distance measurements in the horizontal plane,
even when the drone is tilted. Hence, the obstacle trackers expect to get the
distance in the horizontal plane to nearby obstacles. However, the LIDAR data
violates this assumption since pitch and roll will affect the distances. To counter
this effect, two options were considered: assume the detected surface is flat in the
vertical direction and compensate using geometrical considerations, or discard
the measurements and let the obstacle tracker provide an estimate only based
on the last known distance and new IMU data. Based on experimental tests, a
choice was made to discard measurements during these periods, since this proved
to give accurate estimates, while making fewer assumptions about the vertical
geometry of the environment. Hence, the the Distance Filter task filters out
measurements based on the current attitude of the drone.

154 CHAPTER 16. DUNE IMPLEMENTATION

16.4 User Interface

An important part of creating a robust and complete system for industrial use is
providing easy and intuitive user interfaces for different use cases. To fulfill this
requirement, interfaces for two different use cases were implemented as described
in the following.

16.4.1 Neptus Plugins

Two plugins were developed for Neptus, in order to best integrate with the
existing command and control options in th LSTS toolchain. One plugin displays
the current (if any) thickness measurements, along with the last measurement
and time since the last measurement. This mimics the behavior of the user
interface software that was bundled together with the probe. In addition, a
plugin was created to give easy access to IMC::OperatorCommand with Arm,
Takeoff, Land and ThicknessMeasurements as value. The plugins can be seen
below the attitude HUD in fig. 16.4.

Figure 16.4: Screenshot of the two plugins created for Neptus

16.4. USER INTERFACE 155

16.4.2 Mobile Application
Scout DI has developed an android application that is intended as the main way
to control and communicate with the drone. The application, shown in fig. 16.5,
features buttons for arming, take-off and landing, in addition to joysticks for
controlling the drone. In the upper right corner a visualization of the attitude
and proximity to nearby obstacles is shown.

The application is developed in a framework called FUSE. Fuse introduces a
declarative XML-based language for creating components for iOS and Android
called UX markup. UX Markup compiles down to C++, which gives optimal
performance on native, mobile devices. This is achieved through Uno, a dialect
of C# that compiles to C++. Hence, FUSE is a multi-platform framework and
supports building for Android, Windows and iOS.

Figure 16.5: Screenshot of the application. UTM button on the left and thickness
measurement display on the right

As a part of this thesis, a button for starting the thickness measurement was
added to the application, as seen by the third button on the left side of the
application in fig. 16.5 (UTM Button). The application will prompt the user for
confirmation, before sending the command to the drone and start the operation.
In addition, a display for valid thickness measurements was integrated. Valid
measurements are transmitted back to the application, and displayed live to the
operator (seen on the right side in fig. 16.5).

By adding these functionalities to the application the thickness measurement
operation is provided as a one-button solution to the inspector. This empowers
even basic drone operators with the capabilities to perform advanced inspection
operations, and lowers the requirements for pilot training of inspectors.

156 CHAPTER 16. DUNE IMPLEMENTATION

Chapter 17

Control System

This chapter will explain the implementation of the impedance controllers
developed in part III within the DUNE framework. This is done by integrating
the thickness measurement controllers and maneuvers into an inspection plan
provided by Scout DI.

17.1 Introduction

A typical DUNE operation is implemented as a plan, and consists of several
maneuvers. Maneuvers can be anything from take-off and circular loiters to
more complex area covering patterns. Each of these maneuvers may activate
several control loops in order to perform the desired maneuver, resulting in a
layered control structure. A visual representation of this hierarchy can be seen
in fig. 17.1.

A plan is implemented as a state machine where each state is a maneuver. Each
transition between maneuvers have specific triggers and required conditions,
for example receiving an IMC::OperatorCommand or reaching a certain target
set-point.

157

158 CHAPTER 17. CONTROL SYSTEM

Plans

Tank Inspection3D reconstruction …

Maneuvers

Takeoff Land360
rotation

Thickness
Measurement

…

Controllers

Altitude
controller

Impedance
controller

Position
hold

……

Figure 17.1: Example DUNE control hierarchy

17.2 Plan Integration

To integrate thickness measurements into the existing inspection scenario, a
thickness measurement maneuver and an impedance based control loop was
added to the existing inspection plan. This incorporated the controllers de-
veloped in part III into the DUNE framework. A visualization of the entire
inspection plan can be seen in fig. 17.2. The trigger for initializing the operation
was set to an incoming IMC::OperatorCommand with a value of ThicknessMea-
surementRequest, while the trigger for transitioning back to pilot assisted mode
was an IMC::ManeuverComplete message from the controller. This enables the
operator to easily take-off, fly to the desired position in the assisted mode, and
with one button activate the thickness measurement at a surface of interest.

17.2. PLAN INTEGRATION 159

Takeoff

Thickness Measurement

Pilot Assisted Control

Land

On Ground

Init

Takeoff Request

Target Altitude
Reached

Thickness Measurement
Request Maneuver Complete

Land Request

Target Altitude
Reached

Figure 17.2: DUNE Plan

17.2.1 Controller Implementation
As mentioned, the impedance controllers developed in part III was implemented
as control loops in DUNE. The information received and dispatched by the
impedance controller is visualized in fig. 17.3, along with the source and des-
tination of the information. The output from the controller is dispatched to
the low-level attitude controller using the IMC::DesiredCopterControl message,
containing the desired attitude, climb-rate and yaw-rate.

As discussed in chapter 9, the impedance based controllers works by setting
position based set-points for the controller. Hence, the thickness measurement
maneuver works by dispatching a sequence of set-points to the controller. The
first set-point is the location when the maneuver was activated, but with a
desired relative heading of zero, thus causing the drone to align itself to the
inspection surface. After the alignment phase, the drone choses a new set-point
close to the inspection surface. When the drone arrives at the target set-point,
contact is initiated by setting a new set-point beyond the surface. This set-point
is held for a fixed duration, which can be changed in the configuration files.
After the contact phase is done, the drone returns to the initial set-point and
dispatches IMC::ManeuverComplete.

160 CHAPTER 17. CONTROL SYSTEM

RoomRelativeState (State Estimator)

EstimatedState

EulerAngles (Relative Heading)

AngularVelocity (IMU Driver)

HumanControlInput (Operator Interface)

Impedance
ControllerError watchdog

Ardupilot Driver

DesiredCopterControl

Figure 17.3: High-level visualization of information flow around the controller

Coordinate System

As mentioned in part IV and the sections above, the navigation systems provide
local information about the surrounding environment. When the thickness
measurement operation is started, this results in the controllers operating relative
to a coordinate system as shown in fig. 17.4. The coordinate system will be
local to the environment where the operation is started, and hence changing for
every thickness measurement operation. However, since the coordinate system is
aligned with the inspection surface, distance measurements are only valid under
the assumption that ψrel ≈ 0°, as deviations in yaw will affect the measured
distance. Hence, if large deviations in relative heading is experienced, the
thickness measurement will be aborted as described in the following section.

The information received by the state estimator also contains a sequence number
for the current tracked obstacle. While it is possible to use this information
to track position in highly changing environments, it is difficult to guarantee
data accuracy in the switching phase, and thus a decision was made to abort
the thickness measurement in this scenario.

17.2. PLAN INTEGRATION 161

yn

xn

Figure 17.4: Local coordinate system. Z-axis pointing down

Error Handling

One of the goals for this thesis was to create a robust and user friendly system
for inspection scenarios in an industrial environment. Hence, an effort was made
to ensure safe operation of the system at all times. The combination of the high
kinetic energy of a flying drone with contact-based interactions, imposes severe
risk to both the drone and its surrounding environment.

To comply with the desire for safe, a number of features were implemented to
track the progress during the interaction. Timers were included to detect loss of
navigation data, in addition to monitors for breach of operation limits, such as
maximum pitch or heading during different stages of the docking phase. The
implementation was done such that any violations of the security constraints
results in the drone returning to its original position and give handling control of
the vehicle to the operator. Any input from the operator will immediately cause
the controller to return to pilot assist mode, and thus yielding control back to
the operator.

162 CHAPTER 17. CONTROL SYSTEM

Part VII

Results

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

163

Chapter 18

Results
This chapter will present the results achieved in this thesis on both the devel-
opment platform detailed in part V and the production platform described in
section 14.7. First, the different test locations will be described in section 18.1,
before the results from the following scenarios will be described:

• Flight Test I - Test Room
This flight test shows the result of autonomous thickness measurements in
a test room.

• Flight Test II - Falck Nutec Field Test
This section shows the result of experiments conducted at the Falck Nutec
test facilities.

• Flight Test III - Automatic Abort
This flight test showcases the automatic abort system. Conducted in the
same test room as Flight Test I.

• Flight Test IV - Simulation Comparison
A side-by-side comparison of Flight Test I and simulations carried out in
Appendix Part I.

For each scenario presented in this chapter, a video is also attached. These can
be reached by scanning the QR-codes or by following the link below the QR-code.
The videos are also attached in the digital appendix following this thesis. The
reader is highly recommended to watch these videos, as they are essential to get
the full understanding of the drone performance and interaction of the complete
system as seen from the perspective of the operator.

In the following, the inspection surface is defined to be parallel with the y-
direction, and hence the terms ”parallel to the inspection surface” and ”perpen-

165

166 CHAPTER 18. RESULTS

dicular to the inspection surface” is used interchangeably with ”y-direction” and
”x-direction” respectively. This is to simplify the wording in the discussions, and
is of no other significance to the results. In addition, the phrase ”angle-of-attack”
is used to describe the angle between the probe and the vector perpendicular to
the inspection surface at impact.

18.1 Test Facilities and Setup
This section will briefly describe the different facilities used for flight testing.

18.1.1 Test Room
A test room was setup in order to facilitate rapid testing iterations of the drone.
To represent the tank wall being measured, a steel plate was mounted in an
aluminum wall segment, as seen in fig. 18.2. However, the aluminum plates was
too thin to give a valid measurement, so the drone has to touch the steel plate
for the probe to register a reading. The room is square, and the walls range from
metal to concrete with different textures and colors, and gives an indication of
the navigation sensor performance on different materials. The control station is
protected by a net to ensure the safety of the operator. In addition, the floor is
padded with mattresses to minimize the consequences of a potential crash.

Figure 18.1: Overview of the test setup in the test room

The test plate was measured to be between 11.9mm and 12.0mm using manual
measurements. Since the development drone did not have wireless data trans-
mission, an Ethernet cable was used to transmit data to mobile application of
the operator and debug data to the ground station in the flight test described

18.1. TEST FACILITIES AND SETUP 167

in section 18.2. For the Scout 135 platform only a tethered power supply was
used to extend the flight time, as this platform featured wireless transmission
capabilities.

18.1.2 Falck Nutec Tank
Test have also been carried out at the Falck Nutec facilities1 in Trondheim. The
tank is normally used for safety courses for industrial purposes; but it is also
ideal for testing realistic inspection scenarios. Only the newer hardware platform
was tested in this environment, where a tethered power supply was used to
extend the flight time possible.

While the steel plate in the test room is smooth with no visible deteriorations
of the material, the tank surface is rougher, with visible corrosion. Hence, it
provides a more realistic test environment for the measurement probe. Manual
measurements varied between 6.0mm and 6.5mm, depending on the exact area
of the tank. However, it was very difficult to get valid results from the probe,
even with manual measurements. This will be discussed in more detail in the
summary of this chapter (section 18.6).

As described in section 14.6, the LIDAR was not performing as expected in this
environment. Hence, tracking was not available in the y-direction, and so the
plan was to forward roll commands from the pilot to counter any drift along this
axis. However, this turned out to be unnecessary, as just keeping the roll angle
stabilized yielded satisfactory results.

Figure 18.2: Overview of the test setup at Falck Nutec facilities

1https://relyonnutec.com/no_no/kurslokasjoner/?locid=1507

https://relyonnutec.com/no_no/kurslokasjoner/?locid=1507

168 CHAPTER 18. RESULTS

18.2 Flight Test I - Test Room

The following section will describe the results from flying the development
platform in the test room. The video can be seen by following the QR-code or
link in fig. 18.4. In the upper left corner the live navigation data is displayed,
along with the surfaces found by the RANSAC algorithm for all four sectors
around the drone. In the lower right corner the operator mobile application
is shown. For safety reasons, stick input is given from another controller, and
hence is not visible in the mobile application.

Figure 18.3: Snapshot from the video showing the contact and valid measurement

Figure 18.4: QR-code for the flight test in the test room
URL: https://youtu.be/-eNShie2HE4

https://youtu.be/-eNShie2HE4

18.2. FLIGHT TEST I - TEST ROOM 169

During takeoff and landing the drone is not stabilized in position, which causes
it to drift slightly due to disturbances and imbalances. After takeoff the drone
enters pilot assistance mode, and the operator positions it in front of the area of
interest. Thereafter, the thickness measurement button is pressed and the drone
performs an autonomous thickness measurement.

First, the drone aligns itself to the inspection surface. This can be seen in the live
navigation data, but also in the bottom graph of fig. 18.5. The relative heading
starts at 5°, and is quickly corrected towards zero. After the alignment phase, the
drone sets a new set-point close to the inspection surface and starts approaching
it. During the approach phase, the relative heading is varying slightly; however,
it stays within ±2°. When the drone arrives at the target set-point, contact is
initiated by setting a new set-point beyond the surface. During the contact the
pitch stabilize around 4°, with slight oscillations in the transient phase. Both the
roll and relative heading remains stable during the time of contact. The contact
phase last for approximately 2 s, and a valid thickness measurement of 11.9mm
is displayed on the right side of the operator application. A visualization of the
steady state contact can be seen in fig. 18.6a. Thereafter, the drone returns
the initial position, and control is given back to the operator. The estimated
position in the xz-plane during the entire flight can be seen in fig. 18.6b. The
plot is created by using the estimated distance down and forward.

Right before the drone comes in contact with the surface, a drop is seen in the
relative heading (bottom graph fig. 18.5). This is most likely due to aerodynamic
disturbances caused by irregular airflows close to the inspection surface. These
wall and ground effects are difficult to predict, but controllers quickly compensate
for it before the drone comes in contact with the inspection surface.

To summarize, the above flight test shows a successful thickness measurement
operation. The navigation methods provide data with enough accuracy for
the controllers to successfully perform a stable interaction and get a valid
measurement from the probe. The repeatability of the thickness measurements
are also good. During all of the test conducted during development and tuning
of the controller, no unstable contacts occurred. When the probe touched the
target steel plate, a valid measurement was given about 90% of the time, mostly
depending on the amount of gel applied. This could potentially be improved by
extending the contact period beyond the 2 s used in this flight test.

170 CHAPTER 18. RESULTS

Figure 18.5: Attitude during the flight test in test room. (Contact period marked
in red)

18.2. FLIGHT TEST I - TEST ROOM 171

(a) Visualization of contact steady-state from flight test

(b) Estimated position during the flight test

Figure 18.6: Flight test in test room

172 CHAPTER 18. RESULTS

18.3 Flight Test II - Falck Nutec Field Test

The following section will describe the results from flying the Scout 135 in at
the Flack Nutec test facilities. The video can be seen by following the QR-code
or link in fig. 18.8. On the left side, a sideways view of the interaction can be
seen, while the right side shows the operator perspective. The live navigation
data, along with the surface found by the RANSAC algorithm for the forward
section, is display in the middle. During this flight test, stick input is given from
a gaming controller attached to the operator tablet.

Figure 18.7: Snapshot from the video showing the contact and valid measurement

Figure 18.8: QR-code for the flight test at the Falck Nutec facilities
https://youtu.be/Uw_suetKRPc

After takeoff the drone enters pilot assistance mode, and the operator positions
it in front of the area of interest. In the test flights performed at the Falck

https://youtu.be/Uw_suetKRPc

18.3. FLIGHT TEST II - FALCK NUTEC FIELD TEST 173

Nutec facilities, a heading controller was activated in the pilot assist mode, using
the same navigation data from the methods developed in this thesis, as well as
the same control technique. This allowed the drone to remain locked-in on the
inspection surface, both with respect to the distance and orientation. Hence, the
operator can perform a sweeping maneuver along the wall by only controlling the
roll angle of the drone. This is a very useful maneuver during visual inspections,
enabled by the developed navigation methods. However, this means that the
drone was already aligned when it initiated the thickness measurement, as seen
in the third graph in fig. 18.9.

The drone follows the same procedure as in the previous section by first setting
a set-point in front of the wall, before initiating contact by putting a set-point
behind the surface. In this flight test, the contact time was adjusted to be half a
second longer, in order to increase the probability of a valid reading on the rough
surface. The contact phase lasts for approximately 2.5 s, and a valid thickness
measurement of 6.1mm is displayed on the right side of the operator application.
A visualization of the steady state contact can be seen in fig. 18.10a.

About 0.5 s after the contact is complete, the operation is canceled by the
operator touching the stick. This can be seen by the rising edge in the bottom
graph in fig. 18.9, showing the pilot input along the x-axis. Hence, the drone
did not return to the initial position as seen in fig. 18.10b, but control was given
back to the operator as intended.

Tuning the impedance gains was easier on the new hardware platform compared
to the development platform. The robust hardware design means that a wider
range of parameters resulted in a stable contact. The support from the frame of
the drone allows for better disturbance rejection, and especially for disturbances
in yaw. When the drone is in contact, the behavior in the xy-plane is similar
to an inverted pendulum. The more force the drone applies to the inspection
surface, the more effect a small disturbance will have in deviations in yaw. Hence,
having a hardware platform that helps stabilize allows for more force in the
interaction.

An interesting observation was also made with respect to the behavior of the
drone platform in the tank environment compared to preliminary tests conducted
in the test room. There were noticeably less disturbances in the tank, most
likely due to the more open environment. While the controllers were able to
successfully complete the operation in both environments, less compensation
had to done in the tank environment.

174 CHAPTER 18. RESULTS

Figure 18.9: Attitude during the flight test at the Falck Nutec facilities for the
duration of the thickness measurement. (Contact period marked in red)

18.3. FLIGHT TEST II - FALCK NUTEC FIELD TEST 175

(a) Contact steady-state from flight test

(b) Estimated position during the flight test

Figure 18.10: Flight test at the Falck Nutec facilities

176 CHAPTER 18. RESULTS

18.4 Flight Test III - Automatic Abort

This section will showcase the automatic abort system that was integrated along
with the controllers. The video can be seen by following the QR-code or link
in fig. 18.12. On the upper right, the live navigation data along the surfaces
found by the RANSAC algorithm is displayed, while the operator application is
shown on the lower right side. A thread was attached to the front left side of the
drone. Hence, pulling the thread would cause the drone to rotate, simulating an
unknown disturbance.

Figure 18.11: Snapshot from the video showing the moment of abort

Figure 18.12: QR-code for the flight test showcasing the automatic abort system
https://youtu.be/T0ZzDSyEA5I

https://youtu.be/T0ZzDSyEA5I

18.4. FLIGHT TEST III - AUTOMATIC ABORT 177

As in the previous sections, the drone takes off and the thickness measurement
is initiated. However, as the drone approaches the inspection surface, the thread
is pulled and the drone rotates. As seen in the bottom graph of fig. 18.13, this
causes the relative heading to deviate beyond the set limits. A visualization of
the attitude at the moment of abort can be seen in fig. 18.14a. The operation is
aborted and the drone returns to the original position as seen in fig. 18.14b.

The first and second graph in fig. 18.13 shows that also the pitch and roll is
affected by the large disturbance caused by pulling the thread. However, the
system quickly stabilizes and enables a safe return. In general, it can be seen both
in this test and the previous section (section 18.4), that the attitude response is
better for the Scout 135 platform compared to the development platform. This
is especially true for the pitch angle. This is due to the Scout 135 having a
more even distribution of weight, meaning it is easier for the low-level attitude
controller to keep the drone balanced.

Violation of other operational limits or timeout on important navigation data
will also trigger the same response and return the drone to its original position.
If navigation data about the position of the drone is lost, the system will return
to pilot assist in order to yield control to the operator.

It as also worth noticing that during this flight test the power cable was not
completely unwound, and thus the drone has to counteract the disturbance
force caused by dragging the heavy cable along the floor. The impedance
controller reacts to this in the same manner as it would with environment
contact disturbances, and enforces a constant force while it pulls the cable. This
shows the impedance controllers ability to maintain stable interaction without
causing any build-up of interaction forces, even in the presence of an unintentional
interaction force.

178 CHAPTER 18. RESULTS

Figure 18.13: Attitude during the flight test showcasing the automatic abort
system

18.4. FLIGHT TEST III - AUTOMATIC ABORT 179

(a) Contact steady-state from flight test

(b) Estimated position during the flight test

Figure 18.14: Flight test showcasing the automatic abort system

180 CHAPTER 18. RESULTS

18.5 Flight Test IV - Simulation Comparison

The following section contains a video showing a side by side view of the flight
test from section 18.2 and the same controller implemented in simulations.
This gives a perspective of the key differences between simulations and real life
experiments, but also evaluates the performance of the physics engine simulation
from Appendix Part I. The video can be seen by following the QR-code or link
in fig. 18.16.

Figure 18.15: Snapshot from the video showing the contact

Figure 18.16: QR-code for the simulation comparison
https://youtu.be/w8xs4e4oM3I

https://youtu.be/w8xs4e4oM3I

18.5. FLIGHT TEST IV - SIMULATION COMPARISON 181

From the video it is very clear that the simulation model does not experience the
same level of disturbances as in the actual flight test. None of the models in this
thesis considers the effects of changed aerodynamics when the propellers are in
the proximities of surfaces, as the spinning propellers will create unpredictable
vortexes. Work has been done to model these effects, such as [50], where wind
tunnel experiments were carried out on axial-flow rotors. However, these effects
are highly turbulent and very difficult to model accurately as they heavily depend
on the geometry of the surrounding surfaces and complex fluid simulations. A
possibility is to simulate these disturbances as wind; however, this is not entirely
realistic. This approach will not capture the spatial correlation to the direction
and magnitude of the disturbance, but at least it gives the opportunity to test
the control system with aerodynamic disturbances.

Since the disturbances mentioned above are not present in the simulation, the
controllers and set-points may be tuned more aggressively. However, when the
system was implemented on the hardware platform, it was apparent that rapid
movements close to any surfaces causes irregular airflows. These disturbances
are hard to counteract for the control systems, especially during the contact
phase. The best way to counter this problem, is to have slower movements, and
thus fewer radical changes in the airflows. Hence, the operation is slightly slower
in the flight test, as seen in the video.

The compliance device in the simulation provides more damping compared to
the compliance device mounted on the hardware platform. While the behavior of
the compliance device can be tuned stiffer in simulations, some of the differences
is a result of the ideal spring simulation, which is not possible to replicate in
hardware. All of these differences allows the compliance device to handle more
interaction forces in the transient phase of the interaction, as seen by the steeper
entrance angle in the simulation.

Overall, the simulations provide a very realistic test environment for the inter-
action scenario. The experimental validation of controllers for interaction is
a major hurdle in the development process. A crash can severely damage the
hardware of the UAV, increasing the cost and potentially delaying the release.
Hence, the extension to existing simulation frameworks carried out in this thesis
enables faster testing of contact-based inspection scenarios. However, the afore-
mentioned differences should be kept in mind, as to not overfit the controller to
the simulated scenario.

182 CHAPTER 18. RESULTS

18.6 Summary

This section summarizes the main points from the experimental validation of
the controller, navigation method and overall system.

Successful experiments have been carried out on multiple platforms. The opera-
tions allows the inspector to fly to an area of interest, press one button, and the
drone will automatically perform a thickness measurement and present the result
back to the operator. While the results only show individual experiments, the
operations have been repeated many times during the development and testing
of the system. Not once did the contact operation lead to a crash. This shows
the robustness of the developed controllers.

Regarding the repeatability of valid measurements, it was apparent that this
depended heavily on the surface. On the test plate it was successful about 90%
of the time. However, in the tank environment the success rate was significantly
lower. It turned out that it was very difficult to get valid results from the
probe, even with manual measurements. Hence, the poor performance can not
be contributed to the controllers, but instead depended on the probe itself. The
probe used in these experiments is an early developer version of the product,
and newer versions will hopefully improve the consistency of the measurements.

One of the major weaknesses of the impedance based controllers is the need for
set-point manipulation. This was discussed in the simulation results (chapter C);
however, during the testing of the controllers this revealed to be easier compared
to the simulated environment. The use of two set-points, one close to the surface
and one to initiate the contact, proved to be an adequate method for selecting
these points. The force during the interaction could easily be adjusted by moving
the second set-point further or closer from the back of the inspection surface.

When it comes to disturbance rejection by the controllers, the performance
depends on which axis is affected. Parallel to the surface, the controller is more
sensitivity to noise during the interaction. This is natural since changing the roll
angle to fix the positional error is not possible as the motion is constrained. An
easy way to mitigate this problem is ignoring the error parallel to the surface
during the interaction phase; however, this solution would benefit from exact
knowledge of the interaction timing from a force- or tactile sensor.

18.6. SUMMARY 183

On the development drone, the single most occurring reason for unsuccessful
measurements was deviations in relative heading at the moment of impact. While
the flexible probe holder helped in correcting the error by getting a larger contact
surface, the friction was too low to handle harder impacts. This would cause the
drone to slide before the controllers were able to correct. Hence, care should be
taken in order to ensure sufficient friction between the probe and the inspection
surface. This could for example be achieved using rubber along the edge of the
probe holder. However, on the other hardware platform this was not an issue.
The supporting frame of the drone helped correct the deviations that might
occur, helping the controllers achieve a successful interaction.

The biggest weakness of the current system is the use of local, relative navigation.
While the current system is able to carry out the intended mission, global
navigation is needed in order to harness the full potential. This improved
understanding of the environment would allow the drone to plan and carry out
more advanced trajectories, and is the next logical step towards fully autonomous
operations.

184 CHAPTER 18. RESULTS

Chapter 19

Conclusion and Future
Work

This chapter presents the main conclusions from this thesis. It also provides
suggestions and remarks about future work following the work done in this thesis.

19.1 Conclusions

This thesis gave an overview of several methods for control and navigation in
order to do contact based inspections from UAVs. Several modeling approaches
have been presented, along with control systems and navigation solutions, to
successfully carry out an autonomous thickness measurement.

After thorough testing in simulations and experimental validation, it can be
concluded that the impedance based controllers are a robust framework for force
control. The position controller has shown great ability to reject noise in the
position estimate, and is able to keep the interaction stable for a range of different
entrance trajectories. If the interaction requires more explicit control of attitude
and velocity than the impedance framework provides, this thesis has presented
a solution using pre-generated trajectories, which has been further backed up
trough simulations results. This allows for precise tuning of the interaction by
constraining attitudes, forces and positions in the trajectory.

185

186 CHAPTER 19. CONCLUSION AND FUTURE WORK

The navigation methods developed have through extensive testing and validation
shown that they are a robust way of estimating the range and relative orientation
to the inspection surface of interest. They can also be extended to work in
different regions of the 2D laser scan to estimate the range of obstacles, enabling
local, relative navigation. In addition, the navigation methods developed enables
implementation of other maneuvers relevant for industrial inspection scenarios,
such as a sweeping maneuver following the orientation of the inspection surfaces
while the range is locked.

With respect to the safety of the drone platform, environment and operator, the
results represent a significant improvement compared to manual flight. During
the work on this thesis, no automatic measurements have lead to accidents, while
manual flights have experienced several accidents, even with an experienced
pilot. Thus, the proposed methods increase the safety of the operation, while
also lowering the pilot training necessary to successfully carry out thickness
measurements.

This thesis have also showed that the methods developed are hardware agnostic.
However, the results also show that care should be taken when designing a
hardware platform, in order to best facilitate for contact based inspections.
Having a frame that helps minimizing disturbances in yaw angle improves the
chances of a valid measurement. A flexible joint should also be included to
decrease the sensitivity to the approach angle and better disturbance rejection.

In conclusion, the controllers and navigation methods developed in this thesis
enables autonomous thickness measurement. The results showcases complete
scenarios with autonomous thickness measurements on multiple hardware plat-
forms. This facilitates safer and more reliable contact based operations, without
the need for extensive pilot training.

19.2. FUTURE WORK 187

19.2 Future work

The following will present potential future work following this thesis.

To counteract the problem of set-point manipulations, augmentations to the
impedance based controller is possible, such as [31]. Another possible extension
to the controller is to use a tactile sensor to turn of the correction of the
parallel error during interaction, to avoid destabilizing effects. The hybrid
pose/wrench controller presented in [7] is also a possible approach, and future
work could include implementation and evaluation of this approach in the
simulation framework proposed in this thesis. The method presented in [7] relies
on a wrench estimator, and proposes a simple estimation technique based on
linear models around steady-state. However, future work can also investigate
more advanced methods for wrench estimation, and evaluate how this affects
the overall performance of the controller.

This thesis has also outlined an approach to get more detailed control of attitude
and velocities during the approach and interaction phase using pre-generated
trajectories. The results are promising; however, experimental validations are
needed for a decisive conclusion.

Since the controllers developed are based on a passive force control technique,
high interaction forces might occur in the transient phase. To counter this
problem, an approach using active interaction control can be attempted. This
requires the installation of a force sensor in the probe. There are several possible
solutions, but a simple approach is to measure the linear deflection of the
compliance device and estimate the force based on known spring coefficients.
The active force measurement will also better facilitate for a switching controller
that uses roll to control yaw during contact.

The Udwadia Kalaba equations is an interesting approach to a detailed simulation
of the constrained interaction between the probe and the surface. Future work
could include implementation and simulation of the equations derived in this
thesis.

Using the relative heading measurements in estimation techniques such as Kalman
filtering would allow for fusing with IMU data, potentially providing more
accurate estimates and increasing the robustness against sensor outage and

188 CHAPTER 19. CONCLUSION AND FUTURE WORK

inaccuracies in the RANSAC technique. Tracking of the relative heading over
time can also be done using recursive RANSAC [52].

The main drawback of the solutions presented, is that the current navigation
solution and sensors are not able to support fully autonomous operations from
takeoff to landing. Integrating the control techniques within this thesis in a more
advanced navigation framework that provides global positioning information,
would improve the performance and capabilities of the solution significantly. One
of the more promising methods is using SLAM on data from a 3D scanning LIDAR.
Not only would this enable better contact maneuvers, but in combination with
path planning algorithms, this allows for advanced fully autonomous operations.
The downside of this approach is that most existing 3D LIDARs are quite heavy,
and in combination with the weight of other mission payloads, this could result
in a bigger and bulkier drone platform that is less suited for indoor inspection.

On the user experience side, integration with camera for accurate position
determination would enhance the user experience. An ideal use case is for the
operator to click in the video stream in order to indicate where a a thickness
measurement should be performed. Since many operations are performed in
poorly lit environments, this depends on sufficient light sources on-board the
drone. The most predominant drawback of camera based solutions is that the
industrial environments often have few features that can be extracted and tracked
in an image, which will affect the performance of the navigation algorithms.

Finally, testing with other Non Destructive Testing tools based on contact could
also be attempted. For example, a sensor for electrical potential and resistance,
which can be used to detect corrosion on steel [9].

19.2. FUTURE WORK 189

Bibliography

190

19.2. FUTURE WORK 191

[1] Albert Albers et al. “Semi-autonomous flying robot for physical interaction
with environment”. In: 2010 IEEE Conference on Robotics, Automation and
Mechatronics. IEEE, June 2010. isbn: 978-1-4244-6503-3. doi: 10.1109/RAMECH.
2010.5513152. url: http://ieeexplore.ieee.org/document/5513152/.

[2] Kostas Alexis, Christoph Huerzeler & Roland Siegwart. “Hybrid modeling and
control of a coaxial unmanned rotorcraft interacting with its environment through
contact”. In: 2013 IEEE International Conference on Robotics and Automation.
IEEE, May 2013. isbn: 978-1-4673-5643-5. doi: 10.1109/ICRA.2013.6631354.
url: http://ieeexplore.ieee.org/document/6631354/.

[3] Kostas Alexis et al. “Aerial robotic contact-based inspection: planning and
control”. In: Autonomous Robots 40.4 (Apr. 2016). issn: 0929-5593. doi: 10.
1007/s10514-015-9485-5. url: https://doi.org/10.1007/s10514-015-9485-
5%20http://link.springer.com/10.1007/s10514-015-9485-5.

[4] J T Bartelds et al. “A comparison of control approaches for aerial manipulators
handling physical impacts”. In: 2016 24th Mediterranean Conference on Control
and Automation (MED). IEEE, June 2016. isbn: 978-1-4673-8345-5. doi: 10.1109/
MED.2016.7535915. url: http://ieeexplore.ieee.org/document/7535915/.

[5] A OLLERO BATURONE et al. “The AEROARMS Project: Aerial Robots with
Advanced Manipulation Capabilities for Inspection and Maintenance”. In: IEEE
Robotics & Automation Magazine (2018). issn: 1070-9932. doi: 10.1109/MRA.
2018.2852789. url: https://ieeexplore.ieee.org/document/8435987/.

[6] Moisés Jalón Baudet. “Non-linear Attitude Control and Guidance of a Quadrotor
UAV”. PhD thesis. 2014.

[7] Steven Bellens, Joris De Schutter & Herman Bruyninckx. “A hybrid pose /
wrench control framework for quadrotor helicopters”. In: 2012 IEEE International
Conference on Robotics and Automation. IEEE, May 2012. isbn: 978-1-4673-
1405-3. doi: 10.1109/ICRA.2012.6224682. url: http://ieeexplore.ieee.org/
document/6224682/.

[8] A. Bemporad et al. “The explicit solution of model predictive control via mul-
tiparametric quadratic programming”. In: Proceedings of the 2000 American
Control Conference. ACC (IEEE Cat. No.00CH36334). IEEE, 2000. isbn: 0-7803-
5519-9. doi: 10.1109/ACC.2000.876624. url: http://ieeexplore.ieee.org/
document/876624/.

[9] Luca Bertolini et al. Corrosion of Steel in Concrete: Prevention, Diagnosis,
Repair. Wiley-VCH, 2014. isbn: 9783527331468. url: https://www.amazon.
com/Corrosion-Steel-Concrete-Prevention-Diagnosis/dp/3527331468?
SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%
5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%
5C&%7DcreativeASIN=3527331468.

https://doi.org/10.1109/RAMECH.2010.5513152
https://doi.org/10.1109/RAMECH.2010.5513152
http://ieeexplore.ieee.org/document/5513152/
https://doi.org/10.1109/ICRA.2013.6631354
http://ieeexplore.ieee.org/document/6631354/
https://doi.org/10.1007/s10514-015-9485-5
https://doi.org/10.1007/s10514-015-9485-5
https://doi.org/10.1007/s10514-015-9485-5%20http://link.springer.com/10.1007/s10514-015-9485-5
https://doi.org/10.1007/s10514-015-9485-5%20http://link.springer.com/10.1007/s10514-015-9485-5
https://doi.org/10.1109/MED.2016.7535915
https://doi.org/10.1109/MED.2016.7535915
http://ieeexplore.ieee.org/document/7535915/
https://doi.org/10.1109/MRA.2018.2852789
https://doi.org/10.1109/MRA.2018.2852789
https://ieeexplore.ieee.org/document/8435987/
https://doi.org/10.1109/ICRA.2012.6224682
http://ieeexplore.ieee.org/document/6224682/
http://ieeexplore.ieee.org/document/6224682/
https://doi.org/10.1109/ACC.2000.876624
http://ieeexplore.ieee.org/document/876624/
http://ieeexplore.ieee.org/document/876624/
https://www.amazon.com/Corrosion-Steel-Concrete-Prevention-Diagnosis/dp/3527331468?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=3527331468
https://www.amazon.com/Corrosion-Steel-Concrete-Prevention-Diagnosis/dp/3527331468?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=3527331468
https://www.amazon.com/Corrosion-Steel-Concrete-Prevention-Diagnosis/dp/3527331468?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=3527331468
https://www.amazon.com/Corrosion-Steel-Concrete-Prevention-Diagnosis/dp/3527331468?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=3527331468
https://www.amazon.com/Corrosion-Steel-Concrete-Prevention-Diagnosis/dp/3527331468?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=3527331468

192 CHAPTER 19. CONCLUSION AND FUTURE WORK

[10] Marco Bibuli et al. “The MINOAS project: Marine INspection rObotic Assistant
System”. In: 2011 19th Mediterranean Conference on Control & Automation
(MED). IEEE, June 2011. isbn: 978-1-4577-0124-5. doi: 10.1109/MED.2011.
5983104. url: http://ieeexplore.ieee.org/document/5983104/.

[11] Karen Bodie et al. “An Omnidirectional Aerial Manipulation Platform for
Contact-Based Inspection”. In: (May 2019). arXiv: 1905.03502. url: http:
//arxiv.org/abs/1905.03502.

[12] W Bolton. Mechatronics: Electronic Control Systems in Mechanical and Electrical
Engineering (3rd Edition). Prentice Hall, 2004. isbn: 0131216333. url: https:
/ / www . amazon . com / Mechatronics - Electronic - Mechanical - Electrical -
Engineering/dp/0131216333?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%
5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%
7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=0131216333.

[13] Francisco Bonnin-Pascual et al. “A Micro-Aerial platform for vessel visual in-
spection based on supervised autonomy”. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Vol. 2015-Decem. IEEE,
Sept. 2015. isbn: 978-1-4799-9994-1. doi: 10.1109/IROS.2015.7353353. url:
http://ieeexplore.ieee.org/document/7353353/.

[14] M. Caccia et al. “MINOAS a Marine INspection rObotic Assistant: system
requirements and design”. In: IFAC Proceedings Volumes 43.16 (Jan. 2010).
issn: 14746670. doi: 10.3182/20100906-3-IT-2019.00083. url: https://
www.sciencedirect.com/science/article/pii/S1474667016351035%20http:
//dx.doi.org/10.3182/20100906-3-IT-2019.00083%20http://linkinghub.
elsevier.com/retrieve/pii/S1474667016351035.

[15] M Caris et al. “Synthetic aperture radar at millimeter wavelength for UAV
surveillance applications”. In: 2015 IEEE 1st International Forum on Research
and Technologies for Society and Industry Leveraging a better tomorrow (RTSI).
IEEE. 2015.

[16] P Cheeseman, R Smith & M Self. “A stochastic map for uncertain spatial
relationships”. In: 4th International Symposium on Robotic Research. 1987.

[17] I Can Dikmen, Aydemir Arisoy & Hakan Temeltas. “Attitude control of a
quadrotor”. In: 2009 4th International Conference on Recent Advances in Space
Technologies. IEEE, June 2009. isbn: 978-1-4244-3626-2. doi: 10.1109/RAST.
2009.5158286. url: http://ieeexplore.ieee.org/document/5158286/.

[18] Jonathan Dixon & Oliver Henlich. “Mobile robot navigation”. In: Information
Systems Engineering Year, Imperial College 2 (1997).

[19] Jerry Eaves & Edward Reedy. Principles of modern radar. Springer Science &
Business Media, 2012.

https://doi.org/10.1109/MED.2011.5983104
https://doi.org/10.1109/MED.2011.5983104
http://ieeexplore.ieee.org/document/5983104/
https://arxiv.org/abs/1905.03502
http://arxiv.org/abs/1905.03502
http://arxiv.org/abs/1905.03502
https://www.amazon.com/Mechatronics-Electronic-Mechanical-Electrical-Engineering/dp/0131216333?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=0131216333
https://www.amazon.com/Mechatronics-Electronic-Mechanical-Electrical-Engineering/dp/0131216333?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=0131216333
https://www.amazon.com/Mechatronics-Electronic-Mechanical-Electrical-Engineering/dp/0131216333?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=0131216333
https://www.amazon.com/Mechatronics-Electronic-Mechanical-Electrical-Engineering/dp/0131216333?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=0131216333
https://www.amazon.com/Mechatronics-Electronic-Mechanical-Electrical-Engineering/dp/0131216333?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%7B%5C&%7Dtag=chimbori05-20%7B%5C&%7DlinkCode=xm2%7B%5C&%7Dcamp=2025%7B%5C&%7Dcreative=165953%7B%5C&%7DcreativeASIN=0131216333
https://doi.org/10.1109/IROS.2015.7353353
http://ieeexplore.ieee.org/document/7353353/
https://doi.org/10.3182/20100906-3-IT-2019.00083
https://www.sciencedirect.com/science/article/pii/S1474667016351035%20http://dx.doi.org/10.3182/20100906-3-IT-2019.00083%20http://linkinghub.elsevier.com/retrieve/pii/S1474667016351035
https://www.sciencedirect.com/science/article/pii/S1474667016351035%20http://dx.doi.org/10.3182/20100906-3-IT-2019.00083%20http://linkinghub.elsevier.com/retrieve/pii/S1474667016351035
https://www.sciencedirect.com/science/article/pii/S1474667016351035%20http://dx.doi.org/10.3182/20100906-3-IT-2019.00083%20http://linkinghub.elsevier.com/retrieve/pii/S1474667016351035
https://www.sciencedirect.com/science/article/pii/S1474667016351035%20http://dx.doi.org/10.3182/20100906-3-IT-2019.00083%20http://linkinghub.elsevier.com/retrieve/pii/S1474667016351035
https://doi.org/10.1109/RAST.2009.5158286
https://doi.org/10.1109/RAST.2009.5158286
http://ieeexplore.ieee.org/document/5158286/

19.2. FUTURE WORK 193

[20] Olav Egeland & Jan Gravdahl. Modeling and Simulation for Automatic Control.
2002.

[21] Markus Eich & Thomas Vogele. “Design and control of a lightweight magnetic
climbing robot for vessel inspection”. In: 2011 19th Mediterranean Conference on
Control & Automation (MED). IEEE, June 2011. isbn: 978-1-4577-0124-5. doi:
10.1109/MED.2011.5983075. url: http://ieeexplore.ieee.org/document/
5983075/.

[22] Alberto Elfes. “Using occupancy grids for mobile robot perception and navigation”.
In: Computer 22.6 (1989).

[23] Christian Eschmann et al. “Unmanned Aircraft Systems for Remote Building
Inspection and Monitoring”. In: European Workshop on Structural Health Mon-
itoring (EWSHM). 2012. isbn: 9783940283412. url: http://www.ecphm2012.
com/Portals/98/BB/th2b1.pdf.

[24] Alexandre Eudes et al. “Autonomous and Safe Inspection of an Industrial Ware-
house by a Multi-rotor MAV”. In: Field and Service Robotics. Springer, Cham,
2018. doi: 10.1007/978-3-319-67361-5_15. url: http://link.springer.com/
10.1007/978-3-319-67361-5%7B%5C_%7D15.

[25] Rida T. Farouki. Pythagorean-Hodograph Curves: Algebra and Geometry Insep-
arable. Vol. 1. Geometry and Computing. Berlin, Heidelberg: Springer Berlin
Heidelberg, Feb. 2008. isbn: 978-3-540-73397-3. doi: 10.1007/978-3-540-73398-
0. arXiv: 1002 . 2080. url: http : / / link . springer . com / 10 . 1007 / 978 - 3 -
540-73398-0%20http://www.ncbi.nlm.nih.gov/pubmed/22469268%20http:
//arxiv.org/abs/1002.2080.

[26] Martin A Fischler & Robert C Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography”.
In: Communications of the ACM 24.6 (June 1981). issn: 00010782. doi: 10.1145/
358669.358692. url: http://doi.acm.org/10.1145/358669.358692%20http:
//portal.acm.org/citation.cfm?doid=358669.358692.

[27] David A Forsyth. Computer Vision: A Modern Approach, 2nd Edition. Prentice
Hall, 2011. isbn: 013608592X.

[28] Bjarne Foss & Tor Aksel N Heirung. Merging Optimization and Control. NTNU -
Norwegian University of Science and Technology, 2016. isbn: 978-82-7842-201-4.

[29] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
Chichester, UK: John Wiley & Sons, Ltd, Apr. 2011. isbn: 9781119994138. doi: 10.
1002/9781119994138. url: http://doi.wiley.com/10.1002/9781119994138.

[30] David Freedman. Statistical models : theory and practice. Cambridge New York:
Cambridge University Press, 2009. isbn: 978-0521743853.

[31] Matteo Fumagalli & Raffaella Carloni. “A modified impedance control for physical
interaction of UAVs”. In: 2013 IEEE/RSJ International Conference on Intelligent

https://doi.org/10.1109/MED.2011.5983075
http://ieeexplore.ieee.org/document/5983075/
http://ieeexplore.ieee.org/document/5983075/
http://www.ecphm2012.com/Portals/98/BB/th2b1.pdf
http://www.ecphm2012.com/Portals/98/BB/th2b1.pdf
https://doi.org/10.1007/978-3-319-67361-5_15
http://link.springer.com/10.1007/978-3-319-67361-5%7B%5C_%7D15
http://link.springer.com/10.1007/978-3-319-67361-5%7B%5C_%7D15
https://doi.org/10.1007/978-3-540-73398-0
https://doi.org/10.1007/978-3-540-73398-0
https://arxiv.org/abs/1002.2080
http://link.springer.com/10.1007/978-3-540-73398-0%20http://www.ncbi.nlm.nih.gov/pubmed/22469268%20http://arxiv.org/abs/1002.2080
http://link.springer.com/10.1007/978-3-540-73398-0%20http://www.ncbi.nlm.nih.gov/pubmed/22469268%20http://arxiv.org/abs/1002.2080
http://link.springer.com/10.1007/978-3-540-73398-0%20http://www.ncbi.nlm.nih.gov/pubmed/22469268%20http://arxiv.org/abs/1002.2080
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692%20http://portal.acm.org/citation.cfm?doid=358669.358692
http://doi.acm.org/10.1145/358669.358692%20http://portal.acm.org/citation.cfm?doid=358669.358692
https://doi.org/10.1002/9781119994138
https://doi.org/10.1002/9781119994138
http://doi.wiley.com/10.1002/9781119994138

194 CHAPTER 19. CONCLUSION AND FUTURE WORK

Robots and Systems. IEEE, Nov. 2013. isbn: 978-1-4673-6358-7. doi: 10.1109/
IROS.2013.6696619. url: http://ieeexplore.ieee.org/document/6696619/.

[32] Matteo Fumagalli et al. “Developing an Aerial Manipulator Prototype: Physical
Interaction with the Environment”. In: IEEE Robotics & Automation Magazine
21.3 (Sept. 2014). issn: 1070-9932. doi: 10 . 1109 / MRA . 2013 . 2287454. url:
http://ieeexplore.ieee.org/document/6875943/.

[33] M Fumagalli et al. “Modeling and control of a flying robot for contact inspection”.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Oct. 2012. isbn: 978-1-4673-1736-8. doi: 10.1109/IROS.2012.6385917.
url: http://ieeexplore.ieee.org/document/6385917/.

[34] Fadri Furrer et al. “Robot Operating System (ROS): The Complete Reference
(Volume 1)”. In: -. Ed. by Anis Koubaa. Cham: Springer International Publishing,
2016. Chap. RotorS—A. isbn: 978-3-319-26054-9. doi: 10.1007/978-3-319-
26054-9_23. url: http://dx.doi.org/10.1007/978-3-319-26054-9%7B%5C_
%7D23.

[35] Kenneth Gade. “The Seven Ways to Find Heading”. In: Journal of Naviga-
tion 69.05 (Sept. 2016). issn: 0373-4633. doi: 10.1017/S0373463316000096. url:
http://www.journals.cambridge.org/abstract%7B%5C_%7DS0373463316000096.

[36] C. Galleguillos et al. “Thermographic non-destructive inspection of wind turbine
blades using unmanned aerial systems”. In: Plastics, Rubber and Composites
44.3 (Apr. 2015). issn: 1465-8011. doi: 10.1179/1743289815Y.0000000003. url:
http://www.tandfonline.com/doi/full/10.1179/1743289815Y.0000000003.

[37] Emilio Garcia-Fidalgo et al. “A mosaicing approach for vessel visual inspection
using a micro-aerial vehicle”. In: 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Vol. 2015-Decem. IEEE, Sept. 2015. isbn:
978-1-4799-9994-1. doi: 10.1109/IROS.2015.7353361. url: http://ieeexplore.
ieee.org/document/7353361/.

[38] Zheng Gong et al. “A compact planar 24GHz quasi-Yagi antenna for unmanned
aerial vehicle radar applications”. In: 2017 IEEE International Conference on
Computational Electromagnetics (ICCEM). IEEE. 2017.

[39] Neville Hogan. “Impedance Control: An Approach to Manipulation: Part I -
IV”. In: Journal of Dynamic Systems, Measurement, and Control 107.1 (1985).
issn: 00220434. doi: 10 . 1115 / 1 . 3140702. url: http : / / dynamicsystems .
asmedigitalcollection.asme.org/article.aspx?articleid=1403621%20https:
//summerschool.stiff-project.org/fileadmin/pdf/Hog1985.pdf.

[40] Peter J Huber. Robust Statistics (Wiley Series in Probability and Statistics).
Wiley-Interscience, 2003. isbn: 0471650722.

[41] A.Q.L. Keemink et al. “Mechanical design of a manipulation system for un-
manned aerial vehicles”. In: 2012 IEEE International Conference on Robotics

https://doi.org/10.1109/IROS.2013.6696619
https://doi.org/10.1109/IROS.2013.6696619
http://ieeexplore.ieee.org/document/6696619/
https://doi.org/10.1109/MRA.2013.2287454
http://ieeexplore.ieee.org/document/6875943/
https://doi.org/10.1109/IROS.2012.6385917
http://ieeexplore.ieee.org/document/6385917/
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9%7B%5C_%7D23
http://dx.doi.org/10.1007/978-3-319-26054-9%7B%5C_%7D23
https://doi.org/10.1017/S0373463316000096
http://www.journals.cambridge.org/abstract%7B%5C_%7DS0373463316000096
https://doi.org/10.1179/1743289815Y.0000000003
http://www.tandfonline.com/doi/full/10.1179/1743289815Y.0000000003
https://doi.org/10.1109/IROS.2015.7353361
http://ieeexplore.ieee.org/document/7353361/
http://ieeexplore.ieee.org/document/7353361/
https://doi.org/10.1115/1.3140702
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1403621%20https://summerschool.stiff-project.org/fileadmin/pdf/Hog1985.pdf
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1403621%20https://summerschool.stiff-project.org/fileadmin/pdf/Hog1985.pdf
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1403621%20https://summerschool.stiff-project.org/fileadmin/pdf/Hog1985.pdf

19.2. FUTURE WORK 195

and Automation. IEEE, May 2012. isbn: 978-1-4673-1405-3. doi: 10.1109/ICRA.
2012.6224749. url: http://ieeexplore.ieee.org/document/6224749/.

[42] Hassan K Khalil. Nonlinear Systems. PEARSON - SUPERPEDIDO, Mar. 2002.
isbn: 0130673897. url: https://www.xarg.org/ref/a/B00A2KG8B8/.

[43] Kristian Klausen. “Coordinated Control of Multirotors for Suspended Load
Transportation and Fixed-Wing Net Recovery”. PhD thesis. NTNU, 2017. isbn:
978-82-326-2417-1. url: https://brage.bibsys.no/xmlui/handle/11250/
2448054?show=full.

[44] N. Koenig & A. Howard. “Design and use paradigms for gazebo, an open-
source multi-robot simulator”. In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3.
3. IEEE, 2004. isbn: 0-7803-8463-6. doi: 10.1109/IROS.2004.1389727. url:
http://playerstage.sourceforge.net/gazebo/%20http://ieeexplore.ieee.
org/document/1389727/.

[45] Taeyoung Lee, Melvin Leok & N. Harris McClamroch. “Control of Complex
Maneuvers for a Quadrotor UAV using Geometric Methods on SE(3)”. In: (Mar.
2010). arXiv: 1003.2005. url: http://arxiv.org/abs/1003.2005.

[46] Jiaxin Li et al. “Deep learning for 2D scan matching and loop closure”. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2017.

[47] D. Mader et al. “Potential of UAV-Based laser scanner and multispectral camera
data in building inspection”. In: International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences - ISPRS Archives. Vol. 2016-
Janua. June 2016. isbn: 16821750 (ISSN). doi: 10.5194/isprsarchives-XLI-B1-
1135-2016. url: http://www.int-arch-photogramm-remote-sens-spatial-
inf-sci.net/XLI-B1/1135/2016/%20http://www.int-arch-photogramm-
remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/isprs-archives-XLI-
B1-1135-2016.pdf.

[48] Robert Mahony, Vijay Kumar & Peter Corke. “Multirotor Aerial Vehicles: Mod-
eling, Estimation, and Control of Quadrotor”. In: IEEE Robotics & Automation
Magazine 19.3 (Sept. 2012). issn: 1070-9932. doi: 10.1109/MRA.2012.2206474.
url: http://ieeexplore.ieee.org/document/6289431/.

[49] Ricardo Martins et al. “IMC: A communication protocol for networked vehicles
and sensors”. In: OCEANS ’09 IEEE Bremen: Balancing Technology with Future
Needs. IEEE, May 2009. isbn: 978-1-4244-2522-8. doi: 10.1109/OCEANSE.2009.
5278245. url: http://ieeexplore.ieee.org/document/5278245/.

[50] N.J. Möller et al. “On the near-wall effects induced by an axial-flow rotor”. In:
Renewable Energy 91 (June 2016). issn: 09601481. doi: 10.1016/j.renene.
2016.01.051. url: https://www.sciencedirect.com/science/article/pii/

https://doi.org/10.1109/ICRA.2012.6224749
https://doi.org/10.1109/ICRA.2012.6224749
http://ieeexplore.ieee.org/document/6224749/
https://www.xarg.org/ref/a/B00A2KG8B8/
https://brage.bibsys.no/xmlui/handle/11250/2448054?show=full
https://brage.bibsys.no/xmlui/handle/11250/2448054?show=full
https://doi.org/10.1109/IROS.2004.1389727
http://playerstage.sourceforge.net/gazebo/%20http://ieeexplore.ieee.org/document/1389727/
http://playerstage.sourceforge.net/gazebo/%20http://ieeexplore.ieee.org/document/1389727/
https://arxiv.org/abs/1003.2005
http://arxiv.org/abs/1003.2005
https://doi.org/10.5194/isprsarchives-XLI-B1-1135-2016
https://doi.org/10.5194/isprsarchives-XLI-B1-1135-2016
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/%20http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/isprs-archives-XLI-B1-1135-2016.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/%20http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/isprs-archives-XLI-B1-1135-2016.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/%20http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/isprs-archives-XLI-B1-1135-2016.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/%20http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/isprs-archives-XLI-B1-1135-2016.pdf
https://doi.org/10.1109/MRA.2012.2206474
http://ieeexplore.ieee.org/document/6289431/
https://doi.org/10.1109/OCEANSE.2009.5278245
https://doi.org/10.1109/OCEANSE.2009.5278245
http://ieeexplore.ieee.org/document/5278245/
https://doi.org/10.1016/j.renene.2016.01.051
https://doi.org/10.1016/j.renene.2016.01.051
https://www.sciencedirect.com/science/article/pii/S0960148116300519%20https://linkinghub.elsevier.com/retrieve/pii/S0960148116300519
https://www.sciencedirect.com/science/article/pii/S0960148116300519%20https://linkinghub.elsevier.com/retrieve/pii/S0960148116300519

196 CHAPTER 19. CONCLUSION AND FUTURE WORK

S0960148116300519%20https://linkinghub.elsevier.com/retrieve/pii/
S0960148116300519.

[51] Michael Montemerlo et al. “FastSLAM: A factored solution to the simultaneous
localization and mapping problem”. In: Aaai/iaai 593598 (2002).

[52] Peter C Niedfeldt & Randal W Beard. “Recursive RANSAC: multiple signal
estimation with outliers”. In: IFAC Proceedings Volumes 46.23 (2013).

[53] Jorge Nocedal & Stephen J Wright. Numerical Optimization. second. New York,
NY, USA: Springer, 2006.

[54] Alberto Ortiz et al. “Vision-Based Corrosion Detection Assisted by a Micro-
Aerial Vehicle in a Vessel Inspection Application”. In: Sensors 16.12 (Dec. 2016).
issn: 1424-8220. doi: 10.3390/s16122118. url: http://www.mdpi.com/1424-
8220/16/12/2118.

[55] A Ortiz et al. “First steps towards a roboticized visual inspection system for
vessels”. In: 2010 IEEE 15th Conference on Emerging Technologies & Factory
Automation (ETFA 2010). IEEE, Sept. 2010. isbn: 978-1-4244-6848-5. doi:
10.1109/ETFA.2010.5641246. url: http://ieeexplore.ieee.org/document/
5641246/.

[56] K.C. Peng et al. “Unmanned Aerial Vehicle for infrastructure inspection with
image processing for quantification of measurement and formation of facade map”.
In: 2017 International Conference on Applied System Innovation (ICASI). IEEE,
May 2017. isbn: 978-1-5090-4897-7. doi: 10.1109/ICASI.2017.7988578. url:
http://ieeexplore.ieee.org/document/7988578/.

[57] Jose Pinto et al. “The LSTS toolchain for networked vehicle systems”. In:
OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension.
IEEE, June 2013. isbn: 9781479900015. doi: 10.1109/OCEANS-Bergen.2013.
6608148. url: http://ieeexplore.ieee.org/document/6608148/.

[58] José Pinto et al. “Implementation of a control architecture for networked ve-
hicle systems”. In: IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 3.
PART 1. Elsevier, Jan. 2012. isbn: 9783902823199. doi: 10.1136/oem.2007.
034843. url: https : / / www . sciencedirect . com / science / article / pii /
S1474667016305870?via%7B%5C%%7D3Dihub.

[59] José Pinto et al. “Neptus – A Framework to Support a Mission Life Cycle”.
In: 7th IFAC Conference on Manoeuvring and Control of Marine Craft. 2006.
url: https://repositorio-aberto.up.pt/handle/10216/71611%20http:
//whale.fe.up.pt/Papers/2006/PAPER%7B%5C_%7DMCMC2006-Neptus.pdf.

[60] QGroundControl. MAVlink Micro Air Vehicule Communication Protocol. 2017.
url: https://mavlink.io/en/.

[61] Morgan Quigley, Eric Berger & Andrew Y Ng. “STAIR : Hardware and Software
Architecture”. In: 2007.

https://www.sciencedirect.com/science/article/pii/S0960148116300519%20https://linkinghub.elsevier.com/retrieve/pii/S0960148116300519
https://www.sciencedirect.com/science/article/pii/S0960148116300519%20https://linkinghub.elsevier.com/retrieve/pii/S0960148116300519
https://www.sciencedirect.com/science/article/pii/S0960148116300519%20https://linkinghub.elsevier.com/retrieve/pii/S0960148116300519
https://www.sciencedirect.com/science/article/pii/S0960148116300519%20https://linkinghub.elsevier.com/retrieve/pii/S0960148116300519
https://doi.org/10.3390/s16122118
http://www.mdpi.com/1424-8220/16/12/2118
http://www.mdpi.com/1424-8220/16/12/2118
https://doi.org/10.1109/ETFA.2010.5641246
http://ieeexplore.ieee.org/document/5641246/
http://ieeexplore.ieee.org/document/5641246/
https://doi.org/10.1109/ICASI.2017.7988578
http://ieeexplore.ieee.org/document/7988578/
https://doi.org/10.1109/OCEANS-Bergen.2013.6608148
https://doi.org/10.1109/OCEANS-Bergen.2013.6608148
http://ieeexplore.ieee.org/document/6608148/
https://doi.org/10.1136/oem.2007.034843
https://doi.org/10.1136/oem.2007.034843
https://www.sciencedirect.com/science/article/pii/S1474667016305870?via%7B%5C%%7D3Dihub
https://www.sciencedirect.com/science/article/pii/S1474667016305870?via%7B%5C%%7D3Dihub
https://repositorio-aberto.up.pt/handle/10216/71611%20http://whale.fe.up.pt/Papers/2006/PAPER%7B%5C_%7DMCMC2006-Neptus.pdf
https://repositorio-aberto.up.pt/handle/10216/71611%20http://whale.fe.up.pt/Papers/2006/PAPER%7B%5C_%7DMCMC2006-Neptus.pdf
https://mavlink.io/en/

19.2. FUTURE WORK 197

[62] Morgan Quigley et al. “ROS : an open-source Robot Operating System”. In:
2009.

[63] Stergios I Roumeliotis, Gaurav S Sukhatme & George A Bekey. “Circumventing
dynamic modeling: Evaluation of the error-state kalman filter applied to mobile
robot localization”. In: Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No. 99CH36288C). Vol. 2. IEEE. 1999.

[64] Björn E. Schäfer et al. “Multicopter unmanned aerial vehicle for automated
inspection of wind turbines”. In: 24th Mediterranean Conference on Control and
Automation, MED 2016. IEEE, June 2016. isbn: 9781467383455. doi: 10.1109/
MED.2016.7536055. url: http://ieeexplore.ieee.org/document/7536055/.

[65] Jasper L.J. Scholten et al. “Interaction control of an UAV endowed with a ma-
nipulator”. In: 2013 IEEE International Conference on Robotics and Automation.
IEEE, May 2013. isbn: 978-1-4673-5643-5. doi: 10.1109/ICRA.2013.6631278.
url: http://ieeexplore.ieee.org/document/6631278/.

[66] Martin Stokkeland, Kristian Klausen & Tor A. Johansen. “Autonomous visual
navigation of Unmanned Aerial Vehicle for wind turbine inspection”. In: 2015
International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, June
2015. isbn: 978-1-4799-6010-1. doi: 10.1109/ICUAS.2015.7152389. url: http:
//ieeexplore.ieee.org/document/7152389/.

[67] Marco Tognon et al. “A Truly-Redundant Aerial Manipulator System With
Application to Push-and-Slide Inspection in Industrial Plants”. In: IEEE Robotics
and Automation Letters 4.2 (2019).

[68] Alexander J B Trevor, John G Rogers & Henrik I Christensen. “Planar surface
SLAM with 3D and 2D sensors”. In: 2012 IEEE International Conference on
Robotics and Automation. IEEE. 2012.

[69] F. E. Udwadia & R. E. Kalaba. “A New Perspective on Constrained Motion”.
In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 439.1906 (Nov. 1992). issn: 1364-5021. doi: 10.1098/rspa.1992.0158.
url: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.
1992.0158.

[70] Luigi Villani & Joris De Schutter. “Force Control”. In: Springer Handbook of
Robotics. Ed. by Bruno Siciliano & Oussama Khatib. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008. isbn: 978-3-540-30301-5. doi: 10.1007/978-3-540-
30301-5_8. url: https://doi.org/10.1007/978-3-540-30301-5%7B%5C_%7D8.

[71] H W Wopereis et al. “Application of substantial and sustained force to vertical
surfaces using a quadrotor”. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, May 2017. isbn: 978-1-5090-4633-1. doi: 10.
1109/ICRA.2017.7989314. url: http://ieeexplore.ieee.org/document/
7989314/.

https://doi.org/10.1109/MED.2016.7536055
https://doi.org/10.1109/MED.2016.7536055
http://ieeexplore.ieee.org/document/7536055/
https://doi.org/10.1109/ICRA.2013.6631278
http://ieeexplore.ieee.org/document/6631278/
https://doi.org/10.1109/ICUAS.2015.7152389
http://ieeexplore.ieee.org/document/7152389/
http://ieeexplore.ieee.org/document/7152389/
https://doi.org/10.1098/rspa.1992.0158
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1992.0158
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1992.0158
https://doi.org/10.1007/978-3-540-30301-5_8
https://doi.org/10.1007/978-3-540-30301-5_8
https://doi.org/10.1007/978-3-540-30301-5%7B%5C_%7D8
https://doi.org/10.1109/ICRA.2017.7989314
https://doi.org/10.1109/ICRA.2017.7989314
http://ieeexplore.ieee.org/document/7989314/
http://ieeexplore.ieee.org/document/7989314/

198 CHAPTER 19. CONCLUSION AND FUTURE WORK

[72] Han W Wopereis et al. “Multimodal Aerial Locomotion: An Approach to Active
Tool Handling”. In: IEEE Robotics & Automation Magazine 25.4 (2018).

[73] D Zhang et al. “Remote inspection of wind turbine blades using UAV with
photogrammetry payload”. In: 56th Annual British Conference of Non-Destructive
Testing - NDT 2017. Sept. 2017. url: https://strathprints.strath.ac.uk/
63321/.

https://strathprints.strath.ac.uk/63321/
https://strathprints.strath.ac.uk/63321/

Appendices

199

Appendix Part I

Simulation

System
Overview

Modeling

Control

Navigation

Hardware

Software

Results

Simulation

201

Appendix A

Background

This chapter will provide a short introduction to the frameworks used in this
part, and present the tools and features relevant for this thesis.

A.1 System Overview

The simulation setup consist of three main components that will be presented in
the following sections:

• Gazebo: Physics simulator

• Robot Operating System: Framework for software creation for robots

• Rotors_simulator: UAV simulator for Gazebo/ROS.

203

204 APPENDIX A. BACKGROUND

A.2 Robot Operating System

The development of ROS started in 2007 at Stanford Artificial Laboratory. The
project was first called Switchyard, before switching to ROS in 2009 [61, 62].
Contrary to what the name suggests, ROS is not an operating system; however,
it provides a collection of tools and libraries to simplify the creation of robots
on different platforms. It is based on individual nodes with separate responsibili-
ties, making it flexible and modular. This facilitates for fast prototyping and
development of robotic applications.

The three officially supported languages of ROS are C++, Python and Lisp,
which can be used interchangeably. ROS only provides official support for
Ubuntu (community builds for MacOS exists), and different versions of ROS are
specifically built for different version of Ubuntu.

A.2.1 Tools and Features

In ROS, different nodes communicate using a message based system, based on a
publish-subscriber architecture. Each node can choose to publish or subscribe to
any number of topics, and this also defines the interface of a node. An example
of this is a controller that subscribes to a joint state topic and publishes motor
references on another topic.

Rviz is a visualization tool for robot state and sensor data, and is bundled
together with ROS. It gives the developer access to detailed information and
visualization of coordinate frames, links and available sensor data. Also included
with ROS is RQT, an alternative GUI based on the QT-framework. RQT provides
easy visualization of node communication graphs and tools for debugging data
sent on different topics.

In addition, ROS provides tools and libraries for obtaining, building, writing,
and running code on multiple computers. This allows for efficient prototyping,
development and integration of packages.

A.3. GAZEBO 205

A.3 Gazebo

Gazebo is a simulator that was originally developed at the University of Southern
California from 2002 [44]. Until 2009 when John Hsu integrated Gazebo into
the ROS framework, the main developers were Dr. Andrew Howard and Nate
Koening. Gazebo supports different physics engines, but by default it uses the
Open Dynamics Engine (ODE)1. For rendering the simulation Gazebo uses
OGRE2, giving the user a detailed representation with lighting, shadows and
textures. A rendering of a sample simulation can be seen in fig. A.1. Gazebo
also allows for remote simulations by separating the simulation (gzserver) and
the rendering client (gzclient).

Figure A.1: Example view from Gazebo, also visualizing the robot camera feed
and laser sensor data

A.3.1 Tools and Features

Sensors in Gazebo are tightly integrated with the simulator. A base set of high
performance sensors is implemented in Gazebo, but the behavior of these can be
changed using plugins. For example, a LIDAR sensor can be created by changing

1http://www.ode.org/
2https://www.ogre3d.org/

http://www.ode.org/
https://www.ogre3d.org/

206 APPENDIX A. BACKGROUND

the generic laser sensor using C++ code. Altimeter, camera, GPS, IMU and
magnetometer are among the available sensors that can be utilized.

Design and editing of environments can either be done by editing SDF files or
using the GUI in Gazebo. Model meshes created in other programs such as
Blender or AutoCAD can also be imported. Gazebo also comes with a library of
models that can be used when creating new environments.

ROS also wraps Gazebo with a tightly coupled interface, and a package called
gazebo_ros exposes the Gazebo topics in ROS. The connection between ROS
and Gazebo is well tested and very stable.

It is important to note the difference between Gazebo and ROS when talking
about simulation frameworks. To two comes bundled together, and it is easy
to get them mixed up. ROS is a runtime environment and provides tools for
software development on robots. Gazebo on the other is a physics simulation
tool and provide simulation capabilities for a wide range of mechanical systems
and sensors. The tight integration of the two allows for easy testing of the
robotic software created in ROS to be tested on mechanical system simulations
in Gazebo. The idea is that when the system is ready for hardware testing, the
sensor information that previously from Gazebo will come from sensor driver
nodes instead. Hence, packages that are developed by the ROS community often
come with software modules designed for both ROS and Gazebo, without making
a distinct separation between them. Sensor and actuator simulations, as well as
3D models are included for use with Gazebo, while controller frameworks are
run in ROS.

A.4 RotorS

ROS has a large and active community, which has created a vast number of
packages that can be integrated into personal projects. This easy integration is
enabled by the modular architecture of ROS.

Creating a realistic UAV simulator from scratch is time consuming and bug prone.
There are a couple of simulators designed for aerial vehicles made available by the
community. One of these is the RotorS Simulator [34], which provides simulation
capabilities for multirotors. The package was developed by Autonomous Systems
Lab (ASL) at ETH, Zürich, a well known institution in the research field of
autonomous systems in general and multirotors specifically. The package also

A.4. ROTORS 207

provides simulations of commercially available sensors, such as an IMU, an
odometry sensor and the Visual-Inertial Sensor (developed at ASL), which can
be mounted on the multirotor.

While simulations always will be a simplification of the real world, the Rotors
simulator provides several features to give as realistic simulations as possible.
The motors and propellers are simulated individually with a realistic model and a
separate package provides thrust simulations based on motor speed and propeller
dimensions. The performance of the simulator has been validated experimentally,
and at this point it yields realistic simulations to the point where no change in
control parameters are needed for the UAVs bundled with the simulator [34].
Figure A.2 shows the AscTec Firefly3 that is included in the Rotors package.

Figure A.2: AscTec Firefly in the Rotors Simulator

3http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/

http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/

208 APPENDIX A. BACKGROUND

Appendix B

Implementation

This chapter will first present the software framework used to test the controller,
and also the setup and interfaces for experimental validation of the controller on
the drone.

B.1 Simulation Framework Overview

As detailed in part VI, the development drone used in this thesis is running
DUNE on its embedded hardware. To facilitate future development, the software
framework in this part is constructed to allow controllers with both DUNE and
ROS. This gives the opportunity to do fast prototyping and initial testing of
controllers in ROS, before moving the controller to DUNE to run it on hardware.
Figure B.1 shows the two different scenarios:

– Figure B.1a: Only ROS and Gazebo is used.
– Figure B.1b The interface between ROS and DUNE is the same as between

DUNE and the low-level hardware used on the drone, allowing it to both
run on the actual hardware and do testing in simulations.

209

210 APPENDIX B. IMPLEMENTATION

ROS Low-level
controller

Gazebo
Simula-
tion

High-level
controller

(a) System setup with only ROS and Gazebo

ArduPilot Low-level
controller

DUNE
High-level
controller

ROS Low-level
controller

Gazebo
Simula-
tion

Physical system

(b) System setup with DUNE

Figure B.1: Different simulation setups

In this thesis all the simulations are done in the framework shown in fig. B.1a.
Furthermore, all the interfaces and low-level modules shown in fig. B.1b are
implemented and successful control using this interface has been demonstrated.
However, work still remains for this to be a stable simulation interface between
DUNE and ROS/Gazebo. The key challenges that needs to be solved are ensuring
correct timing between the two systems and stabilizing the communication inter-
face. In addition, relevant sensor and actuator needs to be tuned to accurately
replicate the behavior of their hardware counterparts.

Figure B.2 shows a more detailed view of how the different modules of the system
are interconnected and the interface between them, and presents a more detailed
view of the lower branch of fig. B.1b. Note the two different possibilities for
placing the controller, shown with gray boxes.

The implementation of the drone using the RotorS Simulator in ROS is described
in section B.2, before the creation of the Gazebo environment is presented in
section B.3. Finally, the DUNE-ROS interface is detailed in section B.4.

B.1. SIMULATION FRAMEWORK OVERVIEW 211

Simulator

ROS Interpreter Node ROS IMC Broker

ROS Topics

Rotors_simulator

Controller

IMC Message Bus Controller

ROS

Gazebo

DUNE

Gazebo wrappers

TCP Interface

Figure B.2: System overview

212 APPENDIX B. IMPLEMENTATION

B.2 Drone Implementation Using RotorS

Five commonly used drones from the commercial market is bundled together
with the rotors_simulator package. As described in the previous chapter, sensors
can easily be attached to the multirotors to very quickly create simulated sensor
data. However, the physical behavior and configuration of the drone is of
importance, and hence it was necessary to develop a drone model from scratch
using the framework provided by the rotors_simulator package. The drone was
implemented with the parameters as specified in chapter 2. In addition, the
model was augmented with equipment meant to replicate the behavior of the
probe attached to the quadrotor, and also a 3D mesh of the drone was used to
make the visuals and collisions as realistic as possible. The finished model can
be seen in fig. B.3.

Figure B.3: Visualization of the drone model

The following will give a brief introduction into the necessary parts to recreate
the drone in the simulation framework.

B.2.1 URDF Description

There are two ways of representing robots in Gazebo. The first is using the same
SDF file used for environment creation to describe the robot model, and the

B.2. DRONE IMPLEMENTATION USING ROTORS 213

second is to use the Unified Robot Description Format (URDF), which is an
XML format for representing robot models. URDF can be used in combination
with Xacro, which is an XML macro language. This makes it possible to create
shorter and more readable XML files that expand to larger XML expressions,
and for this reason it was chosen as the preferred format.

URDF uses the concept of links and joints to describe a robot. Every robot
has a base link that represents the base coordinate system of the robot. Joints
are used to connect two links and there exists many different types, such as
prismatic, revolute and fixed.

Figure B.4 shows an overview of the entire link and joint setup for the drone
that was created.

Low-level attitude controller
The rotors_simulator implements a high-gain, low-level attitude controller that
can be utilized. The controller is based of “Control of Complex Maneuvers for a
Quadrotor UAV using Geometric Methods on SE(3)” [45].

Compliance device
Figure B.3 shows the visualization of the probe and compliance device (blue tip
of the probe) that was created. The compliant behavior was simulated using
a combination of prismatic joints and soft constraint simulation. The probe is
created such that the length, stiffness, placement and angle of the probe can
easily be adjusted. Section B.3.2 will provide a detailed proof of the equivalence
between soft constraint simulation and a spring-damper compliance system.

Force sensor
The drone has also been equipped with a force-torque sensor (ft_sensor) plugin
in the tip of the UTM probe. This is to validate the force exerted by the drone,
but also enable testing of control algorithms that utilizes feedback from force in
the future.

214 APPENDIX B. IMPLEMENTATION

scout/base_link

scout/base_joint

xyz: 0 0 0
rpy: 0 -0 0

scout/im
u_joint

xyz: 0 0 0
rpy: 0 -0 0

scout/rotor_0_joint

xyz: 0.0878248 -0.196244 -0.02
rpy: 0 -0 0

scout/rotor_1_joint

xyz: 0.0878248 0.196244 -0.02
rpy: 0 -0 0

scout/rotor_2_joint

xyz: -0.26992 0.162383 0.005
rpy: 0 -0 0

scout/rotor_3_joint

xyz: -0.26992 -0.162383 0.005
rpy: 0 -0 0

scout/ultrasonic_probe_joint

xyz: 0.12 0 0.07
rpy: 0 1.45299 0

scout/base_link_inertia
scout/im

u_link
scout/rotor_0

scout/rotor_1
scout/rotor_2

scout/rotor_3
scout/ultrasonic_probe_link

scout/ultrasonic_probe_end_joint_fixed

xyz: 0 0 0.12
rpy: 0 -0 0

scout/ultrasonic_probe_end_link_fixed

scout/ultrasonic_probe_end_joint

xyz: 0 0 0.025
rpy: 0 -0 0

scout/ultrasonic_probe_end_link

Figure
B

.4:
O

verview
ofthe

links
and

joints
for

the
scout

robot

B.3. ENVIRONMENT IN GAZEBO 215

B.3 Environment in Gazebo

B.3.1 Creating a World for Interaction

World files used in Gazebo are made using the Simulation Description Format
(SDF) file format. SDF is an XML format that describes objects and envi-
ronments for robot simulators and visualization. It was originally developed
as part of Gazebo, and was designed with special emphasis on scientific robot
applications. SDF is a complex file format, and this section will only provide a
short introduction to the parts essential to this thesis. For any further details,
please refer to the official documentation1.

Global Physics Engine Properties

The SDF file needs to specify the physics engine to be used, and parameters
for the selected engine. To allow for accurate real-time simulations, the ODE
physics engine was used with a max step size of 0.01 s and the solver type was
set to quick with a maximum of 1000 iterations.

Friction

By default the Open Dynamics Engine (ODE) physics engine is setup to use
very little friction between elements. For the interaction considered in this thesis
the result depends significantly on correct friction parameters, so the friction
had to be changed to better imitate the real world. In listing B.1 the essentials
for changing the friction of a model is shown. mu and mu2 are the friction
coefficients used by the physics engine. The fdir1 parameter is the direction to
calculate the friction in the local collision frame, and hence the magnitude of the
vector is ignored. With the vector defined as in listing B.1, the friction forces
will be parallel to the surface of the interaction.

In addition, the collision surface model is declared static, such that it becomes
immovable. This is fitting to the physical interpretation of a wall, but also

1http://sdformat.org/spec

http://sdformat.org/spec

216 APPENDIX B. IMPLEMENTATION

significantly reduces the calculation load on the physics engine during interaction.
As only one of the objects in the collision are dynamic, simplifications can be
made without loss of precision.

<model name="wall">
 ...
 <surface>
 <friction>
 <ode>
 <mu>1</mu>
 <mu2>1</mu2>
 <fdir1>1.0 1.0 0</fdir1>
 </ode>
 </friction>
 </surface>
 ...
</model>

Listing B.1: Specifying friction parameters for the wall

B.3.2 Simulating Interaction in Gazebo and ROS

The following section presents a proof equivalence between simulating a mass-
spring-damper system using implicit Euler and error correction with soft con-
straints using semi-implicit Euler. This is an essential part in how to implement
the compliance in the UTM probe when interacting with the environment in a
stable manner.

Simulating springs is in general not a trivial task. The spring stiffness heavily
influences the simulation and it can even become unstable, depending on the
choice of integrator [20].

Equations (B.1) to (B.3) shows the different integration schemes for the explicit,
implicit and semi-implicit Euler methods for a one-dimensional system with
position and velocity (Differences are highlighted in red).

Explicit Euler
xt+1 = xt + hvt

vt+1 = vt + h
∂v

∂t

∣∣∣∣
x=xt,v=vt

(B.1)

B.3. ENVIRONMENT IN GAZEBO 217

Implicit Euler
xt+1 = xt + hvt+1

vt+1 = vt + h
∂v

∂t

∣∣∣∣
x=xt+1,v=vt+1

(B.2)

Semi-implicit Euler
xt+1 = xt + hvt+1

vt+1 = vt + h
∂v

∂t

∣∣∣∣
x=xt,v=vt

(B.3)

As seen in eq. (B.2), the implicit Euler integrator uses the position and velocity
from the next time step in the update step. This means that an implicit equation
set has to be solved for each update step. While the equations above are fairly
easy to solve, it constitutes a massive increase in computations needed. This is
unsuitable for real-time applications, despite the fact that it provides the best
properties for stable simulation.

As mentioned in section B.3, Gazebo uses the Open Dynamics Engine (ODE) as
its physics engine. As most other physics engines, it uses semi-implicit Euler as
integration schema. This is a compromise between the speed of explicit Euler
and robustness of implicit Euler. As shown by [20], the stable simulation of
springs without using implicit Euler is challenging, as the stability depends on
the stiffness of the system and the integration time h. Hence most physic engines
employ another strategy called soft constraints to deal with this issue. This
relieves the developer of the task of choosing the tricky relation between spring
constants and simulation step-length to ensure numerical stability.

The equations for soft constraints used by ODE is given as follows:

m
∂v

∂t
= λ (B.4)

v +
β

h
x+ γλ = 0 (B.5)

218 APPENDIX B. IMPLEMENTATION

Inserting this system into the semi-implicit Euler integration scheme yields

xt+1 = xt + hvt+1 (B.6)

vt+1 = vt + h
λ

m
(B.7)

vt+1 +
β

h
xt + γλ = 0 (B.8)

Combining eq. (B.7) and eq. (B.8) and solving for vt+1 yields:

vt+1 =
vt − β

mγxt

1 + h
mγ

(B.9)

To compare the method of soft constraints, a classic 1D mass-spring-damper
system is first defined:

∂x

∂t
= v (B.10)

m
∂v

∂t
= −cv − kx (B.11)

Where k and c are the spring and damper constants respectively. Solving this
system using the implicit Euler method yields

xt+1 = xt + hvt+1 (B.12)

vt+1 = vt −
h

m
(cvt+1 + kxt+1) (B.13)

Again, solving for vt+1 yields

vt+1 =
vt − hk

m xt

1 + hc
m + h2k

m

(B.14)

Comparing the solutions from soft constraints with semi-implicit Euler to the
solution in eq. (B.14), it becomes apparent that setting

γ =
1

c+ hk

β =
hk

c+ hk

(B.15)

yields the same solution.

B.3. ENVIRONMENT IN GAZEBO 219

This shows the equivalence between simulating a mass-spring-damper system
with implicit Euler using spring and damper constants k and c, and using soft
constraints in combination with semi-implicit Euler and γ and β defined as in
eq. (B.15).

The implementation specifics of a spring-damper compliance device is shown
in fig. B.5. Figure B.5a shows a general prismatic joint with its upper and
lower limits. In case of a violation of the constraint, the ODE physics engine
will try to correct this in one integration step, as illustrated in figure fig. B.5b.
However, changing γ and β alters this behavior, and will cause the violation
to be corrected over multiple time steps, as depicted in fig. B.5c. By adjusting
the lower and upper limits to the same place, and choosing γ and β based on
eq. (B.15) and the desired k and c. This will give compliance according to a
spring damper system, as illustrated in figure fig. B.5d.

Lower limit

Upper limit

(a) Prismatic joint with limits

Lower limit

Upper limit
Fc

ε

(b) Prismatic joint with constraint vio-
lation, correction in one time step

Lower limit

Upper limit
Fc

ε

(c) Prismatic joint with constraint vio-
lation, correction in multiple time steps

Lower limit

Upper limit

(d) Limits are equal, forces equivalent
with spring-damper system

Figure B.5: Implementation steps of spring-damper compliance device

220 APPENDIX B. IMPLEMENTATION

B.4 DUNE-ROS Interface

The interconnection between DUNE and ROS is facilitated by an IMC broker
node in ROS, which connects to the IMC bus via a TCP interface. The Broker
node was created by OceanScan and is available online2. The IMC messages are
wrapped into a ROS message and sent to the Interpreter Node. Since most of
the message types sent in ROS are not compatible with the messages sent in
DUNE, it is necessary to translate them into the correct message format. This
is done by the interpreter node, and needs to be programmed to convert the
correct messages and publish them to the correct topics. A visualization of the
communication can be seen in fig. B.2. Below is a list of all the message type
conversions that is done in order to get compatible types:

Messages from ROS to DUNE

• nav_msgs::Odometry → IMC::NedState
• sensor_msgs::Imu → IMC::Acceleration
• sensor_msgs::Imu → IMC::AngularVelocity

Messages from DUNE to ROS

• IMC::DesiredCopterControl → mav_msgs::RollPitchYawrateThrust

An important note is that ROS and Gazebo uses the NWU convention for
coordinate systems while DUNE uses NED. This convention difference is also
carried over to direction of the axis for the body frame, such that the x-axis is
pointing forward in both DUNE and ROS/Gazebo while the z-axis is pointing
up in Gazebo and ROS and down in DUNE. The y-axis completes the right hand
rule in both cases. This makes it necessary to convert the values sent in the
messages, such that they are represented in the appropriate coordinate system.

2https://github.com/oceanscan/ros-imc-broker

https://github.com/oceanscan/ros-imc-broker

Appendix C

Simulation Results
This chapter will present the result of different simulated scenarios using ROS
and the Gazebo physics engine. For three of the simulations, a video is also
provided. These can be accessed by using the QR-code or URL provided.

Note that the simulations have been carried out using ROS/Gazebo, even
though the visualizations are created in MATLAB. All data from the simulations
were recorded and imported to MATLAB in order to create more intuitive
visualizations than what is provided in ROS. However, the drone visualization
in MATLAB is simplified, so small deviations between the visualizations and
the simulated environment might occur.

The inspection surface was placed at xw = −2m parallel with the y-axis. The
UAV starts at pn

b =
[
0 0 0

]> facing towards positive x. The starting frame
of the simulations can be seen in fig. C.1. When the drone takes off, it rotates
180° before approaching the inspection surface. The take-off and first part of
the rotation is not included, which is why the time index starts at t = 5 s in the
following simulations.

Since the inspection surface is parallel with the y-direction, the terms ”parallel
to the inspection surface” and ”perpendicular to the inspection surface” is used
interchangeably with ”y-direction” and ”x-direction” respectively in the following.
This is to simplify the wording in the discussions, and is of no other significance to
the results. The word ”angle-of-attack” is also used to describe the angle between
the vector along the probe and the vector perpendicular to the inspection surface
at impact, for the same reason of simplification.

221

222 APPENDIX C. SIMULATION RESULTS

Figure C.1: Screenshot of the initial state in the simulations

223

The scenarios that will be considered are:

• Scenario I - Perfect position measurements and straight approach
This scenario will function as a benchmark for the rest of the simulations.
(Video available)

• Scenario II - Noisy position measurements
Perfect knowledge about the position to the surface of interaction is unre-
alistic and these scenarios aims to investigate the influence of disturbances
in the position estimate. Uniform noise is added to the true position given
by the odometry sensor. The following simulations are conducted for this
scenario:

– II.1: Uniform noise with spread of ±5 cm in the x-direction. (Video
available)

– II.2: Uniform noise with spread of ±25 cm in the x-direction.
– II.3: Uniform noise with spread of ±5 cm in the x-direction and

±10 cm in the y-direction.

• Scenario III - Varying angle-of-attack
These scenarios aim to investigate the response of the system when the
vector of the probe is not perpendicular to the vector along the inspection
surface. The following simulations are carried out for this scenario:

– III.1: 5° angle-of-attack.
– III.2: 10° angle-of-attack. (Video available)
– III.3: 10° angle-of-attack and minimal friction.

• Scenario IV - Different spring and probe configurations
In these scenarios different configurations are considered to see how they
affect the stability and robustness of the overall interaction. The following
simulations are conducted for this scenario:

– IV.1: Compliance device is changed to a long spring with lower spring
stiffness

– IV.2: Different configuration and placement of the probe.

The sections below will present the main findings from each simulation, before
section C.5 will summarize and discuss the overall results.

224 APPENDIX C. SIMULATION RESULTS

C.1 Scenario I

In this scenario the drone has perfect position and attitude information. The
simulations clearly shows that the drone is able to stabilize in contact with the
surface of the wall. After slight bouncing in the initial phase of the interaction
due to the compliance device, the contact forces are stable at approximately
3.75N. This is well above the target at 3N. The contact induces small deviations
of about 3° in the yaw angle; however, they are kept constant at this small angle
by the controller. In fig. C.2 it can be seen that the pitch controller stabilizes
around 6°. The steady-state of the interaction can be seen in fig. C.3.

Figure C.2: Attitude and force for baseline simulation. (Red area shows the
duration of contact)

C.1. SCENARIO I 225

Figure C.3: Baseline simulation.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

Figure C.4: QR-code for the above simulation (youtu.be/HdgM44mmjDQ)

https://youtu.be/HdgM44mmjDQ

226 APPENDIX C. SIMULATION RESULTS

C.2 Scenario II
In this scenario noise is added to the odometer measurements. Different noise
levels are simulated, two with noise only in the direction of the interaction and
one with noise in both x- and y-direction.

C.2.1 Simulation II.1
First, the effect of an additive uniform noise with a spread of 5 cm in the x-
direction is simulated. Figures C.5 and C.6 shows the results of the simulations.
Once again, the results clearly shows that the drone is able to stabilize in contact
with the surface of the wall and the results are very similar to the baseline results.
However, the steady-state force is slightly lower, but still over the targeted 3N.

Figure C.5: Attitude and force for simulation with spread of 5 cm. (Red area
shows the duration of contact)

C.2. SCENARIO II 227

Figure C.6: Simulation with x-spread of 5 cm.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

Figure C.7: QR-code for the above simulation (youtu.be/Hwi8KqHY9BU)

https://youtu.be/Hwi8KqHY9BU

228 APPENDIX C. SIMULATION RESULTS

C.2.2 Simulation II.2

In the second simulation, the effect of a much larger noise with a spread of 25 cm
is simulated. Figures C.8 and C.9 below shows the results of the simulations.
Despite the massive variations in the position given to the controller, the drone is
able to stabilize in contact with the inspection surface. This shows the robustness
of the controller, as there are only small differences between the results in this
simulation and the previous with less noise.

Figure C.8: Attitude and force for simulation with spread of 25 cm. (Red area
shows the duration of contact)

C.2. SCENARIO II 229

Figure C.9: Position simulation with spread of 25 cm.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

230 APPENDIX C. SIMULATION RESULTS

C.2.3 Simulation II.3
Lastly, noise is also added to the direction perpendicular to the inspection surface.
In figs. C.10 and C.11 the simulations with spread of 15 cm in y-direction and
5 cm in x-direction and is shown. While the interaction is still stable, the contact
force is now oscillating around 3N. Also, the yaw angle is drifting during
this interaction, and while it stabilizes towards the end off the interaction, the
propellers are getting very close to the surface. The reason for this is that the
controller is trying to correct the y position during the interaction; however,
this is not possible due to the constrained trajectory. It might be beneficial
to explicitly tell the controller not to correct the y position during interaction,
since attempts at sideways control during interaction will only destabilize the
interaction. However, this does introduce the need to accurately determine when
the UAV is interaction with the environment, possibly using a force- or tactile
sensor. Simulations carried out with a lower spread of 10 cm in the y-direction
was successful, so despite the results discussed above, the controller shows good
disturbance rejection capabilities also in this direction.

Figure C.10: Attitude and force for simulation with spread of 5 cm in the x-
direction and 15 cm in the y-direction. (Red area shows the duration of contact)

C.2. SCENARIO II 231

Figure C.11: Spread of 5 cm (x-direction) and 15 cm (y-direction).
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

232 APPENDIX C. SIMULATION RESULTS

C.3 Scenario III
This scenario aims to simulate the effect of a angled impact with the inspection
surface. This is simulated by adjusting the yaw angle of the approach.

C.3.1 Simulation III.1
First, the yaw angle is set to 5° during the impact. The results are given in
figs. C.12 and C.13, and shows that the controller are able to correct the angled
approach. However, the yaw angle is not perfectly corrected, but stabilizes
around the same value as in the baseline simulation. The contact force is also
stable above 3N, and the simulation shows a successful docking.

Figure C.12: Attitude and force for simulation with an angle-of-attack of 5°.
(Red area shows the duration of contact)

C.3. SCENARIO III 233

Figure C.13: Simulation with an angle-of-attack of 5°.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

234 APPENDIX C. SIMULATION RESULTS

C.3.2 Simulation III.2

The following simulation also show that the controller can handle interaction
with an even larger angle-of-attack. The yaw angle was set to 10° during the
impact, and the results are given in figs. C.14 and C.15. The contact force is once
again stable above 3N, and even larger than in the baseline interaction. This
is because the forces used to correct the interaction also adds to the resulting
measurement. Also here, the yaw angle is corrected similar to the simulation in
section C.3.1. The noise in the force sensor is a result of the sampling technique
used in the sensor, and does not originate from an unstable interaction.

Figure C.14: Attitude and force for simulation with an angle-of-attack of 10°.
(Red area shows the duration of contact)

C.3. SCENARIO III 235

Figure C.15: Simulation with an angle-of-attack of 10°.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

Figure C.16: QR-code for the above simulation (youtu.be/W_J9lE4-t0k)

https://youtu.be/W_J9lE4-t0k

236 APPENDIX C. SIMULATION RESULTS

C.3.3 Simulation III.3

However, when the probe hits the surface at an angle, the importance of friction
becomes apparent. In the simulations shown in figs. C.17 and C.18 the friction
is set to a minimum, and as a result the drone crashes. When the drone hits
the surface with an angle of 10°, the impact causes the probe to slide and the
rotors comes into contact with the inspection surface. The best way to counter
this problem, is to design the hardware with friction in mind. Padding the
compliance device with a rough/rubber material is a potential solution, which
give larger friction forces to facilitate a more stable interaction.

Figure C.17: Attitude and force for simulation with an angle-of-attack of 10°
and low friction. (Red area shows the duration of contact)

C.3. SCENARIO III 237

Figure C.18: Simulation with an angle-of-attack of 10° and low friction.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

238 APPENDIX C. SIMULATION RESULTS

C.4 Scenario IV
In this section the aim is to look at how different configurations of the probe/-
compliance device affects the simulation results.

C.4.1 Simulation IV.1
The first simulation in this scenario tests the effect of using a long spring with
lower stiffness, to give a ”softer” initial contact. The results are shown in
figs. C.18 and C.19. Also in this experiment the drone was approach the surface
at an angle, and interestingly the soft spring is much better to correct the yaw
angle than it than its stiffer counterpart. This is mainly due to fact that the
softer spring helps to guide the drone towards a more straight trajectory. Also,
the slight bouncing behavior shown in the beginning of the previous simulations
(for example in fig. C.2) are eliminated using this approach, due to the softer
spring. However, the UAV loses more altitude during this interaction, as the
drone is pushing slightly downwards. This is because the rigid part of the probe
is shorter, giving the contact forces less arm to create moments about, and
hence the same moments from the drone creates a larger pitch angle. Careful
hardware design and tuning the controller specifically for this scenario would
help to counter this problem.

Figure C.19: Attitude and force for simulation long spring and angle-of-attack
of 10°. (Red area shows the duration of contact)

C.4. SCENARIO IV 239

Figure C.20: Simulation with a long spring and angle-of-attack of 10°.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

240 APPENDIX C. SIMULATION RESULTS

C.4.2 Simulation IV.2
In the second trial, a different configuration of the probe was attempted. Instead
of attaching the probe in front of the drone, it was attached slightly higher,
with anchoring in the back part of the UAV (see fig. C.22 for a visualization).
The idea is that such a configuration will free up space in front of the drone for
sensors or other mission payloads. The results are given in figs. C.21 and C.22,
and show no significant differences compared to the previous simulations. The
drone produces slightly more force against the inspection surface; however, the
yaw angle also drifts slightly more than in the baseline simulation. In conclusion,
this configuration is a totally viable option compared to the traditional front
mounting.

Figure C.21: Attitude and force with alternative configuration of the drone.
(Red area shows the duration of contact)

C.4. SCENARIO IV 241

Figure C.22: Simulation with alternative configuration.
(Top) Steady-state visualization of the contact.
(Bottom) Odometry sensor data and ground truth position.

242 APPENDIX C. SIMULATION RESULTS

C.5 Summary

This section will summarize the main points from the simulation testing of the
controller.

The noisy positions simulation shows one of the strength of this controller, as it
is very robust to noise in the position in the direction of the impact. Even the
scenario with a spread of 25 cm, the controller is able to maintain a force of more
than 3N for over a second. Although not included in this thesis, simulations was
also carried out with bias in the position estimate, without noticeable differences
from the other simulations.

In the direction parallel to the surface the controller is more sensitivity to noise
during the interaction. This is natural since changing the roll angle to fix the
positional error is not possible as the motion is constrained, but this action also
destabilizes the interaction. The best way to solve this is to ignore the error
parallel to the surface during the interaction, this requires a way of determining
when the drone is interacting with the environment. One possible way to do this
is using a simple force sensor; however, it might also be possible to infer this
from other variables (looking at a combination of the pitch and x-acceleration).

One note is that during the previous simulations conducted in MATLAB/Simulink,
a ramp function was utilized to manipulate the set-point. However, in the sim-
ulations in this part, only two set-points were used to control the interaction.
One set-point is set right before the surface of interest, and when the drone has
reached this point and has slowed down the set-point is changed to a point about
1m beyond the inspection surface. There are a lot of approaches to set-point
manipulation that gives successful results; however, the most important is to
ensure that the horizontal forces are low when the initial contact occurs to
prevent large interaction forces.

The simulations have also shown that it is difficult to stabilize the drone with
a yaw angle of 0°. This is a result of the tension in the interaction, and only
small disturbances will cause a rapid drift in the yaw angle. However, as soon
as the yaw angle has drifted slightly, the controller compensates for it and a
steady-state error is seen. Introducing integral effects to compensate for this
is not a good idea, as constrained motions can cause unwanted build-up in the
integrator and destabilize the interaction. A better solution is to design the
hardware with a flexible joint at the end, to allow the drone to rotate slightly
while the probe still maintains flat contact with the surface.

C.5. SUMMARY 243

The simulations with different attack angles shows that the proposed controller
is able correct these imperfect approaches. However, it should be noted that
these results depend on the friction coefficient, and care should be taken when
designing the hardware to ensure this. Again, it would also be beneficial to
include a flexible joint near the sensor, such that the sensor gets a larger contact
surface in the case of a angled approach.

The two different approaches simulated in section C.4 also show that different
configurations can be utilized, without sacrificing stability.

Sondre Sortland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

sA
utonom

ous thickness m
easurem

ent from
 m

ultirotor U
AV

M
as

te
r’

s
th

es
is

Sondre Sortland

Autonomous contact-based thickness
measurement from a multirotor UAV

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen

June 2019

	Abstract
	Sammendrag
	Preface
	Acknowledgments
	Table of Contents
	 Acronyms
	1 Introduction
	1.1 Background and Motivation
	1.2 Related Work
	1.3 Contributions and Scope of This Thesis
	1.4 Outline and Organization

	I System Overview
	2 System Overview
	2.1 The Development Drone
	2.2 Sensor Overview
	2.2.1 Navigation Sensors
	2.2.2 Steel Thickness Measurement

	2.3 Scout 135 Platform

	II Modeling
	3 Introduction
	4 2D UAV Model
	4.1 2D Model Basics
	4.2 Contact Force Augmentation
	4.2.1 Compliant Behavior Considerations

	4.3 Simulation Validation

	5 3D UAV Model
	5.1 3D Model Basics
	5.1.1 Kinematics
	5.1.2 Kinetics
	5.1.3 Dominant Multirotor Dynamics

	5.2 Contact Force Augmentation
	5.2.1 Compliant Behavior

	5.3 Simulation Validation

	6 Udwadia Kalaba
	6.1 Background
	6.1.1 Principle
	6.1.2 A Simple Example

	6.2 Derivation
	6.2.1 Constraint Equation Derivation

	6.3 Discussion and Future Work

	III Control
	7 Background Theory
	7.1 Force Control
	7.1.1 Interaction Control

	7.2 Impedance Control

	8 Controller 2D
	8.1 Controller Derivation
	8.2 Results

	9 Controller 3D
	9.1 Controller Derivation
	9.2 Results

	10 Tracking Of Pre-computed Optimal Trajectory
	10.1 Motivation
	10.2 Background
	10.2.1 Optimization Problems
	10.2.2 Optimization of Dynamic Systems

	10.3 Optimal Trajectory for UAVs
	10.4 Trajectory Generation Results
	10.5 Simulation Results
	10.6 Discussion

	IV Navigation
	11 Background
	11.1 Navigation in Indoor Environments
	11.2 Random Sample Consensus (RANSAC)
	11.2.1 Choosing the Iteration Number

	12 Methods for Relative Heading Estimation
	12.1 ToF Sensors
	12.1.1 Solution Description

	12.2 RADAR
	12.2.1 Solution Description

	12.3 2D Scanning Lidar
	12.3.1 Solution Description

	13 Implementation and Evaluation
	13.1 Adaptive Field of View
	13.2 Regression
	13.3 RANSAC
	13.4 Results of Experimental Verification
	13.4.1 Controlled Environment
	13.4.2 Circular Room
	13.4.3 Flight Test

	13.5 Conclusion

	V Hardware
	14 Drone Platform
	14.1 Frame, Motors and Power Supply
	14.1.1 Motor Controllers

	14.2 Flight Controller and Computer Module
	14.2.1 Pixhawk CUBE
	14.2.2 Toradex iMX6 Colibri
	14.2.3 Motherboard

	14.3 Range Sensor
	14.4 IMU
	14.5 Ultrasonic Probe
	14.5.1 Background
	14.5.2 Integration

	14.6 LIDAR
	14.7 The Scout 135 Hardware Platform

	VI Software
	15 Background
	15.1 The LSTS Toolchain
	15.2 DUNE
	15.2.1 Run Configurations

	15.3 IMC
	15.4 Neptus
	15.5 Linux Distribution

	16 DUNE Implementation
	16.1 Existing Framework and Modules
	16.2 Sensor Integration
	16.2.1 2D LIDAR
	16.2.2 Thickness Measurement Probe

	16.3 Navigation systems
	16.3.1 Relative Heading
	16.3.2 LIDAR Distance
	16.3.3 Distance Filter

	16.4 User Interface
	16.4.1 Neptus Plugins
	16.4.2 Mobile Application

	17 Control System
	17.1 Introduction
	17.2 Plan Integration
	17.2.1 Controller Implementation

	VII Results
	18 Results
	18.1 Test Facilities and Setup
	18.1.1 Test Room
	18.1.2 Falck Nutec Tank

	18.2 Flight Test I - Test Room
	18.3 Flight Test II - Falck Nutec Field Test
	18.4 Flight Test III - Automatic Abort
	18.5 Flight Test IV - Simulation Comparison
	18.6 Summary

	Conclusion and Future Work
	19 Conclusion and Future Work
	19.1 Conclusions
	19.2 Future work

	Bibliography
	Appendices
	Appendix Part I Simulation
	A Background
	A.1 System Overview
	A.2 Robot Operating System
	A.2.1 Tools and Features

	A.3 Gazebo
	A.3.1 Tools and Features

	A.4 RotorS

	B Implementation
	B.1 Simulation Framework Overview
	B.2 Drone Implementation Using RotorS
	B.2.1 URDF Description

	B.3 Environment in Gazebo
	B.3.1 Creating a World for Interaction
	B.3.2 Simulating Interaction in Gazebo and ROS

	B.4 DUNE-ROS Interface

	C Simulation Results
	C.1 Scenario I
	C.2 Scenario II
	C.2.1 Simulation II.1
	C.2.2 Simulation II.2
	C.2.3 Simulation II.3

	C.3 Scenario III
	C.3.1 Simulation III.1
	C.3.2 Simulation III.2
	C.3.3 Simulation III.3

	C.4 Scenario IV
	C.4.1 Simulation IV.1
	C.4.2 Simulation IV.2

	C.5 Summary

	Blank Page
	Blank Page

