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Bakgrunn 

When drilling, the hoisting is heave compensated to ensure steady drilling with a constant weight on 
bit even when the floating rig is moving up and down with the waves. When tripping, that is pulling 
the drillstring out of the hole/lowering into the hole, the heave compensation system is not used, 
with the result of surge/swab effects downhole causing pressure variations and potential influxes or 
losses. The objective of this project work is to design a control system that isolates the string 
movement from rig heave, so that tripping can be performed smoothly without significant downhole 
pressure oscillations, and to optimize tripping velocity. The followings tasks should be addressed by 
the student: 

 

1. Review the hoisting system and describe how it works today, and state-of-the art in heave 
compensation systems. Material from your project work can be used freely but must be cited 
appropriately. 

2. Derive a model of the topside system from input signal to the motor to the interface with the 
string dynamics (i.e velocity of string and stress of string at the top). This will involve dynamics 
of the motor, hoisting system and heave compensation system. Justify the level of detail in the 
various components in the model. 

3. Incorporate the model into the MATLAB drilling simulator containing the string dynamics, and 
run simulations to demonstrate the behavior of the added features of the simulator. 

4. Continue the development of motor control strategies from your project work and compare 
performance (in terms of downhole pressure oscillations) for the cases {constant hoisting, heave 
compensation off}, {constant hoisting, heave compensation on}, {controlled hoisting, heave 
compensation off}. 

5. If time permits: Propose an estimation strategy for the heave motion of the rig, and implement 
this in the control design. 

6. Write report. 
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Abstract
The oil and gas industry are facing numerous challenges when drilling new

wells from floating vessels. One of these challenges is pressure oscillations

induced in the well hole by movement of the drilling equipment. Since

the relative position of a floating drilling rig to the seabed is influenced by

waves, these motions may induce pressure waves in the well hole. Pressure

waves with sufficient amplitude may result in fracking of the formation

in the reservoir, rendering damage to the structural integrity of the well.

Furthermore, during hoisting operations of the drilling equipment, these

wave-induced motions are not compensated for on drilling rigs today, thus

limiting the drilling operations to particular sea states.

This thesis proposes a control strategy that utilizes the hoisting system to

isolate the movement of the drilling equipment from the wave-induced mo-

tion of the rig during hoisting operations. A mathematical model of a con-

ventional hoisting system is derived and simulated together with a model

describing the dynamics in the well. The analysis based on simulations pre-

sented in this work suggest combining conventional pressure control used

on modern drilling rigs with active hoisting. In the simulations where the

sea state was configured based on data from the North sea, the pressure

oscillations were reduced by a factor of six when comparing the proposed

control system with the conventional tripping method. Achieving such re-

sults in practice will reduce weather related down time, and increase safety

on the platform.

i



ii



Sammendrag
Olje- og gassindustrien blir møtt med store utfordringer når nye brønner

skal bores fra flytende plattformer. En av disse utfordringene er trykkvari-

asjoner i brønnen forårsaket av bevegelse av boreutstyret. Siden havbølger

har innflytelse på den relative posisjonen til en flytende borerigg i forhold

til havbunnen, kan slike bølgebevegelser indusere trykkbølger nede i bore-

hullet. Trykkbølger med tilstrekkelig styrke kan resultere i hydraulisk frak-

turering av formasjonen i reservoaret, som videre kan resultere i uønskede

lekkasjer. Ved heising av boreutstyr blir ikke slike bølgeskapte bevegelser

kompensert for på borerigger i dag. Dette begrenser boreoperasjoner til

bestemte sjøganger.

Denne avhandlingen beskriver en kontrollstrategi som bruker heisesystemet

til å isolere bevegelsene av boreutstyret fra de bølgeskapte bevegelsene

boreriggen utsettes for under heiseoperasjoner. En matematisk modell av

et konvensjonelt heisesystem er utledet og simulert sammen med en mod-

ell som beskriver dynamikken i brønnen. Analyser basert på simuleringer

beskrevet i denne rapporten viser at konvensjonell trykkregulering av brønn

som brukes på borerigger i dag, kombinert med aktiv kompensering for

hivbevegelse under heising, gir en reduksjon av trykkbølger med en fak-

tor på seks. Ved å oppnå slike resultater vil man i praksis kunne redusere

nedetid på grunn av vær, samt øke sikkerheten på plattformen.
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Chapter 1

Introduction

1.1 Background and motivation

When drilling an oil or gas well from a floating rig, a drill string with a drill

bit at the end is used to access the reservoir located beneath the sea bed.

During a drilling operation, the vertical movement of the rig, caused by

waves, is compensated for in order to maintain a constant weight on the drill

bit. However, when the drill string is hoisted up or down by the hoisting

system on the rig, known as tripping, the existing compensation systems are

not working effectively. As a result, the movement of the rig is propagating

along the drill string, inducing a heave motion of the drill bit. According to

Burkhardt [2], this vertical heave motion causes a viscous drag, resulting in

pressure variations in the bottom of the well. Surge and swab effects may

damage the structural integrity of the well, resulting in potential influxes or

losses if the pressure exceeds the pore or fracture pressure. Wells with tight

pressure margins between pore and fracture pressure can be problematic to

operate under rough sea states.

This challenge has been subject to research for years. Managed pressure

1



1.1 Background and motivation

drilling (MPD) is a hot topic in this research, where drilling mud is injected

into the well for pressure control. As done by Breyholtz et al. [3], and

Nygaard et al. [4], amongst others, the pressure down hole is controlled

by a set of pumps and valves located at the topside of the well during the

drilling operations. These control strategies are mainly using the down

hole pressure measurements to minimize the pressure variations. However,

since the location of these actuators may be relatively far away from down

hole, e.g. several thousand meters, there is a significant time delay which

reduces the performance of the controllers. Since the heave motion induced

by the waves is a stochastic measure, it is difficult to implement model

predictive controllers with sufficient prediction horizon to accommodate

this time delay. Furthermore, predictive strategies rely on high precision

models of the fluid dynamics down hole. Another method, as discussed

in Strecker et al. [5], reduces pressure oscillations by adding acceleration

instrumentation and a control valve above the bottom hole assembly. This

augmentation reduces the time delay significantly. However, this method is

not very effective during tripping.

The contribution of this work is to develop an active heave compensation

system which utilizes the hoisting system during tripping. The task is to

control the hoisting system to isolate the drill string from the heave move-

ments of the rig, which in turn will minimize the pressure variations down

hole. A typical hoisting system installed on modern rigs will be reviewed

in detail, and analyzed from a physics point of view. This analysis will

further be used to develop a model of the dynamics in the hoisting system,

which will be implemented in a simulator using Matlab. This simulator will

then be coupled with a high-fidelity model of the well dynamics and elastic

drill string, developed by Strecker et al. [6], in order to simulate realistic

tripping operations in different sea states. Furthermore, this hoisting sys-

tem model will be used as a frame work for the development of a heave

compensation control strategy for tripping.

2



1.2 Outline

No prior research on the topic of heave compensated tripping was found,

nor any work on a dynamic model of a hoisting system. Thus, most of the

derivations in this work is original, with inspiration from studies regarding

MPD and steady state models of hoisting systems. These studies has been

cited appropriately as the different topics are discussed in the report.

An overview of the system is given in Figure 1.1.

1.2 Outline

This report is divided into several chapters. First, an overview of a modern

hoisting system will be reviewed and modelled in chapter 2. Then, in chap-

ter 3, the drill string and well model will be described. A set of simulations

will be performed in chapter 4 for validation of the models, both individu-

ally and coupled. A control strategy for heave compensation will be derived

in chapter 5, before the acquisition of the necessary measurements will be

described in chapter 6. Chapter 7 will present several tripping simulations,

which are further discussed in chapter 8. Lastly, a conclusion of this work

is drawn in chapter 9 with suggestions to future work in chapter 10.

3



1.2 Outline

Figure 1.1: Overview of a floating rig with a drill string submerged in a well.
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Chapter 2

Hoisting system

The hoisting system is one of the main components of a modern drilling

rig, and is used to maneuver the drill string inside the well. In addition,

the hoisting system is used to control the applied force to the drill bit. It is

common for an oil or gas reservoir to be located several thousand meters

below the seabed. To access the reservoir, it is common to drill vertically

to a certain depth, and continue drilling horizontally through the reservoir.

Therefore, the hoisting system must be able to handle drill strings of signifi-

cant lengths. The drill string increases in length as new drill string segments

are attached and lowered. The drill string segment is commonly known as

a stand, and different mechanisms are used to feed the hoisting system with

new stands. The new stand is coupled with the rest of the drill string while

the drill string is locked to the rig. This locking mechanism is called slips,

and one often refers to a locked drill string as in slips. When the stand is at-

tached to the rest of the drill string, the hoisting system continues lowering

the drill string.

According to Cayeux et al. [7], there are mainly three types of hoisting

systems that are used on modern drilling rigs.

5



2.1 Drawwork

• The drawwork hoisting system where the lifting force is amplified

through a block and tackle mechanism.

• The ram-rig where the lifting power is supplied by hydraulic cylin-

ders.

• The rack and pinion rig where the lifting power is generated by con-

verting rotational motion of a pinion into a linear motion by a rack

gear.

The hoisting system that is used on most drilling rigs today is based on

a block and tackle system. Thus, this work will focus on the drawwork

hoisting system. In the forthcoming sections, the working principle of the

drawwork hoisting system will be explained, the main components will be

discussed, and a mathematical model of the drawwork will be derived. The

model will be derived in order to run simulations of the hoisting system, as

well as establishing a framework for a control design for heave compensa-

tion during tripping.

2.1 Drawwork

The drawwork hosting system utilizes the block and tackle principle in

order to amplify the necessary lifting force to maneuver the drill string.

The principle is obtained by reeving a set of sheaves between a block and

a tackle with a wire, as indicated in Figure 2.1. The augmented pulling

force comes at the cost of a reduced pulling speed, and an increase of fric-

tion.

The block and tackle principle is achieved in the drawwork by a crown

block and a travelling block. An illustration of the drawwork can be viewed

in Figure 2.2. The crown block is mounted to the water table, located at the

top of the derrick. The travelling block, as the name suggests, travels up and

6



2.1 Drawwork

Figure 2.1: Block and tackle setup.

down inside the derrick, maneuvering the drill string. The travelling block

is attached to the top drive, which is used to rotate the drill string.

The wire that runs between the blocks is called the drilling line, where

one end is mounted to an anchor, and the other end is spooled onto a wire

drum. The drilling line is typically divided into three sections; the dead

line, the working lines and the fast line. The dead line is the section of the

drilling line from the last sheave in the crown block to the anchor. The dead

line is stationary, independent of the velocity of the travelling block. The

working lines are composed of all the drilling line pairs that runs between

the crown block and the travelling block. Note that the velocity of the

working lines decreases for every turn around the travelling block, such

that the working line closest to the dead line is only moving at the velocity

of the travelling block. The fast line is the section of the drilling line from

the wire drum to the first sheave on the crown block. If one assume there

is no friction in the system, the amplification of the lifting force applied on

the travelling block by the system is equal to the number of working line

pairs. Thus, by increasing the number of line pairs in the configuration,

the greater is the output force. However, since every sheave has a source

7



2.1 Drawwork

Figure 2.2: Overview of components on a drawwork hoisting system.

8



2.1 Drawwork

of contact friction with its bearing, an increase of working line will also

increase the total friction in the system. Furthermore, the necessary velocity

of the fast line for a given travelling block velocity increases by the number

of working line pairs in the setup. According to National Oilwell [8], whom

are manufactures of drawwork hoisting systems, the most common number

of working line pairs in a drawwork hoisting system ranges from 8 to 12

pairs.

Further, the fast line is spooled onto a wire drum, which is driven by a

motor. Both electrical and hydraulic motors are commonly used, together

with gears, a drum clutch and breaks. The gears are used to allow the motor

to rotate at near nominal rate. The drum clutch can be used to switch the

drum between a low and high speed mode, and the breaks are used together

with the motor to control the rotational velocity of the drum.

When drilling, the mud fluid is supplied by a mud pump through a mud

hose, which is attached at the top of the drill string. The drill string is

transporting mud fluid down hole in order to cool the drill bit, and to extract

drilling debris from the well.

The load force that is exerted on the travelling block is called the hook load.

The hook load is an important measure both during drilling operations, and

during tripping operations, as it is used to estimate the operational condi-

tions down hole. For instance, during drilling of a new well, the weight

on bit is critical in order to achieve a successful drilling. Thus, the control

systems on the rig are depending on an estimation of the hook load. The

control system that will be discussed in this work is also utilizing hook load

measurements. Details on how this measurement is obtained will be further

discussed in chapter 6.
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2.2 Drawwork model

2.2 Drawwork model

In order to simulate a tripping operation, a model of the hoisting system is

needed. A mathematical model of the drawwork will also establish a frame-

work in which a heave compensation controller can be designed. This will

be covered in chapter 5. In order to derive a representative model for the

hoisting system, the main components of the drawwork will be discussed

from a physics point of view. The forces that are present in the components

will be presented, and the equations of motion will be derived by the end of

this section. The main assumptions and model simplifications that are made

will be discussed as the physical behaviors are addressed, with a summary

at the end of the section.

2.2.1 Drawwork motor

The motor in the drawwork hoisting system supplies the wire drum with

rotational energy through a set of gears. Both hydraulic and electric motors

are used, but this work will be focusing on the electric motor. In order to

model the electric motor, the direct current (DC) motor will be analyzed as

it has a simpler design than the alternating current (AC) motor. According

to National Oilwell Varco, a manufacturer of the drawwork hoisting sys-

tem, there are always more than one motor supplying the wire drum. The

drawwork is designed in this way both to increase the hoisting capacity, and

to maintain a high level of redundancy.

In order to model the DC motor, one must be familiar with the key com-

ponents that makes up the motor. As indicated in Figure 2.3, the key com-

ponents of the motor are the commutator, the armature winding, and the

permanent magnets. Suppose that the initial orientation of the rotor is as

indicated in Figure 2.3a. By supplying the motor with direct current, the

10



2.2 Drawwork model

commutator will direct the current onto the armature winding as indicated.

Due to the flow of current through a magnetic field, an electromagnetic

force called the Lorentz force is induced perpendicular to the magnetic

field. This force, indicated in the figure as Fem, exerts a torque on the rotor.

Since the force is perpendicular to the magnetic field, the torque decreases

until the rotor has turned 90 degrees. At this point, the commutator directs

the current in the opposite direction, such that the induced torque maintains

its direction. Now, suppose that there are several armature windings in the

rotor, each shifted by a certain angle from each other. This will ensure a

constant torque on the rotor as long as the motor is supplied with a direct

current.

The dynamics of the motor can be explored by modelling the inductive-

and resistive properties of the armature windings. Consider the RL circuit

in Figure 2.4. The resistor and inductor encapsulates the electric resistance

and inductance in the armature windings, respectively. Since the armature

windings are rotating in the magnetic field created by the permanent mag-

nets, a voltage is induced in the windings. This voltage is back-supplied

to the armature winding due to the rotation of the windings in a magnetic

field, and is denoted the back emf voltage. It can be shown that the mag-

nitude of this voltage is proportional to the rotational velocity of the rotor.

Mathematically, it can be expressed as

ea = Kvωm, (2.1)

where ea is the back emf voltage, Kv is a proportionality constant, and ωm
is the rotational velocity of the motor.

By applying Kirchhoff’s 2nd law to the circuit in Figure 2.4, which states

that the sum of all the voltage supplies and the voltage drops in a closed

circuit will equal zero, the dynamics of the electric circuit can be exploited.

By Ohms law, the voltage drop over the resistor is proportional to the ar-
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(a)

(b)

Figure 2.3: Working principle of the DC motor.
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Figure 2.4: RL circuit of the armature winding in a DC motor, adapted from [1].

mature current, ia. Mathematically, the voltage drop, VR, can be expressed

as

VR = Raia. (2.2)

Further, the voltage drop over the inductor is proportional to the rate of

change of the armature current with respect to time. Denoting the voltage

drop over the inductor as VL, the voltage drop can be expressed as

VL = La
dia
dt
. (2.3)

Kirchhoff’s 2nd law yields the following expression.

ua − VR − VL + ea = 0

ua −Raia − La
dia
dt

+ ea = 0 (2.4)

By inserting the back emf expression in Equation (2.1), and solving the

equation for the time derivative of the armature current, the dynamics of

the current in the armature windings is expressed as follows.

dia
dt

=
1

La
(u−Kvωm −Raia) (2.5)

Next, the mechanical dynamics of the motor will be investigated. The elec-
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tromagnetic torque induced in the motor is proportional to the armature

current in the rotor, expressed as

τem = Ktia, (2.6)

where Kt is a proportionality constant. Furthermore, there is a viscous fric-

tion force exerted on the rotor. This friction is proportional to the rotational

velocity of the motor, expressed as

τvf = −Baωm, (2.7)

where Ba is a friction coefficient. The total torque exerted on the rotor,

which is applied to the wire drum gear, results in

τm = τem + τvf ,

τm = Ktia −Baωm. (2.8)

2.2.2 Wire drum

In order to derive a complete model for the drawwork system, the moment

of inertia in the wire drum must be derived. The moment of inertia is the

rotational counterpart of the mass for bodies in translational movement. It

depends on the mass of the body, and how the mass is distributed with

respect to the axis of rotation. The mathematical definition of the moment

of inertia is expressed as follows, adapted from Young et al. [9].

J =
∑
i

mir
2
i (2.9)

Here, the total moment of inertia, J , is calculated by summing up all the

point masses i that contains a massmi which is located at a distance ri from
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the axis of rotation.

For the wire drum, the total moment of inertia depends on the radius of

the drum, as well as the number of layers that are spooled onto the drum.

As discussed by Cayeux [10], and illustrated in Figure 2.5, the radial dis-

tance from the axis of rotation to the outer layer of drill line follows the

relationship

rd(nl) = rd0 + rdl

(
1 + nl

√
3
)
, (2.10)

where rd0 is the radius of the empty drum, rdl is the radius of the drill line

and nl is the number of layers spooled on the drum.

Figure 2.5: Drill line spooled onto a wire drum.

The total moment of inertia of the wire drum will be the sum of the moment

of inertia of the empty drum, denoted as Jd0, and the layers of drill line

spooled on the drum. The moment of inertia of the completed wire layers

can be calculated by considering the moment of inertia of a hoop about a

symmetric axis. Given a hoop of mass m and radius r, one may utilize

Equation (2.9) to calculate the moment of inertia of the hoop to be

Jhoop = mr2, (2.11)
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by observing that all the mass is distributed at the same distance r from

the axis of rotation. The mass of a complete layer depends on the specific

radius at which the layer got spooled onto the drum, as the radius increase

for each layer. For a complete layer number i of drill line on the drum, the

length of drill line on this layer can be calculated as

li = 2πrd(i)︸ ︷︷ ︸
Length of drill line per revolution

ld
2rdl︸︷︷︸

Number of revolutions per layer

=
πld
rdl

rd(i), (2.12)

where rd(i) is the radius function in Equation (2.10), and ld is the width of

the drum. Subsequently, the mass of a complete layer i takes the form

mi = λdlli

= λdl
πld
rdl

rd(i), (2.13)

where λdl is the mass per unit length of drill line.

Further, the final non-complete layer of drill line will also contribute to

the total moment of inertia. Let ldld represent the total length of drill line

spooled on the drum. The length of the last, non-complete layer of drill line,

can be calculated by taking the total length that is spooled onto the drum

and subtracting the length of the complete layers. The length of the com-

plete layers can be calculated by summing up the length on each complete

layer, i.e.
nl−1∑
i=0

πld
rdl

rd(i).

Thus, the expression for the total moment of inertia of a wire drum with nl
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layers of drill line results in

Jd = Jd0︸︷︷︸
Empty drum

+

nl−1∑
i=0

λdl
πld
rdl

rd(i)
3

︸ ︷︷ ︸
Complete layers of drill line

+

[
ldld −

nl−1∑
i=0

πld
rdl

rd(i)

]
λdlrd(nl)

2

︸ ︷︷ ︸
Non-complete layer of drill line

,

(2.14)

which will be further used in the derivation of the equations of motion.

One may argue that there is also a viscous friction force exerted on the wire

drum. To simplify the calculations, this friction force is assumed to be gov-

erned by the friction force covered in the model for the electric motor.

2.2.3 Block and tackle system

Next, the friction forces that act on the sheaves in the block and tackle sys-

tem will be examined. Since the simulations in later chapters will mainly

cover tripping operations, the sheaves will be in motion throughout the sim-

ulations. Thus, this work will only consider the kinematic friction force in

the sheaves.

As indicated in Figure 2.6, the sheaves are resting on an axle located in the

center of the sheave. For the sheave to rotate freely in the block, a ball bear-

ing is attached to the axle, with radius rsb, which introduce a friction force

exerted on the sheave. In order to model this friction force, the Coulomb

friction model is utilized, given in Egeland et al. [11]. The friction model

describes a force that is proportional to the normal force FN , and has the

direction opposite of the rotation of the sheave. I.e. if the sheave is rotating

counter clockwise, the force will be in the positive x-direction, as indicated

in the figure. By defining the positive direction of rotation to be clockwise,

the friction force may be expressed as

−→
F f = −µ|FN | sgn(ω)x̂. (2.15)
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Figure 2.6: Free body diagram of a crown block sheave in the drawwork hoisting
system.
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Here, µ is the kinematic friction coefficient, and sgn(ω) is the signum func-

tion that returns the sign of the angular velocity ω. Let µs be the kinematic

friction coefficient in a ball bearing, the torque exerted on sheave i caused

by friction takes the form

τf,i = −µs|FN |rsb sgn(ωi). (2.16)

For the purpose of calculating the normal force FN , it is assumed that the

sheave has no translational acceleration. Under this assumption, the normal

force is equal to the sum of all the forces that are acting on the sheave along

the z-axis. If one assume that the forces Fa and Fb, indicated in Figure 2.6,

are parallel with the z-axis, the normal force results in

−→
F N =

−→
F a +

−→
F b +

−→
F c +

−→
F g. (2.17)

Here,
−→
F a and

−→
F b are the tension forces exerted on the sheave by the drilling

line,
−→
F c is a centrifugal force that is applied to the length of the drilling line

that is changing direction by circular motion, and
−→
F g is the gravitational

force. An analysis of these forces will now be given for an arbitrary sheave

in the crown block. The normal force is derived similarly for a sheave in

the travelling block.

For the purpose of modelling the tension forces,
−→
F a and

−→
F b, it is assumed

that the hook load force
−→
F hl, is evenly distributed on each of the nl working

lines in the block and tackle setup. Under this assumption, the tension

forces can be calculated as

−→
F a =

−→
F b =

1

nl

−→
F hl. (2.18)

As derived by Cayeux et al. [7], the centrifugal force
−→
F c can be calculated

by considering a control element of drill string of length ds moving at a
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translational velocity of v = ωrs. Here, ω and rs are the angular velocity

and the outer radius of an arbitrary sheave, respectively. The acceleration

of this control element can be expressed as

ac =
v2

rs
. (2.19)

By Newtons 2nd law of motion, the force exerted on the control element
−→
dF c, can be calculated as

−→
dF c = λdl

v2

rs
r̂ds,

= λdlrsω
2r̂ds. (2.20)

Here, r̂ is the unit vector in the radial direction, and λdl is the mass per unit

length of drill line. The total force exerted on the drilling line as it runs over

the sheave may be derived by integrating the expression in Equation (2.20)

from the contact points a and b, indicated in Figure 2.6.

−→
F c =

∫ b

a

λdlrsω
2r̂ds (2.21)

By a change of variables ds = rsdθ, and assuming that the contact points

a and b are located such that the angle θ is 180 degrees, the force can be

expressed in the Cartesian coordinate system.

−→
F c =

∫ θ
2

− θ
2

−λdlr2sω2cos(θ)dθẑ

= −λdlr2sω2

∫ θ
2

− θ
2

cos(θ)dθẑ

= −2λdlr
2
sω

2ẑ. (2.22)

Lastly, the force of gravity exerted on the sheave must be calculated. By
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Newtons 2nd law, the gravitational force
−→
F g take the form

−→
F g = msgẑ, (2.23)

where ms and g are the mass of the sheave and the gravitational accelera-

tion, respectively.

By inserting the forces derived into Equation (2.17), the normal force ex-

erted on an arbitrary sheave results in

−→
F N =

∣∣∣∣2Fhlnl
− 2λdlr

2
sω

2 +msg

∣∣∣∣ ẑ. (2.24)

Substituting the expressions for the normal force into Equation (2.16), the

friction torque exerted on sheave i may be expressed as follows.

τf,i = −µsrsb
∣∣∣∣2Fhlnl

− 2λdlr
2
sω

2
i +msg

∣∣∣∣ sgn(ωi) (2.25)

For the purpose of finding the total friction torque in the block and tackle

system, one has to sum all the friction torques exerted on all the sheaves

that are in motion. Since the last sheave, which is next to the anchor, is

stationary, the friction torque exerted on this sheave will not effect the total

friction torque. Thus, the total friction torque in the block and tackle system

is

τf =

nl∑
i=1

τf,i,

= −
nl∑
i=1

[
µsrsb

∣∣∣∣2Fhlnl
− 2λdlr

2
sω

2
i +msg

∣∣∣∣ sgn(ωi)

]
, (2.26)

where the last sheave on the travelling block, i.e. the one closest to the

anchor, is indexed nl.
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In order to derive the equations of motion later in this chapter, a common

reference frame is needed for all the torques in the system. To make this

intuitive, all the torques will be expressed with respect to the rotor in the

electric motor. In order to transform the torques that are exerted on the

sheaves in Equation (2.26) to the motor, the factor rd
rs
ng must be used. Re-

call that rd, rs and ng are the radius of the drum in Equation (2.10), the

outer radius of the sheave, and the gear ratio, respectively. The friction

torque from the block and tackle system exerted on the rotor of the electric

motor has the following expression.

τf,m =
rd
rs
ngτf

= −rd
rs
ng

nl∑
i=1

[
µsrsb

∣∣∣∣2Fhlnl
− 2λdlr

2
sω

2
i +msg

∣∣∣∣ sgn(ωi)

]
(2.27)

2.2.4 Crown mounted compensator

The crown mounted compensator (CMC) is a passive heave compensation

device that is mounted at the top of the derrick, and is typically utilized

under drilling operations. The crown block is suspended above a couple of

hydraulic cylinders, allowing the movement of the crown block to follow

the waves relative to the water table. Consider the illustration in Figure 2.7.

The vertical movement of the crown block is counteracted by the hydraulic

cylinders which are pressurized by air bottles through a separator. The

greater the hook load force exerted on the crown block, the greater is the

oil to gas ratio in the separator, which will increase the air pressure in the

air bottles. When the hook load changes, the system converges to its new

equilibrium state. This compensation system acts similarly to a spring-

damper system, and will be modelled as such. Let zc be the vertical position

of the crown block, and let zwt be the vertical position of the water table.

By Hooke’s law, the force acting on the crown block by the spring effect is
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Figure 2.7: Schematic of the crown mounted compensator, manufactured by Na-
tional Oilwell Varco.
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proportional to the deviated position. The expression takes form

−→
F spring = kc(zwt − zc)ẑ, (2.28)

where kc is the proportionality coefficient, called the spring constant. Since

the energy is not entirely conserved in the crown mounted compensator, i.e.

converts to heat by friction and pressure oscillations, a mechanical damping

is present. This damping force can be expressed as follows.

−→
F damper = bc(żwt − żc)ẑ (2.29)

Here, bc is the proportionality constant of the damper, called the damper

constant. The spring force and the damper force can be adjusted by chang-

ing the pressure in the air bottles, and the number of air bottles in the

setup.

2.2.5 Equations of motion

To derive the model of the complete hoisting system, Lagrange’s equation

of motion will be utilized, stated by Egeland et al. [11]. The equations of

motion will be derived with respect to the rig reference frame. E.g. all the

velocities will be relative to the drilling deck on the rig. The Lagrange’s

equation of motion is formulated using the Lagrangian, which is expressed

as

L(q, q̇, t) = T (q, q̇, t)− U(q), (2.30)

where q is the generalized coordinate vector for the model, and T and U are

the kinetic and potential energy in the system, respectively. The generalized

coordinates that will be used in the derivation are the angle of the motor,

and the position of the crown block. I.e. q = [θm zc]
>. The equation of
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motion for the generalized coordinate element i is stated as

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Ξi, (2.31)

where Ξi is the non-conservative force related to the ith generalized coordi-

nate.

In order to derive the Lagrangian in Equation (2.30), the kinetic and po-

tential energy of the components in the drawwork must be examined. It is

assumed that the gears are massless, and have no friction. Consider the free

body diagram of the drawwork illustrated in Figure 2.8, which will be the

basis for the modelling.

The motor has only rotational energy, so the total kinetic energy of the

drawwork motor is

Tm =
1

2
Jmω

2
m, (2.32)

where Jm and ωm are the moment of inertia and angular velocity of the

rotor, respectively. Similarly with the wire drum, the total kinetic energy

can be expressed as the following.

Td =
1

2
Jdω

2
d

=
1

2
Jd (ngωm)2 (2.33)

Here, the moment of inertia Jd, is expressed in Equation (2.14), ωd is the

angular velocity of the drum, and ng is the gear ratio.

Next, the energy in the block and tackle system will be considered. The

kinetic and potential energy in the drilling line has been neglected in this

work, as well as its elastic properties. As described in the previous section,

the crown block is suspended in the crown mounted compensator. The

CMC will be modelled as a spring damper system, where the potential en-
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Figure 2.8: Free body diagram of the drawwork hoisting system with 6 working
lines (nl = 6).
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ergy in the spring is stored by a deviation in the position of the crown block,

relative to the initial equilibrium of the system. The damper, however, is

not capable of storing energy, thus acts as a non-conservative force on the

system. This non-conservative force will be taken into account on the right

hand side of the Lagrangian equation of motion, stated in Equation (2.31).

The potential energy stored in the spring can be calculated as follows, uti-

lizing the spring force in Equation (2.28), and denoting z̃ = zwt− zc.

Uspring =

∫
Fspring(z̃)dz̃

=

∫
kcz̃dz̃

=
1

2
kcz̃

2 (2.34)

Here, the potential energy in the CMC is defined to be zero when zwt =

zc.

The total potential energy in the crown block, denoted Uc, is the sum of

the energy stored in the spring, and the potential energy caused by gravity,

resulting in

Uc =
1

2
kc(zwt − zc)2 +mcgzc. (2.35)

Here, mc is the mass of the crown block, and g is the gravitational acceler-

ation. In addition to the potential energy stored in the crown block, there

is also kinetic energy due to the fact that the CMC gives the crown block

freedom to have translational velocity relative to the rig. By denoting the

kinetic energy in the crown block as Tc, it may be calculated as

Tc =
1

2
mcżc

2. (2.36)

In addition to the crown block, there is also energy stored in the travelling

block. As with the crown block, the travelling block has potential energy
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due to earths gravitational field, denoted Ut. Observe that the position of the

travelling block is both a function of the angle of the motor, and the position

of the crown block. Mathematically, the crown block position follows the

relationship

zt =
2

nl
rdngθm + (zc − zwt). (2.37)

Here, nl is the number of working lines in the block and tackle configu-

ration. Under this expression, the potential energy of the travelling block

may be calculated as follows.

Ut = mtgzt

= mtg

(
2

nl
rdngθm + (zc − zwt)

)
(2.38)

Since the travelling block is suspended under the crown block, the transla-

tional velocity of the travelling block will be both a function of the transla-

tional velocity of the crown block as well as the rotational velocity of the

motor. Let vt be the translational velocity of the travelling block, then the

kinetic energy can be expressed as follows.

Tt =
1

2
mtv

2
t (2.39)

Observe that the translational velocity of the travelling block can be calcu-

lated by adding the contribution of the rotational velocity of the motor, and

the translational velocity of the crown block. Mathematically, this may be

expressed as

vt =
2

nl
rdngωm + żc, (2.40)

which substituted into Equation (2.39) yields

Tt =
1

2
mt

(
2

nl
rdngωm + żc

)2

. (2.41)
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So far, the energy related to the translational motion of the block and tackle

system has been discussed. Recall that the sheaves in the crown- and trav-

elling block are massive, such that they are able to store rotational kinetic

energy. In order to model the rotational energy in the sheaves, the energy

must be expressed in terms of the generalized coordinates. It can be shown

that the ratio between the rotational velocity of the first sheave, and the

ith sheave in the block and tackle configuration, can be expressed as fol-

lows.
ωi
ω1

=

−1 + 2
nl

(
i
2
− 1
)
, i even

1− 2
nl

(
i+1
2
− 1
)
, i odd

(2.42)

The derivation of this relationship can be found in Appendix A. By con-

sidering the sheaves as solid discs with mass ms, and outer radius rs, the

moment of inertia of a sheave can be calculated to be

Js =
1

2
msr

2
s . (2.43)

With the moment of inertia calculated, and the sheave velocity ratio in

Equation (2.42), the rotational kinetic energy in the sheaves can be derived

as follows.

Ts =

nl∑
i=1

1

2
Jsω

2
i

=
1

2
Js

nl∑
i=1

−1 + 2
nl

(
i
2
− 1
)
, i even

1− 2
nl

(
i+1
2
− 1
)
, i odd

2

︸ ︷︷ ︸
ψ(nl)

2

ω2
1

=
1

2
Jsψ(nl)

2ω2
1

=
1

2
Jsψ(nl)

2

(
rd
rs
ng

)2

ω2
m (2.44)
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Here, the assumption has been made that the angular velocity of the sheaves

is only depending on the angular velocity of the motor, and not on the

translational velocity of the crown block. As one may observe, by locking

the angle θm, and increasing the vertical position of the crown block, the

sheaves would indeed rotate. But since the movement of the crown block is

within a few meters, and the fact that the motor is the main source of move-

ment of the travelling block, the influence of the translational velocity of the

crown block on the rotational velocity of the sheaves is neglected.

Summarizing the energy expressions derived so far, the total kinetic en-

ergy in the system can be expressed as functions of the generalized coordi-

nates

T = Tm + Td + Tc + Tt + Ts

=
1

2
Jmω

2
m︸ ︷︷ ︸

Motor

+
1

2
Jdn

2
gω

2
m︸ ︷︷ ︸

Drum

+
1

2
mcżc

2︸ ︷︷ ︸
Crown block

+...

1

2
mt

(
2

nl
rdngωm + żc

)2

︸ ︷︷ ︸
Travelling block

+
1

2
Jsψ(nl)

2

(
rd
rs
ng

)2

ω2
m︸ ︷︷ ︸

Sheaves

,
(2.45)

and the total potential energy

U = Uc + Ut

=
1

2
kc(zwt − zc)2 +mcgzc︸ ︷︷ ︸

Crown block

+mtg

(
2

nl
rdngθm + (zc − zwt)

)
︸ ︷︷ ︸

Travelling block

. (2.46)

With the expressions in Equations (2.45) and (2.46), the Lagrangian in

Equation (2.30) can be calculated. To simplify notation, let the total mo-
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ment of inertia be denoted as Jtot,

Jtot = Jm + Jdn
2
g + Jsψ(nl)

2

(
rd
rs
ng

)2

, (2.47)

and let

γ =
2

nl
rdng (2.48)

be the conversion factor from the motors rotational velocity to the transla-

tional velocity of the travelling block. The Lagrangian takes the following

form.

L = T − U

=
1

2
Jtotω

2
m +

1

2
mt (γωm + żc)

2 +
1

2
mcż

2
c

− 1

2
kc(zwt − zc)2 −mcgzc −mtg (γθm + (zc − zwt))

(2.49)

Before the equations of motion can be completed, the non-conservative

forces must be addressed. The first generalized coordinate is the rotor angle

of the motor. The torques that are acting on the rotor are the electromagnetic

torque induced by the motor itself τm, the torque produced by the hook

load τhl, and the friction torque τf,m expressed in Equation (2.27). The

second generalized coordinate is the position of the crown block. The non-

conservative forces associated with the crown block is the damping force

Fdamper in Equation (2.29), and the hook load Fhl. The non-conservative

terms in Lagrange’s equation of motion results in the following.

Ξθm = τm − τhl − τf,m (2.50)

Ξzc = bc(żwt − żc)− Fhl (2.51)

Since there are two generalized coordinates in the model, there will be two
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2.2 Drawwork model

equations of motion. The derivation of the equations of motion are shown

in Appendix B, where the Lagrangian in Equation (2.49) is applied to La-

grange’s equation (2.31). The equations of motion for the drawwork hoist-

ing system are expressed in Equation (2.52) and (2.53).

(
Jtot +mtγ

2
)
θ̈m + γmtz̈c + γmtg = τm − τhl + τf,m (2.52)

γmtθ̈m + (mt +mc)z̈c − kc(zwt − zc) + (mt +mc)g = bc(żwt − żc)− Fhl
(2.53)

The Equations (2.52) and (2.53) governs the dynamics of the hoisting sys-

tem together with Equations (2.5) and (2.8) which encapsulates the dy-

namics of the electric motor. These four equations can be merged to one

equation by Laplace transforming the equations, and reducing the number

of explicit states in the model. A derivation of this final equation is given

in Appendix C, which describes the behaviour of the hoisting system for

the given system inputs. The system inputs are the motor voltage u, and

the position of the water table zwt, which will be influenced by the heave

motion induced by ocean waves.[(
Jtot +mtγ

2

(
1− mt

mt +mc

))
s2 +

(
KvKt

Las+Ra

+Ba

)
s

]
θm =

Kt

Las+Ra

u−
(

1− mt

mt +mc

)
τhl + τf,m −

mtγ

mt +mc

(kc + bcs)(zwt − zc)

(2.54)

In the derivations of the equations of motion, a number of assumptions and

simplifications have been made. The reader will find a list below which

summarizes these assumptions.

• The drilling line in the block and tackle system is assumed to be

massless and have no elastic properties.
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2.2 Drawwork model

• The gears between the motor and the wire drum are assumed to be

massless and frictionless.

• The friction exerted on the sheaves from the bearings are assumed to

have no static component.

• The calculation of the sheave friction assumes there is no transla-

tional acceleration of the respective block.

• The hook load force is assumed to be evenly distributed on all the

working lines in the block and tackle system.

• The translational movement of the crown block relative to the water

table does not affect the rotational velocity of the sheaves.
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Chapter 3

Drill string and well

In this chapter, a model of the dynamics in the drill string, and the drilling

mud in the well will be presented. The derivations in this chapter are moti-

vated by the work of Strecker et al. [6]. Therefore, the presentation of the

model in this chapter will be brief. Most of the theory formulations in this

chapter are based on the author’s specialization project [12].

3.1 Drill string

The drawwork hoisting system described in the previous chapter is used

to manage the movement of the drill string. As previously discussed, the

travelling block is holding the weight of the drill string, and is maneuvering

the drill string by utilizing the block and tackle principle. The drill string

is used to transfer rotational motion from the top drive down to the drill bit

in order to drill through the rock layers below the sea bed. In addition, the

drill string is used to transfer drilling mud down hole. This drilling mud is

used to cool the drill bit, to transport drilling debris to the surface, and to

control the down hole pressure.
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3.1 Drill string

The drill string is composed by the bottom hole assembly (BHA), the tran-

sition pipe, and the drill pipe. The BHA is composed by a drill bit which

is used to break up rock formation below the sea bed, drill collars which

are used to apply weight to the drill bit, and drilling stabilizers to keep the

assembly centered in the hole. The transition pipe is the pipe segment be-

tween the BHA and the drill pipe. The drill pipe consists of multiple 30

meters long stands that are attached to one another at the rig as the drill

string is lowered into the well hole.

Drill string model

Inspired by the work of Greenfield et al. [13], the dynamics of the drill

string was modelled as a one dimensional elastic rod based on the 1D con-

tinuity equation, given as

∂σd
∂t

= E
∂vd
∂z

. (3.1)

Here, σd, E and vd is the mechanical stress in the drill string, Young’s mod-

ulus, and the heave velocity of the drill string, respectively. As derived by

Dahlen [14], the momentum balance for the drill string yields a relation-

ship between the drill string acceleration ∂vd
∂t

, and the pressure gradient in

the drill string ∂pd
∂z

.

ρd
∂vd
∂t

= −∂pd
∂z
− kpvd (3.2)

Here, the term kpvd accounts for both the force per unit length exerted on

the drill string as it slides along the walls of the well, and the viscous drag

induced by the movement.

The mud that flows through the drill string leaves the pipe through the drill

bit at the end of the drill string. The flow through the drill bit can be mod-

elled as a non-return valve equation, where turbulent flow is assumed. The
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3.2 Well

flow as a function of the pressure difference over the valve, ∆p, is stated as

in Egeland et al. [11].

qbit(∆p) =

CdATFA

√
2
ρd

∆p, if pbiti > pbitbb

0, if pbiti ≤ pbitbb

(3.3)

Here, Cd is the discharge coefficient of the valve, and ATFA is the total flow

area through the bit nozzles. The drilling mud that flows out of the drill

string continues up the annulus inside the well, which will be discussed

next.

3.2 Well

The well is composed by several subsystems, as indicated in Figure 3.1.

The governing equations that will be discussed in this section describes the

fluid dynamics of the drilling mud in these subsystems. The choke valve

and back pressure pump are located at the top of the sealed annulus, which

may be utilized for flow and pressure control in the well. As recommended

by the American Petroleum Institute [15], the Herschel-Bulkley rheological

model [16] was used for the drilling mud. The model relates the shear rate

γ̇ to the shear stress τ by

τ(γ̇) =

(
Khb|γ̇|nhb−1 +

τ0
|γ̇|

)
γ̇, (3.4)

where τ0,Khb, and nhb are the yield point, consistency index and flow index

of the fluid, respectively.

To model the fluid dynamics in the well, Mitchell [17] suggests using the

1D continuity equation, which is expressed in equations (3.5) - (3.8). The

flow inside the drill string and annulus is assumed to flow in the axial di-
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3.2 Well

Figure 3.1: Well schematic showing the different subsystems in the well.
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3.2 Well

rection. The term β
A
∂q
∂z

represents advective transport in the mass balance

equations (3.5) and (3.7). The latter term in the mass balance,
(
β
A
∂A
∂p

)
∂p
∂t

,

encapsulates the effect of compression of the annulus due to the pressure

differential from the drill string. Further, Equation (3.6) and (3.8) repre-

sents the momentum balances. The forces present in the equations are due

to the pressure gradient, friction and gravity, respectively.

∂pa
∂t

= − βa
Aa

∂qa
∂z
−
(
βa
Aa

∂Aa
∂pi

)
∂pi
∂t

(3.5)

∂qa
∂t

= −Aa
ρa

∂pa
∂z
− 1

ρa
[Fa,in(qa, vi) + Fa,out(qa, vi)]− Aag cos(θd) (3.6)

∂pi
∂t

= − βi
Ai

∂qi
∂z
−
(
βi
Ai

∂Ai
∂pa

)
∂pa
∂t

(3.7)

∂qi
∂t

= −Ai
ρi

∂pi
∂z
− 1

ρi
Fi(qi, vi)− Aig cos(θd) (3.8)

The implementation of the model is done by distributing the hyperbolic

partial differential equations over a uniform grid spanning the well and the

drill string. The main assumptions that were made in the derivations of the

well model are listed below.

• Constant parameters was assumed along each subsystem of the dis-

tributed model.

• Constant density was assumed inside the drill string and the annulus.

• BHA was assumed to be a rigid body .

• Thermal effects on dynamics were neglected.

• Mud loss to the formation in the well was neglected.

• Hook-strain effect on the drill string was neglected.
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Chapter 4

Simulator configuration and
model validation

In this chapter, a series of simulations will be discussed to validate the

credibility of the models for simulations in later chapters. The models dis-

cussed in chapters 2 and 3 were implemented in Matlab, and simulations

of the individual models as well as the coupled models will be discussed.

First, a simulation of the hoisting system with a specific setup will be ad-

dressed. Secondly, a simulation of the drill string and well model will be

compared to a data set that has been generated at a drilling rig in the north

sea. The source of the data that will be used for validation will remain

anonymous, but permission has been granted to publish the figures in this

chapter. Lastly, the two models were coupled and simulated as one com-

plete system.
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4.1 Hoisting system model validation

4.1 Hoisting system model validation

In this section, a simulation of the hoisting system model that was derived

in chapter 2 will be discussed. The simulation that was performed had the

following inputs.

• The hook load was set to a constant value of 2 tons.

• The drawwork motor voltage was set to a constant value of 600 volts.

• The heave motion of the rig was set to follow a sinusoidal movement

with an amplitude of 5 meters, and a period of 10 seconds.

Further, the parameters in the hoisting system model were set according

to drawwork data sheets produced by National Oilwell Varco [8], and are

shown in Table 4.1. The results of the simulation are displayed in Figure

4.1. As shown in the Figure 4.1a, the crown block started out at the same

position as the water table. Due to the applied hook load and the mass

of the blocks, the CMC translated the crown block a few meters, before

converging at an equilibrium. One may also notice that the travelling block

was gradually elevated towards the water table, emulating the tripping of

a drill string. The effect of the CMC can also be seen in the Figure 4.1b,

where the crown block was lagging the water table by approximately one

second. In Figure 4.1c, one may observe that the motor power peaked at

approximately 5 mega watts in the start of the simulation. Initially, the

hoisting system was at rest, so the system needed a significant amount of

power to accelerate. Lastly, in Figure 4.1d, the drill line is shown as it was

spooled onto the drum. About 8 seconds into the simulation, drill line layer

number two was complete, and the remaining drill line was spooled onto

layer number three.
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4.1 Hoisting system model validation

Ra 0.056 Ω Armature winding resistance
La 5 mH Armature winding inductance
Kv 3.715 Nm/A Motor constant
Kt 3.715 V/Rad Motor constant
Jm 3.35 · 10−6 kgm2 Rotor moment of inertia
Ba 26.53 kgm2/s Rotational damping coefficient
ng 1 : 10.5 Gear ratio
nl 12 Working lines in block & tackle setup
kc 3500 N/m Spring coefficient in CMC
bc 5000 Ns/m Damper coefficient in CMC
µs 0.001 Friction coefficient in sheave bearings
rs,i 0.1 m Inner radius in sheaves
rs 1.524 m Outer radius in sheaves
rdl 0.022 m Radius of drill line
λdl 8.44 kg/m Mass per unit length of drill line
mc 1000 kg Mass of crown block
mt 1000 kg Mass of travelling block
ms 30 kg Mass of sheave
ld 2.082 m Width of wire drum
rd0 0.8 m Radius of empty drum
Jd0 7950 kgm2 Moment of inertia of empty drum

Table 4.1: Hoisting system parameter table.
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4.1 Hoisting system model validation
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(d) Wire drum status.

Figure 4.1: Simulation of the drawwork hoisting system for model validation.
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4.2 Drill string and well model validation

4.2 Drill string and well model validation

4.2.1 Validation set

The data set that was used for validation of the simulator, hereafter referred

to as the validation set, was recorded during a drilling operation in the north

sea. The data was recorded for several hours, but only a short time series of

the data set will be discussed. The vertical depth of the well was approxi-

mately 1600 meters, with a horizontal section approximately 3600 meters

long. The total length and the vertical depth of the well are called the mea-

sured depth and the total vertical depth, respectively. The fact that the well

curves horizontally caused an increase of the total friction that was exerted

on the drill string during the tripping operation. An increase of friction will

indeed increase the hook load, which must be taken into consideration upon

comparison.

Consider the well profile displayed in Figure 4.2. The time series of the

validation set that will be used for comparisons purposes, was extracted at

the point in time when the drill string had the position indicated by the red

curve. This particular time series was chosen because it matches the con-

ditions which the simulator was implemented for the best. Here, the drill

bit has been tripped out approximately 1200 meters from the well bottom,

such that the horizontal component of the drill string is minimized, and the

well bottom is not influencing the fluid flow and annular pressure down

hole. The time series of the validation set contains down hole pressure,

mud flow data, as well as hook load measurements that were recorded dur-

ing a tripping of one stand. The tripping direction was out of the well. The

topside mud pump was shut off, and the flow rate through the choke and

back pressure pump was zero.
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4.2 Drill string and well model validation
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Figure 4.2: Profile of the well in the validation set, red curve represents the loca-
tion of the drill string.

4.2.2 Drill string and well simulation

The simulator was set to match the boundary conditions present in the vali-

dation set. However, the simulator was not implemented for wells with hor-

izontal sections, so the measured depth in the simulator was set to match the

total vertical depth that was recorded, approximately 1580 meters. Further,

the pressure at the top of the annulus was set to atmospheric pressure. By

studying the measured depth in the validation set, displayed in Figure 4.3a,

the tripping velocity was set to 1 meter per second with a velocity profile

displayed in Figure 4.3b. The parameters that were used in the simulator

are shown in Table 4.2.

With the simulator configured accordingly, the resulting hook load and

down hole pressure can be viewed in Figure 4.3c. Notice that the mea-

sured hook load from the validation set starts off at 0 tons, which indicates

that the drill string was in slips before - and after the tripping. The maxi-

mum hook load that was measured in the validation set was about 90 tons,

whereas the simulated hook load had a maximum about 50 tons. The main

reason for this discrepancy is the horizontal section causing an increase of

the total friction force exerted on the drill string. In Figure 4.3d, the down
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4.2 Drill string and well model validation

hole pressure relative to the static pressure is displayed. Since this is a trip-

ping out of the well, a decompression occurs which causes the down hole

pressure to drop. By comparing the simulated pressure and the measured

pressure from the validation set, one may observe that the pressure drop

is more significant in the validation set. The reason for this can only be

speculated in, but it seems that the simulated mud does not need as much

delta pressure to start flowing. Another reason might be the increased fric-

tion exerted on the drill string, which may cause the tripping movement

down hole to be uneven. Strecker et al. [5] explains a similar phenom-

ena as a jump of the drill bit. As the top of the drill string starts to move,

the tension in the drill string must overcome the friction and drag forces

before the bit starts to move. When sufficient tension is present, the bit

jumps with a velocity greater than the tripping velocity. This jump induces

a transient pressure drop. The pressure drop displayed in the figure may

be caused by this this phenomena. However, even though there are some

differences between the simulator and the validation set, the plots show a

likeness between the model and the real world. This simulation data was

also evaluated by Equinor.
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4.2 Drill string and well model validation

Ld 1600 m Length of drill string
LBHA 100 m Length of BHA
Lbb 40 m Distance from drill bit to bottom of well
Ad 9.4 · 10−3 m2 Cross sectional area of drill string
Aw 3.66 · 10−2 m2 Cross sectional area of well
ATFA 9.4 · 10−3 m2 Total flow area through bit nozzles
Cd 0.98 Valve flow coefficient
µw 0.2 Kinematic friction coefficient in well
θd 0 rad Inclination angle in well
g 9.81 m/s2 Acceleration of gravity
λd 30 kg/m Mass per unit length of drill string
mBHA 12000 kg Mass of BHA
ρd 1060 kg/m3 Density of mud in drill string
ρa 1060 kg/m3 Density of mud in annulus
ρbb 1060 kg/m3 Density of mud below bit
ρp 7800 kg/m3 Density of drill string (pipe)
βd 1.8 GPa Effective bulk modulus of mud in drill string
βa 1.6 GPa Effective bulk modulus of mud in annulus
βbb 1.8 GPa Effective bulk modulus of mud below bit
E 206.8 GPa Drill string Young’s modulus
τ0 5 Pa Yield point in Herschel-Bulkley model
Khb 0.2 Pa s Consistency index
nhb 0.7 Flow index

Table 4.2: Drill string and well parameter table.
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(d) Relative pressure down hole

Figure 4.3: Simulation data of the drill string and well model in blue together
with the validation data in red. The relative pressure plot is displaying the dynamic
pressure relative to the static pressure down hole.
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4.3 Complete simulator validation

In this section, a simulation of the hoisting system model coupled with the

string and well model will be discussed. The two models are coupled by

the drill string velocity, and the hook load, as shown in the block diagram

in Figure 4.4.

Figure 4.4: Block diagram of the hoisting system model coupled with the drill
string and well model.

The configuration of the models are similar to the previous sections, with

an adjustment of the CMC settings, bc and kc. The final values of bc = 107

Ns/m, and kc = 3500 N/m was chosen to achieve stable simulations. The

coupled models were simulated with the following inputs, similarly to the

simulation of the hoisting system in section 4.1.

• The drawwork motor voltage was set to a constant value of 600 volts.

• The heave motion was set to follow a sinusoidal movement with 5

meters amplitude a period of 10 seconds.

The results of this simulation can be viewed in Figure 4.5. As displayed

in Figure 4.5a, the travelling block was elevated about 40 meters in the 20

seconds simulation time. This represents a tripping velocity that is greater

than what is normal in the north sea. This demonstrates that the hoisting

system has the necessary capacity, consuming an average power of about

2,3 mega watts. This is equivalent to 67% of the drawwork motors limit.

Further, in Figure 4.5b, one may observe that the deviation between the
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(d) Relative pressure down hole.

Figure 4.5: Simulation of the hoisting system model coupled with the drill string
and well model for a complete model validation.
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4.3 Complete simulator validation

crown block- and water table velocity was negligible. This indicates that

for this setup, the waves are barely getting damped through the passive

compensator. In order to accomplish a better damping of the heave motion,

simulations were done with decreasing spring- and damping terms in the

CMC, without any major improvements. Furthermore, the pressure oscil-

lations down hole, shown in Figure 4.5d, was barely impacted by the CMC

adjustments. A talk with Equinor confirmed that the CMC is commonly

used during drilling operations, where the drill bit is at the bottom of the

well. However, during tripping, the drill bit is elevated from the ground,

rendering the CMC inefficient for heave compensation. This motivates an

active hoisting system that isolates the drill string motion from the heave

motion during tripping. A control strategy for this will be further discussed

in the next chapter.
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Chapter 5

Motion control

In this chapter, a heave compensation controller for tripping will be pro-

posed. The drawwork model that was presented in chapter 2 will be used

as a frame work for the derivation. First, a linearization and simplification

of the drawwork model will be justified. Next, a pole-placement algorithm

will be used to derive a controller that is able to suppress disturbances, iso-

late the drill string from the wave-induced heave motion and control the

tripping velocity. Other optimal control strategies like Linear Quadratic

Regulator (LQR) were considered over the course of this work, but the

pole-placement controller was chosen because of its satisfactory perfor-

mance and its intuitive derivation. Furthermore, in the author’s special-

ization project [12], the simplest controller with disturbance feed forward

was considered to be the most effective strategy for heave compensated

tripping.
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5.1 Model simplification

The equation of motion that was derived in chapter 2 is expressed in Equa-

tion (2.54), and is restated here.[(
Jtot +mtγ

2

(
1− mt

mt +mc

))
s2 +

(
KvKt

Las+Ra

+Ba

)
s

]
θm =

Kt

Las+Ra

u− fhl(τhl) + τf,m(ωm)− fc(zwt, zc)

(5.1)

where the functions fhl and fc are expressed as

fhl(τhl) =

(
1− mt

mt +mc

)
τhl, (5.2)

fc(zwt, zc) =
mtγ

mt +mc

(kc + bcs)(zwt − zc). (5.3)

One may claim that the nonlinear friction torque τf,m(ωm), defined in Equa-

tion (2.27), can be neglected in the model that is used for control system

design. In order to validate this claim, consider Figure 5.1. In Figure 5.1a,

the friction torque has been plotted for increasing values of the motor ro-

tational velocity, ωm, where the system parameters in Table 4.1 has been

used. One may observe that the maximum friction torque that may occur

in the system is approximately 5.4 Newton meters. For comparison, in Fig-

ure 5.1b, the motor torque has been plotted for a scenario with constant

tripping velocity of 0.1 meter per second, and a constant hook load of 10

tons. Clearly, the friction torque exerted on the hoisting system is negligible

upon comparison with the torque that is necessary to accelerate the load to

a constant velocity. By this argument, the model is reduced by neglecting

the nonlinear friction term in the control system design.

Further, the influence of the crown mounted compensator will be neglected
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Figure 5.1: Friction curve and motor torque curve generated with data from Table
4.1.
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in the model used for control system design. As discussed in chapter 4,

the CMC does not work effectively when the drill bit is not in contact with

the bottom of the well. For this reason, the CMC should be locked during

tripping, and will therefore not be considered as part of the system model

in the derivations of the control strategy. In order to simplify the equations

of motion to not take the CMC movement into consideration, the position

of the water table is set equal to the position of the crown block, i.e. zwt =

zc.

With these simplifications, the resulting model that will be used for the

derivation of the control strategy is expressed as follows.[(
Jtot +mtγ

2

(
1− mt

mt +mc

))
s2 +

(
KvKt

Las+Ra

+Ba

)
s

]
θm =

Kt

Las+Ra

u−
(

1− mt

mt +mc

)
τhl

(5.4)

5.2 Control system design

In this section, the heave compensation control algorithm will be derived

which will be used in simulations with active hoisting. This analysis is

motivated by a pole-placement algorithm that is described by Fossen [18],

which derives a feedback control algorithm for a 2nd order system. The

derivation is done in the time domain, where the error dynamics of the

closed loop system is exploited. By formulating this error dynamics as

a standard 2nd order system, the relative damping factor, and the control

bandwidth may be chosen explicitly. For the sake of similarity, the equation

of motion will be transformed into the time domain. First, some notation
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will be introduced to make the derivation easier to follow.

α = Jtot +mtγ
2

(
1− mt

mt +mc

)
β = 1− mt

mt +mc

(5.5)

Applying this notation to Equation (5.4), and multiplying both sides by the

term Las+Ra yields[
Laαs

2 + (Raα + LaBa)s+KvKt +RaBa

]
θms =

Ktu− (Laβs+Raβ)τhl.
(5.6)

Laplace inverting this equation into the time domain yields a 2nd order equa-

tion,

Laαω̈m + (Raα + LaBa)ω̇m + (KvKt +RaBa)ωm =

Ktu− Laβτ̇hl −Raβτhl,
(5.7)

where the relationship θms = ωm has been used as the state of the model.

Recall that the objective of this controller is to regulate the motion of the

drill string. The drill string velocity is set by the velocity of the travelling

block. When assuming that the CMC is locked, the tripping velocity can

be observed by measuring the heave motion of the rig, and the rotational

velocity of the motor. In order to express the model in terms of the tripping

velocity, consider the following change of variable.

vt = γωm + vrig ⇐⇒ ωm =
vt − vrig

γ
(5.8)

This change of variable and some algebraic manipulation yields the follow-
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ing model

Laα

γKt

v̈t +
Raα + LaBa

γKt

v̇t +
KvKt +RaBa

γKt

vt =

u− Laβ

Kt

τ̇hl −
Raβ

Kt

τhl +
Laα

γKt

v̈rig +
Raα + LaBa

γKt

v̇rig +
KvKt +RaBa

γKt

vrig,

(5.9)

where the tripping velocity, vt, is considered the state of the model, and the

motor voltage u, the hook load torque τhl, and the heave velocity of the rig,

vrig, are considered the system inputs. Since the motor voltage is the only

input that can be adjusted by the controller, it will be denoted the control

input in the system. The other inputs acts as disturbances in the system.

The influence of the disturbance inputs may be minimized by measuring

their states, and cancelling them out in a feed forward loop. Clearly, such

a control strategy requires an estimate of these inputs. The details on the

acquisition of these inputs is described in chapter 6. Consider the control

input u to be composed by a feedback input as well as a feed forward input,

expressed as

u = ufb + uff . (5.10)

Observe that a feed forward input expressed as

uff =
Laβ

Kt

τ̇hl+
Raβ

Kt

τhl−
Laα

γKt

v̈rig−
Raα + LaBa

γKt

v̇rig−
KvKt +RaBa

γKt

vrig

(5.11)

will reduce Equation (5.9) to the following, by inserting the composed con-

trol input in Equation (5.10).

Laα

γKt

v̈t +
Raα + LaBa

γKt

v̇t +
KvKt +RaBa

γKt

vt = ufb (5.12)

Assuming that the tripping velocity is observable through measurements

or state estimators, a feedback control law can be constructed which will
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5.2 Control system design

regulate the tripping velocity to a reference velocity, vr.

Motivated by the pole-placement algorithm described by Fossen [18], the

error dynamics of the model can be controlled by a feedback controller

composed by a PD feedback law as well as a reference feed forward law.

Consider the feedback input, ufb, composed by the following.

ufb = −Kp(vr − vt)−Kd(v̇r − v̇t)︸ ︷︷ ︸
PD feedback

+
Laα

γKt

v̈r +
Raα + LaBa

γKt

v̇r +
KvKt +RaBa

γKt

vr︸ ︷︷ ︸
Reference feed forward

(5.13)

By inserting this feedback input into Equation (5.12), the dynamics of the

tripping velocity error, ṽt = vr − vt, can be described as follows.

Laα

γKt

¨̃vt +

(
Raα + LaBa

γKt

+Kd

)
˙̃vt +

(
KvKt +RaBa

γKt

+Kp

)
ṽt = 0.

(5.14)

Observe that the error dynamics described in this equation is on the standard

form of a 2nd order differential equation, stated as

ẍ+ 2ζωnẋ+ ω2
nx = 0, (5.15)

for a given state x. By matching the terms, the relative damping factor, ζ ,

and the natural frequency, ωn, of the error model can be expressed by the

following relationship.

2ζωn =
Raα + LaBa

Laα
+
γKt

Laα
Kd

ω2
n =

KvKt +RaBa

Laα
+
γKt

Laα
Kp

(5.16)
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The natural frequency ωn can be related to the system bandwidth by the

following definition, given in Fossen [18].

Definition 5.1. Control bandwidth

The control bandwidth of a system y = h(s)u with negative unity feedback

is defined as the frequency ωb at which the loop transfer function l(s) =

h(s) · 1 is

|l(jω)|ω=ωb =

√
2

2
(5.17)

From this definition, it can be shown that the control bandwidth for a given

2nd order system as described in Equation (5.15) with negative unity feed-

back is

ωb = ωn

√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + 2. (5.18)

By explicitly choosing the relative damping factor, and the control band-

width of the error dynamics, the controller gains can be calculated by sub-

stituting the natural frequency in the equation set (5.16). Solving the equa-

tions for the control gains,Kp andKd, yields the following expressions.

Kp =
Laαω

2
b

γKt(1− 2ζ2 +
√

4ζ4 − 4ζ2 + 2)
− KvKt +RaBa

γKt

(5.19)

Kd =
2Laαζωb

γKt

√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + 2

− Raα + LaBa

γKt

(5.20)

Because of the model inaccuracies and simplifications previously discussed,

the control strategy proposed so far will not be able to suppress the influ-

ence of ocean waves perfectly. As a matter of fact, these discrepancies may

cause the error dynamics to not converge to zero, resulting in a steady state

error. To cope with these uncertainties, the feedback control input can be

augmented with an integral term. With this augmentation, any steady state

error will be integrated over time, rendering the error dynamics to zero de-

spite of model inaccuracies. Fossen [18] suggests setting the integral gain
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5.2 Control system design

Ki, based on the natural frequency of the system, and the proportional gain

in the controller, according to

Ki =
ωn
10
Kp. (5.21)

The proposed control law can be summarized as follows.

u = −Kpṽt −Ki

∫ t

0

ṽt(τ)dτ −Kd
˙̃vt︸ ︷︷ ︸

PID feedback

+
Laα

γKt

v̈r +
Raα + LaBa

γKt

v̇r +
KvKt +RaBa

γKt

vr︸ ︷︷ ︸
Reference feed forward

+
Laβ

Kt

τ̇hl +
Raβ

Kt

τhl −
Laα

γKt

v̈rig −
Raα + LaBa

γKt

v̇rig −
KvKt +RaBa

γKt

vrig︸ ︷︷ ︸
Disturbance feed forward

(5.22)

The controller may be tuned to a satisfactory response time by setting the

relative damping coefficient ζ , and the system bandwidth ωb.

Further, as previously discussed, this control system can only be realized if

all the system inputs in the equation above can be observed and estimated.

This will be further discussed in the next chapter.
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Chapter 6

System inputs

The control strategy that was derived in the previous chapter can only be

realized if the necessary inputs are available through measurement or esti-

mation. The performance of the controller is highly related to the accuracy

and precision of these estimates. In this chapter, the acquisition of the nec-

essary system inputs will be discussed. In addition, based on theory from

the author’s specialization project [12], a wave model that was used in the

simulations will be presented, and a tripping velocity trajectory will be pro-

posed.

6.1 Measurements

6.1.1 Motion reference unit

The motion reference unit (MRU) is used for acceleration measurements as

well as attitude measurements on the rig. A motion reference unit contains

several instruments, but the most critical instruments are the accelerometer

and the angular rate sensor. The MRU is typically located close to the center
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6.1 Measurements

of gravity of the rig to simplify computations. Kongsbergs fifth generation

MRU [19] was recommended by Equinor, and will be considered in this

work. It gives high precision measurements of the three axis accelerations

of the rig. The accelerometer in the MRU will be used to estimate the

heave motion of the rig. According to Beard et al. [20], the output of an

accelerometer can be modelled as

ârig = krigarig + βrig + ηrig, (6.1)

where ârig is the accelerometer output, krig is a scaling gain, arig is the true

acceleration, βrig is a bias term, and ηrig is a zero mean Gaussian noise

term. According to Kongsberg, the noise component is expected to have a

standard deviation ηrig = 0.01 m/s2.

6.1.2 Load cell

The hook load measurement is one of the most important measurements for

drilling operations as it is used to estimate the weight on the drill bit. For

the purpose of heave compensated tripping however, the hook load mea-

surement must be obtained to fulfill the disturbance feed forward section of

the control law in Equation (5.22). Because of the importance of this mea-

surement, it has been subject to research for a long time. Cayeux et al. [7]

studied how friction forces in the sheaves may influence the hook load mea-

surement when a load cell is placed on the dead line anchor. The location of

the load cell plays a crucial role in the accuracy of the hook load estimate.

In Figure 6.1, a schematic of the drawwork hoisting system with the most

common load cell locations is displayed. The top drive sensor is located at

the connection point between the top drive and the travelling block. This

location of the load cell removes the necessity of a precise model of the

hoisting system to correct the measurement. On the other hand, it is a more
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6.1 Measurements

Figure 6.1: Drawwork schematic where common load cell locations for hook load
measurements are indicated.

difficult location to access with communication cables. Further, two other

common locations for the load cell are at the crown block and at the dead

line anchor. Cayeux et al. [21] did experiments on how the hoisting direc-

tion influenced the precision of the hook load measurements. The standard

deviation of the hook load measurements for upward movement was 300

kg, and 250 kg for downward movement of the travelling block. In addi-

tion, by analyzing data from a platform in the North Sea, they discovered

that the elasticity of the drill line is the cause of hook load oscillations with

an amplitude of 4000 kg with a period in range of one second. A low pass

filter was recommended to reduce these oscillations. The data was acquired

with a sampling rate of 4 Hz, which will also be used in the simulations in

this work.

In order to simplify computations in the simulations, the assumption was

made that the load cell is located at the top of the top drive. Under this
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6.2 Heave velocity estimation

assumption, the output of the load cell was modelled as follows.

F̂hl = khlFhl + ηhl (6.2)

Here, F̂hl is the measured hook load from the load cell, khl is a scaling

gain, Fhl is the true hook load, and ηhl is a zero mean Gaussian noise term.

Based on the results of Cayeux et al. [21], the noise term was modelled

with a standard deviation ηhl = 3 kN.

6.1.3 Encoder

The angular velocity of the motor must be obtained in order to estimate

the tripping velocity of the drill string. This signal may be acquired by

mounting an encoder to the rotor of the motor, or to the axle of the wire

drum. Similar to the other measurements, the angular velocity of the motor

was modelled as follows.

ω̂m = kmωm + ηm (6.3)

Here, ω̂m is the measured angular velocity from the encoder, km is a scaling

gain, ωm is the true angular velocity of the motor, and ηm is a zero mean

Gaussian noise term.

6.2 Heave velocity estimation

It is necessary to estimate the heave velocity of the rig in order to control

the velocity of the drill string. As expressed in the control law in Equation

(5.22), the heave velocity is essential for both the PID feedback loop, and

the disturbance feed forward loop in the controller. The heave velocity is
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6.2 Heave velocity estimation

not observable from the acceleration measurement because of the unknown

initial value. Furthermore, as described in the previous section, the acceler-

ation measurement is contaminated with noise. Even if the initial velocity

was known, an integration of the noise contaminated acceleration measure-

ment would result in unacceptable drift. To illustrate this, consider Figure

6.2. To simplify the illustration, the rig was assumed to be moving with

a sinusoidal motion with a period of 20 seconds. This may be expressed

as

zrig(t) = sin(
π

10
t), (6.4)

which may be used to calculate the rigs respective heave velocity and accel-

eration. In the figure, this heave velocity is compared with a pure integra-

tion of the heave acceleration, where measurement noise has been added.

As one may observe, the discrepancy in the initial value causes an initial

error that persists. Furthermore, the integrated heave velocity drifts as time

progresses, rendering the estimate useless for the control system. However,

the fact that the heave acceleration and velocity originates from wave mo-

tion implies a zero mean value. This fact may be exploited in a heave filter

where the drift can be eliminated.
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Figure 6.2: Heave velocity calculated from Equation (6.4) together with estimated
heave velocity obtained through pure integration of noise contaminated heave ac-
celeration.

6.2.1 Heave filter

The heave filter that was used to estimate the heave motion of the rig was

first introduced by Godhavn [22], and has the objective to fulfill the follow-

ing requirements.

• Integration of the input.

• Eliminating the bias βrig in Equation (6.1).

• Minimize the influence of measurement noise ηrig.

• Neglectable filter-induced estimation errors.

• Low settling time.

A straight forward way of filtering out the slow varying bias is to apply a

high-pass filter with an integrator to the measured acceleration in Equation
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6.2 Heave velocity estimation

(6.1). The proposed filter has the following form.

Hhf (s) =
v̂rig
ârig

(s) =
s

s2 + 2ζωcs+ ω2
c

(6.5)

Here, s is the Laplace variable, ζ is the relative damping coefficient, and

ωc is the cutoff frequency of the filter. The relative damping coefficient

was set to ζ = 1√
2
, to obtain critical damping. Consider Figure 6.3, where

the bode plot of the transfer function of the pure integrator and the heave

filter with two different cutoff frequencies are displayed. For the filter, the
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Figure 6.3: Bode plot of the transfer function of a pure integrator and the heave
filter with two different cutoff frequencies.
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optimal phase for integration of −90o is not obtained before well after the

cutoff frequency. This means that the low frequencies will induce a phase

error that will result in major estimation discrepancies. For this reason, it

would be beneficial to reduce the cutoff frequency, as indicated by the red

curve. However, decreasing the value of the cutoff frequency will increase

the settling time of the filter, and reduce the filter’s ability to suppress noise.

Thus, an optimal cutoff frequency should be obtained by formulating this

problem as an optimization problem. As done by Richter et al. [23], an

expression of the estimation error may be formulated as a cost function.

By solving this optimization problem analytically, an adaptive law for the

optimal cutoff frequency can be expressed as

ωc,opt =
1

23/2

(
2η2rigω

2
p

A2
p

)1/5

. (6.6)

Here, η2rig is the variance of the heave acceleration measurement noise, ωp
is the dominant frequency of the waves, and Ap is the mean wave height.

Godhavn [22] suggests obtaining the dominant frequency by applying a

real-time fast Fourier transform to the measured acceleration. Let a∗rig(jω)

be the Fourier transform of the measured ârig. Then, the Fourier transform

of the heave velocity may be obtained as follows.

v∗rig(jω) =
1

jω
a∗rig(jω) (6.7)

Thus, the dominant frequency may be calculated as the argument that max-

imizes the magnitude of the Fourier transform of the heave velocity.

ωp = argmax
ω
|v∗rig(jω)| (6.8)

Further, Richter et al. [23] suggests the mean wave height to be approxi-
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mated by using N buffered acceleration measurements.

Ap =

√√√√ 2

N

N∑
j=0

a2j
ω4
p

, (6.9)

Here, aj is the jth acceleration measurement in ârig.

By applying this filter to the measured heave acceleration, the estimated

heave velocity tracks the true heave velocity without drifting as with pure

integration. This is illustrated in Figure 6.4a, and the respective measure-

ment errors can be viewed in Figure 6.4b. As one may observe in the figure,

the filtered velocity estimate starts off with incorrect initial value. This is

easiest to observe in the error plot in Figure 6.4b. Within the time of one

wave period, the error has settled at an average less than 0.1 m/s. The pure

integrator on the other hand, starts drifting as previously discussed. This

plot shows how the heave filter can be used to eliminating the drift as well

as settling within a reasonable time even when the initial condition is un-

known.
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(a) Heave velocities.
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Figure 6.4: Estimated heave velocity generated by the heave filter, and by pure
integration compared with the true heave velocity calculated from Equation (6.4).
The respective heave velocities are displayed in Figure (a), and the errors of the
respective estimates are displayed in Figure (b).
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6.3 Wave model

To simulate realistic heave motion, a realistic model of the waves is neces-

sary. Such models are typically characterized by a spectrum of wave fre-

quencies with corresponding wave amplitudes. The doubly peaked Thorsethau-

gen spectrum [24] was developed specifically for the waves in the North Sea

by curve fitting experimental data. The spectrum includes both the effect of

newly developed waves (high-frequency waves) and swell (low-frequency

waves), and is standardized under the Norsok Standard [25]. The spectrum

density function S(ω) is plotted in Figure 6.5 with a set of peak frequen-

cies. The Norsok Standard defines the significant wave height as four times

the standard deviations of the surface elevation. In this figure, the signifi-

cant wave height was set to Hs = 6 m. As one may observe in the figure, if

the peak frequency ω0 is chosen less than approximately 0.6 rad/s, the two

peaks merge to one peak, becoming a spectrum where the swell dominates.

The amplitude of the waves follow the relationship

Ak =
√

2S(ωk)∆ω (6.10)

where ∆ω is a constant difference between the frequencies. The amplitude

function in Equation (6.10) was further used to compute wave-induced re-

sponses in the time domain in the simulations. However, as described by

Faltinsen [26], the actual heave motion of the rig depends on the response

amplitude operator (RAO) spectrum. The responding motion of the rig is

dependent on the frequency of the incoming waves, which is illustrated in

Figure 6.6 where the rig response spectrum R(ω) is given by

R(ω) = S(ω)RAO(ω)2. (6.11)

The RAO spectrum that was used in this work was based on values from

the Aker H6e semi-submersible for ultra deep water and harsh environ-
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Figure 6.5: Thorsethaugen spectrum with a set of peak frequencies, Hs = 6 m.

ment. The responding heave amplitude of the rig is greatest for incoming

waves with a period range of 10-15 seconds. In the simulator, the frequency

range is divided up in an equidistant grid of N frequencies where the wave

frequency vector ω = [ω1, ω2, ...ωN ] was used in superposition to get the

heave motion zrig of the rig. The vertical position of the rig can be calcu-

lated as

zrig(t) =
N∑
k=1

√
2R(ωk)∆ω sin (ωkt+ φk) , (6.12)

where φk was generated randomly from a uniform distribution on the inter-

val [0, 2π] in the simulator.
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Figure 6.6: Thorsethaugen spectrum and RAO with Hs = 6 m and ω0 =
2π
12 rad/s.

6.4 Tripping reference

In order to accomplish a smooth acceleration of the drill string, a calculation

of an appropriate tripping velocity trajectory is necessary. Consider the fol-

lowing sigmoid function as a candidate for this reference trajectory,

vr(t) =


v̂r

1+ek(t0−t)
, if t1 > t > t0

v̂r, if t2 > t > t1

v̂r
1+e−k(t0−t)

, if t3 > t > t2

(6.13)

where v̂r is the peak tripping velocity. The reference trajectory is displayed

in Figure 6.7, where the different time indices in Equation (6.13) are indi-

cated. This reference trajectory was considered due to the smoothness of

the sigmoid function, both in the beginning of the acceleration and when

the velocity approaches v̂r. It is also a simple function to implement in soft-

ware, and it has a deterministic acceleration, adjustable by the coefficient
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Figure 6.7: Tripping velocity reference, vr(t).

k. Other tripping references were tried out, e.g. reference trajectories gen-

erated by a reference model based on the hoisting system model in chapter

2. The simoid function was favorable because of the simple acceleration

adjustment. The necessary tripping acceleration and jerk was calculated by

taking the respective time derivatives of the tripping velocity reference in

Equation (6.13). In addition, the algorithm that was generating the tripping

reference was implemented such that the total tripping distance was equal

to the length of one stand. This was formulated as an equality constraint

where the integrated tripping velocity had to be equal to the length of a

stand, denoted Lds. Mathematically, this can be expressed as∫ t3

t0

vr(t)dt = Lds. (6.14)

With the system inputs discussed in this chapter, the system will be simu-

lated with several tripping scenarios in the next chapters.
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Chapter 7

Simulations

In this chapter, a simulation of a tripping operation with the active heave

compensation system will be presented, as well as a simulation utilizing the

conventional tripping method will be covered. The simulations carried out

in this chapter will be the foundation for the discussions given in chapter

8.

7.1 System overview

Before the simulations are presented, a block diagram overview of the sys-

tem can be viewed in Figure 7.1. The blocks in the control strategy part

of the figure were covered in chapters 5 and 6, whereas the blocks in the

physical part were covered in chapters 2 and 3. In addition, an overview of

the system variables is given in Table 7.1.
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Figure
7.1:

B
lock

diagram
ofthe

controlstrategy
and

the
physicalsystem

.
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7.2 Simulations

vt Tripping velocity
v̂t Estimated tripping velocity
vr Tripping velocity reference
zrig Rig heave position
vrig Rig heave velocity
v̂rig Estimated rig heave velocity
arig Rig heave acceleration
ârig Estimated rig heave acceleration
zbit Position of drill bit
vbit Velocity of drill bit
Pm Motor power consumption
ωm Motor angular velocity
ia Motor amperage
u Control input, motor voltage
pbh Pressure bottom hole
Fhl Hook load

Table 7.1: System variables table.

7.2 Simulations

In the forthcoming simulations, an upward tripping operation of a 30 meter

long drill string stand was performed. The tripping velocity was set ac-

cording to the validation data set in chapter 4, i.e. 1 meter per second. The

significant wave height was set to 6 meters, where the same set of waves

was used in each simulation. A list of the main simulation parameters is

given in Table 7.2. At the start of each simulation, the states got 2 seconds

to settle before the recording started, as part of an equilibrate regime. Af-

ter numerous test simulations, the tripping acceleration was limited to 0.25

m/s2, as it resulted in a non-oscillatory hook load. Simulations with too ag-

gressive tripping acceleration resulted in pressure waves propagating in the

steel of the drill string, rendering the hook load measurements too jittery

for use in the controller. Furthermore, a high tripping acceleration resulted

in an amplification of the pressure oscillations down hole. A more compre-
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hensive analysis of the tripping acceleration is given in chapter 8.

∆t 0.01 s Simulator time step
fm 10 Hz Update frequency in encoder
fmru 10 Hz Update frequency in MRU
fhl 4 Hz Update frequency in load cell
fc 10 Hz Update frequency in controller
ωb 8 rad/s Controller band width
ζ 1 Controller relative damping coefficient
ηm 0.01 rad/s Standard deviation encoder
ηrig 0.01 m/s2 Standard deviation MRU
ηhl 3 kN Standard deviation load cell
Hs 6 m Significant wave height
T0 12 s Peak wave period
˙̂vr 0.25 m/s2 Peak tripping acceleration reference
P̂m 2600 kW Power rating on the drawwork motor

Table 7.2: Simulation parameter table.

Two simulations will be presented in this section. The heave compensation

system derived in this work was used for active hoisting in the first simula-

tion. The control law derived in chapter 5 was tuned such that the response

of the drill string was sufficiently fast, but not oscillatory. Setting the con-

troller gains too high resulted in drill string oscillations. In addition, the

measurement noise started influencing the performance of the controller.

Furthermore, an anti windup strategy was implemented to better handle sit-

uations with saturated control input. In the second simulation, the control

system was not correcting for wave-induced heave motion of the rig. The

control input was set directly based on the tripping reference, without any

motion control.
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7.2.1 Active hoisting simulation

In this simulation, the active heave compensation system was utilized in the

tripping operation. The simulation results are presented in Figure 7.2 and

7.3. The tripping velocity reference can be viewed in Figure 7.2a together

with the true and estimated velocity of the drill string. One may observe

that the velocity of the drill string was slightly negative for t = 0 s. This

is due to the weight of the drill string accelerating it in the negative heave

direction during the equilibrate phase. As the drill string was accelerated

towards the peak tripping velocity, it was very accurate with respect to the

reference. During the constant tripping velocity phase of the plot, i.e. for

t = 15 seconds through t = 35 seconds, the majority of the wave-induced

heave motion was compensated for by the control system. However, one

may observe that the drill string response was a bit slow as it converged

to the peak velocity. Higher control gains were also simulated, but yielded

a less stable response. The heave motion of the rig is displayed in Figure

7.2b and 7.2c.

In Figure 7.2c, the performance of the heave filter may be observed while

it was estimating the heave velocity of the rig. The slight overshoot by

the filter from t = 30 seconds to t = 35 seconds caused the controller to

overshoot slightly, as displayed in Figure 7.2a. However, this overshoot

did not induce any major pressure oscillations in the well. One may notice

that the estimated heave velocity is slightly lagging the true velocity of the

rig. This is caused by the finite update frequency of the accelerometer, and

the time consumption in the filter computations. However, this time lag

is sufficiently short in comparison to the period of the waves, so no major

performance issues were caused by this.

Further, in Figure 7.3a, the power consumption of the drawwork motor

is displayed. It is clear that some of the measurement noise was propa-
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gating through the controller, resulting in some jitter on the control input.

However, these high frequency oscillations were damped out through the

dynamics of the motor, leaving the performance of the control system un-

affected. One may also notice that the power consumption peaked at ap-

proximately 1500 kilowatts, occurring as the rig descended rapidly. This is

approximately 60 % of the total capacity of the drawwork motor.

Moving along to Figure 7.3b, the pressure down in the well hole is plotted

relative to the static pressure. As the drill string was accelerated out of the

well, the resulting decompression reduced the pressure around the drill bit.

This resulted in a pressure drop, as displayed in the figure. After the hoist-

ing system had accelerated the drill string, one may observe some pressure

oscillations with initial amplitude of approximately 0.45 bar. These oscil-

lations were damped out over time. The frequency of these oscillations

does not match the frequency of the waves, because they represent pres-

sure waves that were propagating in the mud down hole. When a drill

string is accelerated, the decompression down hole induces pressure waves

that propagate in the fluid below the drill bit. These pressure waves are

reflected in the bottom of the well, resulting in these periodic oscillatory

pressure waves seen in the figure.

In Figure 7.3c, one may observe the total vertical depth of the drill bit.

Notice that the drill bit was elevated approximately 30 meters during the

simulation, which is the length of one drill string stand. Lastly, in Figure

7.3d, the measured hook load is displayed. As the drill string was simulated

with elastic properties, hook load oscillations may occur if the movement of

the drill string approaches its natural frequency. This did not happen in this

simulation, since the impact of the periodical wave motion was minimized

by the heave compensation system.

82



7.2 Simulations

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.2

0.4

0.6

0.8

1

V
e

lo
c
it
y
 [

m
/s

]

(a) True, estimate and reference tripping velocity of the drill string.
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(b) Heave position of the rig.
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(c) True and estimated heave velocity of the rig.

Figure 7.2: Active hoisting simulation with Hs = 6 m and v̂r = 1.0 m/s. Part 1/2.
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(a) Power consumption of the drawwork motor.
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(b) Pressure in the bottom of the well relative to the static pressure.
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(c) Depth of the drill bit.
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(d) True and estimated hook load.

Figure 7.3: Active hoisting simulation with Hs = 6 m and v̂r = 1.0 m/s. Part 2/2.
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7.2.2 Constant hoisting simulation

In this simulation, the motor voltage control input was tracking the trip-

ping velocity reference, without any heave compensation control. I.e., the

tripping velocity was controlled relative to the heave velocity of the rig. In

order to make the comparison clear, the same tripping velocity reference

and the same set of waves were used in this simulation as with the active

hoisting.

The results from the simulation are displayed in Figure 7.4 and 7.5. As

one may observe in Figure 7.4a, the velocity of the drill string was sig-

nificantly influenced by the wave-induced heave motion. As the reference

tripping velocity approached 1 meter per second, the drill string velocity

overshot the reference by 40 %. While the tripping reference was constant,

the velocity of the drill string oscillated with the waves. This oscillation

continued throughout the simulation, as there was no active heave compen-

sation controller counteracting the heave motion of the rig. Figure 7.4b and

7.4c display the heave motion of the rig, which is equivalent to the previous

simulation.

Further, in Figure 7.5a, the power consumed by the drawwork motor is

displayed. As opposed to the previous simulation, the power draw was a lot

smoother with constant hoisting, as no noise contaminated measurements

were influencing the motor voltage. Furthermore, the power required for

constant hoisting was very similar to the previous simulation with active

hoisting.

The pressure down hole is shown in Figure 7.5b. The pressure dropped as

expected when the drill string started accelerating out of the hole. The same

type of pressure oscillations occurred when the reference became constant.

However, by inspection, one may observe that these pressure oscillations

had a greater amplitude compared to the previous simulation. To be spe-
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cific, the pressure oscillated with an amplitude of 1.8 bar, opposed to the

0.45 bar observed in the active hoisting simulation. This difference is inter-

esting, and will be further discussed in the next chapter.

The depth of the drill bit is displayed in Figure 7.5c, where one may notice

some minor oscillations as the bit was moving towards the surface. Lastly,

the hook load displayed in Figure 7.5d was also affected by the heave mo-

tion of the rig. However, the frequency of the waves was not close enough to

its natural frequency for any major amplification of the oscillations.
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(a) True and reference tripping velocity of the drill string.
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(b) Heave position of the rig.
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(c) Heave velocity of the rig.

Figure 7.4: Constant hoisting simulation with Hs = 6 m and v̂r = 1.0 m/s. Part
1/2.
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(a) Power consumption of the drawwork motor.
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(b) Pressure in the bottom of the well relative to the static pressure.
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(c) Depth of the drill bit.
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(d) Hook load.

Figure 7.5: Constant hoisting simulation with Hs = 6 m and v̂r = 1.0 m/s. Part
2/2.
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Chapter 8

Discussion

In this chapter, a discussion on the performance of the active heave compen-

sation system will be presented. The pressure oscillations down hole will

be the primary topic of the following discussions. In addition, a discussion

will be given on how different wave heights, and tripping configurations

alters the performance of the active hoisting system.

8.1 Heave compensated position control

As discussed in the introduction of this thesis, there are multiple heave

compensation techniques that are used for constant positioning of the drill

bit, when there is no tripping involved. In order to compare the heave com-

pensation ability of the active hoisting system to other methods, a small

analysis on the performance of the hoisting system is given, where the ve-

locity reference was set to zero. Motivated by the work of Strecker et al. [5],

the following measure for oscillations down hole is proposed. For a given

significant wave height, let χ be the probability for the pressure down hole

pbh to exceed rms(pbh) by a factor of γ or more. Mathematically, this may
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8.1 Heave compensated position control

be expressed as

χ(γ) = prob (|pbh| > γ · rms(pbh)) . (8.1)

Here, the rms() function is the root mean square of the time series, ex-

pressed as follows for a general time series defined by f(t).

rms(f(t)) =

√
1

T2 − T1

∫ T2

T1

f(t)2dt (8.2)

In Figure 8.1, the probability χ is plotted as a function of γ for three dif-

ferent significant wave heights. For the simulation with significant wave

height of 6 meters, the majority of the oscillation peaks have a lower value

than the calculated rms. However, the pressure oscillations in the simula-

tions with higher waves exceed their respective rms values more than 20 %

of the time. The simulation results show a slight improvement on the oscil-

lation damping abilities of the active hosting system upon comparison with

other control strategies discussed by Strecker et al. [5]. For a numerical

summary of the data used in the figure, one may draw attention to Table

8.1.
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Figure 8.1: Plot of pressure oscillation amplitudes versus rms for different signif-
icant wave heights.
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Hs = 6 m Hs = 10 m Hs = 14 m
prob(|pbh| > 1·rms(pbh)) 16.18 % 22.32 % 26.81 %
prob(|pbh| > 1.5·rms(pbh)) 0.00 % 2.17 % 8.48 %
prob(|pbh| > 2·rms(pbh)) 0.00 % 0.00 % 1.11 %

Table 8.1: Table of pressure oscillation amplitudes versus rms for different signif-
icant wave heights.

8.2 Heave compensated tripping

In this section, simulations with active tripping will be compared to trip-

ping with constant velocity for a set of system configurations. According

to Vikebø et al. [27], the maximum significant wave height in the north

sea ranges from 6 meters to 14 meters. Hence, this was the range of sig-

nificant wave heights that was simulated. In order to make the comparison

between the different simulations clear, the same set of waves generated

with a specific significant wave height were used in each simulation with

that respective sea state.

8.2.1 Pressure drop down hole

As mentioned in the previous chapter, there will always be a pressure drop

down hole due to the decompression that occurs when the drill string is

moving out of the well. Furthermore, this pressure drop increases for

greater tripping velocities, as displayed in Figure 8.2. Here, one may ob-

serve the pressure down hole during tripping with three different tripping

velocities, where the wave height was set to zero. This pressure drop is

inevitable unless drilling mud is injected into the well as the drill string is

hoisted out, equilibrating the decompression. Since this can be done with

standard drilling equipment such as the mud pump, the performance of the

control system will be gauged based on the pressure oscillations down hole
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Figure 8.2: Pressure in the bottom of the well relative to the static pressure dur-
ing tripping with a set of velocities. The wave height was set to zero in these
simulations.

that follows after the decompression.

8.2.2 Pressure oscillations down hole

Next, the performance of the active hoisting system will be discussed for

a range of tripping velocities, accelerations, and significant wave heights.

As discussed in the previous section, the performance of the control sys-

tem will be gauged based on the oscillations down hole. Specifically, two

performance measures will be presented in this work in order to compare

the performance of the active hoisting system to the conventional tripping

method. The first performance measure will give an indication on the mag-

nitude of the pressure oscillations, whereas the second performance mea-

sure will give an indication on the persistence of these oscillations. Both

the magnitude and the persistence of the pressure oscillations may cause

fatigue to the structural integrity of the well. Furthermore, utilizing both

methods will give a richer image of how the performance of the heave com-

pensation system is altered by the different sea states and tripping trajecto-

ries.
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8.2 Heave compensated tripping

Pressure oscillation magnitude

First, the performance measure that encapsulate the magnitude of the pres-

sure oscillations will be discussed. Let ∆pbh be the pressure difference

between the maximum pressure and the minimum pressure that occurred

down hole during a tripping operation. Mathematically, this delta pressure

is expressed as follows,

∆pbh = max
t∈[t1,t2]

pbh(t)− min
t∈[t1,t2]

pbh(t), (8.3)

where pbh(t) is the pressure down hole as a function of time. Note that the

delta pressure will be calculated based on the pressure time series where

the tripping reference is constant, i.e. from t = t1 through t = t2, as

displayed in Figure 6.7. Thus, the pressure drop previously mentioned will

not influence the calculations.

As one may expect, the oscillations down hole were amplified for increas-

ing wave heights when constant hoisting was simulated. In Figure 8.3, the

resulting delta pressure from several simulations is displayed. Each simu-

lation was set up with a specific significant wave height, and tripping ve-

locity. In addition, each setup was simulated with both active hoisting, and

constant hoisting. Consider Figure 8.3b, where the tripping velocity was

set to 1 meter per second, like the simulations previously discussed in this

chapter. Yet again, it is clear that tripping with constant hoisting induces

a greater delta pressure compared to tripping with active heave compen-

sation. Indeed, this is the case for all the simulated wave heights in this

figure. Since the wave height is a stochastic variable, the delta pressure is

not strictly increasing as a function of the significant wave height. However,

there is a trend of increasing delta pressure for increasing significant wave

height. In the active hoisting simulations, the delta pressure did not increase

in the same rate as with constant hoisting. Up until significant wave height
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of 10 meters, the delta pressure was generally lower than 1 bar. The main

reason for the steady increase in delta pressure in the simulations with ac-

tive hoisting, is the system’s inertia. The heave velocity of the rig increases

proportionally to the height of the waves. Hence, larger waves demand a

faster response of the heave compensation system in order to isolate the

drill string from these motions. However, since the measurements are up-

dated at a finite frequency, and the inertia in the hoisting system require

time to accelerate, the delta pressure increase slightly for increasing wave

heights. In the simulation with the significant wave height of 14 meters, the

constrains of the drawwork system came to display, as the necessary lifting

power exceeded the capabilities of the drawwork motor. This resulted in a

small heave motion of the drill string, which increased the delta pressure to

approximately 2 bar.

Next, consider Figure 8.3c, where simulations with a tripping velocity of

1.5 meters per second is displayed. Similarly to the previous plot, the con-

stant hoisting induced greater pressure oscillations down hole than the ac-

tive hoisting. As the wave height escalated, a more dramatic consequence

of the saturated motor came to display when utilizing the active heave con-

trol system. In the simulation with significant wave height of 14 meters, the

delta pressure reached 5.7 bar. Once again, it is clear that the capacity of

the drawwork is limited. However, the capabilities of the drawwork motor

will be designed for the conditions where the specific rig is located.

Further, in Figure 8.3a, the delta pressure is plotted for a tripping veloc-

ity of 0.5 meter per second. The constant hoisting simulations differ from

the other simulations discussed so far. As one may notice, the delta pres-

sure increased rapidly as the significant wave height escalated, resulting in

a delta pressure of approximately 20 bar with the greatest waves. At first,

this might seem counter-intuitive. However, the downside of tripping at

such low velocities is the fact that the drill string will regularly become sta-
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tionary. When the rig moves downwards with a wave, the heave velocity

of the rig may match this movement, or even surpass the tripping velocity

of the drill string. This results in a stationary drill string with respect to the

sea bed, stopping the flow of the drilling fluid below the drill bit. Since the

mud in the simulator was configured based on a non-Newtonian mud with

the Herschel-Bulkley rheological model, the delta pressure necessary to get

the mud flowing is quite significant in comparison with the previously dis-

cussed pressure oscillations. Hence, these simulations encourage a tripping

velocity that exceeds the maximum expected heave velocity when constant

tripping is used.

The delta pressures that were used in the figures are shown in Table 8.2. The

simulations with tripping velocity of 1 meter per second show an average

reduced delta pressure by a factor of approximately six, when comparing

the active to the constant hoisting.
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Figure 8.3: Delta pressure down hole with active and constant hoisting, simulated
with a range of tripping velocities and significant wave heights.
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v̂r Hs ∆pbh, Active hoisting ∆pbh, Constant hoisting
0.5 0 0.65 bar 1.10 bar
0.5 6 0.76 bar 2.89 bar
0.5 8 0.90 bar 5.17 bar
0.5 10 1.37 bar 6.33 bar
0.5 12 1.17 bar 12.0 bar
0.5 14 1.25 bar 19.7 bar

1.0 0 0.78 bar 2.06 bar
1.0 6 0.79 bar 3.60 bar
1.0 8 0.99 bar 4.75 bar
1.0 10 1.47 bar 4.99 bar
1.0 12 1.21 bar 5.40 bar
1.0 14 2.08 bar 9.56 bar

1.5 0 0.67 bar 2.32 bar
1.5 6 0.95 bar 3.74 bar
1.5 8 1.66 bar 5.13 bar
1.5 10 1.99 bar 5.30 bar
1.5 12 2.89 bar 7.01 bar
1.5 14 5.71 bar 12.1 bar

Table 8.2: Table of delta pressure down hole with active and constant hoisting,
simulated with a range of tripping velocities and significant wave heights.

Next, the delta pressure performance measure will be used to analyse the

performance when altering the tripping acceleration. Consider Figure 8.4,

where the resulting delta pressures from active hoisting simulations with

several tripping accelerations are displayed. Each simulation in this figure

was configured with a significant wave height of 6 meters, and a tripping

velocity of 1 meter per second. As previously discussed, the delta pressure

is caused by viscous drag induced by motion of the drill string. According

to Munson et al. [28], viscous drag is assumed to be linearly proportional

to the velocity of the fluid for low velocities. Hence, one may assume that

the viscous drag is quadratic proportional to drill string acceleration. Based
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on this assumption, the delta pressures from the simulations were used to

curve fit a 2nd order polynomial by regression. As the curve suggests, the

benefit of reducing the tripping acceleration further from the 0.25 m/s2 used

in the simulations previously discussed is minimal. Furthermore, in a prac-

tical setting where the well might be containing long horizontal sections,

the acceleration of the drill bit can not be controlled with such precision

due to the increased friction force. Hence, the simulations show that a trip-

ping acceleration of 0.25 m/s2 is sufficiently close to an optimal tripping

trajectory.
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Simulations

Figure 8.4: Delta pressure down hole as a function of tripping reference accelera-
tion, simulated with Hs = 6 m, and v̂r = 1.0 m/s.

Pressure oscillation persistence

Additionally to the delta pressure, a second performance measure was used

to validate the active hoisting system. This measure encapsulates the pres-

sure oscillations caused by wave-induced heave motion of the rig, accumu-

lated over time. Let p̃bh(t) be the simulated pressure down hole for a given

tripping velocity, where no waves were influencing the movement of the

rig. If one compare such a simulation to a simulation with wave-induced
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pressure oscillations, one may discover that the pressure oscillations persist

when adding a sea state. An example of this is displayed in Figure 8.5,

where the pressure down hole is plotted with and without waves for a con-

trolled tripping operation of 1 meter per second. Notice that the pressure

oscillations for p̃bh(t) got damped out over the course of the simulation,

whereas the pressure oscillations persisted throughout the simulation when

waves were influencing the rig. However, the difference in delta pressures

is negligible. Therefore, a second performance measure is necessary to

capture these persistent oscillations.

Let υ be the root mean square of the difference between the pressure time

series simulated with a given sea state, and the case with no waves.

υ = rms(pbh(t)− p̃bh(t)) (8.4)

Thus, the greater the persistent oscillations are, the greater will the value

of the performance measure be. In Figure 8.6, the same set of simulations

as the first performance measure is displayed for υ. Similarly to the ob-

served delta pressure previously discussed, the persistence of the pressure

oscillations increases for greater wave heights. As expected, the controlled

tripping operations yielded less pressure oscillations than the tripping op-

erations utilizing the conventional method. However, there was a notable

difference in pressure oscillations between the controlled tripping with ve-

locity of 1 meter per second and 1.5 meter per second. It is clear that the

saturation of the hoisting system not only induced higher pressure peaks,

but also induced oscillations that persist over time. Further, the constant

hoisting simulations confirm the previously discussed discovery that the

pressure oscillations related to the low tripping velocity of 0.5 meter per

second cause worse condition down hole.
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Figure 8.5: Pressure down hole with and without waves. pbh was simulated with
significant wave height of 8 meters. Both simulated with a tripping velocity of 1
meter per second.
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Figure 8.6: Root mean square of the difference in down hole pressure with and
without waves for a set of tripping velocities and significant wave heights.
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Chapter 9

Conclusion

Several simulations were carried out in this work, combining a variety of

sea states and tripping reference trajectories. Based on simulations of the

models derived in this study, the wave-induced pressure oscillations that oc-

cur down hole during tripping, may be reduced by a factor of about six if an

active heave compensation system is utilized. This may be accomplished if

a control system is designed to combine the standard mud injection meth-

ods with active hoisting, yielding pressure wave amplitudes down to 0.4

bar. Furthermore, the pressure oscillations are highly correlated to both the

tripping velocity and acceleration. Slow tripping where the drill string may

become stationary due to the relative velocity of the waves may amplify

pressure waves when non-Newtonian fluids are involved. Moreover, trip-

ping too fast induces greater pressure wave amplitudes down hole due to

the increased flow rate. This study shows that an optimal tripping trajec-

tory with correct velocity and acceleration will indeed reduce the amplitude

of pressure wave oscillations down hole.

Simulations also revealed the importance of a sufficiently powerful hoist-

ing system that is capable of following the wave-induced heave motion of
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the rig during rough sea states. Saturating the system may result in rapid

accelerations of the drill string, inducing pressure waves both down hole,

as well as in the structure of the drill string.

The results in this study are based on simulations of models that represent

simplified dynamics. Even though the simulations show aspects that are

important in order to minimize pressure variations in a well, the methods

should be examined further in practice to validate the results.
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Chapter 10

Suggestions for future work

The scope of this work has been to address an active hoisting system strat-

egy to minimize pressure oscillations in a well. This thesis contains several

simulations with different tripping trajectories to be applied to the active

hoisting system. However, the reference was found by manual trial and er-

ror. An optimization strategy could be developed in future work where an

optimal tripping reference was calculated, minimizing the pressure oscilla-

tions for a given sea state. In addition, future work could develop a control

strategy combining a managed pressure drilling strategy, e.g. the strategy

derived by Strecker et al. [5], together with the active hoisting control de-

sign derived in this work.
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Appendix A

Sheave velocity ratio

In this appendix, the ratio between the rotational velocity of the first sheave

and the ith sheave in the block and tackle will be derived. The sheaves

rotate with different velocity relative to each other, so in order to find a

generalization of this ratio, one may consider an example setup.

Let there be nl = 6 working lines in a block and tackle configuration,

as illustrated in Figure A.1. Notice that there are nl + 1 = 7 sheaves

in the system, indexed from left to right with odd numbers on the crown

block, and even numbers on the travelling block. Further, notice that the

last sheave, i = 7 is stationary as the drill line on the right side is mounted

to the anchor. Next, consider the last sheave at the travelling block, indexed

i = 6. Since the previous sheave was stationary, the rotational velocity of

this sheave is only depending on the translational velocity of the travelling

block. Hence, the rotational velocity becomes ω6 = − vt
rs

, where rs is the

radius of the sheave. The next sheave on the crown block is now rotating

at the same rate as the previous sheave on the travelling block, but in the

opposite direction. The same argumentation is valid for the next set of

sheaves, but the velocity of the previous sheave must be added. One may
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Figure A.1: Block and tackle system with a 6 working line configuration.

observe that for the specific configuration of nl = 6, the angular velocities

may be calculated as

ω1 = 3
vt
rs
, ω2 = −3

vt
rs

ω3 = 2
vt
rs
, ω4 = −2

vt
rs

(A.1)

ω5 =
vt
rs
, ω6 = −vt

rs

ω7 = 0,

Now, by observing that ω1 = 3 vt
rs

= nl
2
vt
rs

, one may use the following

relationship to generalize the sheave velocities as functions of the first

sheave.

ω1 =
nlvt
2rs
⇐⇒ vt

rs
=

2

nl
ω1 (A.2)
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Substituting this expression for nl = 6 gives us the following velocities.

ω1 = ω1, ω2 = −ω1

ω3 =
2

3
ω1, ω4 = −2

3
ω1

ω5 =
1

3
ω1, ω6 = −1

3
ω1

For this particular block and tackle configuration, the rotational velocity

ratio for sheave i ∈ {1, 2, ..., 6} becomes

ωi
ω1

=

{
1,−1,

2

3
,−2

3
,
1

3
,−1

3

}
. (A.3)

For the purpose of finding an expression for this ratio for a given sheave i

for an arbitrary nl, the following relationship was found. For the sheaves on

the travelling block, i.e. for i even, the following sequence emerged.

ωi
ω1

=

{
−1 + 0 · 2

nl
,−1 + 1 · 2

nl
,−1 + 2 · 2

nl
− 1 + 3 · 2

nl
, ...,−1 + k · 2

nl

}
(A.4)

Similarly, for the sheaves on the crown block, i.e. for i odd, the following

sequence emerged.

ωi
ω1

=

{
1− 0 · 2

nl
, 1− 1 · 2

nl
, 1− 2 · 2

nl
1− 3 · 2

nl
, ..., 1− k · 2

nl

}
(A.5)

With these two sequences, the general ratio between the rotational velocity

of sheave i and sheave 1 can be expressed as follows.

ωi
ω1

=

−1 + 2
nl

(
i
2
− 1
)
, i even

1− 2
nl

(
i+1
2
− 1
)
, i odd

(A.6)

Thus concludes the sheave rotational velocity ratio derivation.
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Appendix B

Derivation of the equations of
motion

In this appendix, the equations of motion for the drawwork hoisting sys-

tem will be derived based on the Lagrangian in Equation (2.49), restated

here.

L = T − U

=
1

2
Jtotθ̇

2
m +

1

2
mt

(
γθ̇m + żc

)2
+

1

2
mcż

2
c

− 1

2
kc(zwt − zc)2 −mcgzc −mtg (γθm + (zc − zwt))

(B.1)

In order to derive the equations of motion, this Lagrangian will be applied

to the Lagrange’s equation of motion, stated in Equation (2.31), restated

here.
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Ξi (B.2)

Here, qi is the ith generalized coordinate in the model, and Ξi is the ith

non-conservative force or torque. First, the equation of motion for the gen-
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eralized coordinate θm will be calculated. The terms in Lagrange’s equation

of motion can be calculated separately, as follows.

∂L
∂θ̇m

= Jtotθ̇m + γmt(γθ̇m + żc)

=
(
Jtot + γ2mt

)
θ̇m + γmtżc (B.3)

d

dt

(
∂L
∂θ̇m

)
=
(
Jtot + γ2mt

)
θ̈m + γmtz̈c (B.4)

∂L
∂θm

= −γmtg (B.5)

Ξθm = τm − τhl + τf,m (B.6)

Here, τm is the resulting torque from the motor expressed in Equation (2.8),

τhl is the torque caused by hookload, and τf,m is the torque caused by fric-

tion, stated in Equation (2.27). Thus, the first equation of motion results in

the following.

(
Jtot +mtγ

2
)
θ̈m + γmtz̈c + γmtg = τm − τhl + τf,m (B.7)
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Next, the equation of motion for the generalized coordinate zc will be cal-

culated. Again, the terms in Lagrange’s equation of motion will be stated

separately.

∂L
∂żc

= mt(γθ̇m + żc) +mcżc

= γmtθ̇m + (mt +mc)żc (B.8)

d

dt

(
∂L
∂żc

)
= γmtθ̈m + (mt +mc)z̈c (B.9)

∂L
∂zc

= kc(zwt − zc)− (mt +mc)g (B.10)

Ξzc = bc(żwt − żc)− Fhl (B.11)

The term bc(żc − żwt) comes from the non-conservative damper force in

the CMC, and Fhl is the hookload force, acting on the crown block. The

second equation of motion results in the following.

γmtθ̈m + (mt +mc)z̈c − kc(zwt − zc) + (mt +mc)g = bc(żwt − żc)− Fhl
(B.12)

Thus concludes the derivations of the equations of motion.
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Appendix C

Merging the equations of
motion

The equations of motion that are governing the dynamics in the hoisting

system were derived in Chapter 2, and are stated as follows.

dia
dt

=
1

La
(u−Kvωm −Raia) (C.1)

τm = Ktia −Baωm (C.2)(
Jtot +mtγ

2
)
θ̈m + γmtz̈c + γmtg = τm − τhl + τf,m (C.3)

γmtθ̈m+(mt+mc)z̈c−kc(zwt−zc)+(mt+mc)g = bc(żwt−żc)−Fhl (C.4)

For the purpose of simplifying the control system derivations, merging

these equations into one equation of motion will be beneficial. In order to

do so, the equations will be transformed into the Laplace domain for sim-

pler calculations. Consider Equation (C.1) in the Laplace domain.

ias =
1

La
(u−Kvωm −Raia) (C.5)
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Sorting the terms, and solving for ia yields

ia =
1

Las+Ra

u− Kv

Las+Ra

ωm (C.6)

which may be substituted into Equation (C.2), resulting in a torque equation

without motor current dependencies,

τm =
Kt

Las+Ra

u−
(

KvKt

Las+Ra

+Ba

)
ωm. (C.7)

Next, the Equations (C.3) and (C.4) will be merged by eliminating the

crown block acceleration term z̈c. Consider Equation (C.4), solved for

z̈c.

z̈c =
1

mt +mc

(
bc(żwt − żc)− Fhl − (mt +mc)g + kc(zwt − zc)− γmtθ̈m

)
(C.8)

This expression for the crown block acceleration will be substituted into

Equation (C.3), yielding

γmt

mt +mc

(
bc(żwt − żc)− Fhl − (mt +mc)g + kc(zwt − zc)− γmtθ̈m

)
+
(
Jtot +mtγ

2
)
θ̈m + γmtg = τm − τhl + τf,m.

(C.9)

Substituting γFhl for τhl, and sorting the terms yields the following expres-

sion. [
Jtot + γ2mt

(
1− mt

mt +mc

)]
θ̈m =

τm −
(

1− mt

mt +mc

)
τhl + τf,m −

γmt

mt +mc

(kc(zwt − zc) + bc(żwt − żc))

(C.10)
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By Laplace transforming this expression, and substituting for the motor

torque in Equation (C.7), results in the final expression.[(
Jtot +mtγ

2

(
1− mt

mt +mc

))
s2 +

(
KvKt

Las+Ra

+Ba

)
s

]
θm =

Kt

Las+Ra

u−
(

1− mt

mt +mc

)
τhl + τf,m −

mtγ

mt +mc

(kc + bcs)(zwt − zc)

(C.11)

Thus concludes the merging of the equations of motion.
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