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Abstract

Robot path planning is the act of �nding a feasible, collision-free path between the start and
goal positions of a mobile robot. E�cient and robust path planning systems are important in
many robotic applications, including autonomous vehicles, planetary exploration and even
agricultural robotics. Many methods for path planning have been developed, each with
di�erent strengths and weaknesses, and some catering to speci�c robotic applications. This
report provides a short review of some existing path planning and exploration methods for 2D
and 3D planning situations, before concentrating on state-of-the-art techniques, focusing on
their potential applications for online planning for autonomous underwater vehicles (AUVs) in
an exploratory setting. The di�erent methods have been evaluated based on simple test cases
and results obtained in the literature based on simulations or real-world data. Advantages and
disadvantages of the various approaches are discussed before an e�cient, safe and dynamic
method combining a three-dimensional Voronoi diagram with an optimal heuristic search
algorithm is presented. Di�erent waypoint generation strategies that facilitate autonomous
exploration are reviewed and methods to guarantee the generation of continuous paths brie�y
examined.

Keywords

3D path planning, Autonomy, Collision avoidance, Path planning, Path smoothing, Robotic
exploration, Survey, Voronoi diagram
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1 | Introduction

Path planning for mobile robots is the process of �nding a feasible path connecting two
points in space. Autonomous robots have seen considerable advancement in recent years

due to the escalating dependency of increasingly complex autonomous systems, and the �eld
of path planning has evolved with it. An autonomous system is a system capable of performing
tasks with little to no human interaction by doing intelligent reasoning based on sensory
information. Such systems are then able to ful�l tasks unaided, even with loosely de�ned goals
and when subjected to dynamic environments. This results in a wide range of commercial,
military and scienti�c applications, including underwater inspections [1], [2], oceanographic
mapping and pipeline inspection [3]; planetary explorers [4], [5]; and aerial drone inspection
[6].

To facilitate these kinds of autonomous operations, the robot itself needs to be able to
perceive its environment and from that information plan actions to ful�l a goal. Good decision
making is directly reliant on su�cient knowledge of the environment, or workspace, the robot
operates in. With state-of-the-art sensor technology, more robust perception systems are ever
available, allowing progressively more potent motion estimation, tracking and localisation,
even in underwater environments — albeit still challenging, particularly with underwater
visual sensors [7]–[9]. Many components in an autonomous robot depend on its sensory
capabilities, one of them is its path planning system. Path planning in itself has been a �eld
subject to extensive research in the past few decades, with increased attention in recent years.
This is largely due to a vast number of applications, including robotics, manufacturing, even
molecular- and computational biology. To date, the majority of work has focused on motion or
path planning for mobile robots in two-dimensional environments.

The path planning problem can in its essence be boiled down to calculating a feasible,
collision-free path given the initial and a goal con�guration or pose. A feasible path is one that
leads the robot from its initial pose to the goal while keeping the robot from interacting with the
obstacle space, as de�ned by sensor data. The robot’s initial pose is estimated using a location,
pose or simultaneous location and mapping (SLAM) technique, while the goal pose can, for
example, be calculated using an exploration technique [10], [11]. Calculation of the path is
performed on a discrete representation of the real-world environment. Popular representations
include graphs, occupancy grids and tree structures. In recent years, a considerable amount of
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1. INTRODUCTION

research has been conducted on robotic path planning, resulting in a multitude of proposed
solutions. The earliest methods were quite computationally expensive, like the one introduced
by [12], solving the piano mover’s problem in doubly-exponential time, making them unsuitable
for online applications. These early solutions were examples of so-called complete algorithms.
A complete algorithm either �nds a solution or, correctly, states that no solution exists.

The algorithm proposed by Schwartz and Sharir in 1983 [12], using Collins decomposition, is
an example of what is often referred to as a combinatorial method [13]. These methods solve the
planning problem by calculating paths through the continuous con�guration space. By doing
certain approximations, i.e. relaxing the notion of completeness, more e�cient algorithms
were developed, namely the sampling-based methods. These methods circumvent the problem
of computational cost by not explicitly constructing the obstacles in the con�guration space.
Instead, these methods rely on a collision detection-based sampling scheme, which is often based
on random sampling. Although this simpli�cation means the loss of algorithmic completeness,
they manage to attain probabilistic completeness, as the probability that the algorithm �nds a
solution converges to one as the number of samples increases.

Due to their e�ciency, these sampling-based methods have become the go-to solution
for many modern robotic applications, as computational power often is limited. This has, in
turn, lead to a myriad of di�erent variants being developed, each with their advantages and
disadvantages. Some methods obtain computational e�ciency even in cluttered environments
or in situations where the robot as a high number of DoF, while others are developed with
the intention of obtaining the most optimal solution. More and more modern applications,
however, push for the need for three-dimensional planning systems. In three dimensions, many
established and computationally feasible methods become impractical without modi�cations
due to the expanded space. The speci�c vehicle dynamics, environment complexity and
additional operation-speci�c constraints then weigh heavily in on which methods are viable.

Looking at autonomous underwater applications, the robot is ideally capable of performing
long-range missions without human interaction. Planning a new path in the case of unforeseen
events then must happen quickly while still providing a guaranteed safe path. The planning
system must, therefore, be online, while also, preferably, taking energy consumption into con-
sideration. The underlying scenario for this work is a partial or fully autonomous underwater
robot with a SLAM system capable of creating a continuously expanding map. The main
objective of this paper is then to create a short survey of the most promising state-of-the-art
methods in recent literature and, based on the constraints of the stated scenario, try to answer
the question of which path planning system is best suited for an underwater exploratory
operation. Advantages and disadvantages of classic and recent state-of-the-art path planning
methods will be reviewed and di�erent strategies for exhaustive exploration of the environment
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based on waypoint generation, as well as techniques for generating smooth paths, will be
discussed.

The report is organised as follows. Chapter 2 gives an introduction to the path planning
problem and how to mathematically represent the robot and the operational environment.
In chapter 3, di�erent well-established methods for 2D path planning and related research
are discussed. Chapter 4 provides some insight into di�erent environment representations
and their use-cases and reviews the methods introduced in chapter 3 their applicability in 3D
path planning. Furthermore, in chapter 5, strategies for performing exhaustive environment
exploration are reviewed and the concepts of safe and energy-sensible planning discussed.
A short summary of the most important points is provided in chapter 6, together with a
proposition for a complete, safe and e�cient path planning system.

1.1 Literature Search

To research the topic at hand, di�erent journals and databases were consulted. The main
databases used were NTNU’s own library database Oria combined with Elsevier’s SCOPUS
database for broader searches. Queries in Oria give results from NTNU’s own digital and
physical sources as well as from subscribed journals. Combining this with results from SCOPUS
provide a wide search-base. From these two databases, more re�ned searches were conducted
through the speci�c journals’ databases that showed relevance to the �eld in question. The most
prominent among the journals used were IEEE, with supplementary searches being conducted
through Google Scholar, among others. Speci�c literature searches included — depending on
the database — queries along the lines of:

• "Exploration + Path Planning : articles & books"

• "Robotic exploration AND autonomous, articles"

• "Path planning"

• "Autonomous AND navigation"

• "Dynamic path planning"

Articles in journals not familiar to the author were tried validated by consulting the list of
the Norwegian accredited journals list for publications 2018, provided by the Norwegian Register
for Scienti�c Journals, Series and Publishers [14]. Articles found in journals on this list were
deemed of satisfactory quality, given that they demonstrated adequate quality in writing and
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1. INTRODUCTION

presentation of results. More recently dated papers were favoured when researching state-of-
the-art methodology, but previous work has also been investigated to examine di�erent view
points and approaches.
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2 | Background Theory

Solving the path planning problem requires the de�nition of an underlying mathematical
representation. This section is heavily based on the works of Latombe, LaValle and

Tsourdos et. al, see [13], [15]–[17] for a more in-depth coverage of the topic at hand.

Similarly to many dynamical systems, the planning problem can be represented using a
state space representation. Each state x ∈ X contains information about the robot’s pose and is
part of a �nite set of states,X . The state space then consists of all necessary information needed
to su�ciently solve the planning problem at hand, disregarding all non-relevant information.
The robot, or agent, transitions from one state to another speci�ed by a state transition function,
f ( · ). This function describes the transition from state x to state x ′ when the agent executes
the action u, calculated by the planner [13], [18]:

x ′ = f (x ,u) . (2.1)

Furthermore, letU (x) denote all allowed actions for each state x . The set of all possible actions
over all states can then be de�ned as in [13]:

U =
⋃
x ∈X

U (x) .

The path planning problem can be generalised to calculating a path from an initial pose Pi to
one or more goal poses, Pд ∈ Xд ⊂ X , where Xд represents the set of goal states.

The ultimate goal of a path planning algorithm can then be described as calculating a
sequence of actions, u, that transforms the initial state xi to a goal state xд ∈ Xд . In the
simpli�ed case where the environment is assumed discrete and two-dimensional, the state
space X can be represented as a graph, with the vertices representing the states. In this case,
there exists a directed edge between x and x ′ i�. there exists a u ∈ U (x) such that x ′ = f (x ,u).
In the case of a continuous state space, the assumption of a �nite state space is no longer valid
as X is no longer countably in�nite [13] 1, and more care is needed when modelling the state
space.

1Countably in�nite set: Any in�nite set which can be put in a one-to-one correspondence with N (countable).
Cardinality: ℵ0.
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2. BACKGROUND THEORY

2.1 Modelling the Path Planning Problem

To be able to relate the robot’s actions and state to its environment, the workspaceW = Rn

it resides in, must be de�ned2. Let O ⊆ W be the obstacle region and A ⊆ W be the space
inW occupied by the robot. The obstacle region is the part of the world that is occupied by
static bodies, such as an exterior wall, a fence or an underwater rock formation, and will in
most cases be �xed inW. The robot, A, will be modelled as a moving rigid-body.

In rigid body kinematics, the act of coordinate transformation is essential. Two concepts
used to execute such transformations are coordinate rotation and translation. In the 3D case,
a robot A can be rotated around any of the three de�ned orthogonal axes. Such a rotation
about a given �xed axis is called a simple rotation. Furthermore, it can be shown that more
complex rotations can be described as a set of composite rotations around the roll (x), pitch
(y) and yaw (z) axes [19]. The rotation matrices for each cardinal axis can be described as a
three-dimensional matrix performing a counterclockwise rotation around each axis.

By combining the rotation and translation of a rigid body, the homogeneous transformation
matrix can be de�ned as follows [19]:

De�nition 2.1.1 A rigid-body transformation is a function, T : A →W, that maps every point
of the rigid-bodyA intoW while preserving the distance between any pair of points p, q ∈ A as
well as the cross-product of any two vectors.
The homogeneous transformation matrix for a 3D rigid body is then given by:

T(t,ϕ,θ ,ψ ) =

R(ϕ,θ ,ψ ) t

0> 1

 ∈ SE(3) . (2.2)

De�nition 2.1.1 assumes R(ϕ,θ ,ψ ) to be any composite 3D rotation matrix, t is the translation
vector and SE(3) denotes the Special Euclidean Group of dimension three, de�ned by [19]:

SE(3) B
T | T =


R(ϕ,θ ,ψ ) t

01×3 1

 , R ∈ SO(3) , t ∈ R3
 . (2.3)

Equation (2.3) then de�nes the group of all 4 × 4 dimensional homogeneous transformation
matrices. Using de�nition 2.1.1, the subspace in the world,W, occupied by the transformed
robot can be de�ned by

T(A) = {T (a) ∈ W|a ∈ A} . (2.4)

2For most cases: n = 2 (2D) or n = 3 (3D).
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Based on these de�nitions, the set of all allowable transformations can be de�ned. This set is
called the con�guration space, C, also known as the C-space [15]. For a robot moving in a three-
dimensional environment, its con�gurations, q, can be represented as q = (x ,y, z,η, ϵ1, ϵ2, ϵ3),
where (η, ϵ1, ϵ2, ϵ3) describes a quaternion q = η + ϵ1i + ϵ2j + ϵ3k [20]. Due to this double
covering of SO(3), two quaternions will correspond to the exact same rotation [21]. More
explicitly, this means that q ∼ −q with respect to spatial rotation.

To de�ne the encompassed space, consider a homeomorphism f : S3 7→ SO(3) [22] with a
kernel f = {±1} equal to the centre of S3. Thus, the co-sets of kerf in S3 de�nes antipodal
pairs, each pair further de�ning a line between them in R4-space. From de�nition 2.1.2 it can
be seen that this is similar to the de�nition of the real projective space, RP3, in terms of the
antipodal map π : S3 7→ RP3, indicating SO(3) = RP3 [23].

De�nition 2.1.2 Real Projective Space
Let Sn ⊆ Rn+1 be an n-dimensional unit sphere de�ned by Sn B

{
x ∈ Rn+1 | |x − y | = 1

}
.

The real projective space of dimension n is then de�ned as the quotient space [24], [25]:

RPn B Sn/{±} .

{±} here identi�es the antipodal points ∈ Sn .

Therefore, the resulting C-space for all 3D transformations can be de�ned as

C = R3 × RP3 . (2.5)

From the de�nition of C in eq. (2.5) it is possible to de�ne two other sets, namely the free
con�guration space, Cfree, and the obstacle region of the con�guration space, Cobst, simply being
the complementing set of Cfree [15]:

Cfree B {q ∈ C | A(q) ∩ O = � } (2.6a)

Cobst B {q ∈ C | q < Cfree } = C \ Cfree , (2.6b)

where A(q) ⊂ W is the closed set of points occupied by the robot when transformed to
con�guration q.

2.1.1 Continuous-Space Path Planning

After de�ning these sets of transformations and representations, the path planning problem
can be de�ned as the search for a set of transformations, T , that transforms the robot from an
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2. BACKGROUND THEORY

initial pose, Pi , to a goal pose, Pд :

T(A, Pi )
T
7−→ T(A, Pд) .

This formulation is more closely related to the act of motion planning. For the case of basic
path planning, this can be simpli�ed to the problem of producing one or more �yable paths,
r (ϖ), connecting Pi and Pд such that [26]:

Pi
r(ϖ)
7−−−→ Pд

Pi (xi ,yi , zi ,ϕi ,θi ,ψi )
r(ϖ)
7−−−→ Pд(xд ,yд , zд ,ϕд ,θд ,ψд) , (2.7)

where ϖ represents the path parameter, e.g. a length variable. A �yable path here refers to a
path that satis�es the given vehicles kinodynamic constraints [17]. The path planning problem
can then be boiled down to generating a collision-free, continuous path, r , from Pi to Pд ,
de�ned as [15]:

r : [0, 1] 7→ Cfree , r(0) = Pi , r(1) = Pд . (2.8)

A much used strategy for solving continuous-space problems is to transform the model
into a discrete-space model. The two main strategies of performing this transformation is
known as combinatorial- and sampling-based planning.

Combinatorial planning here refers to the branch of mathematics called combinatorics,
which focuses on the study of countable discrete structures, including the �eld of graph theory.
Combinatorial planning tries to capture the information in the state space by partitioning
the free space into an exact representation using discrete data structures. By using exact
representations — e.g. visibility graphs — they attain the property of completeness, i.e. if
the problem has a solution it will �nd it or correctly conclude that no solution exist. The
general approach of a combinatorial planner is to �rst compute a representation of Cfree without
approximating, then applying an optimal search algorithm to �nd an optimal path.

Sampling-based planners, on the other hand, doesn’t explicitly characterise the free space
or the occupied space. These methods lets a collision detection algorithm decide whether or
not a given con�guration lies in Cfree. These planners then incrementally search the free space
for a path, gradually revealing more using an obstacle detector. These planners don’t rely on
building a complete map, meaning they don’t compute more than they have to. This makes
these planners more suitable for high-dimensional problems. Two popular methods based on
this scheme is the rapidly exploring random tree (RRT) and probabilistic road map (PRM).
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3 | Path Planning in Two
Dimensions

The path planning problem formulation for practical robot implementation has traditionally
been two-dimensional. One of the main contributing factors to an early spark of interest

in the �eld of path planning was Lozano-Perez and Wesley’s work in 1979 [27]. A majority of the
work in this period resulted in so-called complete methods, such as the work of [12], [28], [29].
The common factor for such methods is that they compute a retraction of C. This endeavour
has been proved PSPACE-hard, with complexity increasing doubly exponentially with the
robot’s DoF [30]–[32]. This is problematic in applications of a higher order, such as planning
for a multi-jointed robot, as the complexity can become too great to solve e�ciently. For
certain applications where online planning is required, these methods will not be satisfactory.
This high complexity sparked the development of more e�cient, but relaxed methods. The
most used methods of this kind are the sampling-based methods. These methods sample C,
usually in a probabilistic manner. This results in the loss of completeness, but they attain the
property of probabilistic completeness. This means that the solution converges to the optimal,
complete solution as the number of samples approaches in�nity.

In the next sections, a few di�erent methods that have obtained good results in various real-
world applications will be presented. Examples include both sample-based and combinatorial
methods. These methods will then be demonstrated on a 2D test case, simulating a cave
environment.

3.1 Arti�cial Potential Field

There have been numerous di�erent methods developed solving the path planning problem.
One of the earliest methods not based on graph representations or grid searches was the
arti�cial potential �eld method [33]. This method represents the workspace as an arti�cial
force �eld, with obstacles exerting repulsive forces while the goal is bestowed an attractive
force, referred to as an attractive pole. There are several ways of representing the attractive
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3. PATH PLANNING IN 2D

potential, but a commonly used potential function is:

Ua(x) =
1
2
ρ(x − xgoal)

2 , (3.1)

where xgoal is the goal position and ρ > 0 is a scaling factor, or position gain and has a
zero-minimum at x = xgoal. Similarly, the repulsive potential can be expressed as

Ur (x) =


1
2η

(
1
κ
−

1
κ0

)2
, if κ ≤ κ0

0 , if κ > κ0
, (3.2)

where κ and κ0 represent the shortest distance to the obstacle and the distance limit of the
potential �eld, respectively. From this the attractive and repulsive forces can be found to be
given as 

Fa

Fr

 = −∇

Ua(x)

Ur (x)

 . (3.3)

Potential �eld-based methods tend to be relatively computationally e�cient, allowing for

(a) Potential �eld planner navigating a stationary
environment consisting of point obstacles.

(b) Example of a potential �eld planner failing to �nd
a path due to getting stuck in a local minimum.

Figure 3.1: Comparison of the arti�cial potential �eld algorithm run on environments of di�erent
complexity.

real-time implementations. However, these methods are not without their disadvantages. Most
notably is perhaps the fact that they are prone to get stuck in local minima, as exempli�ed in
�g. 3.1a and �g. 3.1b. This susceptibility to local minima becomes greater as the dimensionality
of the problem increases. From this, it follows that arti�cial potential �eld methods in modern
literature are primarily used as local planners [34] together with a global planner, e.g. a visibility
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graph-based method as presented in [35].

3.2 Combinatorial Methods

Some of the �rst proposed algorithms to solve the path planning problem can be characterised
as combinatorial methods. These methods usually revolve around building a roadmap. A
roadmap,M, is a graph spanning the current working environment. The roadmap can be
de�ned as follows in de�nition 3.2.1:

De�nition 3.2.1 Roadmap:
LetM be a graph mapping into Cfree and let S ⊂ Cfree represent the set of all reachable points in
the graph.M is said to be a roadmap if the following conditions are satis�ed:

• Accessibility - There exists a path r : [0, 1] 7→ Cfree from q ∈ Cfree to some s ∈ S ∀q, s
• Connectivity - If there exists a path r : [0, 1] 7→ Cfree s.t. r (0) = qi and r (1) = qд , then
there also exists a path r ′ : [0, 1] 7→ S s.t. r ′(0) = s1 and r ′(1) = s2.

From de�nition 3.2.1, the accessibility-condition implies its always possible to connect some
initial state and a goal state to s1, s2 ∈ S, respectively, whereas the connectivity-condition
ensures algorithmic completeness by assuring no missed connections. This roadmap can be
built in many di�erent ways, with some of the most prominent methods including cell decom-
position, reduced visibility graphs, and Voronoi diagrams. These methods are all techniques
for generating a complete representation of the environment, but with di�erent goals. Cell
decomposition methods �rst execute a cell decomposition of the environment before extracting
the roadmap, while the other two generate the roadmap directly. The reduced visibility graph
provides a shortest-path roadmap [15], whereas the Voronoi diagram produces a maximum
clearance roadmap [13]. Even though visibility graphs and cell decomposition have successfully
been applied to solve the path planning problem in multiple studies — see for example [35]—
the main focus in this report will be on Voronoi diagrams. This is mostly due to their clearance
property, which is favourable especially in marine applications, considering the possibility of
uncertainty in locating both oneself and obstacles. The primary downside to these methods
is the large computational cost, especially for more complex environments. To reduce this
cost, methods have been developed that probabilistically build a roadmap. This increase in
e�ciency and simplicity, however, leads to loss of algorithmic completeness. An example of
such a method is the probabilistic roadmap method.
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3. PATH PLANNING IN 2D

3.2.1 Maximum Clearance Planning
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Figure 3.2: Simple example of a 2D Voronoi diagram,
where the generator points are indicated in red.

As mentioned, roadmap methods work by reduc-
ing the free C-space into a subset of connected
lines. The following path search is then done on
this resulting subspace. There are many ways
of constructing such a roadmap, but one well-
established method is the use of Voronoi diagrams.
A Voronoi diagram partitions the environment
into convex regions, or Voronoi cells. Each polygo-
nal region has one generating point pi , and every
point inside a given cell is always closer to that
cell’s corresponding generating point than to any
other generating point. This generated diagram
supplies a maximum clearance roadmap to be used for safe path planning.

De�nition 3.2.2 Voronoi regions [36]
Let

d(x ,A) = inf {d(x ,p) | p ∈ A}

denote the distance between the point x and the subset A, where pi ∈ P is a generator point. The
Voronoi region is then de�ned as

Rk =
{
x ∈ X | d(x , Pk ) ≤ d(x , Pj )∀ j , k

}
.

From de�nition 3.2.2, the �nal Voronoi diagram V(pi ) is then represented by the �nite ordered
list of cells Rk . A simple example of a Voronoi diagram is shown in �g. 3.2. The standard
Voronoi diagram can then be generated in O(n logn) time and updated in O(n) [37]. One thing
to note is that di�erent representations can be achieved by changing the metric d . An example
of such a diagram is the Möbius diagram, using a Möbius-based metric [38]. The shape of the
resulting piecewise paths can then be constructed to best �t the given application. The L2

metric will be used in this work, as the resulting paths will be piecewise linear, which have
advantageous properties with respect to the robot’s guidance system. An example of a Voronoi
diagram of a more complex environment is shown in �g. 3.3. The resulting diagram where
edges wholly or partly inside obstacles have been removed, and the total number of nodes
have been reduced 1, are shown in �g. 3.4.

1These reduced Voronoi diagrams are often referred to as Generalised Voronoi Diagrams (GVD).
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There exist several ways of constructing a Voronoi diagram, but an e�cient algorithm is
Fortune’s algorithm [39] introduced in 1987, also known as the sweep-line algorithm. Once
the diagram has been generated, it is very easy to calculate a path to a target node. The goal
is simply added to the graph, by means of connecting nearest neighbour, before a heuristic
search algorithm is applied. Using an algorithm such as A* results in very quick planning, as
the Voronoi diagram is sparse, resulting in an e�cient search.

One attractive property of the Voronoi diagram, and one of the main reasons for using it in
path planning, comes from de�ning the obstacles as generator points. Doing that, the edges of
each region is composed of the points that are the furthest from any obstacle. Calculating a
path along the edges then results in a guaranteed safe path. For certain applications, it is worth
noting that, albeit giving a safe path, it is almost always sub-optimal wrt. time and energy
constraints. In addition, the path is piecewise linear, resulting in the need of path smoothing
before being fed to the guidance controller [40].

3.3 Sampling-based Methods

The main motivation behind sampling-based methods was the computational burden of the
combinatorial methods. Path planning systems needed to be able to run online, and to deal
with hardware limitations, certain relaxations regarding the discrete C-space formulation had
to be done. Representations of the C-space was then proposed done by random sampling of
the environment, hence the name sampling-based methods.

3.3.1 The Probabilistic Roadmap Method

One of the most popular methods to be based on the sampling paradigm is the probabilistic
roadmap method (PRM), introduced by Kavraki et al. [41], [42]. The PRM is divided into two
phases: a preprocessing — or construction — phase, and a query phase. The preprocessing phase
builds a graph by taking random samples and approximating feasible motions in C in which all
nodes corresponds to certain collision-free con�gurations q ∈ Cfree. A feasible, collision-free
path between a set of nodes is then given by the graph edges. The edges themselves are
calculated by using a local planner, e.g. a straight line planner as used in the original paper.
The given initial and goal con�guration of the robot is added to the constructed graph in the
query phase. From there, the graph is searched to �nd a path connecting qinit and qgoal. This
method randomly samples C and checks if the samples are in Cfree before using a local planner
to add edges between vertices and new samples. Vertices n in the created graph can be assigned
a weight w(n) that assigns a heuristic "risk" to the surrounding region in space. A larger w(n)
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3. PATH PLANNING IN 2D

Figure 3.3: Voronoi diagram of a semi-closed environment where obstacle edges are used as
generator points. Further removing of edges and nodes part of Cobst is needed.
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Figure 3.4: Example of the resulting graph from �g. 3.3 where edges and nodes part of Cobst
have been removed. Green points indicate intersection points and the pink represent the leftover
edges.
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3. PATH PLANNING IN 2D

translates to a tougher region, which in turn increases the probability of the given vertex being
chosen for expansion. This heuristic can, for example, be chosen as the distance from n to the
closest sub-tree not containing n, or be based on connection failure from the local planner, i.e.
increasing the weight if the local planner fails to expand from n multiple times. This failure
ratio can be calculated as

ηf(n) =
Nf(n)

Nc(n) + 1
, (3.4)

where Nf is the number of failed expansion attempts from n and Nc is the number of times the
planner tried to connect n to another vertex. The heuristic weights can then be calculated as

w(n) =
ηf(n)∑

v ∈V ηf(v)
. (3.5)

An example of the PRM in action is shown in �g. 3.5. PRM results in paths that are quite similar
to that of the Voronoi diagram in �g. 3.3 and thus have the same need for path smoothing. The
biggest di�erence here is the increased risk of the PRM-calculated path.

One disadvantage of the PRM method itself is that it works well for holonomic robots, but
is not directly suitable for nonholonomic robots without modi�cations. One such addition was
made in [43], where the roadmap essentially is built up from a set of local feedback controllers
acting as the local planners. Another disadvantage with PRM is their intrinsic problem with
narrow passages between obstacles. Again, modi�cations have been done to address this. A
variant, called obstacle-based PRM (OBPRM) [44], chooses points from Cobst to expand the
roadmap. After choosing a point p ∈ Cobst the algorithm moves in a random direction until it
�nds Cfree. This strategy results in both the ability to handle more narrow spaces, but also a
graph with much fewer nodes than the base PRM. Probably the biggest drawback of the PRM,
however, is the fact that it is not guaranteed to be completely connected. This means that
parts of the map might end up being inaccessible since the roadmap is incapable of covering
the whole Cfree. This is apparent in �g. 3.5, where the upper left corner, around (100,800), and
the whole bottom left part of the map, around (200,400) and downwards, is left inaccessible
due to the incompleteness of the generated map. This can, of course, be �xed by lowering the
connection distance, but at the cost of an increased number of computations. Furthermore,
there have been published proofs that, under certain conditions, PRM-based planners are
guaranteed to fail [45]. This is important to note if one wants to guarantee a robust path
planning system.
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Figure 3.5: Probabilistic roadmap of a semi-closed 2D environment at the resulting path to the
exit. The initial connection distance between nodes was set to 10, with the initial number of
nodes at 500.

3.3.2 Rapidly Exploring Random Trees

Another sampling-based method that has seen much use in recent literature is the rapidly
exploring random tree (RRT) method. RRTs is essentially a data structure that is built by
randomly adding leaf nodes to grow the tree into Cfree. In a way, the RRT expansion is biased
towards the largest Voronoi regions in C [46]. The underlying concepts of the RRT are relatively
simple, leading to a huge amount of o�spring variants being developed.
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3. PATH PLANNING IN 2D

The RRT algorithm works by initialising the initial robot pose xi ∈ Xfree as the root node2.
After initialisation, the tree is continuously expanded by randomly sampling the state space.
New nodes xnew ∈ X are added to the tree i�. xnew ∈ Xfree and the edge connecting xnew and the
existing tree is collision-free. Sampling the state space can be done either by randomly choosing
points and connecting them with straight lines, or by steering the search. This steering function,
shown on line 5 in algorithm 1, chooses the input u that results in the state x ′ ∈ Xfree, using
eq. (2.1), that is closest to xnew. x ′ is then added to the tree, given a collision-free path. Using
this steering function, the vehicle dynamics can be included in the tree expansion, resulting
in nodes the vehicle actually can reach by applying the input u. By nature of the performed
expansion, the RRT algorithm is biased towards unexplored parts of C [46]. An addition that
can be made to this method to force the expansion of the tree towards the goal is to use the
goal position as the sample at certain intervals.

xnew

xrand

Figure 3.6: Illustration of the RRT expansion process. The random sample xrand (orange) is found
by following the steering function. The new node xnew (yellow) is found to be the point along
the steered line closest to the random sample. This node is then added to the existing tree.

A nice feature of the resulting graph, is that it will always be connected, which is not
always the case for the PRM method. Another advantage of this method, using this state
space formulation, is the possibility to easily incorporate the dynamics of the speci�c robot in
question, resulting in trees that conform to the given kinodynamic constraints. One drawback
however, which holds for all randomised planning algorithms, is that the ideal metric ρ is not

2Xfree = Cfree for basic path planning.
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Algorithm 1 GenerateRRT (xi , N )
Input: Initial state xi , num. vertices in RRT N
Output: RRT graph G(V, E)

1: G.Initialize(xi ) . xi as root, edges are empty
2: for n = 1 to N do
3: xrand = RandomState( )
4: xnearest = NearestNode(xrand, G)
5: xnew, u = Steer(xnear, xrand)
6: if xnew ∈ Xfree then
7: G.AddVertex(xnew)
8: G.AddEdge(xnear, xnew)

return G

easily estimated [47]. Di�erent metrics and their requirements are discussed more in-depth in
[13].

Comparing �g. 3.5 and �g. 3.7, it can be seen that the resulting data structure representing
the environment is much larger for the PRM method as opposed to the RRT method. This is
largely due to the fact that the PRM algorithm builds the whole graph before �nding the path,
whereas the RRT algorithm continuously builds towards the goal, stopping when the goal is
reached. This means that the ideal method-of-choice will be dependent on their application. In
general though, a tree structure is easier to maintain than a graph with respect to memory
requirements. This argument also holds for the graph-version of the RRT, the rapidly-exploring
random graph (RRG) [48].

The introduction of the RRT algorithm further sparked numerous o�spring algorithms.
The main goal of these was to increase e�ciency, increase optimality, and in general solve
some of the mentioned problems - e.g. the problem of narrow passages. As this list is growing
rather large, only a few of them will be discussed here, namely the RRT*, the bi-directional
RRT, and the RRT*FND. The bi-directional RRT is a simple extension that alternates between
expanding the tree rooted at the start node and the tree rooted at the goal node. This has been
shown through experiments to often be more e�cient in practice [16]. A simple extension
such as this helped solve almost-closed environment problems, such as the bug-trap problem,
by expanding one tree from the inside and one from the outside.

RRT* works very similarly to the basic RRT and builds on the brie�y mentioned RRG, but
converges to the optimal solution by adding two main features: a near-neighbour search and
tree-rewiring. The near-neighbour search works by de�ning a spherical area around the new
node and �nding the best parent node within this area. The radius ρ of this area is determined
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3. PATH PLANNING IN 2D

Figure 3.7: Example path found by the basic RRT algorithm together with the resulting tree.
Solved using MATLAB and its costmap implementation using a minimum turning radius of 15 m,
Dubins path interpolation, and a bias towards the goal pose.

by:

ρ = γ

(
logn
n

) 1
d

, (3.6)

where n is the number of nodes in the tree, d is the spatial dimension and γ is a parameter
based on the speci�c characteristics of the environment [48]. Searching through this circular
neighbourhood is similar to how the RRG algorithm and the RRT*FND includes new nodes,
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and is illustrated in �g. 3.9. The rewiring happens within the same radius, updating the
edges between the encompassed nodes to minimize edge weights between nodes, similar to
what is shown in �g. 3.9. These additions results in a path that in general are much less
rough due to the local optimisations done underway. A further extension of this include the
removal of redundant nodes, leading to a straighter path. These improvements in path quality
included in the RRT* leads to a substantial increase in runtime; from tests the runtime was
roughly tripled, leading to a weighting between optimality and computational e�ciency. The

(a) Example path from RRT in a relatively simple
environment.

(b) RRT* obtaining a shorter and smoother path than
RRT due to the local optimisations. RRT* used ap-
proximately three times as long to calculate the �nal
path.

Figure 3.8: Comparison of RRT and RRT* implemented in Python, credit to GitHub-user yrouben.
Experiments were run using Google Colaboratory.

main disadvantages of the RRT* is precisely the mentioned increase computational e�ciency.
Another thing to keep in mind is that neither RRT nor RRT* revisit the already built tree
when traversing to check for any new obstacles, which can occur in a dynamic environment.
Furthermore, RRT and RRT* also tend to generate a rather large number of nodes. An attempt
was made to address this, reducing the linearly increasing memory usage of the RRT* to the
�xed memory usage of the introduced RRT*Fixed-Nodes (RRT*FN) algorithm [49]. A very recent
algorithm that addresses the memory usage, the path optimality and the issue of dynamic
environments, is the dynamic RRT*FN (RRT*FND) [50], building on the RRT*FN algorithm.

In the growth phase, the RRT*FND algorithm builds the tree structure identically as RRT
until the number of nodes reaches a set maximum allowed number. At this point the forced
removal activates, removing leaf nodes as long as the leaf node in question is not the last node
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on the solution path. When the initial solution is found the algorithm continues to build the
tree until the robot initiates movement. Following this, the algorithm updates information on
any obstacles at every node the robot reaches. Robot motion is then stopped if a collision is
detected with any segments between current node and the goal. The planning stage is then
rerun. The already visited nodes of the tree, as well as the nodes colliding with the obstacle(s)
are removed. RRT*FND will then try to connect the rest of the tree with the goal state, possibly
regrowing the current tree basing these steps on greedy heuristics. The simulations performed
in [50] show that the RRT*FN algorithm outperforms RRT* in both runtime and the success rate
of �nding a path in a dynamic environment. While RRT*FND gives signi�cant improvements in
runtimes for complex environments, it does, however, only obtain marginally faster runtimes
in simpler environments — even at times having a slower runtime due to initial overhead.

4

2

3

1

Figure 3.9: Illustration of the initial tree expansion of the RRT*FND algorithm.
1) A circular area encompassing the new node is searched. 2) The new node
is added to the existing tree. 3) & 4) The rewiring is done by optimising the
edges connecting the nodes, before any child nodes connecting a path with a
higher cumulative cost is removed.
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3.4 Graph Search Algorithms

In 2D path planning, heuristic graph search algorithms have long been the go-to method for a
vast number of applications. This is partly due to the ease of which the path planning problem
can be represented using a graph. One of the most popular environment representations for
path planning is the occupancy grid. With this representation as a basis, it becomes simple to
implement graph search algorithms for the sake of path planning, since each cell in the grid
can be represented as a node One of the most used search algorithms is the A* algorithm. A* is
an extension of Dijkstra’s famous algorithm. It calculates an optimal path wrt. a cost function
between a start and a goal node. The cost can represent di�erent optimality conditions, e.g.
path length or energy consumption. A* di�ers from Dijkstra in that it includes a heuristic
that, for a given node, estimates the cost from that node to the goal. For completeness, the
pseudocode for A* is shown in algorithm B.1.

Due to its simplicity and performance, A* has seen much use in path planning. From its
popularity, it has received a number of extensions such as lifelong planning A* (LPA*), seeking
to reduce the cost of replanning, and the weighted A*, sacri�cing optimality for a faster runtime.
The biggest drawback of A* is the above-mentioned computationally expensive replanning in
the case of a dynamic environment. There are many proposed ways of handling this, but the
two main successors that will be discussed here is the dynamic A* and D*-Lite algorithms.

3.4.1 Dynamic A*

Dynamic A*, from now on referred to as D*, seeks to reduce the A* cost of replanning when plan-
ning in dynamic environments, while still keeping the optimality and completeness properties
of A*. D* was introduced by A. Stentz in 1993 [51]. Di�ering from A*, the D* algorithm performs
its graph search backwards from the goal. Each found node then contains a back-pointer to the
next node as well as the cost from that node to the goal. The algorithm completes when the
initial node is reached. If an obstacle is encountered along the way, all nodes that are a�ected
by the new information are placed in the OpenSet, which have the same functionality as in
A* (algorithm B.1). The directly a�ected nodes’ weights are then modi�ed to account for the
obstacle information, before a new path is calculated.

D* became the go-to search algorithm for robots in dynamic environments after its intro-
duction. It has since been more or less totally replaced by another algorithm, namely D*-Lite,
with even the creators of D* transitioning to using D*-Lite. This is mainly due to the fact that
the D* implementation was somewhat complicated and that the D*-Lite algorithm usually is
more e�cient.
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3.4.2 D*-Lite

The D* algorithm has shown good results in dynamic environments, as mentioned. One of
the main problems is that it is somewhat complex to implement. To account for this, another
algorithm was developed based on LPA*, namely the D*-Lite algorithm [52]. This algorithm
is, in essence, simpler and can be implemented with fewer lines of code. D*-Lite works in
much the same way as the D* variant Focussed D* [53], in that a heuristic is used to focus the
search. The non-optimised version of D*-Lite based on heaps is - for completeness - shown in
algorithm B.2. Alternatively, see [52] for the optimised version.

The algorithm uses д(v) to represent the estimate of the starting distances for a node,
similar to the д−value in algorithm B.1. Furthermore, it de�nes rhs(v) as alook-ahead value
based on д(v), which is de�ned as

rhs(v) =

0 ifv = vstart

min
v ′∈v .π

{д(v ′) + c(v ′,v)} otherwise ,
(3.7)

where v .π represents the predecessors of node v . An important note here, is that, since D*-Lite
begins at the goal node, the de�ned predecessors corresponds to successor nodes in an A*
search.

rhs( · ) then checks the value of a node one step ahead. If rhs(v) = д(v), then v is said to be
consistent. D*-Lite keeps all inconsistent nodes in what corresponds to the OpenSet, where
they are further re�ned.

Initially, only the goal is inconsistent. The algorithm then goes through each predecessor,
checking for inconsistencies and updating rhs and д values until the start point is found. If at
any point during the execution of the found path and obstacle is encountered, the algorithm
engages replanning. The replanning stage checks all edges connecting the newly a�ected cells
until a new path is found. D*-Lite then performs the replanning much faster than compared to
A*, as it only considers the locally a�ected areas. Similarly to A*, D*-Lite can easily include a
heuristic h to guide the search based on some critera.

3.5 Summary

Probabilistic planning have long been the go-to methods for online path planning, largely due
to their simplicity and e�ciency. RRT and its variants seem to be the most promising to test in
three-dimensional planning, much due to their straightforward implementation and the ease
of which vehicle dynamics can be included.
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For planning based on graph searches using grid maps, it is worth noting that they su�er
from what is known as resolution completeness. This refers to the fact that the calculated
path’s optimality is constrained by the grid’s ability to capture the environment, i.e. the grid
resolution. Thus the path will only be optimal if the grid itself is optimal, and one would need
to be conscious of the grid choice.

Search algorithms could instead be applied to an already generated graph, e.g. using
the Voronoi method. The big advantage then is that the Voronoi diagram is a sparse graph,
resulting in the possibility of a very e�cient search. An e�cient global planner could then
be implemented by combining the Voronoi diagram with an A* search. Experiments show
that searching through a sparse graph representation of a complex environment using A* can
be several hundred times more e�cient than searching through a grid representation of the
same environment or by doing random sampling through RRT* [54]. This then seems as a very
promising way of designing the path planning system, as long as the sparse graph construction
is performed e�ciently enough.

When it comes to choice of search algorithm, the two main alternatives are A* and D*-Lite.
Experiments performed to compare search algorithms indicate that A* is the preferred choice
in simple environments or when the environment is sparse — as is the case with a Voronoi
graph —. In most other cases, the D*-Lite triumphs over A* when looking at run-times, with
D*-Lite also appearing to give better results when more than one optimal path exists [55]. For
these reasons, A* could then be used as part of a global planning system on a global graph
representation, whereas D*-Lite could be implemented as part of a denser, grid-based local
planner, possibly taking ocean currents and other disturbances into account. It is important to
note, however, that both the A* and the D*-Lite converges to the optimal solution.

The next chapter introduces some of the problems encountered when extending the path
planning to three dimensions. A few more state-of-the-art sampling-based planning methods
are discussed before methods using 3D graphs for planning are more closely studied.
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4 | Path Planning in 3D

An increasing number of modern robotic applications are developed with the intention of
operating in more complex and higher dimensional environments. Because of this, the

need for higher-dimensional planning systems only grows. Planning in a three-dimensional
environment quickly becomes much more di�cult and computationally expensive compared
to its two-dimensional counterpart. Section 3 introduced a set of methods used for the two-
dimensional case. Most of these methods can be extended to three dimensions, but there
are a few aspects that need to be considered more thoroughly, namely the environment
representation. The environment representation has a huge impact on the e�ciency of the
planning system, and must, therefore, be chosen carefully.

Path planning can loosely be described as a two-part problem: (i) modelling the environment
(ii) calculating the path through the constructed representation under the given constraints. The
next section introduces some of the most used approaches for representing the 3D environment
for use in a path planning system.

4.1 Representing the Environment

Accurately describing the world the robot operates in is key to the path planning process. The
way the world is represented will have a big impact on the performance as well as on the
quality of the calculated path. In general, the path planning will be more e�cient if there are
fewer nodes in the map and more accurate if the given nodes match more closely to the world
itself. There are many di�erent ways of representing the environment, but broadly speaking
they can be categorised as topological or metric1. A topological representation describes the
environment without explicit references to numeric data. I.e. it models the environment as
a set of nodes, possibly describing features, with edges between them containing relational
information. Metric mapping, on the other hand, directly utilises a certain data structure in
which waypoints can be explicitly stated based on global data. Metric methods tend to favour
optimal path-methods and have become the most popular.

Numerous representations exist, so this paper will focus on a few of the most used metric
techniques. The next section will introduce the most popular representations, namely the

1Commonly also referred to as qualitative and quantitative, respectively.
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Voronoi diagram, the occupancy grid, and the octree. The rest of the chapter will discuss
three-dimensional path planning methods.

4.1.1 Voronoi diagrams

Voronoi diagrams, as introduced in section 3.2.1, create a graph in which paths maximally
distant from obstacles can be calculated. This results in very safe paths, which is prefer-
able for autonomous underwater operations. Algorithms have been developed that generate
d−dimensional Voronoi diagrams based on convex hulls inO(n log r ) time for d ≤ 3 [56], where
r is the number of already processed points in the diagram. This allows e�cient generation
as long as n does not grow too large. An example of a three-dimensional Voronoi diagram is
shown in �g. 4.1. For mapping and exploration in three dimensions, however, the number of
points can be expected to grow quite large. Voronoi diagrams representing d−dimensional

space require O(n
⌈
1
2d

⌉
) storage space. This requirement is linear in the 2D case, but exhibit

polynomial growth for d ≥ 3. Reducing the diagram is, therefore, of interest.
The reduction — or simpli�cation — of Voronoi diagrams, is widely used in path planning.

These diagrams are known as generalised Voronoi diagrams (GVD) 2. An example of a GVD is
shown in �g. 3.3. Simplifying the diagrams in this manner is advantageous in path planning, as it
results in fewer nodes to be searched through while retaining the maximum clearance property
for safe planning. Even further reduction is possible by a process known as skeletonisation,
reducing the graph to a very sparse representation. Planning over the skeleton graph can
result in very e�cient path planning [54], but requires e�ciently processing sensor data and
the possibility of incremental graph generation.

4.1.2 Occupancy grids

Occupancy grids are perhaps the most used representation used in robot path planning to date.
lergely due to their simplicity. An occupancy grid structures the environment into a discrete
grid with a speci�ed resolution. Each cell in the grid is then given some value depending on
whether it is free, occupied or unknown. This occupancy information can be preset by some
a priori knowledge — e.g. from a pre-built map — or be determined from real-time sensor
information, like in a SLAM-setting. The occupancy is usually represented in one of two
ways: (i) binary (ii) probabilistic. Binary grids simply assign each cell a true or false value
depending on whether or not it is occupied by some obstacle3 The probabilistic map is slightly
more complex and is the most common occupancy representation. This representation assigns

2GVDs are also known as the discretised variant of the medial axis, also referred to as a topological skeleton.
3A cell with a value of true is usually determined to be occupied.
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4. PATH PLANNING IN 3D

Figure 4.1: A three-dimensional Voronoi diagram cre-
ated from points inside a cubic region. Generated using
the voro++ library and rendered using POV-Ray.

occupancy values from calculated probabilities, with probabilities close to 1 indicating a high
certainty for a cell being occupied. Cells with probabilities close to 0.5 are often referred to as
unknown cells. In a mapping setting, these occupancy probabilities are calculated as

p(mi | z1:t ,x1:t ) =
∏
i

p(mi | z1:t ,x1:t ) ,

where p(mi ) denotes the probability of a speci�c cell i being occupied, z1:t being the set of
measurements up until time t and x1:t is the set of robot con�gurations or states up until time t .
Figure 5.1 shows an example of a probabilistic occupancy grid, where light gray cells represent
free space, dark gray cells indicate unknown space and black cells illustrates obstacles.

Grid representations are not without disadvantages, however, with the main drawbacks
being the denseness of the representation and their problems with resolution completeness.
The denseness simply results in a larger number of nodes having to be evaluated during a
search compared to e.g. sparse graphs. Due to this, grids are better for smaller environments
or for applications where a denser set of information is needed. Resolution completeness, or
digitisation bias, refers to the errors of quantising the real world as grids. In other words, cells
including just a sliver of an obstacle are marked as occupied, even though the majority of the
cell is free space. This means the optimality of the calculated path, for example with respect
to path length, is dependent on the grid resolution. Occupancy grids have traditionally been
represented as regular grids, but the problem of resolution completeness can be overcome to a
certain degree by instead representing using octrees.
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4.1.3 Octrees

Octrees is a data structure that is commonly used in search and optimisation algorithms as
well as in image processing. Octrees are most easily explained through their two-dimensional
equivalent: quadtrees. Quadtrees structure the data by dividing a square portion into four
smaller squares, hence quadtrees, and recursively subdividing into four quadrants. In this
representation, more "interesting" parts of the environment have a deeper subdivision. E.g. an
image-based map with clustered obstacles can result in some parts of the quadtree being very
deep with each sub-cell representing one pixel, whereas parts of the map with no obstacles
might be represented by larger sub-cells of four pixels, as illustrated in �g. 4.2. Quadtrees
are mainly used to partition two-dimensional space, e.g. to use as 2D navigation maps for
marine surface vehicles (MSVs). To accommodate the third dimension, the octree encoding
was developed [57]. This data structure is analogous to the quadtree but instead partitions the
three-dimensional space into octants. The main advantage of these structures compared to the
regular grid is that the problem of too crude a quantisation is reduced due to the increased
resolution of areas in or close to Cobst. As a result, the quad-/octrees generally consists of fewer
cells than their grid counterparts. A comparison between a 2D occupancy grid and a quadtree
representation is shown in �g. 4.2. The occupancy grid is the same one as shown in �g. 5.1.

4.2 Sampling-based 3D Planning

As tried exempli�ed in section 4.1, the way the environment is represented is highly dependent
on the speci�c application. This also holds for the planning algorithm, even more so for 3D than
for the 2D case. Due to this, the methods presented in section 3.1 will be evaluated with their
applicability towards the case of an exploratory AUV in a dynamic and unknown environment.

Much of modern research on 3D path planning is based on numerical optimisation methods
[58] which can give very good results, but tend to be very computationally expensive. In turn,
this leads to o�ine planning methods. Work has been done to increase the computational
e�ciency of numerical methods such as to facilitate online planning. This does, however,
result in loss of global optimality Due to this, state-of-the-art methods today are usually
sampling-based. Most of the discussed methods in this section will, therefore, fall into this
category.
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4. PATH PLANNING IN 3D

Figure 4.2: Comparison between an occupancy grid and the correseponding quadtree represen-
tation. Empty areas results in larger, empty cells, giving a more compact representation wrt.
storage. Left: Screenshot from a 2D SLAM simulation based on a 2D occupancy grid. Right: The
same screenshot, but here represented using a quadtree. (The grid overlay in the left image is not
indicative of the occupancy grid resolution.)
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4.2.1 The RRT Family

Path planning for more constrained vehicles such as an AUV or �xed-wing UAV imposes
certain constraints on the quality and smoothness of the calculated path. This becomes one of
the main problems of sampling-based planners such as those part of the RRT-family. Methods
like the RRT* and its variants have tried to partly overcome this by producing more natural
looking paths. The calculated path can then be further smoothed by using techniques such as
Dubin’s paths, Bezier curves or Fermat’s spirals.

The Spline-RRT* (SRRT*) method [59] tries to include the smoothing in the planning stage
such as to avoid costly post-processing. This method includes a Bézier curve-based spline
method to calculate a smooth path for a UAV in a 3D environment. Being based on the RRT*,
this method results in an asymptotically cost-optimal path that satis�es the constraints imposed
by the environment and the vehicle dynamics. The main drawback of this method is it’s slow
runtime, resulting in it only being useful as an o�ine planner. This high computational cost
is due to its RRT* basis, which doesn’t cap the number of nodes, leading to a very large tree,
and its extra computations when rewiring the tree. For methods based on RRT*, this drawback
must be handled to facilitate online planning, as this leads to slow convergence as well as
heavy memory usage.

In other relatively recent methods, such as the RABIT*, RRT*i, DT-RRT, and CARRT*,
these drawbacks have been tried addressed by using di�erent sampling strategies such as
two-stage sampling[59], uniform sampling and goal-biased sampling [60]. This improved both
the convergence and the memory requirements, but they are still in need of improvement to
guarantee robust online planners. One interesting concept to include is the modi�cations added
to the RRT*FN/RRT*FND algorithm discussed in section 3.1, where the maximum number of
nodes are kept constant allowing for a smaller memory requirement. It would, therefore, be of
interest to extend and test the RRT*FND in three-dimensional environments.

Another very recently proposed method is the RRT*-Normal (RRT*N) [61]. This method
seeks to reduce the computational time by directing the state space sampling by using a
normal distribution, hence RRT*-Normal. This is done by only generating points within a
neighbourhood of the straight line between qi and qд , L as speci�ed by a speci�ed standard
deviation. This standard deviation is suggested to be based on the distance between qi and
qд or on the size of the largest intruding obstacle projected on the normal of L. Using this
constraint on the tree expansion leads to a much lower number of total nodes, while also
focusing the search towards the goal. Conducted simulations in [61] indicate that this method
is roughly three times faster than RRT* and gives shorter paths while also having a much
higher success rate. The original authors are currently working on extending this method to

31



4. PATH PLANNING IN 3D

three dimensions, and it would be of great interest to see in practice.
The quality of the path itself is still of concern. Due to this, a post-processing step is

likely needed. This step usually consists of pruning and smoothing. For an underactuated
system such as an AUV, and in general, it is preferred to reduce the number of unnecessary
course changes caused by redundant waypoints or nodes. Because of this, pruning is usually
performed. Similarly, to make sure the path supports the dynamics of the robot, smoothing is
applied. This can be done in many ways, e.g. using a C2-continuous clamped B-spline method
[62] or 3D Dubins paths [63] (see section 5.2 for a more detailed discussion of smoothing
techniques). This post-processing step needs to be e�cient as to support frequent updates for
an online planner.

In section 3.3.2, the importance of the correct choice of metric was brie�y mentioned. For
nonholonomic robots in 3D, for example, the Euclidean metric fails to completely capture the
ideal cost of a speci�c node. Taking the SRRT* as an example. The utilised spline-based metric
provides a fairly good path, but results in unsatisfactory runtimes with simulations exceeding
several minutes. Choosing the right metric is thus essential as they can limit the optimality of
the path as well as the total planning time [64].

4.3 Combinatorial 3D Planning

Much of modern planning research concern rapid mobile robots in complex settings, such as
a UAV in a cluttered environment. In such cases, combinatorial methods are usually imprac-
tical due to the computational cost of generating the environment representations. For an
underwater robot in a much more sparse environment, however, such methods might just be
applicable, if not preferred. As mentioned in section 3.2, there are several di�erent ways of
representing C to facilitate a complete planning algorithm. These include visibility graphs, cell
decompositions, shortest-path roadmaps and Voronoi graphs. Due to some of the disadvantages
related to cell decomposition methods, e.g. combinatorial explosion, limited granularity and
infeasible solutions [65], they will not be discussed further in this paper.

Underwater applications have, as mentioned, traditionally had path safety as the main
priority, meaning that the path should always keep good clearance to all detected obstacles.
This clearance is automatically guaranteed by the Voronoi representation, leading to a very
promising planning method for underwater operation. Due to this, together with the relative
computational e�ciency of the Voronoi diagram , the Voronoi diagram is deemed the best
method for underwater path planning. Furthermore, recent research shows that Voronoi
diagrams perform well for marine settings [36], [66].

Recent articles showcase the practicality of Voronoi diagrams for marine surface operations
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[36], [66] as well as its feasibility for use in three-dimensional underwater autonomous applica-
tions [63]. This proposed method uses a Voronoi diagram representation of C calculated using
the quickhull algorithm [56], where the generator points are points along the bounding boxes
placed around obstacles. To limit the generated Voronoi diagram to the region of interest, a set
of random vertices are added along the edges of Cfree. They then apply the Yen-modi�cation of
Dijkstra [67] to search for the K optimal paths. Thus, if the most optimal path is found to be
inaccessible, the next optimal path can be used. Path segments are further smoothed by the
use of 3D Dubin paths. The local planner incorporated is also based on a Voronoi diagram, but
this local diagram is calculated inside a local subspace in which the detected moving obstacle
resides. This subspace is calculated based on the observed and estimated obstacle positions and
is based on the closest time of approach (tC ) and closest point of approach (dC ), de�ned as [63]

tC =
(pR − pO ) · (vR − vO )

‖vR − vO ‖

dC = ‖(pR + vRtC ) − (pO + vOtC )‖ .

Here pR , pO refers to the position vectors of the robot and the obstacle respectively and vR , vO
refers to the velocity vectors of the robot and the obstacle respectively. After de�ning the
obstacle subspace, the new collision-free path is calculated with the �rst and last vertex being
the intersections between the original path and the replanning subspace.

The method outlined in [63] shows the applicability of a Voronoi-based planner in a 3D
underwater environment. An important note regarding this implementation, however, is that
they assume all obstacles known and static (with the exception of the one moving obstacle).
In an exploratory setting, this is not known. Placing bounding boxes around detected while
exploring is also likely not feasible, as this would require e�cient object detection techniques
applicable to point clouds. It is, therefore, fair to say that this assumption does not hold for
the intended use-case. When obstacle positions are unknown, it is necessary to estimate their
placement online based on the sensor or SLAM data. One way of doing this could be by using
a clustering algorithm, such as DBSCAN [68], to estimate point cloud clusters. From these
clusters a minimum bounding polygon could be created using a convex hull algorithm [69].
The polygon’s de�ning points could then be used as Voronoi generator points, such as in [63],
before nodes and edges inside the polygon can be removed from the resulting Voronoi diagram.
An example of running DBSCAN clustering on a point cloud from the KITTI dataset (�g. 4.3)
is shown in �gure �g. 4.4 and a corresponding bounding box around a single cluster is shown
in �g. 4.5. The results are not perfect and the clustering parameters needs tuning based on the
intended application and environment, but it illustrates the applicability of DBSCAN combined
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4. PATH PLANNING IN 3D

Figure 4.3: Real-world point cloud from the KITTI dataset [70].

with a convex hull algorithm for roadmap generation. Another way of generating the Voronoi
diagram, that is based on the concept of skeletonisation introduced in section 4.1.1, is by way
of signed distance �elds [54].

In a complete system, the input to the path planner is the SLAM-map. SLAM algorithms
can be characterised as dense or sparse based on the characteristics of this generated map [7].
Under the assumption of a sparse SLAM-map, the generated map is essentially represented as
a sparse point cloud. Since no such thing as perfect sensors exists, especially not in underwater
settings, this map is created from noisy data, giving rise to uncertainties. Directly generating a
Voronoi diagram from this 3D point cloud could then result in a large number of nodes having
edges colliding with Cobst between them. A method that might be applicable to handle this
is based around the generation of a GVD-based skeleton graph by incrementally calculating
the Euclidean signed distance �eld (ESDF) [54], [71]. The initial step in doing this, is to �rst
calculate the truncated signed distance �eld (TSDF) and from this estimate the ESDF.

Distance �elds is essentially a description of the inter-surface space. Each point in a
distance �eld contains the distance from that point to the closest surface. TSDFs are based on
the projective distance between a point and an obstacle, i.e. the relative distance between the
sensor and the obstacle along the sensor’s line-of-sight (LOS) [72]. Compared to a full distance
�eld, TSDFs are only based on partial observations. Thus, instead of building the complete
�eld, it is focused inside small positive and negative distances around the surface. These
distances are called the truncation radius, and describes the maximum and minimum values
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Figure 4.4: Result of a DBSCAN run on the point cloud shown in �g. 4.3. Output is generated by
using Python bindings for the PCL C++ library and the scikit-learn Python library.

Figure 4.5: Example of a bounding box around a single DBSCAN cluster from �g. 4.4. More
sophisticated results can be obtained by using e.g. Chan’s algorithm [69] or the Quickhull
algorithm [56]. The estimated cluster centre is marked in red.
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4. PATH PLANNING IN 3D

of the distance �eld. Since the TSDF only operates within the truncated area it is relatively
e�cient to calculate. A simple example illustrating the TSDF is shown in section 4.3. A more
complete example on a point cloud is shown in �g. C.2.

Sensor Surface

Dmax

Dmin

Figure 4.6: Illustration of how the TSDF allocates distance values. Red
cells indicate positive values whereas cells on the blue side of the
spectrum indicate negative samples.

From the created TSDF, the ESDF if incrementally generated, which is then used to calculate
the GVD. The resulting GVD is then further thinned, before the skeleton is constructed by
preserving the best nodes, connecting them with edges and �xing any unconnected subgraphs.
The best nodes, in this case, are chosen using a k-D tree, as the nodes in each neighbourhood
that is maximally distant from obstacles.

The combination of a sparse graph and a heuristic search, as mentioned in section 3.5 and
as exempli�ed in [54], makes for very e�cient planning. Experiments show the e�ciency of
the method, and results show that the use of a sparse A* graph search produces a path 800
times faster than with a standard RRT* algorithm run on the ESDF [54]. Figure 4.7 shows
an example of the sparse graph generated via the use of distance �elds applied on a dataset
from ETH ASL. In �g. 4.8, the path from a set start and goal pose is shown. Results from an
additional test case is shown in �gs. C.3 to C.4.
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Figure 4.7: Resulting sparse graph generated via the distance �eld method described in [54],
visualised in RViz.

4.4 Summary

In addition to algorithmic e�ciency in the planner, the environment needs to be represented
e�ciently to obtain an online path planning system for three dimensions. This chapter discussed
three of the most common and promising environment representations presently used in
modern path planning systems. Occupancy grids is probably the most used one, and provides a
basic framework for de�ning free and occupied space together in an intuitive grid model. This
representation still su�ers from resolution completeness and the intrinsic grid density discussed
in section 3.5. The density being the biggest problem if it is to be used as a global 3D map.
Octrees are a natural substitute to the regular 3D grid, as they provide a sparser representation
with increased resolution in neighbourhoods surrounding obstacles, as exempli�ed in �g. 4.2.
By basing the 3D occupancy grid on octrees, a much more memory e�cient representation
can be obtained, where random queries can be completed in O(logn) time. Furthermore, in
practice, logn is bounded by the tree depth, resulting in a constant upper bound [73].

Voronoi diagrams, being the third discussed alternative, poses a promising alternative,
basing the environment representation on the medial axis de�ned by the surrounding obstacles.
The sparseness obtainable through the related GVD can result in extremely e�cient planning
queries. Coupling the sparseness with the maximum clearance property results in the possibility
of a very robust and safe path planning system. Practical experiments is needed to verify that

37
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Figure 4.8: Path calculated based on the sparse graph in �g. 4.7. The blue path is the route through
the sparse graph, the cyan path is the smoothed variant, whereas the pink path is a simpli�ed
version of the blue path, cutting a subset of nodes. The purple path is a pure A* search through
the ESDF. Calculated using the open source Voxblox library (github.com/eth-asl/voxblox).

the sparse GVD can be created real-time.
Similarly to the two-dimensional case, sampling-based methods quickly became the industry

standard for solving 3D path planning problems. The RRT-family is heavily represented in
recent literature; again, largely due to their general algorithmic simplicity and the ease of which
they can be extended to 3D space. Another key point, is that the environment representation
doesn’t a�ect the sampling-based methods as heavily as they do the combinatorial methods.
Partly due to their randomness, however, a method based on the GVD is deemed preferable,
given a suitably e�cient implementation.

Having now discussed di�erent methods for obtaining a path from Pinit(x ,y, z) to Pgoal(x ,y, z),
the question still remains of how to autonomously set Pgoal. The next chapter discusses the
more complete autonomous exploration system, including environment exploration as well as
safe and energy-conscious path planning.
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5 | Path Planning for Dynamic
Exploration

Key tasks in many modern robotic applications include autonomous exploration andmapping.
This means that the robot should estimate its pose while simultaneously seeking to

exhaustively explore and keep track of the environment. This process is widely known as
Simultaneous Location and Mapping (SLAM) [7]. Traditionally, this entails manually or remotely
steering the robot while building a map. Having this process run autonomously establishes a
need for the system to, independently, decide where to go next based on the estimated map
and sensory information. This problem of deciding the best exploration goals, and in turn
planning paths to reach them, is referred to as Active SLAM [74]. There are several ways
of deciding these exploration goals, one such being focusing on loop closures. Loop closing
connects previously explored parts with newly discovered ones and updates the map with the
combined information. This procedure reduces the uncertainty of the mapping, as it allows
for correcting any drift that has inevitably occurred [7]. Thus, the exploration strategy could
be to exhaustively explore the environment while aiming to minimise the uncertainty. The
challenge then becomes how to calculate a satisfactory exploration goal.

5.1 Environment Exploration Strategies

Planning in a dynamic exploration setting entails not knowing the whole map. Therefore, the
system needs to be able to characterise unknown areas of the map and from that calculate a
new exploration goal. Early exploration methods were based on wall-following [75], which
continuously follows obstacle edges to complete the map. Di�culties then arise if one were
to implement such methods in more open areas. Other methods have since been developed,
based on di�erent techniques. Some of these methods include nearest frontier, cost-utility,
behaviour-based and hybrid approaches.

In 1997, Yamauchi presented a straightforward nearest frontier solution [10]. For this
method, regions on the boundary between explored and unexplored parts of the map are
characterised as frontiers. The main idea is then to move the robot to the closest frontier to
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•
•

•

Figure 5.1: RVIZ screenshot showing a 2D SLAM simulation using an occupancy grid repre-
sentation with frontier examples marked in red and the RRT-calculated path from the current
robot position (green) to the closest frontier shown in pink.

extract new information about the world. A simple illustration of the concept is shown in
�g. 5.1, where the nearest frontier exploration approach is applied to a 2D SLAM simulation.
This method uses a probabilistic occupancy grid representation, where cells are divided into
three categories depending on their occupancy probability: Using these boundaries, clusters of

Free Occupied Unknown
Pocc < Pprior Pocc > Pprior Pocc = Pprior

open cells above a certain size that lies adjacent to unknown cells are labelled as frontiers. The
centroid of each frontier region is then calculated. The exploration goal is then set to be the
centroid closest to the robot’s current position. Multiple other studies have also based their goal
choosing method on a nearest frontier strategy, but with di�erent search strategies. Examples
include topological vision-based approaches [76] and feature-based methods [77]. The big
advantage of this method is its simplicity. As stated in [10], it also allows for exploration in
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narrow spaces. Seeing as it always chooses the closest frontier, it has no notion of the safeness
of a path and can then be more susceptible to environment and vehicle modelling errors.

In an attempt to circumvent this, an exploration method was developed which combines
the closest frontier approach [10] and a path cost evaluation based on the path transform of
[78]. This method, presented in [11], bases the exploration on minimising both the path length
and the path risk. This is formulated as

Ψ(x) = min
xд ∈F

{
min
r ∈Ξ

xд
x

{
l(r ) + α

∑
xi ∈r

Cdanger(xi )

}}
, (5.1)

where F is the set of all frontier cells, Ξxд
x is the set of all paths from x to xд , l(r ) is the length of

the path r , cdanger(xi ) is the cost function for the risk of entering cell xi and α ≥ 0 is a weighting
factor. Cdanger was originally stated in [78], but this formulation essentially enforces a repulsive
force on the robot from the obstacles no matter the distance between them. To bypass this, the
cost function was reformulated as

Cdanger =


∞, if d < dmin

(dopt − d)
2, else

, (5.2)

where dmin represents the closest allowable distance between the robot and obstacles and dopt is
an estimated optimal, or encouraged, clearing [11]. The main advantages of this approach are
that the path safety is taken into account and that it �nds the most appropriate path without
the risk of running into local minima. In practical implementations, this has shown good
results. This method can be considered a version of a cost-utility method, as it combines the
frontier search with cell and path costs. Another cost-utility based way of choosing the next
waypoint would be to estimate the utility, or information gain, of a waypoint candidate.

Information gain, in this sense, represents the amount of information about the environment
gained by reaching a certain point in space. The expected information gain can be de�ned
in terms of entropy [79]. The entropy can be approximated as the joint entropy of the path
r(ϖ) = xk = x1:k and the mapWm , given a series of control inputs Uk = u0:k−1 ∈ U and a set
of observationsZk = z1:k . The total entropy then becomes [80]

H (xk ,Wm | Uk ,Zk ) ≈ H (xk | Uk ,Zk ) + H (Wm | Uk ,Zk ) , (5.3)
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where the individual entropies are de�ned as in [80]

H (xk | Uk ,Zk ) ≈
1
k

k∑
i=1

ln
(
2π exp

[
n′

2

] )
|Σii | (5.4)

H (Wm | Uk ,Zk ) = −w
2

∑
c ∈Wm

{p(c) lnp(c) + [1 − p(c)] ln[1 − p(c)]} , (5.5)

where n is the size of the state vector and Σ represents the covariance matrix. This formulation
is based on pose-SLAM, i.e.Wm is represented as a pose graph. To �nd the input, or action,
that maximises the expected information gain one can instead �nd the input that minimises
the joint posterior entropy H (x′,Wm | Uk + U′,Zk +Z

′) [80]:

U′∗ = argmin {H (x′,Wm | Uk + U′,Zk +Z
′)} . (5.6)

Applicable actions U include exploration to speci�c waypoints, but also include actions where
the robot tries to perform loop closure. The advantage of such an exploration method is that
the resulting algorithm gives good results regarding loop closure and frontier exploration,
since actions can be chosen to either reduce pose uncertainties by exploring the environment
or to reduce path uncertainties by looping back to known locations. This expected information
gain can further be combined with an evaluation of the path length to then be able to weigh
the information gain against travel cost.

Related to this, focusing on minimising landmark uncertainty, is the method presented
in [81]. This method aims to plan towards minimising the uncertainty of landmarks and
robot location in the map by weighting the two uncertainties. I.e., if the robot location has
a high uncertainty, the next waypoint should be chosen based on nearby landmarks with
low uncertainty, and vice versa. Both of these methods, however, build upon a grid-based
environment representation by design. If generating the global graph based on distance �elds,
the ESDF representation could instead be used. Nevertheless, studies have explored the use of
topological representations for exploration.

Topological exploration techniques are favourable for larger environments, as these ap-
proaches have a better scalability. Di�erent approaches exist also here. A data structure put
forth to facilitate visibility-based robotic exploration, was the Gap Navigation Tree (GNT) [82].
This structure aims to track discontinuities in the depth information available to the robot at
its current position. Thus, the GNT essentially tracks gaps in the environment. These gaps are
classi�ed as primitive if the gap is discovered and later disappears, or non-primitive if it is yet
to be explored. Simple exploration strategies can then be implemented to follow non-primitive
gaps until none remains. This method, while promising, has not shown reliable results in
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practice [83]. This is somewhat due to the dependency of the gap detector which, as was shown
in [83], can lead to a failure to correctly detect gaps. In addition, this method was mainly
developed for planar exploration, meaning that heavy modi�cations would have to be made to
expand it to three-dimensional exploration.

Recently, another topological method, combining Graph-SLAM [84] with contour segmen-
tation and an online depth-�rst search, was introduced [85]. While this method is online and
shows promising results in simulations, it is also restricted to two dimensions. The majority of
exploration strategies in modern literature have, similarly to path planning techniques, been
focused on two-dimensional problems. Only very recently have research targeted the extension
of frontier exploration to three dimensions. These approaches convert 3D point cloud data
to an octree, from which frontiers are extracted [86], [87]. While being based on octrees, this
shows the promise of real-time frontier extraction in 3D exploration.

After a new waypoint has been set, for example using the nearest frontier approach, there
is the possibility of the robot having su�ciently explored the region associated with the chosen
frontier. To account for this, the method of repetitive re-checking has been proposed [88]. If the
chosen frontier at any point during execution ceases to be a frontier cell, it is dropped and a
new waypoint is chosen. Results show that this addition does not increase the computational
burden given the constant-time look-up to determine if it is still a valid frontier. This simple
addition can help decrease the over-all path length and exploration duration by decreasing
the time spent in already mapped terrain. Another problem that can occur, if the explorations
goals aren’t chosen optimally, is that semi-closed parts of the map can be visited multiple
times. In 2D, the analogy to this is that a room the robot explores is left before being fully
explored, due to a goal being set in the adjacent room. The suggested solution is then to
segment the environment based on the Voronoi diagram. Frontier cells can then be associated
with the nearest Voronoi region. Frontier cells lying in another Voronoi region is then only
chosen if the set of frontiers in the current Voronoi region is empty. Thus, the robot will
not leave its current enclosed region until it is fully explores. In the case of exploring sparse
underwater environments, this is unlikely to be a problem. If the robot is to be utilised in
underwater caverns or similar, this might need to be taken into consideration. Nevertheless,
this extension is very simple and can decrease the overall path length, and since it is based on
Voronoi diagrams, should be relatively easy to extend to 3D.

All the aforementioned approaches have done their experiments above water, where
sensor information is much more reliable. By virtue of noisy acoustic sensors, environmental
disturbances and a resulting high localisation uncertainty and low map quality, underwater
exploration and mapping have been shown to be much more challenging than its above-ground
counterpart. Methods have been developed, however, that have shown relatively good results
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5. PATH PLANNING FOR DYNAMIC EXPLORATION

for underwater mapping and exploration using sonar and cameras with exploration based on
view planning and frontier extraction [89]. This work was carried out in a two-dimensional
slice of 3D space, so the challenge of developing a complete exploration strategy for exploration
and mapping in three-dimensional submarine space still remains.

5.2 Secure Path Planning

Another core concept in autonomous exploration and path planning that needs to be discussed,
is the safety of the calculated path. It is crucial for autonomous systems to be able to guarantee
the safeness of a calculated path, both with respect to the vehicles own safety and its surround-
ings. This is especially true for submarine vehicles, as repairs quickly become cumbersome
and expensive. The concept of safe planning was brie�y mentioned in section 4.3, regarding
the maximum clearance property of Voronoi diagrams and in section 5.1 with the inclusion of
path risk in the exploration strategy, known as the exploration transform [11]. As discussed in
section 3.1, sampling-based methods, such as the RRT-family, bases their exploration into C on
a local planner. This ensures that the path is always contained in Cfree. The strategy of basing
the path planning on a Voronoi diagram gives a guarantee on the safety of the calculated path
given the detected obstacles as generator points. The underlying assumptions here is that all
obstacles are detected and that their position is certain, to some degree. This is often not the
case for submarine robots, as the perception systems often have problems with uncertainties
or noise as a result of di�culties imposed by the challenging underwater environment [9].

A Voronoi-based planner is, in essence, a global planning system. While it ensures safety
from static obstacles by producing maximum clearance paths, it would be very computationally
ine�cient to dynamically recalculate the whole diagram if a dynamic obstacle enters the
environment. Global planning systems therefore often need a local planner to take care of
unforeseen events or to do local path optimisations. This local planner could be e.g. based on
local Voronoi diagrams [63] or use potential �elds [34], [35]. Using a local planner can help
counteract uncertainties in the perception. For example, in the case an obstacle is detected at
a later stage than preferred, the local planner would be able to calculate a new collision-free
path faster than the global planner. Another way of handling uncertainties is to model them
into the planning system. Another way of handling uncertainties, however, is to model them
into the planning system.

A strategy to accomplish this, put forth in [90], introduces the concept of towers of uncer-
tainties. If all nodes n ∈ C is to be modelled with a corresponding uncertainty, the dimension of
C would increase by three. Uncertainties towers were introduced to reduce the dimensionality
of the resulting uncertain C-space, C̃. Each tower has a dimension of one and a position, with
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every level of the tower containing a node with its associated uncertainties (L, l ,ϕ,Θ). A modi-
�ed version of A* is used to search through C̃, where each node is de�ned as (x ,y,θ ,L, l ,ϕ,Θ).
Experimental results show that this way of handling uncertainties leads to the robot choosing
safer, but longer paths if its initial uncertainties in pose are large, whereas a more risky path
is chosen if the uncertainties in the goal pose are large. This was implemented and tested in
two-dimensional environments, but should be possible to extend to 3D. It could, however, be
of more interest to base the planning more directly on the uncertainties of the states in the
SLAM system.

5.2.1 Path Smoothing

Going beyond uncertainties in the map, the safety and �yability of the path are still of concern.
Using a graph representation, especially, the raw path obtained from the graph search is
comprised of a set of waypoints with straight lines connecting them. The continuity is one of
the fundamental de�nitions of a path. In chapter 2, the notion of continuity was implicitly stated
in the path de�nition (eq. (2.8)). The path calculated directly from the graph representation
of C will contain discontinuities and curvatures likely to not coincide with the given vehicle
dynamics. To overcome this, di�erent path smoothing techniques have been developed. One
of the �rst methods to handle this was the Dubins path [91] which �nds the shortest path to
the goal by representing the path as a set of straight lines and circular arcs, given a maximum
curvature constraint. This method helps to avoid overshoot when switching waypoints, but
introduces two discontinuities at the start and end of the circular arc. It can be shown that the
resulting Dubins path satis�esC1 continuity 1, i.e. once continuously di�erentiable, but fails to
obtain C2 continuity. The curvature of a 2D path r (ϖ) can be calculated as

κ(ϖ) =
Ûx(ϖ) Üy(ϖ) − Ûy(ϖ) Üx(ϖ)(√
Ûx(ϖ)2 + Ûy(ϖ)2

)3 . (5.7)

From eq. (5.7), it can be seen that the path is required to be twice continuously di�erentiable.
The control system responsible for controlling the attitude of the robot is then subject to a
discontinuous reference signal, which can result in unwanted behaviour (e.g. due to coupled
dynamics in underactuated vehicles) and excessive strain on the actuators. From a control
system point of view, C2 continuity is, therefore, favoured [17], [26].

Attempts have been made to combine Dubins paths with clothoids, which have linearly
changing curvatures. One big disadvantage of using clothoids, however, is that they have no
analytic solution [26]. This leads to longer computation times, which in turn could make them

1See appendix A.1 for a short de�nition of di�erent levels of smoothness.
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5. PATH PLANNING FOR DYNAMIC EXPLORATION

very impractical for online 3D planning purposes. In addition, this property can prove clothoids
di�cult to use in the presence of obstacles and can reduce the algorithmic completeness of
the planning system [92]. A more promising interpolation method can be obtained by using
splines. Splines facilitate combining path segments of lower polynomial degree so that the
combined path appears smooth [93]. For the three-dimensional case, this requires the path to
be C3 continuous. This can be obtained by constructing a shape-preserving2 C1-G2 cubic spline
and adding a correction term, which can be of variable degree [94].

While spline methods can give good results, yet another less computationally heavy method
exists. Fermat’s spiral, introduced in 1636 by Pierre de Fermat as a variant of the Archimedean
spiral, is another good candidate for solving the path smoothing problem. Fermat’s spiral is
de�ned as

r = a
√
θ︸   ︷︷   ︸

polar

T(r,θ )
−−−−−−−−−−⇀↽−−−−−−−−−−

T(x,y)


x

y

 =

x0 + au cos(ρu2 + χ0)

y0 + au sin(ρu2 + χ0)

︸                                  ︷︷                                  ︸
cartesian

, (5.8)

where u =
√
θ ,u ∈ [0,θmax]

3, a is a parameter that de�nes the spiral turning (scaling factor in
Cartesian), ρ = {±1} is the turning direction and χ0 is the initial tangent angle [36]. The trans-
formation T( · ) here indicate a transformation between polar and Cartesian coordinates which
allows di�erent initial positions (x0,y0)> and initial tangent angles χ0 [40]. This alternative
parametrisation — instead of the direct Polar-to-Cartesian transform — guarantees the wanted
C2 continuity. The tangential angle can be written as

χ (θ ) = atan2 (sinθ + 2θ cosθ , cosθ − 2θ sinθ ) , (5.9)

but su�ers from discontinuities at θ = π
2 . Rewriting eq. (5.9), an equation continuous on

θ ∈ [0,π ] can be found [40]:

χ (θ ) = θ + arctan(2θ ) , (5.10)

the mirrored curve can then be used to reach 2π coverage. The curvature of eq. (5.8) is given as

κ(θ ) =
‖ Ûr × Ür ‖

‖ Ûr ‖3
=

2
√
θ (4θ 2 + 3)

a(4θ 2 + 1) 32
. (5.11)

2Shape-preserving here refers to a path that satis�es the collinearity, convexity, coplanarity and torsion criteria
de�ned in appendix A.2.

3 dκ
dθ (θ ) = 0 ⇒ θmax =

√√
7
2 −

5
4
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From eq. (5.11) it is clear that the initial curvatureκ(0) is zero. This makes for a smooth transition
between a straight line segment and the spiral path. The whole arc segment consists of an initial
spiral curve segment and its mirrored version, connecting back into the straight line segment. A
bene�t of its simple parametric de�nition is that the Fermat’s spiral is computationally e�cient.
Compared to splines, Fermat’s spiral interpolation is more robust against disturbances [26].
The biggest drawback of the spiral parametrisation comes to light when calculating the path
length. For a Fermat spiral, calculating the arc length results in evaluating a hypergeometric
Gaussian function. This function has no analytic solution, but is guaranteed to converge. It is
also worth noting that a spiral-interpolated path will always be longer than the corresponding
Dubins path. An example of how the piece-wise linear path can be interpolated using Fermat
spirals is illustrated in �g. 5.2.

Figure 5.2: An illustration of how the Fermat spiral
interpolation can be executed [36]. κmax indicate the
point of maximum curvature, also being the point
where the initial and mirrored curves meet.

When comparing path interpolation tech-
niques in environments with obstacles, it is useful
to compare the path allowance. The allowance,
a, indicates how much a smoothed segment dif-
fers from the connected straight line path [26].
In other words, the magnitude of the cross-track
error between the smoothed path and the straight
lines. If the smoothed path deviates too much
from the calculated path, the robot might run the
risk of hitting obstacles. A small allowance is
therefore ideal. The allowance of Fermat’s spirals
is in general smaller than for clothoids, but larger
than that of Dubins paths, hence

aDubins ≤ aFermat < aClothoid .

Discarding clothoids based on their computational ine�ciency, this leaves Fermat’s spirals
as possibly the most promising interpolation technique compared to spline-based methods
or Dubins path methods. This is further backed by the fact that spline-based methods, by
design, give paths that rarely are completely straight. A continuously curving path means
that at least one robot actuator will be active at any given time, which is not ideal. Fermat’s
spirals, however, have not yet been generalised to three dimensions. It would, therefore, be
of interest to extend this de�nition to 3D, while preserving the continuity bene�ts of the 2D
parametrisation, and test it in a three-dimensional planning system. There is also the possibility
of combining Fermat’s spirals with Dubins paths to overcome the discontinuities between
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the straight line segment and the circular arc [95]. This could further decrease the allowance
obtained when using a spiral arc by introducing the circular arc. Three-dimensional Dubins
paths have already been developed and tested [63], [96], thus the challenge would just be to
connect the spiral segment to this 3D arc.

5.3 Energy-sensible Planning

As discussed in the previous section, a safe path is paramount for autonomous operations. A
growing number of operations are intended to last a prolonged amount of time, with AUV
operations exceeding 500km travel distances [97]. When mission duration increases, planning
systems that take energy consumption into mind becomes more important. The most intuitive
way of decreasing the energy spent on traversing a path is naturally to �nd a shorter path.
This is not always the case, as one of the main processes that in�uence a submarine robot’s
motion, is the ocean currents. These currents can impede the robot’s motion, having it consume
more energy to �ght against it or even have it alter course. For mobile underwater robots,
it is, therefore, necessary to be able to counteract disturbing currents and exploit bene�cial
currents. This methodology has been explored in previous work, often based on optimisation
methods such as evolutionary or Ant Colony Optimization techniques [98], [99], or with a
probabilistic basis [100]. Optimisation-based methods tend to give good results and are able
to utilise any available positive contribution from the currents themselves. If based on global
current information, however, the problem of their high computational costs quickly becomes
relevant. Probabilistic methods, e.g. based on an RRT variant, while solving the problem, are
prone to give results not fully utilising the currents [100].

A proposed method to solve the current problem is to instead base it on a locally optimal
heuristic grid search using D*-Lite. A local three-dimensional grid can then be projected around
a discretised model of the robot. Cells in the grid then contain information about local currents
which is used when calculating the heuristic. The initiallly proposed heuristic can then be
stated combining the distance to a target node and the local current velocities

w = wc +wd , (5.12)

wherewc is calculated based on the measured current velocities and direction in the cell andwd

is calculated based on the distance to the target node. In addition to this, the travel time could
be considered. This would yield a somewhat naive local planner that, while not taking direct
energy consumption into mind, does so implicitly by �nding the path locally optimising current
e�ects on the robot by weighting both the current e�ects and the path distance. Weighting
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the search based on the direct energy cost is possible [101], [102], but requires more in-depth
information about the actuator systems and more complex calculations.

There are two problems with this method, however. Namely that the grid resolution and
the robot discretisation will a�ect the optimality of the solution. It could be interesting to
instead base this on an RRT variant, such as in [101], and base the tree expansion on the vehicle
dynamics together with the current velocities. This proposed method only evaluates local
currents, as more global currents are assumed changing, likely resulting in replanning if the
global state was considered. As a side note, since only local currents are considered, more
complex optimisation methods could be promising, as the increased computational complexity
will matter less in the smaller state space.

5.4 Summary
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Figure 5.3: Illustration of the simple z-modi�cation
to Fermat’s spiral that conserve. The blue line is the
Fermat spiral and the purple is its mirror. Red indi-
cates the �rst point of maximum curvature.

In this chapter, the importance of exploration
strategy has been introduced, and di�erent tech-
niques for selecting them has been discussed. The
ease of which already developed methods can
be applied is somewhat dependent on the way
the map is represented. In general, however, the
frontier-based methods seems to give a very good
balance between simplicity and path quality. Ex-
periments show that the nearest frontier strategy
combined with the aforementioned repetitive re-
checking and map segmentation result in much
shorter travel distances than simple information
gain-based approaches [88]. While being a good starting point for implementation and testing,
it would be of interest to have the goal placement integrate more with the SLAM system. This
can result in better map quality, but will likely result in longer paths, especially when trying to
obtain loop closures. As exempli�ed in [80], however, the �nal map quality can be signi�cantly
better when applying the entropy-approach over the frontier exploration. This is evident in
�g. 5.4, where signi�cant localisation errors are evident. While it comes to evaluating path
risk, methods like the exploration transform [11] give promising results. If basing the planning
system on GVDs, however, this is likely not needed, as the risk of the path is already minimised
with respect to obstacle distance. In situations where the robot is required to enter very narrow
spaces, a di�erent strategy might be necessary, since the GVD planner might fail to �nd a
feasible path through is. A possible workaround could be to have a secondary planner, e.g.
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Figure 5.4: Example map from running frontier-based SLAM exploration (image credit: [80]).

based on an RRT-variant, which is deployed in cases where the GVD planner is unable to
calculate the complete path.

One aspect of the path that needs to be discussed no matter the applied planning system, is
its smoothness. Di�erent tried and tested methods have been discussed. The importance of
the degree of continuity of the generated path as well as the computational time has been the
main factors in evaluating the di�erent techniques. Based on literature, the Fermat’s spiral is a
promising interpolation method. Due to this, experiments in generalising the Fermat spiral to
three dimensions while preserves the properties of the 2D parametrisation will likely be the
aim of future work. A possible extension would be to augment the parametrisation in eq. (5.8)
with the z-coordinate simply as z = z0 + nεu (similar to what was done in [103]), where n is
the number of turns and ε is the number of units along z-axis per turn. By choosing these
parameters based on the vehicle’s controllability and the path curvature, this could result in
a satisfyingly smooth path. A simple example of this extension is shown in �g. 5.3. Another
alternative z-parametrisation can be found in [96], based on their Dubins plane model with
helix paths.

The problem of energy-sensible planning has been brie�y discussed. Literature shows
di�erent simulated methods that include currents in the planned path. Most methods are based
on numerical optimization, where all currents in the global map are considered. In order to
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account for, or take advantage of, drift induced by ocean currents, a simple local planner based
on a dynamic heuristic search algorithm was instead suggested. This local planner will operate
on a local 3D grid in which cells are directionally weighted based on the given current angle
and magnitude and the distance from it to the target. The main motivation behind this is that
the current is assumed �uctuating, thus the state of the ocean currents might have changed at
a certain point in time, resulting in the need for replanning. However, further simulations and
experiments are needed to fully test this hypothesis.
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6 | Conclusion

The goal of this work was to, through a survey of approaches in modern literature, propose
a suitable planning system that takes robot safety as the number one priority, while also

facilitating energy considerations and autonomous exploration for the mapping of unknown
environments.

Di�erent planning methods in both two and three dimensions have been presented and
discussed with respect to their applicability in an underwater robotic exploration system. The
simplicity of sampling-based methods have been weighed up against the completeness and
inherent path safety obtained from combinatorial methods. While de�nitely having their
use-cases, sampling-based methods has been deemed inadequate regarding the resulting path
safety when considering the intended application. It must be noted, however, that the higher
risk paths obtainable using sampling-based methods could be used as a secondary planner in
conjunction with a GVD-based global planner; to be deployed in situations where the more
risk-aware planner fails to �nd a guaranteed safe path.

The suggested path planning method is based on a global, maximum obstacle clear-
ance graph planner together with an optimal heuristic search algorithm and a local energy-
considerate planner. The exploration strategy is based on frontiers to visit previously unex-
plored sections of the map. It is proposed to include pose uncertainties and include this in the
goal calculations to increase map quality and aid SLAM loop closures.

The main challenges for implementing the global path planning system comes when re-
quiring online generation of the 3D Voronoi diagram. Building the diagram base on distance
�elds [54] seems like a promising way to go. However, the fact that the the proposed im-
plementation in [54] generates the ESDF live, but prunes the graph o�ine, indicate that the
distance �eld-method for generating GVDs still require some re�ning. An alternative could
be to instead incrementally build a 3D occupancy grid based on octrees [73], then estimate
clusters of the incoming point cloud data from the SLAM system using an algorithm such as
DBSCAN. These clusters can then be encapsulated in a minimum bounding polygon, using a
convex hull algorithm [69], from which the de�ning points can be used as generator points for
the Voronoi diagram. The resulting diagram can then be e�ciently pruned by removing the
nodes and connected edges that lie inside the bounding polygons. If the DBSCAN algorithm
can be implemented to incrementally generate clusters, the total planning system should be
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computationally satisfactory.
Simulations performed in this work and its cited sources show the potential of a global

Voronoi-based planner in underwater environments. Going forward, complete simulations
should be done to more closely evaluate the global and local planning system. There are,
however, some important notes to take into considerations when simulating systems that are
to be implemented on real robotic systems. Simulators, of course, allows for testing without
risking equipment, but does so while doing certain assumptions. In simulations we can work
with idealised sensors or simpli�ed dynamics [104]. Some of the sources in this paper have
based their proposed methods solely on simulated results where speci�c assumptions have
been made regarding obstacles. One such example is the results in [63], where all obstacles was
assumed known and static, with the exception of the single moving obstacle. For the intended
application presented in this paper, these assumptions will not hold. This, together with the
fact that the results from the perception system cannot be assumed perfect, leads to the need
of extensive practical tests in closed environments to fully evaluate the proposed methods.

6.1 Future Work

Depending on the results of the practical evaluation of the planning system, the additional
future work include:

• Online implementation of the proposed planning system on an actual ROV/AUV and
test it on an underwater dataset as well as practical tests in ocean-like environments. A
version of the DBSCAN algorithm will have to be implemented to allow for incremental
clustering based on incoming SLAM-data.

• Generalise the Fermat’s spiral parametrisation to three dimensions and/or combine them
with 3D Dubins path for C2 continuous path interpolation, potentially comparing them
and evaluating advantages and disadvantages of the respective methods.

• Incorporation of the complete vehicle dynamics in the planning system to allow for safer
planning.

• Development of a more robust exploration strategy for 3D underwater exploration.
Extend the basic frontier cell formulation to include information from the SLAM system.

• Since little research has been don comparing di�erent 3D path planning methods, it
would be of interest to perform benchmarking comparisons of di�erent planning methods
for underwater autonomous robots. This could further help give a better framework for
determining the most appropriate methods for underwater 3D path planning.
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6. CONCLUSION

• Research the use of, and implement, machine learning algorithms to estimate obstacle
regions in unknown territories of the map to better (and safer) set new exploration goals.
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Appendices

A Path Smoothing De�nitions

A.1 Path Smoothness

An often used criteria for evaluating paths is their smoothness. The notion of path smoothness
can be divided into geometric and parametric continuity. Geometric continuity is in essence
constraints on the speed along the curve and is de�ned based on the curve’s geometrical
properties [26]:

• G0: All curves are joined

• G1: The path-tangential angle is continuous

• G2: The center of curvature is continuous

Parametric continuity is de�ned based on the the analytical properties of the curve [26]:

• C0: All subpaths are connected (i.e. curves are joined)

• C1: The �rst derivatives (velocities) of the curve are continuous

• C2: The second derivatives (accelerations & curvatures) of the curve are continuous

• Cn : The nth derivatives of the curve are continuous

A.2 Supplementary De�nitions 3D Spline Interpolation

The C3 spline-based interpolation technique introduced in [94] builds on the concept of shape
preserving curves. For the sake of completeness, their curve criteria are included here, adopting
the notation from [94].

Let Q be a curve with curvature vector K(t) and torsion vector τ (t). Furthermore, let
Ii ∈ R

3 i ∈ [0,N ] be interpolation points, where no two points Ii , Ij are identical, and Li =
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Ii+1 − Ii , i ∈ [0,N − 1]. Vectors Ni can then be de�ned as

Ni =


Li−1 × Li
‖Li−1 × Li ‖

if‖Li−1 × Li > 0 ,

0 otherwise .

Finally, let ∆i = det
( [
Li−1 Li Li+1

] )
.

De�nition A.1 Shape preserving curve:
The curve, Q(t), is said to be shape preserving if the following criteria are satis�ed:

• Colinearity:

If ‖Ni ‖ = 0 and Li−1 ·Li > 0, then
‖ ÛQ × Lj ‖

‖ ÛQ ‖
, j = i − 1, i can be arbitratily reduced in each

�xed compact subinterval of (ti−1, ti+1 where ‖ ÛQ ‖ , 0.

• Convexity:
If Ni ·Ni+1 > 0, then K(t) ·Nj > 0, j = i − 1, im t ∈ [ti , ti+1].
If Ni ·Ni+1 < 0, then [K(t) ·Nj ][Nl ·Nj ] > 0, l , j = i, i + 1 and K(t) ·Nj has precisely one
sign change in t ∈ [ti , ti+1], j = i, i + 1.

• Coplanarity:

If ∆i = 0, then




 ÛQ × ÜQ
‖ Ûq × ÜQ ‖

× Ni





, t ∈ [ti , ti+1], can be arbitrarily reduced if ‖K(t)‖ , 0.

• Torsion:
If ∆i , 0, then τ (t)∆i > 0, t ∈ (ti , ti+1).
If ∆i−1∆i > 0, then τ (ti )∆i > 0, j = i − 1, i .
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B Heuristic Search Algorithms

B.1 A* Pseudocode

Algorithm B.1 A* (G, Pstart,Pgoal)

1: OpenSet = � . Set of all discovered nodes not visited
2: ClosedSet = � . Set of all visited nodes
3: OpenSet = OpenSet

⋃
Pstart

4: Pstart.д = 0
5: Pstart.h = Heuristic(Pstart,Pgoal) . Heuristic(.) can f.ex. be the Euclidean distance
6: Pstart. f = Pstart.h
7: while OpenSet , � do
8: u = ExtractMinF(OpenSet) . Get node with lowest f -score
9: if u = Pgoal then

10: return OptimalPath
11: OpenSet = OpenSet \u
12: ClosedSet = ClosedSet

⋃
u

13: for each neighbour v of u do
14: if v ∈ ClosedSet then
15: Do Nothing . Neighbour already visited, ignore
16: ṽ .д = u .д + Heuristic(u,v) . Calculate distance from start to neighbour
17: if v < OpenSet then
18: OpenSet = OpenSet

⋃
v

19: else if ṽ .д ≥ v .д then . Not a better path
20: Continue
21: v .π = u . Best path so far, update predecessor and f- & g-value
22: v .д = ṽ .д
23: v . f = v .д + Heuristic(v ,Pgoal)
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B.2 D*-Lite Pseudocode

Algorithm B.2 D*-Lite (G, vstart, vgoal)

1: function CalculateKey(v)
2: return min{д(v), rhs(v)} + h(vstart,v) + km; min{д(v), rhs(v)}
3: function UpdateVertex(u)
4: if v , vgoal then
5: rhs(v) = minv ′∈Succ(v){c(v,v

′) + д(v ′)}

6: if v ∈ H then
7: H .Remove(v)
8: if д(v) , rhs(v) then
9: H .Insert(u, CalculateKey(u)

10: function ComputeShortestPath
11: whileH .TopKey( ) < CalculateKey(vstart) or rhs(vstart , д(vstart) do
12: kold =H .TopKey()
13: u =H .Pop( )
14: if kold < CalculateKey(u) then
15: H .Insert(u, CalculateKey(u)
16: else if д(u) > rhs(u) then д(u) = rhs(u)
17: for v ∈ u .π do
18: else
19: д(u) = ∞
20: for v ∈ u .π

⋃
{u} do UpdateVertex(v)

21: function Main
22: vlast = vstart
23: H = �

24: km = 0
25: for v ∈ V do
26: rhs(v) = д(v) =∞


Initialisation

27: rhs(vgoal) = 0
28: H .Insert(vgoal, CalculateKey(vgoal))
29: ComputeShortestPath()
30: while vstart , vgoal do
31: vstart = argminv ′∈Succ(vstart)

{ c(vstart,v
′) + д(v ′) } . If д(vstart = ∞), then no known

path exists
32: MoveTo(vstart)
33: UpdatedEdges = ScanForChangedEdges() . Scan G for any change in edge costs
34: if UpdatedEdges , � then
35: km = km + h(vlast,vstart)

36: vlast = vstart
37: for Edge (p,q) ∈ UpdatedEdges do
38: Update edge cost c(p,q)
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C Supplimentary Figures

This appendix contains a set of supplementary �gures used as additional illustrations or
examples of themes discussed in the main text.

C.1 Point Cloud Processing

This section simply contains an example of an authentic point cloud dataset (shown in �g. C.1),
acquired from ETH ASL, Zurich [71], and its truncated signed distance �eld (�g. C.2).

Figure C.1: Point cloud from ETH machine basement, courtesy of ETH ASL, Zurich [71].
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Figure C.2: The truncated signed distance �eld of the point cloud shown in �g. C.1. Blue parts
indicate closeness to obstacles while the redder areas are more distant.
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C.2 Distance Field GVD

This section contains additional test results of the distance �eld graph generation method
presented in [54] shown in �g. C.3 with the generated path in �g. C.4.

Figure C.3: Part of the generated sparse graph using the distance �eld method on a point cloud
dataset calcuated using the voxblox library (github.com/ethz-asl/voxblox).
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Figure C.4: The resulting path using the sparse graph shown in �g. C.3. Cyan indicate the
smoothed path, blue is the path through the noes in the sparse graph and green is a simpli�ed
version of the blue path (redundant nodes removed, replaced by more straight lines).
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