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Abstract

Autonomy is becoming ever more present in industry and the field of underwater
robotics is not exempt from this. This development may also be done best in increments,
thus assisting the manual operations and gradually making the robot more autonomous.
This report will look at the problem of underwater pipe detection with the goal of
being of useful in an autonomous operation. The problem will be looked at from two
perspective, the first utilizing traditional computer vision techniques. The second
aims at solving some of the challenges in the real sea environment by basing itself
on machine learning techniques. These techniques will be implemented and their
performance evaluated.
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Sammendrag

Autonomi vert ein stadig større del av industrien, dette gjeld og undervassrobotikk.
Det kan vera hensiktsmessig å gjera denne utviklinga stegvis og ikkje nødvendigvis
alt på ein gang. Slik kan roboten gradvis verta meir autonom, medan teknologien
utvikla for dette vil vera med å gjera manualle operasjoner enklare. Rapporten ønskjer
å undersøkja problemet å detektera røyrledningar under havet. Denne deteksjonen er
tenkt å bidra til autonome undervassoperasjonar. Problemet vil verta undersøkt frå
to ulike innfallsvinklar. Den første ser på tradisjonelle datasynteknikkar, medan den
andre ønskjer å løyse ulike utfordringar ved reelle opperasjonsforhald ved å basere
seg på maskinlæring. Begge innfallsvinklane vert implementert og deretter evaluert.
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Chapter 1

Introduction

The project have two main aspects. The first and main focus is on the traditional
computer vision techniques and how to use the information assist an autonomous
robot in its operation. The second focus is on using machine learning techniques to
gather the necessary information. The goal behind the traditional computer vision
techniques is as stated to provide information about any pipes found in the image.
While the goal behind the machine learning is to see if this can be used to handle
challenges found in the underwater environment.

1.1 Motivation

Autonomy is gradually becoming an increasing part of society, though this does not
mean that everything needs to be fully autonomous before implementation. The goal
of this project is to have operator assisting autonomy, which might be a step on the
bridge between manual and autonomous operations.

This report is part of a larger project in collaboration with Andreas Våge and
Marcus Aleksander Engebretsen. The objective of this project is to develop underwater
SLAM algorithms based on optical cameras, where an Eelume robot is considered as
the target platform. The Eelume vehicle is a particularly relevant platform for SLAM

1



2 CHAPTER 1. INTRODUCTION

since its long body allows for a good spatial distribution of the cameras and lights used
for mapping, thereby enabling cameras and lights from different angles. The overall
objective is to enable the robot to develop a 3D map of its environment (such as the
seabed, structures on the seabed, or floating structures) and also to enable the robot to
continuously determine its own location as it moves in the mapped environment. An
additional objective is to develop algorithms where the vehicle autonomously plans
and executes motion with respect to the mapped environment, such as:

• station keeping based on visual odometry (by fixating on features in the camera
image)

• scanning around an object at a fixed distance

• following a pipeline on the seabed

A workflow has been created that that represents the complete system which are the
basis for the subsequent master thesis. This can be shown in figure 1.1. The following

Figure 1.1: System work flow.

report will focus on the classification aspect of the workflow, seen in figure 1.2. More
specifically the processing of the data that comes from the camera system. The goal
behind the classification is to provide the SLAM system with context and thus giving
the robot an understanding of not just where it is on the map, but also where objects
of interest are in this map. Such objects could be a pipe or the docking station. Labels
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in the map may be beneficial to the planning and control system in operations aiming
to inspect a pipeline and return to the docking station. For the inspections aspect the
real strength of the labeled map would be for routine inspections where, after the first
inspection, the robot will have the location of the pipe in its map, which can then be
utilized to plan the operation. In tandem with this report Andreas Våge is working

Figure 1.2: Classification system in larger context.

on the SLAM system, while Marcus A. Engebretsen is working on the control system
of the robot. It has been decided to implement the complete system in ROS (Robotic
Operating System) since there are many seperate modules that need to communicate
and work together to complete the system.

1.2 Problem description

The project aims to navigate in an underwater environment and thus needs information
about this environment before making decisions. The project will look at the part
of identifying an underwater pipe and thus providing the robot with information to
enable it to track the pipe.
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The project aims at two distinct scenarios, the first being a controlled pool envi-
ronment, while the other is a real pipeline in the sea. The pool environment represent
the simplified case where we aim to find the pipe under very controlled conditions.
An example of this can be seen in figure 1.3. The sea environment needs to tackle a

Figure 1.3: Pipe in pool environment.

variety of added challenges. An example can be found in figure 1.4. The most notable

Figure 1.4: Pipe in real environment.

is arguably the biofouling of the pipe which makes it so that it is hard to estimate
the pipe as two large edges. A marine environment with natural water have a large
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number of macro-molecules that attach to surfaces and facilitate marine growth (Melo
and Bott; 1997). Melo and Bott (1997) present a figure indicating the idealized biofilm
development where there is a slow formation period, followed by rapid growth up to a
plateau. As pipes under water are expected to stay submerged for longer periods of
time, it seems to be a reasonable assumption to expect the biofouling to has reached
the plateau state. Therefore, it is important to rely on a detection scheme that does
not expect an ideal pipe, completely exempt from the biofouling.

1.3 Literature review

Before building any program it is important to have a clear understanding of what
it should do. In addition it is valuable to see what have already been done in the
field. This approach ensures that the scientific field may work together towards an
accumulative bank of knowledge and not unnecessarily duplicate solutions to known
problems. As this report propose techniques that are to be implemented, it is important
to see if there are any libraries that can be beneficial to use as a foundation and
what should be implemented from scratch. As mentioned in section 1.1, the complete
system should be implemented in ROS and it is therefore important to develop the
proposed algorithms so that they are compatible with ROS. There are currently three
programming languages that are fully compatible with ROS; Python, C++ and Lisp
(Dattalo; 2018). As the contributors, Engebretsen, Utbjoe and Våge, to the complete
system where most familiar with C++ and Python it was decided to implement the
system in C++. Programs that are not intended to be part of the complete system may
be developed in Python.

With the criteria on programming language and framework decided it seemed a
natural choice to implement the system utilizing the open source computer vision
library OpenCV. There are a few different reasons for this. First and foremost it is a
computer vision library that is compatible with ROS (Allevato; 2017). Secondly the
OpenCV library are compatible with both C++ and Python (Bradski and Kaehler; 2008).

The natural next step is to explore which computer vision methods are available
through OpenCV and which of these might be applicable to the problem the algorithm
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should solve.

1.3.1 Image processing

As an image often can have noise in it, it is beneficial to perform a smoothing or
blurring operation on the image prior to any further processing. OpenCV have five
varieties proposed for performing the smoothing operation (Bradski and Kaehler;
2008); simple blur, simple blur with no scaling, median blur, gaussian blur and bilateral
filter. According to Bradski and Kaehler gaussian blur is probably the most useful,
though it is not the fastest (Bradski and Kaehler; 2008). This will then be a good
starting technique, though should it be necessary with a faster processing time it might
need to be swapped for a different technique. OpenCV also has implemented higher
performance optimization for kernels of size 3x3, 5x5 and 7x7 (Bradski and Kaehler;
2008).

There are also morphological transformations available, such as dilation and ero-
sion. Both dilation and erosion applies a kernel to the image and evaluates the values
in the kernel to decide what to do with the pixel in question. Dilation will set the
pixel to the maximum value in the kernel, while the erosion will choose the minimum
value (Bradski and Kaehler; 2008). Erosion is often used to remove small specks in
the image, while preserving the more significant features (Bradski and Kaehler; 2008).
For instance if one applied a dilation operation after an erosion the more significant
features will be restored to their original sizes. The dilation operation can be used to
merge together areas with small gaps dividing them (Bradski and Kaehler; 2008). For
instances where there are white areas in the image with dark speckles in it, a dilation
operation followed by an erosion will fill in these specks while returning the areas to
their proper size again with the erosion operation.

Thresholding is another technique that is available through OpenCV. In thresh-
olding the values are sorted based on whether or not they are within the specified
bounds. Bradski and Kaehler (Bradski and Kaehler; 2008) present two main techniques
for doing thresholding, binary and adaptive binary thresholding. The adaptive binary
thresholding differs from the binary thresholding by evaluating the surrounding area
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when deciding the bounds. Thresholding is used to make a final decision about the
pixels (Bradski and Kaehler; 2008), for instance deciding whether the pixel is of a
certain colour.

1.3.2 Image transformation

Convolution is when all areas in the image are filtered through an operation specified
by a kernel of a certain size and with the values of the kernel deciding what the result of
the convolution is. Convolution is the basis of many of the subsequent transformations
to be discussed (Bradski and Kaehler; 2008).

When looking at the image it is often useful to observe where in the image changes
occur. When talking about changes over time or distance it is natural to look to
derivatives of the said expression. The sobel derivative is an approximation it tries
to fit a parabolic function over a local area of pixels (Bradski and Kaehler; 2008). The
sobel derivatives can then produce a sort of gradient image in the x and y direction.
Since the sobel is an approximation it is less accurate for small kernels and one can
then use the Scharr filter to preserve the speed and accuracy when using a small kernel
(Bradski and Kaehler; 2008).

When detecting features, such as blobs, using derivatives one can use a method
such as the Laplacian operator (Bradski and Kaehler; 2008). The Laplace operator
can also be used for edge detection, though this technique was later refined into the
Canny edge detector (Bradski and Kaehler; 2008). The canny algorithm computes the
first derivatives in the x and y direction and then combine them into four directional
derivatives, which are then used to locate local maxima that are candidates to be
assembled into edges (Bradski and Kaehler; 2008). The edge detection seems to be a
good candidate for finding and classifying pipes.

Once the edges of the image is found it is necessary to find any lines present as it
is a fair assumption that the pipe has some lines pointing along the direction of the
pipe. A technique for finding these lines is the Hough line transform. The Hough line
transform bases itself on the principle that any point in the binary image can be a
part of some set of possible lines (Bradski and Kaehler; 2008). By evaluating all points
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in the binary image one can see which lines are present by finding the local maxima
among the possible lines (Bradski and Kaehler; 2008). OpenCV has implemented
two variations on the Hough line transform, the standard Hough transform and the
progressive probabilistic Hough transform (Bradski and Kaehler; 2008). The difference
is that the latter only accumulate a fraction of the possible points and relies on the
heuristic that any significant lines will still be present when finding the local maxima
and thus saving computation time (Bradski and Kaehler; 2008).

1.3.3 Machine learning

Machine learning is a large field containing multiple sub-fields. One of these fields are
deep learning. Traditional machine learning methods had problems when processing
data in its raw format and thus it was necessary to construct a feature extractor to
process the data prior to the network into a suitable representation, such as feature vec-
tors (LeCun et al.; 2015). Deep learning methods learn these representations themselvs
based on the raw input (LeCun et al.; 2015).

1.3.3.1 Deep learning

Deep learning methods generates the data representation and classification through
multiple layers that, for feed foreward networks, process on each other generating this
representation into higher and more abstract levels (LeCun et al.; 2015). An analogy
for the low, medium and high level feature may be viewed as follows. Say that the
network wants to classify if something is a face or not, then the low level features may
identify where in the images there are found lines, curves, circles etc. The medium
level features may learn that a combination of lines, curves and circles may constitute
eyes, mouths, ears, etc. The high level feature may then learn that say two eyes with a
small distance between them followed by one or two ears on the sides and a mouth
below will constitute a face. This analogy is only meant to illustrate how a network
may learn it, it is not by any means certain that this is exactly how it would occur in a
real network.

There are two main approaches to the training process, unsupervised and super-
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vised. The former aim to find patterns in the data, while not necessarily give context
to the data, while the latter provides a solution to the network in the training process
to enable it to give context to the classifications. In supervised learning we would
typically try to train a classifier to classify a certain number of classes and the network
may then be shown an input image and outputting a vector with the probability of the
presence of each class in the image. This will then be compared with our ground truth
for that image and used to calculate an error to be used in backpropagation (LeCun
et al.; 2015). This error is then backpropogated to adjust the weights in the network
and thus train the network (LeCun et al.; 2015). This adjustment of the weights is done
using a gradient vector based on some objective function in order to ensure that the
weights find a local minima (LeCun et al.; 2015). A type of deep learning networks are
convolutional neural networks, CNNs, which are composed of two main type of layers,
convolutional and pooling (LeCun et al.; 2015). The convolutional layer takes the input
and subjects it to a set of filters in order to produce the output. This produce multiple
outputs based on the input, so in order to reduce the spatial complexity the output is
subjected to a pooling layer which aims to preserve the information while keeping
the most important information. A common way of pooling is the max pooling which
keeps the highest value in the pooling kernel and thus preserving the highest values.
A typical structure of a CNN can be multiple layers of convolutions and pooling layers
which performs the feature representation that are then presented to a fully connected
network to classify the feature representation.

As the low level features are more general it can be generalized for various applica-
tions and may be applicable for for problems that the layers is not necessarily trained
for. This can be done by utilizing pre-trained networks, as have been done successfully
by Lee, D. and Lee, S. (Lee and Lee; 2019).

1.4 Assumptions

In order to reduce the scope of the project there are several assumptions made. On
the control section it is assumed that the vessel using this technique has a separate
control system that can control the vessel to achieve the desired direction given from
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the vision system. It is also assumed that the pipe in question does not split into several
sections, causing there to be more than two pipe segments. This may be a realistic
assumption for long range pipe tracking. However, extending this technique to handle
pipes that are more complex than a simple bend will be a natural extension of this
work.

This project is also part of a larger collaboration and therefore several aspects that
may have been natural to include in this report will not be explored much if they are
covered by the other collaborators. An instance of this is the control aspect as Marcus
Aleksander Engebretsen work on that area. The report will therefore assume that if
the system can provide the spatial location of the pipe in the image, then the robot
will be able to be controlled adequately by separate modules.

Unlike monocular vision, stereo vision has the ability to extract depth information
about the surrounding and may therefore be useful when the information provided by
the vision system are going to be used for control purposes. In order for the results to
be of any value we need to calibrate the cameras. Andreas Våge has worked mainly
on the SLAM section using stereo camera. This report will therefore assume that
depth information may be provided from this SLAM system. This project will not look
further into stereo vision and camera calibration as this is a larger focus in the work
of Andreas Våge.

1.5 Background and Contributions

The project are using pre-existing libraries such as OpenCV and ROS. ROS is used to be
able to communicate between the different modules of the system work flow. OpenCV
is used as a computer vision library to process the frames. The deep learning part of
the project builds part of its foundation on the project "Autogenerated training data
using CV techniques" from TDT-4265 computer vision and deep learning conducted
by Ole S. Otterholm, Runar A. Olsen and Øystein B. Utbjoe.
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1.6 Outline

The report is organized as follows. In Chapter 2 the systems proposed by this report
is presented and the rational behind them explained. There will be one presentation
for the machine learning and one for the traditional computer vision. In Chapter 3
the results of the two systems will be presented as well as discussed. In Chapter 4 the
conclusion will be presented as well as some suggestion for future improvements.
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Chapter 2

System description

2.1 Traditional computer vision

In the traditional computer vision system it is necessary to use feature engineering
to determine what is classified as a pipe. The project will focus on monocular vision
when designing the system.

2.1.1 Modelling a pipe

In order to detect a pipe it is necessary to have some sort of model of what constitutes
a pipe. The subsequent algorithm is based on the assumption that the pipe can be mod-
elled as a line. This can be seen in figure 2.1a. The first and more obvious weakness of
this is how to handle bends. This is a weakness that we see from the results, but is also
to be expected. For the ground truth it is assumed that the lines are straight from where
it enters the image to where it leaves the image. Bends are treated as part of a triangle
where the resulting ground truth is the third side. This can be seen in figure 2.1b. With
the pipemodelled as a line it is needed to have some sort of mathematical representation
of a line.

13
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(a) Straight pipe. (b) Pipe with bend.

Figure 2.1: Ground truth modelled.

Figure 2.2: Line with y = a · x + b.

Maybe the most obvious would be to repre-
sent it using y = a ∗ x + b where x and
y denote the pixel axis. A representation of
this sort is shown in figure 2.2. This is de-
pendent on the slope of the line and if we
align the pipe vertically the slope approaches
∞, which is not desired. A more prefer-
able representation can therefore be to model
it as an angle, θ and the tangential distance

from the optical centre, r. An illustration of this can be seen in figure 2.3.

Figure 2.3: Line represented by θ
and r.

For the first round of the algorithm it is only
focused on finding the angle of the pipe. The
tangential distance, indicating the spatial location,
is reserved for future improvements.

2.1.2 Detection algorithm

One of the main facets of monocular vision is
that it will struggle to extract depth information.
There are methods that can overcome this issue,
such as a pair of lasers with known relative dis-
tance, though in this project we do not have any
such technique available.
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In the case of detecting an underwater pipe there needs to be some feature common
to pipes that can be used to find them in the image. One of the first techniques that
comes to mind is colour segmentation, however upon further consideration colour
segmentation seem to be a poor solution. Such a schemewould require prior knowledge
about the pipes in question and will be troublesome due to the rapid dissipation of
colors in water. This dissipation would render the system with a rather short operating
range. With color segmentation deemed unsuitable there would need to be some kind
of evaluation of the contrast in the image which is unrelated to the colors.

When considering how pipes will appear when examining contrasts in the image
two considerations come to mind. The first is based on edge detection where one
would then search for the two lines which would represent the outside of the pipe. The
second is based on thresholding where the pipe is assumed to have different coloration
from the surrounding area. The first method seems to have the most basis as this
would be least dependent on assumptions about the image.

The technique will utilize edge detection, and it is therefore important to filter
out noise from the image. This will make it so the edge detection only register larger
trends in the image. This noise reduction is done using a Gaussian blur filter. After
the image has been blurred it is then subjected to an edge detection using the Canny
method. The output of the edge detection is a binary image, where edges are denoted
with a value of 1.

The next step of the algorithm is to identify the lines present in this binary image.
However, in order to improve robustness by connecting, the image is first subjected
to a dilation followed by an erosion. The purpose behind this is to join together lines
that are interrupted by sporadic pixels with 0 values which break up the line, but are
still part of the pipe edge. After the dilation and erosion the algorithm endeavors
to identify the lines in the binary image. The method chosen for doing this is the
probabilistic Hough lines transform.

Once the lines in the image are gathered they need to be sorted and determined
how their information can be utilized to their full extent. The report considered two
ways to classify the lines as a pipe. One where the longest two lines are kept and used
as representations of the pipe. The other where all the lines perform a vote over which
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directions are the most prevalent. Both of these techniques have their advantages as
well as challenges that need to be utilized and solved. The simplest case which checks
the two longest lines assumes a near ideal pipe, which is not realistic in a realistic
environment. The second method is therefore preferred.

A fairly obvious challenge with the voting scheme is that there is a possibility
that small lines can outvote the pipe direction due to their shear number. In order to
combat this it is introduced a weighting on the lines to give more emphasis on longer
line segments. There is also an issue that the outliers distort the proposed pipe. These
outliers should ideally not be considered when deciding where the pipe is.

There was an issue when the pipe was oriented vertically in the image, shown
in figure 2.4. The reason why this issue arose is that lines in the image have two
alternative representations when examining the non directed lines. Initially the angle
was calculated between −π and π using atan2. When the pipe was oriented vertically
the atan2method provided amix of these two representations resulting that the average
was oriented somewhere in between. This was solved by adding π to any values found
between−π and 0, meaning that the algorithm only looks at the representation between
0 and π , where the lines have a unique representation.

(a) Original (b) Analyzed

Figure 2.4: Issue with vertically oriented pipe.

The first proposed method used the average of all the detected lines and then used
this average as the proposed pipe angle. This method had a weakness that it struggled
to correctly evaluate bends and was very susceptible to outliers. To combat these
issues an alternative scheme is proposed.
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This scheme prepares an array of which each element represent a section of
angles. When the algorithm finds a line it will add the magnitude of this line to the
correct element of the array. As it iterates through the detected lines the angle section
containing the largest value will be the direction of the lines. For the first iteration it
divided the section of between 0 and π into 36 sections, but after some consideration
this was increased to 180 sections which slightly improved the performance. With this
sorting scheme the algorithm proves much more robust against outliers, though it still
struggles with bends.

In order to identify the bend it is necessary to have some understanding on how to
categorize the bend. The algorithm considers that the pipe may have one main and
one secondary pipe segment. It assumes that secondary pipe segment is of sufficient
size in relation to the main pipe section. For the first case this was set as one fifth of
the main pipe. This heuristic proved to be quite strict and there was a performance
increase of around 1 percent when decreasing it to one tenth.

The algorithm performed better now, though it did not consider the relative differ-
ence in magnitude between the main and secondary pipe section. To solve this relative
difference the algorithm calculated an αw =

βmain
βmain+βsecondary

, αw being the weighting
factor and β being the magnitude in the angle section of the main and secondary pipe
section. The average between the main and secondary angle is then computed with
θaveraдe = θmain · αw + θsecondary ∗ (1 − αw ). This weighted evaluation between the
main and secondary pipe section proved to be a significantly improved representation
of the pipe bend.

There where still some frames that was expected to be correct, but still fooled the
algorithm. When examining which of the frames that failed the test, these frames
where found in between frames corrected with the weighted two pipe section scheme.
Figure 2.5 shows four consecutive images that illustrates the issue. From 2.5b and 2.5c
it seems that the algorithm only use the main pipe section, while 2.5a and 2.5d use
the secondary pipe section as well. This indicates that the heuristic of one tenth is too
strict. When further lowering the heuristic, the performance dropped and the same
issue persisted. This means that the heuristic was not the problem. The next theory
was that the largest pipe section is located right on the border of the prepared angle
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sections and thus constitutes the largest and second largest values. This essentially
hides the smaller pipe segment. When implementing this improvement the issues from
2.5b and 2.5c vanished and the performance rose.

Even with this improvement there where still some frames that proved elusive.
In order to improve the robustness against such rogue frames it was implemented a
sliding window processing. The algorithm essentially remembers the results of the nth
previous frames and evaluates the pipe angle based on the information gathered over
all these frames. This should suppress any outliers. This sliding window approach is
based on the assumption that the pipe does not move significantly between a small set
of consecutive frames. This proves to be a reasonable assumption in the relative slow
moving robot compared to the frame rate of the camera. This implementation resulted
in an improvement of several percentage points as well as a smoother behaviour of
the estimated line.

(a) Image 206 (b) Image 207 (c) Image 208 (d) Image 209

Figure 2.5: Bend problem.

After implementing the sliding window there was a definite improvement. The
new performance can be seen in figure 2.6, which shows the same sequence of frames
with the sliding window implemented. Though there was still the question of how
many frames this sliding window should contain. The fear was that too few would
loose the value provided from the sliding window approach, rendering it useless, while
too many might introduce a sort of inertia that was too large on the pipe. To determine
what the optimal number of frames where, the values where started at 10 and increased
until the performance started to drop and then a few more frames to see that it was a
larger trend. From figure 2.7 it seems that the performance increase when increasing
the sliding window scope from 10 until it reach an optimum around 15 to 16, before
decreasing as it reaches 20. This is in line with the qualitative observations where the
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line seemed to drag due to this increased pseudo inertia when increasing the frames
of the sliding window scope too much. A sliding window scope of 15 frames was
therefore chosen for further implementation.

(a) Image 206 (b) Image 207 (c) Image 208 (d) Image 209

Figure 2.6: Bend with sliding window.

Figure 2.7: Sliding window performance.

Figure 2.8 shows the resulting system proposed by this report. In short it reads
a frame from the camera, which is then passed through a variety of image processes
until it has found all the lines in the image. These lines are then passed to the line
sorting scheme described above before passing the proposed pipe to the sliding window
comparison. The sliding window comparison compare the proposed pipe with the
proposed pipes from the 15 last frames before selecting a detected pipe.

With the scheme working as intended it will be interesting to see how the scheme
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Figure 2.8: Flow chart pipe detection.

perform when exposed to a variety of different tuning parameters to see if it is sensitive
to its tuning and which parameters have the most impact on its performance. After
finishing the tuning it will be tried with the real video. As this does not have a ground
truth it will be evaluated based on observation. The main goal behind this is to see if
it works at all or not. Should it work well it will be developed a ground truth to see
how well it performs, however, should it fail miserably this will not be necessary.

2.2 Machine learning

In the project "Autogenerated training data using CV techniques" it is proposed a
technique where realistic training data is obtained and labeled from a simulation
before being used to train a neural network. Then the network tried to categorize
images from a real operation. The network performed well on the training data, but
struggled to handle the real world images. This project propose that it might be
advantageous to train the network on a mixture of real and simulated data. The goal
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behind this is to make the network perform better than expected if it was only exposed
to a limited number of training data. Figure 2.9 shows the architecture of the proposed
network. This network utilize transfer learning and is built upon the output of the
existing network NasNetLarge, a well performing network for image classification
(Zoph et al.; 2018). It then receives the output and takes it through a pooling layer
before giving it to a fully connected layer with 64 nodes that utilize the ReLu activation
function. The last step is a layer with one node that utilize the sigmoid activation
function to make the binary prediction. The project will use this architecture for as
long as it proves to be sufficiently complex.

Figure 2.9: Network architecture.

Earlier, the project has only used the network for binary image classification, which
is not the most useful for navigation. Should the simulated data be able to improve
the performance of the network it can in theory be expanded to other techniques.
Figure 2.10 shows how the simplified binary image of the simulation looks before
it is classified by whether or not the image contains a pipe. This binary image is in
essence a pixel by pixel ground truth on what constitutes a pipe and should therefore
be very well suited for other applications, such as object detection or even semantic
segmentation.

The thing of interest for this report is not necessarily howwell the network perform,
but rather if the mixture between real and simulated data can improve the result when
testing on real data. The main contribution of this report is therefore the sorting and
labeling of the data set combined with looking at how this can be augmented using
different ratios of simulated data. The data set is based on a video provided from
Marco Leonardi. This video was split into separate images using the developed script
split_video.py in the attachment. This resulted in more than 86 000 images and after
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Figure 2.10: Simulated training data, from the project "Autogenerated training data
using CV techniques".

sorting through around 6 000 it was decided that this was too many to be suitable
for this purpose. The script was then altered to only save every tenth image and
drastically reducing the images to be sorted, while giving a representation from the
entire video. The resulting images were then sorted manually into separate folders
based on whether or not the image contained a pipe. In this data set there where 5 710
images containing pipes and 1 469 images not containing any pipes. This data set is
used as the test to see how well the network performs after training.

The original video had several overlay features, as seen in figure 2.11, which would
not be ideal to keep for the training of the network. The image was therefore cropped
to remove the undesirable overlay, an example of this can be shown in figure 2.12.

With the entire data set labeled a natural next step was to split the data set into train-
ing, validation and test data. This was done using the second script sort_training.py
in the attachments, which reads through the labeled data set and sorts the image
randomly into either training, validation or testing. The sorting was done so that one
tenth would be reserved for testing. Of the resulting images not reserved for testing a
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Figure 2.11: Overlay on video.

Figure 2.12: Overlay removed.
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quarter was reserved for validation and the rest for training.
With the data set completed it was necessary to get a baseline of how well the

network proposed in the project "Autogenerated training data using CV techniques"
would perform when subjected to a large amount of real training data. The network
was therefore subjected to the data set sorted into training, validation and testing. The
data set contained 4874 training images, 1601 validation images and 704 testing images.
The network was set up with a batch size of 32 and set to train over 10 epochs with
200 steps per epoch. After the final epoch it achieved the test accuracy of 96%, which
indicate that the network has the capacity to classify the images in the data set. From
figure 2.13 it seems that the network trains correctly. As the network trains correctly
and the goal of the project is only to see how a mix of simulated data may effect the
performance there is no need to alter the architecture of the network.

(a) Loss (b) Accuracy

Figure 2.13: Real data results.

Now that the network performs as intended it is interesting to see how it behaves
when trying to classify the real data, but only being trained on the simulated data.
Then it will be subjected to a blend of simulated and real data to see if that may affect
the performance in any meaningful manner. Intuitively it may be reasonable to assume
that the network will perform best if given a large set of real data. Thus it is interesting
to see how the network perform when subjected to very small amounts of real training
data.

As previously stated this part of the project is based on the project "Autogenerated
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training data using CV techniques" and the fourth data set proposed in this project
will be the one used when supplementing the reduced set of real data. The real data
set was then reduced so that each of the folders contained roughly five percent of the
amount of images in each of the folders for the simulated data set. The images that
are not kept for training or validation will be the data used for testing to evaluate
the overall performance after the training is complete. This reduced set of real data
will serve as the base line. The simulated data will then be added so that the real data
constitutes close to five percent of the training and validation data. This percentage
will then be increased by reducing the amount of simulated data added to see how the
ratio between simulated and real data will effect performance of the network. The
various scripts developed for the machine learning as well as the various data sets are
located in the attachments.
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Chapter 3

Results

3.1 Traditional computer vision

In order to have an ordered testing regime it is beneficial to have some sort of ground
truth. This was done by manually indicating the direction on the pipe for each image
and store them in the file, which can be found as ground_truth_finished.py in the
attachments. In order to streamline this process it was developed a python script,
create_ground_truth.py in the attachments, that displays the image waiting for left
mouse clicks as input. The first input is accepted and used as an anchor for the line
that is drawn to the mouse position at all times until the next second mouse click is
received. This line is to aid in labeling the ground truth. On the second mouse click the
image number, line angle and click position are saved to a text file for later comparison.
There is also implemented a cancel button which allows the first mouse click to be
provided again in the case that this was put in the wrong location. A python script
was also developed, compare_result.py in the attachments, comparing the results of
the pipe detection algorithm with the ground truth. In addition, a python script that
splits the video into images named based on the number of frames that preceded the
image in question, was developed. The subsequent tuning parameters are therefore
compared with how well they perform against the human created baseline. This can

27
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Kernel Canny Threshold Line min size Line max gap Performance
3 x 3 10 - 50 120 100 20 94.65
5 x 5 10 - 50 120 100 20 91.02
7 x 7 10 - 50 120 100 20 91.53
9 x 9 10 - 50 120 100 20 91.08
11 x 11 10 - 50 120 100 20 90.89

Table 3.1: Tuning kernel size.

be shown in figure 3.1. With the ground truth established the next step is to see how
the different tunable parameters will effect the performance of the algorithm.

Figure 3.1: Ground truth image.

From table 3.1 it becomes apparent that enlarging the kernel size of the dilation and
erosion kernel has a negative impact on performance. This makes sense as this process
would bundle together outliers so that they have a higher impact on the performance.
As increasing the kernel size did not have a positive impact on the performance it was
decided to continue using a kernel of size 3 by 3.

For the tuning of the edge detection it was decided to start with the values of 10 -
50 and then trying to change both by increasing and then decreasing the values to see
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Kernel Canny Threshold Line min size Line max gap Performance
3 x 3 10 - 50 120 100 20 94.65
3 x 3 10 -30 120 100 20 70.13
3 x 3 30 - 50 120 100 20 94.20
3 x 3 20 - 50 120 100 20 93.63
3 x 3 10 - 40 120 100 20 82.29
3 x 3 10 - 60 120 100 20 94.46
3 x 3 20 - 60 120 100 20 94.46
3 x 3 30 -60 120 100 20 95.10
3 x 3 40 - 60 120 100 20 94.84
3 x 3 30 - 70 120 100 20 94.52
3 x 3 35 - 60 120 100 20 93.57
3 x 3 25 - 60 120 100 20 95.10
3 x 3 25 - 55 120 100 20 95.29
3 x 3 25 - 50 120 100 20 93.82
3 x 3 24 - 55 120 100 20 95.29
3 x 3 23 - 55 120 100 20 95.41
3 x 3 22 - 55 120 100 20 95.41
3 x 3 21 - 55 120 100 20 94.90
3 x 3 26 - 55 120 100 20 94.78
3 x 3 23 - 56 120 100 20 94.46
3 x 3 23 - 54 120 100 20 95.41
3 x 3 23 - 53 120 100 20 93.63

Table 3.2: Tuning canny edge detection values.
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how this impacted the performance. In table 3.2 we can see that lowering these values
significantly will have a large negative impact on the performance while increasing
them above certain values will similarly impact the performance negatively. When the
values was too low, as shown in figure 3.2, there were too many edges accepted by the
edge detection making the line detection struggle. In the other case where the values
where too large, as shown in figure 3.3, there are too few edges accepted making the
line detection struggle, not provided with a sufficient amount of the edges present in
the image. After much tuning the values 23 - 55 had the best performance with 95.41%
accuracy. Therefore, these were selected as the values to continue using for further
tuning.

Figure 3.2: Too low canny values.

The last tunable parameters were for the probabilistic Hough line transform. From
table 3.3 it seemed that changing the threshold value had no positive effect, causing it
to be left at 120. Lowering the minimum line length had a positive effect causing it to
be set to 10. Lowering the allowed line gap had little to none effect.

With the tuning complete the algorithm was then subjected to a section of the real
video. From figure 3.4 it seem to be working as intended, though if we look at figure
3.5 it seems that when the camera approaches close to the seabed it starts to pick up
outliers and thus effecting the performance. This indicate that the canny should be
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Figure 3.3: Too high canny values.

Kernel Canny Threshold Line min size Line max gap Performance
3 x 3 23 - 55 120 100 20 95.41
3 x 3 23 - 55 100 100 20 94.71
3 x 3 23 - 55 130 100 20 94.97
3 x 3 23 - 55 110 100 20 93.50
3 x 3 23 - 55 120 50 20 95.48
3 x 3 23 - 55 120 10 20 95.86
3 x 3 23 - 55 120 10 10 95.73

Table 3.3: Tuning probabilistic Hough line transform values.
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stricter with what is accepted as edges, however, when looking at figure 3.6 the seabed
is far away and no lines are detected. For this case the canny should be more accepting.
Finally if one looks at figure 3.7 the camera are very close and almost everything is
accepted as lines. To be fair, there where longer sections that it worked rather well,
though it struggled when the camera moved closer or further away. This indicates
that the system is very dependant on the correct tuning of the canny parameters. An
improvement on this could be to do this tuning dynamically, but as the algorithm
stands, it is not robust enough to be used on a real operation.

(a) Original (b) Analysed

Figure 3.4: Working on real video.

(a) Original (b) Analysed

Figure 3.5: Some outliers.
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(a) Original (b) Analysed

Figure 3.6: Camera far away.

(a) Original (b) Analysed

Figure 3.7: Camera very close.
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3.2 Machine learning

In the deep learning section there was a small data set of real data that was augmented
with differing degrees of simulated data. The mixture is based on percentage of real
data present and has been tested all the way from 100% to 0% real data, with steps of
5% between each step. The network was at each step trained for 10 epochs, with a
batch size of 32 and with 200 steps per epoch. The goal is to see if any specific blending
ratio affect the performance in a significant manner.

Figure 3.8: Result from different ratios of real and simulated data, for complete results
see appendix A.

From figure 3.8 it seems to be a sharp decrease in performance when there are no
real data present in the training data, as the performance drops to below 60%. This
may be explained as we find that the simulation does not necessarily incorporate the
same degree of complexity as the real data. In figure 3.9 it is shown an example from
the simulated training data set. When comparing the simulation to the image from the
real data in figure 3.10 it becomes apparent that though the simulated data is clearly a
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pipe, it lacks elements of the real data, such as biofouling. It is reasonable to assume
that the network would be confused if it has not been exposed to such complexities
throughout its training process.

Figure 3.9: Example of simulated data.

When looking at the different ratios in figure 3.8 there is a trend that as we increase
the percentage of real data in the data set the performance drops, with the exception
of 95%, which seems to be an outlier. This may be explained by the fact that the
network has the same number of real images to work with for each of the training
instances. The poor performance is simply due to the restricted amount of training
data. From figure 3.11 it seems that when training only on the limited real data set the
validation loss and accuracy seem to oscillate and the validation loss does not improve,
indicating that the network overfit as the data set is too limited in size. The addition
of simulated data was originally to combat issues arising from a limited number of
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Figure 3.10: Example of real data.

data available. From figure 3.8 it seems that a ratio of 40% real data is optimal as the
simulated data may help the system, while not being so abundant that they make the
real data negligible as far as the network is concerned. Though it should be mentioned
that as there are outliers present it would be interesting to run the experiment over a
longer training sequence to see if they are actually outliers or part of a larger trend.

(a) Loss (b) Accuracy

Figure 3.11: 100% real data.

To investigate the potential outlier at 95% real data, the network was retrained and
yielded the following result found in figure 3.12. From this we can see that 95% mix
not necessarily is an ideal mix.
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Figure 3.12: Result with retrained 95%.
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Chapter 4

Conclusions and future work

The proposed pipe detection scheme based on traditional computer vision techniques
performed well in the controlled pool environment, though it lacks the robustness
needed to be used in a real ocean environment with high levels of biofouling. Tuning
the different parameters showed that the technique is quite sensitive to tuning which
may be part of causing its lack of robustness. A natural extension of this work is to add
spatial awareness to the algorithm and not only limit it to what angle the pipe have in
the image. The ground truth should also be augmented to incorporate this. With the
spatial awareness of where the pipe is in the image the system is ready to be integrated
into the larger project. The euclidean location of the pipe is currently unknown, but if
this system is integrated with the SLAM module it can provide context to the map and
thus the euclidean location may be extracted from the map.

The report also looked into machine learning as a viable option to detect the pipe
in more complex and realistic environments. The network architecture that have been
tested worked well on the complex environment. The augmentation of the data set
using simulated data had positive effect. This report limited the problem to look at
binary image classification. A natural extension of this work is to extend the technique
to detection and even semantic segmentation. To do this it would be necessary to label
the data set accordingly as well as to use another network architecture.
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Appendix A

Training results

41



Training with 0% real data 
Using TensorFlow backend. 
 
Found 5537 images belonging to 2 classes. 
Found 1832 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 13s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 737s 4s/step - loss: 0.0930 - acc: 0.9666 - 
val_loss: 0.0509 - val_acc: 0.9814 
Epoch 2/10 
200/200 [==============================] - 711s 4s/step - loss: 0.0737 - acc: 0.9725 - 
val_loss: 0.0626 - val_acc: 0.9749 
Epoch 3/10 
200/200 [==============================] - 711s 4s/step - loss: 0.0447 - acc: 0.9845 - 
val_loss: 0.0538 - val_acc: 0.9797 
Epoch 4/10 
200/200 [==============================] - 712s 4s/step - loss: 0.0440 - acc: 0.9825 - 
val_loss: 0.0700 - val_acc: 0.9758 
Epoch 5/10 
200/200 [==============================] - 711s 4s/step - loss: 0.0283 - acc: 0.9900 - 
val_loss: 0.0473 - val_acc: 0.9816 
Epoch 6/10 
200/200 [==============================] - 711s 4s/step - loss: 0.0767 - acc: 0.9731 - 
val_loss: 0.0447 - val_acc: 0.9854 
Epoch 7/10 
200/200 [==============================] - 708s 4s/step - loss: 0.0296 - acc: 0.9909 - 
val_loss: 0.0470 - val_acc: 0.9829 
Epoch 8/10 
200/200 [==============================] - 712s 4s/step - loss: 0.0218 - acc: 0.9923 - 
val_loss: 0.0613 - val_acc: 0.9761 
Epoch 9/10 
200/200 [==============================] - 711s 4s/step - loss: 0.0232 - acc: 0.9906 - 
val_loss: 0.0541 - val_acc: 0.9845 
Epoch 10/10 
200/200 [==============================] - 711s 4s/step - loss: 0.0262 - acc: 0.9911 - 
val_loss: 0.0476 - val_acc: 0.9829 
100/100 [==============================] - 246s 2s/step 
Final Loss and Score of correct classification:  [2.2253368052840234, 0.589375] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 



 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2449s 2s/step 

Final Loss and Score of correct classification:  [2.1935397285065954, 

0.5929422835633626] 

 

  



Training with 5% real data 
Found 5846 images belonging to 2 classes. 
Found 1935 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Training model 
Epoch 1/10 
200/200 [==============================] - 750s 4s/step - loss: 0.1082 - acc: 0.9620 
- val_loss: 0.0839 - val_acc: 0.9686 
Epoch 2/10 
200/200 [==============================] - 702s 4s/step - loss: 0.0625 - acc: 0.9775 
- val_loss: 0.0822 - val_acc: 0.9703 
Epoch 3/10 
200/200 [==============================] - 703s 4s/step - loss: 0.0644 - acc: 0.9786 
- val_loss: 0.1282 - val_acc: 0.9604 
Epoch 4/10 
200/200 [==============================] - 702s 4s/step - loss: 0.0413 - acc: 0.9848 
- val_loss: 0.0548 - val_acc: 0.9785 
Epoch 5/10 
200/200 [==============================] - 702s 4s/step - loss: 0.0436 - acc: 0.9841 
- val_loss: 0.0652 - val_acc: 0.9722 
Epoch 6/10 
200/200 [==============================] - 703s 4s/step - loss: 0.0415 - acc: 0.9831 
- val_loss: 0.1511 - val_acc: 0.9532 
Epoch 7/10 
200/200 [==============================] - 702s 4s/step - loss: 0.0379 - acc: 0.9857 
- val_loss: 0.0449 - val_acc: 0.9839 
Epoch 8/10 
200/200 [==============================] - 702s 4s/step - loss: 0.0433 - acc: 0.9843 
- val_loss: 0.0868 - val_acc: 0.9678 
Epoch 9/10 
200/200 [==============================] - 703s 4s/step - loss: 0.0443 - acc: 0.9839 
- val_loss: 0.0410 - val_acc: 0.9859 
Epoch 10/10 
200/200 [==============================] - 702s 4s/step - loss: 0.0256 - acc: 0.9913 
- val_loss: 0.0892 - val_acc: 0.9649 
100/100 [==============================] - 242s 2s/step 
Final Loss and Score of correct classification:  [0.4094449247419834, 0.84125] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 



 

 
Found 6818 images belonging to 2 classes. 
1000/1000 [==============================] - 2404s 2s/step 
Final Loss and Score of correct classification:  [0.40552627407899533, 
0.841844416562108] 
 
 

  



Training with 10% real data 
Using TensorFlow backend. 
 
Found 3077 images belonging to 2 classes. 
Found 1020 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 10s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 681s 3s/step - loss: 0.1150 - acc: 0.9550 
- val_loss: 0.1579 - val_acc: 0.9391 
Epoch 2/10 
200/200 [==============================] - 656s 3s/step - loss: 0.0668 - acc: 0.9757 
- val_loss: 0.0904 - val_acc: 0.9620 
Epoch 3/10 
200/200 [==============================] - 656s 3s/step - loss: 0.0597 - acc: 0.9791 
- val_loss: 0.0890 - val_acc: 0.9680 
Epoch 4/10 
200/200 [==============================] - 656s 3s/step - loss: 0.0662 - acc: 0.9786 
- val_loss: 0.0854 - val_acc: 0.9668 
Epoch 5/10 
200/200 [==============================] - 656s 3s/step - loss: 0.0550 - acc: 0.9787 
- val_loss: 0.0734 - val_acc: 0.9730 
Epoch 6/10 
200/200 [==============================] - 655s 3s/step - loss: 0.0673 - acc: 0.9755 
- val_loss: 0.0833 - val_acc: 0.9630 
Epoch 7/10 
200/200 [==============================] - 655s 3s/step - loss: 0.0470 - acc: 0.9827 
- val_loss: 0.0869 - val_acc: 0.9633 
Epoch 8/10 
200/200 [==============================] - 655s 3s/step - loss: 0.0490 - acc: 0.9801 
- val_loss: 0.0956 - val_acc: 0.9604 
Epoch 9/10 
200/200 [==============================] - 655s 3s/step - loss: 0.0417 - acc: 0.9845 
- val_loss: 0.0771 - val_acc: 0.9702 
Epoch 10/10 
200/200 [==============================] - 655s 3s/step - loss: 0.0397 - acc: 0.9856 
- val_loss: 0.0558 - val_acc: 0.9787 
100/100 [==============================] - 227s 2s/step 
Final Loss and Score of correct classification:  [0.2471233455836773, 0.9040625] 
Results 



Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 

 

 
Found 6818 images belonging to 2 classes. 
1000/1000 [==============================] - 2259s 2s/step 
Final Loss and Score of correct classification:  [0.25460785695234367, 
0.9021643663739022] 
  



Training with 15% real data 
Found 1731 images belonging to 2 classes. 
Found 571 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Training model 
Epoch 1/10 
200/200 [==============================] - 684s 3s/step - loss: 0.1093 - acc: 0.9597 - 
val_loss: 0.0975 - val_acc: 0.9647 
Epoch 2/10 
200/200 [==============================] - 652s 3s/step - loss: 0.0628 - acc: 0.9787 - 
val_loss: 0.1000 - val_acc: 0.9644 
Epoch 3/10 
200/200 [==============================] - 654s 3s/step - loss: 0.0623 - acc: 0.9768 - 
val_loss: 0.1561 - val_acc: 0.9543 
Epoch 4/10 
200/200 [==============================] - 652s 3s/step - loss: 0.0544 - acc: 0.9823 - 
val_loss: 0.0857 - val_acc: 0.9650 
Epoch 5/10 
200/200 [==============================] - 652s 3s/step - loss: 0.0449 - acc: 0.9848 - 
val_loss: 0.1553 - val_acc: 0.9502 
Epoch 6/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0426 - acc: 0.9848 - 
val_loss: 0.1373 - val_acc: 0.9590 
Epoch 7/10 
200/200 [==============================] - 652s 3s/step - loss: 0.0413 - acc: 0.9859 - 
val_loss: 0.1536 - val_acc: 0.9575 
Epoch 8/10 
200/200 [==============================] - 651s 3s/step - loss: 0.0350 - acc: 0.9864 - 
val_loss: 0.1333 - val_acc: 0.9656 
Epoch 9/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0309 - acc: 0.9881 - 
val_loss: 0.1526 - val_acc: 0.9596 
Epoch 10/10 
200/200 [==============================] - 651s 3s/step - loss: 0.0478 - acc: 0.9838 - 
val_loss: 0.0946 - val_acc: 0.9622 
100/100 [==============================] - 227s 2s/step 
Final Loss and Score of correct classification:  [0.3413085944205523, 0.8825] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 



 

 

  



Training with 20% real data 
Using TensorFlow backend. 
 
Found 925 images belonging to 2 classes. 
Found 308 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 11s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 742s 4s/step - loss: 0.1298 - acc: 0.9495 - 
val_loss: 0.1998 - val_acc: 0.9156 
Epoch 2/10 
200/200 [==============================] - 712s 4s/step - loss: 0.0932 - acc: 0.9655 - 
val_loss: 0.0590 - val_acc: 0.9805 
Epoch 3/10 
200/200 [==============================] - 712s 4s/step - loss: 0.0686 - acc: 0.9760 - 
val_loss: 0.0576 - val_acc: 0.9773 
Epoch 4/10 
200/200 [==============================] - 712s 4s/step - loss: 0.0812 - acc: 0.9699 - 
val_loss: 0.0651 - val_acc: 0.9708 
Epoch 5/10 
200/200 [==============================] - 714s 4s/step - loss: 0.0523 - acc: 0.9790 - 
val_loss: 0.0830 - val_acc: 0.9643 
Epoch 6/10 
200/200 [==============================] - 720s 4s/step - loss: 0.0505 - acc: 0.9823 - 
val_loss: 0.1137 - val_acc: 0.9481 
Epoch 7/10 
200/200 [==============================] - 720s 4s/step - loss: 0.0405 - acc: 0.9862 - 
val_loss: 0.0581 - val_acc: 0.9773 
Epoch 8/10 
200/200 [==============================] - 720s 4s/step - loss: 0.0385 - acc: 0.9850 - 
val_loss: 0.0786 - val_acc: 0.9675 
Epoch 9/10 
200/200 [==============================] - 720s 4s/step - loss: 0.0426 - acc: 0.9836 - 
val_loss: 0.0606 - val_acc: 0.9708 
Epoch 10/10 
200/200 [==============================] - 720s 4s/step - loss: 0.0409 - acc: 0.9850 - 
val_loss: 0.0699 - val_acc: 0.9643 
100/100 [==============================] - 251s 3s/step 
Final Loss and Score of correct classification:  [0.24989594276994467, 0.910625] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 



 

 
 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2492s 2s/step 

Final Loss and Score of correct classification:  [0.25199398870161854, 

0.9135194479297365] 
  



Training with 25% real data 
Found 1233 images belonging to 2 classes. 

Found 410 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 748s 4s/step - loss: 0.1287 

- acc: 0.9497 - val_loss: 0.0687 - val_acc: 0.9655 

Epoch 2/10 

200/200 [==============================] - 714s 4s/step - loss: 0.0820 

- acc: 0.9697 - val_loss: 0.0496 - val_acc: 0.9734 

Epoch 3/10 

200/200 [==============================] - 714s 4s/step - loss: 0.0720 

- acc: 0.9732 - val_loss: 0.0561 - val_acc: 0.9705 

Epoch 4/10 

200/200 [==============================] - 715s 4s/step - loss: 0.0577 

- acc: 0.9771 - val_loss: 0.0488 - val_acc: 0.9788 

Epoch 5/10 

200/200 [==============================] - 714s 4s/step - loss: 0.0496 

- acc: 0.9823 - val_loss: 0.0493 - val_acc: 0.9772 

Epoch 6/10 

200/200 [==============================] - 714s 4s/step - loss: 0.0548 

- acc: 0.9783 - val_loss: 0.0605 - val_acc: 0.9683 

Epoch 7/10 

200/200 [==============================] - 715s 4s/step - loss: 0.0488 

- acc: 0.9818 - val_loss: 0.0592 - val_acc: 0.9753 

Epoch 8/10 

200/200 [==============================] - 713s 4s/step - loss: 0.0338 

- acc: 0.9894 - val_loss: 0.0442 - val_acc: 0.9791 

Epoch 9/10 

200/200 [==============================] - 714s 4s/step - loss: 0.0405 

- acc: 0.9860 - val_loss: 0.0514 - val_acc: 0.9721 

Epoch 10/10 

200/200 [==============================] - 715s 4s/step - loss: 0.0379 

- acc: 0.9845 - val_loss: 0.0516 - val_acc: 0.9756 

100/100 [==============================] - 249s 2s/step 

Final Loss and Score of correct classification:  [0.40791284330189226, 

0.8465625] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2472s 2s/step 

Final Loss and Score of correct classification:  [0.40142193726861025, 

0.8491844416562108] 

 

  



Training with 30% real data 
Found 809 images belonging to 2 classes. 

Found 270 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 746s 4s/step - loss: 0.1466 

- acc: 0.9422 - val_loss: 0.0884 - val_acc: 0.9670 

Epoch 2/10 

200/200 [==============================] - 696s 3s/step - loss: 0.0937 

- acc: 0.9659 - val_loss: 0.1222 - val_acc: 0.9547 

Epoch 3/10 

200/200 [==============================] - 701s 4s/step - loss: 0.0799 

- acc: 0.9722 - val_loss: 0.0769 - val_acc: 0.9710 

Epoch 4/10 

200/200 [==============================] - 705s 4s/step - loss: 0.0634 

- acc: 0.9787 - val_loss: 0.0836 - val_acc: 0.9773 

Epoch 5/10 

200/200 [==============================] - 703s 4s/step - loss: 0.0706 

- acc: 0.9739 - val_loss: 0.1044 - val_acc: 0.9624 

Epoch 6/10 

200/200 [==============================] - 703s 4s/step - loss: 0.0618 

- acc: 0.9773 - val_loss: 0.0914 - val_acc: 0.9744 

Epoch 7/10 

200/200 [==============================] - 705s 4s/step - loss: 0.0485 

- acc: 0.9815 - val_loss: 0.0928 - val_acc: 0.9514 

Epoch 8/10 

200/200 [==============================] - 704s 4s/step - loss: 0.0442 

- acc: 0.9836 - val_loss: 0.1105 - val_acc: 0.9340 

Epoch 9/10 

200/200 [==============================] - 702s 4s/step - loss: 0.0413 

- acc: 0.9846 - val_loss: 0.1313 - val_acc: 0.9370 

Epoch 10/10 

200/200 [==============================] - 705s 4s/step - loss: 0.0402 

- acc: 0.9862 - val_loss: 0.0926 - val_acc: 0.9740 

100/100 [==============================] - 251s 3s/step 

Final Loss and Score of correct classification:  [0.20442844314035027, 

0.92875] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 

 



 

 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2488s 2s/step 

Final Loss and Score of correct classification:  [0.18115035741101515, 

0.9335633626097867] 

  



Training with 35% real data 
Found 707 images belonging to 2 classes. 

Found 236 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 759s 4s/step - loss: 0.1884 

- acc: 0.9243 - val_loss: 0.0902 - val_acc: 0.9662 

Epoch 2/10 

200/200 [==============================] - 691s 3s/step - loss: 0.0945 

- acc: 0.9607 - val_loss: 0.0712 - val_acc: 0.9786 

Epoch 3/10 

200/200 [==============================] - 692s 3s/step - loss: 0.0943 

- acc: 0.9635 - val_loss: 0.0764 - val_acc: 0.9615 

Epoch 4/10 

200/200 [==============================] - 693s 3s/step - loss: 0.0853 

- acc: 0.9643 - val_loss: 0.0703 - val_acc: 0.9578 

Epoch 5/10 

200/200 [==============================] - 692s 3s/step - loss: 0.0730 

- acc: 0.9728 - val_loss: 0.1580 - val_acc: 0.9277 

Epoch 6/10 

200/200 [==============================] - 691s 3s/step - loss: 0.0742 

- acc: 0.9736 - val_loss: 0.0745 - val_acc: 0.9711 

Epoch 7/10 

200/200 [==============================] - 695s 3s/step - loss: 0.0620 

- acc: 0.9747 - val_loss: 0.0964 - val_acc: 0.9615 

Epoch 8/10 

200/200 [==============================] - 691s 3s/step - loss: 0.0881 

- acc: 0.9673 - val_loss: 0.1146 - val_acc: 0.9578 

Epoch 9/10 

200/200 [==============================] - 693s 3s/step - loss: 0.0516 

- acc: 0.9786 - val_loss: 0.1049 - val_acc: 0.9500 

Epoch 10/10 

200/200 [==============================] - 693s 3s/step - loss: 0.0568 

- acc: 0.9756 - val_loss: 0.0754 - val_acc: 0.9823 

100/100 [==============================] - 251s 3s/step 

Final Loss and Score of correct classification:  [0.1516513626044616, 

0.94625] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 

 

 

  



Training with 40% real data 
Found 543 images belonging to 2 classes. 

Found 181 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Downloading data from 

https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-

large-no-top.h5 

343613440/343610240 [==============================] - 28s 0us/step 

Training model 

Epoch 1/10 

200/200 [==============================] - 706s 4s/step - loss: 0.1595 

- acc: 0.9346 - val_loss: 0.1141 - val_acc: 0.9511 

Epoch 2/10 

200/200 [==============================] - 679s 3s/step - loss: 0.0939 

- acc: 0.9634 - val_loss: 0.1133 - val_acc: 0.9499 

Epoch 3/10 

200/200 [==============================] - 679s 3s/step - loss: 0.0973 

- acc: 0.9646 - val_loss: 0.1378 - val_acc: 0.9389 

Epoch 4/10 

200/200 [==============================] - 680s 3s/step - loss: 0.0675 

- acc: 0.9764 - val_loss: 0.1347 - val_acc: 0.9170 

Epoch 5/10 

200/200 [==============================] - 679s 3s/step - loss: 0.0534 

- acc: 0.9806 - val_loss: 0.1442 - val_acc: 0.9336 

Epoch 6/10 

200/200 [==============================] - 679s 3s/step - loss: 0.0563 

- acc: 0.9773 - val_loss: 0.1130 - val_acc: 0.9562 

Epoch 7/10 

200/200 [==============================] - 680s 3s/step - loss: 0.0488 

- acc: 0.9837 - val_loss: 0.1012 - val_acc: 0.9554 

Epoch 8/10 

200/200 [==============================] - 679s 3s/step - loss: 0.0399 

- acc: 0.9865 - val_loss: 0.1510 - val_acc: 0.9233 

Epoch 9/10 

200/200 [==============================] - 679s 3s/step - loss: 0.0429 

- acc: 0.9820 - val_loss: 0.1259 - val_acc: 0.9671 

Epoch 10/10 

200/200 [==============================] - 680s 3s/step - loss: 0.0381 

- acc: 0.9853 - val_loss: 0.1296 - val_acc: 0.9504 

100/100 [==============================] - 238s 2s/step 

Final Loss and Score of correct classification:  [0.2117665709927678, 

0.93375] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2370s 2s/step 

Final Loss and Score of correct classification:  [0.2083301443621806, 

0.9304579673776663] 

 

  



Training with 45% real data 
Using TensorFlow backend. 
 
Found 573 images belonging to 2 classes. 
Found 231 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 9s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 707s 4s/step - loss: 0.1616 - acc: 0.9344 - 
val_loss: 0.0947 - val_acc: 0.9576 
Epoch 2/10 
200/200 [==============================] - 676s 3s/step - loss: 0.0899 - acc: 0.9672 - 
val_loss: 0.0853 - val_acc: 0.9510 
Epoch 3/10 
200/200 [==============================] - 676s 3s/step - loss: 0.0904 - acc: 0.9658 - 
val_loss: 0.0942 - val_acc: 0.9531 
Epoch 4/10 
200/200 [==============================] - 671s 3s/step - loss: 0.0629 - acc: 0.9768 - 
val_loss: 0.0941 - val_acc: 0.9565 
Epoch 5/10 
200/200 [==============================] - 672s 3s/step - loss: 0.0587 - acc: 0.9789 - 
val_loss: 0.0847 - val_acc: 0.9476 
Epoch 6/10 
200/200 [==============================] - 670s 3s/step - loss: 0.0478 - acc: 0.9813 - 
val_loss: 0.0975 - val_acc: 0.9482 
Epoch 7/10 
200/200 [==============================] - 673s 3s/step - loss: 0.0459 - acc: 0.9832 - 
val_loss: 0.1193 - val_acc: 0.9393 
Epoch 8/10 
200/200 [==============================] - 670s 3s/step - loss: 0.0405 - acc: 0.9847 - 
val_loss: 0.1213 - val_acc: 0.9437 
Epoch 9/10 
200/200 [==============================] - 672s 3s/step - loss: 0.0427 - acc: 0.9852 - 
val_loss: 0.1280 - val_acc: 0.9476 
Epoch 10/10 
200/200 [==============================] - 671s 3s/step - loss: 0.0423 - acc: 0.9846 - 
val_loss: 0.1190 - val_acc: 0.9527 
100/100 [==============================] - 240s 2s/step 
Final Loss and Score of correct classification:  [0.19655508413910866, 0.9334375] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 



 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2381s 2s/step 

Final Loss and Score of correct classification:  [0.19593033162829346, 

0.9346925972396487] 
 
 
  



Training with 50% real data 
Using TensorFlow backend. 
 
Found 465 images belonging to 2 classes. 
Found 155 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 5s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 726s 4s/step - loss: 0.1622 - acc: 0.9347 - 
val_loss: 0.1369 - val_acc: 0.9355 
Epoch 2/10 
200/200 [==============================] - 695s 3s/step - loss: 0.1169 - acc: 0.9570 - 
val_loss: 0.1705 - val_acc: 0.9355 
Epoch 3/10 
200/200 [==============================] - 694s 3s/step - loss: 0.0882 - acc: 0.9670 - 
val_loss: 0.1411 - val_acc: 0.9548 
Epoch 4/10 
200/200 [==============================] - 695s 3s/step - loss: 0.0715 - acc: 0.9723 - 
val_loss: 0.1658 - val_acc: 0.9290 
Epoch 5/10 
200/200 [==============================] - 695s 3s/step - loss: 0.0565 - acc: 0.9772 - 
val_loss: 0.1352 - val_acc: 0.9355 
Epoch 6/10 
200/200 [==============================] - 694s 3s/step - loss: 0.0577 - acc: 0.9773 - 
val_loss: 0.1467 - val_acc: 0.9548 
Epoch 7/10 
200/200 [==============================] - 695s 3s/step - loss: 0.0590 - acc: 0.9799 - 
val_loss: 0.1902 - val_acc: 0.9355 
Epoch 8/10 
200/200 [==============================] - 696s 3s/step - loss: 0.0458 - acc: 0.9837 - 
val_loss: 0.2115 - val_acc: 0.9419 
Epoch 9/10 
200/200 [==============================] - 695s 3s/step - loss: 0.0433 - acc: 0.9848 - 
val_loss: 0.1374 - val_acc: 0.9548 
Epoch 10/10 
200/200 [==============================] - 696s 3s/step - loss: 0.0469 - acc: 0.9831 - 
val_loss: 0.2175 - val_acc: 0.9290 
100/100 [==============================] - 246s 2s/step 
Final Loss and Score of correct classification:  [0.28214028500020505, 0.9025] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 



 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2445s 2s/step 

Final Loss and Score of correct classification:  [0.27086368228700825, 

0.9071204516938519] 
  



Training with 55% real data 
Found 436 images belonging to 2 classes. 

Found 172 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 719s 4s/step - loss: 0.1559 

- acc: 0.9386 - val_loss: 0.2076 - val_acc: 0.9132 

Epoch 2/10 

200/200 [==============================] - 680s 3s/step - loss: 0.1201 

- acc: 0.9535 - val_loss: 0.2157 - val_acc: 0.9350 

Epoch 3/10 

200/200 [==============================] - 680s 3s/step - loss: 0.0753 

- acc: 0.9708 - val_loss: 0.2032 - val_acc: 0.9189 

Epoch 4/10 

200/200 [==============================] - 681s 3s/step - loss: 0.0696 

- acc: 0.9748 - val_loss: 0.2452 - val_acc: 0.9240 

Epoch 5/10 

200/200 [==============================] - 680s 3s/step - loss: 0.0601 

- acc: 0.9773 - val_loss: 0.2220 - val_acc: 0.9192 

Epoch 6/10 

200/200 [==============================] - 680s 3s/step - loss: 0.0538 

- acc: 0.9803 - val_loss: 0.2130 - val_acc: 0.9182 

Epoch 7/10 

200/200 [==============================] - 681s 3s/step - loss: 0.0439 

- acc: 0.9823 - val_loss: 0.2165 - val_acc: 0.9302 

Epoch 8/10 

200/200 [==============================] - 681s 3s/step - loss: 0.0569 

- acc: 0.9768 - val_loss: 0.1803 - val_acc: 0.9252 

Epoch 9/10 

200/200 [==============================] - 681s 3s/step - loss: 0.0345 

- acc: 0.9889 - val_loss: 0.2841 - val_acc: 0.9133 

Epoch 10/10 

200/200 [==============================] - 683s 3s/step - loss: 0.0367 

- acc: 0.9863 - val_loss: 0.1927 - val_acc: 0.9361 

100/100 [==============================] - 247s 2s/step 

Final Loss and Score of correct classification:  [0.4318155372142792, 

0.870625] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2452s 2s/step 

Final Loss and Score of correct classification:  [0.40599683155448557, 

0.8780112923462986] 

 
 
 
  



Training with 60% real data 
Using TensorFlow backend. 
 
Found 413 images belonging to 2 classes. 
Found 159 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 9s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 683s 3s/step - loss: 0.1660 - acc: 0.9377 - 
val_loss: 0.1739 - val_acc: 0.9245 
Epoch 2/10 
200/200 [==============================] - 652s 3s/step - loss: 0.1001 - acc: 0.9600 - 
val_loss: 0.1912 - val_acc: 0.9057 
Epoch 3/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0805 - acc: 0.9716 - 
val_loss: 0.2209 - val_acc: 0.9308 
Epoch 4/10 
200/200 [==============================] - 654s 3s/step - loss: 0.0863 - acc: 0.9676 - 
val_loss: 0.1280 - val_acc: 0.9371 
Epoch 5/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0543 - acc: 0.9781 - 
val_loss: 0.2155 - val_acc: 0.9119 
Epoch 6/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0458 - acc: 0.9826 - 
val_loss: 0.2298 - val_acc: 0.9119 
Epoch 7/10 
200/200 [==============================] - 654s 3s/step - loss: 0.0445 - acc: 0.9830 - 
val_loss: 0.2109 - val_acc: 0.9182 
Epoch 8/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0453 - acc: 0.9854 - 
val_loss: 0.4212 - val_acc: 0.8868 
Epoch 9/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0450 - acc: 0.9826 - 
val_loss: 0.3182 - val_acc: 0.9182 
Epoch 10/10 
200/200 [==============================] - 653s 3s/step - loss: 0.0405 - acc: 0.9847 - 
val_loss: 0.2974 - val_acc: 0.9182 
100/100 [==============================] - 226s 2s/step 
Final Loss and Score of correct classification:  [0.6711165000498295, 0.81125] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 



 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2245s 2s/step 

Final Loss and Score of correct classification:  [0.646444324737618, 

0.8169385194479297] 
 
 
 
  



Training with 65% real data 
Found 426 images belonging to 2 classes. 

Found 148 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 658s 3s/step - loss: 0.1778 

- acc: 0.9242 - val_loss: 0.1859 - val_acc: 0.9257 

Epoch 2/10 

200/200 [==============================] - 620s 3s/step - loss: 0.1065 

- acc: 0.9564 - val_loss: 0.1862 - val_acc: 0.9257 

Epoch 3/10 

200/200 [==============================] - 620s 3s/step - loss: 0.0802 

- acc: 0.9689 - val_loss: 0.2299 - val_acc: 0.9122 

Epoch 4/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0733 

- acc: 0.9717 - val_loss: 0.2824 - val_acc: 0.9122 

Epoch 5/10 

200/200 [==============================] - 620s 3s/step - loss: 0.0539 

- acc: 0.9803 - val_loss: 0.1457 - val_acc: 0.9392 

Epoch 6/10 

200/200 [==============================] - 620s 3s/step - loss: 0.0590 

- acc: 0.9777 - val_loss: 0.1690 - val_acc: 0.9392 

Epoch 7/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0519 

- acc: 0.9806 - val_loss: 0.2236 - val_acc: 0.9189 

Epoch 8/10 

200/200 [==============================] - 620s 3s/step - loss: 0.0508 

- acc: 0.9803 - val_loss: 0.3338 - val_acc: 0.8851 

Epoch 9/10 

200/200 [==============================] - 621s 3s/step - loss: 0.0578 

- acc: 0.9766 - val_loss: 0.1832 - val_acc: 0.9324 

Epoch 10/10 

200/200 [==============================] - 621s 3s/step - loss: 0.0423 

- acc: 0.9848 - val_loss: 0.2522 - val_acc: 0.9122 

100/100 [==============================] - 226s 2s/step 

Final Loss and Score of correct classification:  [0.5284045244008303, 

0.8103125] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 

 



 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2248s 2s/step 

Final Loss and Score of correct classification:  [0.5181151632600915, 

0.8197302383939774] 

 
 
  



Training with 70% real data 
Found 442 images belonging to 2 classes. 

Found 135 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 670s 3s/step - loss: 0.1584 

- acc: 0.9351 - val_loss: 0.3880 - val_acc: 0.8667 

Epoch 2/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0919 

- acc: 0.9656 - val_loss: 0.3103 - val_acc: 0.8815 

Epoch 3/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0732 

- acc: 0.9739 - val_loss: 0.2794 - val_acc: 0.9037 

Epoch 4/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0643 

- acc: 0.9763 - val_loss: 0.2688 - val_acc: 0.9037 

Epoch 5/10 

200/200 [==============================] - 620s 3s/step - loss: 0.0589 

- acc: 0.9789 - val_loss: 0.2814 - val_acc: 0.9111 

Epoch 6/10 

200/200 [==============================] - 620s 3s/step - loss: 0.0520 

- acc: 0.9806 - val_loss: 0.3811 - val_acc: 0.8815 

Epoch 7/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0571 

- acc: 0.9798 - val_loss: 0.2744 - val_acc: 0.9185 

Epoch 8/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0359 

- acc: 0.9868 - val_loss: 0.3331 - val_acc: 0.8963 

Epoch 9/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0504 

- acc: 0.9809 - val_loss: 0.2727 - val_acc: 0.9185 

Epoch 10/10 

200/200 [==============================] - 619s 3s/step - loss: 0.0356 

- acc: 0.9868 - val_loss: 0.3171 - val_acc: 0.9111 

100/100 [==============================] - 227s 2s/step 

Final Loss and Score of correct classification:  [0.45401140160858633, 

0.8603125] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2251s 2s/step 

Final Loss and Score of correct classification:  [0.4726368737182684, 

0.8507528230865746] 
 
 
  



Training with 75% real data 
Using TensorFlow backend. 
 
Found 393 images belonging to 2 classes. 
Found 131 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 5s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 642s 3s/step - loss: 0.1731 - acc: 0.9318 - 
val_loss: 0.2170 - val_acc: 0.9237 
Epoch 2/10 
200/200 [==============================] - 604s 3s/step - loss: 0.1235 - acc: 0.9514 - 
val_loss: 0.1931 - val_acc: 0.8931 
Epoch 3/10 
200/200 [==============================] - 616s 3s/step - loss: 0.0938 - acc: 0.9667 - 
val_loss: 0.3450 - val_acc: 0.9008 
Epoch 4/10 
200/200 [==============================] - 605s 3s/step - loss: 0.0611 - acc: 0.9798 - 
val_loss: 0.3618 - val_acc: 0.8702 
Epoch 5/10 
200/200 [==============================] - 609s 3s/step - loss: 0.0596 - acc: 0.9790 - 
val_loss: 0.3099 - val_acc: 0.9160 
Epoch 6/10 
200/200 [==============================] - 603s 3s/step - loss: 0.0495 - acc: 0.9819 - 
val_loss: 0.2051 - val_acc: 0.9084 
Epoch 7/10 
200/200 [==============================] - 603s 3s/step - loss: 0.0641 - acc: 0.9768 - 
val_loss: 0.1651 - val_acc: 0.9237 
Epoch 8/10 
200/200 [==============================] - 602s 3s/step - loss: 0.0769 - acc: 0.9730 - 
val_loss: 0.1871 - val_acc: 0.9160 
Epoch 9/10 
200/200 [==============================] - 604s 3s/step - loss: 0.0539 - acc: 0.9801 - 
val_loss: 0.2122 - val_acc: 0.9389 
Epoch 10/10 
200/200 [==============================] - 604s 3s/step - loss: 0.0605 - acc: 0.9782 - 
val_loss: 0.2047 - val_acc: 0.9160 
100/100 [==============================] - 230s 2s/step 
Final Loss and Score of correct classification:  [0.43964236676692964, 0.8490625] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 



 
 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2286s 2s/step 

Final Loss and Score of correct classification:  [0.4354002942335736, 

0.8492158092848181] 

 

 
  



Training with 80% real data 
Found 349 images belonging to 2 classes. 

Found 122 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 693s 3s/step - loss: 0.1618 

- acc: 0.9350 - val_loss: 0.3301 - val_acc: 0.8770 

Epoch 2/10 

200/200 [==============================] - 655s 3s/step - loss: 0.1040 

- acc: 0.9581 - val_loss: 0.3155 - val_acc: 0.8934 

Epoch 3/10 

200/200 [==============================] - 655s 3s/step - loss: 0.0730 

- acc: 0.9744 - val_loss: 0.2901 - val_acc: 0.8852 

Epoch 4/10 

200/200 [==============================] - 655s 3s/step - loss: 0.0579 

- acc: 0.9787 - val_loss: 0.3783 - val_acc: 0.8770 

Epoch 5/10 

200/200 [==============================] - 654s 3s/step - loss: 0.0493 

- acc: 0.9840 - val_loss: 0.3844 - val_acc: 0.8689 

Epoch 6/10 

200/200 [==============================] - 655s 3s/step - loss: 0.0560 

- acc: 0.9791 - val_loss: 0.2628 - val_acc: 0.9098 

Epoch 7/10 

200/200 [==============================] - 655s 3s/step - loss: 0.0692 

- acc: 0.9738 - val_loss: 0.3342 - val_acc: 0.8934 

Epoch 8/10 

200/200 [==============================] - 654s 3s/step - loss: 0.0401 

- acc: 0.9850 - val_loss: 0.3196 - val_acc: 0.9016 

Epoch 9/10 

200/200 [==============================] - 655s 3s/step - loss: 0.0359 

- acc: 0.9855 - val_loss: 0.4450 - val_acc: 0.8689 

Epoch 10/10 

200/200 [==============================] - 655s 3s/step - loss: 0.0366 

- acc: 0.9865 - val_loss: 0.4114 - val_acc: 0.8770 

100/100 [==============================] - 230s 2s/step 

Final Loss and Score of correct classification:  [0.6128289913386107, 

0.8225] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 
 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2289s 2s/step 

Final Loss and Score of correct classification:  [0.6231214438328739, 

0.8239962358845672] 
 
  



Training with 85% real data 
Found 337 images belonging to 2 classes. 

Found 113 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 680s 3s/step - loss: 0.1710 

- acc: 0.9325 - val_loss: 0.5141 - val_acc: 0.8142 

Epoch 2/10 

200/200 [==============================] - 626s 3s/step - loss: 0.1123 

- acc: 0.9576 - val_loss: 0.2352 - val_acc: 0.8938 

Epoch 3/10 

200/200 [==============================] - 627s 3s/step - loss: 0.0750 

- acc: 0.9714 - val_loss: 0.3707 - val_acc: 0.8938 

Epoch 4/10 

200/200 [==============================] - 626s 3s/step - loss: 0.0621 

- acc: 0.9770 - val_loss: 0.2939 - val_acc: 0.9204 

Epoch 5/10 

200/200 [==============================] - 627s 3s/step - loss: 0.0742 

- acc: 0.9714 - val_loss: 0.4175 - val_acc: 0.8850 

Epoch 6/10 

200/200 [==============================] - 625s 3s/step - loss: 0.0535 

- acc: 0.9806 - val_loss: 0.4570 - val_acc: 0.8850 

Epoch 7/10 

200/200 [==============================] - 627s 3s/step - loss: 0.0562 

- acc: 0.9803 - val_loss: 0.3285 - val_acc: 0.9204 

Epoch 8/10 

200/200 [==============================] - 627s 3s/step - loss: 0.0505 

- acc: 0.9806 - val_loss: 0.3346 - val_acc: 0.8850 

Epoch 9/10 

200/200 [==============================] - 625s 3s/step - loss: 0.0370 

- acc: 0.9874 - val_loss: 0.3295 - val_acc: 0.8938 

Epoch 10/10 

200/200 [==============================] - 627s 3s/step - loss: 0.0376 

- acc: 0.9851 - val_loss: 0.4014 - val_acc: 0.8673 

100/100 [==============================] - 231s 2s/step 

Final Loss and Score of correct classification:  [0.4642712503671646, 

0.8525] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2291s 2s/step 

Final Loss and Score of correct classification:  [0.45364171095023215, 

0.8569322459222083] 

 

 
 
  



Training with 90% real data 
Using TensorFlow backend. 
 
Found 334 images belonging to 2 classes. 
Found 115 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 11s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 661s 3s/step - loss: 0.1648 - acc: 0.9335 - 
val_loss: 0.1658 - val_acc: 0.9478 
Epoch 2/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0932 - acc: 0.9638 - 
val_loss: 0.2822 - val_acc: 0.8957 
Epoch 3/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0813 - acc: 0.9689 - 
val_loss: 0.4183 - val_acc: 0.8696 
Epoch 4/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0623 - acc: 0.9755 - 
val_loss: 0.2500 - val_acc: 0.9130 
Epoch 5/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0678 - acc: 0.9763 - 
val_loss: 0.3432 - val_acc: 0.8696 
Epoch 6/10 
200/200 [==============================] - 629s 3s/step - loss: 0.0531 - acc: 0.9780 - 
val_loss: 0.2488 - val_acc: 0.8957 
Epoch 7/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0484 - acc: 0.9816 - 
val_loss: 0.2452 - val_acc: 0.9043 
Epoch 8/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0449 - acc: 0.9824 - 
val_loss: 0.2674 - val_acc: 0.8957 
Epoch 9/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0409 - acc: 0.9854 - 
val_loss: 0.2949 - val_acc: 0.8870 
Epoch 10/10 
200/200 [==============================] - 630s 3s/step - loss: 0.0305 - acc: 0.9894 - 
val_loss: 0.3098 - val_acc: 0.8957 
100/100 [==============================] - 232s 2s/step 
Final Loss and Score of correct classification:  [0.5278738474845887, 0.8259375] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 



 
Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2304s 2s/step 

Final Loss and Score of correct classification:  [0.496252160974673, 

0.832465495608532] 

 

 
 
  



Training with 95% real data 
Found 321 images belonging to 2 classes. 

Found 108 images belonging to 2 classes. 

Found 6818 images belonging to 2 classes. 

Creating model 

Training model 

Epoch 1/10 

200/200 [==============================] - 641s 3s/step - loss: 0.2508 

- acc: 0.8952 - val_loss: 0.2664 - val_acc: 0.8889 

Epoch 2/10 

200/200 [==============================] - 603s 3s/step - loss: 0.1541 

- acc: 0.9319 - val_loss: 0.3154 - val_acc: 0.8796 

Epoch 3/10 

200/200 [==============================] - 602s 3s/step - loss: 0.1523 

- acc: 0.9502 - val_loss: 0.7087 - val_acc: 0.7685 

Epoch 4/10 

200/200 [==============================] - 602s 3s/step - loss: 0.1489 

- acc: 0.9441 - val_loss: 0.2982 - val_acc: 0.8704 

Epoch 5/10 

200/200 [==============================] - 602s 3s/step - loss: 0.1305 

- acc: 0.9468 - val_loss: 0.4748 - val_acc: 0.8333 

Epoch 6/10 

200/200 [==============================] - 600s 3s/step - loss: 0.0863 

- acc: 0.9700 - val_loss: 0.3164 - val_acc: 0.8704 

Epoch 7/10 

200/200 [==============================] - 602s 3s/step - loss: 0.1222 

- acc: 0.9513 - val_loss: 0.3863 - val_acc: 0.8426 

Epoch 8/10 

200/200 [==============================] - 602s 3s/step - loss: 0.1087 

- acc: 0.9602 - val_loss: 0.3361 - val_acc: 0.8611 

Epoch 9/10 

200/200 [==============================] - 602s 3s/step - loss: 0.1433 

- acc: 0.9455 - val_loss: 0.3379 - val_acc: 0.8704 

Epoch 10/10 

200/200 [==============================] - 603s 3s/step - loss: 0.1396 

- acc: 0.9446 - val_loss: 0.2758 - val_acc: 0.8704 

100/100 [==============================] - 232s 2s/step 

Final Loss and Score of correct classification:  [0.22877684962004424, 

0.9171875] 

Results 

Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 

'acc']) 



 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2307s 2s/step 

Final Loss and Score of correct classification:  [0.2404934093542806, 

0.9121392722710163] 

 

  



Training 95 v2 
Using TensorFlow backend. 
 
Found 321 images belonging to 2 classes. 
Found 108 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Downloading data from 
https://github.com/titu1994/Keras-NASNet/releases/download/v1.2/NASNet-large-no-top.h5 
343613440/343610240 [==============================] - 4s 0us/step 
Training model 
Epoch 1/10 
200/200 [==============================] - 659s 3s/step - loss: 0.2329 - acc: 0.9057 - 
val_loss: 0.3369 - val_acc: 0.8611 
Epoch 2/10 
200/200 [==============================] - 626s 3s/step - loss: 0.1519 - acc: 0.9456 - 
val_loss: 0.6584 - val_acc: 0.7963 
Epoch 3/10 
200/200 [==============================] - 626s 3s/step - loss: 0.2425 - acc: 0.8978 - 
val_loss: 0.3358 - val_acc: 0.8796 
Epoch 4/10 
200/200 [==============================] - 626s 3s/step - loss: 0.1657 - acc: 0.9256 - 
val_loss: 0.3013 - val_acc: 0.8889 
Epoch 5/10 
200/200 [==============================] - 626s 3s/step - loss: 0.2105 - acc: 0.9141 - 
val_loss: 0.7959 - val_acc: 0.7315 
Epoch 6/10 
200/200 [==============================] - 624s 3s/step - loss: 0.1599 - acc: 0.9365 - 
val_loss: 0.3301 - val_acc: 0.8981 
Epoch 7/10 
200/200 [==============================] - 626s 3s/step - loss: 0.1678 - acc: 0.9332 - 
val_loss: 0.2802 - val_acc: 0.8981 
Epoch 8/10 
200/200 [==============================] - 626s 3s/step - loss: 0.1582 - acc: 0.9426 - 
val_loss: 0.2478 - val_acc: 0.8981 
Epoch 9/10 
200/200 [==============================] - 626s 3s/step - loss: 0.1413 - acc: 0.9334 - 
val_loss: 0.3397 - val_acc: 0.8611 
Epoch 10/10 
200/200 [==============================] - 626s 3s/step - loss: 0.1304 - acc: 0.9463 - 
val_loss: 0.5820 - val_acc: 0.8148 
100/100 [==============================] - 241s 2s/step 
Final Loss and Score of correct classification:  [0.8226512435078621, 0.6915625] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 



 

 

Found 6818 images belonging to 2 classes. 

1000/1000 [==============================] - 2395s 2s/step 

Final Loss and Score of correct classification:  [0.7989528774107377, 

0.6925972396486826] 

 

 
 

 
  



Training with only real data 100% 
batch_size = 32 
epochs = 10 
steps_per_epoch=200 
validation_steps=100 
test_steps = 100 
 
Found 309 images belonging to 2 classes. 
Found 103 images belonging to 2 classes. 
Found 6818 images belonging to 2 classes. 
Creating model 
Training model 
Epoch 1/10 
200/200 [==============================] - 681s 3s/step - loss: 0.1723 - acc: 0.9310 
- val_loss: 0.3639 - val_acc: 0.8835 
Epoch 2/10 
200/200 [==============================] - 643s 3s/step - loss: 0.1048 - acc: 0.9586 
- val_loss: 0.2196 - val_acc: 0.9126 
Epoch 3/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0655 - acc: 0.9740 
- val_loss: 0.3385 - val_acc: 0.8835 
Epoch 4/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0584 - acc: 0.9794 
- val_loss: 0.2769 - val_acc: 0.9126 
Epoch 5/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0570 - acc: 0.9763 
- val_loss: 0.3699 - val_acc: 0.8641 
Epoch 6/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0436 - acc: 0.9847 
- val_loss: 0.3024 - val_acc: 0.8738 
Epoch 7/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0410 - acc: 0.9855 
- val_loss: 0.4235 - val_acc: 0.9029 
Epoch 8/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0534 - acc: 0.9798 
- val_loss: 0.4200 - val_acc: 0.8835 
Epoch 9/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0436 - acc: 0.9849 
- val_loss: 0.2539 - val_acc: 0.9029 
Epoch 10/10 
200/200 [==============================] - 643s 3s/step - loss: 0.0462 - acc: 0.9838 
- val_loss: 0.3211 - val_acc: 0.9126 
100/100 [==============================] - 242s 2s/step 



Final Loss and Score of correct classification:  [0.4408679356426001, 0.8621875] 
Results 
Availible variables to plot: dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 

 

 
 
Found 6818 images belonging to 2 classes. 
100/100 [==============================] - 242s 2s/step 
Final Loss and Score of correct classification:  [0.40048708651214837, 0.8715625] 
 
Found 6818 images belonging to 2 classes. 
100/100 [==============================] - 242s 2s/step 
Final Loss and Score of correct classification:  [0.43197784580290316, 0.865625] 
 
Found 6818 images belonging to 2 classes. 
1000/1000 [==============================] - 2403s 2s/step 
Final Loss and Score of correct classification:  [0.4318133778586152, 
0.8662170639899623] 
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