
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Torjus Klafstad

An Approximation to Model Predictive
Control with a Modest Online
Computational Demand

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Morten Hovd

June 2019

Torjus Klafstad

An Approximation to Model Predictive
Control with a Modest Online
Computational Demand

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Morten Hovd
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Sammendrag

Modellprediktiv regulering (MPC) er en industriledende form for regulatordesign viden
brukt i samtidsapplikasjoner. Det høye beregningskravet assosiert med online optimaliser-
ing begrenser derimot antallet systemapplikasjoner hvor MPC kan bli anvendt. Eksplisitt
MPC løser MPC-optimaliseringen offline, og lagrer denne løsningen som stykkvis affine
funksjoner. Når størrelsen på problemet blir større vil dette føre til enorme krav på la-
gringskapasitet, noe som motvirker hensikten med en billigere løsning. Andre metoder
som approksimerer oppførselen til MPC er dermed av stor interesse innenfor forskning.

En lovende metode som approksimerer MPC basert på Controlled Contractive Sets er
presentert i [1]. Metoden utnytter høyere grads Lyapunov-funksjoner for å finne kon-
traktive sett med større volum. Metoden gir bedre resultater enn tidligere implemen-
tasjoner av Controlled Contractive Sets, men problemformuleringen som ble presentert
hadde mangler. KKT-betingelsene ble brukt til å formulere optimaliseringsproblemet, men
betingelsene gitt var ikke tilstrekkelige, kun nødvendige. Kontraksjonsbegrensningen på
Lyapunovfunksjonen må være konveks for at KKT-betingelsene skal være tilstrekkelige,
så dette må legges til i problemformuleringen. Formuleringen burde også utvides til å ta
hensyn til ulineær dynamikk, da dette øker anvendeligheten til metoden.
Den tilgjengelige programvareimplementasjonen produserte nye kontraktive sett som brøt
tilstandsbegrensningene. Dette begrenser anvendeligheten til metoden betydelig, så en løs-
ning på dette problemet må også bli funnet.

Konveksiteten til Lyapunovfunksjonen blir bygd inn i problemformuleringen som en ny
begrensning. En funksjon er konveks hvis den Hessiske matrisen assosiert med funksjo-
nen er positiv semidefinitt. Denne begrensningen blir lagt til i problemformuleringen.
Bruddene på tilstandsbegrensningene er vanskeligere å løse. Opphavet til problemet blir
forsøkt funnet, dessverre med ubetydelige resultater. Gjennom eksplisitte begrensninger
på det kontraktive settet og en økning på det tillatte pådraget, blir et konvekst, kontrollert,
kontraktivt sett, som er innenfor tilstandsbegrensningene, funnet.

Den ufullstendige problemformuleringen i [1] blir vist til å produsere ikke-konvekse nivåsett,
som impliserer at avstanden fra optimum ikke er garantert. Problemet blir rettet opp
når konveksitetsbegrensningen blir lagt til. Metoden produserer nå verifiserbart konvekse
nivåsett som garanterer avstanden til optimalitet. Opphavet til problemene med brudd på
tilstandsbegrensningene blir ikke funnet, et prioriteringspunkt for videre forskning. En
økning på tillatt pådrag, og eksplisitte begrensninger på formen til nivåsettet fører til et
kontrollert kontraktivt sett innenfor tilstandsbegrensningene. Dette er presentert som et
resultat, selv om det kommer på bekostning av en endring i systembeskrivelsen.

i

ii

Abstract

Model Predictive Control (MPC) is an industry-leading control scheme widely used in
present day applications. The computational demands of online optimization, however,
limits the number of systems where the control scheme can be applied. Explicit MPC
solves the optimization problem offline, and stores the solution as piece-wise affine func-
tions. An increase in the problem size eventually leads to an enormous storage demand,
which directly opposes the intent of a cheaper more applicable solution. Hence other
methods for of approximating MPC are still thoroughly researched.

A promising method of MPC approximation based Controlled Contractive Sets is pre-
sented in [1]. The method revolves around the use of higher degree Lyapunov functions
in the design of the contractive sets. Although the method produced qualitatively better
results than previous implementations of controlled contractive sets, the problem formu-
lation presented was incomplete. The KKT conditions presented were not sufficient for
optimality. The contraction constraint was not specified to be convex, so this needs to
be added to the problem formulation. The formulation should be extended to include the
dynamics of nonlinear systems as well to allow for broader applications of the method.

The software implementation supplied produced contractive sets that violated the state
constraints. This is problematic as it limits the applicability of the method, so this problem
had to be fixed as well.
First, the convexity of the Lyapunov function is guaranteed by including a new constraint
in the problem formulation. For a polynomial to be convex, the associated Hessian matrix
(matrix of second derivatives) must be positive semi-definite. This constraint is added to
the problem formulation.
The state constraint violations are more difficult to solve. An attempt is made to discern
the origin of the problems, sadly with little success. Through explicit limitations imposed
on the contractive set and an increase in the allowed input, a convex, controlled contractive
set within the state constraints is found.

The incomplete formulation of [1] is shown to be able to produce non-convex level sets,
which implies that the distance from the optimum is not guaranteed. Adding the convex-
ity constraint corrects the issue. The method now produces verifiably convex level sets,
guaranteeing the distance to the optimum. The root of the problem of the state constraint
violations is not found, and should be prioritized in further research. Still, a controlled
contractive set within the state constraints is found and presented.

iii

iv

Preface

This thesis is written as a part of the requirements for the degree of Master of Science
in Cybernetics and Robotics from the Norwegian University of Science and Technology,
Trondheim, Norway. The work presented was produced during the spring of 2019 and
submitted in June of the same year.

This thesis is a continuation of the method developed in [1], which is an approximation to
Model Predictive Control based on Sum of Squares programming. The task description:

• Conduct a literary review of the relevant area, as well as the YALMIP-software for
posing and solving SoS-problems.

• Verify the examples of [1], and examine the effect of demanding of the contractive
function(that guarantees stability) to be convex.

• Expand the methodology to include input affine rational nonlinear dynamics.

• If there is time remaining, develop an approximately minimum time MPC based on
corresponding techniques.

The software implementation of the methodology in [1] I was supplied was unfortunately
disorganized and poorly documented. As a consequence, I didn’t discover that the code
version I was working on did not coincide with the published problem formulation. This
severely halted my progress, until a more recent software version was discovered a few
weeks before the deadline. This version did not, however, produce results anywhere close
to the results presented in [1], and I spent the last weeks trying to get the code to work.
This work gave many interesting insights and results, but also caused me to be unable to
complete the last two points of the task. The results I have found are presented in the
thesis.

The software used for this project is commercially available: YALMIP[2], an optimization
toolbox, and MOSEK[3], a Semi-definite Program solver. Both are used in the MATLAB
coding environment.

I would like to extend my deepest thanks to my supervisor, prof. Morten Hovd, for tire-
lessly helping and guiding me, especially during the final few weeks.
Thanks to my family for proofreading and the constructive feedback on my convoluted
way of expressing myself.
Thank you to the people of G242-243, the Cubic Army of Four Days, OV, and my fireteam.
Last of all, thank you Victoria, for pushing me to always do my best. Your support is
greatly appreciated.

Torjus Klafstad Oslo, June 25, 2019

v

vi

Contents

Sammendrag i

Abstract iii

Preface v

Table of Contents viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 1

1.2.1 Model Predictive Control . 1
1.2.2 Drawbacks . 2
1.2.3 Explicit MPC . 2
1.2.4 Approximating MPC with Controlled Contractive Sets 2

1.3 Thesis Overview . 3

2 Fundamental Theory 5
2.1 Optimization And KKT-conditions . 5
2.2 Sum of Squares Programming . 7

2.2.1 S-procedure . 8
2.2.2 Solving SOS Programs . 8

2.3 Lyapunov Control . 9
2.3.1 Continuous Systems . 9
2.3.2 Discrete-time Systems . 10

3 An Overview of the Procedure and Methodology of Munir et.al.(2018) 11
3.1 Contractive sets . 11
3.2 Ellipsoidal Contractive Sets . 12

vii

3.3 Controller Design for Higher Order Lyapunov Functions 14
3.3.1 Approximating the Optimal Solution 14
3.3.2 Problem Reformulation . 16
3.3.3 Solving the SOS Problem . 18

3.4 Problem Solution Algorithm . 18

4 A Discussion on the Solution of Munir et.al.(2018) and Improvements 21
4.1 Placeholder . 21
4.2 Completing the Formulation . 23

5 Methodology 25
5.1 Adding the Convexity of the Lyapunov Function 25
5.2 Deciding the Order of the Polynomials 26
5.3 Choosing a New Point to be Included in the Next Level Set 26

6 Results and Discussion 29
6.1 The System . 29
6.2 Adding the Convexity Constraint . 30

6.2.1 Non-Convex Results . 30
6.2.2 Convex results . 32
6.2.3 Discussion . 32

6.3 Violation of the State Constraints . 33
6.3.1 Hard Constraint on State Violation 33
6.3.2 Alternative Choice of New Point 34
6.3.3 Relaxing the Input Constraint 37
6.3.4 Discussion . 38

6.4 Closing Thoughts . 39

7 Conclusion and Further Work 41
7.1 Conclusion . 41
7.2 Contributions of this Thesis . 42
7.3 Further Work . 42

7.3.1 Solving the State Constraint Violations 42
7.3.2 Update the Algorithm for Finding a New Point 42
7.3.3 Input Affine Rational Nonlinear Dynamics 42

Bibliography 42

viii

List of Figures

4.1 The Lyapunov function found by using the unmodified method of [1] in pink 22

6.1 Non-convex level set from the old formulation, j = 2 30
6.2 Non-convex level set from the old formulation, j = 5 31
6.3 Convex level set from the new formulation, j = 2 32
6.4 New method with hard constraints on state violation 33
6.5 Explicit reproduction of the results in [1] 34
6.6 Shorter increment incr = 0.01 . 35
6.7 The directions in which the Lyapunov function is expanded 36
6.8 Increased input constraint −3 ≤ uk ≤ 3 37
6.9 Increased input constraint −3 ≤ uk ≤ 3, hard constraint on state violation 38

ix

x

Nomenclature

E-MPC Explicit Model Predictive Control

LF Lyapunov Function

LMI Linear Matrix Inequality

PSD Positive Semi-Definite

PWA Piece-Wise Affine

SDP Semi-Definite Program(ming)

SOS Sum of Squares

xi

xii

Chapter 1
Introduction

1.1 Motivation

The motivation for this thesis stems from a desire for easily applicable and available
optimization-based control methods. Today, Model Predictive Control (MPC) is the state
of the art for optimization-based control. Traditional MPC solves an optimization problem
online, which often requires complex online calculations, and is dependent on complicated
code in online implementations. This has reduced the application of MPC to relatively
slow systems, and systems which aren’t safety critical (or are based on stabilizing control
at a lower level). A control method that approximates the behavior of MPC without the
need for online optimization would be good for the diversity of control theory, and would
provide a more cost-effective solution for more applications.
Simplifying the online computations necessarily makes the offline computations more de-
manding. Rapid improvement in both the hardware and software for computation and
optimization, however, diminishes this constraint. Sophisticated solvers for multiple dif-
ficult problems now exist, making it possible to experiment with different approaches for
finding an MPC approximation with low online computational demand.

1.2 Background

1.2.1 Model Predictive Control

MPC[4] has been widely used in oil and processing industry since the 1980s. It is an
optimization-based control structure. The basic principle of MPC is solving the con-
strained input optimization problem at every timestep for a finite time horizon, and ap-
plying the first input value to the system. The invention of MPC was motivated by a need

1

for a sophisticated control method for industry. Specifically, a control scheme capable of
adhering to the multitude of constraints present in industrial systems.

1.2.2 Drawbacks

Solving an optimization problem online obviously limits the areas where an application
of MPC is possible, given the computational demands of optimization. The traditional
implementation of MPC is limited to systems

1. with sufficiently slow dynamics to accommodate the relatively large computational
times

2. that aren’t, due to the error prone nature of optimization software, safety critical to
the operation

3. where the cost of the high-end computational hardware required is a non-issue

4. with any combinations of the above possibilities.

Most systems in modern industry is better served with an optimization-based controller,
but the limitations mentioned above prevents this. Naturally, a solution for this has been
sought, and quite well developed, in several forms of Explicit MPC. Different applications,
among them [5], were surveyed in [6].

1.2.3 Explicit MPC

The explicit MPC of [5] formulates the MPC problem as a multi-parametric problem,
which is done by solving the optimization problem offline. This reduces the control law to
a piece-wise affine function of the current state, instead of the solution to an optimization
problem. The solution, however, demands an increasing amount of memory when the di-
mensions of the system increase, limiting the application to systems with a modest amount
of states and inputs, as well as relatively short prediction horizons.

1.2.4 Approximating MPC with Controlled Contractive Sets

Another way to approximate the behaviour of MPC is through the use of controlled con-
tractive sets. Instead of storing the entire solution space of MPC, this method finds a
control law that qualitatively mimics MPC behaviour. Controlled contractive sets are used
in the method of [7]. This method, however, may give highly complex contractive sets.
Another method presented in [8] uses a simple, contractive polyhedral set. However, the
method is of fixed complexity, so the size of the set cannot be increased by increasing the

2

complexity of the set representation.

A method for approximating MPC with low online computational demands based on con-
trolled contractive sets was developed and presented in [1]. This method is based on Sum
of Squares programming, an optimization tool that has gained increased attention since the
publication of [9]. In [1], the contractive set is expanded by increasing the polynomial de-
gree of the corresponding Lyapunov and feedback functions. The method was presented,
however, with a critical flaw.

This thesis aims to correct the flaw in the formulation of [1], and discuss the resulting
problems and gains.

1.3 Thesis Overview

Chapter 2 is a literature review of the relevant subjects discussed in this thesis, namely the
KKT conditions, Sum of Squares programming, and Lyapunov Stability for Discrete-time
Systems. In Chapter 3 the problem formulation of [1] is presented, discussed, analyzed,
and finally corrected in Chapter 4. Chapter 5 discusses the methodology used for the
implementation on a system in MATALB. The results of chapter 5 are presented and dis-
cussed in chapter 6. A conclusion is drawn and further work is presented ultimately in
chapter 7.

3

4

Chapter 2
Fundamental Theory

In this chapter, the fundamental theory used later in this thesis is described. Section 2.1
describes the Karush-Kuhn-Tucker(KKT)-conditions, a part of the fundamentals of opti-
mization theory. In Section 2.2, Sum of Squares optimization is described, with emphasis
on the benefits of the theory. Finally, Section 2.3 gives a brief summary on Lyapunov
control theory for continuous and discrete time systems.

From this chapter on, it is assumed that the reader possesses fundamental knowledge of
linear algebra, optimization theory, control theory, and Cybernetics as a field of study.
Knowledge on Semi-Definite Programming is recommended, but not required to firmly
understand the rest of the thesis.

2.1 Optimization And KKT-conditions

This section gives a short overview of the KKT-conditions used in optimization theory,
and the cases where they provide sufficient conditions for optimality. For more on the
KKT-conditions, and convex optimization in general, see [10].

A classic optimization is usually given on the following form:

Optimize f(x) (2.1a)
subject to

hi(x) ≤ 0, i = 1, . . . , ni (2.1b)
gi(x) = 0, i = 1, . . . , ne (2.1c)

5

where x is the optimization variable, f(x) is the objective function, hi(x) are the inequality
constraint functions, and gi(x) are the inequality constraint functions. ne and ni are,
respectively, the number of equality constraints and the number of inequality constraints.
The KKT-conditions for an optimization problem are conditions that must be fulfilled at
the optimum for the problem, and hence are always necessary conditions for the optimum.
For now, let the optimization be to find the minimum min f(x). Then the Lagrangian
function is defined as:

L(x) = f(x) +

ne∑
i=1

µigi(x) +

ni∑
j=1

λihj(x) (2.2)

where µi, λj are called the Lagrange multipliers. At the optimum the gradient of the
Lagrangian is zero:

∇L(x∗) = ∇f(x∗) +

ne∑
i=1

µ∗i∇gi(x∗) +

ni∑
j=1

λ∗j∇hj(x∗) = 0 (2.3)

where an asterisk denotes the optimal value.

The value of the Lagrange multipliers describe, in a sense, how much could be gained by
expanding the corresponding constraint in the direction of the gradient of the objective
function. A zero value indicates that nothing would be gained, i.e. the constraint is inac-
tive. Obviously, this has no influence on the equality constraints, which are always active.
This gives rise to the condition complimentary slackness:

λ∗i hi(x
∗) = 0, i = 1, . . . , ni. (2.4)

Equation (2.4) has the intuitive interpretation that either the inequality constraint is active
at the optimum i.e. hi(x∗) = 0, or inactive, resulting in a zero value multiplier λ∗i .

Another property of the Lagrangian multipliers is that their value is negative if the corre-
sponding constraint is violated. Hence another condition is

λ∗i ≥ 0, i = 1, . . . , ni. (2.5)

The constraints must, naturally, be fulfilled at the optimum as well. This gives the KKT-
conditions as below:

∇f(x∗) +

ne∑
i=1

µ∗i∇gi(x∗) +

ni∑
j=1

λ∗j∇hj(x∗) = 0 (2.6a)

hi(x) ≤ 0, i = 1, . . . , ni (2.6b)
gi(x) = 0, i = 1, . . . , ne (2.6c)
λ∗i ≥ 0, i = 1, . . . , ni (2.6d)

λ∗i hi(x
∗) = 0, i = 1, . . . , ni (2.6e)

6

which are, for any minimization problem, necessary conditions for optimality.

If the optimization problem (2.1) describes a convex optimization problem, the KKT-
conditions are actually sufficient conditions for optimality. To have a convex optimization
problem, the objective function f(x) and the inequality constraints hi(x) must be convex,
and the equality constraints gi(x) affine functions. This property will be used to correct
the problem formulation of [1] in Chapter 3.

2.2 Sum of Squares Programming

Sum of Squares (SOS) programming is a used to guarantee the non-negativity of a poly-
nomial. It is based on SOS decomposition of polynomials, which provides a sufficient
condition for the non-negativity of a polynomial. A polynomial f(x), in n variables where
x ∈ Rn, that can be written as a sum of squared terms is intuitively non-negative for all x.
Determining if a polynomial is non-negative can be shown to be NP-hard [9]. The polyno-
mial having an SOS decomposition, however, is a condition guaranteeing global positivity
that can be tested in polynomial time.

A polynomial f(x) can be written in the form

f(x) =
∑
k

ckx
ak1
1 x

ak2
2 . . . x

akn
n

where aki are non-negative integers. A monomial m(x) is one of the k terms in a polyno-
mial f(x), the coefficient ck not included:

mk(x) = x
ak1
1 x

ak2
2 . . . x

akn
n .

As an example, take the following polynomial

g(x1, x2) = 2x2
1 − 3x3

1x2 + x1x
2
2.

The corresponding vector of monomials is

mg(x1, x2) =
[
x2

1 x3
1x2 x1x

2
2

]T
.

A sum of squares polynomial is a polynomial of the form v(x)TQv(x), where v(x) is
some vector of monomials, and Q is a square positive semi-definite matrix. The terms in
v(x) are clearly not independent of each other, and thus the matrix Q will not be unique.
Take this example from [9, p. 41]:

f(x) = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2 (2.7)

=
[
x2

1 x2
2 x1x2

] 2 0 1
0 5 0
1 0 −1

 x2
1

x2
2

x1x2

 (2.8)

= v(x)TQv(x) (2.9)

7

From the leading principle minors of Q it can clearly be seen that the matrix is not PSD. It
is also clear that the elements of v(x) are dependent on each other; for instance x2

1 · x2
2 =

(x1x2)2. This can be used to modify Q to be PSD. Introduce the variable λ:

Q =

 2 −λ 1
−λ 5 0
1 0 −1 + 2λ

 (2.10)

Choosing λ = 3 makes Q PSD(two positive, and one zero eigenvalue).

2.2.1 S-procedure

The form of SOS programming mostly used in this thesis is the S-procedure. The S-Positivstellensatz?Positivstellensatz?
procedure is a well known optimization method for enforcing the positivity of a function
in a region. Say you want a function f(x) > 0 wherever another function g(x) < 0. This
is solved by optimizing over the condition

f(x) + s(x)g(x) > 0 (2.11)

for an SOS polynomial s(x). In other words, it is possible, by optimizing over and finding
an SOS-polynomial s(x), to enforce the positivity of a function in a defined area.

2.2.2 Solving SOS Programs

SOS optimization programs are solved by posing the problem as an SDP. The process is
quite similar to solving Linear Matrix Inequalities(LMIs), which are discussed in detail in
[11]. In short, SOS programs are a more specialized case of LMIs.

A constraint of the form (2.11) is one of a few versions of an SOS constraint. Generally,
an SOS constraint is an equation that is constrained by having an SOS shape. Common
between all SOS constraints is that they are convex, assuming linear dependence on deci-
sion variables in the optimization formulation, and linearity in the free variables resulting
from the algebraic dependence of elements in the monomial vector v(x). Combining SOS
constraints with a convex optimization criterion formulates a convex SDP problem.

The actual solving of an SOS program is usually handled by an SDP solver, which is quite
too technical to explain here. The reformulation of an SOS program into a form possible
for an SDP solver to recognize can be done with the help of software with built-in SOS
functionality, e.g. YALMIP[12] or SOSTOOLS[13]. The functionality allows the formu-
lation of a constraint as SOS. It is possible to formulate an SOS problem explicitly within
these environments(at least in YALMIP), however using the built-in functions will provide
as good or better results with less coding time.

8

For implementations in YALMIP, only a few things need to be initialized to be able to solve
the program. Naturally, an optimization criterion and at least one SOS constraint must be
defined. For the SOS constraint, the maximal order of the polynomial sought must be
defined as well. YALMIP sets up the monomial vector associated with the problem, and
utilizes the SDP solver to find the monomial coefficients, which is equivalently the matrix
Q. Naturally, Q must be PSD. YALMIP automatically reduces the complexity of the
solution, and with certain options it is possible to impose a block structure on Q to make
the solution more efficient. More documentation on YALMIP can be found on the website
https://yalmip.github.io.

Solution Validation

The optimized matrix Q may be, due to the nature of optimization software, numerically
ill-conditioned. Although the matrix will be positive definite, some eigenvalues will be
very small. This could imply that the original polynomial is in fact not SOS, so the valid-
ity of the solution needs to be tested.

One way of testing to see if the original polynomial f(x) is SOS is to look at the difference
between the polynomial and the calculated SOS decomposition:

f(x)− v(x)TQv(x) (2.12)

The residual of the decomposition is defined as the largest coefficient of (2.12). [12] shows
that positivity is guaranteed provided:

1. min eig(Q) ≥ 0

2. min eig(Q) ≥ nmon × abs(residual)

where nmon is the number of monomials in v(x).

2.3 Lyapunov Control

Lyapunov-based control is widely used within contemporary technology and theory. In
simple terms, the control theory shows that if the energy of a system decreases over time,
the system is stable. The control part is choosing a feedback controller that causes the
system’s energy to decrease. More in-depth on Lyapunov Control can be found in [14], or
any other textbook on non-linear systems. A short overview is given below, with specifics
for the discrete-time case.

2.3.1 Continuous Systems

Control theory for continuous systems revolves around finding a feedback u = u(x(t))
that stabilizes the system. In Lyapunov Control theory, this is done by finding an energy-

9

https://yalmip.github.io

like function (usually called a Lyapunov function) V (x) that fulfills the following proper-
ties:

• Positive definite

• V (0) = 0

• Continuous

• Radially unbounded (V (x) −→∞ as ‖x‖ −→ ∞)

• V̇ (x) < 0 ∀x 6= 0

The inequality V̇ (x) < 0 ∀x 6= 0 has the input substituted in and is solved for the input,
thus granting a feedback that stabilizes the system.

2.3.2 Discrete-time Systems

For discrete-time systems there are a few differences. In discrete time, the time derivative
of a function is replaced with the function value at the next timestep. Lyapunov stability
is achieved when the function value decreases from one timestep to another. This replaces
the last property for the continuous systems with

V (xk+1) < V (xk)∀x. (2.13)

The other properties of the function stay the same.

The method for achieving Lyapunov stability in discrete-time systems used in [1] is called
controlled contractive sets. This method will be used on the work done in this thesis, and
is presented, along with most of the procedure in [1], in Chapter 3.

10

Chapter 3
An Overview of the Procedure and
Methodology of Munir et.al.(2018)

This chapter serves to clarify and give an overview on the different methods and procedures
of [1]. Most of the work of this thesis is based on both the results and the methodology
of the article, and showing the respective contributions is of importance. All the following
information is summarized from [1].

3.1 Contractive sets

Consider the constrained control of the linear discrete time system:

xk+1 = Axk +Buk (3.1)

where xk ∈ Rnx is the current state of the system and uk ∈ Rnu the current input.
xk+1 are the states in the next timestep. Both x and u are constrained, with u subject to
U = {uk|Huuk ≤ 1}, Hu ∈ Rnpu×nu . x is constrained to X where X = {xk|Hxxk ≤
1}, Hx ∈ Rnpx×nx .

Definition 1. Given a function V : Rnx −→ R, the level set of V (x) for a scalar α is the
set Sα = {x|V (x) ≤ α}.

Proposition 1. Consider a function V (x) : Rnx −→ R satisfying the following properties:

A1 positive definite, with V (0) = 0

A2 continuous,

11

A3 radially unbounded

Then

1. All level sets Sαexist and are bounded for0 ≤ α <∞

2. If β < α, Sβ ⊂ Sα
Proof is in [1].

Definition 2. Consider a continuous and radially unbounded function V : Rnx −→ R≥0.
A level set Sα is controlled γ-contractive with respect to (3.2b) for a given γ ∈ (0, 1), if
∀xk ∈ Sα,∃u ∈ U such that xk+1 ∈ Sγα.

Now, consider the following optimization-based problem formulation:

min
uk,xk+1

1

2
xTk+1Qxk+1 +

1

2
uTkRuk (3.2a)

subject to
xk+1 = Axk +Buk (3.2b)
Huuk ≤ 1 (3.2c)

V (xk+1) ≤ γV (xk) (3.2d)

Q and R are weighting matrices for the states and input, respectively.
Proposition 2. Let V (x) be a function fulfilling the properties of Proposition 1, and let
V (x) = α. Then, if

1. the corresponding level set Sα is controlled γ-contractive, and

2. Sα ⊆ X

the control action obtained as a solution of (3.2) guarantees an exponentially stability of
the closed loop which in addition fulfills input and state constraints over Sα.

It is clear from Proposition 2 that the function V (x) works as Lyapunov function for the
system (3.2) inside the set Sᾱ where ᾱ is the maximum value of α giving Sα ⊆ X .

3.2 Ellipsoidal Contractive Sets

Ellipsoidal contractive sets are contractive sets corresponding to a quadratic Lyapunov
function. Finding ellipsoidal contractive sets serves an important purpose for this method:
they are the starting point for finding larger contractive sets. The approach for finding the
largest constrained ellipsoidal set is described in [15].

Consider the system described in the previous section. The largest ellipsoid fulfilling the
contractive, state, and input constraints is given as Ω = {xk ∈ Rnx |xTk P−1xk ≤ 1}.

12

The set should be found adhering to a linear feedback law uk = u = Kxk, which is
done by maximizing the logarithm of the determinant of P , subject to the input, state, and
contraction constraints. This will yield an optimal P and K. The problem formulation,
describing the input constraints as −uj,max ≤ uj ≤ uj,max, is:

max
P,K,u

logdet(P) (3.3a)

subject to[
γP P (A+BK)T

(A+BK)P P

]
≥0 (3.3b)[

1 Hx,iP
PHT

x,i P

]
≥ 0,∀i = 1, . . . ,nc (3.3c)[

u2
j,max KjP
PKT

j P

]
≤ 0,∀j = 1, . . . ,nu (3.3d)

Where γ ∈ (0, 1) is the contraction factor, and nc, nu are the number of state constraints
and inputs, respectively. Hx,i and Kj represent the i’th and j’th row of Hx and K re-
spectively. Both P and K are unknown, so the problem formulation (3.3) is bilinear in the
terms of those matrices. This can be solved by introducing the new variable Y = KP .
The values of K and can be extracted from Y later since an optimal P is found.

The largest unconstrained ellipsoid contained within Ω is denoted
Ωuc = {xk ∈ Rnx |xTk P−1

uc xk ≤ 1}. While Ω is found by optimizing over all possible K,
Kuc is the optimal unconstrained feedback gain found by solving (3.2), and has the form
Kuc = −(R + BTQB)−1BTQA for the linear feedback uk = Kucxk. Finding the set
Ωuc is just modifying (3.3) to include that Ωuc ∈ Ω. This is done by modifying the state
constraint to be

P − Puc ≥ 0.

The problem formulation then becomes:

max
P,K,u

logdet(P) (3.4a)

subject to[
γP P (A+BK)T

(A+BK)P P

]
≥0 (3.4b)

P − Puc ≥0 (3.4c)[
u2
j,max KjP
PKT

j P

]
≤ 0,∀j = 1, . . . ,nu. (3.4d)

Let P1 = P−1 and P0 = P−1
uc . In summary, there are then two ellipsoidal contractive sets

associated with the problem (3.2):

• The set Ω = {xk ∈ Rnx |xTk P1xk ≤ 1}, the largest controlled γ-contractive set
obtained by optimizing over all linear state feedbacks.

13

• The set Ωuc = {xk ∈ Rnx |xTk P0xk ≤ 1}, the ellipsoidal set where γ contractive-
ness is achieved with the linear state feedback uk = Kucxk within the set Ω.

3.3 Controller Design for Higher Order Lyapunov Func-
tions

The sets Ω and Ωuc are limited by the quadratic structure of the Lyapunov function. Al-
though the quadratic function has the inherent trait of being convex, a higher order Lya-
punov function has the benefit of yielding more complex shapes. This allows an increase
in the size of the contractive set. [1] now focuses on increasing the contractive set by al-
lowing for higher order Lyapunov functions.

3.3.1 Approximating the Optimal Solution

The problem is reformulated to better allow the input to have a higher order dependency
on the state. xk+1 is removed from the problem formulation using (3.2b), and the problem
is now formulated as Pu:

min
uk

1

2
uTkHuk + xTk Fuk (3.5a)

subject to
Huuk ≤ 1 (3.5b)

V (xk+1) ≤ γV (xk) (3.5c)

Here H = (BTQB +R), F = ATQB. The above problem has Lagrangian

L(uk) =
1

2
uTkHuk + xTk Fuk + λTu (Huuk − 1) + λq(V (xk+1)− γV (xk)) (3.6)

with the corresponding KKT-conditions:

Huk + FTxk +HT
u λu + V 1

k+1(uk)λq = 0 (3.7a)
Huuk − 1 ≤ 0 (3.7b)

V (xk+1)− γV (xk) ≤ 0 (3.7c)
λu ≥ 0 (3.7d)
λq ≥ 0 (3.7e)

λTu (Huuk − 1) + λq(V (xk+1)− γV (xk)) = 0 (3.7f)

14

V 1
k+1(uk) is the first derivative of V (xk+1) with respect to uk.

Next, consider the optimization problem Pc:

min
c,uk,λu,λq

c (3.8a)

subject to (3.7a)-(3.7e) and

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk)) ≤ c (3.8b)

The solution to problemPc is denoted c∗, u∗k, λ
∗
u, λ
∗
q . Clearly, if c∗ = 0, then u∗k minimizes

the problem Pu, as that would fulfill the equality constraint (3.7f) and the other constraints
are shared. The constraints (3.7a)-(3.7e) clearly prohibit c∗ < 0. Since Pchas the same
constraints as Pu, any feasible solution to Pcis also feasible for Pu. u∗k will, as long as
c∗ 6= 0, be a suboptimal solution to Pu.
A new definition:

J(u∗k(c)) =
1

2
(u∗k)THu∗k + xTk Fu

∗
K (3.9)

is the value of Puwith the value u∗k from the solution of problem Pc. Correspondingly,
J(u∗k(0)) denotes the optimal value of uk for the problem Pu.

Lemma 1. Consider an optimal solution (c∗, u∗k, λ
∗
u, λ
∗
q) to Pc, with c∗ > 0. Then u∗k is a

suboptimal solution to Pu, with J(u∗k(c))− J(u∗k(0)) < c.

Proof. This proof follows the approach in [16].
For any feasible uk

1

2
uTkHuk + xTk Fuk ≥

1

2
uTkHuk + xTk Fuk

+

[
λ∗u
λ∗q

]T [
Huuk − 1

V (xk+1)− γV (xk)

]
= M(uk).

(3.10)

Next, minimize both sides subject to constraints (3.7b) and (3.7c). Thus

J(u∗k(0)) ≥ min
(3.7b),(3.7c)

M(uk) ≥ min
uk∈Rnu

M(uk). (3.11)

M(uk) is clearly the Lagrangian equation (3.6) of Pu, where λu = λ∗u, λq = λ∗q . The
unconstrained minimization of M(uk) yields (3.7a), again with λu = λ∗u, λq = λ∗q . Mini-
mizing M(uk) unconstrained will thus yield uk = u∗k, giving

J(u∗k(0)) ≥M(u∗k)

Multiplying the above inequality by -1 and adding J(u∗k(c)) to both sides shows that

J(u∗k(c))− J(u∗k(0)) ≤ c∗ (3.12)

In clarifying terms: solving the minimization problemPcyields a suboptimal u∗k forPuthat
is at max c∗ from the optimum. This is done to approximate a solution to Pu circumvent-
ing the equality constraint (3.7f).

15

3.3.2 Problem Reformulation

A problem with the formulation Pcarises as xk+1 is substituted out. With uk expressed
as a polynomial function of xk, V (xk+1) will have a higher order dependence on the
polynomial coefficients of uk. This will later cause problems with the controller design
formulation, hence the system equation is reintroduced to the problem formulation.
The new starting point is the original formulation (2.1), which has KKT conditions:

Ruk −BTλe +HTλu = 0 (3.13a)
Qxk+1 + λe + λq∇V (xk+1) = 0 (3.13b)

xk+1 −Axk −Buk = 0 (3.13c)
Huuk − 1 ≤ 0 (3.13d)

V (xk+1)− γV (xk) ≤ 0 (3.13e)
λu ≥ 0 (3.13f)
λq ≥ 0 (3.13g)

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk)) = 0 (3.13h)

The operator ∇ is the partial derivative with respect to xk+1. The complimentarity con-
straint is again relaxed. Solutions with a commensurate relaxation are sought, where uk is
sought as a function of only the present state xk. The model equations are added as an ex-
tra term in all other constraints containing both xk and xk+1. This modification is justified
by the property that the system equations are always fulfilled. The new formulation:

min c (3.14a)
subject to (3.13d), (3.13f), (3.13g), and

Ruk −BTλe +HTλu + µT1 (xk+1 −Axk −Buk) = 0 (3.14b)

Qxk+1 + λe + λq∇V (xk+1) + µT2 (xk+1 −Axk −Buk) = 0 (3.14c)

V (xk+1)− γV (xk) + µT3 (xk+1 −Axk −Buk) ≤ 0 (3.14d)

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk)) + µT4 (xk+1 −Axk −Buk) ≤ c (3.14e)

The multipliers µ1, µ2, µ3, µ4 as well as λe are polynomial functions of xk+1, xk with no
positivity constraint. λq and λu are also polynomials in the current and next state, but with
the explicitly stated positivity constraints.

The ultimate task of this procedure is to evaluate the input online, hence uk con only be
a function of xk and not xk+1. The reformulated problem enforces this. The multipliers
µi are optimized to cancel out the terms including xk+1. In addition, they ensure that the
equations they are inserted in hold on the manifold of system trajectories (where the sys-
tem equation (3.1) is fulfilled).

The degrees of freedom in this optimization are the polynomial coefficients of the multi-
pliers, the feedback function, and the Lyapunov function.

16

The controller design attempts to find a feasible and approximately optimal solution to
(3.2) for the set

S = {x|V (x) ≤ 1}
Beginning with the set S = Ω that has the corresponding Lyapunov function V (x) =
xTP1x, the set is iteratively enlarged, helped by increasing the allowed polynomial degree
of V (x). The optimal controller for the set Ωuc is already known to be Kucxk, and noting
that Ωuc ⊆ S it is clear that the controller design can be split in two parts. Inside the set
Ωuc the controller Kucxk is used, and outside of Ωuc but inside S another controller is
found through optimization. Define this new set as:

SC = {xk|p(xk) > 0} (3.15)

where
p(xk) = −(1− V (xk))(1− xTk P0xk) (3.16)

Using the S-procedure as described in section 2.2.1, the constraints of (3.14) can be en-
forced in the region where p(xk) is positive. The complimentarity constraints (3.14e) can
be relaxed more when the state is far from the origin. This is done by changing the relax-
ation c to cxTk xk.
The state constraints are not yet a part of the problem formulation. They are given by
Hkxk ≤ 1, which can be described by the intersection of the nc=number of constraints
on xk unbounded sets Cr = {xk|Hx,r ≤ 1} where Hx,r is the r’th row of Hx. The state
constraints then become:

(1−Hx,rxk)− σr(xk)(1− Vj(xk)) ≥ 0, r = 1, . . . , px (3.17)

The iterative increase of the set S must be added to the formulation as well. The property
Sj−1 ⊆ Sj is fulfilled provided:

(1− Vj(xk))− s6(xk)(1− Vj−1(x : k)) ≥ 0 (3.18)

The full problem formulation giving an approximately optimal solution to Pu then be-
comes:

min c (3.19a)
subject to

Ruk −BTλe +HT
u λu + µT1 (xk+1 −Axk −Buk) = 0 (3.19b)

Qxk+1 + λe + λq∇V (xk+1) + µT2 (xk+1 −Axk −Buk) = 0 (3.19c)
Huuk − 1 + s1(xk)p(xk) ≤ 0 (3.19d)

V (xk+1)− γV (xk) + µT3 (xk+1 −Axk −Buk) + s2(xk, xk+1)p(xk) ≤ 0 (3.19e)
λu − s3(xk)p(xk) ≥ 0 (3.19f)
λq − s4(xk)p(xk) ≥ 0 (3.19g)

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk))+

µT4 (xk+1 −Axk −Buk) + s5(xk, xk+1)p(xk) ≤cxTk xk (3.19h)
(1− Vj(xk))− s6(xk)(1− Vj−1(xk)) ≥ 0 (3.19i)

(1−Hx,rxk)− σr(xk)(1− Vj−1(xk)) ≥ 0, r = 1, . . . , nc (3.19j)

17

where s1,...,6 and σr are SOS-polynomials.

3.3.3 Solving the SOS Problem

The problem (3.19) can be solved using SOS programming. All except the equality con-
straints (3.19b) and (3.19c) are of SOS type. Note, however, that the problem is bilinear in
several terms, so a direct optimization would be highly non-convex and difficult to solve
directly. A common approach to solving bilinear problems is dividing the problem into
several linear problems by keeping some of the optimization variables constant while op-
timizing over the other. This method requires some initial values for the variabes initially
kept constant. For this problem, the procedure chosen is:

• First optimize λu, λq, λe, si, and σr with given V (xk) = xTP1xk and uk.

• Then optimize V (xk) and uk with λu, λq, λe, si, and σr from the previous step.

For subsequent iterations, the newest values of the coefficients are used.
To enforce that the set S increases from one iteration to the next, some points outside the
current set are chosen. In the next iteration, the Lyapunov function is further constrained
to include the points, guaranteeing the enlargement of the set. A larger set will eventually
be unobtainable. Then it is possible to increase the polynomial degree of V (xk) or uk,
however this will always result in larger systems with increasingly longer computational
times.

3.4 Problem Solution Algorithm

The sequence for achieving a larger contractive set is straightforward. First, the sets Ω and
Ωuc are found using the method described in Section 3.2, which always exist for the linear
system framework. Next, a level set S larger than Ω should be found. The only part of the
set that is of interest is where p(x) is positive. When the system trajectory is inside the set
Ωuc, the control law should switch to the controller Kuc.

18

Algorithm 1: Algorithm to obtain a larger contractive set
Input: A contractive ellipsoid Ω with control law uk. Maximum allowed degree (xdeg)

for the Lyapunov function, maximum allowed degree (udeg) for the control law,
and maximum acceptable measure of sub-optimality (cmax). A small number
increment used to specify a point outside of Sj−1.

Output: A larger contractive set of degree ≤ xdeg with control law of degree ≤ udeg .
1 Set j = 0, Sj = Ω such that Sj = {xk|V (xk) ≤ 1} and set solution = feasible.
2 while solution is feasible do
3 Set j = j + 1
4 Find boundary points of the set Sj−1 by solving for V (xk) == 1 along rays in

directions defined by vectors from the origin to points uniformly distributed on the
nx-dimensional unit sphere.

5 Solve the SOS problem (4.5) by optimizing for λu, λq, λe, si, µs and σr while
keeping V (x) and uk fixed.

6 Check which point contracts the most by applying the control law uk. Select that
point point.

7 Find a new point outside Sj−1 by incrementing on point;
pointnew = point+ point× increment.

8 Solve the SOS problem (4.5) by optimizing for V (x) and uk while keeping
λu, λq, λe, si, µs and σr fixed and ensuring that pointnew is in Sj .

9 if solution is feasible and c ≤ cmax then
10 Update V (xk), uk, λu, λq, λe, si, µs and σr.
11 end
12 end

Algorithm 1 outlines the implementation of the method. The choice of the point pointnew
will be discussed in Section 5.3. The rest is quite straightforward. Initially, the set S is
chosen equal to Ω before it is expanded, with the corresponding input. As discussed in the
previous section, the bilinearity of the problem is circumvented by iteratively optimizing
over the multipliers, then the LF and input.

19

20

Chapter 4
A Discussion on the Solution of
Munir et.al.(2018) and
Improvements

4.1 Placeholder

The general optimization problem discussed in [1], and which will be modified in this
chapter, is one of the following form:

min
uk,xk+1

1

2
xTk+1Qxk+1 +

1

2
uTkRuk

subject to
(4.1a)

xk+1 = Axk +Buk (4.1b)
Huuk ≤ 1 (4.1c)

V (xk+1) ≤ γV (xk) (4.1d)

The system (4.1) is described with the following Karush-Kuhn-Tucker(KKT) conditions:

Huk + FTxk +HT
u λu + V 1

k+1(uk)λq = 0 (4.2a)
Huuk − 1 ≤ 0 (4.2b)

V (xk+1)− γV (xk) ≤ 0 (4.2c)
λq ≥ 0 (4.2d)
λu ≥ 0 (4.2e)

λTu (Huuk − 1) + λqV (xk+1)− γV (xk) = 0 (4.2f)

21

However, the KKT-conditions (4.2) are only necessary conditions for a convex formula-
tion. With the current problem formulation, the distance from the optimum cannot be
guaranteed without somehow verifying the convexity of the entire feasible region. There
are no hints in [1] that this has been attempted, and thus the results of [1] are partially
invalidated, in particular the value of c. In other words, the contractive set S may yield an
input uk that is far from optimal. This may be the source of the low value 4.54 · 10−12

found for c presented in the article, which could be invalid.

Figure 4.1 shows the Lyapunov function after two iterations of the current formulation,
without an explicit constraint on the convexity of the Lyapunov function. Clearly, the set
V (xk) ≤ 1 is non-convex. This shows that the current formulation can result in non-
convex problems, and thus no guarantee for the distance to optimum. Note also that the
set violates the state constraints. This will be discussed further in chapter 6.

Figure 4.1: The Lyapunov function found by using the unmodified method of [1] in pink

22

4.2 Completing the Formulation

Not much needs to be added to formulation for the KKT-conditions to be sufficient and
not necessary. The currently missing constraint is the convexity of the Lyapunov function
V (xk). This is obviously not necessary when the Lyapunov function is quadratic, but for
higher degree functions it is needed. The convexity of a polynomial is equivalent with the
positive semi-definiteness of its Hessian matrix [17, p. 7]. Formulated as an inequality
constraint:

∇2V (xk) ≥ 0 (4.3)

Changing the formulation to an SOS problem:

zT (∇2V (xk))z ≥ 0 (4.4)

where z ∈ Rnx is a variable not dependent on x. If necessary, the constraint can be relaxed
to only be positive outside of p(x), however global convexity should be sufficient. Since
the constraint is an SOS constraint it is also convex.

The constraint (4.4) can now be added to (4.1), and, following the same approach as in
section 3.3, the complete problem formulation now becomes:

min c (4.5a)

subject to

Ruk −BTλe +HT
u λu + µT1 (xk+1 −Axk −Buk) = 0 (4.5b)

Qxk+1 + λe + λq∇V (xk+1) + µT2 (xk+1 −Axk −Buk) = 0 (4.5c)

Huuk − 1 + s1(xk)p(xk) ≤ 0 (4.5d)

V (xk+1)− γV (xk) + µT3 (xk+1 −Axk −Buk) + s2(xk, xk+1)p(xk) ≤ 0 (4.5e)

λu − s3(xk)p(xk) ≥ 0 (4.5f)

λq − s4(xk)p(xk) ≥ 0 (4.5g)

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk))+

µT4 (xk+1 −Axk −Buk) + s5(xk, xk+1)p(xk) ≤cxTk xk (4.5h)

(1− Vj(xk))− s6(xk)(1− Vj−1(xk)) ≥ 0 (4.5i)

(1−Hx,rxk)− σr(xk)(1− Vj−1(xk)) ≥ 0, r = 1, . . . , nc (4.5j)

zT (∇2V (xk))z ≥ 0 (4.5k)

This problem formulation guarantees the convexity of the contraction constraint.

23

24

Chapter 5
Methodology

The method presented in this thesis is an improvement on the method in [1], and as such
builds on the computer code written in relation to that paper. Coding, optimization, and
simulations are all run in MATLAB, utilizing the YALMIP [2] toolbox for SOS program-
ming and MOSEK as an SDP-solver. This implementation follows the same approach for
solving the bilinear problem as in [1], namely by iteratively solving linear sub-problems.
From [1]:

• First optimize λu, λq, λe, si and σr with set V (xk) and uk.

• Then optimize V (xk) and uk with λu, λq, λe, si and σr from above, only now with
the added constraint (4.4)

The algorithm for finding a new contractive point is the same; search the boundary of the
Lyapunov function, find the point that contracts the most, and increase in that direction.

5.1 Adding the Convexity of the Lyapunov Function

As discussed in the previous chapter, the new addition to the system is the constraint that
the Lyapunov function is convex. It was shown in section 4.2 that this is equivalent to an
added inequality constraint

zT (∇2V (xk))z ≥ 0 (5.1)

. This constraint is an SOS constraint, and will be treated as such in the software im-
plementation. z can be defined in YALMIP as an SDP-variable (sdpvar) with dimension
equal to the state x. The Hessian matrix of the Lyapunov function,∇2V (xk), can be found
with a simple function in YALMIP, hessian().

25

The optimization iterates over solving for the multipliers and then the Lyapunov function
and input. The new constraint, which is independent of any of the multipliers, then only
needs to be added to the LF and input optimization.

5.2 Deciding the Order of the Polynomials

To formulate an SOS-problem in YALMIP, the maximal order of the polynomial to op-
timize over must be given explicitly. Here, this includes the order of the polynomials
λe, λq, λu, µ1,...,4, s1,...,6, σr, uk and V (xk). The choice of the order of these polynomials
is constrained by the equality constraints (5.2) and (5.3):

Ruk −BTλe +HT
u λu + µT1 (xk+1 −Axk −Buk) = 0 (5.2)

Qxk+1 + λe + λq∇V (xk+1) + µT2 (xk+1 −Axk −Buk) = 0 (5.3)

For the equalities to hold, the maximum order of the polynomials must be matched be-
tween terms for them to cancel out. For example, choosing deg(V (xk)) = 6 puts a lower
bound on µ2 and λe for them to match out the term λq∇V (xk+1). This will further con-
strain the degrees of µ1 and λu, and basically propagates throughout the problem equa-
tions. The positivity constraints must be upheld as well, so naturally all SOS-variables
must be of even degree, as well as λq and λu. This is important to remember when ini-
tializing the system as not allowing these degrees of freedom may cause the problem to be
unsolveable.

The size of the monomial vector increases exponentially with the polynomial degree,
which again increases the amount of decision variables, greatly increasing runtime. This
serves as a limiter on the highest degree of the polynomials. At one point, the optimization
will thus fail if the polynomial degree is increased.

5.3 Choosing a New Point to be Included in the Next Level
Set

The procedure for choosing a new point to be included in the next iteration’s level set is not
implemented exactly as described in [1]. The procedure is flawed, and should be reworked
on later iterations.
The code can be seen in the attachments, named Point_Vx_2D_mod.m.

Algorithm 2 outlines the process for choosing a new point outside the current set. The pro-
cess guarantees a point within the state constraints, and tuning the parameter increment
makes it possible to find larger and larger sets. The basic idea is quite primitive: find the
point on the boundary of S that contracts the most, then push that point out by a factor
increment. If the new point is outside the state boundaries, the point is made void and

26

the next most contractive point is evaluated.

Algorithm 2: Algorithm to find a point outside the current level set
Input: A contractive set Sj−1 = {x|V (x) ≤ 1} with control law u = u(x) = Kux. The

degree (Vdeg) for the Lyapunov function. A small number increment used to
specify a point outside of Sj−1. The state constraints Hxxk ≤ 1

Output: A point pointnew outside of the set Sj−1 to be included in the next level set Sj
1 Partition the constrained state space uniformly.
2 Find the set of points xe that satisfy V (xe) ≈ 1
3 For the points xe, calculate the next state xep using the control law Kuxe:

xep = Axe +BKuxe
4 For the points xep , calculate the Lyapunov function value V (xep). Call this set of values

Ve
5 while new point not found do
6 Choose the point point corresponding to the smallest value in Ve
7 pointnew = point+ point× increment
8 if pointnew is within state constraints then
9 new point found

10 else
11 set Ve(point) = 1000
12 end
13 end

Although the procedure is robust, it is far from optimal. For one, the way of finding the
points xe is now done by creating a grid over the constrained state space and evaluating
the Lyapunov function value at each of the points. This is not only time and memory de-
manding, but the resolution limits the number of points xe that can be found. The way the
state space is gridded makes the more curved areas on the edge of S poorly represented.
This is somewhat mitigated by allowing V (xe) ≈ 1, although this relaxation again makes
the representation of the edge of S worse, as the exact equality is not upheld.

27

28

Chapter 6
Results and Discussion

All of the plots shown in this chapter follow a color and shape convention. The x-axis
shows the value of state x1, and the y-axis that of x2. The largest, ellipsoidal, controlled
γ-contractive set with linear feedback for the constrained problem, Ω, is always depicted
in blue. The set Ωuc is always in blue. Only the boundaries of these sets are shown, in an
effort to make the plots easier to analyze. The set V (xk+1) ≤ 1 always appears in light red.
The point to be included in the next level set pointnew is shown as a blue X. If there are
other uncertainty elements present, they will be described to the best of the author’s ability.

This chapter is divided into sections describing the different results, with a discussion of
the results and their implications at the end of each section.

6.1 The System

The improved method is only applied to a simple linear system:

xk+1 =

[
1 0.2
0 1

]
xk +

[
0.22
0.2

]
uk (6.1)

with the constraints −5 ≤ xk,j ≤ 5 for j = 1, 2 and −2 ≤ uk ≤ 2, and contraction
factor γ = 0.90. Note that this is the same system initially considered in [1], which is a
conscious choice done to closely inspect the differences between the methods.

Initially, multiple different systems were to be experimented on. The problems faced dur-
ing the implementation, however, caused only the linear system (6.1) to be considered.

29

6.2 Adding the Convexity Constraint

6.2.1 Non-Convex Results

One of the chief contributions of this thesis is the addition of the convexity constraint
on the Lyapunov function to the problem formulation. Before this addition, the problem
would not be guaranteed convex for higher order Lyapunov functions, and thus the KKT-
conditions would only be necessary conditions. In Figure 6.1, a result from the incomplete
formulation is shown. This is after 2 iterations. By visual inspection alone, the light red
level set V (xk) ≤ 1 is clearly not convex. After 5 iterations, the results are even less
convex, as shown in Figure 6.2. Not only is the level set highly non-convex, but it falls
inside the ellipsoid Ω in a few areas as well.

Figure 6.1: Non-convex level set from the old formulation, j = 2

Note that both level sets violate the state constraints −5 ≤ xk ≤ 5 at several points, the
plot in Figure 6.2 is just cut off at the edges. This will be further discussed in Section 6.3.

30

Figure 6.2: Non-convex level set from the old formulation, j = 5

The clearly non-convex level sets in Figures 6.1,6.2 prove that the formulation presented
in [1] is incomplete.
Next, the convexity constraint on the Lyapunov function is added to the formulation.

31

6.2.2 Convex results

Figure 6.3 shows the level set after the convexity constraint has been added. The results are
promising: the new level set is verifiably convex. The area of the level set is also increased
from before the addition. Most important, the optimization problem is now convex.
However, the problem of state constraint violation still persists.

Figure 6.3: Convex level set from the new formulation, j = 2

6.2.3 Discussion

These results serve to prove that the incomplete formulation of [1] can yield a non-convex
function and hence cannot guarantee the distance from the optimum. The addition of the
constraint (4.4) yields a convex LF and hence a convex optimization problem that has
guarantee for the distance to the optimum and general optimality. In this aspect, the work
on adding the convexity constraint can only be seen as a success.

However, there are larger problems present. The state constraints are violated to a high
degree, and the violation increases with each iteration. In the following sections, several
methods for fixing this problem will be presented, analyzed, and discussed.

32

6.3 Violation of the State Constraints

The state constraint violation is a new problem that was not present or discussed in [1].
Although the code used to produce the results in Figures 6.1-6.2 was supplied by the
authors of [1], the results produced do not match the results in the article. There are hard
violations of the state constraints. It is not clear what is causing these violations. To find
the root of the problem, some simple methods for holding the level set within the state
constraints were attempted.

6.3.1 Hard Constraint on State Violation

A primitive method for keeping the level set within the state constraints utilize a property
of the level set Ω. A constraint Vj(xc) ≈ 1 is added to the system, where xc are the points
in the set Ω that touch the state constraints. Due to the nature of the optimization used to
find Ω, these points always exist for one of the state variables. The approximate condition
is to give the solver some leeway as exact solutions are inaccurate with numerical solvers.

Figure 6.4: New method with hard constraints on state violation

With this added constraint, the set Vj(xk) ≤ 1 is guaranteed to not violate the state con-
straints at the given points. Now, the algorithm should try to expand the set in other

33

directions while keeping the set points constant. Unfortunately, the method did not work,
as can be seen in Figure 6.4. The new set is identical to the previous set, with no noticeable
volume increase from one iteration to the next. The points sought to be included in the
next set, depicted as blue crosses, are not included in the new set either.

Analysis

It is clear that the contractive set is somehow stopped from being expanded without break-
ing the state constraints. Although the method described above is simplistic, some increase
in the volume should be expected when allowing for a Lyapunov function with allowed
polynomial degree deg(V (xk)) = 8. This result furthers the notion that the process of
solving the problem is flawed.

6.3.2 Alternative Choice of New Point

Another way to examine how the solver works, is trying to choose specific points to be
included based on previous results. In [1], results such as the one in in Figure 6.5 are
presented.

Figure 6.5: Explicit reproduction of the results in [1]

34

Note that the state constraints are not violated. The level sets found are seemingly ex-
panding towards the upper left and lower right of the constrained state space, most likely
because the contraction constraint is easier to fulfill in those directions. Note also that the
largest set in light color only touches the set Ω in the points where Ω touches the state con-
straints. This implies that such a set should be possible to find. However, with the supplied
code, explicitly choosing a point near the long edge of the ellipsoid Ω causes the program
to crash, not finding a solution. This is without the convexity constraint, so theoretically
the software implementations should be nearly identical. Still, there is a large discrepancy
in the results, and more methods must be tried.

Lowering the Point Increment

Figure 6.6 shows the level set found when reducing the point increment variable incr =
0.01. Even with such a small point increase (the next point to be included is right outside
the ellipsoid Ω), the set found still violates the state constraints.

Figure 6.6: Shorter increment incr = 0.01

This new plot is interesting, in that it gives some insight in how the set is expanded.

35

Figure 6.7 shows the directions of expansion of the level set. This trend of how the set is
expanded is present in all the other figures, but in Figure 6.7 it is even clearer.
The set is expanded in directions perpendicular to the state constraints, i.e. in direct pos-

Figure 6.7: The directions in which the Lyapunov function is expanded

itive and negative directions along the state axes. Seemingly, the extreme points of Ω are
pushed towards the state boundaries (or over them), while the rest of the set follows most
of the curvature of Ω. Comparing this to the results of [1] represented by Figure 6.5, where
the set is expanded more in the direction of the corners of the constrained state space. Ul-
timately, the set S should expand in these directions as well, but it doesn’t. In fact, the
set actually seems constrained in those directions, as it is tangential to Ω in approximately
those points.

The thought that S perhaps was constrained in a way, sparked a new thought: could re-
laxing any of the constraints provide better results? Another question is which constraint
to relax. SOS-optimization will, as discussed in Chapter 2, try to find a PSD matrix Q.
Looking at the output from the optimization, and using the validation technique in Sec-
tion 2.2.2, the matrix Qλu associated with the constraint (4.5f) is found to have a negative
eigenvalue.
Weirdly enough, it is a constraint associated with the input that is violated. In theory, this
should be unproblematic in the first iteration, as a Lagrange multiplier for the set Ω is de-
fined. The poor conditioning on the multiplier leads to another attempt at solving the state
constraint violation problem: relaxing the input constraint.

36

6.3.3 Relaxing the Input Constraint

Figure 6.8 shows the sets obtained after two iterations when the input constraint is changed
to −3 ≤ uk ≤ 3. The effect of the relaxation is quite noticeable, and at first glance the
state constraint violation seems to be solved. However, upon closer inspection the level
set still violates the state constraints. Still, this counts as progress. The level set is now
increasing more in the desired directions, with noticeably lesser constraint violations.

Note that, as a result of increasing the allowed range of uk, the sets Ω and Ωuc have

Figure 6.8: Increased input constraint −3 ≤ uk ≤ 3

increased as well. In fact, Ω now touches all the state constraints, which means that S
now violates all state constraints. Still, the shape of the set is closer to the shape shown in
Figure 6.5, indicating that something is done right.

37

In Combination with Hard Constraint on State Violation

Combining the method discussed in Section 6.3.1 with the increased area for uk yields the
set S in Figure 6.9. The combination actually seems to solve the state constraint violation
problem. The level set is now fully contained within the state constraints, and there is a
noticeable increase in the volume of the level set. The program stops after one iteration,
meaning it is not able to find a larger set within the given constraints without increasing
the degree of the Lyapunov function or input.

Figure 6.9: Increased input constraint −3 ≤ uk ≤ 3, hard constraint on state violation

6.3.4 Discussion

The problem of the state constraint violations was, in a way, solved, in that a larger set
within the state constraints was found. This, however, came at the cost of a larger allowed
input and ad hoc constraints on the Lyapunov function. The application of the final ver-
sion is now limited to systems that are basically unconstrained in the input, not for all
constrained linear systems. In addition, the increase in the set, even though it is present, is

38

not on par with the levels shown in [1], and this for a less constrained system.

6.4 Closing Thoughts

The results show that the convexity constraint was needed, as the earlier formulation could
produce non convex level sets. The next step was to expand the formulation to include
input affine rational nonlinear dynamics, but the complications of the level set violating
constraints halted this progress. Although this seems like an issue with either the solver or
a software bug, the root of the problem was not found even after thorough investigation. A
different SDP solver, SDPT3[18], was tried. The solver unfortunately provided no better
results than MOSEK.

Several different alterations have been attempted, all with moderate success. There are
clearly some underlying faults in the implementation. Reasons other than the ones dis-
cussed could be simple typos in the supplied software, underlying problems with the prob-
lem formulation, or a poor configuration in the settings for MOSEK. The MATLAB code
supplied was quite unorganized, so finding a mistake is difficult. Through several explicit
modifications, and a small, but significant, change in the example, a valid set S was even-
tually found. This will be considered a result, even though it is a weak result.

39

40

Chapter 7
Conclusion and Further Work

7.1 Conclusion

The result of this thesis is that the addition of the convexity constraint on the Lyapunov
function was necessary. The formulation without the constraint was shown to be able to
produce a non-convex level set, which would not sufficiently guarantee the distance from
the optimum. With the added constraint, the Lyapunov function is convex, which in turn
makes the contractivity constraint and the rest of the problem convex. Even if the older for-
mulation had never resulted in a non-convex function, the distance from optimum would
never be guaranteed.

As discussed in Section 6.4, there were large problems with state constraint violations
when the method was implemented. Although an increased level set was discovered, this
came at the cost of explicit value constraints on the Lyapunov function, and an increase
in the allowed input, essentially changing the system description to attain a valid result.
These modifications were made in an effort to achieve a convex level set within the state
constraints with an increased volume from Ω. These modifications, however, should only
serve as guidelines for further research, and should not be implemented on physical sys-
tems. This is due to their ad hoc procedure and limited areas of application.

In conclusion, the problem formulation in [1] was completed with the addition of a convex-
ity constraint on the Lyapunov function. The supplied software implementation suffered
from clear state constraint violations, which were solved by modifying the input constraint
and imposing strict constraints on the level set S. These modifications severely limit the
application of the controlled contractive set method, and should be further developed and
researched.

41

7.2 Contributions of this Thesis

This thesis provides the addition of the convexity of the contraction constraint to the for-
mulation of [1]. The addition was suggested by one of the co-authors of [1], but was
implemented independently. The additions to the problem formulation were implemented
independently as well, with the final result of the convex, increased, level set within the
state constraints reached independently.

7.3 Further Work

Due to the problems with the supplied software material, some of the points originally in
the task description must be passed on to later research. The following problems should
be considered by someone seeking to work further on this formulation.

7.3.1 Solving the State Constraint Violations

Although a solution to the problem of state constraint violations was found in Section
6.3.3, the solution is poor and far from general in application. Further research should
focus on discovering the underlying reasons for the state constraint violations. A few dif-
ferent approaches are writing the software implementation from scratch, modifying the
settings in the SDP solver, and thoroughly search the methodology for mistakes and flaws.

With this problem solved, the application with higher order Lyapunov functions and higher
dimensional systems should be considered.

7.3.2 Update the Algorithm for Finding a New Point

The current way of finding a new point to include in the next level set is suboptimal, as
discussed in Section 5.3. This development is not critical, but may drastically improve
performance, so further research into this area should be considered.

7.3.3 Input Affine Rational Nonlinear Dynamics

A new area that should be further explored is the application of the procedure on nonlinear
systems of the form

xk+1 = f(xk) + g(xk)uk.

Where f(xk), g(xk) are continuous functions. For a given timestep k, xk+1 is an affine,
rational function of uk. In theory, this implies that the problem formulation only needs
some few, generalizing changes for application to a nonlinear formulation. Further re-
search ought to include developing and implementing this.

42

Bibliography

[1] S. Munir, M. Hovd, and S. Olaru. Low complexity constrained control using higher
degree lyapunov functions. Automatica, 98:215–222, 2018.

[2] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[3] E. D. Andersen and K. D. Andersen. The mosek interior point optimizer for linear
programming: an implementation of the homogeneous algorithm. High Performance
Optimization, pages 197–232, 2000.

[4] David Q. Mayne James B. Rawlings and Moritz M. Diehl. Model Predictive Control:
Theory, Computation, and Design, volume 2. Nob Hill Publishing, LLC, 2017. ISBN
978-0975937730.

[5] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos.
The explicit linear quadratic regulator for constrained systems. Automatica, 38
(1):3 – 20, 2002. ISSN 0005-1098. doi: https://doi.org/10.1016/S0005-1098(01)
00174-1. URL http://www.sciencedirect.com/science/article/
pii/S0005109801001741.

[6] Alessandro Alessio and Alberto Bemporad. A Survey on Explicit Model Predic-
tive Control, pages 345–369. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
ISBN 978-3-642-01094-1. doi: 10.1007/978-3-642-01094-1_29. URL https:
//doi.org/10.1007/978-3-642-01094-1_29.

[7] C. E. T. Dórea and J. C. Hennet. (a, b)-invariant polyhedral sets of linear discrete-
time systems. Journal of Optimization Theory and Applications, 103(3):521–542,
Dec 1999. ISSN 1573-2878. doi: 10.1023/A:1021727806358. URL https://
doi.org/10.1023/A:1021727806358.

[8] Morten Hovd, Sorin Olaru, and Georges Bitsoris. Low complexity constraint control
using contractive sets. 2014.

[9] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry

43

http://www.sciencedirect.com/science/article/pii/S0005109801001741
http://www.sciencedirect.com/science/article/pii/S0005109801001741
https://doi.org/10.1007/978-3-642-01094-1_29
https://doi.org/10.1007/978-3-642-01094-1_29
https://doi.org/10.1023/A:1021727806358
https://doi.org/10.1023/A:1021727806358

Methods in Robustness and Optimization. PhD thesis, California Institute of Tech-
nology, Pasadena, California, 5 2000.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, New York, NY, USA, 2004. ISBN 0521833787.

[11] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory, volume 15. Siam, 1994.

[12] J. Löfberg. Pre- and post-processing sum-of-squares programs in practice. IEEE
Transactions on Automatic Control, 54(5):1007–1011, May 2009. ISSN 0018-9286.
doi: 10.1109/TAC.2009.2017144.

[13] G. Valmorbida S. Prajna P. Seiler A. Papachristodoulou, J. Ander-
son and P. A. Parrilo. SOSTOOLS: Sum of squares optimization tool-
box for MATLAB. http://arxiv.org/abs/1310.4716, 2013.
Available from http://www.eng.ox.ac.uk/control/sostools,
http://www.cds.caltech.edu/sostools and
http://www.mit.edu/˜parrilo/sostools.

[14] Hassan K Khalil. Nonlinear systems, volume 3. 2002.

[15] H. . Nguyen. Constrained control of uncertain, time-varying, discrete-time systems:
An interpolation-based approach, volume 451 of Lecture Notes in Control and In-
formation Sciences. 2014. URL www.scopus.com. Cited By :11.

[16] Yasuaki Oishi. Direct design of a polynomial model predictive controller. vol-
ume 7, pages 633–638, 06 2012. ISBN 9783902823038. doi: 10.3182/
20120620-3-DK-2025.00174.

[17] Georgina Hall. OPTIMIZATION OVER NONNEGATIVE AND CONVEX POLY-
NOMIALS WITH AND WITHOUT SEMIDEFINITE PROGRAMMING. PhD thesis,
Princeton University, 6 2018.

[18] M.J. Todd K.C. Toh and R.H. Tutuncu. Sdpt3 — a matlab software package for
semidefinite programming. Optimization Methods and Software, 11:545–581, 1999.

44

www.scopus.com

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Torjus Klafstad

An Approximation to Model Predictive
Control with a Modest Online
Computational Demand

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Morten Hovd

June 2019

	Sammendrag
	Abstract
	Preface
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Background
	Model Predictive Control
	Drawbacks
	Explicit MPC
	Approximating MPC with Controlled Contractive Sets

	Thesis Overview

	Fundamental Theory
	Optimization And KKT-conditions
	Sum of Squares Programming
	S-procedure
	Solving SOS Programs

	Lyapunov Control
	Continuous Systems
	Discrete-time Systems

	An Overview of the Procedure and Methodology of Munir et.al.(2018)
	Contractive sets
	Ellipsoidal Contractive Sets
	Controller Design for Higher Order Lyapunov Functions
	Approximating the Optimal Solution
	Problem Reformulation
	Solving the SOS Problem

	Problem Solution Algorithm

	A Discussion on the Solution of Munir et.al.(2018) and Improvements
	Placeholder
	Completing the Formulation

	Methodology
	Adding the Convexity of the Lyapunov Function
	Deciding the Order of the Polynomials
	Choosing a New Point to be Included in the Next Level Set

	Results and Discussion
	The System
	Adding the Convexity Constraint
	Non-Convex Results
	Convex results
	Discussion

	Violation of the State Constraints
	Hard Constraint on State Violation
	Alternative Choice of New Point
	Relaxing the Input Constraint
	Discussion

	Closing Thoughts

	Conclusion and Further Work
	Conclusion
	Contributions of this Thesis
	Further Work
	Solving the State Constraint Violations
	Update the Algorithm for Finding a New Point
	Input Affine Rational Nonlinear Dynamics

	Bibliography

