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Abstract

For people diagnosed with diabetes mellitus, it is crucial to keep control of the
plasma glucose concentration levels. One helpful tool can be to use a metabolism
model to simulate and predict future glucose values based on meals, external
insulin and exercise.

In this study, the identifiability of the GlucoPred metabolism model for glu-
cose and insulin dynamics have been investigated. This model is developed by
Prediktor Medical (PM), and used in the development of a non-invasive glucose
measurement devise.

The existing GlucoPred model have been presented. That includes a descrip-
tion of the 14 state variables and their corresponding state transition equations.
Also the 41 model parameters have been introduced.

The identifiability of the model have been investigated. This has been done
using a sensitivity analysis approach. The influence of each parameter on the
simulated output glucose measurements were used as an indication for identi-
fiability of that parameter. Parameter sensitivity rank conditions were assessed
by observing the sensitivity matrix singular values and right singular vectors,
and used to suggest possible parameter sets to give identifiability. Different in-
put combinations have been looked at for this, and differences between them
discussed.

The estimation methods Downhill Simplex and Newton-Raphson with finite
difference derivative approximations were tested on the parameters suggested
through sensitivity analysis. Both the sensitivity analysis and the estimations
were carried out for all three preadapted model types: healthy, DM1 and DM2.
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1 Introduction

Diabetes Mellitus (DM) is a disease where defects in insulin action (Diabetes
Mellitus type 2) or insulin secretion (Diabetes Mellitus type 1) leads to hy-
perglycemia. Worldwide, 425 million adults have diabetes, and out of those,
212 million are undiagnosed [1]. Precise insulin administration is key for hu-
mans with Diabetes Mellitus to control their glucose levels. Today the dosage of
exogenous insulin is mainly done manually, with the patients injecting it subcu-
taneously, either with an insulin pen/syringe or via an insulin pump. Intra- and
interday variability of physical properties of the patient [2; 3; 4; 5; 6], together
with properties of different meals and foods, makes the task of dosing insulin a
difficult exercise. Therefore, closed-loop systems for automatic control of blood
glucose has been an area of extensive research for some years.

An important tool in these studies has been the use of insulin metabolism
simulation models to study different aspects of the disease, without the use of
more time consuming and expensive animal/human testing. These models con-
sists of dynamic equations describing the insulin and blood glucose dynamics in
the human body. It exists several different versions of these models. Examples
are the UVa/Padova type 1 diabetes simulator [7], Bergman’s minimal model
[8; 9], Sorensens’s model [10], Chase’s model for critical care [11] and Cam-
bridge’s model [12]. The model to be analyzed in this article is the GlucoPred
metabolism model, developed by Prediktor Medical.

To measure the blood glucose concentration, many people with diabetes use
a continuous glucose monitor (CGM), while others also measure it by finger-
prick measurements. The CGM has a small electrode placed under the skin that
can measure the blood glucose continuously. The measurements are sent to an-
other device, typically a smart phone or another devise with a screen, via a
transmitter placed on the outside of the skin. This information is displayed to
the user as a glucose curve on the screen, and is used by a person with diabetes
to calculate/guess insulin dosages during the day.

CGM measurements can also be used to identify model parameters in insulin-
glucose metabolism models. To do this, one must find the model parameters
that makes the model simulation output look like the CGM measurement. This
is a difficult task, if not impossible for most models, the reason being that one
continuous measurement output is in most cases not enough to identify a bunch
of model parameters. Therefore most models needs to be modified with a lower
complexity level to become identifiable.

In this project, the GlucoPred model from PM will be described, and a suit-
able complexity level for parameter identification will be discussed. This means
to discuss which parameters to potentially estimate for a given input. To do
this, the metabolism model will be implemented, together with the sensitivity
analysis calculations. Also, parameter estimations techniques will be presented,
implemented and tested on the parameters from the sensitivity analysis. Sev-
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eral different input combinations will be assessed and compared with respect
to which parameters that can possibly be identified. This is done for all three
model types, that is, healthy, DM2 and DM2.

In chapter 2, the basic theory needed for this project is presented, and chap-
ter 3 presents the goal with this study. Chapter 4 contains the methodology
used when doing the analysis and chapter 5 presents the results from it. In the
chapters 6 and 7, discussion and conclusion is contained and suggestions for
future work comes in chapter 8.
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2 Theory

2.1 Metabolism models

There are a variety of different metabolism models that model the dynamics be-
tween glucose and insulin in the human body. They have different complexity
levels, include different effects in their equations and are used differently de-
pendent on what they are modelling. One example is a model mentioned earlier,
the Bergman minimal model. It consists of three state variables, plasma glucose
concentration G(t), plasma insulin concentration I(t) and insulin in remote
compartment X(t) [8]. It only models how glucose and insulin is injected into
the blood, so for it to work as a complete glucose-insulin metabolism model,
several things needs to be added, including for example a model of the diges-
tive system and realistic exogenous insulin injection. This is one of the simplest
models there is. A more complex model is the UVa/Padova type 1 diabetes sim-
ulator [7]. This model has 18 state variables, and is much more complex than
the minimal model. This model is therefore used for more complex tasks than
the minimal model.

A metabolism model contains a number of parameters representing different
phenomena in the body. One example is the parameter Si, usually representing
insulin sensitivity in many metabolism models for glucose and insulin dynamics.
These parameters have to be identified for the model to be able to represent a
person realistically.

2.2 GlucoPred metabolism model from PM

The GlucoPred model is a metabolism model for glucose and insulin dynamics,
aiming for simulation and prediction of plasma glucose in a subject. The model
consists of 14 state variables. These are:
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x =



Gp

Gt

I
X
SR1

SR2

SS1
SS2
Msto

Mgut

H
Mlg

Y
Z



- Glucose concentration in plasma [mg/dL]
- Glucose concentration at measurement site [mg/dL]
- Insulin concentration in central compartment [mU/L]
- Insulin concentration in remote compartment [mU/L]
- Rapid Insulin concentration in SC compartment [mU/L]
- Rapid Insulin concentration in second SC compartment [mU/L]
- Slow Insulin concentration in SC compartment [mU/L]
- Slow Insulin concentration in second SC compartment [mU/L]
- Glucose in stomach contents [g]
- Glucose in gut contents [g]
- Glucagon concentration in plasma [pg/ml]
- Muscle and liver glycogen store [g]
- Exercise input [unitless]
- Exercise memory [unitless]

The most important variable here isGp, which is the glucose concentration in
blood plasma. This is what a person with diabetes is seeking to control. Gt is the
subcutaneous blood glucose concentration, that is, the glucose concentration
that is measured with for example a CGM.
I is the insulin concentration in the blood, and X is the insulin in the remote

compartment, where the insulin is used.
SR1, SR2, SS1 and SS2 models the dynamics for injecting external insulin

subcutaneously for rapid and slow working insulin. Time constants in the model
represent how fast the rapid insulin and slow insulin is moving from the first
compartments (SR1 and SS1) to the second compartments (SR2 and SS2), and
from the second compartments to the blood.
Msto and Mgut represents the glucose quantity in the stomach and in the

gut. H is the glucagon concentration in the blood and Mlg is the quantity of
glycogen that is stored in the liver and muscles.
Y and Z is the two exercise variables. Y is a value representing the heart rate

above basal heart rate during exercise. Z is a variable representing recovery
after the exercise session. Right after the exercise is finished, Z is at its highest,
and it decays with time. When Z is higher, more blood glucose is used for
glycogen storage in the muscles and liver. This is because the glycogen storage
is empty, as much of it has been used as energy during the exercise.

The possible inputs to the model is:

u =


uIr
uIs
uhr
umeal


- Rapid insulin injection [U]
- Slow insulin injection [U]
- Heart rate [BPM]
- Meal intake, carbohydrates [g]
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uIr anduIs represents rapid and slow insulin injections, respectively. uhr is
the heart rate of the subject, and is used to indicate the heart rate during an
exercise session. umeal represents a meal, with a number of carbohydrates [g]
and the glycemic index SlowFact. The GlucoPred model includes 41 model
parameters, and the list of all the parameters in the model is:

p = [Kmg, α, kDia, kIL, β,Gneo, Rm, Td, IHalf , Ri, Ub, nh, ni, TY , I0, aP ,

MlMx, HRB, kabs, Tmax, Tds, Si, kgb, kHL, kDel, Eneo, kgm, GI , GH ,

p2, f, Uii, Vi, RHbas, sComp, n, RHmax, r, kglg, Vg, HRM ]

2.2.1 Model equations

In this section the model equations for the GlucoPred model is described. Most
of this section is written by Odd Martin Staal [13], with some notational alter-
ations from myself. In this section, the notation X+ should be taken to mean
that the term X is made non-negative, i.e. if X < 0, X+ = 0, otherwise X+ = X.
Another notational convention is X∈[a,b] which should be taken to mean that X
is limited to be in the range [a,b]. The state transition equations are:

Ġp = Gprod(H,Mlg, I)−Guse(Gp, X, Z, Y ) +Ra(Mgut) (2.1)

Ġt = kDel(Gp −Gt) (2.2)

İ = −nI + Iendo(Gp, Ġp) + Iexo(SR2, SS2) (2.3)

Ẋ = −p2(X − I)+ (2.4)

ṠR1 = −
SR1

Td
+ uIr (2.5)

ṠR2 =
SR1 − SR2

Td
(2.6)

ṠS1 = −
SS1
Tds

+ uIs (2.7)

ṠS2 =
SS1 − SS2

Tds
(2.8)

Ṁsto = −fabs(Y )Msto + umeal (2.9)

Ṁgut = −fabs(Y )(Mgut −Msto) (2.10)

Ḣ = n(SH −H) (2.11)

Ṁlg = −10−3Qliver(H,Mlg, I) (2.12)

Ẏ =
1

TY
(fhr(uhr)− Y ) (2.13)

Ż = − 1

Tmax
Z + fY (Y )(1− Z) (2.14)
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The functions embedded in the above equations are given in the following.
The glucose production is given by

Gprod =
1

Vg
(Eneo +Qliver(H,Mlg, I) +GneokHLH) (2.15)

where the liver net production is given by

Qliver = (1−Gneo)kHLH
Mlg

MlMx

− kILfkM(Mlg)
I

I + Ihalf
(2.16)

fkM is a reduction factor when liver glucagon stores are full, given by

fkM =

(
1− sComp

(
Mlg

MlMx

− 1

))+

(2.17)

The glucose usage is given by

Guse = Uii + kgbGp + fidep(X, Y, Z)
Gp

Kmg +Gp

(2.18)

where

fidep = SiX + kgm + kkglg + αXZ + βY (2.19)

The rate of appearance of a meal is given by

Ra = 103 ∗ f ∗ fabs(Y ) ∗Mgut (2.20)

The absorption function in the equation for Ra, xSto and xGut is given by

fabs = (pmealGIkabs(1− rY ))∈[0,1] (2.21)

and contains a parameter pmealGI between 0 and 1 that is related to the glycemic
index of the last meal (set to 1 if unknown). Note that it also depends on recent
exercise.

The endogenous insulin production is given by

Iendo = n

RmĠ
+
p +

Ri

1 +
(
GI

Gp

)ni

 (2.22)

The contribution to plasma insulin from exogenous insulin input is

Iexo =
103

Vi

(
SR2

Td
+
SS2
Tds

)
(2.23)



7

The production of glucagon is given by

SH = SH1 + SH2 (2.24)

SH1 =

RHbas + (RHmax −RHbas)

1− 1

1 +
(
GH

Gp

)nh

+

(2.25)

SH2 =

(
kDia

1− aP (I0 − I)∈[0,kIHmax]

(
Gp

GH

)2
)∈[0,SHmax]

(2.26)

In the exercise submodel the expressions are given by the following:

fhr =

(
uhr −HRB

HRM −HRB

)∈[0,1]
(2.27)

fY =
(Y ka)

knY

1 + (Y ka)knY
(2.28)

2.2.2 Preadapted parameter sets

Prediktor Medical already have parameter sets adapted to healthy, DM1 and
DM2 models. These sets represents a general healthy, DM1 or DM2 person, so
that simulating the model will generate a typical output for a person with the
disease (or absence of disease). These sets will not fit to every person in each
category, but these can be used as a starting point when trying to estimate the
parameters for a subject. These parameter sets can be found in Appendix A.1.

2.2.3 Food modelling

The task of modelling different types of food and their effect on the blood
glucose concentration is a complex one. The main parameter when it comes
to this is the amount of carbohydrates the meal contains. Carbohydrate comes
in different forms, and it is the part of a meal that affects the blood glucose
the most. Carbohydrates can be digested both quickly and slowly, dependent
on what type of carbohydrate it is. This will of course be shown in the blood
glucose, as slower carbohydrates affects the glucose much slower than the faster
carbohydrates will. Other parts that affect the blood glucose are fat and protein.
These elements can also be transformed to glucose in the blood for energy
utilization. Fat and protein can also affect the blood glucose in a different way.
When eating a meal with much fat and protein, the body will take longer to
digest the main energy source, carbohydrates, because it has to deal with the
fats and proteins at the same time.

In the GlucoPred model, the meal is modelled simply by two parameters.
The first one is the amount of carbohydrates [g]. The other one is a parameter
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Figure 2.1: Graph overview of the GlucoPred model.

Every node represents a state variable. An arrow from node A to node B means that
the state represented by node A is featured in the differential equation for the state

represented by node B.

representing how "fast" these carbohydrates will be digested and turned into
plasma glucose, called SlowFact. This parameter can also be seen as a type of
glycemic index. A simplification that is made in the GlucoPred model is that
fats and proteins in the meal are not modelled. A real meal would of course
contain carbohydrates, fats and proteins, but only the former one is taken into
consideration here. Another simplification is that the whole meal has the same
SlowFact, as would not be the case in real life, where different parts of the
meal would be digested with different rates.
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2.3 Identifiability

Observability is a property a system can have which implies that the values of
the state variables can be determined from the output of the system. This is a
desired property of a system because unknown state variables can make control
of the system harder.

Identifiability considers whether the parameters in a system of differential
equations can be uniquely determined from the input and the output of the
system. If this is the case, the system is called identifiable. If a system is non-
observable, it implies that it is also non-identifiable. Many types of identifiability
have been introduced ([14; 15]), but structural and practical identifiability are
the ones talked about here, together with conditional identifiability.

2.3.1 Structural identifiability

A structural identifiability analysis investigates whether a system is identifiable
given perfect and noise-free measurement data from it. In other words, a struc-
turally identifiable system has a model structure which yields identifiability in
theory. Perfect and noise-free measurements are of course not possible in the
real world, but this type of analysis can give some insight into a system. This
type of analysis should be done before you analyze a model more closely, but is
not always carried out because of the computational costs it represents.

2.3.2 Practical identifiability

A practical identifiability analysis looks at the identifiability when we do not
have perfect and noise-free measurements. Lack of practical identifiability can
be caused by several things. one of them is that the model structure makes
it not structurally identifiable, and therefore also not practically identifiable.
Even though a parameter set for a model is structurally identifiable, it is not
always identifiable in practice, and this may be caused by two things. The first
is that the model is not sensitive to one or more parameters in the set. The
other is that two or more parameters correlate, that is, their contribution to the
model output cannot be distinguished from each other [16]. A kind of practical
identifiability analysis is sensitivity analysis, described in section 2.4.

2.3.3 Conditional identifiability

For many models, the parameter vector is generally unidentifiable. If setting
some of the parameters constant, the rest of the parameter vector is identifiable,
this modified model can be called conditionally identifiable [15].
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2.3.4 Local identifiability

A model is locally identifiable if the model parameters can be identified in a
given region of the parameters space around the true parameter values. This
means that if f(x,p1) = f(x,p2), where f represents the model equations, the
parameter values p1 and p2 are either p1 = p2 or one of them are outside the
given region in which the local identifiability is applied.

2.3.5 Varying conditions that affect identifiability

When performing an identifiability analysis, there are several conditions which
can influence the result. For the GlucoPred model, it is of course important
which one of the preadapted model parameter sets that is used. These can be
healthy, DM1 or DM2 parameter sets. Other factors that affect the sensitivities
are:

• How often the glucose values are measured. Normally, for a CGM, a
glucose measurement is displayed every fifth minute. This is an average
value of measurements taken those last five minutes. Longer time steps
between the measurements will lead to less chance of identifiability for
a model. In this study the simulation is done with time steps of 30 sec-
onds, and so is the simulated measurements. A change in the frequency
of the simulated measurements (for example every 2nd minute, every 5th
minute or every 10th minute) could have affected the results, but was not
performed here.

• The length of the experiment. The longer the simulation time, the higher
the likelihood of getting a more correct estimate of the parameter set. In
this study a simulation time of 500 minutes is used in the initial analysis,
and later it is adapted to the length of the input.

• What is measured. In a clinical environment, it is possible to measure
both glucose and insulin concentrations in plasma. In addition, a pretty
good estimate of the injected subcutaneous insulin is available. In this
study, it is assumed that only plasma glucose measurements, Gt, are avail-
able, when doing the sensitivity and identifiability analysis.

• Model input. The model input has of course a major impact on the iden-
tifiability of the system. To identify a set of system parameters, the input
must be "rich" enough so that the parameters are possible to determine
individually. The concept of persistently exciting input has been intro-
duced on this matter. A signal is persistently exciting if the input generates
enough information to the output so that, in finite time, the estimates of
the system parameters converges to their true value [17]. The inputs in
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this study is a set of meal, exercise and external insulin. These are varied
to see which inputs gives rise to identifiability in which parameters, but
the concept of persistently exciting input is not taken into account.

2.4 Sensitivity analysis

Sensitivity analysis is a kind of practical identifiability analysis and a way to
obtain information about how much the different model parameters influences
the model output. The sensitivity of a parameter can be seen as

Spi =
∂y

∂pi

That is, the derivative of the output y with respect to the parameter pi. This
only gives the sensitivity at one time instant. To get the parameter sensitivity
over the course of a simulation, a system of ODEs must be developed, based on
the original system equations, like in Stigter et al. (2017) [18]. These equations
will model the sensitivity dynamics between the model and its parameters, and
can be given as:

ẋp(t) =
∂f

∂x
xp(t) +

∂f

∂p
(2.29)

ẏp(t) =
∂h

∂x
xp (2.30)

Here f is the vector of the original model equation expressions, h is the
output equations, x is the state vector and p is the parameter vector. yp(t)
is a vector with the parameter sensitivity at time t. These vectors can be put
together to a sensitivity matrix S. In this matrix each row is the sensitivity vector
of one output at one time instant. Each column corresponds to the sensitivity
for a single parameter over the course of the simulation. This way, by plotting
one column over the simulation time, we can observe in which parts of the
simulation a parameter has high sensitivity, and for which it has lower or no
sensitivity.

2.5 Model parameter estimation methods

To identify model parameters for the metabolism model, parameter estimation
algorithms must be used. These try to minimize an objective function with re-
spect to the parameters. The objective function is based on a criteria for which
minimization identifies the parameters, if the model is identifiable.
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2.5.1 Objective function for parameter estimation

One way objective function minimization can be done is to use the model and
vary the parameters so that a simulation of it is fitted to the output measure-
ment. The two sided desirability function [19; 20; 21] can be used as an objec-
tive function for this purpose. This function is on the form

dtot(x,y) = −dy
npar∏
i=1

dx,i (2.31)

where dy is given by

dy = d(y, ny) (2.32)

y =

√√√√ 1

nsim

nsim∑
i=1

(ysim − yref )2 (2.33)

dx,i is given by
dx,i = d(xi, nx) (2.34)

and d(x, n) is given by

d(x, n) = exp [−(x̃(x))n] (2.35)

x̃(x) =
2x− (xmax + xmin)

xmax − xmin
(2.36)

Here xmin and xmax are the minimum and maximum values of the parameters
estimated, given for all parameters in Appendix A.2.
dy is a measure of the difference between ysim and yref . ysim is the glucose

values of a simulation with parameter values from x, and yref the simulated
measurement glucose values that we want to obtain with the model parameter
estimation. nsim is the number of time steps in the simulation.
dx,i gives a value near 1 if the parameter value is in the desired region, and

lower values the further away it is from that region. The higher n is, the wider
this region becomes, so that parameters moving away from the middle does not
decrease as fast. When n→∞, the function will approach the boxcar function.
The boxcar function is a function which evaluates to zero outside the region
[xmin, xmax], and 1 inside it.

2.5.2 Downhill simplex method (Nelder-Mead)

The downhill simplex method is a derivative-free method for solving nonlinear
optimization problems. Instead of derivatives it uses a simplex in the param-
eter space to narrow the search space until it finds a minimum point of the
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function. A simplex is a polytope with n+1 vertices, in n dimensions. Each ver-
tex of the simplex is a set of parameter values in the parameter space, with a
corresponding objective function value.

The fundamental idea behind the simplex method is that the vertex in the
current simplex with the "worst" objective function value is mirrored through
the line between the two vertices with the "best" objective function values. Then
the objective function is evaluated at this new point. If it is good, it replaces the
worst vertex in the simplex. If it is not so good, a new point closer to the worst
point along the mirroring line is evaluated. This way, the simplex will always try
to move towards the parts of the parameter space with better objective function
values.

2.5.3 Newton-Raphson method

The Newton-Raphson method is an algorithm for finding the roots of nonlinear
functions. In optimization, the Newton-Raphson method is used on the deriva-
tive of the objective function. By finding the root of the derivative, or gradient,
of the objective function, hopefully an extremum point of the objective function
is found.

For parameter estimation in our case, we want to find the roots of the gra-
dient of the objective function dtot(x,y), and by that find an extremum point of
it. This method makes use of both the gradient of the objective function, and
the Jacobian of this gradient.

2.6 Finite difference approximation

Some mathematical functions or expressions are so complex that it is too hard
or time consuming to find its derivative analytically. Then it is appropriate to
apply a derivative approximation technique. One of the simplest ones of these
is called finite difference. With this technique, you evaluate the function value
f(x) for two different x values close to each other to approximate the deriva-
tive in this area of the variable space. If the point for which one wants to find
the approximated derivative is x∗, one approach is to evaluate the function at
x∗ and another point x∗ + dx. This is showed in (2.37), and the expression is
called the difference quotient. Ldq(x∗) then is an approximation of the deriva-
tive f ′(x∗). Another approach is to evaluate the function at x∗− dx and x∗+ dx,
showed in equation (2.38), which is called the symmetric difference quotient.

Ldq(x
∗) =

f(x∗ + dx)− f(x∗)
dx

(2.37)

Lsdq(x
∗) =

f(x∗ + dx)− f(x∗ − dx)
2dx

(2.38)
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3 Aim of the study

The aim of this study was to investigate the parameter identifiability of the
GlucoPred metabolism model, developed by Prediktor Medical. The model’s
intended use is for simulation and prediction of future plasma glucose values,
but also as a helping tool during the development of the non-invasive glucose
measurement device from Prediktor Medical. The model parameters must be
individualized so that the model can represent a specific person, for the model
to be used for simulation and prediction. This identifiability study is meant as a
step in the direction of being able to identify the GlucoPred model parameters
for individuals.

The study will present:

• A presentation of the GlucoPred model, with the dynamic equations mod-
elling the glucose and insulin dynamics in the body.

• A sensitivity analysis discussing which input gives rise to identifiability in
which parameters.

• Parameter estimation with two different estimation methods, for the pa-
rameters from the sensitivity analysis.
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4 Method description and implementation

Optimally, both a structural and practical identifiability analysis should have
been carried out when investigating the GlucoPred model. First the structural
analysis should be used to investigate which restrictions the model equations
themselves put on the identifiability of the system. Then the practical analysis
should be used to look at what type of input the different parameters are sen-
sitive to, and in what order the input is needed for them to be identifiable. In
this study however, a structural identifiability analysis is not carried out, mostly
because of the high computational cost of the calculations. In addition, a struc-
tural identifiability analysis would only give us a yes/no answer on whether the
model structure gives an opportunity to identify the model parameters, when
we have perfect infinite measurements.

4.1 Simulation model and sensitivity implementation

To be able to implement both the sensitivity analysis and estimation algorithms,
the GlucoPred model itself would have to be implemented. This was done in
Matlab with a simulation time step of 0.5 minutes. To the model simulation,
input of meal and exercise can be given, in addition to rapid or slow external
insulin doses.

The creation of the sensitivity matrix for a simulation with a parameter set
p and a given input was implemented with equations (2.29) and (2.30). These
were calculated for every time step in parallel with the original system equation
simulation. Because of the complexity of the model equations, the derivatives
∂F

∂x
and

∂F

∂p
needed for this were approximated with finite difference (section

2.6), instead of calculating them analytically. The perturbation dx was 1% of
the normal range of the state variable or parameter.

4.2 Initial values

Initial values for the model parameters were chosen based on a preadapted set
of initial values used for GlucoPred earlier, for persons either healthy or having
diabetes mellitus type 1 or 2. The only parameter changed in this were Td, the
time constant for rapid insulin dynamics. It was set to 30 instead of 15 for DM1
to get more stable glucose values for the given input.

To make the initial state variable values closer to a steady-state of the model
from the start, the initial values for the two glucose variables Gp and Gt were
both changed from 100 mg/dL to 85.25 mg/dL. The initial glucagon concen-
tration H was also changed from 100 pg/ml to 160 pg/ml. This was done after
observing the initial transient period of the model simulation, and that these
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state variables tended to approach these values with no input. Then the initial
values for the state variables became:

x0 =



Gp

Gt

I
X
SR1
SR2
SS1
SS2
Msto

Mgut

H
Mlg

Y
Z



=



85.25 mg/dL
85.25 mg/dL
10 mU/L
10 mU/L
0 U/L
0 U/L
0 U/L
0 U/L
0 g
0 g

160 pg/ml
50 g
0
0



4.3 Initial parameter sensitivity analysis

To start with, the sensitivity of each parameter for itself was investigated and
plotted for the timespan of the experiment. An example is showed in figure
4.1, for the parameter Si. This was done using the input showed in table 4.1.
The interpretation of this example is that the parameter Si has high sensitivity
during the meal and when the blood glucose is high. This can be seen by the
larger negative value of the sensitivity during the period of high positive glucose
values. This means that, during or right after the meal, if the parameter Si
is increased a little, the blood glucose will decrease a little. The higher the
absolute value of the sensitivity, the more a perturbation in the parameter will
affect the output glucose.

This plot provided an intuitive and easy way to see what type of input, and
where during the simulation, the different parameters had the biggest influence
on the output glucose value.

An assumption made in this part was that a parameter with very low sensitiv-
ity for the initial experiment input from table 4.1, generally would have pretty
low sensitivity also for the same input but in different order and quantity. It was
on the basis of these sensitivities that the initial parameter sets Ph,init, Pdm1,init

and Pdm2,init were chosen before the start of the sensitivity matrix analysis in
section 4.4.
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Figure 4.1: Sensitivity plot example.

For parameter Si, dm2 preadapted model, with meal and exercise input. The upper
plot is plasma glucose, and the lower plot is the sensitivity values for Si.

4.4 Sensitivity matrix analysis

Parameter sensitivity for preadapted models for healthy, DM1 and DM2 subjects
was investigated in this part of the study. Different input is of course a major
factor in identifiability and for which model parameters can be estimated cor-
rectly. A single meal (together with any needed insulin doses), a single exercise
session, and combinations of these, were assessed as input to the model.

In both the sensitivity matrix analysis and parameter estimation, described
in the current section and section 4.5, the amount of the different inputs were
the following, unless otherwise stated:

• Rapid insulin: 6.5 Units

• Slow insulin: 20 Units

• Exercise: 150 BPM for 50 minutes

• Meal: 80 grams of carbohydrate and SlowFact = 0.6
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Subject Input At time
Healthy - Meal: 80 g carbs, 0.6 GI 60 min

- Exercise: 150 BPM 200 - 250 min
DM1 - Slow insulin dose: 20 Units 0 min

- Meal: 65 g carbs, 0.6 GI 60 min
- Rapid insulin dose: 5 Units 70 min
- Exercise: 150 BPM 200 - 250 min

DM2 - Meal: 65 g carbs, 0.6 GI 60 min
- Rapid insulin dose: 5 Units 70 min
- Exercise: 150 BPM 200 - 250 min

Table 4.1: Input to initial parameter sensitivity analysis

As an indication for which parameters that could be estimated, a sensitivity
matrix Sens was calculated based on the input combinations. A singular value
decomposition (SVD) was performed on Sens. From this, the three matrices U,
S and V were obtained. The diagonal matrix S, contained singular values and
the right-singular vectors (RSV) corresponding to them were the columns of V.
Like in Stigter et al. (2017) [18], the singular values and RSVs were plotted,
to easily observe which parameters contributed to which singular values. An
example of this plot is shown in figure 4.2. Low singular values are indicating
low identifiability, and higher singular values indicates that parameters may be
identifiable.

The RSV corresponding to a singular value significantly lower than the rest
was plotted to find out which parameters contributed to this. One of these was
removed from the set of possibly identifiable parameters, or another action was
taken to get rid of the low singular value. To figure out the most sensitive/iden-
tifiable parameters, the RSV to the three (or more) highest singular values was
plotted. The parameters contributing most to these would have a good chance
of being identifiable. In addition, a sum of RSV-contribution weighted by the
corresponding singular values for each parameter was computed and plotted.
This measure, called Vsum here, makes sure the highest singular values con-
tribute most when selecting identifiable parameters based on it, and that lower
singular values do not.

Vsum,p =
1

Smax

nPte∑
i=1

|Vp,i|sj (4.1)

For a given parameter p, this measure is computed with equation (4.1), where
nPte is the number of parameters analyzed, V is the RSV matrix, s is the vector
of singular values (where values below 0.01 is set to zero) and Smax is the high-
est value in s. This gives a value for each parameter for how much it contributes
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in the RSV for the highest singular values, and is easily interpreted when plot-
ted. A parameter with a high Vsum is an interesting parameter because it con-
tributes much to the RSV corresponding to the highest singular values of the
sensitivity matrix.

The effects on the glucose from parameters with similar sensitivity curves
will be hard to distinguish. The identifiability of the system with parameters
that contribute similarly to the measured output is low. This can be shown from
a simple example. The four parametersKmg, Eneo, kgm and kglg have very similar
sensitivity plots, as shown in the bottom plot of figure 4.2. This reflects itself in
the singular values of the sensitivity matrix, shown in the upper plot in the same
figure. The logarithm of these are all around zero or below, and the smallest
one is much smaller than the others. One can observe from the middle plot that
kgm and kglg contributes to the RSV corresponding to the lowest singular value.
Therefore, those two are most likely not in an identifiable set together, and one
of them has to be removed.
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Figure 4.2: singular values, RSV and sensitivity plot example.

For parameters Kmg, Eneo, kgm and kglg, healthy preadapted model, with meal and
exercise input. RSV corresponding to the lowest singular value.
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4.5 Parameter Estimation

After the sensitivity analysis was done, estimation techniques were implemented
to try to estimate the parameters. Instead of the dx,i described in equation 2.34,
the boxcar function was used. The reason for this was that in the initial testing
of the estimation methods, it was observed that the parameter bias dx,i intro-
duced, did disturb the estimations. The estimations were dragged towards the
middle of their range, where dx,i were at its highest, despite the glucose curve
fitting better elsewhere in the parameter space. The boxcar function got rid of
this bias by outputting 1 whenever the parameter where inside its range, and 0
elsewhere.

The two parameter estimation techniques implemented were Downhill Sim-
plex (Nelder-Mead) and Newton-Raphson optimization. The parameter estima-
tion took place in the same order as the sensitivity analysis, first healthy, then
DM1 and DM2 after that. In this part it was important to observe whether the
parameters that looked possible to estimate in the sensitivity analysis were ac-
tually possible to estimate.

Table 4.2 shows a small extract from the full result table written down dur-
ing the parameter estimation. This is for one meal input and one exercise input
for the healthy model. The table also displays which parameters that were esti-
mated, the estimation results in DS result and NR result, and also the absolute
value of the desirability function from (2.31), in DS score and NR score. A
score value of 1 is the maximum and indicates that the curve of a simulation us-
ing the new parameters, fitted to the simulated measurement is done perfectly,
and that the parameters are inside their normal range. It does not, however,
say anything about how precise the parameter estimations themselves were.
For that, one has to compare the results with the actual parameter values used
in the simulated measurements (Appendix A.1). The parameter estimation ac-
curacy value introduced in section 4.5.3 does this.

Input Parameters DS result DS score NR result NR score
Meal kabs, kHL 0.0500, 3.60 1.000 0.0500, 3.66 0.9994
Meal kabs, kHL, Si 0.0513, 2.97, 0.160 0.9959 0.0498, 3.88, 0.217 0.9987
Meal kabs, kHL, p2 0.0580, 3.59, 0.0580 0.9943 0.0502, 3.67, 0.0208 0.9993
Exercise β, kHL 1.00, 3.60 1.000 1.40, 3.73 0.9991
Exercise β, kHL, GH 3.21, 2.93, 65.9 0.9975 2.00, 4.37, 48.2 0.9975

Table 4.2: Excerpt from the parameter estimation result.

The reason DS was chosen as one of the parameter estimation algorithms
is that the derivatives of the objective function dtot(x,y) with respect to the
parameters is hard to obtain analytically. The derivatives would have become
complicated expressions that it would have taken some time to arrive at. The
DS algorithm is a derivative free method, which means that only evaluations of
the objective function itself are taken into account, not the derivatives.
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The NR algorithm was chosen to compare the two fundamentally different
methods. DS which is a derivative free method against NR, which is a quasi-
Newton method. Also, both of these methods were mentioned in the problem
formulation text.

You want to make sure that all areas of the possible parameter space is ex-
plored during estimation. In this study this area is the area inside the normal
parameter ranges. This can be done by trying different combinations of initial
starting points for every parameter to estimate. If we define that there are only
two different initial values each parameter should have, a full factorial exper-
iment would require 2np different estimations, where np is the number of pa-
rameters in the estimation set. This quickly becomes infeasible with a growing
np. An experimental design called Plackett-Burman (PB) [22] can be used to
limit the number of estimations to np+1. At the same time it makes sure that a
small as possible area of the parameter space is left unexplored. The PB design
was used in this project. For both the Downhill Simplex and Newton-Raphson,
np + 1 estimations were carried out for each combination of model input and
parameter set, where the best result was used. An example design is shown in
table 4.3. This would have been for a parameter set consisting of three param-
eters and four algorithm runs. A + means that the parameter will be assigned
the higher value as initial value, and a − means that it will be assigned the
lower value.

Run p1 p2 p3
1 + + +
2 + − −
3 − + −
4 − − +

Table 4.3: Plackett-Burman experimental design for N = 4 and np = 3.

4.5.1 Downhill Simplex

For the Downhill Simplex algorithm, the initial simplex in the parameter space
was made using PB design. For estimation run ri, where i = 1, 2 . . . N , the ith
row of the PB design (Example in table 4.3) was used to decide new low and
high values for the different parameters. For parameter pj, if PBi,j = +, the
values were:

pj,low = 0.57pj,max + 0.43pj,min

pj,high = 0.78pj,max + 0.22pj,min
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If PBi,j = −, the values were

pj,low = 0.22pj,max + 0.78pj,min

pj,high = 0.43pj,max + 0.57pj,min

Where pj,max and pj,min were the maximum and minimum values of the parame-
ter ranges in Appendix A.2. This way, the possible initial parameter values were
shifted closer to max or min of the parameter range, based on whether PBi,j

was + or −, respectively.
Based on these new low and high values, the initial simplex was created, also

with the PB design. For the ith vertex of the simplex and the jth parameter, if
PBi,j = +, the initial parameter value was pj,high, and if PBi,j = −, it was pj,low.

The stopping criterion was either when 100 iterations were done, or before
that if the difference between the objective function values of the best and worst
vertices in the simplex were small enough.

4.5.2 Newton-Raphson

For the Newton-Raphson algorithm, the PB design was also used to find the
initial values. Now, for the ith estimation run and the jth parameter, if PBi,j =
+, the initial value were:

pj,init = 0.75pj,max + 0.25pj,min

If PBi,j = −, the value were:

pj,init = 0.25pj,max + 0.75pj,min

In the initial iteration, the Jacobian J∇d of the gradient of the desirability
function dtot(x,y) (The objective function) were approximated by first approx-
imating the gradient ∇pdtot(x,y) with respect to the parameter vector investi-
gated. Both approximations were carried out using finite differences (Section
2.6).

In the version of the algorithm used in this study, the approximation of the
Jacobian matrix J∇d was not calculated for every iteration. Instead it was up-
dated based on the Jacobian from the previous iteration, the gradient at the
current search point and the direction of the previous iteration step. This was
done via the update equation:

J
(n+1)
∇d = J

(n)
∇d +

∇pdtot · d(n)

d(n) · d(n)
(4.2)

(4.3)
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where

d(n) = p(n) − p(n−1) (4.4)

was the direction vector of the parameter estimation update in iteration n. The
reason for this Jacobian update for each iteration was that the approximation of
the Jacobian was computationally harder and therefore took longer time than
the update.

4.5.3 Measure of estimation accuracy

During the estimations, a measure of estimation accuracy was needed. Even
though the values DS score and NR score give information about the curve
fit of the estimation, that will not be a guarantee for good parameter estima-
tions, as explained earlier. A measure to observe whether the parameter esti-
mates were close to the original parameter values (Parameter values that were
known, because the glucose measurements were simulated measurements from
the GlucoPred model itself), relative to the parameter range. Therefore a value
called eei was used for the estimation error of parameter pi, defined by:

eei = 100
|pi − pi,est|

pi,max − pi,min
%

where pi,est is the estimate provided by the estimation method, and pi,max
and pi,min are the maximum and minimum values of parameter pi. This gave an
intuitive value representing the parameter estimation error as a percentage of
the normal range of the parameter.

4.6 Method procedure

To sum up, for each input set that was investigated, the procedure was the
following.

1. Removing parameters (this means setting them constant when estimat-
ing), from the set of all parameters, that were not interesting. This in-
cluded non relevant, zero or low sensitivity parameters for subjects of
that condition (healthy, DM1 or DM2), parameters clearly not relevant
for that input and parameters which could be measured with reasonable
precision in real life. This was done using the initial parameter sensitivity
analysis described in section 4.3.

2. Observe sensitivity for the remaining parameter set. If one or more of
the singular values were significantly lower than the rest, the parame-
ter(s) responsible for this were revealed in the RSV plot for these singular
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values. It could be that a parameter had very low or zero sensitivity, or
it could be that two or more parameters correlated in their sensitivities,
making them hard to distinguish when estimating. A choice was taken for
which parameter to take out of the set, based on the RSV and the general
sensitivities for the parameters involved.

3. When none of the singular values of the sensitivity matrix for the remain-
ing parameters were much smaller than the others, the RSV for the high-
est singular values were investigated. The plots for RSV and Vsum together
gave a good picture of which parameters to investigate further. A set con-
sisting of between three and seven parameters were chosen for a final
analysis.

4. The sensitivities, the RSV and Vsum for the chosen parameters in part 3
were examined just like in point 2 and 3 to make a suggestion for param-
eter combinations of these that could be identifiable. Parameters with the
highest Vsum rankings and high contributions to the RSVs corresponding
to the highest singular values were the most interesting ones. If the con-
tribution to these RSV were similar between two parameters, this could
suggest some correlation, so these two parameters would not be picked
together in an identifiable set. Based on this, a set of one to three pa-
rameters were chosen as a most likely identifiable set. In addition to this,
one or two parameters were chosen to be added to the first set, in the
case where the first set was easily estimated correctly. This corresponds
to the two columns "Most identifiable" and "Together with" in table 5.1
introduced later.

5. At the end, the parameters chosen were estimated with the parameter
estimation methods Downhill Simplex and Newton-Raphson. This gave
indications of whether the sensitivity analysis gave the right impression
of the identifiability or not.
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5 Results and observations

The results from the parameter sensitivity analysis and the parameter estima-
tion are shown here. The analysis is divided into three separate section for the
healthy, DM1 and DM2 models. A summary of the sensitivity analysis results
are shown in table 5.1.

5.1 Healthy subject

After removing the not interesting parameters, the resulting parameter set to
investigate was:

Ph,init = [Kmg, α, kIL, β,Gneo, Rm, IHalf , Ri, nh, TY ,MlMx, kabs, Si, kgb, kHL, GI ,

GH , p2, f, Uii, RHbas, RHmax]

5.1.1 One meal

First for the healthy model, the effect of only one meal was examined. After
removing the parameters only related to exercise (α, β and TY ) from the initial
parameter set Ph,init, the parameter sensitivities were assessed for the one meal
input. In figure 5.1a it can be seen that the last singular value drops lower than
the others. From the plot of the RSV corresponding to this singular value (the
middle plot), it was observed that the parameter RHmax was the reason for it
being so low. Removing this parameter, the plot in figure 5.1b was displayed.
Here the most interesting thing was to look at the highest singular values, and
one could observe that the parameters that contributed most to the RSV of the
highest singular values were the ones with the highest Vsum-values. The param-
eters with the five highest Vsum-values, kabs, Si, kHL, p2 and f , were investigated
further.

From figure 5.1c it can be observed that for these five parameters, the lowest
singular value has a "drop" from the second lowest one. This may indicate non
identifiability. The corresponding RSV is plotted in the same figure, and one
can see that it is the parameters f and Si that contributes the most in the corre-
sponding RSV. This indicates that a covariance between these two parameters,
and possibly also p2, caused that "drop" to the lowest singular value. Removing
parameter f gave a lowest logarithmic singular value of 0.6, which was much
better than before. When plotting RSVs for the three highest singular values,
it could be seen that the parameters kabs and kHL were the most likely to be
identifiable, together with either Si or p2 which had some correlation. This can
be seen from the RSV plot in figure 5.1d.

The inclusion of kabs in the identifiable set were not so surprising with meal
input, as this parameter describes the gut absorption time constant. kHL were
more surprising as it describes the rate of glycogenolysis, that is how much



26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-4

-2

0

lo
g

1
0

 s
in

g
u

la
r 

v
a

lu
e

s

K
mg

k
IL

G
neo

R
m

I
Half

R
i

n
h

M
lMx

k
abs

S
i

k
gb

k
HL

G
I

G
H

p
2

f U
ii
R

Hbase
R

Hmax

-1

-0.5

0

R
S

V Lowest

0

0.5

1

1.5

V
s
u
m

K
mg

k
IL

G
neo

R
m

I
Half

R
i

n
h

M
lMx

k
abs

S
i

k
gb

k
HL

G
I

G
H

p
2

f U
ii
R

Hbase
R

Hmax

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-4

-2

0

2

lo
g

1
0

 s
in

g
u

la
r 

v
a

lu
e

s

K
mg

k
IL

G
neo

R
m

I
Half

R
i

n
h

M
lMx

k
abs

S
i

k
gb

k
HL

G
I

G
H

p
2

f U
ii
R

Hbase

-1

0

1

R
S

V

1st

2nd

3rd

0

0.5

1

1.5

V
s
u
m

K
mg

k
IL

G
neo

R
m

I
Half

R
i

n
h

M
lMx

k
abs

S
i

k
gb

k
HL

G
I

G
H

p
2

f U
ii
R

Hbase

(b)

1 2 3 4 5

0

0.5

1

lo
g

1
0

 s
in

g
u
la

r 
v
a
lu

e
s

k
abs

S
i

k
HL

p
2

f
-0.2

0

0.2

0.4

0.6

R
S

V lowest

0

0.5

1

1.5

V
s
u
m

k
abs

S
i

k
HL

p
2

f

(c)

1 2 3 4
0.5

1

1.5

lo
g

1
0

 s
in

g
u
la

r 
v
a
lu

e
s

k
abs

S
i

k
HL

p
2

-0.5

0

0.5

1

R
S

V

1st

2nd

3rd

0

0.5

1

V
s
u
m

k
abs

S
i

k
HL

p
2

(d)

Figure 5.1: Singular values, RSV and Vsum, for 1 meal input and healthy subject. (a)
For all parameters and RSV for lowest singular value. (b) For all parameters
except RHmax, and RSV for three highest singular values. (c) For the 5
most sensitive parameters and RSV to lowest singular value. (d) For the 4
highest parameters and RSV to the three highest singular values

glucose is produced from glycogen in the liver. This should not be a dominating
parameter during a meal, but as one can see during the rest of this chapter
describing the results, kHL is a parameter which has high sensitivity for almost
all input.

For only one meal input kabs and kHL were possible to estimate together al-
most perfect with both estimation methods. Also those two parameters together
with either Si or p2 could be estimated pretty good with NR, where eekHL

= 4%
was the worst estimation.
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5.1.2 One exercise session

Next, the effect of only on exercise session was examined. The parameters re-
lated to meal intake was removed (kabs and f). Again, RHmax, contributed the
most to a singular value that was much lower than the others, so it could be
removed from the set. The parameters β, kHL and GH contributed much to one
separate of the three highest singular values each. These three parameters were
assessed further with another sensitivity plot. In figure 5.2 one can see that they
still do not look like they correlate, because they each "own" one of the three
RSV. This means that they could be identifiable. The parameter kHL is again the
one with highest Vsum and contributes most to the highest singular value.

It is not surprising that β, being an exercise parameter, has high sensitivity
for exercise input. GH and kHL were not surprising either, as glucagon secretion
(which rate is determined by GH) and the liver glucose production would be
higher during exercise on an empty stomach.
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Figure 5.2: 1 exercise input sensitivity healthy

Singular values, RSV corresponding to the three highest singular values and Vsum, for
1 exercise input and healthy subject.

With only exercise input, β and kHL could be estimated perfectly with DS.
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Together with GH the estimates were not so good, with eeβ = 22.5% for DS.
In the following sections, there will be less plots and shorter explanations,

but the same procedure has been followed also for these sensitivity analyzes.

5.1.3 One meal and one exercise session afterwards

Starting with Ph,init again, the parameters to investigate further based on the
highest RSV and Vsum was α, β, kabs, Si, kHL, GH p2 and f . These are a com-
bination of the parameters that seemed maybe identifiable for 1 meal and the
parameters for 1 exercise, in addition to α and f .
α had very low sensitivity for exercise alone, and that is not surprising when

looking at the system equations. This parameter is dependent both on insulin
in remote compartment, X, and the exercise memory state, Z. Therefore, when
both food and exercise were inputs to the model, α got a higher sensitivity.
Another observation here was that the sensitivity for α got lower as the time
between meal and exercise got longer. In addition, it appeared as though the
total identifiability for this set was higher when the time between the meal
and exercise was higher, since the lowest singular value was higher. This might
be because it is easier to distinguish the effects of the meal and exercise with
longer time between them.

The RSV to the lowest singular value changed dependent on the time be-
tween the meal and the exercise, but the insulin sensitivity parameter Si was
always the biggest contributor to it. This suggests that it may not be possible
to estimate Si for this input. With Si removed, GH and p2 would always be
among the least sensitive parameters. Also removing these from the set left five
parameters to maybe identify: α, β, kabs, kHL and f .

With the exercise right after the meal (Not very likely in reality) α and β
could be separated and form an identifiable set with kHL. When estimating, it
showed that these three together were almost perfectly estimated with DS, but
poorly with NR, where eeβ = 65% was the worst.

With the exercise 60 minutes after the meal, kabs and kHL was most identifi-
able, and α and β correlated much more. kabs and kHL was estimated perfectly
with DS, but not so good with NR. kabs and kHL together with α could be es-
timated relatively good with DS (eeα = 9.7% the worst estimate), while those
two together with β did not get estimated as good (eeβ = 12.3% the worst
estimate).

When the exercise was 150 minutes after the meal β, kabs and kHL looked
like an identifiable set, leaving α with little sensitivity. f would always correlate
somewhat with kabs, so it was also taken out. When estimating, β, kabs and kHL
did not get a very precise estimation results, where eeβ = 15% was the worst.
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5.1.4 One exercise session and one meal afterwards

Again, starting out with Ph,init, the parameters to investigate further based on
the highest RSV and Vsum was α, kIL, β, kabs, kHL and GH . With only these
parameters analyzed, only two parameters looked surely identifiable, β and
kHL. That these two looked most identifiable is not surprising, β because it is
an exercise parameter and kHL because it has high sensitivity for all inputs.

With a normal meal after the exercise, β and kHL looked identifiable to-
gether with α or kabs, which looked like they had some correlation with each
other. When trying to estimate, it showed that for only β and kHL the estimate
was almost perfect with DS. The estimates were not so good, when they were
estimated together with α or kabs. For these, eeα = 65.5% and eeβ = 64% were
the worst estimates for the two sets, respectively.

With a smaller meal during the exercise and no meal after, β and kHL looked
identifiable together with either α or GH . Again, α got lower sensitivity with
more time between the two inputs, but so did many of the other parameters.
That GH is there is a little surprising since it is a parameter determining the
glucagon production rate. But since the small meal is not "eaten" before it is
halfway through the exercise session, it might not be so surprising. This is be-
cause the glucose concentration can drop during the first half of the exercise
session, before the meal is "eaten", and then glucagon is produced. Again, the
estimates for β and kHL alone were almost perfect, but not very good together
with α or GH , where eeα = 88.9% and eeGH

= 43% for NR.

5.2 Diabetes Mellitus 1 subject

After removing the not interesting parameters, the resulting parameter set to
investigate was:

Pdm1,init = [Kmg, α, kDia, kIL, β,Gneo, Td, IHalf , nh, TY ,MlMx, kabs, Si, kgb, kHL,

GH , p2, f, Uii, Vi, RHbas, RHmax]

When trying to estimate the parameters using DS and NR for the DM1 model,
it became apparent that the NR algorithm could not get any good results for any
input. Therefore NR is not mentioned in this section, and all estimation results
mentioned are with use of the DS algorithm.

5.2.1 Insulin and one meal

First, the sensitivity for one meal with a rapid insulin dose was assessed. The
insulin dose was taken 20 minutes before, at the same time as, or 20 minutes
after the meal. The time of the insulin relative to the meal was one of the
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things investigated when observing the parameter sensitivities. A slow insulin
dose was also added as input at the start, just to keep the blood glucose in the
simulation at a reasonable level. After removing the parameters only related to
exercise (α, β and TY ) from the initial parameter set Pdm1,init, the parameter
sensitivities was assessed for the one meal input with rapid and slow insulin.
For all three insulin injection times, the parameters Gneo and MlMg correlated,
making one singular value much smaller than the others. Therefore Gneo was
taken out of the set.

For rapid insulin 20 minutes before the meal, Td and kHL contributed more
to the highest singular values than the rest of the parameters. Then came f , Si
and kabs. These five were looked at more for themselves. The highest singular
value was much higher than the rest, and Td and kHL were the two main factors
in the corresponding RSV. They also contributed most to the second highest
singular value. Of the three other parameters, kabs contributed most to the third
highest singular value, so this could might be identifiable together with the
two first parameters, as it did not correlate with them. That Td was one of the
parameters that looked identifiable was expected, as it determines how fast the
rapid insulin is taken up by the body, and insulin of course affects the plasma
glucose concentration a lot during a meal. The estimates were not good for Td,
kHL and kabs together, with eekabs = 24% as the worst estimate. When removing
kabs, the estimates of Td and kHL were almost perfect.

With the rapid insulin dose at the same time as the meal, the same param-
eters were chosen to look at more (Td, kHL, f , Si and kabs), in addition to Vi.
Td and kHL contributed most to the two highest singular values, which indi-
cated identifiability for those two. Out of the other four, f and Vi contributed
most to the third highest singular value. These looked correlated, so only one
of them looked identifiable, together with Td and kHL. The estimates for Td and
kHL were very good. The estimates of Td and kHL together with either f or Vi
were not very good, with eef = 33% and eeVi = 48% as the worst estimates,
respectively.

With insulin 20 minutes after the meal, Vi also had higher sensitivity than
with insulin before the meal. The parameters Td, kabs, Si, kHL, f and Vi were
again chosen to look more at. Td, kabs and kHL were highest on sensitivity. f
and Vi were the most sensitive of the three others, but also correlated with each
other. One of these two could maybe be estimated together with the three first
ones. When estimating Td, kabs and kHL, the estimations were bad, with eekabs =
19.2% as the worst estimate. If kabs was removed however, the estimation of Td
and kHL was perfect.

5.2.2 Exercise

When the input was a slow insulin dose and an exercise session, the param-
eters related to meal intake and rapid insulin was removed (kabs, f and Td).
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For this input the three highest singular values each had one major contributor
to each of their RSV. Those three parameters were β, kHL and GH . When ana-
lyzed alone, it could be observed that β, kHL and GH corresponded to the three
highest singular values, as shown in figure 5.3, and therefore looked like they
could be estimated correctly together. That GH looked identifiable now was not
a surprise, as glucagon secretion might happen during exercise. The estimates
of β, kHL and GH together using DS however, were not very good. In this esti-
mation, the estimate of both β and GH were not so good, with eeβ = 19% and
eeGH

= 39%.
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Figure 5.3: 1 exercise input sensitivity DM1

Singular values, RSV corresponding to the three highest singular values and Vsum, for
1 exercise input and DM1 subject.

5.2.3 One meal and rapid insulin, and one exercise session afterwards

With the exercise placed 60 minutes after the meal, the parameters selected for
further investigation here were Td, kabs, kHL, f and Vi. This led to an indication
of Td and kHL being most identifiable together with one of f or Vi. When trying
to estimate Td and kHL the estimation was perfect, but together with either f
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or Vi the results were much worse, where eeTd = 79% and eeVi = 49% were the
worst estimates, respectively.

Moving the exercise session closer to the meal gave kabs higher identifiability,
but when Td and kHL were estimated together with kabs it was not accurate at
all, and the worst estimation error was eeTd = 81%.

5.2.4 One exercise session, and one meal and rapid insulin afterwards

The parameters to assess further for this input was α, β, Td, kabs, kHL, f and
Vi. When doing this it could be observed that β, Td and kHL were the most
contributing parameters to the RSV of each of the three highest singular val-
ues. This indicated that these three parameters could be estimated precisely.
Moving the insulin dose to before or after the meal did not change this very
much. Delaying the meal to 150 minutes after the end of the exercise session
or moving it closer to it made f and Vi more contributive to the third highest
singular value, and therefore also more likely to be identifiable together with
Td and kHL.

When trying to estimate these parameters, the only combination that got
good results were Td and kHL. When trying to estimate these two together with
either β, f or Vi, the estimations were not accurate. For example, the estimation
error for β was eeβ = 90% when estimated together with Td and kHL, no matter
how long or short after the exercise the meal was placed.

5.3 Diabetes Mellitus 2 subject

After removing the not interesting parameters, the resulting parameter set to
investigate was:

Pdm2,init = [Kmg, α, kDia, kIL, β,Gneo, Rm, Td, IHalf , Ri, nh, TY ,MlMx, kabs, Si,

kgb, kHL, GI , GH , p2, f, Uii, Vi, RHbas, RHmax]

Also for this model the NR algorithm struggled to get any good results, so
unless otherwise stated, the estimation results are from the DS method.

5.3.1 One meal

First for the preadapted model for diabetes 2, only one meal was examined,
and the parameters related only to exercise were taken out (α, β and TY ). For
only one meal, without rapid insulin, the parameters Td and Vi were also taken
out. With this input, six parameters were chosen based on Vsum and RSV for
the highest singular values. Those were kDia, kIL, kabs, Si, kHL and f . In the
sensitivity analysis of these six parameters, kDia contributed the most to the
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lowest singular value. Removing this it showed that Si, kHL and f contributed
most to the highest singular value, which was much higher than the rest. That
Si showed to be one of the most identifiable parameters was not surprising, as
the insulin sensitivity is a very low, but very important parameter for people
with DM2. The parameter f was not surprising either, as it describes how much
of the carbohydrates in the gut that appears in plasma as glucose.

All three combinations of pairs between the parameters Si, kHL and f got
almost perfect estimation results. All three of them together could not be esti-
mated perfectly however, with eef = 12.9% as the worst estimate.

5.3.2 Insulin and one meal

For this input, the parameters α, β and TY were still taken out, but Td and
Vi were taken in, as rapid insulin were now part of the input. This gave the
parameters kIL, Td, kabs, Si, kHL and f to examine further. This set was the same
no matter if the rapid insulin was placed before, at the same time as, or after
the meal. Just like with only one meal without insulin, the three parameters Si,
kHL and f stood out in Vsum, in addition to Td which contributed most to the
second highest singular value. Looking at only these four parameters, one could
observe that Si and Td contributed most to RSVs of the first and second highest
singular values. These two are both related to insulin, and it is not surprising
that they looked possible to estimate with this input.

When estimating, Td and Si did not get good estimation results together,
with eeTd = 79.5%. On the other hand, all the following parameter pairs did get
accurate estimations: (TD, kHL), (TD, f), (Si, kHL) and (Si, f). In addition, the
three parameters Si, kHL and f did get relatively good estimation accuracies
together, with eef = 2.2% as the worst estimate.

5.3.3 Exercise

First, the meal and insulin related parameters were removed, namely kabs, f , Td
and Vi. When analyzing this set, β and kHL stood out as the biggest factors in
the first and second singular values. kIL contributed most to the third highest
parameter and GH had a relatively high Vsum value, so these were also chosen.
These four parameters were looked at further. This showed that kHL contributed
to the singular value much higher than the others. kIL and β contributed most to
singular value two and three, but they were much lower than the first singular
value, showed in figure 5.4. Therefore it looked like maybe only kHL could be
estimated alone. It was a little surprising that no exercise related variable was
higher in identifiability.

The estimate of kHL got a good result with the NR algorithm, but with the
DS algorithm, the error was eekHL

= 15%. Together with β the estimation were
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Figure 5.4: 1 exercise input sensitivity DM2

Singular values, RSV corresponding to the three highest singular values and Vsum, for
1 exercise input and DM2 subject.

perfect for the DS algorithm. kHL and kIL together did not give any good esti-
mations, with eekIL = 48%.

5.3.4 One meal and exercise session afterwards

The insulin related parameters, Td and Vi, were taken out from Pdm2,init. For
exercise 10 minutes, 60 minutes and 150 minutes after a meal, the parameters
chosen to look at more was α, kIL, β, kabs, Si, kHL and f .

For exercise 10 minutes after meal the parameters α, β and kHL had highest
sensitivity. However, the estimates of these three together were not accurate,
with eeα = 43% and eeβ = 42%. The three combinations of pairs between them
all got pretty perfect estimates.

For exercise 60 minutes after the meal, the parameters α and β had highest
sensitivity. Also kabs, kHL and f looked promising. α and β together gave almost
perfect estimations, but together with either of kabs, kHL and f , the estimates
were poor. Here the estimates of kabs, kHL and f were not the problem, as these
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got estimated quite good. Is was α and β that got estimated with low precision,
with eeα = 24% and eeβ = 31% as the worst ones.

For exercise 150 minutes after the meal, the parameters Si, kHL and f looked
like they most possibly could be estimated. Since the first singular value was so
much higher than the rest, they might have been a little correlated. In addition
α and β looked promising, but they correlated completely, so only one of them
at the time. When estimating, the parameters Si, kHL and f together got a
relatively accurate result, with eeSi

= 2.2% as the worst estimation error. Them,
together with either α or β did not get any good estimates at all.

5.3.5 One exercise session and one meal afterwards

The insulin related parameters were taken out from Pdm2,init, just like in the
previous section. The parameters chosen to investigate further when it was 30
minutes between the exercise end and the meal were α, kIL, β, kabs, Si, kHL
and f . When doing this, the parameters α, β and kHL looked most identifiable.
Also the parameter f looked promising. The estimates of α, β and kHL were not
perfect, as eeα = 9.8% and eeβ = 8%.

When it was 100 minutes between the end of the exercise and the meal, the
parameters α, kIL, β, kabs, Si, kHL and f was looked at more. This time α, kHL
and f looked like they could be estimated together. Also β and Si looked pos-
sibly identifiable together with them. However, α, kHL and f together did not
get any accurate estimation results, with eeα = 11.2%. The three combinations
of pairs between them did get good estimations, and for (α, f) and (kHL, f),
the NR algorithm got pretty accurate estimates.

With a smaller meal during the exercise α, kIL, β, Si, kHL, GH and f was
chosen to look more at. Of those, α, β and kHL looked identifiable together
with either kIL or GH . When trying to estimate α, β and kHL, the accuracy
was not good, with eeα = 73% as the worst estimate. When removing α, the
accuracy of the estimates for β and kHL were very good. Neither of the sets
(kIL,β,kHL) or (β,kHL,GH) gave any good estimates.
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5.4 Sensitivity analysis result table

Subject Input Most identifiable Together with
Healthy Meal kabs, kHL Si or p2
Healthy Exercise β, kHL GH

Healthy Exercise 10 min after meal α, β, kabs
Healthy Exercise 60 min after meal kabs, kHL α or β
Healthy Exercise 150 min after meal β, kabs, kHL f
Healthy Meal after exercise β, kHL α or kabs
Healthy Small meal during exercise β, kHL α or GH

DM1 Insulin 20 min before meal Td, kabs, kHL
DM1 Insulin at same time as meal Td, kHL f or Vi
DM1 Insulin 20 min after meal Td, kabs, kHL f or Vi
DM1 Exercise β, kHL, GH

DM1 Exercise right after insulin and meal Td, kabs, kHL f or Vi

DM1
Exercise 60 min or more
after insulin and meal Td, kHL f or Vi

DM1 Insulin and meal 10 min after exercise Td, kHL β or f or Vi
DM1 Insulin and meal 60 min after exercise Td, kHL β
DM1 Insulin and meal 150 min after exercise Td, kHL β or f or Vi
DM2 Meal Si or kHL or f kabs
DM2 Insulin and meal Td, Si kHL or f
DM2 Exercise kHL kIL, β
DM2 Exercise 10 min after meal α, β, kHL
DM2 Exercise 60 min after meal α, β kabs, kHL, f
DM2 Exercise 150 min after meal Si, kHL, f α or β
DM2 Meal 30 min after exercise α, β, kHL f
DM2 Meal 100 min after exercise α, kHL, f β, Si
DM2 Meal during exercise α, β, kHL kIL or GH

Table 5.1: Sensitivity analysis result.

Table showing which parameters looked like they could form an identifiable set, in the
"Most identifiable" column, given preadapted model type "Subject" and input "Input".
The "Together with" column shows the parameters which maybe could be estimated
together with the parameters in "Most identifiable".

5.5 Sensitivity and estimation observations

When looking only briefly at the estimation results, one can observe a trend that
of the parameter sets with only two parameters, most of them got estimated
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accurately. One the other hand, most of the parameter sets consisting of three
or more parameters did not get any good estimation results.

For the healthy model, for the parameter sets that were tried, kabs got es-
timated pretty accurately four out eight times when it was in a parameter set
with three parameters. That was much better than any of the other parameters,
which failed much more times than they succeeded when part of a parameter
set containing three parameters. The only exception from this was α, which
got estimated correctly two out of five times when in a parameter set of three
parameters.

For the DM1 model, only the parameter sets with two parameters got accu-
rate estimates, while the parameter sets with three parameters never got any
good estimation results at all.
kabs was an important parameter for the healthy model, but barely among

the most sensitive for the DM2 model. This can be because of the difference in
the model structures. One can for example see that for the one meal input in
the healthy model, kabs was one of the two parameters with highest sensitivity.
For the DM2 model, kabs was not in the possibly identifiable set, but Si and f
was there instead.

Another interesting observation about the DM2 model was that when Si, kHL
and f got estimated together with only one meal input, the estimates were not
good. When the input was both insulin and a rapid insulin dose on the other
hand, the estimates of those three were much better. Especially Si improved a
lot, from an estimate of 0.088 to 0.0011, when the real value of Si was 0.001.
Also for exercise 150 minutes after a meal, the estimates of these three pa-
rameters together were better. This gives an indication that an input of meal
and rapid insulin is more useful than only a meal. It also shows that meal and
exercise input gives more information than only a meal.
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6 Discussion

In the initial parameter sensitivity analysis described in section 4.3, an assump-
tion was made that parameters with very low sensitivity for the inputs in table
4.1, also would have low sensitivity for other combinations of the same input.
Would different different input combinations in this initial parameter sensitivity
analysis have given different initial parameter sets (Ph,init, Pdm1,init and Pdm2,init)
to work with? When looking at the parameters that were chosen to investigate
further for the different inputs, all of them had pretty high sensitivity values
for either meal, exercise or both in the initial analysis. This may lead to the
conclusion that the assumption was a correct one to make. Both based on the
time saved by not trying many different input combinations for every parameter
in the initial analysis and that it does not seem like any important parameters
were left out in this initial sensitivity analysis. Another approach could have
been to try two different input combinations (For example meal before exer-
cise, and exercise before meal) to be sure that no important parameters were
discarded.

One letdown in the results was how poor the NR algorithm worked for esti-
mation. One of the reasons for that may be the approximations of the gradient
and Jacobian of the gradient used in the algorithm, explained in section 4.5.2. If
these approximations were not accurate enough, it might sometimes have lead
the algorithm to make wrong conclusions and search in the wrong directions in
the parameter space. To make this better one could have tried to actually derive
the gradient and Jacobian analytically, or put more emphasis on making sure
the derivative approximations were accurate.

Another reason for poor NR estimation may have been the Jacobian matrix
update made for every iteration. This was done instead of starting from scratch
when deriving the Jacobian for each iteration, as explained in section 4.5.2. An
improvement could have been to do an approximation for every iteration, just
like in the first iteration, to get a more accurate Jacobian matrix.

Also, in the NR algorithm, a line search optimization could have been per-
formed for every iteration when the search direction was found. This way it
would make sure that the optimal point along the search trajectory was used
when starting on the next iteration. The way the algorithm was implemented
in this study, the step along the search direction was not optimized for every
iteration.

Obviously the objective function dtot(x,y) was not a convex objective func-
tion, because if it were, the algorithms would find the global minima pretty
consistently. This means that it must have been several local minima around
the global minimum that prevented the estimations from getting there. This
prevention might be worse for a derivative based approach like the NR, be-
cause the derivative information can trick it into getting stuck in local minima
that is not as good as the global minima. Also when taking into consideration
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that the NR just makes approximation for the gradients and Jacobians matrices,
one can derive that this might be the reason for the poor NR results. While DS
of course can be stuck in local minima, the search technique of the simplex can
also help it to avoid them.

The objective function gets more complicated the more parameters added.
That may be the reason that two parameters together very often gave accurate
estimates, but three or four parameters together very often gave much worse
estimates.

Even when an estimation algorithm finds the global minimum of the objec-
tive function, the parameter estimations can still be wrong. This indicates that
these parameters are correlated or indistinguishable from each other in estima-
tion. This did not seem to be the case during estimation here, because every
time the desirability was high and the curve fitting was good (this is the same
thing), the parameter estimations were pretty accurate. This means that the
global minimum of the objective function was the only point which would give
a perfect curve fitting.

When trying to estimate against real measurement data, the objective func-
tion space might be more complicated, because of the noisy nature of measure-
ment data. For the estimations done in this study, one knows that it exists one
global minimum where the curve fitting is perfect and the parameter estimation
is accurate. This might not be the case for estimation with real data, so curve
fitting can be a harder problem.
kHL was a parameter which proved to have high sensitivity for almost all

kinds of input combinations. It featured in almost all of the parameter sets that
seemed identifiable for the different inputs. That is because it is a parameter
not dependent on input, because glycogenolysis happens more or less all the
time no matter what the person eats or how much he exercises.

One limitation of this study is that only simulated measurement data from
the model itself are used, not real measurement data. This mostly limits the
estimation part. Since the data is from the same model, we know that all the
dynamics in it is modelled. More about this in chapter 8: Suggestions for future
work.
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7 Conclusion

Since the desired use of the GlucoPred metabolism model is for simulation and
prediction of future plasma glucose concentration values, one wants the model
parameters to be calibrated individually. The main goal of this project was to
analyze the identifiability of a reduced complexity version of the model. That
is, the identifiability of a small subset of the model parameters. This was to be
done with respect to different model excitations and the different model types,
healthy, DM1 and DM2.

For the sensitivity analysis, some of the parameters had high sensitivity for
many different excitations and model types, like kHL, α, β, Td and f . Other pa-
rameters, like Si,Kabs, p2,GH , Vi and kIL had high sensitivity only for one model
type or one specific input. The rest of the parameters had lower sensitivity for
most of the input and model types. The sensitivity analysis confirmed that input
is an important factor to consider with respect to identifiability. This because the
different input combinations often gave completely different sensitivity plots,
showed by singular values, RSV and Vsum. Also the different preadapted model
types gave different results for the same inputs. This shows that the same ex-
citation scheme cannot be used when trying to estimate parameters for a DM2
subject and a DM1 subject, for example.
kHL was a model parameter which had very high sensitivity for almost all

kinds of input, and it was not dependent on the input or the model type to be
estimated with accuracy.
Si was a parameter with high sensitivity during meals for the DM2 model.

This is good because this is a parameter that is very important for people with
DM2. It is also an important parameter to try to estimate for people who is in
the risk zone of getting DM2 and/or have prediabetes, as it can indicate if one
is getting better or worse in terms of getting DM2.

The estimation techniques did not work very well for more than two pa-
rameters at a time. For three parameters together, very few of the sets were
estimated correctly. For two parameters together, very few of the parameter
sets were estimated inaccurately.

For all three models, an input of only exercise looked like it gave the worst
sensitivity and identifiability. The only time a model parameter set of two pa-
rameter did not get a good estimation result was for kIL and kHL in the DM2
model, and then the input was only exercise. Also the parameter set of only kHL
alone got a bad estimation result with the DS method, only exercise input and
DM2 model.

For the rest of the model input combinations (only meal, meal with insulin,
meal after exercise, exercise after meal), it was not easy to see a pattern for
which inputs were most useful. For the healthy model, both the only meal input
and the exercise after meal input, each gave a good estimation of a parameter
set containing three parameters. For the DM1 model, none of the parameter
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sets with three parameters included could be identified for any input. The DM2
model gave good estimation results for a parameter set of three parameters for
both the input of rapid insulin + meal, and the input of exercise 150 minutes
after a meal.

The two different estimation methods were also compared. The DS algo-
rithm worked much better than NR as a parameter estimation algorithm for
this model. This was especially for the DM1 model, where NR could not get any
good result for any parameter set tested, even though DS could for some.

This study does not provide any results in the form of recommended ex-
citation schemes for parameter estimation or parameter sets that should defi-
nitely be estimated together. These results can be used as a starting point for
an analysis of this model more in-depth than what is done here, with respect to
identifiability.
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8 Suggestions for future work

FIM One could also use FIM and a covariance matrix in the identifiability anal-
ysis to gain a better understanding of which parameters have information
that the others do not and which parameters that correlate.

Real glucose measurement data Try to do parameter estimation against real
measurement data. This might reveal effects in the real human not mod-
elled in the GlucoPred model.

More simulated output measurements The identifiability relies on the differ-
ent outputs of the model, simulating sensor measurements of the real
system. In this study, only the subcutaneous glucose measurements were
assessed when analyzing the identifiability. More measurements together
will give other results.

The insulin sensitivity Si as a parameterized function of time (and possibly
other states) has not been implemented and could have made an impact
one the result for input over more than one day. This parameter is such
an important one that this is a task that one could do in the future.

The meal parameters Parameters describing a meal (meal size in carbohy-
drates [g], glycemic index SlowFact and time of the meal) have not been
part of the analysis, but could have had an impact on it.
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Appendix A

Appendix A.1 Values for preadapted parameter sets

Parameter Unit Healthy DM1 DM2
Kmg mg/dL 120 120 120
α (mg L)/(mU dL min) 0.02 0.02 0.02
kDia pg/mL 0.0 10.0 0.0
kIL mg/min 750.0 750.0 750.0
β mg/(dL min) 1.0 1.0 1.0
Gneo 0.3 0.3 0.3
Rm (mU dL min)/(mg L) 21.0 0.0 21.0
Td min 1000.0 15.0 (30.0)* 10.0
IHalf mU/L 40.0 40.0 40.0
Ri mU/L 118.0 0.0 118.0
Ub mU/min 0.0 0.0 0.0
nh 6.4 6.4 6.4
ni 4.2 4.2 4.2
TY min 6.0 6.0 6.0
I0 mU/L 15.0 15.0 15.0
aP L/mU 0.1 0.1 0.1
MlMx g 100.0 150.0 100.0
HRB beats/min 71.0 71.0 71.0
kabs 1/min 0.05 0.04 0.062
Tmax min 600.0 600.0 600.0
Tds min 1000.0 1000.0 1000.0
Si L/(mU min) 0.2 0.2 0.001
kgb 1/min 0.0012 0.0012 0.0012
kHL (mg/min) / (pg/mL) 3.6 2.0 2.0
kDel 1/min 0.1 0.1 0.1
Eneo mg/min 50.0 50.0 50.0
kgm 1/min 0.4 0.4 0.4
GI mg/dL 150.0 150.0 150.0
GH mg/dL 55.0 55.0 55.0
p2 1/min 0.02 0.02 0.01
f 0.8 0.8 0.8
Uii mg/(dL min) 0.78 0.78 0.78
Vi L 15.7 15.7 15.7
RHbas pg/mL 130.0 130.0 130.0
sComp 2.0 2.0 2.0
n 1/min 0.142 0.142 0.142
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RHmax pg/mL 665.0 665.0 665.0
r 1.1 1.1 1.1
kglg 1/min 0.6 0.6 0.6
Vg** dL 128.0 128.0 128.0
HRM*** beats/min 184.0 184.0 184.0

Preadapted parameter values.

Empty unit means unitless parameter.
* Td had value 15 in the original preadapted set, but was changed to 30 in this
analysis.
** Vg approximated from weight with Vg = 1.6∗w, where weight w = 80kg was
used in this study.
*** HRM approximated from age with HRM = 208− 0.8 ∗ age, where age = 30
was used in this study.
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Appendix A.2 Parameter ranges

Parameter Unit Minimum Maximum
Kmg mg/dL 100 120
α (mg L)/(mU dL min) 0.01 0.1
kDia pg/mL 0.0 27.1
kIL mg/min 300.0 1715.0
β mg/(dL min) 0.2 10.0
Gneo 0.3 0.45
Rm (mU dL min)/(mg L) 0.0 21.0
Td* min 5.0 100.0
IHalf mU/L 25.0 60.0
Ri mU/L 0.0 118.0
Ub mU/min 0.0 0.016424
nh 6.4 8.0
ni 4.19 4.21
TY min 6.0 10.0
I0 mU/L 14.9 15.1
aP L/mU 0.09 0.11
MlMx g 100.0 175.0
HRB beats/min 70.9 71.1
kabs 1/min 0.005 0.15
Tmax min 600.0 1000.0
Tds min 999.9 1000.1
Si L/(mU min) 0.001 0.4
kgb 1/min 0.0 0.0012
kHL (mg/min) / (pg/mL) 1.1 14.2
kDel 1/min 0.09 0.11
Eneo mg/min 49.9 50.1
kgm 1/min 0.39 0.41
GI mg/dL 100.0 154.0
GH mg/dL 10.0 88.0
p2 1/min 0.007 0.08
f 0.11 1.7
Uii mg/(dL min) 0.0 0.78
Vi L 7.92 35
RHbas pg/mL 60.0 130.0
sComp 1.9 2.1
n 1/min 0.1419 0.1421
RHmax pg/mL 200.0 665.0
r 1.09 1.11
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kglg 1/min 0.59 0.61
Vg dL 105.6 467.0
HRM beats/min 140.0 205.0

Parameter ranges.

Empty unit means unitless parameter.
*Td is not relevant for healthy subjects and that is why its value, 1000 min, are
outside the range for healthy subjects.
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