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Abstract

Perioperative monitoring of a patient’s heart during cardiac surgery is vital to ensure that
the heart restores and maintains desired functionality, and transesophageal echocardiogra-
phy (TEE) is widely accepted as a routine monitoring tool for these measures. However,
the assessment of cardiac function from transesophageal echocardiography is currently
performed qualitatively by echocardiographers. Performing the assessment quantitatively
and automatically could potentially lead to more accurate and consistent functional pa-
rameter values, and speed up the monitoring process. Methods using speckle tracking
have tried to do this, but satisfactory results have not been presented. In recent years,
deep learning has been shown to perform with extremely high accuracy in complex tasks
such as image segmentation and classification, also within the field of medical imaging.
By using a convolutional neural network (CNN) with an encoder-decoder architecture,
the feasibility of using deep learning to recognize and track two anatomical landmarks on
images of the left ventricle has been examined in the work presented in this report. The
movement of the two landmarks in a recorded sequence of the heart cycle can be used to
calculate mitral annular plane systolic excursion (MAPSE), an important functional pa-
rameter. The current research task has been formulated as a segmentation problem where
the CNN estimates the location of the two landmarks in raw TEE images. The accuracy of
the output produced by the CNN is not satisfactory to our expectations. The results also
show that the CNN is overfitting on the training data. This is likely due to an insufficient
amount of training data. However, the results are promising when evaluating the output of
the CNN visually. The accuracy of the network can be improved by increasing the amount
of training data. By also incorporating temporal information from the image sequence, the
network might provide more consistent tracking results. The work presented in this re-
port serves mainly as a foundation for the author’s master thesis due this following spring,
which will be a continuation of this project.
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CHAPTER 1
INTRODUCTION

1.1 Background
Echocardiographers at St.Olavs Hospital have identified a need for automatically perform-
ing quantitative perioperative monitoring of cardiac function. Based on this, the research
group The Operating Room of the Future proposed this problem as a research topic for a
master thesis.

1.1.1 Cardiac Monitoring
Before, during and after cardiac surgery the patient’s heart is monitored carefully to ensure
that the heart maintains and restores desired functionality. Today, the monitoring process
involves measuring blood pressure, heart rate, respiratory rate, blood oxygen saturation,
doing hemodynamic monitoring, clinical observation and echocardiographic evaluation
[3]. This is a time consuming and complex process which is currently performed by trained
personnel.

Echocardiography using medical ultrasound is a widely accepted tool for perioper-
ative monitoring during cardiac surgery. Using the acoustic properties of muscular tis-
sue, echocardiography is done by emitting high frequency ultrasound waves from a trans-
ducer (probe) to obtain structural images of the heart. Functional parameters derived from
echocardiography are considered essential to the assessment of cardiac function [1]. Dur-
ing surgery, these parameters are currently determined by visual estimation done by expe-
rienced personnel [19]. This method of assessment is a time consuming, resource heavy,
qualitative measure, which is susceptible to intra-observer variability. Additionally, if the
pre- and postoperative cardiac function differs, time is a crucial aspect for ensuring the
patient’s safety. Performing these assessments quantitatively and automatically could po-
tentially lead to more consistent and correct parameter values, while at the same time
speeding up the process. These improvements will increase patient safety.

1



Chapter 1. Introduction

1.1.2 Automatic Assessment
Methods using speckle tracking have been tested for automatically deriving heart function
parameters. However, transesophageal echocardiograpic (TEE) images and ultrasound
images are inherently noisy, making speckle tracking based methods susceptible to drifting
[20, 6]. This gives inaccurate results, and promotes an urgent need for improved automatic
tracing methods.

In recent years, machine learning, and specifically deep learning methods, have given
valuable results in tasks such as image segmentation, object classification and speech
recognition [12]. Deep learning has also been successfully applied to medical imaging
[14].

1.2 Aim of Study
The aim of this study is to examine the feasibility of automatically recognizing and track-
ing anatomical structures of the left ventricle from TEE using deep learning. If the phys-
ical structures of the left ventricle of the heart can be tracked automatically, this opens up
for the possibility of automatically deriving functional parameters such as strain, annular
plane displacement and tissue velocities. To examine this, a convolutional neural network
will be trained to recognize two points on the left ventricle, one point on each side of the
left atrioventricular valve. These two points are the basis of automatic derivation of the
annular plane displacement, or mitral annular plane systolic excursion (MAPSE), which
means that if these points can be tracked, MAPSE values can be derived automatically.

Additionally, the work presented in this report serves as foundation work for my master
thesis. Intermediate objectives for this project includes getting familiar with the deep
learning framework PYTORCH, process raw ultrasound images and getting familiar with
similar work.

1.3 Structure of Report
This report starts with chapter 1, covering the motivation for the work done this semester
and the aim of the study. In chapter 2, the theoretical concepts needed to understand the
work is explained. This chapter covers heart physiology, basic concepts of ultrasound
technology and deep learning, more specifically convolutional neural networks. Chapter
3 covers the processing and labelling of the data, and the implementation and justification
of the deep learning model used in this study. In chapter 4, the results of the implemented
system is presented, and chapter 5 discusses these results and presents future work. The
report ends with a conclusion in chapter 6.
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CHAPTER 2
THEORY

2.1 The Human Heart
The human heart is a muscular organ responsible for pumping blood through the blood
vessels in the circulatory system. It is located in the thoracic cavity and connects to the
systemic and pulmonary circulation. The systemic circulation transports oxygenated blood
from the heart to the rest of the body and returns blood low in oxygen back to the heart.
The pulmonary circulation transports the deoxygenated blood from the heart to the lungs,
where it is oxygenated and returned to the heart.

Figure 2.1: The human heart.

The heart consists of four chambers, two upper atria and two lower ventricles. The
right and left atria, and the right and left ventricle are separated by the septum. Four

3



Chapter 2. Theory

valves control the blood flow in the heart.
In the first phase of the heart cycle, the left and right ventricles receive blood from the

left and right atria respectively, through the atrioventricular valves. The left atrium is filled
up with blood from the pulmonary vein and the right atrium is filled up from the superior
vena cava. This phase is called the diastole. In the second phase, the atrioventricular
valves are closed, and the heart muscle (myocardium) contracts. The blood is pushed out
from the left and right ventricle through the aortic and the pulmonary valves respectively.
This phase is called the systole.

2.1.1 Cardiac Function
The assessment of cardiac condition and functionality is referred to as cardiac function.
Global cardiac function is a measure of overall heart function. The size of the heart and
pumping ability between end-diastole and end-systole are two measures of the global func-
tion. The displacement of the atrioventricular plane between end-diastole and end-systole
is an example of a global measure. This parameter is known as mitral annular plane
systolic excursion (MAPSE) and provides information about the systolic- and the dias-
tolic function of the heart. Regional cardiac function is typically a measure of contraction
patterns across the myocardium. Myocardinal strain is an example of regional cardiac
function that measures the local deformation in the myocardium.

2.2 Medical Ultrasound Imaging
Ultrasound technology was first used for diagnostic purposes in the early 1950’s, and is
now one of the most widely used medical imaging modalities [2]. Compared to other
imaging modalities, ultrasound is relatively inexpensive, portable and radiation free.

Modern medical ultrasound is performed by transmitting focused, high frequency sound
waves from the transducer and reading the reflected waves, called the echo. The transmit-
ted sound waves propagate through the human body and get partly absorbed, scattered and
reflected when traveling through mediums of different acoustic property, such as muscle
tissue, fat, bone and blood. The emitted waves are longitudinal and have a frequency in
the range of 1 to 20 MHz. Increasing the wave frequency results in higher resolution, how-
ever it shortens the depth of penetration. Decreasing the frequency provides images with
more depth, but with lower resolution. Using ultrasound to visualize cardiac structures is
referred to as echocardiography.

2.2.1 Transesophageal Echocardiography
The most widely used tool for monitoring and assessing heart function is echocardiog-
raphy. The two methods used for echocardiography are transthoracic echocardiography
(TTE) and transesophageal echocardiography (TEE). TTE is done by placing the ultra-
sound probe on the exterior of the patient’s chest. TEE is done by inserting the ultrasound
probe into the patient’s esophagus to obtain images from within the patient’s body, closer
to the heart. This method provides higher spatial resolution compared with TTE, due to
the close proximity between the transducer and the heart. Another benefit of TEE is the
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2.3 Deep Learning

possibility of having the probe located within the patient’s body while performing heart
surgery. This is not possible using TTE, as the probe is then placed on the outside of the
chest. The high resolution images obtained and the internal placement of the probe are
two of the reasons why TEE is widely accepted as a routine tool during cardiac surgery to
assess the placement of surgical tools and implants. TEE can also be a useful monitoring
tool to detect changes in the anatomy and function of the heart, because the probe is inside
the patient’s esophagus during the entire procedure [15].

2.3 Deep Learning
Deep learning is a broad family of machine learning methods utilizing deep neural net-
works to learn data representation. Deep neural networks can do both unsupervised and
supervised learning. In recent years, deep learning methods have shown to be effective
solving complex tasks where classical machine learning methods fall short. The ability to
learn representations in raw data with multiple abstraction levels is what separates deep
learning methods from classical machine learning methods [12].

A standard neural network consists of a number of processing units, called neurons,
ordered in layers. If every neuron in every layer is connected to every neuron in the
previous and the next layer, the network is fully connected. Layers between the input and
the output layer are called hidden layers. The input data is passed through the network and
transformed by the neurons. At the output layer, the output from the network is compared
to a reference, and the neuron parameters are adjusted to minimize the error between the
output and the reference. The reference, also referred to as ground truth, can for instance
be the correct classification of the input data, if the task performed by the network is
classification. Having reference labels for the input data is what separates supervised
learning from unsupervised learning. The universal approximator theorem states that a
neural network with more than one layer and non-linear neuron activation can emulate any
computable function [8]. The term deep learning refers to the act of teaching deep neural
networks the complex features of a set of input data. The number of hidden layers in a
neural network is the depth of the network.

There are many different types of neural networks. Standard fully connected neural
networks perform well in classification tasks where the input consists of features of the
different classes. Recurrent neural networks (RNN) perform well in tasks where the data
contains temporal information, such as in natural language processing and speech recogni-
tion. Convolutional neural networks (CNN) perform well in tasks where the data contains
spatial patterns, such as in image classification and image segmentation. The rest of this
chapter will be focused on supervised learning with CNNs, as the current task is recogniz-
ing anatomical landmarks on the left ventricle by a CNN.

2.3.1 Convolutional Neural Networks
Convolutional neural networks are neural networks with a specialized architecture for pro-
cessing data with a grid-like structure, such as images or time-series data [5]. These mod-
els are composed of a number of convolutional layers, which transform the input data into
an output, while simultaneously learning increasingly abstract spatial features of the data.
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Chapter 2. Theory

The spatial feature learning in a CNN is inspired by how the mammalian brain does visual
visual recognition, specifically in the primary visual cortex, or the V1 [5]. This is the first
stage of visual processing where complex processing is performed. A convolutional layer
is constructed to emulate three properties of the V1:

• The V1 is structured as a two-dimensional spatial map, where light arriving a certain
location in the retina only affects a corresponding area of the V1. Similarly, the
input to a convolutional layer is transformed to a feature map where the spatial
relationships between the neurons are kept intact, in a two-dimensional structure.

• The V1 has simple cells with activity that can be described as applying a linear func-
tion on a small area on the input image. In a convolutional layer, this is facilitated
by performing convolution on the input image.

• The V1 has complex cells which is similar to the simple cells. However, they are
invariant to small changes in position. This inspires an operation called pooling in a
convolutional layer

CNNs have been researched since the late eighties, and the first successful real-world
application was used to recognize hand-written digits [13]. The breakthrough for deep
learning, however, came in 2012 where the deep CNN AlexNet outperformed every other
image classification system by a large margin [? ]. More recently, this architecture has
proven very accurate in tasks such as image classification and segmentation. The rest of
this chapter will assume that the input data for the CNN is two-dimensional image data.

Convolutional Layers

A convolutional layer typically consists of three operations: convolution, non-linear ac-
tivation and pooling.

The first operation, convolution, is a mathematical operation of two real-valued func-
tions. In the context of a CNN, the mathematical expression is given by:

xli,j =
∑
m

∑
n

wl
m,no

l−1
i+m,j+n (2.1)

wl
m,n is the weight at position [m,n] at layer l where wl is a two dimensional k1 × k2

vector. The weight vector wl is often referred to as a kernel or a filter. ol−1i+m,j+n is the
output from layer l− 1 at position [i+m, j + n]. If l is the first layer in the network, then
the vector ol−1 is the input image and ol−1i,j corresponds to the pixel value at position [i, j].
The values from the previous output layer involved in a convolution, the leftmost gray
area in figure 2.2, is referred to as a local receptive field. By summing over the product
of the kernel and the local receptive field, we obtain xli,j . By applying the kernel to the
whole image in a sliding window fashion, we perform a convolution. The vector xl is
often referred to as feature map and contains extracted spatial features. Figure 2.2 shows
the convolution operation.
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2.3 Deep Learning

Figure 2.2: Convolution.

Non-linear activation is performed on the feature map to introduce non-linearity in
the CNN. The non-linear activation is needed for the network to be able to learn non-linear
patterns in the data [8]. The general expression for the activation function is given by:

ali,j = f(xli,j) (2.2)

Many different activation functions exists, but the most used is the Rectified linear unit
function, which is given by:

f(x) = max(0, x) (2.3)

where x is a pixel value in the feature map. The ReLU function is said to be ”the
single most important factor in improving the performance of a recognition system” and
it has shown to make learning more feasible when compared to networks with activation
functions where both sides are saturated [9, 4]. ReLU is also computationally efficient,
speeding up the training process. The ReLU operation is shown in figure 2.3.

Figure 2.3: ReLU activation.
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Chapter 2. Theory

Pooling is done to simplify the feature map. The most used pooling function is called
max pooling. Max pooling selects the highest value in a sliding m × m window of the
output from the non-linear activation map, and creates a condensed feature map with only
the highest values of the i × j activation map. The output from this operation, ol, is the
output from layer l. Max pooing with a 2× 2 grid is shown in figure 2.4.

Figure 2.4: Max pooling with 2× 2 grid.

As seen in figures 2.2 - 2.4, a typical convolutional layer will perform downsampling
of the input image. The learning phase will in turn make the layer able to extract the most
important information. When constructing a convolutional layer, one must specify the
output size of the layer. The output size corresponds to how many feature maps the layer
produces and states how many learnable kernels the convolutional layer has.

Figure 2.5: ResNet’s skip connections.

In the past five years, configurations
have been made to the convolutional layers
to gain better results with CNNs. A well
known and appreciated configuration is the
introduction of shortcut connections in a
network, called ResNet. The shortcut con-
nections are shown in figure 2.5. ResNets
shortcut connections makes it possible to
stack more convolutional layers consecu-
tively. This in turn increases the com-
plexity, while still increasing classifica-
tion accuracy. ResNet-152 (152 convo-
lutional layers) beats the human perfor-
mance in image classification of the Im-
ageNet dataset, which is a dataset com-

prised of more than 14 million labeled images of 1000 different classes [7, 18].
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2.3 Deep Learning

Training a Convolutional Neural Network

In order to obtain useful results with a CNN, the network needs to be trained to extract the
necessary features for the given task. To train a CNN by supervised learning, input data
and reference labels are needed.

The first phase of the training process, and the only phase when doing inference, is
called forward pass. In this phase, image data is passed through the convolutional layers
as described in the section above. The second phase is where the learning happens. When
the data is passed through the whole network, the output is compared to the reference
labels by the loss function.

The loss function, or the criterion, computes the loss, or the error, between the output
and the reference. The loss is the value the network is aiming to minimize. The most
commonly used loss function in deep learning is called cross entropy loss, which is given
as:

Lcrossentropy = − 1

n

∑
x

∑
j

(
yj ln a

L
j + (1− yj) ln(1− aLj )

)
(2.4)

n is the number of training samples, x is a training sample and j is an output neuron
that which corresponds to a class. yj is the reference value at output j and aLj is the
activation of neuron j at the output layer L. Based on this loss, the weights of the network
should be adjusted. The weights that contributes the most to the error should be the most
adjusted. The gradient of the loss function with respect to the weights gives this value,
∂L
∂w . The expression for the gradient of the loss function w.r.t. every weight in the network
can be found by applying the chain rule:

∂L

∂wl
i,j

=

H−k1∑
i=0

W−k2∑
j=0

∂L

∂xli,j

∂xli,j
∂wl

m′,n′
(2.5)

L is the loss function. wl
m′,n′ is the weight at position [m′, n′] in layer l with size

k1 × k2. xli,j is the pixel value in feature map x at position [i, j] in layer l. The last term,
the gradient of xli,j w.r.t wl

m′,n′ , can be thought of as how the feature layer xl is affected
when weights in wl are changed. This is equal to the output from the previous layer,
ol−1i+m′,j+n′ . The first term after the summation, the gradient of the loss function w.r.t. the
feature map xl, can be thought of as the way in which the loss function is affected when
pixel values in xl are changed. These gradients are referred to as deltas. The gradient of
the loss function w.r.t. the weights can be written as:

∂L

∂wl
i,j

=

H−k1∑
i=0

W−k2∑
j=0

δli,jo
l−1
i+m′,j+n′ (2.6)

In a CNN the gradients are computed using an algorithm called backpropagation.
By applying backpropagation, information produced by the loss function propagate back-
wards through the network in order to compute the gradients.

When the gradient of the loss function w.r.t. every weight in the network has been
found by backpropagation, the weights need to be adjusted according to how much they
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Chapter 2. Theory

contribute to the loss. This is done by optimization methods, and the most common
method is called stochastic gradient descent (SGD). SGD applies an update rule for the
weights given by:

wl
i,j ← wl

i,j − η
∂E

∂wl
i,j

(2.7)

where η is the learning rate. The reason for the term stochastic is because SGD intro-
duces a source of noise, the random sampling of n training examples. Another optimizer
commonly used in deep learning is called the Adam optimizer. The name Adam is derived
from adaptive moment estimation. The difference between SGD and Adam is that while
SGD has one learning rate for the whole training process, Adam gives each parameter in
the network an adaptive learning rate. The Adam optimizer has been shown to outperform
other optimization methods in terms of rate of convergence [11].

When training a CNN and neural networks in general, the most common method is to
divide the training data into minibatches. When using minibatches for training, n number
of images are randomly chosen for a minibatch. Every image in the minibatch completes
forward pass, and their individual losses are computed. The final minibatch loss is the
average of these computed individual losses. Backpropagation computes the gradients
for the minibatch loss and the weights are updated with 2.7. The loss computed on the
minibatch serves as an estimate of the total loss on the training data. A large minibatch
size will typically give a more correct estimate of the total training loss. However, it has
been shown that smaller minibatch sizes often perform better because the network avoids
sharp local minimizers [10].

An important aspect of finding a good model is to measure how well it generalizes
to new data that it has not been trained on previously. Neural networks can be trained
too much, which results in a model that is specialized on the training data and fails to
generalize to new data. To measure how well the CNN generalizes, the dataset is divided
into a training set and a validation set. For every time the training data has been passed
through the network and the weights have been updated, the validation data is fed to the
network for evaluation of accuracy. For this evaluation to be valuable, the weights cannot
be updated based on the validation loss. One iteration through the training and validation
data is referred to as one epoch. The accuracy on the validation data should increase as
the loss on the training data decreases. At some point the validation accuracy will start
to decrease despite the training accuracy continuing to increase. This is called overfitting,
and it happens when the network is becoming too specialized on the training data. The
optimal point for stopping the training is when the validation accuracy is the highest.

All the parameters set before starting to train are called hyperparameters. These in-
clude the learning rate of the optimizer, the number of images in a minibatch etc.

2.3.2 Image Segmentation

The process of estimating a class for every pixel in an image is called image segmenta-
tion. Different models utilizing deep learning has provided promising results in this task,
and segmentation for medical imaging by deep learning has consequently been heavily
researched [12, 14].
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2.3 Deep Learning

A network architecture widely used in image segmentation tasks is the decoder-encoder
architecture. The encoder part of the network uses standard convolutional layers described
in the section above. The decoder part of the network can be implemented by an operation
called transpose convolution. This operation reverts the spatial resolution by applying a
learnable filter.

Within the field of medical image analysis, image segmentation is the most frequent
subject of research applying deep learning [14]. The most well known architecture for
deep learning applied to medical imaging is the U-Net CNN. This architecture has equal
amounts of up-sampling layers and down-sampling layers, and it introduced skip connec-
tions where opposing convolutional layers are concatenated with transpose convolutional
layers[17]. This makes the network able to directly produce segmentation masks from the
given input, and the network can be trained end-to-end, with standard backpropagation
and optimization.

The output from a network performing segmentation is a number of segmentation
masks which corresponds to the number of classes that are being segmented from the input
image, one mask per class. These masks can be described as probability maps, where the
pixel values are the probability of the class being present is this area. A common metric
used to determine the accuracy of the estimated segmentation is called the Dice coefficient.
This is a metric that is measuring the overlap between the reference segmentation and the
estimated segmentation, and it is used to determine the accuracy on the validation data to
keep track of how well the network is learning. The Dice coefficient is given by:

DSC =
2TP

2TP + FP + FN
(2.8)
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CHAPTER 3
MATERIAL AND METHOD

The task of recognizing and learning structures of the left ventricle using deep learning
was formulated as a segmentation problem. Two anatomical landmarks in TEE images
of the left ventricle were then chosen as the two points that the CNN would learn to find.
These two points are located on each side of the mitral valve and can be used to derive
MAPSE.

3.1 Material
The dataset utilized for this project contains approximately 4000 TEE images. The images
are collected from five patients which all underwent coronary artery bypass surgery. There
are recordings of the left ventricle from three different views, and in every patients’ data
except one there are recordings from both before and after surgery. The three views cap-
tured are 4 chamber, 2 chamber, and long axis views of the heart. The ultrasound scanners
used were Vivid S70 and Vivid E9 from GE Vingmed in Horten. A 3D TEE probe 6VT-D
was used to acquire the images. These images are recorded over 3 to 5 heart cycles. All of
the recordings and the use of the recorded datasets is done with both patient consent and
approval from the ethics committee at St. Olavs University Hospital. The recordings were
not subjected to any form of selection process.
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Chapter 3. Material and Method

(a) 4 chamber view. (b) 2 chamber view. (c) Long axis view.

Figure 3.1: TEE images from three different views.

3.2 Method

3.2.1 Data Labelling
For the deep learning method to work, the TEE images had to be labeled. For this, a MAT-
LAB script with a simple user interface was made. This script loads an image series from
h5 format, displays the first image, and lets the user click somewhere in the image to select
the desired point of reference. This point is saved as a binary segmentation mask where n
pixels around the point are set to 1 while the rest of the pixels are set to 0. When the user
has clicked and selected two points, the next image is shown. To get some consistency
between two following images, the segmentation mask of the previous image is laid on
top of the new image. After every image in the image series was labeled, the ground truth
segmentation masks and the images were saved as image files. The reason n pixels around
the selected point in the image was set to 1 was due to clutter, making the exact locations
hard to pin down in every image. For this reason, the segmentation masks were referred to
as reference masks and not ground truth. Another reason for setting a larger area to 1 was
to provide the CNN with a better spatial understanding of the surrounding elements of the
point. The final segmentation masks had a radius n = 8 pixels.

3.2.2 Network Architecture
The inspiration behind the implemented CNN architecture was a project called DeepLab-
Cut [16]. DeepLabCut implemented a CNN for tracking points on animals and insects, and
their implementation was greatly successful. Based on the DeepLabCut project, ResNet-
50 was chosen as this projects encoder network. Unfortunately, DeepLabCut does not de-
scribe their method of upsampling the features from the encoder. For the current project,
the decoder was therefore chosen to utilize the same architecture as U-Net. The resulting
architecture looked like this:
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3.2 Method

Figure 3.2: Network architecture.

3.2.3 Implementation

The framework used to implement, train and evaluate the model was PYTORCH. Pytorch
is an open source Python library that offers GPU accelerated tensor computation and deep
learning functionality. First, the network architecture was built. The ResNet-50 model was
available for download with weights pretrained on image-net. Next, the ResNet model had
to be somewhat modified. ResNet’s input layer is built for RGB-images, and it therefore
contains three channels. The input layer had to be changed to receive only one channel,
due to the TEE images being grayscale. Secondly, because the model was not going to be
used for image classification, but segmentation, the final and fully connected layer had to
be removed. Each block of the decoder was constructed with one transposed convolution
layer and one convolutional layer. After the transposed convolution, the output from the
corresponding ResNet block was concatenated with the output from the transposed convo-
lution. The concatenated outputs were then fed to the convolutional layer, which gave the
output from the block. This output was fed to the transposed convolution layer of the next
block. The output of the network produced three segmentation masks, one for each point
on the two sides of the mitral valve, and one for the background.

The data loader module was made to automatically feed the network batches of im-
ages and their corresponding ground truth masks. Data augmentation was included. The
images were originally 240× 240, while ResNet input is 224× 244. The images and their
corresponding segmentation masks were first randomly cropped to 224× 224. To emulate
varying rotation in the TEE images they were rotated randomly ±5 degrees before being
fed to the network.

The final step was to configure the training regime. The number of epochs was set
to 200, and for every epoch the validation set was used to determine the accuracy of the
network. The accuracy metric chosen was the Dice similarity coefficient, described in
section 2.3.2, at thresholds 0.5 and 0.75. For every tenth epoch the weights of the network
were saved. The selected loss function was the cross entropy loss and the optimizer was
chosen be the Adam optimizer.

After the implementation, the model was trained on a remote GPU cluster provided by
FLOYDHUB.COM. The dataset was divided into a training set and a validation set and up-
loaded anonymized. To keep the validation and training data as different as possible, every
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Chapter 3. Material and Method

sequence displaying a view was taken from different patients. The validation sequences
were chosen randomly. The GPU was an Nvidia Tesla K80 with 12 GB memory and 64
GB RAM.

3.2.4 Post Processing of Network Output
The output from the CNN was the estimated probability masks of the location of the two
points. To visually evaluate the estimated points, a threshold of 0.5 was applied to the
probability maps to obtain the binary segmentation masks. To obtain the final coordinate
of the estimated points, the centroid of the estimated area, (pixel value 1) was calculated.
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CHAPTER 4
RESULTS

4.1 Data Preparation
The MATLAB script made for loading, displaying, labelling and converting the TEE im-
ages produced reference segmentation masks, which are required for the deep learning
model. These segmentation masks were quality controlled by FOR researcher, Gabriel
Kiss. In many of the images, the location of the AV points were easily detectable. Several
images had clutter, both from reverberation and shadowing. Figure 4.1 shows an exam-
ple image and the corresponding reference segmentation masks. Figure 4.2 shows the
reference masks on top of the TEE image.

(a) The TEE image (b) Left segmentation mask (c) Right segmentation mask

Figure 4.1: TEE image with reference segmentation masks

17
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Figure 4.2: Image with segmentation masks on top.

4.2 Deep Learning
The results of training the implemented CNN can be seen in figures 4.3 - 4.5. Here, the
accuracy is plotted against the number of epochs trained.

With a threshold of 0.5, the Dice coefficient of the training data increases rapidly
during the first 5 epochs, before it slows down and becomes stationary for a few epochs
with an accuracy value of approximately 0.75. Then, after approximately 70 epochs, the
accuracy again starts to increase. The validation accuracy increases for less than 20 epochs,
reaching a peak of 0.4 after 15 epochs. After 30 epochs it appears to decline. After 80
epochs, the accuracy stabilizes at just over 0.3.

The plot in figure 4.4, where threshold is 0.75, shows that the increase in training accu-
racy grows more slowly compared with the plot above. After near 80 epochs, the training
set accuracy stabilizes at just below 0.8. The validation accuracy grows steadily for ap-
proximately 60 epochs, before settling around 0.3, with a peak after 69 epochs at 0.34.
The difference between these validation accuracies decreases as the number of epochs
increases.

Figure 4.5 shows the loss value plotted against number of epochs for the training and
validation data. The loss on the training data is continually decreasing. The loss on the
validation data is seen decreasing during the first 4 epochs, before steadily increasing.
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4.2 Deep Learning

Figure 4.3: Training and validation accuracy with threshold 0.5.

Figure 4.4: Training and validation accuracy with threshold 0.75.

Figure 4.5: Training and validation loss.
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Chapter 4. Results

4.3 Visual Inspection
Figure 4.6 shows TEE images with the estimated AV points in marked red. The network
has not been trained on these images.

(a) (b)

(c) (d)

Figure 4.6: Estimated points with four different results.

Figure 4.6a shows a clear 2 chamber view image. Both points are estimated within
the correct area. Figure 4.6b shows an image with reverberation clutter on the right side.
Both points has been correctly and satisfactory estimated. Figure 4.6c shows the left point
correctly estimated, and figure 4.6d shows an image with reverberation clutter one the left
side and the right point correctly estimated.
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4.4 Use Case

4.4 Use Case
Figure 4.7 shows the two AV points of an image series in the validation set. The first plot
shows the left point, with estimated location in blue and reference location in orange. In
one of the frames the model could not find an estimate, however the distances between
the remaining estimated and reference points have an average of 1.51 pixels. The second
plot shows the right point estimated location and reference location. Here, four frames
are missing. Further, the distances between the estimated points and reference points are
larger, with an average of 3.43 pixels.

Figure 4.7: Y-coordinate of the estimated points and reference points for every frame in a sequence.
The left point in the top plot and the right point in the bottom plot.
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CHAPTER 5
DISCUSSION

5.1 Data Preparation
The script used for image labelling produced solid reference segmentation mask for the
CNN. The number of pixels near the chosen points were set to 1 with a radius r = 8
pixels. This number was set prior to the labelling, and solely the masks produced with
this radius were used for the training. Increasing this number might improve the network’s
ability to recognize the area surrounding the selected point, as the area would be more
distinct compared with the rest of the image. However, the estimated coordinates might
then show a higher variance, because the area the two points could be located in would be
expanded. On the other side, decreasing this number might make it more challenging to
locate the correct area because similar patterned areas could be present several places in
the image.

5.2 Deep Learning Model
There is no obvious best approach to solving the problem of recognizing landmarks on
TEE images of the left ventricle. Deep learning might also not be the best method of doing
so. However, seen as more simple methods such as speckle tracking have not produced
satisfactory results in this application, and that great advancements have been made in the
field of medical imaging with deep learning during the recent years, it is expected that
deep learning methods could be suitable and advantageous for a complex task such as this
one.

Due to the time constraint of this project, only one model was implemented. The
network was created based on a similar project, tracking specific points on animals and
insects in grayscale images. The project model was based on the encoder-decoder ar-
chitecture, with convolutional and transpose convolutional layers. With data being TEE
images, ResNet-50 is a good choice for feature extraction. Firstly, ResNet-50 is one of the
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Chapter 5. Discussion

CNNs with the highest accuracy in the task of image classification, which means that it
is outstanding at extracting spatial features from images. Secondly, it can be downloaded
with pretrained weights, and it can be trained for any visual recognition purpose. Using
ResNet as the encoder makes the network able to understand the spatial structures in the
TEE images. The decoder was based on the architecture of U-Net. When using trans-
pose convolutional layers in the decoder, the CNN learns how to use the spatial features
extracted by the encoder to recognize the areas where the points could be and generate a
full sized output map. By copying and concatenating the outputs from the convolutional
blocks in the encoder, features from different abstraction layers are utilized to produce the
output.

Deep learning methods require a large amount of data to produce satisfactory results.
Based on the results presented in section 4.2, it can be seen that the model is overfitting.
This can be seen from the accuracy plots with threshold 0.5, figure 4.3. The validation ac-
curacy increases for a few epochs, and then starts to decrease, while the training accuracy
continues to increase. The large gap between the validation accuracies and the training
accuracies is another an indication that the CNN is overfitting. The third and most definite
indication that the model is overfitting is that the loss on the valuation data does not de-
crease while the loss on the training data continues to decrease, as seen in figure 4.5. The
model is specializing on the images from the training dataset, and does not generalize well
to new data.

There are several factors that might have caused this model to overfit. The most ob-
vious explanation is the small amount of unique training data. The dataset used in this
experiment contains almost 4000 TEE images. However, every image sequence contains
images which are all very similar. In addition, there are only three different views recorded
for every patient, making it only three truly unique sequences per patient. As the popula-
tion consists of five patients, this amounts to only 15 truly unique image series in total. For
this reason, the most effective way to avoid overfitting would be to increase the amount of
training data.

The images fed to the network were randomly shuffled, and the estimation of the image
points were conducted in a one shot manner, with only spatial information. Images from
TEE, however, are from recorded sequences displaying the heart as it contracts and relaxes,
often over multiple cycles. An alternative approach for estimating the location of the two
points could be to utilize the temporal information in the image sequences. As the heart
contracts, the two points normally move downwards in the y-direction, and upwards when
the heart relaxes. The motion of these two points is periodic, and a model estimating the
points based on both spatial information and temporal information could possibly lead to
better performance.

5.3 Visual Inspection and Use Case
From a visual inspection of the output from the network, figure 4.6, the estimated points
are accurately located in the correct areas when they are found. Figure 4.6a shows a
clear image with both points marked in the correct area. Correspondingly accurate results
should be expected from a system performing tracking in a real world setting. Figure
4.6b shows both estimated points in an image containing some reverberation noise. The
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5.4 Future Work

network should be robust to clutter, as clutter is often present in TEE images. Figure 4.6c
however, shows a clear image where the right point is missing. A model performing this
task should have no problem locating the right point in this image. Figure 4.6d, shows the
right point in the correct location but no left point. Reverberation clutter can also be seen
in the left area, and this is likely the reason why the left point is missing.

By inspection of the plots in figure 4.7 and the average distance from the reference for
both points, it is clear that the network recognizes the point on the left side of the mitral
valve more often, and with higher accuracy, compared with the right point. The error
between the estimate and the reference is impressively small for the left point. For the
right point, the error is larger, but for most of the points, the tracking is adequate. Upon
further inspection, it should also be mentioned that the image series used for these results
contains images from 2 chamber view without much clutter. The results from this image
series might therefore be better than the average. However, since these points are to be
used for MAPSE estimation, outliers in the y-direction will provide false and misleading
values and must be avoided.

5.4 Future Work
Based on the results from the training of the network, it became clear that the amount
of training data is not sufficient. The most important next step for further work should
therefore be to acquire more training data.

Another important improvement would be to implement and test different models and
architectures. Using models that utilize both the spatial and temporal information available
in the data should lead to improved estimation accuracy. This can be done by adding RNN
layers or perform convolution in the time domain by inputting a sequence of images.

Future work should also aim at finding accuracy metrics better fitted for this applica-
tion. For example, this could be the distance between estimated points and the reference
mask centroid, or the presence of estimated points in a defined radius from the reference
mask centroid. This system should eventually be able to estimate global and regional
cardiac function parameters. An important and necessary module to add is a module cal-
culating function parameters based on the estimated point coordinates for the images in a
sequence.

A separate test data set would be valuable and useful in future work. Having a test data
set is important when evaluating more models for good comparison. The test set would
benefit the evaluation and comparison of different implemented models. This dataset
should ideally consist of new data from several patients, to emulate the performance of
the trained system in a real world setting.

Finally, the work presented in this report serves mainly as foundation work for the
author’s future master project. After familiarizing with the deep learning framework PY-
TORCH by building and training a CNN for the task presented, and having made the data
processing script, future work will focus predominantly on implementing and testing dif-
ferent network architectures and configurations, with more data.
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CHAPTER 6
CONCLUSION

By using a CNN with an encoder-decoder architecture, the feasibility of using deep learn-
ing to recognize points has been examined. The research task has been formulated as
a segmentation problem. Reference segmentation masks have been made for the whole
dataset. The implemented and tested model in this project is based on DeepLabCut and
U-Net.

The results from training and evaluating the validation data show that the model de-
scribed in this report does not produce satisfactory results. The accuracy of the validation
data does not continue to improve after just a few epochs, and after running a few more
epochs it decreases. The accuracy of the training data first stabilizes after an initial in-
crease, before starting to improve further, indicating that the model is overfitting. This
is likely a result of a limited amount of training images. The network architecture itself
might not be optimal, as it uses solely spatial information when estimating the location of
the two AV points. However, by visual inspection the estimated points show promising
results. The work presented in this report serve mainly as foundation for further work,
which will be focused on acquiring more data, and implementation and testing of differ-
ent architectures incorporating temporal information. This report presents work that has
provided promising results and valuable insight into the task of performing quantitative
monitoring with deep learning. The author of this report cannot wait to continue with the
project after a short Christmas vacation.
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