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Abstract

This project thesis is a continuation of an ongoing Lego-robot project, comprised of
several robots that cooperate on solving a maze. Each robot has di�erent sensors and
information, and combing the information from all the robots in a Java server appli-
cation should make the robots able to solve the maze. This project focus on the task
of making a drone that maps the labyrinth from above. At this stage in the process,
the main task is to implement a system to replace GPS localization, as the maze ex-
ists in an indoor environment. This project is a continuation of the work performed
by Bendik Iversen(1), which currently consists of a visual odometry algorithm that
to some extent manages to track the location of a stereo camera. This project thesis
aims to �nd the best way to proceed in order to achieve better pose estimates than
the algorithm currently does. In order to determine this, I have looked at alternative
paths to achieve visual odometry pose estimates through a study of di�erent theo-
ries and current algorithms in the computer vision universe. I have also updated the
instructions on how to install the software and hardware drivers, and changed some
libraries in the code in order to make the system usable again, after the OpenCV and
Duo team made changes during the summer, rendering the system unusable.

I suggest that the current algorithm is changed to implement a stricter indirect method
(2.2.1), using the ORB (2.2.1.3) feature detection and feature matching algorithm to
achieve a much better performance than the current algorithm. The system currently
struggles with fast movement and the false assumption that the environment is sta-
tionary. Taking the decision to change from feature tracking to feature matching
(ORB) eliminates this problem, and I conclude that it is a better option for this sys-
tem. The SVO algorithm could be considered if the ORB change is insu�cient, but I
�nd the expected reward to be too low for it to be the primary objective. I also con-
clude that the focus should be on �nding the best accuracy, as opposed to increasing
speed to the point where it would have a high enough update frequency to maintain
stable �ight using only the pose estimates as input to the PID controller. Instead it
should replace only the GPS signal, and other common means such as IMU should
handle the stable �ight of the drone. Lastly I conclude that bundle adjustment should
be included, as the system currently relies on raw single frame pose estimates which
has proven to be too unreliable.
The �ndings can be summarized as follows:

• The system should be based on an indirect approach, using features and feature
matching as the means of determining pose.

• The feature tracking algorithm should be removed and replaced with feature
matching using the ORB feature detector.

• IMU control of the drone should be implemented, and local bundle adjustment
should be added to the algorithm.



Preface

The basis for the work done in this project is the master thesis written by Bendik
Bjørndal Iversen(1), and the accompanying source-code for a visual odometry algo-
rithm that to some degree manages to track the position of the camera. The source
code was made for a TX1 which I also had access to during the project, and a Duo M
stereo-camera which account for the camera who’s position the algorithm is to track.
However, the algorithm and the Duo M camera would not work when I received it due
to changes in the libraries and drivers between the time the master was delivered the
time I received the code. The theory described in this project is either acquired from
sources online cited where used, or from di�erent computer vision related subjects I
have completed before and parallel to this project (TDT4265 and TTK21 respectively).
The list of hardware I have had access to and use for is listed below, and it was received
at the very beginning of the semester.

• Jetson NVIDIA TX1 with accompanying developer board

• Power supply, SD-card and peripheral devices such as keyboard and screen

• Duo M stereo camera

• Nordic BLE dongle

• Desktop for setup.

During this project I have had help from my supervisor in determining the right path
of my work, what areas to focus my time and who to contact when special expertise
was needed. On account of that I received important help from the department en-
gineer at the department of engineering cybernetics when the Duo M camera drivers
were no longer working on the TX1.
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Abbreviations

API = Application Programming Interface
BLE = Bluetooth Low Energy
BRIEF = Binary Robust Independent Elementary Features
CPU = Central Processing Unit
CV = Computer Vision
FAST = Features from Accelerated Segment Test
GPS = Global Positioning System
GPU = Graphics Processing Unit
HOG = Histogram of Oriented Gradients
IMU = Inertial Measurement Unit
I/O = Input / Output
MAV = Micro Aerial Vehicle
ORB = Oriented FAST Rotated BRIEF
PID controller = Proportional-Integral-Derivative controller
RANSAC = Random Sample Consensus
rBRIEF = rotation-aware BRIEF
SDK = Software Development Kit
SIFT = Scale Invariant Feature Transform
SoC = System on a Chip
SVO = Fast Semi-Direct monocular Visual Odometry
USB = Universal Serial Bus
VO = Visual Odometry
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1 Introduction

1.1 Background and previous work

1.1.1 Lego-robot project

The ultimate goal of the work conducted in this project is to develop a drone that
knows where it is and how it is oriented in a room containing a maze and several other
ground-based robots. The drone should also be able to �nd and map wall-segments.
The information of both the position of the drone and the map of the maze should in
turn be sent to a server running a Java-application through the use of BLE (Bluetooth
Low Energy). The Server will make a map of the maze using information from not
only the drone, but all the other robots in the maze.

1.2 Problem description
Currently the system can �nd the relative position of the drone to a certain degree.
The system fails during fast movement, and even when moved slowly the position
estimation is drifting. It’s apparent that the frame rate needs to be increased, or the
algorithm changed to accommodate the bigger movement between frames. Consid-
ering that I want the drone to be able to sustain �ight in a contained area for a large
amount of time, any drift at all might be catastrophic, and the algorithm should be
adjusted to minimize drift or otherwise overcome this problem.
This project aims to �nd some potential solutions to increase the performance of the
current system(1), and determine whether or not the currently implemented solution
is the most promising path to a fully functional in-door drone positioning system.
The focus of the thesis revolves around the theoretical aspect of the di�erent paths to
achieve such an algorithm, and will guide the further development of the lego-project
by giving strict guidelines on what areas of VO the future labor should be focused on
in order to achieve a positioning system that we can eventually �t on a drone. This
project does not intend to further develop the software, however, it will provide use-
ful insight into why di�erent changes and future additions to the algorithm should
be made. It is assumed that visual odometry is the way to go in this project, and no
attempt will be made to �nd other options.
The main questions I aim to answer are the following:

• Should the algorithm be based around the direct or the feature-based approach?

• Is feature tracking, as the current algorithm relies on, the best approach, or does
another strategy seem more promising?

• Are there additional features that would improve the performance of the track-
ing?
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2 Theory

Odometry is the technique of using data from a sensor to determine the position of an
object as a result of the change in position over time(2). Traditionally this is performed
using some sort of wheel or rotational encoders dragging or moving across a surface.
For instance a wheel might be mounted on the back of a dog-sled in order to know the
distance one have traveled in a particular direction. This is, however, prone to errors
as the object of interest might slip and otherwise react unpredictable to changes in
climate or other external stimuli. In this particular paper the reason why traditional
odometry is not ideal is quite obvious: The drone will never be in contact with any
surface during operation. This is where visual odometry comes into play.

2.1 Visual odometry
Visual odometry, much like traditional odometry is a means to establish a location by
measuring the change in position over time. Unlike regular odometry visual odome-
try don’t rely on tracing the movement of moving parts across a surface, but rather the
movement that had to occur to account for the di�erence between two images taken
at two di�erent instances of time. This process is also being used on ground-based
vehicles since you remove the uncertainty that arise from drift caused by slipping in
regular odometry. As computers get faster and methods in arti�cial intelligence ex-
cel, these methods e�ectiveness increase. An essential part of visual odometry is the
ability to recognize objects or features in multiple di�erent images, so that you can
calculate how the object has changed in size, position or orientation from one image
to the next. This is done using algorithms from the �eld of computer vision.
A drone such as a quadcopter has six degrees of freedom (6 DoF). Up/down, right/left,
forwards/backwards, yaw, pitch and roll, as you can see in �gure 1. The visual odom-
etry algorithm will have to know how the camera moves in all these directions..

Figure 1: Roll, yaw and pitch of an air-frame (3)
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2.2 Direct vs Indirect
When referring to Visual Odometry there are two main methods to achieve the goal
of estimating the relative pose of the camera, the translation and rotation between
the two images, namely the direct method, and the indirect method. They have a
signi�cant di�erence in the approach of estimating movement, and in applications
similar to this project there have been a vast majority of direct algorithms, and that
is indeed the case for the previous work done on this very project. The reason why
I wish to look into the di�erent methods even though the previous master thesis is
entirely focused and developed around the indirect method is the promising results
of the Robotics and Perception Group (4). They used a semi-direct method for exactly
the same problem as we are trying to solve in this project, not considering the com-
munication and mapping of the maze. I believe it is worth looking into whether the
direct or indirect method is better suited for this task.

Figure 2: Comparison between Feature-Based and Direct method of estimating posi-
tion (5)

The main di�erence is illustrated in �gure 2. The main di�erence is that where
you in the Indirect method (appropriately named Feature-Based in the �gure) you
extract features before estimating the movement of said features, the direct method
compares the individual pixels without attention to speci�c features. The following
gives a more comprehensive explanation of the di�erent methods and their strengths
and weaknesses.
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2.2.1 Indirect method

The indirect method is based around the concept of features. A feature is the combi-
nation of a key-point and a descriptor of said point. A key-point is usually a corner or
another segment of an image which is easily distinguished from the rest of the image,
and would most likely be found again in an image with a slightly di�erent pose. A
feature descriptor is some way of describing the point, or rather it’s immediate sur-
roundings, making it possible to distinguish di�erent points from one-another, and
also match points from one image to another.
The indirect method is all about minimizing the geometric error that occur between
the triangulated matching points, and the assumed pose of the camera. When this is
optimized over the the pose of the camera the correct pose is approximated. This can
be stated as:

T ∗cw = argmax
Tcw

∑
j

||π(Tcwx̃
w
j )− uj ||2

The �rst element in the sum, π(Tcwx̃
w
j ), is the prediction part of the equation. This

predicts where the points would be on the 2D frame on the image plane given a pose
Twc. When minimizing the geometric error of this prediction with the actual value uj
the ideal correct pose is reached. This is the pose of the world as seen by the camera,
what we actually want is the opposite:

T ∗wc = argmax
Twc

∑
j

||π(g(Twc, x
w
j ))− uj ||2

As mentioned in the beginning of this section we are in need of features in order
to perform this tracking of the camera movement. I will describe the di�erent parts
that goes into this in the following sections.

2.2.1.1 Feature detection A feature, or a key-point, can be classi�ed as a small
area of an image that may be found in di�erent images, and the strength of said points
depend on how unambiguous they are. If you found the key-point in two images you
should have a relatively small distance of potential error. Imagine that you �nd a
white spot on a white wall in two images. You have almost no way of knowing where
on the wall the points are, and you have a large amount of uncertainty. This is a bad
point. If you �nd a point on an edge you have a better result, as you know it’s along
a line, but it could still be anywhere on that line. The best key-points are those who
consist of corners. That is not necessarily corners in the traditional sense where two
corners clearly meet, but a point in the image where the image intensity has a gradient
in all directions. The latter is the key-points we aim to �nd when using the indirect
method. These di�erent points can be seen in �gure 3.
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Figure 3: The three main categories of key-points. (a) Corner (b) Edge (c) Flat surface
(6) [pp. 210]

There are many di�erent methods of �nding key-points, or features. There are
multiple considerations when choosing the detector for a project. Speed and accuracy
are the most apparent, but there are other qualities such as scale invariance, rotational
invariance, a�ne invariance. Ideally we would achieve a high enough frame-rate so
that the di�erence between two images is small enough for these considerations to be
a mere luxury and not necessarily for a good result. This is not necessarily the case,
and especially rotation is a lightly distortion as the drone might could be expected to
roll to keep its position.
Among the many feature detectors we �nd the Canny edge detector, Harris corner
detection and FAST. I will describe the FAST (Features from accelerated segment test)
here.

FAST - Features from accelerated segment test Fast is a corner detector (as op-
posed to edge or blob detector) which is computationally very e�cient. This is the
main reason why it is widely used for real time applications, including this project. It
is a natural choice as we already see that frame-rate might become an issue with the
current algorithm when put to use on a real drone. It is also the feature detector used
by ORB(Oriented FAST rotated BRIEF) algorithm, which I will elaborate on further in
2.2.1.3. The FAST algorithm(7) works by addressing a point which is to be classi�ed
as a point or not, p. Around this point there is created a Bresenham circle consisting
of 16 pixels (see �gure 4 for reference). You also de�ne a threshold value t which rep-
resents the change in luminosity between the luminosity at the interest pixel p (Ip)
and the luminosity at one of the 16 points in the circle needed for the di�erence to
be considered signi�cant. The last thing needed is the number of pixels in the circle
who needs to be either su�ciently darker, or lighter than the point p, this number is
n . With these values de�ned the process is as follows:

• De�ne the point p you want to categorize.

• Check if there consist a set of n points in the circle surrounding p that all ful�ll
In ≤ Ip − t, or all ful�ll In ≥ Ip + t, that is, that all points are either dark
enough or light enough.

• If such a set exist p is a corner.

5



Figure 4: The circle that is evaluated in order to determine if a point is a corner in the
FAST algorithm (7)

An attempt at making this even faster is to include a pre-test that �rst check if the
points 1, 5, 9 and 13 has the property of three or more are all brighter or all darker than
the luminosity of p plus the threshold. If that is not the case the point can immediately
be discarded as not being a corner, and the algorithm saves up to twelve comparisons.
However, this poses a few problems:

• If n < 12, as you cant discard a corner based on just four comparisons when
the set-size is that small.

• The e�ciency of the test is dependant on which pixels are compared �rst.

– These two �rst problems can be solved using machine learning.

• Multiple features can be detected adjacent to each other.

– This can be solved using Non-maximal suppression which essentially is to
discard the feature with the least average luminosity di�erence between
the point p and the points in the circle.

2.2.1.2 Feature Matching There are two main ways of determining the corre-
spondence between features from an image to another, feature matching, and feature
tracking (2.2.1.4). The main di�erence between these is that feature matching �nds
features in two images, and then match them in order to estimate movement by min-
imizing the geometric error. This method is the cleanest form of the indirect method,
and an example is shown in �gure 5. Feature tracking on the other hand, only �nds
features in the �rst image and then tracks them to the next using a local search tech-
nique. This is not necessarily strictly indirect, but we will discuss this later when
considering the SVO (Fast Semi-Direct Monocular Visual Odometry) 2.2.2.2 method.
As the introduction of the last paragraph dictates the goal of feature matching is

6



matching features found in image k − 1 to features found in the current image k.
This relies on some sort of method to distinguish the di�erent key-points, other than
their relative position, as that by all accounts have changed. The previous key-point
algorithm FAST does not provide that, since it simply determines what a corner is. In
order to match point we also need a feature descriptor. This is something that ide-
ally uniquely identi�es a point based on its soundings. If the feature detector does not
provide this, we need to add one before matching. There exist multiple, like SIFT, HOG
(Histogram of Oriented Gradients) and BRIEF (Binary Robust Independent Elemen-
tary Features). The descriptor currently in use in this project is the SIFT descriptor.

Figure 5: Visualization of feature matching where point A2 and B2 are matched be-
cause the di�erence between the descriptors fA and fB are smaller than the threshold
value T(8)

SIFT - Scale Invariant Feature Transform The SIFT(9) algorithm creates a nor-
malized 128 dimensional feature vector which can be compared to others, usually
using a nearest neighbour approach. The algorithm works as follows:

• Extract a 16x16 patch around a key-point. Divide this into 16 4x4 windows.

• Inside each 4x4 window, calculate the gradients and place them in a histogram
of 8 bins.

• Apply a Gaussian weighing function to make the points farthest away from the
key-point make less of an impact.

7



• Collect the histograms of the 16 4x4 windows into a feature vector of 128 (4x4x8)
numbers.

• Normalize the vector. The vector looks similar to fA in �gure 5, only with 128
values.

BRIEF - BinaryRobust Independent Elementary Features I choose to shortly
discuss the BRIEF(10) because it is the descriptor used in the ORB method, which is
promising for this project. The BRIEF method is very fast compared to other descrip-
tors as it directly calculates a binary strings from the image patches around the key-
points. Not only is the calculations faster than computing a comprehensive descriptor,
but using the Hamming distance (Bit-wise di�erence between strings) is extremely
fast to compute on modern CPU’s. The bit string that is the descriptor is comprised
of multiple tests within the patch. The test are simply a comparison of the luminosity
values of two pixels in the patch. This can be expressed mathematically as

τ(p;x, y) :=

{
1, if p(x) < p(y)

0, otherwise

with p(.) representing the pixel intensity at a point and τ is the test result. The num-
bers of test to compute on a patch is optional, but the original paper(10) has good
results with both 128, 256 and 512 tests. (32 and 64 bytes). The binary string is com-
prised of nd tests like this

fnd(p) :=
∑

1≤i≤nd

2i−1τ(p;xi , yi )

where as mentioned nd usually is either128, 256 or 512. The �nal matching of descrip-
tors is done using

L =
∑

0≤i≤nd

XOR(fnd
1
i , fnd

2
i )

which is the Hamming distance between a patch in image 1 and image 2. If L is smaller
than some threshold it’s considered a match

8



Figure 6: Visualization of tests on in a BRIEF descriptor. Lines stretch between pixels
that are to be compared. This particular test distribution is achieved using an isotropic
Gaussian distribution.(10)

This was the basics of the BRIEF algorithm, but there are two other aspects to
consider, which I will not go further into but should be mentioned.

• The patch should be smoothed out. This is because if this is not done, single
pixel-values are used, which are very susceptible to noise.

• The test locations xi and yi have many di�erent possibilities, and must ob-
viously remain unchanged between every descriptor. The best results were
achieved by using an isotropic Gaussian distribution as seen in �gure 6

• The BRIEF feature descriptor does not take orientation into consideration like
for instance SIFT.

2.2.1.3 ORB - Oriented FAST Rotated BRIEF ORB(11) is, as the name suggests
the combination of �nding key-points using the FAST2.2.1.1 algorithm, and then per-
form feature matching using the BRIEF descriptor. There are some adjustments made
to the detection part (FAST) of the algorithm in order to make it more robust. First
of all they introduce a Harris corner measure, in order to maximize the number of
key-points that represent corners and not edges. This increases the chances of key-
points in one image correctly matching points in the next image. Further more the
FAST algorithm is not scale invariant. This is taken care of by adding a scale pyramid
and producing features on all the di�erent levels. In addition to these modi�cation, it
was also a need to implement some sort of rotation awareness. This is done by taking
advantage of the intensity centroid. The intensity of centroid is determined by taking
the moments of the image patch

mpq =
∑
x,y

xpyqI(x, y), p, q ∈ [0, 1]

9



, and from that determine the centroid as

C = (
m10

m00
,
m01

m00
)

By looking at the moments formula you see that m00 simply gives the sum of all
non-zero (by intensity) pixels in the patch, or if you like: the area of the patch. The
m10 and m01 is the "mass" of x and y respectively. That implies that C is actually
C = (x, y) where x and y is the average of x and y. The patch orientation is simply
determined as Θ = 2(m01,m10).
Following the key-point detection is the matching, and in order to achieve this you
need a descriptor. This is where BRIEF comes into play. As mentioned in 2.2.1.2,
the BRIEF descriptor will fail if rotation is introduced. ORB solves this by introducing
what they call rBRIEF, Rotation-Aware BRIEF. This is the result of using steered BRIEF
instead of regular BRIEF, and then running a greedy search on all the possible binary
tests. The ones with means close to 0.5, high variance and that also are uncorrelated
are chosen by the greedy algorithm. The "steered BRIEF" can be described as the
rotated matrix SΘ, where SΘ = RΘS, and S is the matrix of all the binary tests in a
patch. The rBRIEF allows rotation and thus makes the ORB rotation invariant.

Table 1: Computation of ORB steps

Table showing the computational time on a 640x480 image on an Intel i7 2.8 GHz processor. Results are
from the original ORB paper(11).

ORB: Pyramid oFAST rBRIEF
Time (ms) 4.43 8.68 2.12

As seen in table 2.2.1.3 the computational speed on a desktop processor is very fast,
and by looking at table 2.2.1.3 ORB proves to be vastly faster to compute than com-
parable methods. It also outperforms SIFT and SURF in the outdoor tests performed
by the team behind ORB when it comes to accuracy.

Table 2: ORB vs SURF vs SIFT

Table showing the computational time on an Intel i7 2.8 GHz processor for the ORB, SURF and SIFT algo-
rithm. It was run on 2686 images at 5 scales, averaging about 1000 features on all the tests. Results are from
the original ORB paper(11).

Descriptor ORB SURF SIFT
Time per frame (ms) 15.3 217.3 5228.7

2.2.1.4 Feature Tracking Feature tracking is another way of �nding how a fea-
ture point has moved between two frames. This method relies on the movement to
be small enough so that the points does not move out of the scope of the chosen local
search method. It could be stated that slow motion is an option in this project, if the
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multirotor is stabilized through other means, which will be discussed later. However,
Iversen(1) was under the impression that the movement might still be too large, and
that the moving robots breaks some of the assumptions one must make. Never the
less, this is the currently implemented solution in the algorithm, and I will present it
brie�y.
One way to achieve feature tracking is using optical �ow(12). Optical �ow is the
method of estimating movement of the surroundings, or perceived movement of the
surroundings caused by camera-movement, by tracking the movement of features
from one frame in time, to the next frame in time. As I mentioned in the previous
paragraph there are some assumptions to this method that are potential trip-wires if
used in this project’s application.

• The pixel intensity is assumed constant between successive frames.
• Neighbouring pixels have similar motion
• The motion between successive frames are small

Optical works on the principle of the optical �ow equation. It is based on the fact that,
given the assumptions, you have

I(x, y, t) = I(x+ dx, y + dy, t+ dt)

which using Taylor series expansion can be shown to be

fxu+ fyv + ft = 0

given
fx =

∂f

∂x
; fy =

∂f

∂y

u =
dx

dt
; v =

dy

dt

This can’t be solved without another method, like for instance Lukas-Kandle. Lucas-
Kanade uses the assumption that neighboring pixels move similarly, by looking at a
3x3 pixel square and �nding (fx, fy, ft) for these 9 pixels. Using the Least squares �t
method which ultimately yields:[

u
v

]
=

[ ∑
i f

2
xi

∑
i fxi

fyi∑
i fxi

fyi
∑
i f

2
yi

]−1 [−∑i fxi
fti

−
∑
i fyifti

]
Solving this equation of two unknowns above gives the answer to the problem.

2.2.2 Direct method

In the previous chapter i presented some of the theory behind the indirect method of
estimating movement using consecutive frames of a camera. In contrast to the indirect
method which is based around the concept of features, the direct method work on
individual pixels of the entire image. As seen in �gure 2, the direct method skips
the step of extracting features and descriptors. The following step of estimating the
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pose over all the pixels is, however, more computationally heavy than doing so over a
potentially sparse set of features. This method is not seen as often in settings similar
to those of this project due to the fact that more computational power is needed,
resulting in either bigger computers with a higher power consumption, or slower
frame-rate. It might in fact prove impossible to create a real-time VO based on this
if the computer is not su�ciently powerful. However, there are some advantages to
this method. Advantages described in the next paragraph that might be very useful
on a moving airborne platform such as the indoor drone in this project.
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(a) White lines represent features matched when di�erent image degradation’s are introduced

(b) The direct method still manages to �nd clear global minimum

Figure 7: Illustrations to show that the direct method is much more robust to image
degradation such as motion blur, blur and noise. (13)

If there is induced blur, noise, motion blur or other forms of image degradation a

13



feature detector will have a hard time �nding features at all, or �nd features which are
bad and impossible to match in a meaningful way. This problem is absent, or at least
greatly less prominent using the direct method which is based on individual pixel in-
tensity. This is shown in �gure 7. Especially motion blur can be expected as the drone
will more often than not be in some sort of movement, even when attempting to stay
completely still.
In the direct method you also have the distinction between dense and semi-dense
method, which is the distinction between using every single pixel in the image, or
only using pixels patches of high gradient. Nevertheless, the main element of the di-
rect method is that the pose is estimated based on pixel intensity directly, as opposed
to features. How this is done is presented brie�y below.

2.2.2.1 Direct tracking Direct tracking is all about minimizing the photometric
error (Ik−1(w(d,u,T))−Ik(u))2, using the warp functionw(d,U,T) = π(Tπ−1(d,u)).
In simple terms this can be visualized as seen in �gure 8 (a).

(a) Initial pose estimate (usually last
known pose)

(b) After one iteration of the image cost mini-
mization

(c) After two iterations of the image cost
minimization

(d) Final pose estimate. TheW (p,u) that repre-
sents the transform from picture 1 to here rep-
resents the pose change

Figure 8: Illustration of minimization of image cost using Warp (5)

We see that we begin with a predicted image, what some prediction algorithm
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believes is the state of the image(T (u)). This is often set as the last image. The image
to the right of each �gure (I(u)) is an illustration of how the environment you are
observing right now looks like. You also see an arrow showing the warp (w(p,u)) that
was needed to go from the image T (u) to I(u). The p in the warp function represents
the camera parameters, in this lies the pose of the camera. This is what we would
like to determine. As the warp function is increasingly perfected by iterating through
di�erent camera parameters p, the predicted image T (W (p+ ∆pi,u) gets more and
more similar to the actual image I(u). The way the iterative change is determined is
by the function

∆pi = argmin
∆p

∑
(I(u)− T (W (p+ ∆p,u)))2

p←− p+ ∆pi

which is shown in �gure 8(b) with one iteration, (c) with two iterations and (d) with
four iterations. It’s important to notice that we iterate over the camera parameters
p, which is why this eventually gives us the camera pose. That is, given that the
model is good enough, which we assume it is. In �gure (d) you see that the images
are almost identical, and the isometric error would be under a given threshold, and
the next frame could be calculated the same way.

2.2.2.2 SVO - Fast Semi-Direct monocular Visual Odometry The SVO algo-
rithm is a visual odometry algorithm made speci�cally for micro aerial vehicles (MAV),
using a direct approach with many smaller pathces of gradients rather than a few
large which is more common. It �nds features using the FAST algorithm, but instead
of creating descriptors it uses the sparse direct motion estimation for �nding feature
correspondences between the images. As the direct approach dictates, it uses mini-
mization of the photometric error to estimate the pose as seen in �gure 9.

Figure 9: Using sparse image alignment to �nd the change in pose by minimizing
photometric error(4)

The feature matching without descriptors is done by projecting map points from
the last to the current frame, and optimizing the position by minimizing the photo-
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metric error between the current and the most similar key-frame. This method utilizes
motion only bundle adjustment (2.4) in order to estimate the pose of the camera.
The SVO algorithm has a map, consisting of the n last key-frames where n is a �xed
number. The map rejects the key-frame that is farthest away from the newest key-
frame in distance when a new key-point is introduced. The algorithm takes advantage
of depth �lters (�gure 10), which are initialized for each feature extracted by the FAST
algorithm. The depth map is updated by taking the inverse depth, and updating the
depth distribution in a Bayesian framework. This is done until the depth variance is
low enough, and the algorithm considers it a 3D point.
This di�ers from the currently implemented Lucas Kandae approach by being com-
putationally much faster because tracking larger distances would require much larger
patches than the many small used in this approach, and it would need a pyramidal
implantation. You would also need outlier detection. This is not necessary in this
algorithm as the spars image alignment ensures no outliers.

Figure 10: Depth map in SVO algorithm(4)

2.3 Stereo camera
The advantage of using stereo camera as opposed to a single lens-camera is that using
a stereo camera gives you the ability do asses the depth of the objects in the image.
In �gure 11 you see a simple sketch of how the geometry of a stereo-camera work. In
this example both cameras point in the same direction, and we assume that the only
translation is in the X-direction of the sketch. "b" is the distance between the two
lenses, and this is a measurement that has to be known precisely. The depth (in this
�gure the Z coordinate) can be established using the following formula:
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Figure 11: The geometrics of a stereo-camera

xL = f
XL

ZL
, f
XR

ZR
ZL = ZR = Z

XL = XR + b

=⇒ xL = f
XR + b

Z
where, ”d” = Disparity = xL − xR

d = xL − xR = f
(XR + b)−XR

Z
= f

b

Z

Z = f
b

d

This is as seen by the math quite a simpli�cation, as we only assume translation in
one direction. However, the same principles apply to systems of multiple dimensions.
As seen by �gure 12 you can �nd the absolute position by triangulating the position
(intersecting the rays). All you need is the intrinsic parameters of the camera (either
supplied by the stereo-camera manufacturer, or established using carefull measure-
ments and calibration), the relative pose between the cameras. You then need to �nd
points in the image from the left camera that you can match to points from the right
image.
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Figure 12: The geometrics of a stereo-camera

2.4 Local bundle adjustment
Bundle adjustment(14) is recommended as part of VO algorithms. It is the concept of
estimating the imaging geometry by minimizing the reprojection error with respect
to some amount of camera poses and points observed by those cameras. There are
di�erent kinds of bundle adjustment; Motion-only bundle adjustment, structure-only
bundle adjustment and full bundle adjustment. You also have the option of performing
bundle adjustment on the entire set of images after initialization, or to perform local
bundle adjustment, that is to perform it on the m last frames. Bundle adjustment can
be performed using Gauss-Newton optimization which, for motion only (assuming
the camera moves) simpli�ed can be expressed like this: (the process for full and
structure bundle adjustment is similar and can be found in (5), as well as the complete
calculations on motion-only bundle adjustment.
We wish to minimize the error over state variable Θ = Twc

Θ∗ = argmin
Θ

∑
j

||π(g(Twc,xwj ))− xn,j ||2

We then want to, using Taylor expansion, linearize the measurement prediction func-
tion

h(Twcexp(ξ∧∆;xw) ≈ h(Twc;xw) + Fξ∆
, having ξ∆ being a small perturbation in the camera frame. It can then be shown that
we have a linear least-square problem of the form

argmin
ξ∆

∑
j

||Ajξ∆ − bj ||2

by linearizing around Θit. This is solved using the normal equations (ATA)ξ∗∆ =
ATb which is using the Gauss-Newton optimization. Then �nally update the non-
linear estimate Θit+1

Twc ←− Twcexp(ξ∗∧∆ )
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If it has not converged, linearize around the new estimate and repeat. For the complete
calculations refer to the slides in (5).
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3 Software Setup

3.1 Run on a Linux system
Since I have had di�culties installing the drivers for the duo M stereo camera I de-
cided that I would install it all on a Linux partition on my laptop in order to explore
the algorithm there, and revisit the TX1 at a later time. I will not go through how to
dual-boot a laptop through di�erent OS partitions, as this is simply the same as run-
ning a standard Ubuntu computer. A guide is given on Ubuntu’s site(15). It is worth
noting that I installed Ubuntu 16.04 LTS as this is the newest supported Linux Version
by Duo at this time(16).

3.2 Installing Drivers for Duo stereo camera
The standard procedure for installing the drivers on the TX1 does not currently work,
and I had to do a work-around. This is how I installed the drivers: First, download
the drivers for the ARM SDK from the duo homepage(17). Run a terminal window
on the TX1 (alt + ctrl + t). Type the following into the terminal in order to prepare
driver-compilation(18):

$ cd / u s r / s r c / l i n u x−headers −’uname −r ’
$ sudo make modu le s_prepare

Then open a second terminal and run the code (assuming that the �lename for the
SDK package is CL-DUO3D-ARM-1.1.0.30):

$ cd CL−DUO3D−ARM− 1 . 1 . 0 . 3 0 / DUODriver
$ whi l e : ; do chmod +x d u o d r i v e r / run . sh ; done

Then, in another terminal, compile the driver modules.

$ cd CL−DUO3D−ARM− 1 . 1 . 0 . 3 0 / DUODriver
$ . / d u o d r i v e r . run

then load the dou-512-ko module. The duo-1024-ko module gives better performance,
but it was not compatible with the current setup.

3.3 Run from external SD card
Since the internal memory of the Jetson TX1 is limited to only 16 GB, it is necesary to
expand this storage by inserting an SD card into the SD slot on the development board,
copying the content of the internal memory and instructing the TX1 to boot from the
SD card. The process of doing so is described in a detailed video from JetsonHacks in
this article(19). I had to do this again since i re-installed Ubuntu at the beginning of
the semester, during debugging of the Duo-driver issues.
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3.4 OpenCV
Installing OpenCV is not as straight forward as one might expect. There exist a
script for the Jetson TX1 that takes care of the entire installation process for you,
and this works straight out of the box(20). This however gives compilation errors
when attempting to run the entire system. The reason for this is that the drone-
mapping algorithm needs the added library "opencv_contrib"(21). In order to in-
stall the OpenCV_contrib library you need gcc-7 and g++-7. This is not standard on
ubuntu 16.04.LTS. To install it see Appendix.A.1 You can choose to manually install
the openCV and openCV_contrib libraries simultaneously (for this, see appendix A.2)
or you can change the "buildOpenCV.sh"(20) �le. Change the following lines:

16 DOWNLOAD_OPENCV_EXTRAS=NO
t o
16 DOWNLOAD_OPENCV_EXTRAS=YES

124 g i t c l o n e h t t p s : / / g i t h u b . com / opencv / o p e n c v _ e x t r a . g i t
t o
124 g i t c l o n e h t t p s : / / g i t h u b . com / opencv / o p e n c v _ c o n t r i b . g i t

And �nally add this line between cmake and -D on line 241. Change the .. in the
line below with the EXACT path. To �nd the exact path, type pwd into a terminal
at the location where your BuildOpenCVTX1 folder lies.

−D OPENCV_TEST_DATA_PATH = . . / o p e n c v _ e x t r a / t e s t d a t a

21



4 Hardware

This section describes in greater detail than the preface what hardware I have had
access to, and that the system relies on in order to function properly. The system
architecture is also speci�ed, as well as some considerations that might a�ect the
speed of the system.

4.1 Hardware speci�cation

4.1.1 Nvidia Jetson TX1

The Nvidia Jetson TX1 (or Tegra x1, where Tegra is Nvidia’s mobile chip line), is one
of the most powerful small full-featured computers on a chip on the market. It is
speci�cally designed to be the go-to choice when performing computer-vision tasks
on mobile platforms where size and weight is a concern. The Jetson TX1 should be
powerful enough to run a visual odometry algorithm without trouble. The system
runs Linux, and comes with a development-board with several I/O connections and
features speci�ed in �gure 13. The is of the Maxwell architecture with 256 CUDA
cores, and 64-bit CPUs. Nvidia has released a new version, Nvidia TX2(22), but the
changes do not seem important enough for an upgrade to be considered.

Figure 13: Complete overview of the I/O on the jetson TX1 Dev-board.

The Nvidia Jetson TX1 speci�cations are listed below, fetched from the Nvidia
home-page (23):

• GPU | NVIDIA Maxwell, 256 CUDA cores
• CPU | Quad ARM A57/2 MB L2
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• Memory | 4GB 64 bit LPDDR4 25.6 GB/s
• Data storage | 16 GB eMMC, SDIO, SATA
• USB | USB 3.0 + USB 2.0

This is just a selection of the speci�cations that i consider important. For the entire
speci�cation portfolio visit the Nvidia homepage(23).

4.1.2 Duo M Stereo Camera

The Duo M stereo camera is a small form-factor stereo camera developed by the
DUO3D team. Its small size and low weight, combined with a USB interface and high
speed makes it well suited for our application. The recommended viewing-distance is
also suitable for indoor operation. It also features a Duo SDK (Software Development
Kit) and a useful API which makes it easy to integrate into the VO algorithm. Figure
14 shows it’s small formfactor, and below you see a list of important speci�cations
from the Duo3D home page.(24)

Figure 14: DuoM blueprint with size speci�cations (24)

• Dimensions | 52.02mm x 25.40mm x 11.60mm
• Weight | 6.5g
• Stereo Resolutions |

– 45 FPS @ 752x480
– 49 FPS @ 640x480
– 98 FPS @ 640x240
– 192 FPS @ 640x120
– 86 FPS @ 320x480
– 168 FPS @ 320x240
– 320 FPS @ 320x120

• Pixel size | 6.0x6.0µm
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• Shutter speed | 0.3 µsec - 10 sec
• Baseline | 30.02mm
• Recommended depth range | 0.23-2.5m
• Field of View | 165deg Wide Angle Lens with low distortion < 8.5%
• Focal Length | 2.0mm - 2.1mm
• Power consumption | 2.5 Watt @ +5V DC from USB

4.1.3 nRF51422 BLE dongle

This is the bluetooth dongle intended to communicate with the server. It is developed
by Nordic Semiconductor and uses the ultra-low powered SoC nRF51422. The dongle
is illustrated in �gure 15.

Figure 15: Bluetooth dongle used to communicate with the Java server.

4.1.4 SD card

The internal memory of the TX1 is, as speci�ed in4.1.1, only 16 GB. In order to remove
the memory constraint the system is running from a 64 GB micro SD memory card,
and accompanying adapter from micro SD to SD. The card is a Class 10 micro SDXC
card from Kingston 16. Instructions on how to use external storage as main storage
is described in 3.3
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Figure 16: The SD-card used when testing the existing code

4.2 System architecture
The system architecture is illustrated in �gure 17. There are only a small fraction of
the I/O ports that are used for this project, and this indicates that a smaller developer
board will su�ce for the current set-up. That is a good thing considering that the
developer board in this �gure, which is the one I currently have access to, is quite
large and heavy. Not very well suited for aerial use.

Figure 17: Simpli�ed hardware setup using developer board schematic
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4.3 Running the system from SD-card

Figure 18: The SD card on the left was used previously, the one on the right is used
this semester

At the beginning of this project i removed the SD-card that was already in the TX1
because i wanted to keep it as backup when i re-installed the entire system. I installed
Ubuntu 16.04 using jetpack 3.0 on a clean class 10 SD card formatted as ext4 (Linux
format). After using the system for a while I’m sure the system is far slower than what
could be expected from the hardware in the TX1. In my opinion the two most apparent
reasons for this is either that the SD-card I swapped to is not as fast as the one used
earlier. They are both classi�ed as a class 10 card, but that only guarantees 10MB/s
sequential write(25). The other might be that the Ubuntu version is too comprehensive
(it contains a lot of programs that are never used). It might be worth considering
installing everything back on the old SD-card at a later stage. However, the test was
su�cient to determine that the algorithm was still working.
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4.4 Complete hardware setup

Figure 19: The complete hardware setup

The complete system consist of the Jetson TX1 on the development-board. Mounted
to the PCB of the dev-board is a plastic adapter that contains both the USB-hub needed
to connect more than one USB-attachment and the DUO stereo-camera. Both the DUO
camera and the dongle for wireless mouse and keyboard is attached to the dongle. As
seen in the picture19 this allows for a pretty compact solution that is easy to move in
the event of testing. Attached is also a Bluetooth dongle. This used to be connected
directly to the header-pins of the dev-board because all the USB-ports were occupied.
However, this is no longer necessary since the combined keyboard/mouse dongle frees
up a port. These connections can be seen in �gure 17, where the di�erent kinds of
connections are color coded.
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5 Discussion

The goal of this thesis has been to determine in what direction the algorithm should
be taken, regarding the functions and algorithms it is comprised of. The underlying
assumption has always been that visual odometry is the path to success. However, I
have explored the theoretical aspect of the algorithms the positioning system is made
of today, including others that might be superior. I will attempt to make an informed
decision on how to proceed with this project based on the theory and other informa-
tion presented in this thesis.

5.1 Direct vs Indirect
The biggest con�ict in this paper is the choice between an algorithm utilizing the di-
rect or the indirect method. The reason why I was interested in exploring the direct
method originates in the success the SVO (2.2.2.2) algorithm has had for a very sim-
ilar use as the one in this project. However, I do not believe a strict direct method is
the way to go. The advantages of resilience against motion blur, occlusion and other
image degradation’s are certainly very appealing, but I’m afraid the computational
expense of a strict direct approach is too great. However, a semi-direct approach such
as the SVO can not be ruled out quite so easily. Adapting the semi-direct SVO ap-
proach will be a much more drastic step, compared to other solutions, so it might not
be worth taking this path before exhausting other options.
The method currently implemented �nds features and tracks them using Lucas Kan-
dle, this is in fact fairly close to what the SVO algorithm, but neglecting some of the
steps, and it is not working so well. Iversen(1) stated that using feature matching in-
stead of tracking might be a better option. Leaving feature tracking and implementing
feature matching would be a step towards a strict indirect method. I believe that could
be a good option for the algorithm. Speci�cally, I �nd the ORB (2.2.1.3) algorithm to
be very promising. Its speed is vastly superior to that of SIFT (2.2.1.2) since it uses the
BRIEF(2.2.1.2) algorithm, while introducing rotational invariance. Since the Indirect
approach, using features and matching them is the ad-hoc approach to similar prob-
lems, I believe discarding it this early would be a mistake. It would also be far easier
to implement this in the current algorithm, making it worth testing.
One concern related to positioning systems is that the movement induced from the
�ying platform may cause some problems. I have mentioned image degradation, but
large movements between crisp images would also cause potential problems. Espe-
cially when using the direct method, a big pose change between images would be
problematic. The indirect method is by far the preferred method if large pose changes
are expected between frames, and that is something that can be expected from a drone
depending on what speed it moves at. An obvious solution is to simply restrict the
drone movement to be slow enough so that the Direct method keeps up, but in�icting
restrictions on the moving platform might not be the ideal way of solving this prob-
lem. Instead, going for a strict feature-matching based indirect method might be the
preferred route.
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5.2 Update Frequency
Another consideration is to what extent we should strive towards a high frame-rate.
Obviously a fast algorithm that can process the images and estimate the pose in real-
time is the goal. However, real time can be de�ned quite widely, and in computer
vision 24 frames pr. second is widely accepted as real time. That would not be enough
to keep a drone stable. When controlling a quadcopter you want an update frequency
of about 50 Hz simply to keep it marginally stable, and that is obviously not good
enough for our purpose, and would be catastrophic even with slight disturbance from
ground e�ect or self-in�icted wind currents in the room.
Another problem is that the VO algorithm was used as the only input to the drone’s
control system. Any drift at all would make the drone move to an unstable position.
One possible solution to this is to introduce the visual odometry algorithm as an input
to an autopilot that receives position as a means to determine where to move next,
but not in order to maintain safe hover and/or movement. For this the usual update
frequency can be as low as 1-10 Hz. This could for instance be done using an on-
board gyroscope, or IMU (Inertial measurement unit). This would ensure a stable
platform regardless of frame-rate (to a certain extent). It would also secure �ight if
the drone were to drop frames, not �nd key-point or if unexpected external forces
were to include large amount of image degradation.

5.3 Bundle Adjustment
Bundle adjustment is an important step that could increase the accuracy of the system
dramatically, at the cost of heavier computations. It is a trade o� that most systems
used other places at this time accepts, and will most lightly be even more widespread
at computational power increase. Implementing it in this system is currently not
tested, so how severely it will restrict the update frequency and how much better the
pose estimates will be is unknown, but it is probably worth implementing.

29



6 Future Work

6.1 Visual Odometry Algorithm
The next step in this project would be to improve upon the visual odometry algorithm,
and to implement the changes and improvements to the current algorithm that I have
found to be most promising through this theoretical study. The algorithm must be
improved to be both more accurate and faster. Until the VO algorithm is reliable
attaching it to a �ying platform is out of the question.

6.1.1 Implementing ORB feature detection and matching

As i have discussed in this paper, i believe the ORB 2.2.1.3 feature detection and match-
ing is the most promising adaptation of the current algorithm. Considering that the
current algorithm fails when moving fast on a controlled, 2 DOG platform (1), I believe
tuning and improving the current platform might be more cumbersome than imple-
menting an algorithm that is more robust to large movement and dynamic images.
Even if it turns out to be a worse solution in practice, it is worth attempting in order
to compare it with the current implementation. In other words, the feature track-
ing step of the algorithm should be swapped for a feature matching step, speci�cally
that of orb. And the FAST feature detector should include the rotational awareness as
described in the ORB section.

6.1.2 Local bundle adjustment

Local bundle adjustment is, as mentioned in section 2.4, an important step to ensure
precision in visual odometry algorithms, and after implementing the indirect method
ORB, it is de�nitely something that should be a priority. Tests should be performed
to see how many previous images should be included to maximize precision vs com-
putation time. It will most lightly improve the algorithm signi�cantly.

6.1.3 Tuning and increased speed

The algorithm as of now runs at about 5-10Hz (1), which as discussed in 5.2, is enough
to replace GPS signals, but is insu�cient for controlling the drone as a single input
to the controller. Therefor speed either need to be improved, or the more appealing
and reliable option: Add some other input to the controller, i.e. IMU. either way, opti-
mization of the code should be kept in mind during all future development, and some
of the functions in the current algorithm uses the basic version, while the must faster
CUDA option is available. When changing out the algorithms and implementing new,
CUDA options should always be used when possible.
Tuning of the parameters should also be done in order to increase performance, but
that is not the immediate priority, as the main functionality most lightly has a vastly
better performance increase. Fine tuning should be done after the algorithm has been
implemented using the best available CV methods.
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6.1.4 Outlier removal and distributed features

As Iversen described in his master thesis(1), he found that the image features should
be spread more evenly across the image captured by the camera. The e�ect of imple-
menting this should be tested once the feature matching algorithm is implemented.
Further more, he believed that RANSAC or some other outlier detection should be
used as opposed to the current inlier detection. The e�ects of this should also be
tested.

6.2 Complete Drone System

6.2.1 Maze mapping algorithm

An essential part of the complete drone system is that the drone manages to map the
wall segments of the maze it �ies above. This has not been the focus for me, nor has
it been the focus of the master thesis I have based my work on(1). An algorithm was
developed back when the system ran on a Raspberry PI, but that code is incompatible
with the current hardware. In the future this has to be addressed so that the drone
not only �ies, but can collect useful information for the other Lego robots.

6.2.2 Drone

At one point, a drone has to be acquired to test that the mapping and positioning
system works in a real test environment. The drone should be able to carry all the
necessary hardware (TX1, cameras, batteries ++) while at the same time being small
enough to �y indoors. Obviously it has to be programmable so that it can be �own
using our algorithm. The speci�cations needed are easier to determine when the al-
gorithms performance and �nal hardware is determined at a later stage in the process.

6.2.3 TX1 Carrier board

As i mentioned in 4.2, the current development board is bulky and heavy, as well as
much more comprehensive than we need. Before mounting the TX1 to a drone, the
dev-board should be swapped out for a smaller carrier board with only the essential
features. What those features are must be determined at a later stage. A smaller board
minimize change of destruction in a crash, and makes it possible for the drone to be
smaller and cheaper.

6.2.4 Server communication

The server connection is somewhat stable at the current time, and manages to send
pose estimates to the server. In the future the drone must also be able to receive
commands from the server, such as where to map next. Eventuality some e�ort should
be made towards making the server connection stronger. The wall segments found
in the future mapping system should also be sent to the server. This must also be
implemented in the future.
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A Installation Instructions

A.1 Install the right gcc and g++
In order to install the openCV_contrib module you need a newer gcc and g++ than
the gcc/g++ 5 that is standard with ubuntu 16.04 LTS. I found that version 7 is stable
and works on the contrib module. (you need to be able to compile cxx 11, which is
why gcc-5 is not adequate.) to install gcc-7 and g++-7 do the following(26):

$ sudo add−apt−r e p o s i t o r y ppa : ubuntu−t o o l c h a i n−r / t e s t
$ sudo a p t update
$ sudo a p t i n s t a l l g++−7 −y
$ sudo a p t i n s t a l l gcc−7 −y
$ sudo update−a l t e r n a t i v e s −− i n s t a l l / u s r / b in / gcc gcc / u s r / b in / gcc−7 60 −−s l a v e / u s r / b in / g++ g++ / u s r / b in / g++−7

and then �nally, change to the newly installed gcc and g++ by typing

$ gcc sudo update−a l t e r n a t i v e s −−c o n f i g gcc

press the number representing the gcc 7 and then press enter.

A.2 Install OpenCV with OpencCV_Contrib
Make sure you have installed gcc-7. open a terminal from your desired location, i.e.
home. Update your ubuntu packages:

$ sudo apt−g e t update
$ sudo apt−g e t upgrade

Then, install all the required packages:

$ sudo apt−g e t i n s t a l l b u i l d−e s s e n t i a l cmake pkg−c o n f i g g i t
$ sudo apt−g e t i n s t a l l l i b j p e g 8−dev l i b j a s p e r −dev l i b p n g 1 2−dev
$ sudo apt−g e t i n s t a l l l i b t i f f 5 −dev
$ sudo apt−g e t i n s t a l l l i b a v c o d e c−dev l i b a v f o r m a t−dev l i b s w s c a l e−dev l i b d c 1 3 9 4 −22−dev
$ sudo apt−g e t i n s t a l l l i b x i n e 2−dev l i b v 4 l −dev
$ sudo apt−g e t i n s t a l l l i b g s t r e a m e r 0 .10− dev l i b g s t r e a m e r−p l u g i n s−base0 .10− dev
$ sudo apt−g e t i n s t a l l l i b q t 4−dev l i b g t k 2 .0− dev l i b t b b−dev
$ sudo apt−g e t i n s t a l l l i b a t l a s −base−dev
$ sudo apt−g e t i n s t a l l l i b f a a c −dev l ibmp3lame−dev l i b t h e o r a−dev
$ sudo apt−g e t i n s t a l l l i b v o r b i s −dev l i b x v i d c o r e−dev
$ sudo apt−g e t i n s t a l l l i b o p e n c o r e−amrnb−dev l i b o p e n c o r e−amrwb−dev
$ sudo apt−g e t i n s t a l l x264 v4 l−u t i l s

Download the two repositories openCV and openCV_contrib using the following
commands:

$ sudo g i t c l o n e h t t p s : / / g i t h u b . com / opencv / opencv . g i t
$ cd opencv
$ g i t checkout 3 . 3 . 0
$ cd . .
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$ sudo g i t c l o n e h t t p s : / / g i t h u b . com / opencv / o p e n c v _ c o n t r i b . g i t
$ cd o p e n c v _ c o n t r i b
$ g i t checkout 3 . 3 . 0
$ cd . .

Then, compile using CMAKE. The most important part here is to make sure you
have installed and activated the right version of gcc (gcc –version) and that the �ag
"OPEN_CV_EXTRA_MODULES_PATH" is the �rst of the �ags. The path also needs
to be complete, .. and should not be a part of the path. The path should be the path
to your opencv_contrib/moules loaction. The location can be found by typing pwd in
terminal.

cmake
−D OPENCV_EXTRA_MODULES_PATH=/ home / n v i d i a / o p e n c v _ c o n t r i b / modules \
−D CMAKE_BUILD_TYPE= R e l e a s e \ −D CMAKE_INSTALL_PREFIX =/ u s r / l o ca l \
−D BUILD_PNG=OFF \ −D BUILD_TIFF=OFF \ −D BUILD_TBB=ON \
−D BUILD_JPEG=OFF \ −D BUILD_JASPER=OFF \ −D BUILD_ZLIB=OFF \
−D BUILD_EXAMPLES=ON \ −D BUILD_opencv_java =OFF \
−D BUILD_opencv_python2=ON \ −D BUILD_opencv_python3=OFF \
−D ENABLE_PRECOMPILED_HEADERS=OFF \ −D WITH_V4L=ON \ −D WITH_QT=ON \
−D WITH_OPENGL=ON \ −D WITH_OPENCL=OFF \ −D WITH_OPENMP=OFF \
−D WITH_FFMPEG=ON \ −D WITH_GSTREAMER=OFF \ −D WITH_GSTREAMER_0_10=ON \
−D WITH_CUDA=ON \ −D WITH_GTK=ON \ −D WITH_VTK=OFF \ −D WITH_TBB=ON \
−D WITH_1394=OFF \ −D WITH_OPENEXR=OFF \
−D CUDA_TOOLKIT_ROOT_DIR=/ u s r / l o ca l / cuda −8.0 \ −D CUDA_ARCH_BIN = 5 . 3 \
−D CUDA_ARCH_PTX= " " \ −D INSTALL_C_EXAMPLES=OFF \ −D INSTALL_TESTS=OFF . .

Then after this is done, compile using:

$ sudo make − j 4
$ sudo make i n s t a l l
$ sudo l d c o n f i g
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B Description of attachments

B.1 Source Code
The source code this project is based on

B.2 Previous reports and theses
Previous reports and code this projects is based on

B.3 Datasheets
The datasheets of hardware used in this project
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