
Robot Dynamics with URDF &
CasADi

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Lill Maria Gjerde Johannessen

2019
Lill M

aria Gjerde Johannessen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Robot Dynamics with URDF & CasADi

Lill Maria Gjerde Johannessen

Cybernetics & Robotics
Submission date: June 2019
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Mathias Hauan Arbo

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Abstract

Fast, accurate evaluation of the dynamic parameters is a crucial ingredient
for accurate control, estimation, and simulation of robots. As these are time-
consuming to compute by hand, a software library for generating the rigid body
dynamics symbolically can be of great use for robotics researchers. In this thesis, a
library to efficiently compute and evaluate robot dynamics and its derivatives is pro-
posed. Based on the Unified Robot Description Format (URDF), a full description
of the robot’s kinematic structure can be retrieved. CasADi provides a symbolic
optimization framework growing in popularity among robotics researchers. By us-
ing the information provided by the URDF and the symbolic framework provided
by CasADi, a library for obtaining symbolic expressions of a robot’s dynamics has
been implemented.

The library has gotten the name urdf2casadi and retrieval of the dynamic pa-
rameters is based on the implementation of three major rigid body dynamics al-
gorithms. The recursive Newton-Euler algorithm is used to obtain the inverse
dynamics, the Coriolis matrix, and the gravitational term. The articulated body
algorithm is used to obtain the forward dynamics, and the composite rigid body
algorithm is used to obtain the inertia matrix and forward dynamics. The imple-
mentation of the rigid body dynamics algorithms is inspired by the versions of the
algorithms presented by Featherstone (2008). As these algorithms use spatial vec-
tor algebra for computational efficiency, a thorough presentation of spatial algebra
is given. The modeling of the robot mechanism as a rigid multi-body system is also
presented as well as a detailed description of the implementation of the algorithms.

To validate the numerical accuracy, the numerical evaluations of the solutions
are compared against three other well-established rigid body dynamics libraries,
namely RBDL, KDL, and PyBullet. We conduct a timing comparison between the
libraries, and we show that the evaluation times of the symbolic expressions are at
most one order of magnitude higher than the numerical evaluation times. Last, it
is shown that the evaluation times of the dynamics derivatives remain of the same
order as the evaluation times of the dynamics expressions, making them appropriate
for use in robotics research. The work is summarized in an article accepted to the
International Conference on Control, Mechatronics, and Automation (ICCMA).

i

Preface

This report presents my master thesis as part of the Master of Science education
in Cybernetics and Robotics at the Norwegian University of Science and Technol-
ogy. The work has been done in association with the Department of Engineering
Cybernetics at NTNU, and is associated with SFI Manufacturing, a center for
research-based innovation focusing on high-value manufacturing in Norway with
research areas on multi-material products and processes, robust and flexible au-
tomation, and innovative and sustainable organizations. This thesis is a part of
the second research area.

I wish to express my sincere thanks to my supervisor Jan Tommy Gravdahl
and co-supervisor Mathias Hauan Arbo for their support. Jan Tommy for being
available and assistive whenever needed and Mathias for our regular meetings with
discussions, constructive feedback, and guidance on the field.

The focus of this project has been to develop a software library that provides
the dynamics of a robot symbolically. The work can be considered two-folded,
where the first part of the work was my specialization project. The main focus of
my specialization project was to study the field of rigid body dynamics algorithms
and how to implement them for efficient and easy use. It was found that spatial
algebra is advantageous when implementing rigid body dynamics. As I had little
prior knowledge in this field, much time was spent understanding spatial algebra
and how to implement the dynamics algorithms according to this use.

The second part of the work thus included completion of the implementation
of urdf2casadi, and verifying the results in terms of numerical accuracy and timing
efficiency, which is the work associated with my master thesis.

ii

Contributions

In this project, the author has made the following contributions:

• a presentation of the state-of-the-art of dynamics libraries for robotics,

• a discussion and investigation concerning optimal ways to implement algo-
rithms in CasADi for obtaining robot dynamics,

• the development of urdf2casadi, providing symbolic expressions for a robot’s
dynamics,

• a numerical comparison between the solutions retrieved with urdf2casadi and
other well-established numerical rigid body dynamics libraries to validate the
numerical accuracy of the implementation,

• a timing comparison between the solutions retrieved with urdf2casadi and
other well-established numerical rigid body dynamics libraries,

• a timing evaluation of the dynamics derivatives obtained using urdf2casadi
and the CasADi framework,

• publishing an article about the work, which will, hopefully, be presented at
ICCMA 2019, the 7th International, in TU Delft, Netherlands on November
6-8, 2019.

iii

iv

Table of Contents

Abstract i

Preface ii

Contributions iii

Table of Contents vii

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Motivation . 1
1.2 Report Structure . 2
1.3 Mathematical Notation . 3
1.4 Robot Kinematics & Dynamics . 4
1.5 Earlier Work . 6
1.6 State-of-the-Art . 7

1.6.1 KDL . 7
1.6.2 Rigid Body Dynamics Algorithms 7
1.6.3 SymPyBotics . 8
1.6.4 PyBullet . 9
1.6.5 Conclusion . 10

2 Theory 11
2.1 CasADi . 11

2.1.1 Motivation for using CasADi 11
2.1.2 Symbolic Framework . 12

v

TABLE OF CONTENTS

2.1.3 Jacobian Sparsity and Symmetry Exploiting 14
2.1.4 C-code Generation . 15
2.1.5 Conclusion . 16

2.2 Spatial Vector Algebra . 17
2.2.1 Preliminaries . 17
2.2.2 Spatial Vectors . 17
2.2.3 Plücker Coordinates . 18
2.2.4 Spatial Velocity and Force . 18
2.2.5 Spatial Scalar Product . 20
2.2.6 Spatial Coordinate Transforms 21
2.2.7 Spatial Cross Products . 23
2.2.8 Spatial Acceleration . 24
2.2.9 Spatial Momentum . 25
2.2.10 Spatial Inertia . 25

2.3 Modeling Rigid Multi-Body Systems 27
2.3.1 Transforms and Coordinate Systems 28
2.3.2 Bodies . 29
2.3.3 Joints . 29

3 Implementation 33
3.1 The Library Structure . 33

3.1.1 geometry . 34
3.1.2 urdfparser . 35

3.2 Loading the Robot Description . 36
3.2.1 The URDF . 36
3.2.2 urdf parser py . 38

3.3 Rigid Body Dynamics Algorithms . 39
3.3.1 The Model Calculation Routine 39
3.3.2 Recursive Newton-Euler Algorithm 42
3.3.3 Articulated Body Algorithm 45
3.3.4 Composite Rigid Body Algorithm 51

3.4 Resulting Functionality and Usage 56

4 Numerical Results 59
4.1 Numerical Tests . 59
4.2 2-DOF pendulum . 60
4.3 6-DOF UR5 . 61
4.4 7-DOF KUKA-LWR . 61
4.5 16-DOF snake . 62
4.6 Discussion . 62

5 Timing Results 63
5.1 Timing Tests . 64
5.2 Robot Comparison . 64

5.2.1 Impact of Number of Operations 66
5.2.2 Impact of Number of Input Variables 68

vi

TABLE OF CONTENTS

5.2.3 Conclusion . 71
5.3 60 DOF Analysis . 72

5.3.1 Gravity . 72
5.3.2 Coriolis . 74
5.3.3 Inverse Dynamics . 75
5.3.4 Inertia Matrix . 78
5.3.5 Forward Dynamics . 80
5.3.6 Conclusion . 82

5.4 Summary . 83

6 Derivatives Timing 85
6.1 Obtaining Dynamics Derivatives . 86
6.2 Derivatives Timing - cs.jacobian 87

6.2.1 2-DOF pendulum . 88
6.2.2 6-DOF UR5 . 89
6.2.3 16-DOF snake . 91
6.2.4 Conclusion . 92

6.3 Derivatives Timing - cs.jtimes . 93
6.3.1 2-DOF pendulum . 94
6.3.2 6-DOF UR5 . 95
6.3.3 16-DOF snake . 96
6.3.4 Conclusion . 97

6.4 cs.jacobian versus cs.jtimes . 98
6.5 Conclusion . 100

7 Epilogue 101
7.1 Discussion . 101

7.1.1 C++ versus Python . 101
7.1.2 The Library Structure . 102
7.1.3 Forward Dynamics - ABA versus CRBA 102
7.1.4 Documentation . 103

7.2 Further Work . 104
7.2.1 Generalization . 104
7.2.2 URDF 2.0 . 105

7.3 Conclusion . 105

Appendix 107

Bibliography 114

vii

TABLE OF CONTENTS

viii

List of Tables

1.1 Kinematics & Dynamics Libraries. 10

2.1 Variables of a rigid multi-body system. 27
2.2 Coordinate frames and transforms of a rigid multi-body system. . . . 28

4.1 Dynamics functionality provided by the libraries. 59
4.2 Numerical differences between libraries for the 2-DOF pendulum for

1000 random samples. 60
4.3 Numerical differences between libraries for the 6-DOF UR5 for 1000

random samples. 61
4.4 Numerical differences between libraries for the 7-DOF KUKA-LWR

for 1000 random samples. 61
4.5 Numerical differences between libraries for the 16-DOF snake for

1000 random samples. 62

5.1 Median evaluation times for u2c. 66
5.2 Number of operations for the dynamics expressions. 67
5.3 Median evaluation times for G, C, and ID, for the pendulum, UR5,

and snake. 68
5.4 Number of operations for G for an increasing number of DOF. . . . 73
5.5 Number of operations for C for an increasing number of DOF. . . . 75
5.6 Number of operations for ID for an increasing number of DOF. . . . 75
5.7 Number of operations for G, C, and ID for an increasing number of

DOF. 77
5.8 Number of operations for M for an increasing number of DOF. . . . 78
5.9 Number of operations for FD (ABA) for an increasing number of

DOF. 80

ix

LIST OF TABLES

5.10 Number of operations for FD (ABA) and ID for an increasing num-
ber of DOF. 82

6.1 Median evaluation times for the dynamics derivatives obtained with
cs.jacobian with respect to q, q̇, q̈ and τ. 98

6.2 Median evaluation times for the dynamics derivatives obtained with
cs.jtimes with respect to q, q̇, q̈ or τ. 98

6.3 Number of operations for the dynamics derivatives obtained with
cs.jacobian. 99

6.4 Number of operations for the dynamics derivatives obtained with
cs.jtimes. 99

x

List of Figures

1.1 Illustration of robot kinematics & dynamics. 4

2.1 Basis vectors for Plücker coordinates. 19
2.2 Branched kinematic tree modeled as a rigid multi-body system. . . . 27
2.3 Coordinate transforms of a rigid multi-body system. 29

3.1 Information provided by the URDF (illustration based on URDF
documentation). 37

3.2 Passes of RNEA. 43
3.3 Illustration of the articulated body equation of motion. 45
3.4 Passes of ABA. 48
3.5 Illustration of the CRBA approach for computing M 54

5.1 Median evaluation times for the dynamics for PyBullet, RBDL, u2c,
and KDL. 65

5.2 Median evaluation times for the dynamics for u2c. 66
5.3 Median evaluation times for G, C, and ID for the pendulum, UR5,

and snake. 68
5.4 Median evaluation times for G, C, and ID for the pendulum, UR5,

and snake. 70
5.5 Median evaluation times for gravity from 1 to 60 DOF. 72
5.6 Median evaluation times for Coriolis from 1 to 60 DOF. 74
5.7 Median evaluation times for ID from 1 to 60 DOF. 75
5.8 Median evaluation times for G, C, and ID for u2c. 76
5.9 Median evaluation times for inertia matrix from 1 to 60 DOF. 78
5.10 Median evaluation times for FD from 1 to 60 DOF. 80
5.11 Median evaluation times for FD (ABA) and ID for u2c. 81

xi

LIST OF FIGURES

6.1 Median evaluation times and number of operations for the dynamics
and their related derivatives for the 2-DOF pendulum. 88

6.2 Median evaluation times and number of operations for the dynamics
and their related derivatives for the 6-DOF UR5. 89

6.3 Median evaluation times and number of operations for the dynamics
and their related derivatives for the 16-DOF snake. 91

6.4 Median evaluation times and number of operations for the dynamics
and their related derivatives for the 2-DOF pendulum. 94

6.5 Median evaluation times and number of operations for the dynamics
and their related derivatives for the 6-DOF UR5. 95

6.6 Median evaluation times and number of operations for the dynamics
and their related derivatives for the 16-DOF snake. 96

6.7 Median evaluation times and number of operations for the dynamics
and their related derivatives for the 32-DOF snake. 99

xii

CHAPTER 1

Introduction

This chapter is based on the Introduction chapter from the specialization project
associated with this thesis. Modifications have been made according to changes
during the latter part of the project.

1.1 Motivation
Defining advanced feedback control techniques for robots requires the use of kine-
matics and dynamics. Oftentimes one requires both the forward or inverse mapping
and its derivatives. These can be tedious to compute by hand, and many symbolic
solver systems result in functions that have long evaluation time, making them
impractical for use in feedback control.

The Robotic Operating System (ROS), presented by Quigley et al. (2009), is a
software solution with a growing community among robotics programmers. Briefly
explained, ROS is a middleware that implements a set of standards for communica-
tion between processes. Its usage ranges from controlling drones, unmanned boats
and vehicles, to industrial robots. ROS has a Universal Robot Description Format
(URDF), which is an XML file describing the robot’s kinematics as a kinematic
tree of frames with inertial, collision, and visual properties.

A library for using symbolic equations that is growing in popularity among
robotics researchers is CasADi, presented by Andersson et al. (2018). It is a sym-
bolic framework for algorithmic differentiation and numerical optimization. The
framework provides the ability to rapidly prototype optimization algorithms and
symbolic equations that are close to production ready.

This project has aimed to develop a library that exploits the information given
from a URDF to generate symbolic equations in CasADi for robot kinematics and
dynamics. Given that the URDF accurately describes the robot, it represents an

1

Chapter 1. Introduction

opportunity to automatically generate the kinematic and dynamic properties of
the robot. The purpose of this library, urdf2casadi (u2c), is to use the URDF
to generate the functions for forward kinematics, forward dynamics, inverse dy-
namics, the Coriolis and gravitational term, and the inertia matrix, symbolically
in CasADi. By doing so, the life of many robotics researchers may be simplified:
implementing optimal control problems will be easier to formulate, and their focus
can be on solving the problem rather than extracting the kinematics and dynamics
expressions.

1.2 Report Structure

Theory
The theory chapter provides the knowledge required to understand the im-
plementation of the rigid body dynamics algorithms. This concerns spatial
vector algebra for rigid bodies and how the robot’s kinematic structure is
modelled as a rigid multi-body system. An introduction to CasADi and why
it is a desired framework when working with robot control is also provided.

Implementation
In the implementation chapter, the structural design of u2c is presented,
and its modules are described. The implementation of rigid body dynamics
algorithms is also given.

Numerical Tests
This chapter provides a brief overview of the numerical evaluation of the
symbolic expressions returned by u2c, for four different robots. The numer-
ical results are compared against the results of three other well-established
dynamics libraries, and a discussion regarding the results is presented.

Timing Tests
This chapter provides a timing comparison, where the evaluation times of the
dynamics expressions returned by u2c are compared against the numerical
evaluation times of KDL, RBDL, and PyBullet. This is of importance, as the
efficiency of the expressions is crucial in the context of closed-loop feedback
control problems within robotics research.

Derivatives Timing
The dynamics derivatives can easily be obtained from the expressions re-
turned by u2c. This chapter evaluates the efficiency of the derivatives ex-
pressions, which is also considered an important aspect of robotics research.

Epilogue
This chapter presents a discussion of the choices made in this project. A
discussion regarding further work is also presented.

2

1.3 Mathematical Notation

1.3 Mathematical Notation
Throughout this report, variables will be set in italic, constants, and functions in
roman while vectors and matrices are set in bold italic.

Other details worth noticing are: 0 denotes a zero matrix or a zero vector and
1 denotes the identity matrix. Additionally, when writing A−T , the superscript
denotes the transpose of the inverse, such that it is the equivalent of (A−1)T .
Expressions on the form a× denote a cross product operator. Last, if a symbol
has a leading superscript (for instance iv) then the superscript indicates a coor-
dinate frame. Coordinate frames can also appear in subscripts when referring to
transforms between coordinate frames.

3

Chapter 1. Introduction

1.4 Robot Kinematics & Dynamics
Robot kinematics is the motion of bodies in a robotic mechanism without con-
sidering the forces and torques acting on the system. It relates the connectivity
of the kinematic tree forming the robot mechanism to the position, velocity, and
acceleration of each of the bodies1 in the mechanism. Kinematics is an essential
aspect of robot analysis and control, and concerns mainly two aspects:

1. Forward kinematics is the act of obtaining the position and orientation,
i.e. the pose of the end-effector given the geometric structure and the joint
positions. E.g. obtaining the position of tool relative to base given q1, q2,
and q3 in Figure 1.1a.

2. Inverse kinematics specifies the position of the end-effector and based on
this information retrieves the associated joint positions. E.g. finding q1, q2,
and q3 given the pose of tool relative to base in Figure 1.1a.

Robot kinematics is broadly used among robotics researchers to study the mo-
tion of the mechanical robot system. To illustrate the use of robot kinematics, Song
and Jung (2007) have used forward and inverse kinematics to analyze the motion
of a humanoid robot and compared the motion against an industrial robot, while
Dasari and Reddy (2012) have utilized forward and inverse kinematics to study the
motion of a robot frog. In the latter case, the forward and inverse kinematics is
used to study how any legged robot can take a perfect jump, which is practical as
this is the most efficient way of traversal through uneven terrain.

q2

q1

q3

Fbase

Ftool

(a) Kinematics.

f ext
1

f1

f2

f3

q1, _q1, q̈1

q2, _q2, q̈2

q3, _q3, q̈3

(b) Dynamics.

Figure 1.1: Illustration of robot kinematics & dynamics.

Robot dynamics gives the relationship between the forces acting on the robotic
system and the accelerations it produces, e.g. the relationship between the gener-

1Also known as links.

4

1.4 Robot Kinematics & Dynamics

alized joint forces2, f1, f2, f3 and the external force fext1 , and the generalized joint
accelerations, q̈1, q̈2 and q̈3, in Figure 1.1b.

The dynamics of a rigid body system are often described through the equation
of motion:

τ = M(q)q̈ +C(q, q̇)q +G(q)−
∑
i

J i(q)Tfexti (1.1)

where M is the inertia matrix, C is the Coriolis matrix, and G is the gravitational
term. M , C, and G are dynamic parameters describing some part of the robot’s
dynamics. For brevity, the dependent variables of M , C, and G are omitted
henceforth, and the generalized joints are referred to as joints.

There are mainly five aspects of a robot’s dynamics that are used in robotics
research, but require major computations:

1. Inverse dynamics (ID) is the concern of finding the required joint forces
from a specification of the joint positions, velocities, and accelerations. In
Figure 1.1b, the ID problem would be the concern of finding the forces f1,
f2 and f3, from a specification of qi, q̇i, q̈i where i = 1, 2, 3, and an external
force fext1 .

2. Forward Dynamics (FD) is the concern of determining the produced joint
accelerations given the forces applied to the robot system. In Figure 1.1b,
this would be the concern of finding q̈1, q̈2, q̈3 with specifications for f1, f2, f3
and fext1 .

3. Inertia Matrix (M) maps the joint accelerations to the joint forces. I.e.
relating f1, f2, f3 to q̈1, q̈2, q̈3 in Figure 1.1b, where M ij maps the force of
joint i to the acceleration of joint j, i being the row number and j being the
column number of M .

4. Coriolis Matrix (C) encompasses the Coriolis forces acting on the joints,
i.e. the part of f1, f2, f3 that comes from the Coriolis effect in Figure 1.1b.

5. Gravitational term (G) encompasses the gravitational forces acting on the
joints, i.e. the part of f1, f2, f3 that it a result of the gravitational field in
Figure 1.1b.

All of these aspects have a variety of uses within robot analysis and control.
Sansanayuth et al. (2012) presents teleoperative control for a PHANToM Omni
haptic device using inverse dynamics, and Chandramouli and Manivannan (2018)
presents minimization of torque and energy requirements for different postures of
a bio-inspired reconfigurable robot using inverse dynamics, to mention some.

Forward dynamics is often used for simulation purposes and can also be used
for control. Beirami and Macnab (2006) presents direct neural-adaptive control of
robotic manipulators using forward dynamics.

2I.e. the constrained relative forces between the connected bodies.

5

Chapter 1. Introduction

The inertia matrix contains useful information regarding the relationship be-
tween the forces applied to the system and the acceleration it produces. Hence it
has a variety of uses, ranging from neural-adaptive control of robotic manipulators
using a supervisory inertia matrix, presented by Richert et al. (2000), to link mass
optimization of serial robot manipulators, presented by Kucuk and Bingul (2006).

To summarize, robot kinematics and dynamics are widely used for several pur-
poses. u2c aims to provide these aspects of a robot’s kinematics3 and dynamics
as a symbolic representation of the joint state variables, for further use in robotics
research. The recursive Newton-Euler algorithm (RNEA) is used to obtain the
inverse dynamics, the Coriolis matrix, and the gravitational force. The articulated
body algorithm (ABA) is used to obtain the forward dynamics, and the composite
rigid body algorithm (CRBA) is used to obtain the inertia matrix. The algorithms
are implemented using spatial algebra, as presented by Featherstone (2008).

Throughout this report, the joint positions, velocities, accelerations, and forces
(q, q̇, q̈, τ) are referred to as the joint state variables as they represent the current
state of the joints in the system. They are further explained in section 2.3.3.

1.5 Earlier Work
When starting this project, a prototype of u2c had been developed by co-supervisor
Mathias Hauan Arbo. The prototype contained functionality for deriving symbolic
solutions for the forward kinematics.

The focus of this project has been to develop a library that provides symbolic
solutions of the robot’s dynamics, i.e. the aforementioned ID, FD, M , C, and G.
The functionality for deriving the forward kinematics is preserved, but as this work
is derived independently of the original library implementation, the kinematics is
not in focus.

3Symbolic formulations of the inverse kinematics is not prioritized at the time.

6

1.6 State-of-the-Art

1.6 State-of-the-Art
Due to its importance in robotics research, several libraries for generating robot
kinematics and dynamics exist. This section presents some of these libraries and
discusses whether they are suited for optimal control within robotics research.

1.6.1 KDL
To automatically generate robot kinematics and dynamics from a URDF has al-
ready been achieved by the ROS4 and OROCOS5 community in the Kinematics
and Dynamics Library (KDL), presented by Smits (2014).

OROCOS is the acronym of Open RObot COntrol Software, and the OROCOS
project aims to develop an open-source framework for robot and machine control.
The library contains special object types and functions so that one can take a
kinematic chain and evaluate the forward kinematics, inverse kinematics, gravita-
tional and Coriolis terms, and the inertia matrix. The routines are real-time safe,
implemented in C++, and contain infrastructure for using the library with Python.

When using KDL to obtain the forward or inverse kinematics, or the dynamics,
the results are numerical. There is no way to provide the kinematics or dynamics
expressions symbolically, which restricts the user to the built-in functionality rather
than being able to take as many partial derivatives as necessary for the users’ con-
troller formulation. Thus, in a scenario where the deriving of symbolic expressions
for a robot’s dynamics could be useful, for example, if one wishes to implement an
MPC for robot control such as the time-optimal formulation of Verscheure et al.
(2009), KDL may not provide the required functionality.

The above is in many ways the basis for this project: u2c attempts to implement
a subset of the functionality of KDL for use with CasADi. Another difference
of notice is that KDL do not provide forward and inverse dynamics, which u2c
provides.

1.6.2 Rigid Body Dynamics Algorithms
Dr. Roy Featherstone is a researcher specializing in robot dynamics and related
fields. He is the author of the book Rigid Body Dynamics Algorithms (Feather-
stone, 2008), whose is to present the most efficient algorithms for calculating rigid
body dynamics. The dynamics algorithms presented in the book are RNEA for
inverse dynamics, ABA for forward dynamics, and CRBA for obtaining the inertia
matrix and forward dynamics. Featherstone’s implementation of these algorithms
stands out from the original versions as they are implemented using spatial vector
algebra. Briefly explained, spatial algebra uses 6D vectors that contain the linear
and angular characteristics of rigid body motion and forces. The fact that the
linear and angular characteristics are given in one vector leads to easier implemen-
tation, more readable computer code, and more efficient algebraic computations.

4For further information on ROS, see http://wiki.ros.org/
5For further information on OROCOS, see http://www.orocos.org/

7

http://wiki.ros.org/
http://www.orocos.org/

Chapter 1. Introduction

Therefore, Featherstone’s versions of these algorithms are used as a basis for the
development of u2c. Spatial vector algebra is further explained in section 2.2.

Spatial v2

Spatial v2 is a set of functions, implemented by Featherstone (2012), that uses spa-
tial vector arithmetic and the dynamics algorithms mentioned above. The library
is implemented in Matlab and is based on the robot being described through a
system model data structure. The data structure can describe a general fixed base
kinematic tree either based on spatial 6D vector arithmetic or planar 3D vector
arithmetic.

As opposed to u2c and KDL, Spatial v2 cannot generate the dynamics based
on a URDF and does not contain any functionality for deriving robot kinematics.
As with KDL, Spatial v2 provides numerical solutions to the dynamics problems.
Additionally, the library is implemented in Matlab, which reduces its usefulness as
Matlab requires a license. Despite this, Spatial v2 has been an inspiration in this
thesis for discovering ideas of how to implement the dynamics algorithms efficiently.

Rigid Body Dynamics Library

Felis (2016) presents the Rigid Body Dynamics Library (RBDL), which is a C++
library inspired by the pseudocode of Featherstone’s algorithms in Rigid Body Dy-
namics Algorithms. The library contains the same essential rigid body algorithms:
RNEA for inverse dynamics, ABA for forward dynamics and CRBA for comput-
ing the inertia matrix. Further, forward and inverse kinematics are provided, as
well as functionality for the handling of external constraints such as contacts and
collisions. Models of closed kinematic chains, such as Stewart platforms, are also
provided.

RBDL is a very efficient library for robot kinematics and dynamics and even
contains support for loading robot models from URDFs. Yet, as with the other
libraries mentioned, it gives numerical solutions, and if one wishes to obtain the
robot kinematics or dynamics expressions symbolically, it is of little use.

1.6.3 SymPyBotics
Sousa (2014) presents SymPyBotics, a symbolic framework for modeling and iden-
tification of robot dynamics. It is implemented in Python and makes use of SymPy
for symbolic expressions and NumPy as the underlying numerical matrix library.
SymPy is a Python library for symbolic mathematics, and SymPyBotics thus pro-
vides symbolic expressions for robot kinematics and dynamics.

To the author’s knowledge, this is the only already existing library that pro-
vides symbolic solutions of robot kinematics and dynamics. However, there are a
few things of important notice. Firstly, these symbols are given as SymPy data
types which are naturally not compatible with CasADi. Secondly, an essential
difference between SymPy and CasADi is that while SymPy uses symbolic dif-
ferentiation, CasADi uses algorithmic differentiation. Briefly explained, symbolic

8

1.6 State-of-the-Art

differentiation manipulates the total expression using rules of differentiation while
algorithmic differentiation decomposes the expression into atomic operations and
differentiates these. The result is that symbolic differentiation has a tendency to
lead to inefficient computer code and faces the difficulty of converting an algo-
rithm such as 4th order Runge-Kutte into a single expression. With algorithmic
differentiation, accuracy is guaranteed, and the complexity does not get worse than
the original function. Hence, when computing the Jacobian or Hessian, the sym-
bolic framework provided by CasADi is significantly more efficient than SymPy.
Also, CasADi exploits sparsity, which improves memory usage and computational
efficiency. This is further discussed in section 2.1.2.

Based on the above one can conclude that SymPyBotics is not ideal in sit-
uations where u2c is ideal. Mainly because the data types of SymPyBotics are
not compatible with CasADi, but also because CasADi provides advantages and
functionality that SymPy is not able to provide. Thus, u2c has the potential to
generate symbolic expressions that are more efficient than those of SymPyBotics.
Also, SymPyBotics does not provide URDF loadings6.

1.6.4 PyBullet
PyBullet, presented by Coumans and Bai (2016–2018), is an open-source collision
detection and rigid body dynamics library and has support for forward and inverse
kinematics and dynamics. The library supports URDF loading, and the solutions
are given numerically.

PyBullet stands out from the other dynamics libraries as it uses maximal coor-
dinate algorithms. In general, there are two classes of dynamics algorithms where
one of the classes is the maximal coordinate algorithms, and the other class is
the reduced coordinate algorithms. Maximal coordinate algorithms use joint con-
straint equations to restrict the relative motions of the bodies and model each
body individually, in contrast to modeling the robot as a rigid multi-body system.
The advantage of these methods is that they make the handling of certain closed
kinematic chains simpler. The disadvantage is that the constraint equations, in-
cluding joint constraints, are not necessarily fulfilled at all times, which may lead
to separation of connected bodies.

In contrast to PyBullet, u2c uses reduced coordinate algorithms to obtain the
dynamics. These algorithms assume that the connections of rigid multi-body sys-
tems can be described as a tree. The main advantage of these algorithms is that
they operate on the actual degrees of freedom of the system that fulfill the joint
constraints at all times. However, they are more complicated to implement than
maximal coordinate algorithms and require special treatment in cases where the
robot model is not given as a tree, for instance when working with closed kine-
matic chains such as Stewart platforms or arms in contact situations. It should be
mentioned that one of the shortcomings of using a URDF to describe the robot is
that URDF does not support closed kinematic chains. Therefore, the handling of
closed kinematic chains in the reduced coordinate algorithms is not a concern at

6For that reason, it is not conducted a timing comparison between SymPyBotics and u2c.

9

Chapter 1. Introduction

the time for u2c.

1.6.5 Conclusion

Table 1.1: Kinematics & Dynamics Libraries.

Symbolic URDF Closed chains Code compilation
KDL

spatial v2
RGBL

SymPyBotics
PyBullet

urdf2casadi

In Table 1.1, a summary of the results obtained by investigating the state-of-the-
art is given. By evaluating the table, it is clear that few libraries provide symbolic
expressions of robot kinematics and dynamics, even though they are widely used
among robotics researchers. To the author’s knowledge, only one existing software
library provides this. Although SymPyBotics provide symbolic expressions for
kinematics and dynamics, it has other limitations such as not supporting URDF
loading, the use of symbolic differentiation, and the fact that it does not exploit
sparsity, making it less suitable for use in time-critical control.

Thus, u2c can provide robotics researchers with the opportunity to obtain and
evaluate symbolic expressions for robot kinematics and dynamics fast and efficient,
which can further be used for optimal control, trajectory optimization, and other
tasks where the dynamics parameters and their derivatives are needed.

10

CHAPTER 2

Theory

This chapter is based on the Theory chapter from the specialization project asso-
ciated with this thesis. Modifications have been made according to changes during
the latter part of the project.

2.1 CasADi
As mentioned in the introduction, CasADi1 is the go-to framework when work-
ing with numerical optimization and optimal control in particular. CasADi is
developed by Joel Andersson, Joris Gillis, and Greg Horn at the Optimization in
Engineering Center (OPTEC) of KU Leuven, under supervision of Moritz Diehl. It
is an open-source framework available for Matlab, Python, and C++, and started
as a tool for algorithmic differentiation (AD) that used the syntax of a Computer
Algebra System (CAS), from which it has gotten its name.

In this section, an introduction to CasADi and its functionality will be pre-
sented. For a more in-depth description of CasADi, the reader is referred to An-
dersson et al. (2018).

2.1.1 Motivation for using CasADi
Derivatives play a central role when working with optimal control problems. There
are several ways to compute these derivatives. One could find the derivatives by
hand, which is a time-consuming and error prone activity. Therefore, differenti-
ation performed by software is generally desirable. The two most common ways
are symbolic and algorithmic differentiation. Most symbolic frameworks nowadays,

1Available at https://web.casadi.org/

11

https://web.casadi.org/

Chapter 2. Theory

such as the Symbolic Toolbox for Matlab2 and SymPy, presented by Meurer et al.
(2017), use symbolic differentiation. This is the most straightforward way of differ-
entiation. The system knows the derivatives for most mathematical expressions and
uses various rules, such as the product rule, to calculate the resulting derivative. In
the end, the expression is simplified to obtain the resulting expression. Although
this is easy to use, the resulting code is often long and computationally expensive to
evaluate. Algorithmic differentiation, on the other hand, decomposes expressions
into atomic operations3 with known differentiation rules and differentiates these.
Thus, CasADi can evaluate derivatives fast and accurately.

Further, the CasADi framework approaches optimal control problems in a way
not seen in other optimization frameworks earlier. Rather than providing the
programmer with a black box optimal control problem solver, CasADi provides
the user with a suite of building blocks that can be used to implement general-
purpose or specific-purpose solvers.

Another advantage of CasADi is that sparsity patterns are exploited by storing
matrices using the Compressed Column Storage (CCS) format. In addition to
reduced memory usage, CCS provides linear algebra operations to be performed
efficiently. This is especially advantageous when computing rigid body dynamics,
as it requires a large number of operations performed on sparse matrices.

Based on the above, generating symbolic expressions for robot kinematics and
dynamics can be done efficiently when working with CasADi. These expressions
can further be used to calculate Jacobians and Hessians, and solve optimal control
problems using the optimization building blocks provided by CasADi.

It should also be mentioned that CasADi provides C generation of code. For
u2c, this means that C code can be generated from the symbolic expressions. This
has several advantages, the main two being faster execution times and that the user
is not dependent on CasADi for using these expressions. The latter implies that the
user can find the Jacobians and Hessians in CasADi for use in one’s own libraries,
or for porting the resulting controller formulations to embedded platforms.

2.1.2 Symbolic Framework

An AD implementation can be implemented to support both matrix-valued and
scalar-valued atomic operations. However, when used on an expression only con-
taining scalar atomic operations, this could lead to more overhead in terms of
memory and computation. To avoid this, CasADi uses a structure where two
expression graphs are defined to represent the symbolic expressions: one for scalar-
valued atomic operations and another for sparse-matrix atomic operations.

Both expression graphs represent an atomic operation as a node in the graph.
The graphs are topologically sorted so that they can be evaluated in two different
virtual machines, one for each expression graph.

2For more information, see https://www.mathworks.com/products/symbolic.html
3I.e. expression that cannot be decomposed further.

12

https://www.mathworks.com/products/symbolic.html

2.1 CasADi

SX - Scalar Expression Graph

The SX data type is used to express matrices where elements are expressions made
of unary and binary operations, thus representing the scalar expression type.

In the code snipped below it is shown how to declare SX symbolics in CasADi
using Python4. Two symbolics, the 3 × 1 matrix q and the 3 × 3 matrix M are
created and used to make the symbolic expression f = Mcos(q).
import casadi as cs
q = cs.SX.sym(’q’, 3)
M = cs.SX.sym(’M’, 3, 3)
f = cs.mtimes(M, cs.cos(q))
print (f)

Output:
@1=cos(q_0), @2=cos(q_1), @3=cos(q_2),
[(((M_0*@1)+(M_3*@2))+(M_6*@3)),
(((M_1*@1)+(M_4*@2))+(M_7*@3)),
(((M_2*@1)+(M_5*@2))+(M_8*@3))]

As can be observed, there are three shared subexpressions @1 = cos(q 0), @2 =
cos(q 1), and @3 = cos(q 2) which defines the resulting 3×1 matrix f. The fact
that one can have shared subexpressions in CasADi is very powerful as they are used
to build up longer expressions. By having an expression graph for scalar-valued
operations and at the same time exploiting reusable subexpressions, the result is
that expressions with millions of operations can be represented and numerically
evaluated with minimal overhead.

MX - Matrix Expression Graph

The MX data type is the matrix expression type. When operating with MX sym-
bols, each atomic operation in the expression graph is a matrix operation. Hence,
expressions of the form A + B, where A and B are n ×m matrices, results in one
single addition operation, in contrast to when using SX. The MX usage is illustrated
in the code snippet below where M and q are used to obtain f = Mq.
q = cs.MX.sym(’q’, 3)
M = cs.MX.sym(’M’, 3, 3)
f = cs.mtimes(M, q)
print (e)

Output:
mac(M,q,zeros(3x1))

mac represents a matrix multiply accumulate operation, which is an operation where
two matrix operands are multiplied.

The MX expression graph only supports a small set of atomic operations. These
are selected carefully so that derivatives calculated using AD can be expressed
efficiently using this set of atomic operations.

4Only Python syntax is provided as this is what is used in u2c.

13

Chapter 2. Theory

Function Objects and Virtual Machines

CasADi provides a class for function objects. Function objects represent a way of
constructing symbolical expressions for numerical and symbolic evaluation, thus
defining a way for calculating directional derivatives and Jacobians. The function
objects are created by giving them a display name and inputs and outputs for the
expression:

F = cs.Function(’F’, [q,M], [f])

The above example defines a function object with name F, two inputs q and M,
and one output f. It is worth knowing that MX variables can be used as input to
SX functions.

The construction of a function object works by sorting the expression graph
into an algorithm that is evaluated when performing AD. After sorting of the
operations of a function object, CasADi implements two virtual machines, one for
the SX expression graphs and another for the MX expression graphs. Based on the
operation, one of the virtual machines is assigned from a work vector. The work
vector represents live variables, and makes it possible to reuse memory locations
for variables going out of scope, which again decreases the overall memory usage.
It also makes it possible for CasADi to identify in-place binary operations such as
x = x+y ⇔ x+=y and x = x·y ⇔ x·=y.

Although the decrease in overhead by using such in-place operators is small,
CasADi is able to combine this with other elementary operations such that x +=
y*z becomes in-place multiplication and addition. By doing so, Andersson et al.
(2012) has shown that atomic operations are decreased by a factor of five, reducing
the computational time sufficiently. A particular important consequence of this is
that when expressing the Jacobian or Hessian, this feature will reduce the compu-
tational cost remarkably as these matrices consist of many atomic expressions such
as addition and multiplication.

2.1.3 Jacobian Sparsity and Symmetry Exploiting
A strong feature of CasADi is that it exploits sparsity and symmetry patterns when
calculating Jacobians. The algorithm for generating Jacobians in CasADi is very
complex, but essentially consists of four steps:

1. Detect sparsity patterns.

2. Find derivatives needed to construct the complete Jacobian by using graph
coloring techniques.

3. Calculate the directional derivatives numerically or symbolically.

4. Construct complete Jacobian.

Hessians are calculated by calculating the gradient and then obtaining the Ja-
cobian of the gradient as explained above and exploiting symmetry by using star
coloring algorithms. For a more detailed description of the algorithms, the reader

14

2.1 CasADi

is referred to Andersson et al. (2018). Obtaining the Jacobian is done easily in
CasADi using the following syntax:

J = cs.jacobian(mtimes(M,q),q)

One can also find the Jacobian-times-vector product using cs.jtimes. This is
an efficient way of calculating the time derivatives of functions, and reduces the
number of operations compared to first obtaining the full Jacobian with cs.jacobian,
and then multiply the Jacobian with a vector. A more detailed description of
cs.jacobian and cs.jtimes is given in Chapter 6.

2.1.4 C-code Generation
As mentioned above, one of the advantages of CasADi is that it support generation
of C-code for a large number of function objects. C-code generation has several
advantages such as:

• C-code generation of CasADi functions provides a way of running the code on
a platform where CasADi is not installed: all that is needed is a C compiler.

• It is also a way to speed up the evaluation time. A rule of thumb is that the
numerical evaluation of the generated C code can be 4 to 10 times faster than
if the code was executed using CasADi’s virtual machines, especially when
using optimization flags with the compiler.

• C generation provides a way to debug the code and detect potentially sub-
optimal code. This is because the generated code reflects the evaluation that
happens in the virtual machines. Thus, if an operation is slow, it is likely to
show up when analyzing the generated code. If the code takes a long time
to compile, this indicates that the code contains suboptimal solutions and
should be broken into smaller nested functions.

C-code generation of function objects is done very easily in CasADi. For in-
stance, if one was to C-code generate the function F, this can be done by the
following syntax:

F.generate(’gen.c’)

This generates a C file gen.c that contains the function F with all its dependencies
and helper functions. It is also possible to generate a C file containing several
CasADi functions by using the CodeGenerator class:

C = CodeGenerator(’gen.c’)
C.add(F1)
C.add(F2)
C.add(F3)
C.generate()

15

Chapter 2. Theory

Explicitly generating the code for function objects is not always necessary, and
one can use just-in-time (jit) compilation of the function objects to achieve function
objects that evaluate close to the speed of the C generated code, while being callable
from Python. This is done easily when declaring the CasADi function. Using the
aforementioned function F, jit compilation can be achieved by:

F = cs.Function(’F’, [q,M], [f],
{"jit": True, "jit_options":{"flags":"-Ofast"}})

where the -OFast compiler flag is used for maximum efficiency.

2.1.5 Conclusion
To conclude, CasADi is a framework that provides a transparent and efficient
approach to algorithmic differentiation and optimal control, and is thus useful in
the context of optimal control of robot systems. Its efficient approach is based
on having two expression graph representations: one for minimal overhead, the
SX graph, and another for maximum generality, the MX graph. Further, CasADi
uses advanced algorithms to exploit sparsity and symmetry for the calculation
of Jacobians and Hessians, making it an adventageous framework for obtaining
derivatives of functions, while C-generation of code provides fast execution time
and flexible usage.

16

2.2 Spatial Vector Algebra

2.2 Spatial Vector Algebra
Spatial vectors are 6D vectors that contain the linear and angular characteristics
of rigid body motion and forces. The reason for using spatial vector algebra in the
algorithms implemented in u2c is that they provide a compact notation to study
the dynamics of a rigid multi-body system. A spatial vector can perform the work
of two 3D vectors and thus replace two or more 3D equations. Hence, dynamics
algorithms can be derived quickly and expressed in a compact form leading to
efficient computer code.

This section aims to give the reader a proper understanding of spatial vector
algebra and the advantages of using this notation related to rigid body dynam-
ics. Spatial algebra is essential to understand the algorithms implemented in u2c,
presented in Chapter 3. The section is based on the spatial algebra presented by
Featherstone (2008) and Siciliano and Oussama (2008).

2.2.1 Preliminaries
First, some mathematical concepts and notations used to explain spatial vector
algebra are presented.

Vector Spaces: In linear algebra, a vector is defined to be an element of a vector
space. Four vector spaces that frequently occur in spatial algebra are:

Rn - coordinate vectors,

En - Euclidean vectors,

Mn - spatial motion vectors,

Fn - spatial force vectors.

The superscript indicates the dimension. When 3D vectors are used to describe
rigid body dynamics, they are Euclidean vectors, and thus an inner product is de-
fined on them. Spatial vectors are instead either motion vectors or force vectors.
Spatial motion vectors describe rigid body velocity or acceleration, while spatial
force vectors describe force and momentum.

Hats and Underlines: If spatial vectors and 3D vectors occur together, spa-
tial vectors are represented with hats, p̂, to avoid name clashes with 3D vectors
of the same name, p. Further, if a distinction is required between the coordinate
vectors and the abstract vectors they represent, coordinate vectors are underlined,
p. These distinctions are only used to explain the concept of spatial algebra and
are not used outside this chapter.

2.2.2 Spatial Vectors
To illustrate the advantage of spatial vectors explained above, one can evaluate the
equation of motion for a rigid body. Usually, rigid body dynamics are expressed

17

Chapter 2. Theory

using 3D vectors, although a rigid body in 3D has six degrees of freedom. As a
result, one needs two vector equations to express the equation of motion for a rigid
body:

f = maC (2.1)
nC = Iω̇ + ω × Iω (2.2)

(2.1) expresses the relationship between the force applied to the body and the linear
acceleration of its center of mass, while (2.2) expresses the relationship between
the moment applied to the body and its angular acceleration.

In spatial vector notation 6D vectors are used instead of 3D vectors, where the
6D vectors combine linear and angular aspects of rigid body motion. Thus, the
equation of motion reduces to one equation:

f̂ = Îâ+ v̂ ×∗ Îv̂ (2.3)

In (2.3) f̂ is the spatial force acting on the body, v̂ and â denotes its spatial ve-
locity and acceleration, respectively, and Î is its spatial inertia tensor. ×∗ denotes
a spatial force cross product. Further, spatial vector notation provides more sim-
plifications than this where the overall effect is that spatial notation often cuts
algebraic computation by at least a factor of 4 compared to standard 3D vector
notation. This advantage of spatial vectors is especially useful when it comes to
developing fast and efficient rigid body algorithms: the code becomes shorter and
easier to read, write, and debug. In the following sections, the spatial concepts
illustrated here are explained in further detail.

2.2.3 Plücker Coordinates
Plücker coordinates are the coordinates of choice for 6D vectors as they are easy
to use as well as tending to be efficient for computer implementation. Thus, when
implementing rigid body dynamics algorithms, it is useful to express motion and
forces in Plücker coordinates. If one has a moving body where ω is the angular
velocity of the body, and vO is the linear velocity around the fixed point O the
Plücker coordinates becomes the Cartesian coordinates of ω and vO. This is further
explained in section 2.2.4.

2.2.4 Spatial Velocity and Force
In spatial vector algebra, two vector spaces are used to describe the spatial vectors.
Motion vectors are vectors describing the motion of a rigid body such as velocity
vectors and acceleration vectors. These belong to the motion vector space M6. Force
vectors describe force and momentum and belong to the vector space F6.

Basis Vectors

The notation currently used for rigid body dynamics use 3D vectors to express
velocity. Here v = (vOx, vOy, vOz)T is the 3D Cartesian velocity vector that rep-
resents v in the orthonomal basis {i,j,k}, and the relationship between the rigid

18

2.2 Spatial Vector Algebra

body 3D velocity v and v becomes:
vO = vOxi+ vOyj + vOzk

The same principal applies for spatial velocity, except that Plücker coordinates
and a Plücker basis are used. A Plücker basis consists of 12 basis vectors, 6 basis
vectors to represent motion and 6 basis vectors to represent force. Given a point O
and a Cartesian reference frame, the Plücker basis is given as three unit rotations
about the lines Ox, Oy, and Oz, three unit translations in x, y, and z directions,
three unit couples about x, y, and z directions, and three unit forces along the
lines Ox, Oy, and Oz. The unit rotations are denoted {dOx,dOy,dOz}, the unit
translations are denoted {dx,dy,dz}, the unit couples are denoted {ex, ey, ez},
and the unit forces are denoted {eOx, eOy, eOz}. These are illustrated in Figure
2.1.

dx

dz

ex

ey

ez

dOx

dOy

dOz

eOx

eOy

eOz

dy

Figure 2.1: Basis vectors for Plücker coordinates.

Thus, the basises used for spatial motion and force vectors becomes, respec-
tively:

DO = {dOx,dOy,dOz,dx,dy,dz} ⊂ M6 (2.4)
EO = {ex, ey, ez, eOx, eOy, eOz} ⊂ F6 (2.5)

Velocity and Force

The velocity of a rigid body around a fixed point O can be represented by two 3D
vectors: ω - the angular velocity and vO - the linear velocity. The same velocity
can be described using one single spatial motion vector, v̂ ∈ M6, obtained from the
3D vectors. Given the Plücker basis DO and a Cartesian coordinate frame Oxyz, it
can be shown that the spatial velocity becomes:

v̂ = dOxωx + dOyωy + dOzωz + dxvOx + dyvOy + dzvOz (2.6)
In (2.6) ωx, ..., vOz are the Cartesian coordinates of ω and vO and represent the
Plücker coordinates of the spatial velocity vector v̂. The Plücker coordinate vector
can thus be written:

v̂O =

ωx
ωy
ωz
vOx
vOy
vOz

 =
(
ω
vO

)
(2.7)

19

Chapter 2. Theory

The same principle applies to spatial force. Given a system of forces that act
on a rigid body and a point O, the spatial force can be represented by the force f
acting on a line passing through O and the couple nO, which is the moment of the
force about O. Hence, the force can be represented in the same way as the velocity
using these two 3D vectors. Using the same coordinate frame as explained above,
it can be shown that:

f̂ = exnOx + eynOy + eznOz + eOxfx + eyfOy + ezfOz (2.8)

In (2.8) nOx, ..., fz are the Cartesian coordinates of f and nO and represent the
Plücker coordinates of the spatial force vector f̂ . The Plücker coordinate vector
thus becomes:

f̂
O

=

nOx
nOy
nOz
fx
fy
fz

 =
(
e
nO

)
(2.9)

2.2.5 Spatial Scalar Product
A scalar product is only defined on spatial vectors between a motion vector and a
force vector. That is, given m̂ ∈ M6 and f̂ ∈ F6 the expressions m̂ · f̂ and f̂ · m̂
are defined and both express the power delivered by f̂ on the rigid body. m̂ · m̂
and f̂ · f̂ are not defined as there is no inner product on M6 or F6.

The scalar product creates a duality relationship which means that each vector
space is the dual of the other. Given the vector space M6, it’s dual, denoted M6∗,
is a vector space having the same dimension as M6 and having the property that a
scalar product is defined between it and M6. Hence, given the above, F6 is the dual
of M6 and M6 is the dual of F6.

The duality relationship between M6 and F6 results in a dual basis formed by
a basis of M6, DO = {d1, . . .d6}⊂ M6 as defined in (2.4), and a basis of F6, EO =
{e1, . . . e6}⊂ F6 as defined in (2.5). The dual basis on M6 and F6 satisfy the condi-
tion:

di · ej =
{

1, if i = j

0, otherwise
(2.10)

A dual basis further defines a dual coordinate system. Hence, dual coordinate
systems are used for representing spatial vectors. An important property of dual
coordinates is:

m̂ · f̂ = m̂T f̂ (2.11)

In (2.11), m̂ and f̂ are the Plücker coordinate vectors that represent m̂ ∈ M6 and
f̂ ∈ F6 and the individual elements in m̂ and f̂ are given by m̂i = dim̂ and
f̂i = eif̂ , respectively.

20

2.2 Spatial Vector Algebra

The use of dual coordinate systems results in the need of different transfor-
mation matrices: one to operate on the motion coordinate vector m̂ and another
to operate on the force coordinate vector f̂ . A motion transform is throughout
the report denoted X and a force transform is denoted X∗. Their relationship
can be found from (2.11): m̂T f̂ = (Xm̂)T (X∗f̂), which leads to the following
relationship between the motion and force transforms:

X∗ = X−T (2.12)

The duality relationship also results in different spatial cross product operators
for motion and force vectors. This is further explained in section 2.2.7.

2.2.6 Spatial Coordinate Transforms
The Plücker coordinate transforms from A to B for motion and forces obey different
transformation rules as a result of the spatial scalar product. The transform for a
motion vector from A to B is denoted BXA and the transform for a force vector
fromA toB is denoted BX∗A. The two transforms are related by the force transform
being the inverse transpose of the motion transform. Their relationship is given by
the equation BX∗A = BX−TA as explained earlier. This section focuses on explaining
these transforms between Plücker coordinate systems.

Plücker coordinate systems denoted A and B, are defined by the position and
orientation of a Cartesian frame. Therefore each Plücker coordinate system also
represents a Cartesian coordinate frame. The transformation from A to B depends
only on the position and orientation of frame B relative to frame A and can hence
be expressed as a product of the rotation transform and the translation transform.

Spatial Rotation Transform

Let A and B represent two Cartesian frames with common origin O. m̂ is any
given spatial motion vector which can be expressed by two 3D vectors, m and
mO, as explained in section 2.1.3. The rotational transform between frame A and
B is then given by:

Bm̂ =
(

Bm
BmO

)
=
(
RAm
RAmO

)
=
(
BRA 0

0 BRA

)
Am̂ (2.13)

In (2.13) Am̂, Am, AmO, Bm̂, Bm and BmO are the coordinate vectors5 given
in frame A and B respectively and R is the 3× 3 rotation matrix that transforms
coordinate frames from frame A to B. The 6× 6 rotational transform becomes:

BXA =
(
BRA 0

0 BRA

)
(2.14)

The upper left rotation matrix transforms the angular part of the motion vector
and the lower left rotation matrix transforms the linear part of the motion vector.

5The coordinate vectors are not underlined here as no distinction is necessary.

21

Chapter 2. Theory

By using the correlation between motion and force transforms given by (2.12)
the following applies:

BX∗A = BX−TA =
(
BRA 0

0 BRA

)
(2.15)

An important detail of notice is that when a spatial transform is purely rota-
tional BX∗A = BXA.

Spatial Translation Transform

While the spatial rotation transforms accounts for the orientation of frame B, the
translation transform accounts for the position of the frame. Let O and P be two
points where one Cartesian frame is located at each point with the same orientation.
Again, there are motion vectors that can be expressed as two 3D vectors: m and
mO at O, and m and mP at P . By definition mP = mO − ~OP ×m. For both
cases the Plücker coordinates are the Cartesian coordinates of both vectors and
the following is obtained:

m̂P =
(
m
mP

)
=
(

m
mO − r ×m

)
=
(

1 0
−r× 1

)
m̂O (2.16)

where r = ~OP . An expression on the form r×, where r = (x y z)T , is the skew-
symmetric matrix that satisfies r × a for any 3D vector a. It is defined by the
equation: xy

z

× =

 0 −z y
z 0 −x
−y x 0

 (2.17)

Hence, the spatial translation motion transform from a frame A with origin O to
a frame B with origin P , given the same orientation, becomes:

BXA =
(

1 0
−r× 1

)
(2.18)

And the translation transform for force vectors is given by:

BX∗A = BX−TA =
(

1 −r×
0 1

)
(2.19)

as r× is skew symmetric.

General Spatial Transform

The total spatial transform from frame A to frame B is given by the change of
orientation and the change of position from frame A to frame B. Hence, the
general spatial transform becomes the product of the rotational and translational
spatial transform. For motion vectors, this gives:

BXA =
(
BRA 0

0 BRA

)(
1 0
−r× 1

)
=
(

BRA 0
−BRAr× BRA

)
(2.20)

22

2.2 Spatial Vector Algebra

While for force vectors, the general transform becomes:

BX∗A =
(
BRA 0

0 BRA

)(
1 −r×
0 1

)
=
(
BRA −BRAr×

0 BRA

)
(2.21)

The inverse of these transforms, i.e. the transform from B to A, can be easily
obtained from (2.20) and (2.21):

AXB =
(

1 0
r× 1

)(
BRT

A 0
0 BRT

A

)
=
(

BRT
A 0

r × BRT
A

BRT
A

)
(2.22)

AX∗B =
(

1 r×
0 1

)(
BRT

A 0
0 BRT

A

)
=
(
BRT

A r × BRT
A

0 BRT
A

)
(2.23)

To compare, the 4× 4 homogeneous transformation matrix is given by:

BTA =
(
BRA −BRAr

0 1

)
(2.24)

2.2.7 Spatial Cross Products
If r ∈ E3 is a Euclidean vector with angular velocity ω and otherwise not changing,
then the derivative of r is given by ṙ = ω×r. ω× is thus working as a differentiation
operator as it maps r to ṙ. This idea is extended to spatial vectors, except that
here it is in need of two operators: one for the vectors of M6 and another for the
vectors of F6. Hence, if m̂ ∈ M6 and f̂ ∈ F6 are two spatial vectors moving with
the spatial velocity v̂ ∈ M6 and otherwise not changing, one can define two cross
operations that must satisfy:

˙̂m = v̂ × m̂ (2.25)
˙̂
f = v̂ ×∗ f̂ (2.26)

×∗ can be viewed as the dual of ×, and their relationship is similar to the rela-
tionship between X and X∗. When using the Plücker basises M6 and F6 and their
duality relationship explained in section 2.2.5, the 6× 6 matrices representing v̂×
and v̂×∗ in Plücker coordinates can be deduced. The results are:

v̂O× =
(
ω
vO

)
× =

(
ω× 0
vO× ω×

)
(2.27)

v̂O×∗ =
(
ω
vO

)
×∗ =

(
ω× vO×
0 ω×

)
= −(v̂O×)T (2.28)

The spatial cross products of two motion vectors becomes:(
ω
vO

)
×
(
m
mO

)
=
(

ω ×m
ω ×mO + vO ×m

)
(2.29)

And the spatial cross product for two force vectors is given by:(
ω
vO

)
×∗
(
f
fO

)
=
(
ω × fO + vO × f

ω × f

)
(2.30)

23

Chapter 2. Theory

2.2.8 Spatial Acceleration
The spatial acceleration of a rigid body is defined as the rate of change of spatial
velocity. Although this seems obvious, the spatial acceleration differs from the
classical rigid body acceleration, which is here referred to as classical acceleration
and will be denoted a′. Spatial acceleration is given as the time derivative of spatial
velocity:

âO = d

dt

(
ω
vO

)
=
(
ω̇
˙vO

)
(2.31)

The classical acceleration is defined as the following 6D vector:

â′O =
(
ω̇

v̇
′

O

)
(2.32)

Given r as the position vector related to the position of the fixed point O relative
to another fixed point, the following relations are given:

vO = ṙ

v̇′O = r̈

v̇O = r̈ − ω × vO
(2.33)

The difference between the spatial acceleration, given by (2.31), and the classical
acceleration, given by (2.32), lies in spatial acceleration taking the derivative of the
linear velocity vO where O is fixed in space, while for classical acceleration the
derivative of the linear acceleration is derived as if O is fixed on the rigid body.
The two accelerations are related by the equation:

â
′

O = âO +
(

0
ω × vO

)
(2.34)

The great advantage of spatial acceleration is that it obeys the same combina-
tion of coordinate transformation rules as velocity. To demonstrate, if two bodies
B1 and B2 have the spatial velocities v̂1 and v̂2, respectively, then it is already
known that the velocity of B2 relative to B1 is given by the relative velocity:

v̂rel = v̂2 − v̂1

The relationship between spatial acceleration is then obtained by differentiating
the velocity formula:

d

dt
v̂rel = d

dt
v̂2 −

d

dt
v̂1 ⇒ ârel = â2 − â1 (2.35)

As one can see from (2.35), spatial accelerations are composed simply by addi-
tion, just as velocities. Hence, spatial accelerations are easier to use than classical
acceleration, where there are Coriolis and centrifugal terms to take into consider-
ation. This is an important advantage of spatial vector algebra as it simplifies the
implementation of rigid body algorithms relative to using traditional 3D vectors.

24

2.2 Spatial Vector Algebra

2.2.9 Spatial Momentum
Suppose there is a moving rigid body with mass m, center of mass C and a rota-
tional inertia ĪC , that is moving with a spatial velocity v̂ = (ω, vC)T . Then the
momentum of the body is described as two 3D vectors h = mvC and hC = ĪCω.
h is the linear momentum of the body and is a line vector, such as linear force,
where its line of action passes through the body’s centre of mass. hC is the body’s
angular momentum. The total moment of momentum about a given point O is the
sum of these two:

hO = hC + ~OC × h (2.36)

These definitions can be assembled into the definitions of spatial momentum.
ĥ denotes the spatial momentum and ĥC and ĥO are the coordinate vectors that
represent the Plücker coordinate system at C and O, respectively. They are given
by:

ĥC =
(
hC
h

)
=
(
ĪCω
mvC

)
(2.37)

ĥO =
(
hO
h

)
=
(
ĪCω + ~OC ×mvC

mvC

)
=
(

1 ~OC×
0 1

)
ĥC (2.38)

Spatial momentum obey the same properties as spatial force as they are ele-
ments of F6. Thus, they transform accordingly: Bĥ = BX∗A

Aĥ.

2.2.10 Spatial Inertia
The spatial inertia of a rigid body defines the relationship between its spatial
velocity and momentum, and is therefore the mapping from the motion basis M6 to
the force basis F6:

ĥ = Îv̂ (2.39)

As can be seen from (2.39), the spatial momentum of a rigid body is the product
of the spatial inertia and velocity. By combining (2.37) and (2.39) the following is
obtained:

ĥC = ÎC v̂C =
(
ĪC 0
0 m1

)
v̂C (2.40)

where 1 denotes the 3× 3 identity matrix. One can observe that the spatial 6× 6
inertia tensor at the body’s center of mass becomes:

ÎC =
(
ĪC 0
0 m1

)
(2.41)

(2.41) is the general formula for spatial inertia expressed at its center of mass
and takes this form whenever the origin coincides with the center of mass. To
express the spatial inertia at an origin O that does not coincide with the center of

25

Chapter 2. Theory

mass, an expression for ÎO is extracted from (2.38) and (2.39). Using c = ~OC the
following is obtained:

ĥO =
(

1 c×
0 1

)
ÎC v̂C

=
(

1 c×
0 1

)
ÎC

(
1 0
c×T 1

)
ÎC v̂O

(2.42)

From (2.42) one can extract the spatial inertia tensor at an origin O using the
results obtained in (2.41):

ÎO =
(
ĪC +mc× c×T mc×

mc×T m1

)
(2.43)

(2.43) is the general form of the spatial inertia in Plücker coordinates. The upper
left of the inertia matrix (ĪC + mc × c×T) is the rotational inertia of the body
around O. Spatial inertia matrices are symmetric and positive definite.

The transformation of spatial inertia between two different reference frames A
and B is given by:

ÎB = BX∗AÎA
AXB (2.44)

One can observe from (2.44) that both a force transform and a motion transform are
needed to transform the spatial inertia from one frame to another. This is a result
of spatial inertia being the mapping between M6 to F6, and thus, one transform for
each basis is needed.

An important advantage of spatial inertia is that if one is to find the total
inertia of a composite rigid body, the total inertia becomes the sum of all rigid
body inertias. To illustrate, if two bodies, having inertia I1 and I2, are rigidly
connected and form a composite body, then the inertia of the total composite body
becomes:

Îtot = Î1 + Î2 (2.45)

If one were using the traditional 3D vector approach, (2.45) would take the place
of three equations: one to compute the composite mass, another to compute the
center of mass, and a last equation to compute the composite rotational inertia.

26

2.3 Modeling Rigid Multi-Body Systems

2.3 Modeling Rigid Multi-Body Systems

Implementing rigid body dynamics algorithms requires to model the robot as a
rigid multi-body system, where the links of the robot represent the bodies in the
multi-body system.

A rigid multi-body system consists of several bodies and joints that connect
them. A joint is used to connect two bodies, and the joints thus affect the relative
motion of the bodies. In Table 2.1, the variables used to describe a rigid multi-
body system are presented, where some of them are shown in context to a rigid
multi-body system in Figure 2.2. In the following sections the formulation of a
rigid multi-body system follows.

Table 2.1: Variables of a rigid multi-body system.

Symbol Representation
λi Index of the parent body for joint i

where joint i connects body i with body λi
κ(i) The set of joints that influence (i.e. support) body i
µ(i) The set of children of joint i
ν(i) The subtree that starts at joint i
Si Joint space matrix for joint i
vi Spatial velocity of body i
ai Spatial acceleration of body i
f i Spatial force acting on body i from

parent body λi through the connecting joint i
I Spatial inertia of body i
Ic Composite body inertia of body i
IA Articulated body inertia of body i
pA Articulated bias force of body i

body i

body λi

body j

body k

body l

body 0 = base

fj

fk

f
ext
i

fi

µ(i) = fj; kg

κ(i) = fλi; ig

ν(i) = fi; j; k; lg

Figure 2.2: Branched kinematic tree modeled as a rigid multi-body system.

27

Chapter 2. Theory

2.3.1 Transforms and Coordinate Systems

Obtaining the dynamics of a rigid multi-body system involves knowing the relative
position and orientation of the bodies. For this purpose, several coordinate frames
and their transforms are used. These are explained in this section, and a summary
is given in Table 2.2 together with an illustrative figure of the frames and transforms
in Figure 2.20.

The first frame to consider is the global reference frame. This coordinate system
is fixed and therefore, does not move. The root6 body B0 is attached to this
reference frame. Further, each body in the system has a frame attached to it,
which is known as the body (local) reference frame. In the case of body B0, the
global and the local reference frame are the same.

The bodies are attached through joints, where one joint connects two bodies
as shown in Figure 2.2. Since the joints are not usually located at the origin
of the parent body, the joint location frame is needed. This frame describes the
position and orientation relative to the coordinate frame of the parent body. The
transformation from the parent body to the joint location frame is denoted XT .
This frame is fixed and specified in the model by the parent’s body reference frame.

A joint that is moving, e.g. a prismatic joint that is translating or a revolute
joint that is rotating, requires an additional frame to represent this change. This
frame is called the joint motion frame and changes with the joint as it moves. It
is denoted XJ and coincides with the child body reference frame.

Table 2.2: Coordinate frames and transforms of a rigid multi-body system.

Name Representation
Global reference frame Fixed reference frame on root body

Body (local) reference frame Frame attached on body
Joint location frame Frame attached on joint relative to

parent body
Joint motion frame Frame attached on joint such that it

follows its movement
XT i Transformation from body λi reference

frame to joint i location frame
XJ i Transformation from joint location frame

to joint motion frame of joint i
iXλi

Transformation from parent body
reference frame to body i reference frame

iX0 Transformation from global reference
frame to local frame of body i

6Also known as the base.

28

2.3 Modeling Rigid Multi-Body Systems

XT1

XT2

XJ1

XJ2

B0 = Base

J1

J2

F0

F0;1

F1

F1;2

F2

B1

B2

Figure 2.3: Coordinate transforms of a rigid multi-body system.

In Figure 2.3 F 0 is the global reference frame, which is also the reference frame
of body 0. F 0,1 is the fixed joint location frame of joint 1 and the transformation
from F 0 to F 0,1 is given by XT 1. F 1 is the joint motion frame, also being the
body reference frame of body 1, which is dependent on the motion of joint 1.
The transformation from the joint reference frame to the joint motion frame is
given by XJ 1. The transformation from the the parent body 0 reference frame
to child body 1 reference frame thus becomes: 1X0 = XT 1XJ 1. The general
transformation from a parent body to a child body is given by:

iXλi
= XT iXJ i (2.46)

And the transformation from the global fixed reference frame to a body i is given
recursively as:

iX0 = iXλi

λiX0 (2.47)
where the starting point is given by i = 1⇒ iXλi

= iX0.

2.3.2 Bodies
In a rigid multi-body system each body is described by its mass m, the location
of the center of mass c ∈ R3 and the rotational inertia I ∈ R3×3. Based on this
information, the spatial inertia tensor Î ∈ R6×6 can be composed for each body
using (2.43).

2.3.3 Joints
A joint is used to connect two bodies and hence restricts their relative motion.
A joint can allow between 0 and 6 degrees of freedom (DOF), where a joint that
allows 0 DOF is fixed, i.e. the two bodies are rigidly connected to each other, and
a joint that allows 6 DOF does not constrain the motion at all.

There is a specific subset of state variables associated with each joint, and
these variables represent the joint state. For a joint i with n DOF the values of

29

Chapter 2. Theory

the variable qi ∈ Rn are the associated joint positions of joint i. Similarly q̇i, q̈i,
τi ∈ Rn represent the associated joint velocities, accelerations, and forces for joint
i, respectively. τi is more precisely the force that is transmitted through joint i.

If the joint positions for a joint i are nonzero, it means that the joint has
moved from its initial position. The transformation from its initial position is then
represented by the joint motion transform XJ i. This is a spatial transformation
on the form given by (2.20) where the entries R and r are joint type dependent.

Joint Models

This thesis is primarily intended for use with robotic manipulators, where prismatic
and revolute joints are the most prevalent. Thus only the descriptions of these joint
models are presented and available in u2c.

As mentioned previously, the joint defines the relative motion between two
bodies, and is joint type dependent. The relative motion can be described by the
joint space matrix S, defining the space of the joint motion. The matrix defines
a mapping S : Rn → M6. The joint space matrices for revolute joints, SR, and
prismatic joints, SP , around or along the coordinate axes are:

SRx =

1
0
0
0
0
0

, SRy =

0
1
0
0
0
0

, SRz =

0
0
1
0
0
0

,

SPx =

0
0
0
1
0
0

, SPy =

0
0
0
0
1
0

, SPz =

0
0
0
0
0
1

.

Joints may also rotate about or translate along axes that do not coincide with
the reference frame axes. This axis must then be described as a normalized vector.
The joint space matrix for a revolute joint thus becomes:

SR =

x
y
z
0
0
0

,

and for a prismatic joint:

30

2.3 Modeling Rigid Multi-Body Systems

SP =

0
0
0
x
y
z

,

where x, y, z are the values of the normalized vector.
One can thus express the joint velocities, accelerations, and forces through the

joint space matrices. The joint force defines the constrained relative force between
the parent body and the child body it is connecting:

τi = STi f i (2.48)

The joint velocity defines the constrained relative motion between the parent body
and child body of the connecting joint:

vJ i = Siq̇i (2.49)

The joint acceleration is defined as the derivative of the joint velocity:

aJ i = Siq̈i + Ṡiq̇i
= Siq̈i + (S̊i + vi × Si)q̇i
= Siq̈i + cJ i + vi × vJ i

(2.50)

There are two factors affecting Ṡi: there is the change of the joint space over
time itself and the change of the joint space due to the motion of the frame of
body i. The change of motion of body i is represented by its spatial velocity vi.
Hence, (2.50) indicates that the rate of change of the joint space due to the motion
of body i is given by vi × Siq̇i = vi × vJ i, where vi× denotes the spatial motion
cross product explained in section 2.2.7. Further, cJ i represents the change of the
joint space due to time itself and is given by:

cJ i = S̊iq̇i

=
(dSi
dt

+
n∑
j=1

dSi
dqj

q̇j

)
q̇i

(2.51)

S̊ is in Featherstone (2008) referred to as the apparent derivative, and from (2.51)
the following is observed:

S̊ = dSi
dt

+
n∑
j=1

dSi
dqj

q̇j (2.52)

It should be mentioned that this relatively complicated equation for joint ac-
celeration applies to a general case and is almost never needed in practice. In the
case of only considering prismatic and revolute joints, the joint space is not affected
over time. Hence, the so-called apparent derivative is zero: S̊ = 0⇒ cJi = 0. This
simplifies (2.50) to:

aJ i = Siq̈i + vi × vJ i (2.53)

31

Chapter 2. Theory

Joint Numbering

In a loop-free multi-body system, the connection of bodies via joints can be seen as
a directed graph where the bodies are nodes and the joints are the directed edges.
Not considering the root body, there are the same number of bodies Bi as joints
J i with i = 1, . . . n.

Joint i connects body i to its parent body. Parent bodies are denoted λi and
the parent array λ. The bodies are numbered such that λi < i always holds, and
for kinematic chains the numbering is such that λi = i − 1. Additionally, κ(i)
being the set of bodies that influences body i, this numbering has the property
that j < i, ∀j ∈ κ(i). Similarily, ν(i) being the set of indices of the bodies in the
subtree starting at body i, the numbering results in j > i, ∀j ∈ ν(i).

Another useful set of indices is µ(i) which contains all indices of the joints of the
subtree starting at i. For kinematic chains this simplifies to one index µi = i+ 1.

32

CHAPTER 3

Implementation

This chapter is based on the Implementation chapter from the specialization project
associated with this thesis. Modifications have been made according to changes
during the latter part of the project.

3.1 The Library Structure
For the reader to get a better perspective of the library and the work that has been
done, the reader is encouraged to have a look at the open-source implementation
of u2c. Throughout the report, it is explained where the relevant work can be
found and viewed in the repository. The URL to the open-source implementation
of urdf2casadi is: https://github.com/lillmaria/urdf2casadi.

The following direction tree describes the overall folder structure of the library:

33

https://github.com/lillmaria/u2c

Chapter 3. Implementation

urdf2casadi
urdf2casadi

geometry
quaternion
dual quaternion
cartesian
plucker

urdfparser
examples

numerical
ur5
kuka-lwr
mamba
gantry
pendulum

timing
dynamics
derivatives

user
ur5 example

urdf

This chapter focuses on the implementation of u2c, which is centered in the
urdf2casadi-folder. The folder contains one module, the urdfparser, that in-
habits the functionality of u2c and the implementation of the rigid body dynamics
algorithms, and a submodule, the geometry-folder. This is further explained in
the latter, and the reader is encouraged to view the corresponding parts of the
open-source library at Github, through the URL given above.

3.1.1 geometry
The geometry module has been divided into four geometry submodules. All sub-
modules contain the same functionality in the sense that they provide functionality
for finding the geometric aspects of the multi-body system, such as transformation
matrices, rotation matrices, and inertia matrices. The difference is in what way
this information is represented. The quaternion-module provides the geometrics
in quaternion notation and the dual quaternion-module in dual quaternion no-
tation. Further, the cartesian-module represents the original 3D notation where
velocities and accelerations are represented as two 3D vectors, and the standard
4 × 4 transformation matrices are used. These three submodules were originally
implemented for generating the forward kinematics.

In association with the implementation of the rigid body dynamics algorithms,
spatial algebra and Plücker coordinates were required. The plucker-module con-
tains in many ways the same functionality as the other geometric submodules,
given on a spatial form using Plücker coordinates. Functions for finding spatial
transforms, such as XJ and XT , as well as spatial inertia and the spatial cross

34

3.1 The Library Structure

products are provided, to mention some. A list of the functionality implemented in
this module is shown in the directory tree below. This functionality is implemented
according to the spatial algebra presented in Chapter 2. Input variables are not
included in the tree as the purpose is to give a brief overview of the functionality.

geometry
plucker

motion cross product()
force cross product()
XT()
XJT prismatic()
XJT revolute()
spatial inertia matrix IO()
spatial inertia matrix Ic()

3.1.2 urdfparser
The main module of u2c is the urdfparser. The module has one class which
contains all the necessary functions to provide a robot’s dynamics. It is here found
functions for parsing the URDF to a robot model and functions for retrieving the
robot’s dynamics. The implementation of the rigid body dynamics algorithms are
thus found here.

The class of the urdfparser has the name URDFparser. It contains one instance
variable, the robot description, which provides a description of the kinematic struc-
ture of the robot, based on the information provided by the URDF. By using the
geometry module and the information retrieved from the URDF, the URDFparser
provides methods for obtaining symbolic functions of the robot’s dynamics and
forward kinematics. The directory tree below shows where to find the URDFparser
class, as well as the methods provided by the class, with the input variables omitted
for brevity.

urdf2casadi
urdf2casadi

class URDFparser
from file()
from server()
from string()
get joint info()
get n joints()
model calculation()
apply external forces()

get gravity rnea()
get coriolis rnea()
get inverse dynamics rnea()
get inertia matrix crba()
get forward dynamics aba()

35

Chapter 3. Implementation

get M()
get C()

get forward dynamics crba()
get forward kinematics()

The class consists of three types of methods:

Load-methods
The class provides three methods for loading the robot description from a
URDF. The user can choose to load the robot description directly from a
URDF file, from a URDF string, or ROS parameter server.1

Private-methods
The private methods are the methods starting with . They are not intended
to be accessed by users and are used internally in other methods to provide in-
formation. They make use of the robot description and the geometry-module
to retrieve this information.

Get-methods
The get-methods represent the functionality provided to the user. They re-
quire two inputs from the user: the name of the root body and the name of
the tip body. Based on this input, the get-methods provide the kinematics
and dynamics from the root body to the tip body.

3.2 Loading the Robot Description
As explained in the previous section, the load methods are essential to get a de-
scription of the robot. The input from the user is given in the form of a URDF. In
this section, the URDF is presented, and the method for preserving and using its
information in u2c is provided.

3.2.1 The URDF
The URDF provides a kinematic description of a robot based on a kinematic tree
structure using an XML format with different tags for links, joints, and transmis-
sions. The links represent the bodies of the rigid multi-body system. To illustrate,
an example of a link tag for a UR5 robot’s base link is presented together with an
illustrative figure of the information provided by the link tag in Figure 3.1a.

<link name="base_link">
<visual>

<geometry>
<mesh filename="package://ur_description/meshes/ur5/
visual/base.dae"/>

1The ROS parameter server is a collection of values that can be accessed upon request while
ROS is running.

36

3.2 Loading the Robot Description

Collision

Inertial

joint

link origin Visual

(a) Link information.

parent body

child body

parent frame

joint axis in joint frame

joint

(b) Joint information.

Figure 3.1: Information provided by the URDF (illustration based on URDF documen-
tation).

</geometry>
<material name="LightGrey">

<color rgba="0.7 0.7 0.7 1.0"/>
</material>

</visual>
<collision>

<geometry>
<mesh filename="package://ur_description/meshes/ur5/
collision/base.stl"/>

</geometry>
</collision>
<inertial>

<mass value="4.0"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
<inertia ixx="0.00443333156" ixy="0.0" ixz="0.0"
iyy="0.00443333156" iyz="0.0" izz="0.0072"/>

</inertial>
</link>

One can observe that the link tag provides information about the name of the
link, its visual, collision, and inertial features. This information is visualized in
Figure 3.1a. In the case of the development of u2c, the relevant information is the
inertial tag as it gives the inertia and body frame. Further, the joint tag for the
joint connecting the base link of the UR5 to its child body is presented:

<joint name="shoulder_pan_joint" type="revolute">
<parent link="base_link"/>
<child link="shoulder_link"/>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.089159"/>
<axis xyz="0 0 1"/>
<limit effort="150.0" lower="-6.28318530718"
upper="6.28318530718" velocity="3.15"/>
<dynamics damping="0.0" friction="0.0"/>

37

Chapter 3. Implementation

</joint>

The joint tag provides relevant joint information such as its type, the axis of
rotation or translation, its frame origin position (xyz) and orientation (rpy), as well
as its parent and child body. This information is illustrated in Figure 3.1b.

Hence, the URDF provides the information necessary for obtaining a robot’s
kinematics and dynamics. This includes inertial properties for all bodies, here
denoted links, as well as body reference frames, joint location frames, and joint
types and axes. From this information, one can obtain the joint motion frames,
spatial transforms from parent bodies to child bodies, and spatial inertias. With
this information, one can further retrieve the robot’s dynamics using the rigid body
dynamics algorithms, further explained in section 3.3.

It should be mentioned that the URDF has some shortcomings. The main
shortcoming is that the URDF does not support closed kinematic chains, such as
Stewart platforms and delta robots, which restricts the usage of u2c to kinematic
trees. Further, URDF only allows one robot tag. In practice, this means that
the URDF does not support multiple robots, and if one were to represent mul-
tiple robots, it is needed to combine them manually as a single robot element.
The URDF information is also only provided for a nominal robot, and in practice
further calibration may be required for each particular robot instance as the iner-
tial information may differ if tools are attached to the robot or the information is
incorrect.

3.2.2 urdf parser py
As mentioned above, the URDFparser class provides three load-methods for the
user to load the robot description. These methods make use of the open-source
library urdf parser py, which is part of the standard ROS packages. The library
parses the information provided by the URDF to a Python class structure called
robot. After parsing the URDF to a robot class structure, the instance contains
the information provided by the URDF, and the information is easily accessible
through the robot instance. The class instance returned by urdf parser py is the
instance variable robot description of the URDFparser class.

A shortcoming of urdf parser py is that it only supports parsing of kinematic
chains. Hence, u2c is limited to finding the kinematics and dynamics of kinematic
chains when using the urdf parser py and cannot find the kinematics and dynamics
of trees, such as a dexterous robot hand, even though trees are well-represented by
a URDF.

It is also worth noting that the urdf parser py package is called urdfdom py
when installed with ROS, and urdf parser py when installed independently through
pip.

38

3.3 Rigid Body Dynamics Algorithms

3.3 Rigid Body Dynamics Algorithms

In this section, the implementation of the rigid body dynamics algorithms used
to retrieve symbolic expressions of the robot’s dynamics is presented. These algo-
rithms model the robot as a rigid multi-body system and use spatial vector algebra
to retrieve the dynamics. The algorithms presented in this section are:

Recursive Newton-Euler Algorithm (RNEA)
The algorithm is used to retrieve the robot’s inverse dynamics, i.e. the forces
transmitted through the robot’s joints, τ, as an expression of the other joint
state variables q, q̇, q̈ such that τID = RNEA(robot description, q, q̇, q̈,fext).
The algorithm is also used to find the Coriolis forces transmitted through each
joint, which is found by a call to RNEA using q̈ = 0 and fext = 0:
τC = RNEA(robot description, q, q̇,0,0) Lastly, RNEA can be used to re-
trieve the gravitational forces transmitted through each joint, found by a call
to RNEA using q̇ = 0, q̈ = 0, and fext = 0:
τG = RNEA(robot description, q,0,0,0)

Articulated Body Algorithm (ABA)
The algorithm is used to retrieve the robot’s forward dynamics, i.e. the joint
accelerations q̈ as an expression of the other joint state variables q, q̇, τ such
that q̈ = ABA(robot description, q, q̇,τ,fext).

Composite Rigid Body Algorithm (CRBA)
The algorithm is used to obtain the joint state inertia matrix M as an ex-
pression of the joint positions q such that M = M(q). This algorithm can
further be used to obtain the forward dynamics by combining it with the
equation of motion for a multi-body system.

3.3.1 The Model Calculation Routine

The algorithms mentioned above find the dynamic properties of the robot based
on the robot description and the joint state variables by modeling the robot as a
rigid multi-body system. Thus, the algorithms start with the same preparatory
step: obtaining the necessary joint space matrices, spatial transforms, and spatial
intertias. The procedure for obtaining these quantities is called the model calcu-
lation routine and is implemented in the model calculation()-method of the
URDFparser class. The pseudocode of the model calculation routine is given in
Algorithm 1.

39

Chapter 3. Implementation

Algorithm 1 Model Calculation Routine
Input: q, chain
Output: XJT , I, S

1: for item in chain do
2: i = 1
3: if item is joint then
4: if joint type is fixed then
5: XT = plucker.XT(xyz, rpy)
6: else if joint type is prismatic then
7: XJT i = plucker.XJT prismatic(xyz, rpy, qi)
8: if prev joint is fixed then
9: XJT i =XTXJT i

10: end if
11: Si = [joint.axis[0], joint.axis[1], joint.axis[2], 0, 0, 0]
12: i = i+ 1
13: else if joint type is revolute then
14: XJT i = plucker.XJT revolute(xyz, rpy, qi)
15: if prev joint is fixed then
16: XJT i =XTXJT i

17: end if
18: Si = [joint.axis[0], joint.axis[1], joint.axis[2], 0, 0, 0]
19: i = i+ 1
20: end if
21: prev joint = joint.type
22: end if

23: if item is link then
24: Ii = plucker.spatial inertia matrix I0(ixx, ixy, ixz, iyy, iyz, izz,

mass,xyz)
25: if prev joint is fixed then
26: Ii = Ii−1 +XT

T
i IiXT i

27: end if
28: end if
29: end for
30: return XJT , I, S

In Algorithm 1, the joint positions, q, are given as input in the form of CasADi
SX symbols. The other input, the chain, is a dictionary containing the joints and
links that form the robotic chain. It contains relevant information extracted from
the URDF, such as the type and axis of the joints, and inertial properties of the
links.

Further, one can observe the procedure constructs the joint space matrix for
each joint and uses the plucker geometry module to construct the transforms
from the parent body frame to the joint location frame XT i, and the transforms

40

3.3 Rigid Body Dynamics Algorithms

from the joint location frame to the joint motion frame XJ i in one calculation.
The transform denoted XJT i thus denotes the total transform from the parent
body frame to the joint motion frame of body i, in the former chapter given by
iXλi

= XJ iXT i. Inertial properties of the link are used by the plucker-module
to construct the spatial inertias.

From the pseudocode, one can also observe that fixed joints are treated as an
extension of the parent body, such that the parent body and child body of the
connecting fixed joint are represented as a single rigid body. Spatial algebra makes
this easy, as the total inertia of the two connected rigid bodies is found by adding
the two inertias together, and the latter inertia is needed to be transformed into
the same frame as the first, as seen in line 27. Further, the total transform is found
by multiplying the two spatial transforms together, where the spatial transform
from the parent body frame to the joint motion frame using a fixed joint becomes
XT . This can be observed in line 10 and line 17.

The procedure returns three lists that represent the modeling of a rigid multi-
body system: X containing the transforms from reference frames of parent bodies
to their child body reference frame, I containing the spatial inertia matrices, and
S containing the joint space matrices.

In the following sections, the implementation of the three rigid body dynamics
algorithms is explained. These are implemented in the following get-methods of
the URDFparser:

class URDFparser
get gravity rnea()
get coriolis rnea()
get inverse dynamics rnea()
get forward dynamics aba()
get inertia matrix crba()
get forward dynamics crba()

The methods describe which dynamic properties they return as well as the initials
of the algorithms used to obtain the result. The implementation of these algorithms
is now presented, and the following can be assumed for each of the methods:

• Before starting the algorithm calculation, the model calculation procedure
has been performed. From this, iXλi

are retrieved, and can further be used
to obtain2 λiX∗i , iX0, and iX∗0 where the implementation requires it.

• Whenever the joint state variables, (q, q̇, q̈, τ), are used, they are declared
as CasADi SX matrices. The SX data type is used for minimal overhead as
explained in section 2.1.2.

• The algorithms are implemented under the assumption that the robot mecha-
nism is a kinematic chain. This assumption can be made as the urdf parser py
only supports kinematic chains. The effect of this will be further explained
where it affects the implementation.

2By using (2.22), (2.23), and (2.12).

41

Chapter 3. Implementation

3.3.2 Recursive Newton-Euler Algorithm
RNEA is an efficient algorithm, mostly used for calculating the inverse dynamics
of a rigid multi-body system. The algorithm complexity is O(n) where n is the
number of bodies in the rigid multi-body system. The reason for its efficiency
is that the algorithm exploits recurrence relations and hence offers a systematic
way to keep away from unnecessary repetition in calculating sequences of related
quantities.

The algorithm is computed using the following steps:

1. Position, velocity, and acceleration of all bodies are computed.

2. The forces required on the bodies to produce the acceleration obtained in
step 1 are computed using the equation of motion for a rigid body.

3. The results from step 1 and 2 are used to compute the forces transmitted
over each joint.

Step 1 consists of finding the quantities vi and ai for all bodies i = 1, . . . n.
The quantities can be found recursively by the formulas:

vi = vλi + vJ i (3.1)
ai = aλi + aJ i (3.2)

From (3.1) one can observe that the spatial velocity can be found by adding
the velocity of the joint connecting body i to its parent body λi to the velocity
of the parent body λi, where the joint velocity vJ i is given by (2.49). The initial
value is given as v0 = 0 since body B0 is fixed. From (3.2) one can observe that
the spatial acceleration of body i can be found by the same approach as the spatial
velocity of body i, where the acceleration of the joint i is given by (2.53) and its
initial value is a0 = −ag, ag being the gravity constant. By setting a0 = −ag a
uniform gravitational field is modeled so that one does not need to account for the
gravitational forces in the external forces acting on the system. Using this trick, ai
is not the true acceleration of body i as it is offset by the gravitational acceleration
vector. It should be mentioned that the gravitational forces are set optionally by
the user of u2c. If the user does not explicitly define the gravitational vector, the
gravitational forces are set to zero: a0 = 0.

Transforming (3.1) and (3.2) to body i coordinates and using the expressions for
vJ i and aJ i given by (2.49) and (2.53), the formulas used in the implementation
of the algorithm become:

vi = iXλivλi + Siq̇i (3.3)
ai = iXλi

aλi + Siq̈i + vi × Siq̇i (3.4)

Step 2 consists of finding the net force acting on body i, denoted fBi . This
force is given by the equation of motion of a rigid body and relates the acceleration
of body i obtained in step 1 to the force:

fBi = Iiai + vi ×∗ Iivi (3.5)

42

3.3 Rigid Body Dynamics Algorithms

Step 1 and 2 are implemented as one forward pass from i = 1 to n.

Step 3 consists of finding the forces transmitted across the joints from the
forces acting on the bodies. f i referres to the force transmitted from parent body
λi to body i through joint i, and fexti denotes potential external forces acting upon
body i. The net force on body i is then:

fBi = f i + fexti −
∑
j∈µ(i)

f j (3.6)

(3.6) can be rearranged to provide a recurrence relation for the joint forces:

f i = fBi − f
ext
i +

∑
j∈µ(i)

f j (3.7)

(3.7) is the general equation for the joint forces and µ(i) is the set of children
bodies of body i. Expressed in body i coordinate, the expression to be used in the
algorithm becomes:

f i = fBi − iX∗0f
ext
i +

∑
j∈µ(i)

iX∗jf j (3.8)

It should be mentioned that since URDF only support kinematic chains, µ(i) =
i+ 1, and (3.8) can be implemented as:

fλi
= fBλi

− iX∗0f
ext
λi

+ iX∗λi
f i (3.9)

Thus the spatial force across joint f i for all joints i = 1, . . . , n can be found by a
backward pass from n− 1 to 0.

Having computed the spatial force across each joint, the forces across each joint
can be found:

τi = STi f i. (3.10)

Pass 1 (Step 1 & 2): vi, ai, fi Pass 2 (Step 3): τi

0

1 4

2 3 5 6

0

1 4

2 3 5 6

Figure 3.2: Passes of RNEA.

Figure 3.2 illustrates how RNEA is performed on a branched kinematic tree
illustrated as a graph. The nodes in the graph represent the bodies of the kinematic
tree. The pseudocode implementation is shown in Algorithm 2.

43

Chapter 3. Implementation

Algorithm 2 Recursive Newton-Euler Algorithm
Input: X, I, S
Output: τ

1: v0 = 0
2: a0 = −ag
3: for i = 1 to n do
4: vi = iXλivλi +Siq̇i

5: ai = iXλiaλi + Siq̈i + vi × Siq̇i

6: f i = Iai +vi ×∗ Ivi - iX∗0fexti

7: end for
8: for i = n− 1 to 0 do
9: τi = STi f i

10: if λi 6= 0 then
11: fλi

= fλi
+ λiX∗i f i

12: end if
13: end for

One can observe that the two passes illustrated in Figure 3.2 are implemented.
In the forward pass, steps 1 and 2 are computed: the spatial forces acting on the
bodies are obtained using the equation of motion and exploiting the recurrence
relations between the spatial velocities and accelerations. Step 3 is performed in
the backward pass where the joint and body forces are calculated.

The original version of the algorithm was formulated using 3D vectors and
appears to be very different from this version with 6D vectors. However, the only
difference of significance is that this implementation uses spatial acceleration, which
differs from the classical acceleration as described in section 2.2.8. Advantages of
the spatial version of RNEA are its compact and easy form, and that the algorithm
is insensitive to joint type. This is opposed to the original version of RNEA, which
requires different expressions for revolute and prismatic joints. This information is
embodied in the joint space matrix in spatial vector algebra.

44

3.3 Rigid Body Dynamics Algorithms

3.3.3 Articulated Body Algorithm
By using ABA, one can compute the forward dynamics of a kinematic tree with
O(n) operations. The algorithm was first seen in Featherstone (1983) although
others have described various variants. The implementation of ABA in u2c is
based upon Featherstone’s original version.

In the forward dynamics problem, the joint accelerations and the joint con-
straint forces are considered the unknowns. ABA is based on formulating equations
that must be satisfied by the joint acceleration and joint force and propagating
these relations to neighbor bodies until the equations are solvable. Propagation
algorithms are known for their complexity but more importantly, their efficiency.

The basis of ABA is to exploit the information captured in the articulated body
inertia. The articulated body inertia is the inertia that a body seems to have when
being a part of a rigid multi-body system. It is further explained in the following.

Articulated Body Equation of Motion

The equation of motion for a single rigid body, denoted B0, is given by:

f = Ia+ p (3.11)

The equation describes the relationship between the force applied to the single
rigid body, f , and the resulting acceleration, a. p is the bias force describing the
necessary force for the body to produce zero acceleration. The equation of motion
for a single rigid body is illustrated in Figure 3.3a.

B0

f

a

f = Ia + p

(a) Rigid body.

B0

J1 B1

f

a

f = IAa + pA

(b) Articulated body composed of
two rigid bodies.

Figure 3.3: Illustration of the articulated body equation of motion.

To explain the articulated body inertia one can imagine that the single rigid
body gets a second body, B1, attached to it and that they are connected by a
joint. The system becomes a rigid multi-body system and the whole system can be
considered as an articulated body consisting of the original body B0 and the new
attached body B1. This case is illustrated in Figure 3.3b. When now applying a
force to body B0, the second body B1 will affect the acceleration response. Thus,
the equation of motion for body B0 changes to:

f = IAa+ pA (3.12)

45

Chapter 3. Implementation

IA and pA are the articulated body inertia and bias force, respectively. The equa-
tion describes the relationship between the applied force and the acceleration re-
sponse for the rigid body B0 while taking into account the dynamic effects of the
other body B1 and joint connecting them. The dynamic effects of the attached
bodies and joints are captured in the articulated inertia and bias force, which is
exploited by ABA.

The articulated body inertia shares some common properties with the rigid body
inertia: it is a symmetric, positive definite matrix that represents a mapping from M6

to F6 and obeys the same transformation rule. Nonetheless, a significant difference
is that the articulated body inertia represents the mapping from acceleration to
force in contrast to rigid body inertia, which represents the mapping from velocity
to momentum.

The Articulated Body Algorithm Passes

ABA computes the joint accelerations in three passes:

1. The positions, velocities, and rigid-body bias forces are computed in a forward
pass.

2. The articulated body inertia and articulated bias force are computed for all
bodies in a backward pass.

3. IAi and pAi computed in pass 2 are used to compute the joint accelerations
in a forward pass.

Pass 1 consists of calculating the velocity-product accelerations, i.e. vi × vJ i,
further denoted ci. The bias forces pi must also be obtained. As these are functions
of the body velocities, it is necessary to compute vi first. The general equations
become:

vJ i = Siq̇i (3.13)
vi = vλi + vJ i (3.14)
ci = vi × vJ i (3.15)

pi = vi ×∗ Iivi − fxi (3.16)

These equations are similar to the equations of the forward pass of the RNEA.
The difference is that it is only the velocity-product part of the acceleration that
is considered as q̈ is unknown. Further, the results from (3.16) are used in pass 2
to obtain the articulated bias force and the results from (3.15) are used in pass 3
to obtain q̈.

Pass 2 consists of computing the articulated inertia matrices and bias forces. A
set of articulated bodies, A1, . . . ,An are defined such that Ai contains the bodies
in the subtree growing from Ai. With this definition of the articulated bodies,
one can obtain IAi and pAi from the children of body i. Since an articulated body
can consist of only a single rigid body, in which case the articulated body inertia

46

3.3 Rigid Body Dynamics Algorithms

and bias force are equal to the rigid body inertia and bias force, this provides the
starting point for recursive calculation of IA and pA:

IAi = Ii +
∑
j∈µ(i)

Iaj (3.17)

pAi = pi +
∑
j∈µ(i)

paj (3.18)

As u2c only supports kinematic chains, each body in the kinematic tree has one
child. Taking this into consideration, the implementation of (3.17) and (3.18) can
be simplified to:

IAi = Ii + Iaµi
(3.19)

pAi = pi + paµi
(3.20)

Comparing (3.17) and (3.18) to (3.19) and (3.20), respectively, one can observe
that for kinematic chains j = µ(i) = i + 1. Since the quantities are obtained in
a backward pass, (3.19) and (3.20) are implemented using the (λi, i)-pair rather
than the (i, µi)-pair. The equations can thus be rewritten:

IAλi
= Iλi

+ Iai (3.21)
pAλi

= pλi
+ pai (3.22)

The quantities Iai and pai are a result of propagating IAi and pAi through joint
i and can thus be expressed as a function the joint motion constraint for joint i
given by the joint space matrix Si:

Iai = IAi − I
A
i Si(SiIAi Si)−1STi I

A
i (3.23)

pai = pAi + Iai ci + IAi Si(SiIAi Si)−1(τi − STi pAi) (3.24)

To put the quantities in context, IAi and pAi express the force across the connecting
joint as a function of the child body’s acceleration, while the quantities Iai and pai
express the same force as a function of the parent body’s acceleration:

f i = IAi ai + pAi
= Iai aλi

+ pai
(3.25)

To summarize, pass 2 of the algorithm consists of calculating the articulated
body inertia and bias force for every body in the system by using (3.21) and (3.22)
together with (3.23) and (3.24) in a backward pass from n− 1 to 0.

Pass 3 consists of a forward pass to obtain the joint accelerations. The joint
accelerations are obtained by exploiting the fact that a force from a body through
a joint is constrained such that the force becomes:

τi = STi f i (3.26)

47

Chapter 3. Implementation

Further, by using the equation of motion for an articulated body to express f i,
(3.26) can be expressed through the articulated inertia and bias force as:

τi = STi (IAai + pA) (3.27)

where ai can be expressed recursively as ai = aλi
+ aJ i such that (3.27) can be

expressed as:
τi = STi (IA(aλi + Sq̈ + vi × vj i) + pA) (3.28)

From this equation, the joint accelerations can be obtained:

q̈i = (STi IAi S)−1(τi − STi IAi (aλi
+ ci)− STi pAi) (3.29)

And last, the body accelerations can be found:

ai = aλi + ci + Siq̈i (3.30)

To summarize, pass 3 obtains the joint accelerations by expressing the joint
forces as a product of the joint constraint and the equation of motion for an ar-
ticulated body. The joint and body accelerations are thus obtained by (3.29) and
(3.30), respectively. The quantities that are included in these expressions are found
in the former passes.

Pass 1: vi, ci, pi Pass 2: IAi , p
A
i Pass 3: q̈i, ai

0 0

1 4 1 4

2 23 35 5 66

0

1 4

2 3 5 6

Figure 3.4: Passes of ABA.

Figure 3.4 illustrates the three passes performed on a branched kinematic tree
represented as a graph where the nodes of the graphs represent the bodies.

Subexpressions

In the equations explained above, there are several common subexpressions. To
make a rather complex implementation simpler, the following subexpressions are
defined:

U i = IAi Si (3.31)
Di = STi U i (3.32)

ui = τi − STi pAi (3.33)
a′i = aλi

+ ci (3.34)

48

3.3 Rigid Body Dynamics Algorithms

By using these subexpressions, (3.23), (3.24), (3.29), and, (3.30) simplifies to:

Iaj = IAj −U jD
−1
j U

T
j (3.35)

paj = pAj + Iajcj +U jD
−1
j uj (3.36)

q̈i = D−1
i (ui −UT

i a
′
i) (3.37)

ai = a′i + Siq̈i (3.38)

Body Coordinate Equations

The algorithms are implemented in body coordinates and must, therefore, be trans-
formed from the general equations to body coordinate equations. The equations
used in the implementation of ABA are given in body coordinates below. They
are expressed using the subexpressions given above and sorted by the passes where
they are used.

Pass 1 (forward):

vJ i = Siq̇i

vi = iXλi
vλi

+ vJ i

ci = vi × vJ i

pi = vi ×∗ Iivi − iX∗0f
x
i

Pass 2 (backward):

IAλi
= Iλi

+ λiX∗i I
a
i
iXλi

pAλi
= pλi

+ λiX∗ip
a
i

U i = IAi Si

Di = STi U i

ui = τi − STi pAi
Iai = IAi −U iD

−1
i U

T
i

pai = pAi + Iai ci +U iD
−1
i ui

Pass 3 (forward):

a′i = iXλi
aλi

+ ci
q̈i = D−1

i (ui −UT
i a
′
i)

ai = a′i + Siq̈i

Given the above, the pseudocode of ABA is described in Algorithm 3.

49

Chapter 3. Implementation

Algorithm 3 Articulated Body Algorithm
Input: X, I, S
Output: q̈

1: v0 = 0
2: a0 = −ag
3: for i = 1 to n do
4: vi = iXλivλi + Siq̇i
5: ci = vi × Siq̇i
6: pi = vi ×∗ Iivi − iX∗0f

x
i

7: end for
8: for i = n− 1 to 0 do
9: U i = IAi Si

10: Di = STi U i

11: ui = τi − pAi
12: if λi 6= 0 then
13: Iai = IAi −U iD

−1
i U

T
i

14: pai = pAi + Iai ci +U iD
−1
i ui

15: IAλi
= Iλi + λiX∗i I

a
i
iXλi

16: pAλi
= pλi

+ λiX∗ip
a
i

17: end if
18: end for
19: for i = 1 to n do
20: a′i = iXλi

aλi
+ ci

21: q̈i = D−1
i (ui −UT

i a
′
i)

22: ai = a′i + Siq̈i

23: end for

50

3.3 Rigid Body Dynamics Algorithms

3.3.4 Composite Rigid Body Algorithm
CRBA is used for obtaining the inertia matrix M . To do so, the algorithm com-
putes its values recursively and only computes the nonzero entries, thus exploiting
sparsity to make the algorithm more efficient. The sparsity is the reason why the
calculation cost of M is only O(nd2) where d is the depth of the kinematic tree.

By using the equation of motion for the total system, the calculation of the
inertia matrix using CRBA can be used to obtain the joint accelerations. In the
matter of calculating the forward dynamics, CRBA gives the same result as ABA
but uses a different approach. ABA makes a fixed number of passes through the
kinematic tree, where for each pass, a fixed number of calculations per body is
performed, leading toO(n) complexity. When used to obtain the forward dynamics,
CRBA has a worst case of O(n3) as it has to calculate the elements of an n × n
matrix and then factorize it to solve a set of n linear equations to obtain the
acceleration variables. However, it is more accurate to describe the complexity as
O(nd2). In cases where the kinematic tree contains few bodies, O(nd2) algorithms
can match or slightly exceed the speed of O(n) algorithms. Since obtaining the
forward dynamics with ABA is the best result for systems containing a large number
of bodies, while CRBA can be a better approach for systems with few bodies, both
algorithms are implemented in u2c.

Rigid Multi-Body Equation of Motion

The equation of motion for a rigid multi-body system is described by Featherstone
(2008) as:

τ = M(q)q̈ +C2(q, q̇,fext) (3.39)

(3.39) gives the relationship between the joint acceleration that the system produces
and the joint forces. The inertia matrix M is what relates the joint accelerations
q̈ to the joint forces τ. If the system is at rest and there are no forces acting on it,
C2 = 0 and the equation of motion simplifies to τ = M(q)q̈.

The joint space bias matrix C2 represents the Coriolis and centrifugal forces,
gravity terms and the effect of external forces, if any. The matrix thus represents
the force that must be applied to the system to produce zero acceleration and is
therefore called the joint space bias force. Similar to the Coriolis matrix, computing
the joint space bias matrix can be seen as the inverse dynamics problem where
q̈ = 0. Unlike the Coriolis matrix, the effect of gravity and external forces are
present in the calculation of the joint space bias matrix.

CRBA calculates the inertia matrix efficiently by exploiting sparsity. By com-
bining the algorithm with the equation of motion and the fact thatC2 = RNEA(robot description, q, q̇,0,fext),
CRBA can be used to obtain the forward dynamics by the following procedure:

1. Calculate C2 using RNEA with q̈ = 0.

2. Calculate M using CRBA.

3. Solve q̈ = M−1(τ−C2).

51

Chapter 3. Implementation

As can be observed, using CRBA to find the forward dynamics requires to
calculate the inverse of the inertia matrix. This makes CRBA computationally
expensive for robots with many bodies, and is the reason for the algorithm’s O(n3)
worst-case complexity.

The Inertia Matrix

To understand the computation of the algorithm, one can observe the computation
of the kinetic energy of a multi-body system:

T = 1
2 q̇

TMq̇ = 1
2

nB∑
i=1

nB∑
j=1

q̇Ti M ij q̇i (3.40)

The physical understanding of M ij is that it is the ni × nj submatrix relating the
acceleration at joint j to the force at joint i. If every joint in the kinematic tree
has one degree of freedom, which is the case for u2c, M ij is the 1 × 1 matrix on
row i and column j of M .

Further, the kinetic energy of the system can be viewed as the sum of the kinetic
energy of the individual bodies:

T = 1
2

nB∑
i=1

vTi Iivi (3.41)

It can be assumed that all joint space matrices are expressed in the global reference
frame (i.e. relative to the base body), which allows (3.41) to be rewritten as:

T = 1
2

nB∑
k=1

∑
i∈κ(i)

∑
j∈κ(i)

q̇Ti S
T
i IkSj q̇j (3.42)

In (3.42) the kinetic energy is expressed as a sum over all combinations where body
k is supported by both joint i and j. Hence, (3.42) can be expressed as:

T = 1
2

n∑
i=1

n∑
j=1

∑
k∈ν(i)∩ν(j)

q̇Ti S
T
i IkSj q̇j (3.43)

And the intersection of ν(i) and ν(j) can be written as:

ν(i) ∩ ν(j) =

ν(i) if i ∈ ν(j)
ν(j) if j ∈ ν(i)
∅ otherwise

(3.44)

By comparing (3.43) to (3.40) the following can be observed:

M ij =
∑

k∈ν(i)∩ν(j)

STi IkSj (3.45)

52

3.3 Rigid Body Dynamics Algorithms

While (3.42) obtains the necessary quantities from k up to the root of the graph,
(3.43) and (3.45) performs the same computation by obtaining the quantities down
the subtrees starting at the joint that is influenced by both i and j.

Further, a new quantity Ici is introduced and represents the inertia of the subtree
where body i is the root of the subtree. The subtree is treated as a single composite
rigid body, and this is where the algorithm gets its name. A summation of all the
inertias gives the total inertia of the composite rigid body in the subtree:

Ici =
∑
j∈ν(i)

Ij (3.46)

(3.46) can be expressed recursively as:

Ici = Ii +
∑
j∈µ(i)

Icj (3.47)

By utilizing (3.44) together with (3.45) and (3.46), the formula for the inertia
matrix can be obtained:

M ij =

STi I

c
iSj if i ∈ ν(j)

STi I
c
jSj if j ∈ ν(i)

0 otherwise
(3.48)

To summarize, (3.47) and (3.48) represent the basis of CRBA for a general
kinematic tree. (3.47) gives the formula for obtaining the composite rigid body
inertias, and these are further used to calculate the inertia matrix by using (3.48).

Equations in Body Coordinates

The equations obtained above are given without reference to any particular coor-
dinate system. To express the relevant equations in body coordinates, (3.47) and
(3.48) are expanded to:

Ici = Ii +
∑
j∈µ(i)

iX∗jIj
jXi (3.49)

M ij =

STi I

c
i
iXjSj if i ∈ ν(j)

STi
iX∗jI

c
jSj if j ∈ ν(i)

0 otherwise
(3.50)

To simplify the implementation of (3.50), a new quantity is defined: jF i =
iX∗jI

c
jSj . The calculation of M requires one instance of jF i for every i, j-pair

satisfying j ∈ κ(i), i.e. all joints j where j < i for a kinematic chain. Thus, they
can be found recursively:

λjF i = λjX∗i
jF i (3.51)

53

Chapter 3. Implementation

Given this new quantity, (3.50) can be expressed as:

M ij =

jF Ti Sj if i ∈ ν(j)
MT

ij if j ∈ ν(i)
0 otherwise

(3.52)

The equations are implemented such that i ranges from n − 1 to 0 while j
develops separately from i through λi to λλi

until the base is reached. In the
implementation, only kinematic chains are considered. In a kinematic chain, ν(j)
represent every body j > i. Thus, j ∈ ν(i) implies that i > j. Another consequence
of kinematic chains is that each body only has one connected child body. This
body-child pair (i, µi) can also be seen as a parent-body pair (λi, i). Hence, the
implementation of the general equations (3.49) and (3.52) simplifies to:

Icλi
= Iλi

+ λiX∗i I
c
i
iXλi

(3.53)

M ij =

jF Ti Sj if i > j

MT
ij if j > i

0 otherwise
(3.54)

Row i and column i of M can thus be filled by keeping i constant and iterating
over all j’s where j < i:
j = i
while λj 6= 0 do
F = λjX∗jI

c
iSi

j = λj
M ij = F TSj
M ji = MT

ij

end while

M11

M22

M33

M44

M55

Mij, j changes

Mji, j changesi = 5

i = 4

i = 3

i = 2

i = 1

M =

Figure 3.5: Illustration of the CRBA approach for computing M .

54

3.3 Rigid Body Dynamics Algorithms

Exploiting this while at the same time iterating i in a backward pass from n − 1
to 0, all the rows and columns of M are found, starting outermost at Mnn and
working inwards to M11. This is illustrated in Figure 3.5 for a rigid 5-bodied
system. The pseudocode implementation of CRBA is given in Algorithm 4.

Algorithm 4 Composite Rigid Body Algorithm
Input: X, I, S
Output: M

1: M = 0
2: for i = 1 to n do
3: Ici = Ii
4: end for
5: for i = n− 1 to 0 do
6: if λi 6= 0 then
7: Icλi

= Icλi
+ λiX∗i I

c
i
λi iXλi

8: M ii = STi I
c
iSi

9: j = i
10: end if
11: while λj 6= 0 do
12: F = λjX∗jI

c
iSi

13: j = λj
14: M ij = F TSj
15: M ji = MT

ij

16: end while
17: end for

In the implementation, there are two preparatory steps. The first step is to
initialize the inertia matrix, and the second step is to set Ici = Ii. Then the values
of M are obtained as explained above.

Having obtained M with CRBA and C2 with RNEA with q̈ = 0, the joint
accelerations are easily obtainable for a given τ by solving q̈ = M−1(τ −C2). It
is worth mentioning that this is a very computationally expensive procedure for
robots with a high number of DOF, as this implies that M is a large matrix. This
is further demonstrated in Chapter 5.

55

Chapter 3. Implementation

3.4 Resulting Functionality and Usage
In the above sections, it is explained how u2c is structured, and presented how the
robot description is loaded from a URDF with the help of the open-source library
urdf parser py. Last, it was explained how the rigid body dynamics algorithms are
used to retrieve the robot’s dynamics. The result is that the user of the library can
obtain the following, assuming there is a URDF description of the robot:

1. Inverse dynamics using RNEA.

2. Coriolis matrix using RNEA with q̈ = 0.

3. Gravitational term using RNEA with q̇ = 0 and q̈ = 0.

4. Forward dynamics using ABA.

5. Forward dynamics using CRBA.

6. Inertia matrix using CRBA.

7. Forward kinematics.

The solution is returned as a just-in-time C-code generated CasADi SX function.
It can thus be used for numerical evaluation and symbolic evaluation by providing
it symbols for the joint state variables, or one can use the CasADi framework to
obtain the derivatives of the functions.

For the reader to gain insight into the easy use of the library, an example of
usage is given:

import urdf2casadi.urdfparser as u2c
robot = u2c.URDFparser()
robot.from_file("./examples/urdf/ur5.urdf")

gravity = [0, 0, -9.81]
id = robot.get_inverse_dynamics_rnea(base_link, tool0, gravity)
id_forearm = robot.get_inverse_dynamics_rnea(base_link, forearm_link, gravity)
fd = robot.get_forward_dynamics_aba(base_link, tool0)
M = robot.get_inertia_matrix_crba(base_link, tool0)

In the above example, it is shown how one can find CasADi functions for the
inverse and forward dynamics, and the inertia matrix of a UR5 using u2c. The
gravity input is optional, and one can also add external forces as an optional input
parameter.

As one can see, structuring the library around one class provides easy use. To
obtain the kinematics and dynamics of a robot, the user has to import the library,
declare a class instance, and load the robot model from a URDF to that instance.
After these three preparatory steps, the kinematics and dynamics of the robot can
be provided by the library.

An important notice is that the user can obtain the kinematics and dynamics
from any root to tip of the robot with one class instance, i.e. by only loading

56

3.4 Resulting Functionality and Usage

the URDF once. This is illustrated in the above example, where the inverse dy-
namics are first found from base link to tool0, and then from base link to
forearm link. Hence, the URDFparser can be seen as a kinematics and dynamics
lookup table for the robot.

After obtaining the dynamics functions, they can be numerically evaluated:

id_num = id(q_num, qdot_num, qddot_num)
fd_num = fd(q_num, qdot_num, tau_num)
M_num = M(q_num)

where q num, qdot num, qddot num, and tau num are numerical vectors with
length corresponding with the number of DOF of the robot, and their numeri-
cal values are within the joint limits.

Having the dynamics functions returned by u2c, the dynamics derivatives are
easily obtainable within a few code lines, using the CasADi framework. This is
further explained in Chapter 6, and it is also shown in u2c’s user example, together
with the rest of the functionality provided by u2c. The user example is found in
the following directory:

urdf2casadi
examples

user
ur5 example

The user example presents all the functionality provided by u2c, using a UR5 as
the example robot, and is a part of the documentation associated with u2c, which
is further explained in Chapter 7.

57

Chapter 3. Implementation

58

CHAPTER 4

Numerical Results

4.1 Numerical Tests

The algorithm implementation of u2c is verified by comparing the numerical eval-
uation of the returned CasADi functions against the well-established numerical
libraries: KDL, RBDL, and PyBullet. As briefly mentioned in Chapter 1, these
libraries are developed for distinct purposes and hence provide distinct functional-
ity.

The aforementioned libraries are numerical, as opposed to u2c. This restricts
the user to the built-in functions rather than being able to take as many partial
derivatives as necessary for the controller formulation. However, it is chosen to
compare u2c against these libraries for several reasons. KDL is a well-established
library in the ROS community, PyBullet is widely used within machine learning,
and RBDL is, similar to u2c, implemented based on the Featherstone (2008). Fur-
ther, these libraries all provide Python bindings and loading URDFs, as u2c. Table
4.1 summarizes the dynamics provided by each library.

Table 4.1: Dynamics functionality provided by the libraries.

u2c KDL RBDL PyBullet
G
C
ID
M
FD

59

Chapter 4. Numerical Results

The numerical results are obtained by generating 1000 samples of configura-
tions, velocities, and accelerations or torques, uniformly distributed within the
joint limits. The numerical tests are conducted on a variety of robots: a 2-DOF
pendulum, a 6-DOF UR5, a 7-DOF KUKA-LWR, and a 16-DOF snake robot.
These robots are chosen for the tests as they represent different kinematic con-
structions and have various number of DOF, i.e. qualities that may affect the
numerical results.

For further implementational details, the numerical test scripts can be found in
the library path given by the directory tree:

urdf2casadi
examples

numerical
pendulum
ur5
kuka
snake

4.2 2-DOF pendulum

Table 4.2: Numerical differences between libraries for the 2-DOF pendulum for 1000
random samples.

KDL/u2c RBDL/u2c PyBullet/u2c
G [N] 1.30 · 10−12 4.14 · 10−11 5.91 · 10−04

C [N] 1.18 · 10−12 7.37 · 10−11 6.60 · 10−04

ID [Nm] 7.42 · 10−11 1.24 · 10−03

M [kgm2] 6.50 · 10−13 4.08 · 10−12 2.77 · 10−04

FD [m/s2] 1.58 · 10−11

Table 4.2 shows the numerical differences between the libraries for the 2-DOF
pendulum. The results show that u2c and KDL have the most similar results with
a difference of 10−12 for all the dynamic parameters, indicating a difference of
10−15 per sample. Further, u2c and RBDL also give very similar results, with the
difference being one order of magnitude higher than KDL and u2c. This minor
difference is probably due to KDL and u2c having more similar data types than
RBDL and u2c. Last, it is seen that PyBullet and u2c have a relatively bigger
difference, with an order of magnitude of −4 and −3. This difference is further
discussed later on.

It can be seen that common for all the library comparisons, is that the numerical
difference tends to a minor increase from G, to C, and up to ID. This is most likely
due to the additional variables introduced in the calculation of RNEA, thus leading
to an extended expression to numerically evaluate.

60

4.3 6-DOF UR5

4.3 6-DOF UR5

Table 4.3: Numerical differences between libraries for the 6-DOF UR5 for 1000 random
samples.

KDL/u2c RBDL/u2c PyBullet/u2c
G [N] 4.42 · 10−12 1.96 · 10−07 1.83 · 10−03

C [N] 1.03 · 10−11 4.30 · 10−07 3.12 · 10−03

ID [Nm] 4.41 · 10−07 4.12 · 10−03

M [kgm2] 1.40 · 10−12 1.46 · 10−08 2.32 · 10−03

FD [m/s2] 7.88 · 10−07

The numerical differences for the 6-DOF UR5, given in Table 4.3, yield similar
results as for the 2-DOF pendulum: u2c and KDL have the most similar results,
and the numerical results of PyBullet deviates from u2c, KDL, and RBDL. Further,
it can be seen that the numerical differences between u2c and RBDL are four orders
of magnitude higher, while the differences between u2c and PyBullet are one order
of magnitude higher. Whether this is a matter of the robot’s kinematics, or the
increase in DOF, is hard to tell at this point.

4.4 7-DOF KUKA-LWR

Table 4.4: Numerical differences between libraries for the 7-DOF KUKA-LWR for 1000
random samples.

KDL/u2c RBDL/u2c PyBullet/u2c
G [N] 2.92 · 10−12 4.97 · 10−12 3.87 · 10−04

C [N] 3.81 · 10−12 1.36 · 10−11 2.08 · 10−04

ID [Nm] 1.18 · 10−11 5.48 · 10−04

M [kgm2] 2.07 · 10−12 1.54 · 10−08 1.71 · 10−04

FD [m/s2] 2.22 · 10−10

Table 4.4 shows that the numerical differences for the 7-DOF KUKA-LWR are
more similar to the numerical differences of 2-DOF pendulum than those for the
6-DOF UR5. This indicates that the bigger numerical differences obtained for the
UR5 are a result of the robot’s kinematics rather than the number of DOF of the
robot.

61

Chapter 4. Numerical Results

4.5 16-DOF snake

Table 4.5: Numerical differences between libraries for the 16-DOF snake for 1000 random
samples.

KDL/u2c RBDL/u2c PyBullet/u2c
G (N) 2.52 · 10−12 0.0 2.37 · 10−11

C (N) 2.22 · 10−10 1.73 · 10−11 1.61 · 10−10

ID (Nm) 1.29 · 10−10 1.96 · 10−10

M (kgm2) 6.46 · 10−11 2.38 · 10−11 5.33 · 10−11

FD (m/s2) 1.29 · 10−10

The numerical results for the 16-DOF snake, given in Table 4.5, show that the
difference between u2c and KDL, and u2c and RBDL remain similar to the results
for the other robots. An unexpected result is that the numerical differences between
PyBullet and the other libraries are more similar for the 16-DOF snake than for
the other robots, despite the increase in DOF. Previously, the numerical differences
between PyBullet and the other libraries were of order of magnitude −4, and −3,
while for the 16-DOF snake it is of order of magnitude −10 and −11, depending on
the dynamics. This is a significantly more accurate result, and substantiates that
the numerical differences are not affected by the number of DOF.

4.6 Discussion
From the results given, it can be concluded that u2c, KDL, and RBDL have suf-
ficiently similar results, where u2c and KDL most likely have more similar data
types, leading to a smaller difference in results.

It can further be concluded that the difference in results seems to be independent
of the number of DOF. This is substantiated by the fact that PyBullet gives a much
more accurate result for the 16-DOF snake than for the other robots, which have
fewer DOF.

After some experimentation with the URDFs, it was discovered that the differ-
ences in the results are a matter of integers versus decimals. While the pendulum,
UR5, and the KUKA-LWR use decimal numbers to describe the robot’s kinemat-
ics, the 16-DOF snake URDF consists mostly of integers. It was discovered that
by changing the description of the other robots to use integers as well, the same
accuracy as for the snake was achieved.

It was thus speculated whether the inaccuracy of PyBullet was a matter of single
versus double precision floats, or a floating point cancellation issue. The developers
of PyBullet was informed, and it was found a conversion from a double precision
float to a single precision float in their URDF parser. The bug is now fixed by the
developers of PyBullet, and the change is submitted to their open-source library.

62

CHAPTER 5

Timing Results

Rigid body dynamics are often used in real-time tasks within robotics research.
To achieve the best possible solution, either if it is for optimal control, trajectory
optimization, estimation, or simulation purposes, the dynamics are needed to be
updated as often as possible as the input parameters change rapidly. The update
frequency of the dynamic parameters depends on how fast the dynamics can be
evaluated. Thus, the efficiency of the numerical evaluation of the CasADi functions
returned by u2c is a critical aspect of this project.

A thorough, two-folded timing investigation is conducted. The first part focuses
on the timing results performed on three different robots: the 2-DOF pendulum,
the 6-DOF UR5, and the 16-DOF snake robot. In the second part, experimental
URDFs are used to analyze how the evaluation times evolve when increasing the
number of DOF from 1 to 60. The timing investigation attempts to find what
affects the evaluation times. The results are compared against the three other well-
established libraries: KDL, RBDL, and PyBullet. These libraries are, as previously
mentioned, numerical and thus expected to be more efficient than the symbolic
functions returned by u2c.

It is explained how the timing investigation is performed, followed by a pre-
sentation and discussion of the results. In the matter of displaying the results
graphically, colors that maximize the distance of the color map are chosen. The
timing scripts used to obtain these results can be viewed in the timing-folder of
u2c:

urdf2casadi
examples

timing
robot comparison
60dof

63

Chapter 5. Timing Results

5.1 Timing Tests

The timing tests are performed on a Ubuntu 16.04, 3.5 GHz x-12 Intel Xeon CPU
processor in a Python 2.7 environment, and the -OFast compiler flag is used for op-
timization of the generated C-code. The Python module timeit is used to measure
the evaluation times of the libraries. timeit is a module that provides the ability
to measure the execution time of a code snippet while avoiding common traps for
execution time measuring. timeit automatically repeats the execution of the code
snippet many times while disabling the garbage collector, and picks the most accu-
rate timer for the given OS. By repeating the code a large number of times, timeit
eliminates the influence of other tasks on the machine, e.g disk flushing, and OS
scheduling, and thus obtains an accurate timing result.

There are mainly three types of time when measuring code execution: wall-clock
time, CPU time, and system time. Wall-clock time measures the elapsed time of
the code execution, while CPU time measures how much time the CPU spends on
the execution. The CPU time is often shorter than wall-clock time for single core
computers as the CPU may be executing other instructions at the same time. On
multi-core computers, wall-clock time may be shorter than CPU time as the code
is executed in parallel. The third type of time is called system time and represents
the time spent in the kernel, and is usually time spent servicing system calls.

The most accurate timer provided by Python for a Ubuntu OS measures wall-
clock time. A common trap using wall-clock time is that other processes may
interfere, resulting in the wall-clock time including the time spent waiting for CPU
capacity. To avoid this, the timeit module is used to repeat the timing of 1000
numerical evaluations 100 times, and then find the median evaluation time of the
median timing batch. To minimize CPU interference it is made sure that no other
processes are running on the computer while running the timing tests.

5.2 Robot Comparison

In this section, evaluation times of the dynamics for three robots are evaluated: the
2-DOF pendulum, the 6-DOF UR5, and the 16-DOF snake robot. These robots
are chosen so that one can evaluate the timing performance of u2c for robots of
various DOF, and thus gain insight into how the number of DOF affects the timing
performance.

The URDF description of the 2-DOF pendulum is a pan-tilt pendulum used
in ROS tutorials and the UR5 URDF description is taken from ROS’s original
description of a UR5 robot. The description of the snake robot is constructed
from the parameters describing the Eelume snake robot presented in Borlaug et al.
(2018).

Hereafter, the timing results of these robots are evaluated, followed by an in-
vestigation of what mainly affects the evaluation times of u2c.

64

5.2 Robot Comparison

(a) Median evaluation times for pendulum.

(b) Median evaluation times for UR5.

(c) Median evaluation times for snake.

Figure 5.1: Median evaluation times for the dynamics for PyBullet, RBDL, u2c, and
KDL.

From Figure 5.1 one can observe that u2c uses overall a longer evaluation time
than PyBullet, RBDL, and KDL. This is a natural consequence of u2c generated
functions supporting symbolic CasADi data types, and thus, some overhead is
expected. Yet, the evaluation times of u2c are at most one order of magnitude
higher than the numerical libraries, which is the case for the 2-DOF pendulum,
observed in Figure 5.1a. For the UR5, u2c’s evaluation times are the same order of
magnitude as the evaluation times of the numerical libraries, except for G, C, and
M for PyBullet and RBDL, which is one order of magnitude faster. Lastly, the
timing results for the snake yield evaluation times of the same order of magnitude

65

Chapter 5. Timing Results

for u2c and the numerical libraries. It is also seen that u2c excels over KDL for
evaluation of the inertia matrix at this point.

The above thus implies that u2c becomes relatively faster compared to the nu-
merical libraries for an increasing number of DOF. This indicates that the overhead
related to CasADi seems to be rather constant with regard to number of DOF. It
can further be observed from Figure 5.1 that it is mainly the dynamics functions
that consist of only one input variable, i.e. G and M , that are becoming relatively
faster, while the dynamics functions that consist of three symbolic variables, i.e. ID
and FD, have longer evaluation times, compared to the numerical libraries. This
may indicate that the overhead related to CasADi is due to an overhead related to
the CasADi symbolic data types. However, one must also consider the fact that
dynamics expressions consisting of several input variables are more likely to en-
compass a higher number of operations. This may also affect the evaluation times
as this implies an expression graph of a higher amount of nodes for CasADi to
evaluate. In the following, it is investigated how the number of operations, and the
number of input variables, affect the timing efficiency of u2c.

5.2.1 Impact of Number of Operations

Figure 5.2: Median evaluation times for the dynamics for u2c.

Table 5.1: Median evaluation times for u2c.

pendulum ur5 snake
G 12.64 µs 15.46 µs 22.01 µs
C 20.68 µs 26.02 µs 37.45 µs

ID 28.81 µs 36.02 µs 54.22 µs
M 13.14 µs 16.09 µs 22.67 µs

FD (crba) 28.93 µs 38.19 µs 68.92 µs
FD (aba) 28.78 µs 36.50 µs 54.92 µs

66

5.2 Robot Comparison

Table 5.2: Number of operations for the dynamics expressions.

pendulum ur5 snake
G 18 199 224
C 79 648 572

ID 110 696 710
M 34 872 1217

FD (crba) 132 2354 14786
FD (aba) 142 1948 2272

To evaluate how the number of operations affects the evaluation times of u2c, one
can observe how the evaluation times of ID and FD evolve for the different robots.
As both the ID function and the FD functions encompass three input variables,
but a different number of operations, their difference in evaluation time should
represent the effect of the difference in the number of operations.

By looking at the evaluation times given in Figure 5.2 and Table 5.1, in the
light of the information provided by Table 5.2, one can observe that the evaluation
times of u2c are not heavily affected by an increase in the number of operations.
To illustrate, one can observe that the evaluation times for ID and FD for the 2-
DOF pendulum are approximately the same while the number of operations varies
from 110 to 142. For the 6-DOF UR5, the number of operations varies more.
ID consists of 696 operations, FD (ABA) of 1948 operations, and FD (CRBA) of
2354 operations. Still, the evaluation times remain approximately the same. One
can observe that the evaluation time of FD (CRBA) is two microseconds larger
than the evaluation time of ID and FD (ABA). However, for such a small increase
in evaluation time, it is hard to tell whether this increase is due to the additional
operations, normal variability in the evaluation time, or interfering processes during
the timing tests.

For the 16-DOF snake robot, the gap in the number of operations between ID
and FD (ABA) to FD(CRBA) is higher due to CRBA’s O(n3) worst-case complex-
ity. While there is an increase of 1562 operations from ID to FD (ABA), there is
an increase of 12514 operations from FD (ABA) to FD (CRBA). The reason for
this high increase in the number of operations for FD using CRBA is that it must
invert a 16×16 inertia matrix. From Figure 5.2 and Table 5.1 one can observe how
the increase of 1562 operations does not remarkably affect the evaluation time, as
the evaluation times of ID and FD(ABA) for the 16-DOF snake are approximately
the same. But the increase of 12514, is noticeable on the efficiency. The evaluation
time of FD with CRBA is 14 microseconds larger than the evaluation time of FD
with ABA for the 16-DOF snake.

Thus, one can conclude that the overhead related to an increase in the number
of operations is present, but is negligible in cases where the robot does not have
a high number of DOF. It should also be mentioned that in the case where the
increase in the number of operations does affect the evaluation time remarkably,
i.e. for FD using CRBA, the user is recommended to use FD obtained with ABA

67

Chapter 5. Timing Results

instead.

5.2.2 Impact of Number of Input Variables
To investigate how additional symbolic variables affect the evaluation times of the
CasADi functions, one can exploit the fact that G, C, and ID are retrieved using
the same algorithm, namely RNEA, but with a different number of input variables.
As previously mentioned, their relation is given by:

ID = RNEA(q, q̇, q̈,fext)
C = RNEA(q, q̇,0,0)
G = RNEA(q,0,0,0)

where q, q̇, q̈ are symbolic SX vectors of length consistent with the robot’s number
of DOF.

By evaluating the inverse dynamics with fext = 0, the increase in evaluation
time from G, to C, to ID shows the impact of additional input variables. One
should bare in mind that the difference in the number of operations between G,
C, and ID, for the pendulum, UR5, and snake are at most 600 operations, which
the above concluded does not affect the evaluation time noticeably. Thus, it is
reasonable to assume that the increase in evaluation time from G, to C, and up
to ID is due to the additional input variables required. For comparison, it is also
seen how additional input variables affect KDL, RBDL, and PyBullet.

Table 5.3: Median evaluation times for G, C, and ID, for the pendulum, UR5, and
snake.

G C ID
pendulum 12.64 µs 20.68 µs 28.81 µs

UR5 15.46 µs 26.02 µs 36.02 µs
snake 22.01 µs 37.45 µs 54.22 µs

Figure 5.3: Median evaluation times for G, C, and ID for the pendulum, UR5, and
snake.

68

5.2 Robot Comparison

Figure 5.3 and Table 5.3 show that the increase in evaluation times from G, to
C, to ID seem to increase with a constant factor linear to the number of symbolic
variables. One can observe that this constant factor increases with the number
of DOF, which is reasonable as it is thus required vector variables with a higher
number of elements.

For the 2-DOF pendulum, the evaluation time increases with 8 microseconds
when going from one input variable, i.e. G, to two input variables, i.e. C, and
another 8 microseconds up to three input variables, i.e. ID. For the 6-DOF UR5,
this increase is approximately 11 microseconds, and 16 microseconds for the 16-
DOF snake. Hence, it is reasonable to assume that the increase in evaluation time
from G to C, to ID, is due to overhead related to the CasADi data types, and the
size of the overhead seems to have one constant factor and another factor increasing
with the number of DOF. This can be assumed as, although the snake has eight
times as many DOF as the pendulum, the constant factor, which the overhead
increases with when adding a new input variable, is only twice as big.

69

Chapter 5. Timing Results

(a) Median evaluation times for KDL.

(b) Median evaluation times for RBDL.

(c) Median evaluation times for PyBullet.

Figure 5.4: Median evaluation times for G, C, and ID for the pendulum, UR5, and
snake.

By comparing the evaluation times of the numerical libraries given in Figure
5.4, to the evaluation times of u2c, one can observe that the numerical libraries are
in general more affected by an increase in DOF. When it comes to the increase in
evaluation times from G, to C, to ID due to additional variables, the numerical
libraries seem less affected. One can also observe that the increase from G to C, to
ID, increases when the number of DOF increases. Whether this increase is due to
longer expressions to evaluate, or due to a slight overhead related to the data types,
is beyond the author’s knowledge of the libraries. Most likely, it is a combination
of these. It is reasonable to assume that the overhead related to numerical data

70

5.2 Robot Comparison

types is not too significant as the evaluation times for the 2-DOF pendulum are
remarkably small.

5.2.3 Conclusion
Based on the above, one can conclude that the evaluation times of the dynamics
functions returned by u2c seem to be most affected by the overhead related to the
number of input variables. Further, it can be concluded that this overhead is most
present for robots of few DOF, as the results indicate that the overhead is two-
folded: one part that seems constant with the addition of another input variable,
and another that seems to increase with the number of DOF, as this affects the
number of elements.

It is also shown that moderate changes in the number of operations, which is
the case for the dynamics obtained with O(n)-complexity algorithms for the robots
used in the above, do not remarkably affect the evaluation times. The results
indicate that more extensive changes in the number of operations, e.g. FD using
CRBA for the 16-DOF snake, can affect the evaluation times.

To conclude, an increase in the number of operations may affect the evaluation
times of u2c if the increase is significant enough. Further, the increase in evaluation
times due to an increasing number of operations seems to be more significant for
the numerical libraries as u2c gets relatively more efficient when the DOF increase.
It can also be concluded that the overhead associated with the CasADi variables
seems to even out as the DOF increase. This was shown as when the number
of DOF is eight times larger, i.e. when going from the 2-DOF pendulum to the
16-DOF snake, the overhead associated with a new input variable only doubled.

Because of these findings, further investigations have been performed on more
extensive increases in the number of DOF.

71

Chapter 5. Timing Results

5.3 60 DOF Analysis
As the above results imply that evaluation times of u2c get relatively faster com-
pared to the numerical libraries when increasing the number of DOF, an interesting
test case is to see how the evaluation times evolve for more extensive increases in
the number of DOF. For this investigation, 60 experimental URDFs have been gen-
erated, where the first URDF represents a robot of 1 DOF and the last represents a
robot of 60 DOF. The parameter values of the URDFs are based on the parameter
values of the UR5 used previously, such that the 60-DOF robot is the equivalent
of connecting ten UR5 robots as one giant robotic arm.

5.3.1 Gravity

0 10 20 30 40 50 60
number of DOF

0

10

20

30

40

50

60

70

80

tim
e

[u
s]

KDL
u2c
RBDL
PyBullet

Figure 5.5: Median evaluation times for gravity from 1 to 60 DOF.

From Figure 5.5 one can observe that u2c starts out being the least efficient library.
As the number of DOF increases, u2c excels over KDL and eventually RBDL. This

72

5.3 60 DOF Analysis

Table 5.4: Number of operations for G for an increasing number of DOF.

number of DOF: 2 10 20 30 40 50 60
number of operations 26 429 883 1351 1829 2246 2726

implies that the overhead related to a high number of DOF for the numerical
libraries is more significant than the overhead related to a high number of DOF
for u2c. Further, Figure 5.5 shows that KDL and RBDL are most affected by an
increase in DOF as they have the highest slope. u2c has the lowest slope but has a
higher offset as a result of the overhead previously described. PyBullet has a slope
that is comparable to u2c, but slightly higher. u2c is thus the library with the least
variability in evaluation time, meaning that it is the library that is least affected
by an increase in DOF. This is due to CasADi providing operations with minimal
overhead, in combination with G only encompassing one input variable.

The above finding represents the positive and negative aspects of using CasADi’s
symbolic SX variables, explained in section 2.1.2. On the downside, the use of SX
variables comes with an overhead. However, SX variables are made to perform
operations with minimal overhead, and thus, the CasADi functions returned by
u2c are not profoundly affected by the increase in the number of operations.

73

Chapter 5. Timing Results

5.3.2 Coriolis

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

tim
e

[u
s]

KDL
u2c
RBDL
PyBullet

Figure 5.6: Median evaluation times for Coriolis from 1 to 60 DOF.

Similar to G, Figure 5.6 shows that u2c starts out as the least efficient library, and
becomes relatively faster as the number of DOF increases. Yet, while KDL, RBDL,
and PyBullet seem to maintain their relative timing compared to those of G, one can
observe that u2c has become relatively slower for the evaluation times of C, relative
to G. By comparing Table 5.5 to Table 5.4, one can observe that C contains more
operations than G, in addition to C encompassing two input variables. Section
5.2.2 illustrated that additional input variables make the function more vulnerable
to an increase in DOF. Also, it was found that the increase in overhead is reinforced
by an increase in the number of operations. This is substantiated by noting that
the slope of u2c in Figure 5.6 is higher than the slope of u2c in Figure 5.5. One can
also observe that u2c excels over KDL for a higher number of DOF than for gravity,
and remains less effective than RBDL. Evaluation times for u2c still remain the
same order of magnitude as the other libraries, which can be considered sufficient.

74

5.3 60 DOF Analysis

Table 5.5: Number of operations for C for an increasing number of DOF.

number of DOF: 2 10 20 30 40 50 60
number of operations: 103 1309 2766 4258 5784 7157 8683

5.3.3 Inverse Dynamics

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

140

tim
e

[u
s]

u2c
RBDL
PyBullet

Figure 5.7: Median evaluation times for ID from 1 to 60 DOF.

Table 5.6: Number of operations for ID for an increasing number of DOF.

number of DOF: 2 10 20 30 40 50 60
number of operations: 134 1378 2854 4366 5912 7305 8851

75

Chapter 5. Timing Results

By evaluating Table 5.6, one can observe that the number of operations for ID is
approximately the same as for C. The number of operations for ID is just slightly
higher, with a maximum of a couple of hundreds operations more. The potential
increase in evaluation times for u2c can thus be assumed to be due to the additional
input variable required for ID, as it is shown previously that increases in the number
of operations of such size do not remarkably affect u2c’s evaluation times.

Figure 5.7 shows an increase in evaluation time for all libraries compared to C.
It can be observed that the increase in evaluation times for u2c is not relatively
higher than the evaluation times for RBDL and PyBullet. Thus, it seems that the
overhead related to the additional variable is approximately the same as RBDL’s
and PyBullet’s overhead, which can be assumed to come from the additional vari-
able and the small increase in the number of operations.

Gravity versus Coriolis versus Inverse Dynamics

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

140

tim
e

[u
s]

G
C
ID

Figure 5.8: Median evaluation times for G, C, and ID for u2c.

76

5.3 60 DOF Analysis

Table 5.7: Number of operations for G, C, and ID for an increasing number of DOF.

number of DOF: 2 10 20 30 40 50 60
number of operations (G) 26 429 883 1351 1829 2246 2726
number of operations (C): 103 1309 2766 4258 5784 7157 8683

number of operations (ID): 134 1378 2854 4366 5912 7305 8851

By comparing the evaluation times for G, C, and ID in Figure 5.8, one can observe
how the evaluation times evolve for an increasing number of input variables and
operations. Table 5.7 shows their corresponding number of operations. As C and
ID encompass roughly the same amount of operations, the increase in evaluation
time is primarily from the additional input variable needed. The change from G to
C is bigger, especially for high number of DOF, which is due to the more extensive
increase in the number of operations from G to C.

77

Chapter 5. Timing Results

5.3.4 Inertia Matrix

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

140

tim
e

[u
s]

KDL
u2c
RBDL
PyBullet

Figure 5.9: Median evaluation times for inertia matrix from 1 to 60 DOF.

Table 5.8: Number of operations for M for an increasing number of DOF.

number of DOF: 2 10 20 30 40 50 60
number of operations: 52 3055 9499 17281 29320 40795 56308

The inertia matrix is obtained using CRBA, which has O(n3) worst-case complex-
ity. In practice, this means a more rapid increase in the number of operations as
the DOF increase, and that the increase in the number of operations becomes more
significant for a higher number of DOF. This can be verified by Table 5.8.

Further, M only encompasses one input variable. This means that the overhead
associated with input variables is not too significant. Additionally, it was previously
found that the overhead associated with a relatively substantial increase in the

78

5.3 60 DOF Analysis

number of operations is present for u2c, but is relatively smaller than the increase
in overhead for the numerical libraries. Based on this, the efficiency of u2c should
potentially exceed the efficiency of the numerical libraries that are more sensitive
to an increase in the number of operations.

Figure 5.9 shows that u2c excels over KDL after 10 DOF, and PyBullet after 24
DOF, substantiating the above. One can also observe that, while PyBullet has been
the most efficient library for the evaluation of the dynamics discussed previously,
PyBullet here ends up having the longest evaluation times. It can thus be concluded
that PyBullet has the most overhead associated with the number of operations. It
can further be assumed that PyBullet has little overhead associated with input
variables as it has been the most efficient library for ID, where the number of
operations is relatively small, and there are three input variables needed. RBDL
seems to have some overhead related to the data type of the variables, as it is less
efficient than PyBullet for the dynamics with fewer operations. RBDL can further
be assumed to have little overhead related to the operations, as it is the fastest for
evaluating M .

To conclude, due to the high increase in the number of operations combined with
only one variable, Figure 5.9 shows that RBDL ends up being the most efficient
library, due to little overhead associated with the operations. Second up is u2c, for
the same reason. Figure 5.9 shows that u2c seems closer to a linear increase than
the others, indicating it is the library least affected by the increase in the number
of operations. But u2c is slightly slower than RBDL due to a more significant
overhead associated with the data type used. PyBullet ends up being the slowest
library as it is most affected by increases in operations.

79

Chapter 5. Timing Results

5.3.5 Forward Dynamics

0 10 20 30 40 50 60
number of DOF

0

50

100

150

200

250

300

tim
e

[u
s]

RBDL
u2c (ABA)
u2c (CRBA)

Figure 5.10: Median evaluation times for FD from 1 to 60 DOF.

Table 5.9: Number of operations for FD (ABA) for an increasing number of DOF.

number of DOF: 2 10 20 30 40 50 60
number of operations: 209 4546 10320 15947 22123 27277 33253

Similar to the inverse dynamics, the overhead associated with three symbolic vari-
ables makes FD (ABA) a constant factor slower than RBDL. Further, Figure 5.10
demonstrates that FD (CRBA) works sufficiently for few DOF, while the O(n3)
worst-case complexity makes it an unattractive choice for robots with a high num-
ber of DOF. This is due to the enormous amount of operations that occur for the
FD (CRBA) expressions, since this approach finds the inverse of a large inertia

80

5.3 60 DOF Analysis

matrix. Table 5.9 shows the number of operations for the FD (ABA) expressions.
The number of operations for the FD (CRBA) expressions have not been found
due to the enormous amount of time this would take.

In Chapter 3, it is mentioned that it is more accurate to describe CRBA as an
O(nd2) algorithm, and that these have the potential to exceed the speed of O(n)
algorithms, such as ABA, which is the reason why both approaches have been
implemented. One can also observe in section 5.2.1 that for the 2-DOF pendulum,
FD (CRBA) contains fewer operations than FD (ABA). Thus, if the overhead
related to the number of operations has dominated over the overhead related to
the input variables, FD (CRBA) had been faster than FD (ABA). However, as
the overhead related to the number of input variables dominates for robots of few
DOF, this restricts FD (CRBA) to the same evaluation times as FD (ABA).

Forward Dynamics (ABA) versus Inverse Dynamics

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

140

tim
e

[u
s]

FD(ABA)
ID

Figure 5.11: Median evaluation times for FD (ABA) and ID for u2c.

81

Chapter 5. Timing Results

Table 5.10: Number of operations for FD (ABA) and ID for an increasing number of
DOF.

number of DOF: 2 10 20 30 40 50 60
number of operations (ID): 134 1378 2854 4366 5912 7305 8851

number of operations (FD): 209 4546 10320 15947 22123 27277 33253

Table 5.10 shows the number of operations for FD (ABA) and ID. It can be ob-
served that the FD (ABA) expressions contain approximately four times as many
operations as the ID expressions. Further, both expressions encompass three sym-
bolic variables. Yet, one can observe from Figure 5.11 that it is not until the robots
contain over 20 DOF, that the difference in operations has a noticeable effect on the
evaluation times. This once again substantiates that there must be a reasonable
difference in operations before it affects the evaluation times, due to the minimal
overhead related to the operations.

5.3.6 Conclusion

This analysis has shown that u2c has proven strong in situations where there are
minimal number of input variables involved, which is the case for both G and M .
A significant difference between these dynamics is that the number of operations
increase rapidly for M , while the increase in number of operations is much smaller
for G. Either way, in these situations u2c excels when compared to several of the
numerical libraries, and it was found that u2c is the library with the smallest slope
forM andG. One can thus conclude that when only one input variable is involved,
u2c is less affected by changes in the number of operations.

The analysis also showed that the increase in evaluation times for u2c is more
significant from G to C than from C to ID, despite that, in both cases, one input
variable is added. It was found that this is due to the more significant increase
in the number of operations from G to C than from C to ID, indicating that u2c
is more sensitive to increases in operations when there are more input variables
involved.

Further, for FD it was shown how the CRBA and ABA approaches are just as
good for robots of few DOF. In theory, the CRBA approach may result in fewer
operations, but since this is just the case for robots of few DOF, it is the effect of
the overhead related to the input variables that dominates, such that the effect of
fewer operations is neglected. It was also found that FD using the CRBA approach
becomes very inefficient when the DOF increase, due to the enormous increase in
the number of operations that occur when having to find the inverse of a large
inertia matrix.

82

5.4 Summary

5.4 Summary
This chapter has found that, despite u2c finding symbolic expressions of the robot’s
dynamics, the evaluation times remain the same order of magnitude as the evalu-
ation times of the numerical libraries. Whether u2c is more or less efficient than
the numerical libraries, depends on two factors: the number of variables involved
in the expression and the number of operations that the expression encompasses.
The latter mainly depends on the algorithm used to retrieve the expression and
the number of DOF of the robot.

By comparing the evaluation times of the dynamics of a 2-DOF pendulum, a
6-DOF UR5, and a 16-DOF snake robot, it was found that u2c is relatively slower
for most of the dynamics compared to the numerical libraries, due to the overhead
related to the CasADi data types. The results showed that u2c becomes relatively
more efficient compared to the numerical libraries for an increasing number of DOF,
which indicated that u2c is less affected by an increase in number of operations, as
a consequence of the increasing number of DOF.

The 60 DOF analysis substantiated these results. In this analysis, the libraries
were exposed to a more extensive increase in the number of operations due to the
higher increase in the number of DOF. The results yielded that u2c is the library
that is least affected by an increase in the number of operations when only one
input variable is involved. When several input variables are involved, u2c is more
sensitive to an increase in DOF.

83

Chapter 5. Timing Results

84

CHAPTER 6

Derivatives Timing

Previously the main focus has been rigid body dynamics and its use. However, in
the matter of control, optimization, and estimation within robotics, one frequently
requires the derivatives of the system’s dynamics. Typical situations are optimal
control and trajectory optimization, which is becoming the standard approach to
control advanced robotic systems, as presented by Posa et al. (2014) and Koene-
mann et al. (2015). The most computationally expensive part of these optimization
algorithms is to compute the dynamics derivatives. At most, up to 90% of the com-
putation time is spent computing these derivatives, according to Carpentier and
Mansard (2018).

The derivatives are difficult to derive analytically. The manual process of de-
riving the derivatives is both complex and error prone. Another matter to consider
is that they are often difficult to optimize and to implement efficiently.

Another approach used to derive the dynamics derivatives is finite differences.
It can be considered the simplest way to obtain the derivatives, and the method
is based on evaluating the input dynamics several times while adding a small in-
crement on the input variables. However, this approach is sensitive to numerical
rounding errors, as shown in Carpentier and Mansard (2018). Additionally, in cases
where this approach has shown fast enough to be applied on real system, e.g. Tassa
et al. (2012) and Koenemann et al. (2015), fine parallelization is required.

To rely on AD, as formerly mentioned in section 2.1.2, for obtaining the deriva-
tives, generally requires intermediate computations. These computations are often
hard to avoid or simplify, but code-generation reduces this problem. A known issue
in this matter is that it can be a costly process to compose. As CasADi is an AD
framework with built-in code-generation functionality, this provides an opportunity
to rapidly retrieve the derivatives after obtaining the dynamics.

In this chapter, it is explained how to obtain the dynamics derivatives in the

85

Chapter 6. Derivatives Timing

CasADi framework using u2c, followed by a comparison between the evaluation
times of the dynamics and the evaluation times of their derivatives. It is also
demonstrated how the number of operation evolves with an increasing number of
DOF for the derivatives, and how the evaluation times are affected by an increase
in the number of operations.

For implementational details about the derivatives timing tests, they can be
found in the following directory:

urdf2casadi
examples

timing
derivatives

6.1 Obtaining Dynamics Derivatives
When timing the derivatives, the same approach is used as for timing the dynamics.
Before the test, the derivatives are easily obtained using CasADi’s built-in Jacobian
functionality, where the user can explicitly define which variable one wishes to find
the derivative with respect to.

CasADi provides different ways of obtaining derivatives. The cs.jacobian-
functionality finds the partial derivative of a given CasADi function with respect
to a CasADi variable.

The second method allows the user to find the time derivative with respect to
the variables explicitly defined by the user. The time derivatives are obtained by
using CasADi’s cs.jtimes-functionality. Based on its inputs, cs.jtimes calculates
the Jacobian-times-vector product, in a way much more efficient than first creating
the full Jacobian and performing a matrix-vector multiplication. This is especially
useful as it is often the time derivative that is needed in the formulation of optimal
control problems within robotics.

Further, all derivatives expressions are converted to a CasADi-function where
the -OFast compiler flag is used for just-in-time compilation of derivatives functions
for maximum efficiency. This is the same approach as used in the returned functions
of u2c. A more detailed implementational description of how the derivatives are
obtained in the CasADi framework is given in the user example of u2c, which can
be found in the user-folder. The user example is further discussed in the next
chapter, and found in the following directiory:

urdf2casadi
examples

user
ur5 example

86

6.2 Derivatives Timing - cs.jacobian

6.2 Derivatives Timing - cs.jacobian
In this section, the evaluation times of the derivatives obtained using CasADi’s
cs.jacobian-functionality is compared against their related dynamics functions.
It is also looked into how the number of operations increases when going from the
dynamics expressions to their derivatives and how this affects the evaluation times.

The derivatives are found with respect to all the variables included in the dy-
namics expressions:

∇G = ∂G

∂q

∇C = [∂C
∂q

,
∂C

∂q̇
]

∇ID = [∂ID
∂q

,
∂ID
∂q̇

,
∂ID
∂q̈

]

∇M = ∂M

∂q

∇FD = [∂FD
∂q

,
∂FD
∂q̇

,
∂FD
∂τ

]

To take the derivative of a matrix with respect to a vector, CasADi reshapes
the matrix to a vector, then creates the vector-vector Jacobian matrix.

87

Chapter 6. Derivatives Timing

6.2.1 2-DOF pendulum

(a) Median evaluation times.

(b) Number of operations.

Figure 6.1: Median evaluation times and number of operations for the dynamics and
their related derivatives for the 2-DOF pendulum.

Figure 6.1a shows that the evaluation times of the derivatives obtained with
cs.jacobian are approximately the same as for their related dynamics functions.
It can even be observed that the evaluation time of the derivative of M seems to be
a few microseconds faster than the evaluation time of M . For the other dynamics
parameters, the difference in evaluation time from the dynamics functions to their
related derivatives is negligible.

As the dynamics functions and their related derivatives functions encompass
the same number of input variables, the potential difference in evaluation time is
due to the increase in the number of operations. Figure 6.1b shows the change in
the number of operations for the derivatives and their related dynamics. One can
observe that FD is the dynamics term most affected by an increase in the number
of operations, while G and M is hardly affected at all. Thus, the few microseconds
decrease in evaluation time for the derivative of M can be assumed to be due to
normal timing variations. It can also be concluded that the increases in operations
are of minor importance for the 2-DOF pendulum and do not remarkably affect
the evaluation times of the derivatives.

88

6.2 Derivatives Timing - cs.jacobian

6.2.2 6-DOF UR5

(a) Median evaluation times.

(b) Number of operations.

Figure 6.2: Median evaluation times and number of operations for the dynamics and
their related derivatives for the 6-DOF UR5.

From Figure 6.2a, it can be observed that most of the derivatives for the UR5 have
a noticeable increase in evaluation time compared to their related dynamics, al-
though the increase is relatively small. Similar to the pendulum, it is the evaluation
time of FD that has the most significant increase, which is approximately 10-15
microseconds for both approaches. G and M are hardly affected by the increase in
the number of operations for their derivatives, while it can be observed an increase
of a few microseconds for the evaluation times of the derivatives of C and ID.

Figure 6.2b shows that the 6-DOF UR5 is more exposed to an increase in the
number of operations for the derivatives than the 2-DOF pendulum. The number
of operations for the derivatives of UR5 is of order 3 and 4, except for the derivative
of G, which is still of order 2. This explains why one can observe an increase in
evaluation time for all the dynamics derivatives except for G. Further, one can
see that the increase in the number of operations is most significant for FD, which
explains why the increase in evaluation time is biggest for FD. One can also observe
that even though the increase in the number of operations is approximately the
same for C, ID, and M , it seems that the evaluation times of C and ID are more

89

Chapter 6. Derivatives Timing

affected by the increase in the number of operations. This is most likely because
C and ID encompass more input variables than M , and is thus more sensitive to
an increase in the number of operations.

90

6.2 Derivatives Timing - cs.jacobian

6.2.3 16-DOF snake

(a) Median evaluation times.

(b) Median evaluation times zoomed in.

(c) Number of operations.

(d) Number of operations zoomed in.

Figure 6.3: Median evaluation times and number of operations for the dynamics and
their related derivatives for the 16-DOF snake.

91

Chapter 6. Derivatives Timing

Figure 6.3 shows the evaluation times for the derivatives and the number of oper-
ations, both fully zoomed out, and zoomed in, to get a fuller overview of all the
derivatives, as the derivative of FD (CRBA) increases significantly more than the
other derivatives.

From Figure 6.3a and b, it can be seen that FD is still the derivative most
exposed to an increase in evaluation time. For the other dynamics, Figure 6.3
shows similar results as for the robots discussed earlier, except with a slightly higher
increase in evaluation times for the derivatives. This is a result of a higher increase
in the number of operations, which can be observed from Figure 6.3d, where the
higher increase in the number of operations is due to the increased number of DOF
for the snake.

For the other robots, the increase in the evaluation time for the derivative of
FD is approximately the same for FD (CRBA) and FD (ABA). For the snake,
however, it is seen that FD obtained with CRBA is significantly more exposed to
an increase in evaluation time than FD obtained with ABA. From Figure 6.3c, it
can be understood that the significant increase in evaluation time for the derivative
of FD (CRBA) is due to the major increase in the number of operations. It can
be observed that the expression for the derivative of FD (CRBA) consists of over
400 000 operations, in contrast to the expression for the derivative of FD (ABA),
which consists of 40 000 operations. It is a known fact that CRBA is more ex-
posed to an increase in DOF, as it has O(n3) worst-case complexity. Further, the
CRBA approach for solving the FD involves solving the equation of motion for q̈,
which again implies calculating the inverse of the inertia matrix. For the 16-DOF
snake, this means that the inverse of a 16× 16 matrix has to be calculated for the
FD, making the derivative of FD more exposed to an increase in the number of
operations.

6.2.4 Conclusion
The above shows that, on a general basis, dynamics derivatives obtained with
cs.jacobian result in evaluation times not much higher than the evaluation times
of the dynamics themselves, which can be considered a satisfactory result. It is
seen that the evaluation times of the derivatives for robots of several DOF increase
more relative to their related dynamics, as this causes a more significant increase
in the number of operations. Further, the evaluation times of the derivatives of
robots with few DOF remain the same as for the related dynamics. It was also
seen that the derivatives of the dynamics which inhabit the most input variables
are more exposed to an increase in evaluation time.

It can be concluded that for a certain increase in the number of operations, the
evaluation times of the derivatives are not profoundly affected, and stay within the
same order of magnitude as the evaluation time of its related dynamics function.
If the increase in the number of operations exceeds a certain level, this affects the
evaluation time to a much higher degree, as seen for the derivative of FD (CRBA)
for the 16-DOF snake. Further, FD using the ABA approach has been implemented
as it was known that FD using the CRBA approach was not recommended for
robots with a high number of DOF, and thus the ABA approach should be the

92

6.3 Derivatives Timing - cs.jtimes

preferred alternative when obtaining the derivative of FD for such robots.

6.3 Derivatives Timing - cs.jtimes
In this section, the evaluation times of the derivatives obtained using CasADi’s
cs.jtimes-functionality is compared against their related dynamics functions.

The derivatives are found with respect to all the variables included in the dy-
namics expressions, and as formerly mentioned, cs.jtimes gives the time derivative
of the dynamics:

Ġ = ∂G

∂q
q̇

Ċ = ∂C

∂q
q̇ + ∂C

∂q̇
q̈

˙ID = ∂ID
∂q

q̇ + ∂ID
∂q̇

q̈ + ∂ID
∂q̈

...
q

Ṁ = ∂M

∂q
q̇

˙FD = ∂FD
∂q

q̇ + ∂FD
∂q̇

q̈ + ∂FD
∂τ

τ̇

The cs.jtimes approach naturally includes an additional variable for the time
derivative of each input variable of the dynamics parameter. The derivatives func-
tions of G, C, ID, and M thus encompass one additional input variable when find-
ing the time derivative: Ġ = Ġ(q, q̇), Ċ = Ċ(q, q̇, q̈), ˙ID = ˙ID(q, q̇, q̈,

...
q). The

time derivative of FD gets two additional input variables: ˙FD = ˙FD(q, q̇, q̈,τ, τ̇).
Thus, one has to consider the impact of these additional variables on the evaluation
times, and not just the increase in the number of operations alone.

93

Chapter 6. Derivatives Timing

6.3.1 2-DOF pendulum

(a) Median evaluation times.

(b) Number of operations.

Figure 6.4: Median evaluation times and number of operations for the dynamics and
their related derivatives for the 2-DOF pendulum.

From Figure 6.4, one can observe that the evaluation times of the dynamics deriva-
tives, where it is still the evaluation times of the FD derivatives that increase the
most. By comparing Figure 6.4b to Figure 6.1b one can observe that the derivatives
obtained with cs.jtimes have fewer operations than the derivatives obtained with
cs.jacobian. The smaller increase in the number of operations for cs.jtimes rep-
resents CasADi’s efficient calculation of the Jacobian-times-vector product, rather
than creating the full Jacobian and performing a matrix-vector multiplication. Fur-
ther, it was found in section 6.2.1 that the increase in the number of operations for
the 2-DOF pendulum does not result in a remarkable increase in evaluation times
for the derivatives. Hence, it can be concluded that the increase in evaluation times
displayed in Figure 6.4 is mainly due to the additional input variables.

94

6.3 Derivatives Timing - cs.jtimes

6.3.2 6-DOF UR5

(a) Median evaluation times.

(b) Number of operations.

Figure 6.5: Median evaluation times and number of operations for the dynamics and
their related derivatives for the 6-DOF UR5.

Figure 6.5a shows that the evaluation times of the derivatives increase more for the
UR5 than for the pendulum, as expected due to the increase in DOF. One can also
observe how the evaluation times of the derivatives of FD (CRBA) tends to increase
more rapidly than the evaluation times of the derivatives of FD (ABA). Further,
Figure 6.5 shows that, compared to Figure 6.2, the increases in the number of
operations are several thousands of operations less than for the derivatives obtained
with cs.jacobian. One can also observe a tendency of cs.jtimes having fewer
operations than cs.jacobian as the DOF increase. There are thus two conflicting
effects affecting the evaluation times. The effect of a lower increase in the number
of operations should make the evaluation times increase less, and the effect of
having more input variables should make the evaluation times increase more than
the derivatives obtained with cs.jacobian. Comparing Figure 6.5a with Figure
6.2a, one can see that the effect of the additional input variables is dominant as
the increase in evaluation times is slightly bigger for the UR5 using cs.jtimes.

95

Chapter 6. Derivatives Timing

6.3.3 16-DOF snake

(a) Median evaluation times.

(b) Number of operations.

(c) Number of operations zoomed in.

Figure 6.6: Median evaluation times and number of operations for the dynamics and
their related derivatives for the 16-DOF snake.

By evaluating Figure 6.6b, one can observe that the number of operations for
the derivative of FD (CRBA) is 40 000, which for the derivative obtained with
cs.jacobian is one order of magnitude higher. One can also observe, from Figure

96

6.3 Derivatives Timing - cs.jtimes

6.6c, how the increase in the number of operations for the other dynamics is also
lower. By comparing with the other robots, one can observe that the number of
operations saved using cs.jtimes instead of cs.jacobian increases as the DOF
increase, indicating that the effect of a lower increase in evaluation times for the
derivatives should be strengthened as the DOF increase. Further, it was found in
Chapter 5 that the input variables bring a constant overhead, in addition to an
overhead related to the increase in symbolic elements of the symbolic vectors. The
constant overhead was found to be dominating, leading to the overall overhead
associated with input variables decreasing as the DOF increase.

Figure 6.6a substantiates that the effect of the lower increase in the number of
operations becomes more dominant, while the effect of the additional input vari-
ables becomes less dominant, as the DOF increase. By comparing Figure 6.6a to
Figure 6.3a, one can see that the evaluation times of the derivatives are approxi-
mately the same for certain derivatives, while the increase in the evaluation times
for the other derivatives is smaller than for the robots of fewer DOF, substantiating
the above.

6.3.4 Conclusion
There are two competing effects that determine the evaluation times of the time
derivatives. The additional input variables introduce an extra overhead increasing
evaluation times, and the lower number of operations compared to the cs.jacobian
approach decreases the evaluation times. For robots with a low number of DOF, the
number of operations is not as noticeable as the input variable overhead. For robots
with higher number of DOF, the evaluation times of cs.jtimes are lower than that
of cs.jacobian, as there are much fewer operations involved. For calculating the
time derivative of a dynamics parameter, one would still have to multiply the
Jacobian by the time derivatives of the input variables.

97

Chapter 6. Derivatives Timing

6.4 cs.jacobian versus cs.jtimes

From the findings in the previous sections, there is reason to believe that when the
robot exceeds a certain number of DOF, the evaluation times of the cs.jtimes-
derivatives are lower than the evaluation times of the cs.jacobian-derivatives. To
illustrate, the evaluation times are summarized in Table 6.1 and Table 6.2.

Table 6.1: Median evaluation times for the dynamics derivatives obtained with
cs.jacobian with respect to q, q̇, q̈ and τ.

pendulum UR5 snake
∇G 12.63 µs 15.38 µs 23.47 µs
∇C 20.57 µs 29.62 µs 46.78 µs
∇ID 28.91 µs 40.08 µs 67.68 µs
∇M 12.54 µs 17.14 µs 36.72 µs

∇FD (CRBA) 29.07 µs 48.35 µs 286.73 µs
∇FD (ABA) 29.10 µs 50.52 µs 82.48 µs

Table 6.2: Median evaluation times for the dynamics derivatives obtained with
cs.jtimes with respect to q, q̇, q̈ or τ.

pendulum UR5 snake
Ġ 20.38 µs 25.43 µs 38.46 µs
Ċ 28.74 µs 36.92 µs 54.96 µs
˙ID 36.66 µs 49.08 µs 71.20 µs
Ṁ 20.50 µs 28.37 µs 40.61 µs

˙FD (CRBA) 44.78 µs 66.93 µs 127.73 µs
˙FD (ABA) 42.98 µs 53.75 µs 81.86 µs

Table 6.1 and Table 6.2 show that even though the cs.jacobian-derivatives
are much faster for robots of few DOF, this difference becomes smaller as the DOF
increase. For the 16-DOF snake the derivatives of FD (ABA), ID, and M have ap-
proximately the same evaluation times for both derivatives. There is thus reason to
believe that if the DOF continue to increase, the cs.jtimes-derivatives exceed the
efficiency of the cs.jacobian-derivatives. This is due to a higher number of DOF
results in a bigger difference in operations between the two types of derivatives.
This is displayed systematically in Table 6.3 and Table 6.4.

98

6.4 cs.jacobian versus cs.jtimes

Table 6.3: Number of operations for the dynamics derivatives obtained with
cs.jacobian.

pendulum UR5 snake
∇G 29 881 2347
∇C 239 5157 11792
∇ID 234 4731 16159
∇M 44 4095 11635

∇FD (CRBA) 378 17764 431178
∇FD (ABA) 390 13517 40901

Table 6.4: Number of operations for the dynamics derivatives obtained with cs.jtimes.

pendulum UR5 snake
Ġ 32 491 687
Ċ 165 1707 1660
˙ID 219 1807 2029
Ṁ 48 2909 11635

˙FD (CRBA) 292 6906 44940
˙FD (ABA) 290 5828 7218

Figure 6.7: Median evaluation times and number of operations for the dynamics and
their related derivatives for the 32-DOF snake.

To investigate the theory further, a URDF representation of a hypothetical 32-
DOF snake robot has been constructed. The results are displayed in Figure 6.7,
and substantiate the fact that when a robot exceeds a certain number of DOF, the
efficiency gained by fewer operations overcomes the overhead associated with the
additional input variables in the functions obtained with cs.jtimes. Figure 6.7
shows that this is the fact for all the dynamics except for G for a 32-DOF robot.

99

Chapter 6. Derivatives Timing

The results illustrate that the number of operations can have a significant im-
pact on the evaluation times. Yet, by evaluating Figure 6.7, one can conclude that
it has to be a matter of tens and hundreds of thousand operations before it has a
significant impact on the evaluation times.

6.5 Conclusion
This chapter has illustrated that u2c can be used to derive efficient functions for
the dynamics derivatives in the CasADi framework. It is shown that the derivatives
can be derived in two different ways, using either cs.jacobian, or cs.jtimes for
efficiently calculating the time derivative.

It is further illustrated that the evaluation times of the derivatives are not much
longer than the evaluation times of the dynamics functions themselves. And, except
for FD (CRBA), the evaluation times of the dynamics derivatives seem to be of
the same order of magnitude as the evaluation times of the dynamics. Thus, it can
be concluded that the derivatives, whether they are found by cs.jacobian or by
cs.jtimes, are suitable for use with trajectory optimization, optimal control, and
other approaches where dynamics derivatives are needed.

The cs.jtimes approach is an efficient approach to calculating the time deriva-
tive of the dynamic parameters, and the cs.jacobian approach is an easy way of
getting the partial derivatives of a dynamic parameter. The comparison between
the timing results of cs.jtimes and cs.jacobian reiterated that the introduction
of an additional input variable does have a constant overhead that can be quite
significant. Even then, cs.jtimes is more efficient than cs.jacobian for certain
numbers of DOF. This is the intended behavior of cs.jtimes from the CasADi
developers, as it is intended as a faster subroutine exploiting the directionality of
the derivative.

100

CHAPTER 7

Epilogue

This chapter is based on the Epilogue chapter from the specialization project asso-
ciated with this thesis. Modifications have been made according to changes during
the latter part of the project.

7.1 Discussion
In this section, a discussion regarding the library structure and implementation is
presented.

7.1.1 C++ versus Python
One of the first choices that had to be made regarding the implementation of u2c,
was which programming language to use. CasADi is available for C++, Matlab,
and Python with minimal difference in performance. Since Matlab is licensed, many
companies and programmers do not use Matlab, and thus this option was excluded.
Advantages of using Python are that the Python API is the best documented
and proven to be very stable, in addition to Python being a high-level language.
The C++ API is also stable but is not ideal for getting started with as there is
limited documentation. Additionally, the C++ API lacks the interactivity of other
languages like Python and Matlab.

C++ is a compiled language, while Python is an interpreted language. Thus,
each platform running C++ code requires a compiler. While for Python, all that
is needed is a Python interpreter to be installed so that the executable can be
interpreted at run-time. The decisive advantage of Python being an interpreted
language is that it becomes a cross-platform language, meaning that if u2c is imple-
mented in Python, the library can be used on all platforms. C++ can be seen as a

101

Chapter 7. Epilogue

cross-platform language in the sense that there exist compilers for many platforms,
but not all features or libraries are available on all platforms.

The other difference of importance is that Python is a dynamic language while
C++ is not. The meaning of Python being a dynamic language is that under
declaration of objects, no type is given and hence the type of this object can change
dynamically. This is in contrast to C++, where one has to specify the object
type. The consequence of Python being a dynamical language is that declarations
normally taken care of during compilation are moved into run-time. The dynamic
lookup method can be costly, leading to less efficient code. On the contrary, when
executing compiled C++ code, the execution path is more predictable leading to
the compiler being able to perform optimization.

To summarize, the leading advantage of C++ is that it is fast and efficient as
it is not a dynamic language. However, it is not cross-platform as a compiler is
required. The advantages of Python are that it is cross-platform, high level, and
has a big community, while the disadvantage is that Python can be slow as it is a
dynamic language. The implementation choice thus fell on Python. An essential
reason for this choice is that CasADi support C-generation of code, thus making it
possible to get the advantages of using Python while at the same time preserving
the opportunity to obtain the beneficial functionality of compiled code for function
calls of dynamics parameters.

7.1.2 The Library Structure
Before starting the implementation of u2c, a thorough investigation had to be made
regarding the library structure concerning the resulting usage. Several structures
were considered. One option was to structure the library as a suite of functions,
such that the user could use these functions as desired. This structure is used by
Featherstone’s library, spatial v2, as mentioned in the introduction.

The other option was to use a class structure where one robot is related to one
instance of the class, and the class represents the parsing from a URDF to the
robot’s kinematics and dynamics.

The choice fell on the latter option due to its ease of use. This option provides
the user with a way of obtaining the robot’s kinematics and dynamics without
much prior knowledge of the inner structure of the library. The class provides a
suite of methods for loading the robot descriptions and a suite of get-methods that
provides the kinematics and dynamics, and this is all information the user needs.

7.1.3 Forward Dynamics - ABA versus CRBA
As previously mentioned, u2c provides two different ways of obtaining the forward
dynamics: using ABA, or using CRBA and then solving the equation of motion for
a rigid multi-body system. Both of them have been implemented as ABA is a better
choice for robots of many DOF, while it was speculated that the CRBA approach
could be a better option for robots of few DOF, due to its O(nd2)-complexity.

In the timing chapters, it was found that for robots of few DOF, the CRBA
approach would sometimes lead to expressions of fewer operations. However, in

102

7.1 Discussion

these cases, the overhead associated with the symbolic variables would dominate,
such that the evaluation times of the forward dynamics, either using the ABA or
CRBA approach, remain approximately the same.

It was, therefore, wondered if the CRBA approach should be kept or removed
from the library’s functionality. During the derivatives investigation, however, it
was found that in some use cases, e.g. when wanting to find the derivative of the
forward dynamics with respect to only q̇ or τ for robots of few DOF, the CRBA
approach was remarkably faster due to significantly fewer operations. Thus, one
can conclude that there are not many use cases where the FD CRBA approach
is remarkably better than the FD ABA approach. Yet, these scenarios do exist,
and both approaches are kept so that the user can investigate for oneself which
approach is best suited for one’s use case.

7.1.4 Documentation
Providing necessary documentation for new users is an important aspect when de-
veloping a new library. The documentation of u2c consists of two parts: docstrings
describing the functionality of each function and module, and a thorough user
example which explains and shows the complete functionality provided by u2c.

Docstrings

Python provides docstrings as a form of documenting Python modules, functions,
classes, and methods. They represent a convenient way of writing documentation,
where the docstrings are specified in the source code to document a specific code
segment. The docstrings have of purpose to describe what the code does, and not
how.

The functions, classes, methods, and modules of u2c all have docstrings, and
are declared using """ """ just below the class, method or function declaration.

The docstrings are accessible to the user using the doc -method of the object
or using the help()-function provided by Python. To illustrate, given that the user
has installed u2c using the installation instructions provided in the README-file, the
docstring documentation is accessible as:

import urdf2casadi.urdfparser as u2c
u2c.URDFparser.__doc__
u2c.URDFparser.get_inverse_dynamics_rnea.__doc__

Output:

’Class that turns a URDF chain to a casadi function.’

’Returns the inverse dynamics as a casadi function.’

One can also use the help()-function for a more descriptive documentation. For
the methods of the class, the help()-function also gives the input arguments of
the methods. For instance, help(u2c.URDFparser.get inverse dynamics rnea)
gives the following output:

103

Chapter 7. Epilogue

’Help on method get_inverse_dynamics_rnea in module
urdf2casadi.urdfparser:

get_inverse_dynamics_rnea(self, root, tip, gravity=None, f_ext=None)
method of urdf2casadi.urdfparser.URDFparser instance

Returns the inverse dynamics as a casadi function.’

Further, help(u2c.URDFparser) returns the docstring of the URDFparser-class
together with the help()-function’s description of all the methods provided by the
URDFparser-class, thus giving a full overview of the class with its class variables,
methods, and their input arguments.

User Example

The user example can be considered the main source of the u2c documentation.
It is developed as a Jupyter notebook, giving the advantage of both showing how
the code works, and explaining the code with text, in a systematic way. The user
example shows and explains all the functionality provided by u2c, using a UR5 as
an example. It also gives a thorough explanation of how to obtain the derivatives of
the dynamics in the CasADi-framework, using either cs.jacobian, or cs.jtimes.
Thus, this user example provides all the necessary information and resources a new
user needs to understand how to use the library. As previously mentioned, it can
be found in the following directory of the library’s Github repository:

urdf2casadi
examples

user
ur5 example

The reader is strongly encouraged to have a look at this user example, as it gives
an overview of u2c’s final functionality and usage.

7.2 Further Work
The project has provided an open-source library with the functionality of turning a
URDF chain into CasADi functions of the robot’s kinematics and dynamics, where
one can further easily obtain the dynamics derivatives if needed. Yet, as mentioned,
this version of u2c has some limitations, which are associated with the limitations
of the urdf parser py and the URDF.

7.2.1 Generalization
The URDF represents robots with the structure of a branched kinematic tree.
However, urdf parser py only supports parsing of kinematic chains, thus limiting
u2c to only obtaining kinematics and dynamics of kinematic chains. Hence, u2c
should, in the long run, be modified to support branched kinematic trees. This

104

7.3 Conclusion

would include going away from urdf parser py and develop another parser that
parses the full kinematic trees. The algorithms would also have to be modified,
but this should be a simple process only involving going away from the assumption
that λi = i − 1 and rather use parent arrays. This generalization will not be
prioritized in the nearest future but is something that should be modified in the
long run.

7.2.2 URDF 2.0
The ROS community has already started the discussion of the need for a URDF
update. Several forums discuss the construction of a URDF 2.0, where the need for
support for closed kinematic chains is in focus. If or when this new version of the
URDF is provided, this provides the possibility to expand the functionality of u2c
to closed kinematic chains, such as Stewart platforms or delta robots. However,
dealing with closed kinematic chains would require significant modification of the
algorithm implementations. Thus, this concern should be evaluated at the time of
relevance.

7.3 Conclusion
In this report, an overview of the research and investigations regarding the develop-
ment of u2c has been given. This has included a brief presentation of state-of-the-
art libraries providing robot kinematics and dynamics, and research concerning
the implementation of rigid body dynamics. Further, implementation details of
u2c have been presented, and in-depth investigations of the numerical results and
timing results for the dynamics and their derivatives have been given.

In the examination of existing libraries it was found that although there is a
suite of libraries that generate robot kinematics and dynamics, these are numeri-
cal with the exception of SymPyBotics. Even though SymPyBotics does provide
symbolic solutions, the framework uses symbolic differentiation, while CasADi uses
algorithmic differentiation. In addition, CasADi exploits sparsity, which combined
with the algorithmic differentiation makes it a useful framework to obtain fast
derivatives of rigid body dynamics for control and optimization. u2c will be espe-
cially useful for robotics researchers working with CasADi, but can also be valuable
in cases where C code of the symbolic expressions are needed.

The research concerning the implementation of rigid body dynamics algorithms
led to the investigation of spatial vector algebra. An introduction to spatial vector
algebra for use with rigid body dynamics has been given, and it is showed how the
utilization of spatial algebra yield easy and readable code with few code lines and
joint type independent algorithms.

The numerical results verified the implementation of the algorithms. The inves-
tigation yielded very similar results between u2c, KDL, and RBDL. An inaccuracy
related to decimal numbers for PyBullet was also discovered, and has now been
fixed by the developers of PyBullet.

Further, the timing investigations showed that, although u2c uses specialized

105

Chapter 7. Epilogue

data types, the evaluation times of u2c are the same order of magnitude as the
evaluation times of the numerical libraries. It was found that, due to the overhead
related to the CasADi variables and the minimal overhead related to the number
of operations, u2c is relatively faster for robots with a high number of DOF. For
the same reasons, u2c is relatively faster for the dynamics functions encompassing
few input variables.

The timing investigation of the dynamics derivatives yielded evaluation times
not much longer than the evaluation times of the dynamics functions themselves.
It was also demonstrated how cs.jtimes is advantageous when finding the time
derivative of the dynamics, saving operations and thus shortening the evaluation
times.

To summarize, this report has presented u2c: an open-source library for finding
a robot’s dynamics and kinematics, and their related derivatives, symbolically in
the CasADi framework based on a URDF description of the robot. The functions
returned by u2c are numerically accurate and have fast evaluation times, making
them suitable for further work within robotics research. The work is summarized
in an article accepted to the International Conference on Control, Mechatronics,
and Automation (ICCMA), and will be presented at ICCMA 2019, the 7th Inter-
national, in TU Delft, Netherlands on November 6-8, 2019.

106

7.3 Conclusion

Appendix

107

Robot Dynamics with URDF & CasADi

Lill Maria Gjerde Johannessen1, Mathias Hauan Arbo1, and Jan Tommy Gravdahl1

Abstract— Fast, accurate evaluation of the dynamic param-
eters is a key ingredient for accurate control, estimation,
and simulation of robots. As these are time-consuming to
compute by hand, a software library for generating the rigid
body dynamics symbolically can be of great use for robotics
researchers. In this paper, we propose a library to efficiently
compute and evaluate robot dynamics and its derivatives. Based
on a URDF description of the robot’s kinematics, three major
rigid body dynamics algorithms are used to retrieve the dy-
namics symbolically in the CasADi framework. To validate the
numerical accuracy, the numerical evaluation of the solutions
are compared against three other well-established rigid body
dynamics libraries, namely RBDL, KDL, and PyBullet. We
conduct a timing comparison between the libraries, and we
show that the evaluation times of the symbolic expressions are
at most one order of magnitude higher than the evaluation times
of the numerical libraries. Last, it is shown that the evaluation
times of the dynamics derivatives remain of the same order as
the evaluation times of the dynamics expressions.

I. INTRODUCTION

Defining advanced feedback control techniques for robots
requires the use of kinematics and dynamics. Oftentimes
one requires both the forward or inverse mapping and its
derivatives. These can be tedious to compute by hand, and
many symbolic solver systems result in functions that have
long evaluation time, making them impractical for use in
feedback control.

Robotic Operating System (ROS) [1] is a software solu-
tion with a growing community among robotics program-
mers. ROS presents a Universal Robot Description Format
(URDF), an XML file describing the robot’s kinematics as a
kinematic tree of frames with inertial, collision, and visual
properties.

A library for using symbolic equations that is growing in
popularity among robotics researchers is CasADi [2]. It is
an open-source tool for algorithmic differentiation (AD) and
numerical optimization. This framework provides the ability
to rapidly prototype optimization algorithms and symbolic
equations that are close to production ready.

In this paper, we present urdf2casadi (u2c), a software
library for obtaining functions of the robot’s dynamics that
can be used with symbolic expressions in the CasADi
framework, based on a URDF description of the robot. The
library provides forward and inverse dynamics, as well as
the Coriolis and gravitational terms, and the inertia matrix.
The library is implemented in Python for a cross-platform

1 Lill Maria Gjerde Johannessen (lmjohann@stud.ntnu.no), Mathias
Hauan Arbo, and Jan Tommy Gravdahl are with the Department of En-
gineering Cybernetics, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway

functionality, and the functions returned by u2c use CasADi’s
autogenerated C-code to minimize evaluation time.

The library also represents an opportunity to efficiently
obtain the derivatives of the dynamics. In standard ap-
proaches for controlling complex robotic systems, such as
trajectory optimization and optimal control [3, 4, 5], the
system dynamics and their derivatives are a crucial part
of the optimization problems. Yet, a large amount of the
computational time of the optimization algorithms [6] is
spent on computing these derivatives.

There are several approaches for evaluating the derivatives.
Finite differences is considered the simplest method, but it
is sensitive to rounding errors [6], and is dependent on fine
parallelization [7, 8]. Further, the manual process of deriving
the derivatives is both complex and error-prone, and the ana-
lytic derivatives are often difficult to optimize and implement
efficiently. By obtaining the dynamics expressions with u2c,
the derivatives are easily obtainable using CasADi‘s built-
in Jacobian functionality. Similar to the use of AutoDiff
in [6], CasADi uses AD to obtain the derivatives, and
the method for calculating the Jacobian involves advanced
algorithms exploiting sparsity and symmetry patterns [2].
The result yields efficient calculation of derivatives, making
them appropriate for use in robotics research.

A. Rigid Body Dynamics Libraries

Due to its importance in robotics research, there are several
libraries for generating robot dynamics based on a URDF.
The Kinematics and Dynamics Library [9] (KDL) contains
special object types and functions so that one can take a
kinematic chain and evaluate the dynamic parameters, i.e
the inertia matrix, the Coriolis matrix, and the gravitational
force. The routines are real-time safe and implemented in
C++.

The Rigid Body Dynamics Library (RBDL) [10] is a C++
library inspired by the algorithms presented in Featherstone‘s
Rigid Body Dynamics Algorithms [11]. RBDL provides for-
ward dynamics, inverse dynamics, and the dynamic param-
eters.

PyBullet [12] is an open-source collision detection and
rigid body dynamics library, mainly used for physics simu-
lation, robotics, and deep reinforcement learning. It provides
the inverse dynamics, and the dynamic parameters.

The aforementioned libraries are numerical. This restricts
the user to the built-in function rather than being able
to take as many partial derivatives as necessary for the
controller formulation. However, it is chosen to compare
u2c against these libraries for several reasons. KDL is a
well-established library in the ROS community, PyBullet is

widely used within machine learning, and RBDL is, similar
to u2c, implemented based on [11]. Further, these libraries
all provide Python bindings and URDF loadings, similar to
u2c.

B. Rigid Body Dynamics

The dynamics of a multi-body rigid system can be de-
scribed by the equation of motion [13]:

τ = M(q)q̈+C(q, q̇)q+G(q)−∑
i

Ji(q)T f ext
i (1)

where M is the inertia matrix giving the relationship between
the generalized joint forces, τ , and the generalized joint
accelerations, q̈. C is the Coriolis matrix, encompassing the
Coriolis effects, and G encompasses the gravitational forces.
For brevity, the dependent variables of M, C, and G are
omitted henceforth and the generalized joints are referred
to as joints.

The inverse dynamics (ID) is defined as the joint torques
required for the joints to produce a desired joint acceleration
for a given joint position, velocity, and external forces:

τ = ID(model,q, q̇, q̈, f ext). (2)

Similarly, the forward dynamics (FD) is defined as the joint
acceleration according to a joint position, torque input and
external forces:

q̈ = FD(model,q, q̇,τ, f ext). (3)

u2c provides the forward and inverse dynamics, as well
as the Coriolis matrix, the gravitational effects and the
inertia matrix using three rigid body dynamics algorithms.
The recursive Newton-Euler algorithm (RNEA) is used to
obtain the inverse dynamics, the Coriolis matrix, and the
gravitational force. The articulated body algorithm (ABA) is
used to obtain the forward dynamics, and the composite rigid
body algorithm (CRBA) is used to obtain the inertia matrix.
The algorithms are implemented using spatial algebra, as
presented by Featherstone [11].

II. SPATIAL NOTATION

To give insight into the algorithms, this section gives a
brief introduction to spatial vector algebra. Spatial vectors
are 6D vectors that contain the linear and angular char-
acteristics of rigid body motion and forces. Spatial vector
algebra provides a compact notation to study the dynamics
of a multi-body rigid system. A spatial vector contains the
information of two 3D vectors and thus replace two or more
3D equations. Hence, dynamics algorithms can be derived
quickly and expressed in a compact form leading to efficient
computer code.

1) Spatial Transforms: The placement of an isolated body
Bi with a fixed frame i relative to a world frame 0 is
described by a spatial transform denoted iX0. When dealing
with multi-body rigid systems, one has to consider several
bodies connected through joints. The connecting joint thus
represents a constraint for the relative placement between
the connection bodies. This constraint is expressed through

a quantity referred to as the joint motion matrix, denoted
Si. When finding the transform from a child body, denoted
λi, to its parent body, i, one must consider the placement
from the parent body to the connecting joint, XJ , and the
placement from the joint to the child body, XT . The total
transform between two bodies are hence given by iXλi =
XJXT . The quantity XT is a fixed placement given by the
robot’s kinematics, while XJ varies with the joint motion
constraint represented by Si.

2) Spatial Inertia: When a rigid body has mass, the
spatial inertia tensor at an origin O is given by:

IO =

(
ĪC +mc× c×T mc×

mc×T m1

)
, (4)

where m is the mass of the body, c is the body’s center of
mass, 1 is the identity matrix, and × represent a spatial cross
product operator, which is further explained in the latter. The
upper left element of the inertia matrix (ĪC +mc× c×T) is
the rotational inertia of the body around O. An important
advantage of spatial inertia is that if one has to find the total
inertia of several bodies, it becomes the sum of all rigid body
inertias. To illustrate, if two bodies, having inertia I1 and I2,
are rigidly connected and form a composite body, then the
total inertia becomes Itot = I1 + I2.

3) Motion and force vectors: Featherstone [11] distin-
guishes between two groups of spatial vectors, namely
motion vectors and force vectors. Spatial velocity and ac-
celeration belong to the motion group, and spatial force and
momentum belong to the force group. Quantities of motion
vectors are generally denoted by m and quantities of force
vectors are denoted f . We distinguished between spatial force
transforms and spatial motion transforms such that:

mA = AXBmB, (5)

f = AX∗ f B, (6)

where A and B represent two Cartesian frames, AXB represent
the motion transform, and AX∗B represent the force transform.
The relationship between the motion and force transform is
that one is the inverse transpose of the other:

BX∗A = BX−T
A . (7)

The spatial inertia can be seen as a mapping between the
two groups as the spatial momentum is given by hi = Iivi and
spatial force is given by f i = Iiai+vi×∗ hi. The spatial force
thus correspond to the to the time derivative of the spatial
momentum.

Motion vectors can also operate on both motion and force
vectors through spatial cross product operators. They are
similar to classic time derivatives, and it is distinguished
between spatial motion and force cross products:

ṁ = vA×mB, (8)

ḟ A = vA×∗B f B. (9)

×∗ can be viewed as the dual of ×, and their relationship is
similar to the relationship between X and X∗.

Spatial velocity is defined as the time derivative of the
spatial transform. Thus, the spatial joint velocity, denoted
vJ , is found by taking the derivative of the aforementioned
quantity XJ :

vJ =
∂XJ

∂qi
q̇ = Siq̇i, (10)

where Si is the aforementioned joint motion matrix. Si is
considered time independent for 1-DOF joints.

Last, the joint acceleration is defined as the derivative of
the joint velocity:

aJ i = Siq̈i + Ṡiq̇i

= Siq̈i + vi×Siq̇i

= Siq̈i + vi× vJ i.

(11)

III. RIGID BODY DYNAMICS ALGORITHMS

A. The Recursive Newton-Euler Algorithm
Although various algorithms have been proposed to re-

trieve ID, RNEA remains the most efficient, whose complex-
ity is O(n) with n being the number of bodies of the robotic
system. RNEA was first proposed by [14], and was later
renewed by [11] to exploit the advantages of spatial algebra.
Compared to [11], u2c explicitly calculates model quantities,
i.e iXλi , Si, Ii, beforehand in a model calculation routine, and
iX∗λi

is found using (7). This accounts for the other algorithm
implementations as well. Algorithm 1 shows the compact
result of using spatial algebra. As can be observed, RNEA
is a two-pass algorithm which propagates the kinematic
quantities in a forward pass, followed by retrieving the joint
forces in a backward pass.

Although RNEA was originally developed to obtain ID,
u2c exploits modifications of RNEA to obtain the Coriolis
and gravitational terms as these are subsets of the inverse
dynamics problem. ID can be viewed as:

ID = RNEA(model,q, q̇, q̈, f ext), (12)

while C and G can be obtained by:

C = RNEA(model,q, q̇,0,0), (13)
G = RNEA(model,q,0,0,0). (14)

Algorithm 1 Recursive Newton-Euler Algorithm

Input: X , S, I
Output: τ

1: v0 = 0
2: a0 =−ag
3: for i = 1 to nB do
4: vi =

iXλivλi +Siq̇i
5: ai =

iXλiaλi +Siq̈i + vi×Siq̇i
6: f i = Iai +vi×∗ Ivi - iX∗λi

f ext
i

7: end for
8: for i = nB−1 to 0 do
9: τ i = ST

i f i
10: if λi 6= 0 then
11: f λi

= f λi
+ λiX∗i f i

12: end if
13: end for

B. The Articulated Body Algorithm

One of the most efficient algorithms for computing the
forward dynamics is ABA, whose complexity is, similar to
RNEA, O(n). The algorithm was first presented by [15]
although various versions have been proposed since then.
ABA does not rely on computing the inverse of the inertia
matrix, but is generally more complex than RNEA. It is
composed of three main passes, whereas the first pass is a
forward recursion collecting the spatial forces acting on the
bodies. The quantities obtained in the first pass are used to
retrieve the articulated body inertia and the articulated body
forces in a backward pass, followed by obtaining the joint
and body accelerations in a forward recursion.

C. The Composite Rigid Body Algorithm

CRBA is used to compute the inertia matrix. The physical
interpretation of M is that it relates the force acting on each
joint to the acceleration of each joint. By using the definition
of the kinetic energy of each body, while treating the
bodies as composite rigid bodies, the algorithm recursively
calculates each element of the matrix. For further details
about CRBA and ABA, we refer to Featherstone’s Rigid
Body Dynamics Algorithms [11].

CRBA can also be used to solve the forward dynamics
problem. [11] presents the equation of motion for a multi-
body rigid system as:

τ = M(q)q̈+C2(q, q̇, f ext) (15)

where C2 encompasses the Coriolis effects, the gravitational
force, and the effects of external forces, if any. This quantity
can, similar to the Coriolis matrix, be found by a call
to RNEA where q̈ = 0 and the external and gravitational
forces are considered. Thus, FD can be found by solving the
equation for q̈:

q̈ = M−1(τ−C2), (16)

where the dependencies of M and C2 are omitted. It should
also be mentioned that this method for finding FD has a worst
case of O(nd2) with d being the depth of the kinematic tree.
In cases where the kinematic tree contains few bodies, these
algorithms can exceed the speed of O(n)-algorithms. Thus,
this approach has also been implemented in u2c, and both
approaches for FD are evaluated in the next section.

IV. RESULTS

In this section, the performance of u2c with regard to
numerical accuracy, efficiency of evaluating the dynamics
expressions, and its derivatives, are reported. The tests are
performed on a Ubuntu 16.04, 3.5 GHz x 12 Intel Xeon
CPU processor in a Python 2.7 environment, and the -OFast
compiler flag is used for optimization of the generated C-
code. Various robots are used to evaluate the performance:
a 2-DOF pendulum, a 6-DOF UR5, and a 16-DOF snake
robot.

TABLE I: Numerical differences between libraries for a 6-
DOF UR5 robot for 1000 random samples.

KDL/u2c RBDL/u2c PyBullet/u2c
G (N) 4.42 ·10−12 1.96 ·10−07 1.83 ·10−03

C (N) 1.03 ·10−11 4.30 ·10−07 3.12 ·10−03

ID (Nm) 4.41 ·10−07 4.12 ·10−03

M (kgm2) 1.40 ·10−12 1.46 ·10−08 2.32 ·10−03

FD (m/s2) 7.88 ·10−07

A. Numerical Results

The numerical results for the UR5, displayed in Table I,
are obtained by generating 1000 samples of configurations,
velocities, and accelerations or torques, uniformly distributed
within the joint limits. The result shows that u2c and KDL
have very similar results, implying a numerical difference
of factor 10−15 for a single sample of M and G. For C,
the numerical difference is one order of magnitude higher.
This increase, from G to C, is due to the extra variable that
has to be considered in the RNEA calculations, namely q̇,
when evaluating C. One can also observe that the numerical
differences between RBDL and u2c, thus also between KDL
and RBDL, is of factor 10−07 and 10−08. This indicates a
numerical difference of at most 10−10 for a single sample,
which can be considered satisfactory. The similarity between
KDL and u2c may be due to more similar data types. Further,
the numerical results imply a numerical difference of 10−06

per sample, between PyBullet and the remaining libraries,
which may indicate a small inaccuracy for PyBullet. It is
speculated that the error is a matter of single versus double
precision floats, or a floating point cancellation issue. The
developers of PyBullet have been informed about this, but
the numerical difference is negligible in most use cases.

The numerical tests for the 2-DOF pendulum and the 16-
DOF snake [16] yielded the same result as for the 6-DOF
UR5. Hence, one can assume that the numerical accuracy is
independent of the number of DOF.

B. Timing Results

TABLE II: Summary table of number of operations for the
dynamics expressions.

pendulum ur5 snake
G 18 199 224
C 79 648 572

ID 110 696 710
M 34 872 1217

FD (CRBA) 132 2354 14786
FD (ABA) 142 1948 2272

For obtaining the timing results, random configuration,
velocity, and acceleration or force vectors are uniformly
sampled within the joint limits. Measurements of 1000
samples are stored and the median times spent on evaluating
the dynamics are listed in Figure 1. The results show that u2c
overall uses a longer evaluation time compared to PyBullet,

(a) Median evaluation times for pendulum.

(b) Median evaluation times for UR5.

(c) Median evaluation times for snake.

Fig. 1: Median evaluation times for G, C, ID, M, and FD for
PyBullet, RBDL, u2c, and KDL.

RBDL, and KDL. This is a natural consequence of u2c
generated functions supporting symbolic data types, and
thus some overhead is expected. Hence, the functions that
only require one symbolic variable, i.e G and M, have
less overhead than the functions that require two or three
symbolic variables, i.e C, ID, and FD, resulting in shorter
evaluation times for functions of fewer symbolic variables.

u2c is at most one order of magnitude slower than the nu-
merical libraries, which is the case for the 2-DOF pendulum.
While for the 16-DOF snake, u2c and the numerical libraries
yield evaluation times of the same order of magnitude.
By evaluating Table IV and Figure 1, it is clear that the
evaluation times of u2c are mostly affected by the number
of symbolic variables, and are less sensitive to the number of
operations in the expression. To illustrate, ID and FD(aba)
encompass three symbolic variables and are both obtained
with O(n)-algorithms. FD for the snake requires 1562 more
operations than ID. Yet, the difference in evaluation time is
only a few microseconds. Hence, it is reasonable to assume
that the increase in evaluation time from G and M, to C, and
up to ID and FD is mostly due to the additional symbolic
variables required. From Figure 1 it is also seen that the
dynamics expressions with a higher number of symbolic
variables are more affected by an increase in the number
of DOF. This is reasonable as this leads to symbolic vectors
with a higher number of elements.

0 10 20 30 40 50 60
number of DOF

0

10

20

30

40

50

60

70

80

tim
e

[u
s]

KDL
u2c
RBDL
PyBullet

(a) Median evaluation times for G.

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

tim
e

[u
s]

KDL
u2c
RBDL
PyBullet

(b) Median evaluation times for C.

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

140

tim
e

[u
s]

KDL
u2c
RBDL
PyBullet

(c) Median evaluation times for M.

Fig. 2: Median evaluation times for robots of 1 to 60 DOF.

As a result of the CasADi functions being insensitive to an
increase in number of operations, and thus also to an increase
in DOF, one can observe from Figure 1 that the overall
difference in evaluation time between u2c and the numerical
libraries decreases as the number of DOF increases. Due to
this finding, it was wanted to investigate how the evaluation
times evolved for a higher increase in DOF. Thus, we have
constructed 60 experimental URDFs and the evaluation times
for G, C, and M from 1 DOF to 60 DOF are shown in Figure
2. For G, it is observed that even though u2c starts out as the
library with the slowest evaluation times, it ends up being
faster than KDL and RBDL. Further, one can observe that
the overhead related to an additional variable makes C slower
and more sensitive to an increase in DOF, compared to G.
Yet, u2c still exceeds KDL for robots over 30 DOF and
remain the same order of magnitude as RBDL and PyBullet.
For M it is shown that u2c exceeds KDL for robots over 10
DOF, and PyBullet for robots over 20 DOF. Hence, we have
shown that for the dynamics functions that only encompass a
few symbolic variables, the total increase in overhead related
to u2c is smaller than the increase in overhead for several
of the numerical libraries. This is partly due to the minimal
overhead related to the increase in operations, provided by
CasADi [2]. For ID and FD, the overhead associated with
three symbolic variables prevents u2c from exceeding the
numerical libraries, but the evaluation times remain the same
order of magnitude as the numerical libraries.

C. Derivatives Timing

TABLE III: Summary table of median evaluation times for
dynamics the derivatives with respect to q, q̇, q̈ and τ .

pendulum UR5 snake
derivatives of G 12.63 µs 15.38 µs 23.47 µs
derivatives of C 20.57 µs 29.62 µs 46.78 µs

derivatives of ID 28.91 µs 40.08 µs 67.68 µs
derivatives of M 12.54 µs 17.14 µs 36.72 µs

derivatives of FD (crba) 29.07 µs 48.35 µs 286.73 µs
derivatives of FD (aba) 29.10 µs 50.52 µs 82.48 µs

TABLE IV: Summary table of number of operations for the
dynamics derivatives.

pendulum UR5 snake
derivatives of G 29 881 2347
derivatives of C 239 5157 11792

derivatives of ID 234 4731 16159
derivatives of M 44 4095 11635

derivatives of FD (crba) 378 17764 431178
derivatives of FD (aba) 390 13517 40901

The derivatives are easily obtained using CasADi’s built-in
Jacobian functionality, allowing the user to explicitly define
which variable one wishes to find the derivative with respect
to.

The results, summarized in Table III and Figure 3, show
that the evaluation times of the derivatives are not much

Fig. 3: Median evaluation times of the dynamics and the
dynamics derivatives for a UR5.

longer than the dynamics expressions themselves. Figure 3
displays this graphically for a UR5. The evaluation times
of the derivatives are the same order of magnitude as the
evaluation times of the derivatives, the only exception being
the derivative of FD using CRBA for the 16-DOF snake as
it must invert a very large inertia matrix.

Table IV shows the number of operations for the dynamics
derivatives expressions. As the dynamics functions and their
related derivative functions contain the same number of
symbolic variables, the change in evaluation time can be
assumed to be mainly due to the increase in operations. The
evaluation time of the derivative of G for the UR5 increases
with 617 operations, which does not remarkably affect the
evaluation time. FD using CRBA is the method that is most
exposed to an increase in number of operations, as it has a
complexity of O(nd2) and requires three symbolic variables.
The derivative of FD using CRBA for the snake increases
with 445647 operations, leading to a 217.81 µs increase in
evaluation time. This indicates 0.49 µs longer evaluation time
for an increase of 1000 operations, and substantiates the fact
that the evaluation times of CasADi functions are not heavily
affected by an increase in operations. It is the number of
symbolic variables involved that is most essential in this
matter.

V. CONCLUSION

The paper has proposed a software library to efficiently
compute the dynamics expressions of a robot based on a
URDF description of it’s kinematics. To achieve this, we
have combined the CasADi framework with the implemen-
tation of rigid body dynamics algorithms using spatial al-
gebra. By combining RNEA, ABA, and CRBA, urdf2casadi
provides the inverse and forward dynamics expressions, as
well as the Coriolis and gravitational terms, and the inertia
matrix. Our approach leads to efficient algorithms, resulting
in evaluation times comparable to numerical approaches
represented by KDL, RBDL, and PyBullet.

By extracting the expressions in the CasADi frame-
work, the dynamics derivatives are easily obtainable using
CasADi’s Jacobian functionality. We have demonstrated that
the evaluation times of the dynamics derivatives are of the
same order of magnitude as the evaluation times of the
dynamics expressions, thus making them suitable for use
within trajectory optimization, optimal control, and other
approaches where dynamics derivatives are needed.

We provide the complete open-source Python implemen-
tation of this library, thus providing a multi-platform, easily
installable library ideal for use in robotics research. More
details can be found in Johannessen [17].

ACKNOWLEDGMENT

The work reported in this paper was based on activities
within centre for research based innovation SFI Manufac-
turing in Norway, and is partially funded by the Research
Council of Norway under contract number 237900.

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics
and Automation (ICRA) Workshop on Open Source Robotics, (Kobe,
Japan), May 2009.

[2] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, In Press,
2018.

[3] M. H. Arbo, E. I. Grtli, and J. T. Gravdahl, “On model predictive path
following and trajectory tracking for industrial robots,” in 2017 13th
IEEE Conference on Automation Science and Engineering (CASE),
pp. 100–105, Aug 2017.

[4] D. Verscheure, M. Diehl, J. De Schutter, and J. Swevers, “On-line
time-optimal path tracking for robots,” in 2009 IEEE International
Conference on Robotics and Automation, pp. 599–605, May 2009.

[5] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[6] J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid Body
Dynamics Algorithms,” in Robotics: Science and Systems (RSS 2018),
(Pittsburgh, United States), June 2018.

[7] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4906–4913, Oct 2012.

[8] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse,
M. Bennewitz, and N. Mansard, “Whole-body model-predictive con-
trol applied to the HRP-2 humanoid,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3346–3351,
Sep. 2015.

[9] R. Smits, “KDL: Kinematics and Dynamics Library.” http://www.
orocos.org/kdl, 2014. Accessed: 2018-12-10.

[10] M. L. Felis, “RBDL: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, pp. 1–17, 2016.

[11] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[12] E. Coumans and Y. Bai, “PyBullet, a Python module for physics

simulation for games, robotics and machine learning.” http://
pybullet.org, 2016–2018. Accessed: 2018-12-9.

[13] B. Siciliano and K. Oussama, Handbook of Robotics. Springer, 2008.
[14] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of

mechanical manipulators,” IEEE Transactions on Automatic Control,
vol. 25, pp. 468–474, June 1980.

[15] R. Featherstone, “The Calculation of Robot Dynamics Using
Articulated-Body Inertias,” The International Journal of Robotics
Research, vol. 2, no. 1, pp. 13–30, 1983.

[16] I.-L. Borlaug, K. Pettersen, and J. Gravdahl, “Trajectory tracking for
an articulated intervention AUV using a super-twisting algorithm in
6 DOF.,” IFAC-PapersOnLine, vol. 51, no. 29, pp. 311 – 316, 2018.
11th IFAC Conference on Control Applications in Marine Systems,
Robotics, and Vehicles CAMS 2018.

[17] L. M. G. Johannessen, “Robot Dynamics with URDF & CasADi,”
Master’s thesis, Norwegian University of Technology and Science,
Trondheim, Norway, 2019.

114

Bibliography

Andersson, J., Åkesson, J., Diehl, M., 01 2012. CasADi: A Symbolic Package for
Automatic Differentiation and Optimal Control. Vol. 87.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., Diehl, M., 2018. CasADi
– A software framework for nonlinear optimization and optimal control. In Press,
Mathematical Programming Computation.

Beirami, A., Macnab, C. J. B., May 2006. Direct Neural-Adaptive Control of
Robotic Manipulators using a Forward Dynamics Approach. In: 2006 Canadian
Conference on Electrical and Computer Engineering. pp. 363–367.

Borlaug, I.-L., Pettersen, K., Gravdahl, J., 2018. Trajectory tracking for an artic-
ulated intervention AUV using a super-twisting algorithm in 6 DOF∗∗This re-
search was funded by the Research Council of Norway through the Centres of Ex-
cellence funding scheme, project No. 223254 NTNU AMOS. IFAC-PapersOnLine
51 (29), 311 – 316, 11th IFAC Conference on Control Applications in Marine Sys-
tems, Robotics, and Vehicles CAMS 2018.

Carpentier, J., Mansard, N., Jun. 2018. Analytical Derivatives of Rigid Body Dy-
namics Algorithms. In: Robotics: Science and Systems (RSS 2018). Pittsburgh,
United States.

Chandramouli, A., Manivannan, P. V., April 2018. Inverse dynamics of different
upright postures for the developed bio-inspired reconfigurable robot. In: 2018
3rd International Conference on Control and Robotics Engineering (ICCRE).
pp. 31–36.

Coumans, E., Bai, Y., 2016–2018. PyBullet, a Python module for physics simula-
tion for games, robotics and machine learning. http://pybullet.org, accessed:
2018-12-9.

115

http://pybullet.org

Dasari, A., Reddy, N. S., Dec 2012. Forward and inverse kinematics of a robotic
frog. In: 2012 4th International Conference on Intelligent Human Computer
Interaction (IHCI). pp. 1–5.

Featherstone, R., 2007. Robot dynamics. Scholarpedia 2 (10), 3829, revision
#91723.

Featherstone, R., 2008. Rigid Body Dynamics Algorithms. Springer.

Featherstone, R., June 2012. spatial v2 webpage. http://royfeatherstone.org/
spatial/v2/#mcI, accessed: 2018-12-12.

Felis, M. L., 2016. RBDL: an efficient rigid-body dynamics library using recursive
algorithms. Autonomous Robots, 1–17.

Koenemann, J., Del Prete, A., Tassa, Y., Todorov, E., Stasse, O., Bennewitz, M.,
Mansard, N., Sep. 2015. Whole-body model-predictive control applied to the
HRP-2 humanoid. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 3346–3351.

Kucuk, S., Bingul, Z., 10 2006. Link Mass Optimization of Serial Robot Manipu-
lators Using Genetic Algorithm. Vol. 4251. pp. 138–144.

Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O., Kirpichev, S. B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger,
B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa,
F., Curry, M. J., Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S.,
Cimrman, R., Scopatz, A., Jan. 2017. SymPy: symbolic computing in Python.
PeerJ Computer Science 3, e103.

Posa, M., Cantu, C., Tedrake, R., 2014. A direct method for trajectory optimization
of rigid bodies through contact. The International Journal of Robotics Research
33 (1), 69–81.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A., May 2009. ROS: an open-source robot operating system.
In: Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics. Kobe, Japan.

Richert, D., Beirami, A., Macnab, C. J. B., Feb 2000. Neural-adaptive control of
robotic manipulators using a supervisory inertia matrix. In: 2009 4th Interna-
tional Conference on Autonomous Robots and Agents. pp. 634–639.

Sansanayuth, T., Nilkhamhang, I., Tungpimolrat, K., Aug 2012. Teleoperation
with inverse dynamics control for PHANToM Omni haptic device. In: 2012 Pro-
ceedings of SICE Annual Conference (SICE). pp. 2121–2126.

Siciliano, B., Oussama, K., 2008. Handbook of Robotics. Springer.

Smits, R., 2014. KDL: Kinematics and Dynamics Library. http://www.orocos.
org/kdl, accessed: 2018-12-10.

116

http://royfeatherstone.org/spatial/v2/#mcI
http://royfeatherstone.org/spatial/v2/#mcI
http://www.orocos.org/kdl
http://www.orocos.org/kdl

Song, D. H., Jung, S., Aug 2007. Geometrical Analysis of Inverse Kinematics Solu-
tions and Fuzzy Control of Humanoid Robot Arm under Kinematics Constraints.
In: 2007 International Conference on Mechatronics and Automation. pp. 1178–
1183.

Sousa, C. D., Aug. 2014. SymPyBotics v1.0. Accessed: 2018-12-10.
URL https://doi.org/10.5281/zenodo.11365

Tassa, Y., Erez, T., Todorov, E., Oct 2012. Synthesis and stabilization of complex
behaviors through online trajectory optimization. In: 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. pp. 4906–4913.

Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl, M., 2009.
Time-optimal path tracking for robots: A Convex Optimization Approach. Au-
tomatic Control, IEEE Transactions on 54, 2318 – 2327.

117

https://doi.org/10.5281/zenodo.11365

118

