
Em
il H

jelseth Thyri
A

 P
ath-Velocity D

ecom
position A

pproach to C
ollision Avoidance for A

utonom
ous P

assenger Ferries

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Emil Hjelseth Thyri

A Path-Velocity Decomposition
Approach to Collision Avoidance for
Autonomous Passenger Ferries

Master’s thesis in Cybernetics and Robotics
Supervisor: Morten Breivik

June 2019

Emil Hjelseth Thyri

A Path-Velocity Decomposition Approach
to Collision Avoidance for Autonomous
Passenger Ferries

Master’s thesis in Cybernetics and Robotics
Supervisor: Morten Breivik
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

When developing fully autonomous surface vessels such as passenger ferries, two critical
systems need to be in place for it to be autonomous, and not merely automated. Firstly, it
needs to have a situational awareness system that is able to capture all the features of the
situation that are relevant for the mission of the ferry, and describe the features in a way that
is usable. Secondly, it needs to have a mission planning system that uses the understanding
of the situation along with the mission goal to make a feasible plan. The mission planner
also needs to be able to adjust the plan underway, if changes in the perception of the
situation were to occur. Such a mission-planning system for an autonomous surface vessel
is typically called a collision avoidance (COLAV) system.

This Master’s thesis presents an approach to a complete COLAV system for autonomous
passenger ferries. The COLAV system has a three-layered structure with a deliberate, re-
active and executive layer. The deliberate layer is a global trajectory planner that uses
path-velocity decomposition, with a predefined path, or set of paths, that is collision-free
with regard to any static objects. This reduces the task of avoiding moving objects down
to a velocity planning problem. The problem is solved by firstly transforming an object
representation onto the path-time space as nodes, and subsequently solving the velocity
planning as a minimum cost node search problem. The reactive layer tracks the trajec-
tory reference and continuously validates the feasibility of the current global plan. It also
monitors changes in the object situation based on estimated time to closest approach and
distance of closest approach and invokes a replan in the deliberate layer when necessary.
The executive layer acts as a relay between the deliberate and reactive layer and handles
mission-request and invocations.

Two versions of the velocity-planning algorithm in the deliberate layer are imple-
mented. The first uses a single predefined path as input to the velocity planning problem,
while the second uses a set of predefined parallel paths, where the algorithm is allowed to
switch between the paths freely during the transit.

A simulator is developed based on model parameters from a prototype of an au-
tonomous passenger ferry called milliAmpere. The simulator is used to test the COLAV
system with up to four moving objects with different behaviours. The two versions of
the COLAV system are tested and compared to an implementation of the existing velocity
obstacle algorithm.

Through simulations, both the new velocity-planning algorithm prove to be effective.
They are able to plan global trajectories with ease, adapt to rapid changes in the envi-
ronment and perform transits with lower maneuvering efforts than the velocity obstacle
approach.

The proposed COLAV system is also validated through sea trials, where both algo-
rithms again performed satisfactory. The single-path approach turns out to be the most
convincing algorithm in terms of passenger comfort and safety.

i

ii

Sammendrag

Under utviklingen av autonome systemer, som for eksempel autonome passasjerferger,
er det to kritiske sub-systemer som må være på plass for at systemet ikke bare skal være
automatisert. Det første er et situasjonsforståelses-system som kan detektere og beskrive
alle aspekter ved omgivelsene som er relevant for oppdraget som skal utføres. Det andre
er et system som planlegger utførelsen av oppdraget basert på situasjonen i omgivelsene
og oppdragets natur. Oppdragsplanleggeren må også kunne tilpasse planen underveis der-
som det skjer endringer i situasjonsforståelses-systemets beskrivelse av omgivelsene. For
autonome overflatefartøyer kalles et slikt oppdragsplanleggings-system gjerne et kollisjon-
sungåelses-system (COLAV-system).

I denne masteroppgaven presenteres et forslag til et komplett COLAV-system for au-
tonome passasjerferger. Systemet har en tredelt struktur med en planleggende del, en
organiserende del og en reaktivt del. Den planleggende delen består av en global ruteplan-
legger. Den deler oppgaven inn i baneplanlegging og hastighetsplanlegging, og benytter
seg av en eller flere forhåndsdefinerte baner som ikke kolliderer med statiske hindringer
i omgivelsene. Dette reduserer problemet til å planlegge en hastighetsprofil langs den
forhåndsdefinerte banen som sørger for at fergen ikke kolliderer med andre fartøyer i om-
givelsene. Problemet løses ved at alle fartøyer representeres som noder i et bane-tid rom,
for så å løse det som et minste-kostnad-nodesøk problem. Den reaktive delen av systemet
følger ruten som er planlagt, og samtidig driver en kontinuerlig vurdering av planens hold-
barhet, basert på oppdatert informasjon om fartøyene i omgivelsene. Om vurderingen
viser at planen ikke holder, igangsettes en ny planlegging i den planleggende delen. Den
organiserende delen håndterer kommunikasjonen mellom det planleggende og den reak-
tive delen i tillegg til å håndtere oppdragsforespørseler.

To versjoner av COLAV-systemet er implementert. Den første bruker en forhåndsdefinert
bane som input til hastighetsplanleggingsproblemet, den andre bruker et sett med paral-
lelle forhåndsdefinerte baner der algoritmen får lov til å skifte mellom banene underveis i
overfarten.

En simulator er utviklet basert på modellparametere fra en prototype av en autonom
passasjerferge som heter milliAmpere. Simulatoren brukes til testing av COLAV-systemet
med opptil fire bevegelige objekter med forskjellig oppførsel. De to versjonene av COLAV-
systemet er testet og sammenlignet med en versjon av Velocity Obstacle algoritmen.

Begge systemene viser god oppførsel i simulatoren. De klarer å planlegge globale
ruter uten problemer, og tilpasser seg endringer i omgivelsene underveis. De utfører også
overfarten med mindre manøvrering enn Velocity Obstacle algoritmen.

Systemet er også validert gjennom sjøprøver der begge metodene igjen gir tilfredsstil-
lende resultater. Systemet med bare én bane viser seg å være det mest overbevisende
systemet når det gjelder passasjerkomfort og sikkerhet.

iii

iv

Preface
This thesis is written as the product of the finalization of my M.Sc degree in Cybernet-
ics and Robotics at the Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU). In the work presented here, I have had the pleasure of
diving into the field of autonomous vessels and collision avoidance. It has been an over-
whelming, interesting and inspiring task, where the potential for results is very tangible
and might contribute to solving some of the problems we face today. This has been a great
motivation.

I would like to express a special thanks to my academic supervisor Morten Breivik for
the time he has dedicated to guidance and feedback in the scope of this project. I would
also like to thank Revolve NTNU for everything I learned and experienced during my year
in the organization. Without it, I would not be half as capable as I am today. Lastly, I
would like to thank my friends for making these five years in Trondheim quite enjoyable.

The goal of this project was to develop a COLAV system for autonomous passenger
ferries operating in an environment characterized by high traffic and confined space. The
COLAV system was developed for a prototype with limited functionality concerning situ-
ational awareness.

• During the semester, my supervisor has contributed with guidance through a bi-
weekly follow-up meeting where the progress of the thesis and other related topics
were discussed.

• The development was mostly conducted in Matlab/Simulink, where a simulator was
implemented to facilitate the testing. The vessel and thruster model parameters were
determined by Anders Pedersen in his project and Master’s thesis work during the
fall of 2018 and spring of 2019.

• For the comparison with the velocity obstacle method, a complete code-base was
borrowed from fellow student Anette Uttisrud, from the work she conducted in her
project thesis. Only minor changes to the code were necessary to make it work and
interface with the dummy object detection and reference filter.

• It is the availability of the milliAmpere platform that has allowed me to perform the
sea trials. The platform is owned by NTNU and has been developed since 2016 by
several people at the university.

• During the experiments, Brage Sæther contributed as a vessel operator when the au-
tonomous pipeline was not running, and as a sparring partner when the autonomous
pipeline performed unpredictably. Brage is also the person that has developed the
navigation and motion control system that the COLAV system runs on top of.

Emil Hjelseth Thyri
Trondheim, June 17, 2019

v

vi

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

List of Tables xii

List of Figures xvii

Abbreviations xviii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Contributions . 3
1.4 Previous Work . 5
1.5 Outline . 6

2 Theoretical Background 7
2.1 Vessel Modelling . 7

2.1.1 Kinematics . 7
2.1.2 Kinetics . 9

2.2 Trajectory Tracking . 10
2.3 ROS . 10

3 Collision Avoidance System 11
3.1 System Architecture . 11

3.1.1 Module Overview . 13
3.2 Single-Path COLAV System . 14

vii

3.2.1 Object Representation . 14
3.2.2 Transformation to Path-Time Space 15
3.2.3 Add Start and End Nodes . 17
3.2.4 Vertex Generation . 17
3.2.5 Vertex Cost Function . 19
3.2.6 Search for Best Vertices . 20
3.2.7 Generate Trajectory from Nodes 20

3.3 Multiple-Path Augmentation . 22
3.3.1 Multiple Paths . 23
3.3.2 Transformation to Path-Time Space 25
3.3.3 Start Nodes and Vertices . 25
3.3.4 Find Minimum Cost Path . 26
3.3.5 Heading and Course . 27

3.4 Reactive Object Monitoring . 28
3.4.1 Trajectory Feasibility . 28
3.4.2 Object Monitor . 28

4 Simulation Results 33
4.1 Simulator . 33

4.1.1 Simulator Layout . 34
4.1.2 3 DOF Vessel Model . 35
4.1.3 Thruster Model . 37
4.1.4 Reference Filter . 38
4.1.5 Dummy Object Detection . 41

4.2 Scenario Overview . 45
4.2.1 Crossing 1 - Straight Path, Short Crossing 45
4.2.2 Crossing 2 - Straight Path, Long Crossing 45

4.3 Single-Path Algorithm . 46
4.3.1 Scenario 1, 6 and 7 - Measurement Noise 46
4.3.2 Scenario 2 - Slow Down . 48
4.3.3 Scenario 3 - Going in Front . 48
4.3.4 Scenario 4 - Going Behind . 51
4.3.5 Scenario 5 - Follow COLREGs 53
4.3.6 Scenario 10-12 - Region of Observation 58

4.4 Multiple-Path Algorithm . 61
4.4.1 Scenario 41 and 51 - Slow Down 61
4.4.2 Scenario 20-22 - Region of Observation 61

4.5 Evaluation and Comparison . 65
4.5.1 Performance Metrics . 65
4.5.2 VO-Scenario 1 . 66
4.5.3 VO-Scenario 2 . 67
4.5.4 VO-Scenario 3 . 69
4.5.5 VO-Scenario 4 . 74
4.5.6 VO-Scenario 5 . 74

4.6 Discussion . 79

viii

5 Experimental Results 81
5.1 Experimental Platform . 81
5.2 Testing Environments . 82
5.3 Experimental Results and Discussion . 83

5.3.1 Overview . 83
5.3.2 Transit 1 . 83
5.3.3 Transit 2 . 85
5.3.4 Transit 4 . 85
5.3.5 Transit 7 . 90

5.4 Discussion . 92

6 Conclusions and Future Work 95

Bibliography 97

A Thruster Model 101

B Additional Experimental Results 105
B.1 Transit 3 . 105
B.2 Transit 5 . 105
B.3 Transit 6 . 105
B.4 Transit 8 . 108
B.5 Transit 9 . 108

ix

x

List of Tables

4.1 Estimated model parameters for the milliAmpere ferry (Pedersen, 2019). . 37
4.2 Information about object obj i that is available through the get object data()

interface. 41
4.3 Overview of all the simulated scenarios that are included in this Master’s

thesis. The number in the scenario name has not other purpose than reliev-
ing the author from coming up with original names for every scenario. . . 46

4.4 Normalizing parameters for the performance metrics. 66
4.5 VO-Scenario 1: Values for the metrics of VO-Scenario 1 and the corre-

sponding scenarios for SP-VP and MP-VP. The best value in each column
is highlighted in bold. 67

4.6 VO-Scenario 2: Values for the metrics of VO-Scenario 2 and the corre-
sponding scenarios for SP-VP and MP-VP. The best value in each column
is highlighted in bold. 67

4.7 VO-Scenario 3: Values for the metrics of VO-Scenario 3 and the corre-
sponding scenarios for SP-VP and MP-VP. The best value in each column
is highlighted in bold. 69

4.8 VO-Scenario 4: Values for the metrics of VO-Scenario 4 and the corre-
sponding scenarios for SP-VP and MP-VP. The best value in each column
is highlighted in bold. 74

4.9 VO-Scenario 5: Values for the metrics of VO-Scenario 5 and the corre-
sponding scenarios for SP-VP and MP-VP. The best value in each column
is highlighted in bold. 75

5.1 Overview of the nine transits performed during the experiments. Some of
them are included in Chapter. 5, the rest can be found in Appendix B. . 84

A.1 Results from the bollard pull test performed with the milliAmpere ferry
06.06.2018. 102

A.2 Results from step input test of azimuth angle on the thruster system. The
table gives start value and end value of the step input, as well as the corre-
sponding response time of the azimuth thruster. 103

xi

xii

List of Figures

1.1 Top left: Yara Birkeland, an autonomous container-vessel under develop-
ment by Kongsberg Maritime, courtesy of Kongsberg Maritime. Top right:
Autonomous hauling-trucks, courtesy of Christian Spronge Photography.
Bottom left: Four autonomous trucks platooning, courtesy of Scania. Bot-
tom right: Autonomous package delivering drones, courtesy of Amazon. . 2

1.2 The prototype milliAmpere during sea trials. The ferry functions as a plat-
form for development and testing of sensor systems, situational aware-
ness algorithms, COLAV systems and control systems needed for fully
autonomous transits. Courtesy of Nicholas Dalhaug. 3

1.3 Illustration of the full-scale autonomous ferry that is under development at
NTNU. Courtesy of Petter Mustvedt, Institute of design, NTNU. 4

2.1 Reference Frames, ECEF frame in blue, NED frame in green and BODY
frame in orange. 8

3.1 (a) The hierarchical Sense-Plan-Act architecture. Courtesy of Wikipedia.
(b) Hybrid structure. Courtesy of Alexander Inzartsev. 12

3.2 Illustration of a COLAV system with the three-layer architecture and sup-
porting functions. 14

3.3 Old and new object representation. (a) Initial object representation with
the nodes on the corners of the forbidden regions. (b) Improved object
representation, with the nodes placed outside the forbidden regions. . . . 16

3.4 path× time space for the deliberate planner in a situation with four mov-
ing objects in the environment. (a) Transformation of the object represen-
tation with nodes from Fig. 3.3b. (b) Object-nodes, ROC, start node, end
nodes and vertices. 18

3.5 Predefined paths in blue, and set of possible branching paths in red, with
branching, merging and parallel subpaths. The current location of the ves-
sel as green asterisk. Start and end point for transit in blue and green
asterisk respectively. 24

xiii

3.6 Illustration of the vertices and ROC in path× time space for five parallel
paths and four moving objects. 25

3.7 Illustration of the two ways of handling the heading when branching. (a)
Keep a constant heading, and perform a crab motion in the branching ma-
neuvers. (b) Align heading and velocity, and perform a yaw rotation at the
start and end of each branching maneuver. 27

4.1 Overview of the vessel and GNC system during simulations. The yellow
box is the simulator, the other parts are part of the actual ferry GNC sys-
tem, and therefore the same for simulations and sea trials. 34

4.2 Vessel response on step input in thrust. 38
4.3 Velocity profiles for the Hard Reference with steps in the velocity, the

velocity reference from both reference filters, as well as the vessel velocity
in both cases. 39

4.4 Filter error and total error for both the Comfort Filter and Response Filter
with saturation matching the physical limitations of milliAmpere. 40

4.5 Filter error and total error for both the Comfort Filter and Response Filter
with saturation matching the physical limitations of milliAmpere. 41

4.6 Filter error for comfort filter and response filter designed for a vessel iden-
tical to milliAmpere, but with a thruster system capable of 6000N of thrust. 42

4.7 The two approaching sectors that defined the object behaviour. 43
4.8 Scenario 1: Overview of the transit. Ferry in blue and moving objects in red. 47
4.9 Scenario 1: Distance to closest object. Green dashed lines indicate the

time of re-planning. 47
4.10 Scenario 1,6 and 7: Velocity and planned velocity profiles. 49
4.11 Scenario 1: Overview of the transit. Ferry in blue and moving objects in red. 50
4.12 Scenario 2: Velocity and the set of planned velocity profiles. Red stars

mark the time of re-planning. 50
4.13 Scenario 2: Distance to closest object. Dashed green lines indicate the

time of re-planning. 51
4.14 Scenario 3: Overview during the transit. Ferry in blue and moving objects

in red. 52
4.15 Scenario 3: Velocity and the set of planned velocity profiles. Red stars

mark the time of re-planning. 53
4.16 Scenario 3: Distance to closest object. Dashed green lines indicate the

time of re-planning. 54
4.17 Scenario 4: Snapshots during the transit. Ferry in blue and moving objects

in red. 54
4.18 Scenario 4: Velocity and the set of planned velocity profiles. Red stars

mark the time of replanning. 55
4.19 Scenario 4: Distance to closest object. Dashed green lines indicate the

time of re-planning. 55
4.20 Scenario 5: Overview during the transit. Ferry in blue and moving objects

in red. 56
4.21 Scenario 5: Velocity and the set of planned velocity profiles. Red stars

mark the time of trajectory planning. 57

xiv

4.22 Scenario 5: Distance to closest object. Red line indicate the critical dis-
tance. Dashed green lines indicate the time of re-planning. 57

4.23 Actual and planned velocity profiles for Scenario 10-12. 59
4.24 Scenario overview during the transit of Scenario 11. Ferry in blue and

moving objects in red. The green circle indicates the region of observation.
Note that the ferry is moving backwards on the path form Fig. 4.24a to
Fig. 4.24b. 60

4.25 Scenario 41 and 51: Scenario overview during the transit. The blue ferry
and the red objects belong to Scenario 41, while the green ferry and pink
objects belong to Scenario 51. 62

4.26 Scenario 21: Snapshots from the transit. Ferry from Scenario 21 in green
and ferry from Scenario 11 in blue. Objects are the same for both scenarios. 63

4.27 Scenario 20-22: Velocity and planned velocity profiles. 64
4.28 VO-Scenario1: Snapshots from the transit of VO-Scenario1. The ferry in

blue, moving objects in red, the ferry from Scenario 1 in orange and the
ferry from Scenario 50 in pink. The paths from the multiple-path COLAV
has nothing to do with the VO, but are included for comparison. 68

4.29 VO-Scenario 1: Growth of metrics during the transit. (a): body-x acceler-
ation, (b): body-y acceleration, (c): yaw acceleration, (d): power. 69

4.30 VO-Scenario 2: Snapshots from the transit of VO-Scenario 2. The ferry
in blue, moving objects in red, the ferry from Scenario 2 in orange and the
ferry from Scenario 51 in pink. The paths from the multiple-path COLAV
has nothing to do with the VO, but are included for comparison. 70

4.31 VO-Scenario 2: Velocity and velocity reference. 71
4.32 VO-Scenario 2: Growth of metrics during the transit. (a): body-x acceler-

ation, (b): body-y acceleration, (c): yaw acceleration, (d): power. 71
4.33 VO-Scenario 3: Snapshots from the transit of VO-Scenario 3. The ferry

in blue, moving objects in red, the ferry from Scenario 3 in orange and the
ferry from Scenario 52 in pink. The paths from the multiple-path COLAV
has nothing to do with the VO, but are included for comparison. 72

4.34 VO-Scenario 3: Growth of metrics during the transit. (a): body-x acceler-
ation, (b): body-y acceleration, (c): yaw acceleration, (d): power. 73

4.35 VO-Scenario 4: Snapshots from the transit of VO-Scenario 4. The ferry
in blue, moving objects in red, the ferry from Scenario 4 in orange and the
ferry from Scenario 53 in pink. The paths from the multiple-path COLAV
has nothing to do with the VO, but are included for comparison. 75

4.36 VO-Scenario 4: Growth of metrics during the transit. (a): body-x acceler-
ation, (b): body-y acceleration, (c): yaw acceleration, (d): power. 76

4.37 VO-Scenario 5: Snapshots from the transit of VO-Scenario 5. The ferry
in blue, moving objects in red, the ferry from Scenario 5 in orange and the
ferry from Scenario 54 in pink. The paths from the multiple-path COLAV
has nothing to do with the VO, but are included for comparison. 77

4.38 VO-Scenario 5: Growth of metrics during the transit. (a): body-x acceler-
ation, (b): body-y acceleration, (c): yaw acceleration, (d): power. 78

5.1 Overview of the ferry and GNC on the experimental platform. 81

xv

5.2 CAD drawings for the hull, roof and sensor jig, courtesy of Glenn An-
gell. (a) Side-view of the milliAmpere platform. (b) Front view of the
milliAmpere platform. 82

5.3 Location for the sea trials, a harbour basin located in Pirkaia. The red line
illustrates the path that is used. The red dot on top of the blue-green vessel
marks the origin of the local NED frame. Courtesy of Google Maps. . . . 83

5.4 The milliAmpere ferry from at sea trials the 2 June 2019 . Nice conditions
with calm water and only the occasional light breeze. 84

5.5 Transit 1: Heading and heading reference. 85
5.6 Transit 1: Snapshots of the situation. Moving objects in red, ferry in blue

with green heading vector and blue course vector. 86
5.7 Transit 1: Velocity and velocity reference. 86
5.8 Transit 2: Absolute tracking error. 87
5.9 Transit 2: Heading and heading reference. 87
5.10 Transit 2: Snapshots of the situation. Moving objects in red, ferry in blue

with green heading vector and blue course vector. 88
5.11 Transit 2: Velocity and velocity reference. 88
5.12 Transit 4: Snapshots of the situation. Moving objects in red, ferry in blue

with green heading vector and blue course vector. 89
5.13 Transit 4: Velocity and velocity reference. 90
5.14 Transit 1 and 7: Distance to closest object. 91
5.15 Transit 7: Snapshots of the situation. Moving objects in red, ferry in blue

with green heading vector and blue course vector. 91
5.16 Transit 7: Velocity reference and actual velocity. 92

A.1 Curve-fitting of the RPM and thrust data. 101
A.2 Azimuth angle modeling in Simulink. The angular velocity is set propor-

tional to the error, and saturated to max angular rate. The saturation value
is found from the data in Table. A.2. 103

A.3 Topside view of the thruster layout on milliAmpere. The ferry is symmet-
rical, and hence the front and rear thruster arm is the same. 104

B.1 Transit 3: Snapshots of the situation. Moving objects in red, ferry in blue,
with green heading vector and blue course vector. 106

B.2 Transit 3: Velocity and velocity reference. 106
B.3 Transit 5: Snapshots of the situation. Moving objects in red, ferry in blue,

with green heading vector and blue course vector. 107
B.4 Transit 5: Velocity and velocity reference. 107
B.5 Transit 5: Heading and heading reference. 108
B.6 Transit 6: Snapshots of the situation. Moving objects in red, ferry in blue,

with green heading vector and blue course vector. 109
B.7 Transit 6: Velocity and velocity reference. 109
B.8 Transit 6: Heading and heading reference. 110
B.9 Transit 8: Snapshots of the situation. Moving objects in red, ferry in blue,

with green heading vector and blue course vector. 110
B.10 Transit 8: Velocity and velocity reference. 111

xvi

B.11 Transit 9: Snapshots of the situation. Moving objects in red, ferry in blue,
with green heading vector and blue course vector. 111

B.12 Transit 9: Velocity and velocity reference. 112

xvii

xviii

Abbreviations

COG Course Over Ground

COS Change Of Speed

DCO Distance to Closest Object

DCPA Distance to Closest Point of Approach

DOF Degree Of Freedom

DP Dynamic Positioning

DW Dynamic Window

ECEF Earth Centered Earth Fixed

ENC Electronical Nautical Chart

GNC Guidance Navigation and Control

GNSS Global Navigation Satellite System

Lidar Light Imaging Detection and Ranging

LOS Line Of Sight

MP-VP Multiple Path Velocity Planner

MPN Mild Penalty Nodes

NED North East Down

OBC On Board Computer

OS Operating System

PPP Path Planning Problem

xix

ROC Region Of Collision

ROS Robot Operating System

ROT Rate Of Turn

RRT Rapidly Exploring Random Tree

RTK Real-Time Kinematic

SOG Speed Over Ground

SP-VP Single Path Velocity Planner

SPA Sense-Plan-Act

SPN Strict Penalty Nodes

TCPA Time to Closest Point of Approach

UAV Unmanned Aerial Vehicle

VO Velocity Obstacle

VPP Velocity Planning Problem

xx

xxi

xxii

Chapter 1
Introduction

In this chapter, the motivation for the work done in this Master’s thesis is presented along
with a problem description and a list of contributions from the author to the project. An
introduction to the background and previous work on the field is included. The chapter is
concluded with an outline of the report.

1.1 Motivation
Over the last two decades, the evolution of autonomous systems has shown revolutionary
tendencies. The development is going faster and faster, much caused by more and more
resources being pumped into the field as the market potential is charted. In the automotive
industry, this is especially noticeable with several of the big car manufacturers deliver-
ing cars with some level of autonomy, and are promising more to come in the next years
(FutureAgenda, 2019). Goods transportation is also seeing potential in the autonomous
technology, both on land, air and sea, with the autonomous containerships, haul trucks,
platooning and UAVs delivering packages in cities (Kongsberg Maritime, 2018); (RioT-
into, 2018); (Scania, 2019); (Amazon, 2016). The heavy urbanization and growth of cities
over the last decades have posed problems related to green transportation systems, to cope
with the increased demand for transportation while not polluting the city environment. Au-
tonomous electric buses is an option under development and testing in several cities over
the world. The waterway is an underutilized option in many cities, where water-shuttles
can take load off the roads. This has previously been an expensive option with high oper-
ator cost, but now, as the technology is emerging, unmanned electric autonomous ferries
are becoming an option in cities, as well as coastal infrastructure.

Electric autonomous passenger ferries can offer an adaptable, environmentally friendly
and cost-effective option to the city infrastructure. The ferries can be unmanned, and
thereby reduce the operating cost. An electric propulsion system does not pollute the city
air like traditional diesel ferries. The ferries demand little ”on land” infrastructure, and
can therefore be very adaptable depending on the season or changing need in the transport
demand.

1

Figure 1.1: Top left: Yara Birkeland, an autonomous container-vessel under development by Kongs-
berg Maritime, courtesy of Kongsberg Maritime. Top right: Autonomous hauling-trucks, courtesy
of Christian Spronge Photography. Bottom left: Four autonomous trucks platooning, courtesy of
Scania. Bottom right: Autonomous package delivering drones, courtesy of Amazon.

milliAmpere is a prototype of an autonomous passenger ferry. The ferry is three by
five meters and can be seen in Fig. 1.2. The ferry serves as a development platform for all
systems that are needed on an autonomous passenger ferry. On the milliAmpere project,
there is currently development on everything from power management in the propulsion
systems, new sensor systems, to situational awareness and collision avoidance systems.
The project is funded by NTNU, where bachelor and master students, PhD candidates
and professors work alongside each other in the developing and testing process. The de-
sign process of a full-scale ferry based on the milliAmpere prototype can be seen in Fig.
1.3. The vision for the project is to produce a fully functional on-demand electric au-
tonomous passenger ferry for urban environments. Urban environments call for complex
traffic picture. If the ferry is to perform fully autonomous transits, it needs to plan its
motion-pattern in a way that avoids collision with any static and dynamic objects in the
environments, hence it needs a COLAV system. The COLAV system, along with the sit-
uational awareness system, are two of the systems that separate a non-autonomous ferry
from an autonomous one. What seems trivial for trained captains is no trivial task for
a computer. Observing a situation, predicting how the environments change, and acting
based on it quickly becomes complex with an environment that is nowhere near fully ob-
servable. However, if autonomous passenger ferries are to be a reality, this is a problem
that needs to be solved.

1.2 Problem Description

The problem that is addressed in this Master’s thesis is the trajectory planning for an
autonomous vessel operating in known environments, where the motions are confined by
a predefined area or path. The trajectory is to be planned in a way that ensures a collision-

2

Figure 1.2: The prototype milliAmpere during sea trials. The ferry functions as a platform for
development and testing of sensor systems, situational awareness algorithms, COLAV systems and
control systems needed for fully autonomous transits. Courtesy of Nicholas Dalhaug.

free transit from the current position to the destination. The system needs to react to
changes in the situation underway, and always deliver a collision-free trajectory. It is
assumed that the predefined area or path is free of any static object, and the trajectory
planning therefore only needs to consider the moving objects in the environment. The
trajectory planner further needs to be encapsulated in a complete COLAV system that
interfaces with the situational awareness systems at one end, and the low-level motion
control systems in the other end. The following objectives are proposed for this Master’s
thesis

• Develop a complete COLAV system for an autonomous passenger ferry, with all
functionality that is needed for autonomous transits.

• Implement interfaces to the situational awareness modules.

• Implement interfaces to the trajectory following system.

• Develop a simulator that can emulate moving objects in the environments.

• Verify the performance of the COLAV system through simulations.

• Prepare the system for, and perform full-scale testing of the COLAV system.

1.3 Contributions
The contributions of this Master’s thesis are

3

Figure 1.3: Illustration of the full-scale autonomous ferry that is under development at NTNU.
Courtesy of Petter Mustvedt, Institute of design, NTNU.

• A complete COLAV system is developed and tested. The system plans a trajectory
from start to finish that is collision-free, and continuously validates and updates the
trajectory during the transit. The system is designed with respect to the environment
the ferry is to operate in. In addition, it is simple, predictable and does not introduce
a high computational cost to the OBC of the ferry.

• A simulator that interfaces with the existing control and sensor systems on the ferry
is developed. The simulator facilitates rapid testing and prototyping of new and
old systems and algorithms in both unit testing as well as full system testing on
the OBC of the ferry. This can become a time-saver for everyone working on the
project, and a needed safety-measure in the development of COLAV systems. The
simulator is generic and easily adaptable. This makes for a simple augmentation
of the simulator when the milliAmpere ferry system is expanded with new sensor
systems and functionality.

• A dummy object detection module is developed. The module emulates moving
objects in the environments and has functionality for different object behaviour, such
as aggressive, passive and rules-compliant. The module facilitates testing of the
COLAV system in both ”normal” and critical situations in both the simulator and in
full-scale testing, without imposing great risk to the platform and the operators.

• A reference generator with a dual reference filter is developed to serve as an interface
between the COLAV system and the trajectory following systems. The filters are

4

designed with respect to passenger comfort, as well as response in critical situations.
The filters ensure that the reference from the COLAV system is feasible, and sustain
the passenger comfort whenever possible.

• The COLAV system is benchmarked against a velocity obstacle-based COLAV sys-
tem through simulations.

• The complete pipeline with dummy object detection, COLAV system, reference
filters and the control systems on the milliAmpere ferry is tested in full-scale sea
trials.

1.4 Previous Work
Today there are at least a couple of actors in the process of development and testing of
autonomous ferries. Wärtsilä was testing their automated transit and docking system in
November 2018 and performed a three-legged transit including docking and departure
between each leg. The transit was performed fully automated, but without any COLAV
functionality, so if a situation were to emerge, a stand-by operator would take over Wärtsilä
(2018). Only a short week later Rolls-Royce performed a fully autonomous transit with
COLAV capabilities in Finland. The transit encountered a set of (artificial) scenarios,
where the situational awareness systems registered the situations, and the COLAV system
acted on the observations. Only weeks before the finalization of this report, Wärtsilä, as
the first in history, put a self-driving ferry into commercial operation (NRK, 2019).

On collision avoidance algorithms for marine vessels, there has been done quite some
research over the last couple of decades. The collision avoidance methods can be roughly
separated into two categories, reactive and deliberate. Among the reactive/local methods
there is for example the Dynamic Window (DW) algorithm, and the Velocity Obstacle
(VO) algorithm (Eriksen et al., 2016);(Kuwata et al., 2014). Both methods use assumptions
about moving objects to make a prediction of collision-free headings and velocities and
pick a velocity-heading set according to a cost function. The reactive algorithms typically
depend on real-time sensor data, and not a global understanding, in combinations with an
objective to determine the control-action. This makes them reactive to the current situation,
and they often come at a low computational cost. The short-term span, on the other hand,
can cause them to favour local minima, and if care is not taken, get stuck or diverge from
the global objective.

The deliberate methods use a priori information about the environments, i.e. a con-
tinuously updated map on the environments, including both static and dynamic objects, to
find a global (optimal) solution. In the modified A* algorithm presented in (Campbell de
Oliveira et al., 2013), the dynamic objects are represented by making unavailable regions in
locations where the COLREGs will be violated. Other deliberate methods are the Rapidly
Exploring Random Tree (RRT) algorithm introduced in (M. Lavalle and Kuffner, 2000),
and MPC-based methods like the Branching Course MPC in (Eriksen and Breivik, 2017)
and the simulation-based MPC in (Hagen et al., 2018). In the latter of the methods, the
MPC objective is to compute modifications to the desired course and speed in order to pro-
duce a COLREGs compliant trajectory. The method assumes constant obstacle behaviour.
The deliberate algorithms often come with high computational complexity, and therefore

5

put demands on the computer system that houses it, and restricts replanning frequency and
response time.

In later years, we have seen the emergence of hybrid architectures, where a reactive and
a deliberate method run in parallel, at different rates. This gives the benefit of long-term
planning, where the chances of reaching the global goal are high, along with the reactive
quality of a high-frequency short term planner (Loe, 2008);(Eriksen and Breivik, 2018).

What makes the case for autonomous passenger ferries special is that the area of op-
eration is known in advance, and will typically be confined by static obstructions in the
environments. This restricts the avoidance maneuvers of the ferry, with respect to course-
changing. In comparison, the methods presented in (Eriksen et al., 2016), (Kuwata et al.,
2014) and (Hagen et al., 2018), favours changes in course, and deviates from the initial
path with significant cross-track error. The high traffic in urban waterways is also a fea-
ture that is unique for this case, and multi-target collision avoidance is a necessity. The
combination of confined space and high traffic scenarios is, to the best of the author’s
knowledge, not much considered in the literature so far.

1.5 Outline
The rest of this report will be about solving the problems described in Section 1.2. Chap-
ter 2 gives an introduction to some fundamental theory as well as some key terms and
concepts. In Chapter 3, the suggested COLAV system is presented in detail followed by
simulation results and a description of the simulator in Chapter 4. Chapter 5 describes the
experimental platform along with the experimental data. Lastly, in Chapter 6, the report is
concluded along with suggestions for future work.

6

Chapter 2
Theoretical Background

In this section, some fundamental theoretical background will be presented, as well as an
introduction to some terms and concepts that are used in this Master’s thesis.

2.1 Vessel Modelling

2.1.1 Kinematics
In navigation and motion control of marine crafts, a set of reference frames can be used,
depending on the area of use and tolerances.

• ECEF frame is an Earth Centered Earth Fixed frame denoted {e}. Its origin is
fixed to the centre of the earth, and it rotates around the earth spin axis. A point on
the surface of the earth will have a fixed set of coordinates in {e}. The {e} frame
can also be used to represent Longitude-Latitude-Altitude which is widely used in
GNSS based navigation.

• NED frame is the North-East-Down coordinate system, hereby denoted {n}. The
{n} frame is used to describe the position and orientation of the craft. In this frame,
the x-axis points towards the true north, the y-axis points to the east, and the z-axis
points down, normal to the surface of the earth. For flat earth navigation, one can
assume that {n} is inertial, implying that Newton’s laws still apply.

• BODY frame is the body-fixed reference frame hereby referred to as {b} and is a
coordinate frame fixed to the craft. The {b} frame is used to describe the linear and
rotational velocities of the craft. The x-axis of the {b} frame is aligned with the
longitudinal axis, of the craft, the y-axis is the transversal axis, and points straight
to starboard, and the z-axis is the normal axis, and points straight down.

A ferry will typically operate in a local area where flat earth navigation can be assumed.
This allows for the use of {n} in combination with {b} to describe the system. Since we

7

Figure 2.1: Reference Frames, ECEF frame in blue, NED frame in green and BODY frame in
orange.

8

only consider 3 DOF, the orientation z-axis of {b} and {n} are parallel, the rotation from
{b} to {n} becomes a principle rotation about the z-axis

JΘ(η) = Rz,ψ =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.1)

The rotation gives the relationship between the pose and the body velocities

η̇ = R(ψ)ν, (2.2)

whereR(ψ) := Rz,ψ with ν = [u, v, r]T and η = [N,E,ψ]T .

2.1.2 Kinetics

In order to develop model-based control systems as well as a simulation environment, a
kinetic model of the vessel in the environments must be made. In this section, a 3 DOF
model in the horizontal plane is presented (Fossen, 2011). The manoeuvring model is
based on the rigid body kinetics

MRB ν̇ +CRB(ν)ν = τRB , (2.3)

τRB = τhyd + τhs + τwind + τwaves + τ , (2.4)

where τ represents the forces for the actuators on the vessel. Since the model only takes
into account the horizontal plane τhs = 0. The hydrodynamic forces

τhyd = −MAν̇r −CA(νr)νr −D(νr)νr, (2.5)

is a result of the added mass, MA, Coriolis and centripetal matrix CA(νr) due to the
rotation {b} with respect to {n}, as well as the viscous and wave induced damping. By
combining (2.3)-(2.5) we get the maneuvering equation

MRBν̇ +MAν̇ +CRB(ν)ν +CA(νr)νrD(νr)ν = τ + τwind + τwave. (2.6)

In the case of ocean currents, ν and νr will not be the same, this can be handled by
parameterizingCRB independent of linear linear velocity, and assuming constant currents
and hence v̇c = 0 Fossen (2011). By doing this the system can be written on the form

Mν̇r +C(νr)νr +D(νr)νr = τ + τwind + τwave, (2.7)

M = MRB +MA, (2.8)

C(νr) = CRB(ν) +CA(νr). (2.9)

9

2.2 Trajectory Tracking
A control system that forces the system output y(t) ∈ Rm to track a desired output yd(t) ∈
Rm solves a trajectory tracking problem (Fossen, 2011). For surface vessels, the trajectory
tracking problem usually concerns the 3DOF previously mentioned where y(t) = η(t) =
[N(t), E(t), ψ(t)] and yd(t) = ηd(t) = [Nd(t), Ed(t), ψd(t)], where the objective is to
minimize the tracking error

e(t) :=

 N(t)−Nd(t)
E(t)− Ed(t)
ψ(t)− ψd(t)

 . (2.10)

The trajectory tracking strategy is dependent on the vehicle actuator configuration as
well as the trajectory to be tracked. A fully actuated vessel allows for independent control
of all the three degrees of freedom and is especially suited for crab-like motions as well as
stationkeeping and DP.

2.3 ROS
Robot Operating System is a software developed for building robot applications. ROS is
not an operating system, but rather a collection of software frameworks for robot software
development (ROS.org, 2018). ROS is open source and free for commercial and research
use. The software provided can be split into three groups: Tools for building and distribut-
ing ROS based software, ROS client libraries such as roscpp (C++) and rospy (python),
and packages containing application-related code which usually uses one or several of the
ROS client libraries.

ROS was developed to facilitate collaborative development of robotic systems. With
the ROS packages, a team of developers in one field can easily share or combine their
work with developers in another field. This is much due to the intuitive and standardized
message-based interface that ROS uses. It also facilitates the use of a variety of program-
ming languages in combination. ROS works well for both low-level hardware drives, as
well as advanced algorithms.

10

Chapter 3
Collision Avoidance System

This chapter presents an approach to a complete COLAV system. Key functions of the
system are described in the following sections. The method is based on the concept of
path velocity decomposition first described in Kant and Zucker (1986) and later revised
in Fraichard and Laugier (1993). Path velocity decomposition separates the trajectory
planning problem into a Path Planning Problem (PPP) and a Velocity Planning Problem
(VPP). The path planning only considers static obstacles and the velocity planning finds
a velocity-profile for the planned path that gives a collision-free trajectory with respect to
any moving objects. In this thesis, only the VPP is considered, since the static environ-
ments are familiar and therefore a path can easily be predetermined.

In more detail, the velocity planning problem is solved by transforming the moving
objects onto the two-dimensional space spanned by the path and time, hereby referred to as
path×time space. This is done by assuming constant velocity and heading for all moving
objects, and performing a linear transformation on the object representation to transform
it onto the path× time space. In the two-dimensional space, the velocity planning can be
solved by a node-search algorithm. The feasibility of this approach for the case considered
in this thesis was looked into by the author in (Thyri, 2018). In the thesis, up to six objects
were transformed onto a 100m long path, and it was investigated whether a node-search
algorithm was a viable way of finding a velocity profile. The method proved efficient and
will, therefore, found the basis for the COLAV system developed in this Master’s thesis.

This thesis presents two systems based on the same method. One method finds a
trajectory along a single path, while the other searches for a trajectory along multiple-
paths. The methods are named single-path velocity planner (SP-VP), and multiple-path
velocity planner (MP-VP).

3.1 System Architecture
In this section, the choice of system architecture is reasoned, and an introduction to the dif-
ferent system modules is given. In the development of autonomous systems, architecture
is one of the major factors in the system capacity and behaviour. The system architecture

11

is the composition of the autonomous system, hardware and software, between the sen-
sors and the actuators (Kortenkamp and Simmons, 2007). In the very first autonomous
systems, this was done in hardware, but as the micro-controllers and computers emerged
with ever-increasing computational capacity, this problem evolved to be more of a soft-
ware problem. Up to the mid-1980s, the Sense-Plan-Act (SPA) method was the dominant
view. The SPA system is a hierarchical system composed of a sensing system interpreting
the sensor-data into a world model, a planning system that combines the mission goal with
the world mode to generate a plan, and an acting system that generates and execute actions
according to the plan. Fig. 3.1a illustrates the SPA-architecture. The hierarchy of the sys-
tem makes the flow of information unidirectional, which makes it easy to implement on a
single computational unit by running the three steps in sequence. As the missions grew in
complexity, so did the mission planning and the amount of sensor data. This, along with
available hardware, puts restrictions on the planning frequency, which eventually became
a major drawback of the SPA structure. It eventually reached its maximum potential. From
the mid-1980s quite a lot happened in this field, and by 1990 the three-layer Architecture
was born (Gat, 1997). The three-layer architecture is a hybrid structure, where the sens-
ing, planning and acting can run independently if the other, and the flow of information
can be bi-directional between all modules. Fig. 3.1b give an illustration of such a sys-
tem (Lussier et al., 2019). The hybrid structure allows for running subsystems at different
frequencies, which enables advanced planning algorithms to perform long-term mission
planning, while the sensing and acting can perform high frequency tasks to comply with a
short-term objective.

(a) (b)

Figure 3.1: (a) The hierarchical Sense-Plan-Act architecture. Courtesy of Wikipedia. (b) Hybrid
structure. Courtesy of Alexander Inzartsev.

In the three-layer architecture, the deliberate layer performs long-term planning based
on mission objectives, environmental information as well as vessel models. In the case
considered here, the plan will be in the form of a set of waypoints or a trajectory that
stretches a period ahead from the current time and state. The executive layer functions as a
supervisor, receiving the plans from the deliberate layer and sequencing it before feeding it
on to the reactive layer. It also receives information based on real-time sensor data from the
reactive layer and sends requests and invocations on to the deliberate layer. The reactive
layer realizes to the best of ability the plans from the executive layer. In this case, it will

12

by large be a trajectory following task, which includes computing the actuator setpoints
based on a reference as well as real-time sensor data. In addition to this, the reactive layer
monitors sensor data and continuously validates the feasibility of the current plan.

Due to the generic and adaptable qualities of the three-layer architecture, it is the struc-
ture of choice for the COLAV system presented in this thesis. The system overview will
be presented in further detail in the following sections.

3.1.1 Module Overview

Fig. 3.2 gives an illustration of a COLAV system with the three-layer architecture. The fig-
ure contains the three layers as well as a set of surrounding support modules that interfaces
with the COLAV system.

The Static Environment Map keeps information about the static or slowly varying
environments. This might be provided by ENC, supported by real-time radar and lidar
data that catches changes in the static environment caused by either change in water levels,
currents or boats that are periodically docked in the environment. This module is under
development in the milliAmpere project.

The Object Detection Module provides data on the rapid changes in the environment
such as moving objects. The information might come from radar, lidar and camera data
either from the ferry or from stations mounted on the dock or along the canal. This module
is also under development in the milliAmpere project. In the work presents in this thesis it
is assumed that the Object Detection module delivers extended object tracking data on all
objects in proximity to the ferry (Brekke et al., 2018).

The Executive Layer is an organizing layer. It receives missions from the mission-
planner in terms of transit requests, as well as a path or a set of paths. The supervisor
thereafter invokes the deliberate planner and receives the plan as a set of waypoints (with
timestamps) in return. The plan is sequences into reference signals by the reference gener-
ator and streamed to the trajectory following control system. The long-term plan from the
deliberate layer is also relayed onto the reactive layer where it is continuously evaluated.
If it fails, the supervisor in the executive layer invokes the deliberate planner again.

The Mission Planner is the top layer of the structure and part of the deliberate layer.
The mission planner handles the transit missions of the ferry. When the ferry is requested
to transit from one quay to the other, it is the mission planner that requests a transit from
the supervisor in the executive layer. The mission-planner also provides the path from the
current location to the desired location. Note that the mission planner only gives a path,
or a set of paths, and not a trajectory, in the way that it provides a set of waypoints in {n}
independent of time. The transit request sets a time for earliest possible departure but puts
no restrictions on the time of arrival, nor a timestamp for any underway checkpoints. The
suggested path or set of paths is collision-free only with respect to static obstacles.

The Deliberate Layer of the COLAV algorithm uses the path from the mission plan-
ner, as well as the information from the Object Detection Module about the moving objects
in the environment to generate a trajectory that connects the suggested waypoints in a way
that avoids collision during the transit. This is done by generating a position and velocity
profile in {n} that is fed to the executive layer. A suggested method for the deliberate layer
will be presented later in this section.

13

Figure 3.2: Illustration of a COLAV system with the three-layer architecture and supporting func-
tions.

The Reactive Layer receives the plan in terms of instructs and references from the
executive layer. In this system, the reactive layer will have two main tasks. One is to track
the trajectory reference from the executive layer, by means of a trajectory tracking control
system. The second main task is to monitor sensor data from the object detection module
and evaluate if the current plan still is feasible, and if a replan would be of benefit due to
sudden changes in the information on the dynamic objects. In this thesis, the second task
will be the one in focus, while the task of trajectory tracking has been addressed previously
by the author in (Thyri, 2018).

3.2 Single-Path COLAV System
In this section, the SP-VP is presented. The section starts by describing how the objects
are represented in both {n} and the path× time space. Following, the design of the nodes
and vertices in path × time is explained along with how potential trajectories are found
and evaluated. In the last subsections, the feasibility and smoothing of the trajectory are
addressed.

3.2.1 Object Representation

The moving objects in the environments are detected by the object detection module. In
this thesis, it is assumed that the module is capable of extended object tracking (Brekke
et al., 2018). In the paper, the shape of the object is fitted to an ellipsoidal contour with the
length and width as the semi-minor and semi-major axis respectively. Along with size, the
position, heading and velocity are estimated where the heading is parallel with the semi-

14

major axis. In order to ease the computational complexity, a Region Of Collision (ROC)
determined by four corners in {n} is placed around the vessel in a way that encapsulates
the whole contour of the ellipse and is further used as the new object representation. The
four corners are calculated by

cofront = [Nobj + kf roclobj cos(ψobj), Eobj + kf roclobj sin(ψobj)], (3.1)

costarboard = [Nobj + ks rocwobj cos(ψobj +
π

2
), Eobj + ks rocwobj sin(ψobj +

π

2
)],

(3.2)

corear = [Nobj + kr roclobj cos(ψobj + π), Eobj + kr roclobj sin(ψobj + π)], (3.3)

coport = [Nobj + ks rocwobj cos(ψobj +
3π

2
), Eobj + ks rocwobj sin(ψobj +

3π

2
)],

(3.4)

where lobj and wobj is the length and width of the object, [Nobj , Eobj] is the North-East
position of the object, and kf roc, kr roc and ks roc is the gain for the forward length, rear
length and width respectively. The gains can be adjusted to compensate for uncertainty
and desired safety factor.

For the node search algorithm to be able to find a trajectory that does not collide with
the objects, a set of nodes, denoted O needs to be added in proximity to the object. The
nodes will allow the node search algorithm to use one of the nodes if the trajectory is to
pass close by a moving object and thereby ensure a certain distance to the object, based on
how the nodes are constructed.

One way of positioning the nodes is to place the nodes at the corners of the ROC. Fig.
3.3a illustrates what this approach looks like for an object at the position [Nobj , Eobj] =
[0, 0] and ψobj = 0. The figure displays the object ellipse, heading as well as the ROC
and the nodes. This approach was initially tested, and the results from it can be seen in
Section 4.3.1. The method proved to be prone to disturbance and non-constant object
behaviour due to zero margin between the nodes and the ROC. This lead to the improved
object representation in Fig. 3.3b.

The improved object representation has a few extra features. For one, there are two
sets of nodes, namely the Strict Penalty Nodes, SPN, and the Mild Penalty Nodes, MPN,
as pink and green asterisk in Fig. 3.3b respectively. In addition, the Penalty Region is
introduced as a line between two and two SPNs. The function of all the elements in the
object representation will be clear in the following.

3.2.2 Transformation to Path-Time Space
For the VPP to be solved as a node search problem, the object representations are trans-
formed onto the path × time space. In the transformation, it is assumed that all moving
objects keep constant COG and SOG. With the assumptions along with a parameterization
of the predefined path, the object representations can be transformed onto the path× time
space.

Since both the nodes and the four corners of the ROC can be described by the coordi-
nates of a point in {n}, all the object information can be transformed by the same method.
Therefore the method is described for a general path and point in {n}.

15

-30 -20 -10 0 10 20 30

-40

-30

-20

-10

0

10

20

30

40 Object

Heading

ROC

Nodes

(a)

-30 -20 -10 0 10 20 30

-40

-30

-20

-10

0

10

20

30

40 Object

Heading

ROC

Strict Penalty Nodes

Mild Penalty Nodes

Penalty Regions

(b)

Figure 3.3: Old and new object representation. (a) Initial object representation with the nodes on the
corners of the forbidden regions. (b) Improved object representation, with the nodes placed outside
the forbidden regions.

A straight line path P between two points Pstart = [Nstart, Estart]
T and Pend =

[Nend, Eend]
T can be parameterized by

P :=
N −Nstart

a
=
E − Estart

b
, (3.5)

N ∈ [Nstart, Nend], E ∈ [Estart, Eend] where the length of the path is

l =
√

(Nend −Nstart)2 + (Eend − Estart)2. (3.6)

By choosing a and b as

a =
(Nend −Nstart)

l
, (3.7)

b =
(Eend − Estart)

l
, (3.8)

where l is the length of the path, the parameterization of the path has the unit meters, which
proves to be intuitive and beneficial at a later stage.

The position [N(t), E(t)] of a point in a plane as a function of time can be described
by

N(t) = Nobj + Uobj cos(ψobj)(t− tobj), (3.9)
E(t) = Eobj + Uobj sin(ψobj)(t− tobj), (3.10)

16

where [Nobj , Eobj , ψobj]
T and Uobj is the pose and velocity at at time tobj respectively.

By substituting N and E from (3.5) for N(t) and E(t) in (3.9)-(3.10) we get

Pa−Nstart = Nobj + Uobj cos(ψobj)(t− tobj), (3.11)
Pb− Estart = Eobj + Uobj sin(ψobj)(t− tobj). (3.12)

The equations can be solved to get a point [P, t] in the path× time space for every point
in {n}. Fig. 3.4a displays such a projection of four moving objects.

3.2.3 Add Start and End Nodes
For the node search to find a path from the current position of the vessel to the desired
destination, nodes need to be added at those locations. A set of start nodes S is added to
the total set of nodes. One start node is added at the current position of the ferry, namely
[P, t] = [0, t0] where t0 is the current time. If the ferry is docked, awaiting to start a transit,
a number of start nodes with P = 0 and time greater than t0 can also be added to S, this
will give the trajectory planner the possibility to wait at the current position for some time
before initiating the transit. This can prove beneficial for example if the traffic along the
transit path is especially active. The effects of this are previously studied by the author and
presented in (Thyri, 2018).

With the start nodes added, a set of end nodes, E, is added. In order to facilitate the
trajectory planner choosing trajectories at transit velocity, end nodes can be added in such
a way that there always will be an end node in transit velocity from each of the nodes in
S and O. This is done by setting the P coordinate of each end node to the path-length, l,
and calculate the t value according to

tend node = tnode +
l − Pnode
Udes

, (3.13)

for all nodes in O and S, where Udes is the desired transit velocity and [Pnode, tnode] are
the coordinates of the node.

3.2.4 Vertex Generation
With the set of all nodes N consisting of the subsets S, O and E, the set of feasible
vertices combining the nodes can be added. A vertex is a directional straight line that
connects two nodes, namely Node one and Node two, where it starts in Node one. The set
of vertices make a tree that connects the start node, at the current position of the vessel, to
the end nodes, at the destination of the transit. Fig. 3.4b shows such a net for a situation
with four objects. Since a vertex represent a physical aspect, four criteria has to be fulfilled
for it to be considered feasible.

• Node two must be later or equal in time than Node one

• Node one must be later or equal in time than the current node

• The velocity required to travel along the vertex is not higher than Umax

17

0 20 40 60 80 100 120

path

0

20

40

60

80

100

120

140
ti
m

e
Path x Time Representation of Moving Objects.

(a)

0 20 40 60 80 100 120

path

0

20

40

60

80

100

120

140

160

180

ti
m

e

vertices, forbidden regions, nodes and waypoints

(b)

Figure 3.4: path × time space for the deliberate planner in a situation with four moving objects
in the environment. (a) Transformation of the object representation with nodes from Fig. 3.3b. (b)
Object-nodes, ROC, start node, end nodes and vertices.

• The vertex does not pass through any Regions of Collision

where Umax is the maximum velocity for the ferry.
The first three criteria are trivial to check, the fourth criteria can be checked by the

following approach. Let V be the set of all vertices that fulfill the first three criteria, and
let FROC be the set of edges that make up the Region of Collision for all moving objects.
Each vertex can be formulated as a line by

Vi =
p− ps
pe − ps

=
t− ts
te − ts

, (3.14)

with Vi ∈ (0, 1) where [ps, ts] are the coordinates of Node one, [pe, te] are the coordinates
of Node two and i is the index of the vertex in V . The ROC can, in the same manner be
described by

Rj =
p− p1

p2 − p1
=

t− t1
t2 − t1

, (3.15)

with Li ∈ (0, 1) where j is the index of the ROC in FROC , and [p1, t1] and [p2, t2] are the
start and end coordinates of the line in path × time space. Equations (3.14) and (3.15)
can be written as

p = Vi(pe − ps) + ps, (3.16)

t = Vi(te − ts) + ts, (3.17)

p = Rj(p2 − p1) + p1, (3.18)

t = Rj(t2 − t1) + t1. (3.19)

By combining (3.16) and (3.18) to eliminate p

Vi(pe − ps) + ps = Rj(p2 − p1) + p1, (3.20)

18

and (3.17) and (3.19) to eliminate t

Vi(te − ts) + ts = Rj(t2 − t1) + t1, (3.21)

the two new new equations can be solved to find Vi and Rj by either solving

Rj =

t1 −
p1 − ps
pe − ps

(te − ts)

p2 − p1

pe − ps
(te − ts)− (t2 − t1)

, (3.22)

and inserting Rj into (3.21) to find Vi, if pe − ps 6= 0, or solving

Rj =
p1 −

t1 − ts
te − ts

(pe − ps)

t2 − t1
te − ts

(pe − ps)− (p2 − p1)

, (3.23)

and inserting Rj into (3.20) to find Vi if pe − ps = 0 and te − ts 6= 0. Both pe − ps = 0
and te − ts = 0 can not be true at the same time, since it gives a vertex without size in
path× time space.

For every Vi in V : solve the equations for every Rj in FROC . If any of the combina-
tions give Vi ∈ (0, 1) and Rj ∈ (0, 1), the vertex intersects a ROC, and is removed from
V .

3.2.5 Vertex Cost Function
The vertex cost represents the cost related to using that vertex as a sub-trajectory in the
trajectory. The cost should be calculated in a way that represents the objectives for the
trajectory. The objectives for the trajectory is that it should be safe, and ideally not pass
through any penalty regions. Also, since this approach does not give a way to penalize
difference in velocity between two vertices in the trajectory, a cost representing how far
the vertex velocity is from the desired velocity is included. In addition, the cost of the
node is included, along with a cost on the duration of the vertex. The cost is calculated
according to equations (3.24)-(3.28)

costvel = |Uvertex − Udes|Kvel, (3.24)
costrisk = riskboolKrisk, (3.25)
costnode = costnode two, (3.26)

costtime = min(
Ktime

|Uvertex|
, time costmax), (3.27)

cost = costvel + costrisk + costnode + costtime, (3.28)

where Kvel, Krisk and Ktime are tunable gains, riskbool is a boolean value that is true if
the vertex passes through a high risk region as described in Section 3.2.1.

19

3.2.6 Search for Best Vertices

The node search algorithm used to solve the minimum cost path algorithm is the Dijkstra’s
Minimum Cost Path Algorithm. Initially, the Matlab function shortestpath() was used, but
since it does not support code generation, a modified version of the algorithm in Kirk
(2015) is used. The inputs for the algorithm are the nodes, vertices, weight, start nodes
and end nodes. The algorithm outputs the nodes making up the minimum cost path from
all the start nodes to all the end nodes.

3.2.7 Generate Trajectory from Nodes

The nodes in the path × time space has to be translated to a format that the trajectory
following control system can make use of. Therefore the nodes are transformed to way-
points in the local {n} frame along with the timestamp for that waypoint. The north and
east coordinates of the waypoint are found by inserting the P coordinate of the node into
(3.5), the timestamp of the waypoints is simply the t coordinate of the node. The set of
waypoints can further be used to generate a pose, velocity and acceleration reference as
a function of time for the control system to follow. Due to the format of the node search
problem and the vertices, the resulting trajectory from the waypoints will have a step in ve-
locity between two vertices, and therefore, infinite acceleration. Since infinite acceleration
is not yet possible for autonomous passenger ferries, some filtration needs to be applied to
the reference signals for it to be feasible.

Reference Filter

In the process of filtration, special care has to be taken in order not to violate the collision-
free qualities of the initial trajectory, since any filtration of the original reference will give
an error between the hard reference, and the feasible reference. In addition to the physical
capabilities of the ferry, the comfort of the passengers becomes a factor in the design
of the filter for the trajectory references. Studies have been done on determining what is
considered comfortable acceleration and jerk in the longitudinal motion (Hoberock, 1977).
The article gives a review and a conclusion on 11 studies on longitudinal acceleration
for in-ground mass transport systems, mainly with passengers standing unsupported or
supported by holding in overhead straps or wall-mounted stanchions. The article concludes
that a longitudinal acceleration of 1.1−1.5m/s2 and a jerk of 3m/s3 is about the limit for
what is considered sufficient passenger comfort. Since the physical experience of standing
on a passenger ferry, operating in calm waters, is comparable to standing on a subway
train, the suggested values from the article will be used as design parameters in this thesis.

Since a limited jerk and hence a continuous acceleration profile is desirable, a third-
order reference filter is needed to filter the steps in the velocity reference. An approach
to this is given in Fossen (2011), where a first-order low-pass filter is cascaded with a
mass-damper-spring system.

...
ηd + (2∆ + I)Ωη̈d + (2∆ + I)Ω2η̇d + Ω3ηd = Ω3rn, (3.29)

where rn is the pose reference and ηd, η̇d, η̈d and
...
ηd are the desired pose, velocity,

20

acceleration and jerk in {n}. The reference model can be shown to satisfy

lim
x→∞

ηd(t) = rn, (3.30)

for a constant rn. This is not the case in our case, where the reference pose is changing
when throughout the transit. Since the vertices have a constant velocity, the reference will
have a piecewise constant rate, and an acceleration of zero. This means that by augmenting
the model with either an integrating effect or a velocity reference in addition to the pose
reference, the desired tracking of a dynamic pose reference can be achieved

...
ηd + (2∆ + I)Ωη̈d + (2∆ + I)Ω2η̇d + Ω3ηd = Ω3rn + (2∆ + I)Ω2ṙn. (3.31)

To ensure that the jerk and acceleration do not violate the limits that are comfortable
for a standing passenger, saturation can be applied in the reference filter. The physical ca-
pabilities of the ferry also need to be taken into account in the calculation of the reference.

The velocity limitations of the ferry can be found by performing some step input tests
on the vessel. The implementation of the reference filter will be placed in the executive
layer of the COLAV system and needs to have a discrete form. This can be achieved by
the following approach, where a fixed timestep ∆t between each reference calculation is
used. The timestep ∆t is dependent on the frequency the reference filter is running at on
the OBC and will be 0.1s in the simulations and testing performed in this thesis.

Firstly the jerk reference is calculated from the filter in (3.31) to be

...
ηd = Ω3(rn − η) + (2∆ + I)Ω2(ṙn − η̇)− (2∆ + I)Ωη̈, (3.32)

where η is the current pose of the ferry. Following the jerk can be saturated by the satu-
rating function

sat(x) =

{
sgn(x)xmax if ‖x‖ ≥ xmax

x else (3.33)

with xmax = 3m/s3, to comply with the passenger preference. Subsequently the acceler-
ation, velocity and pose reference cal be calculated to be

η̈d = η̈ +
...
ηd∆t, (3.34)

η̇d = η̇ + η̈d∆t, (3.35)

ηd = η + η̇d∆t, (3.36)

with a saturation between each step, where the acceleration is saturated to 1.1m/s2

to comply with passenger comfort. The velocity can also be saturated to the desired limit
below the maximum limit of the vessel. A downside of a reference filter designed for
passenger comfort is that it reduces the response of the ferry. In most cases, this is un-
problematic but could be problematic if a critical situation was to appear, i.e. an object
moving so unpredictably that it will lead to a collision if the ferry does not respond fast
enough. In such situations, the passenger comfort is no longer of highest priority, and the
ferry should use full effect in order to avoid colliding. Therefore it is beneficial to have a
second reference filter that only takes into account the capabilities of the ferry. For this, a

21

second-order reference filter, allowing infinite jerk, and hence steps in acceleration can be
used.

η̈d + ∆Ωη̇d + Ω2ηd = Ω2rn + ∆Ωṙn. (3.37)

Where the velocity and position reference is calculated according to (3.35) and (3.36)
respectively. Also in this case a saturation can be applied to the acceleration and velocity
reference to comply with the vessels limitations, and ensure that the filter reference does
not ”run away” from the vessel, but the saturation limits should be as close to the physical
limitations as possible to ensure maximum response. Since drag is acting on the hull of
the vessel every time is has a relative velocity to the water surrounding it, the maximum
acceleration will be dependent on the vessel state ν as well as any potential currents in the
water surrounding the vessel. In this thesis, the effects of the currents will be neglected in
order to limit the scope, despite it being absolutely relevant in many of the environments
the vessel is to operate in, such as canals and narrow sounds. The maximum acceleration
of the vessel can be found by inserting the maximum thruster force τmax into (2.7), and
solving the equation for ν̇ to get

ν̇max = M−1(τmax −C(νr)νr −D(νr)νr). (3.38)

By using a logical function that can apply automatic switching between the two ref-
erence filters according to the situation, passenger comfort and safety does not have to
be a compromise. With a feasible trajectory reference calculated, it can be fed on to the
trajectory-following control system in order to perform a collision-free transit from the
current location to the destination. The reference is passed forward by a ROS-interface
between the reference filter in the executive layer and the motion-control system of the
vessel at a rate of 10Hz.

3.3 Multiple-Path Augmentation

During the evaluation of the SP-VP described in Section 3.2, it became evident that the
strict limitation of a single path between the starting point and the destination of the transit
might be more of a limitation than an aid to a simple and predictable COLAV system.
The problems are mainly related to moving objects that have a small velocity compo-
nent orthogonal to the path, as well as unexpected object behaviour that calls for evasive
manoeuvres. Therefore an augmentation of the original system was made, in order to com-
pare the single path method to a method that is not locked to one path in {n} (Fraichard
and Laugier, 1993). Since the Multiple Path approach is based on the same principles as
the original method, reuse and modification of the original code became the method of
choice in the development. The scope of this augmentation was greatly underestimated,
and in retrospect, the author wishes a method with more new code and less reuse was
chosen. Nevertheless, the multiple-path COLAV system was developed, and, after some
time, tested and compared to the Single Path Approach. In the following subsections, the
additions that had to be made to the SP-VP system in order to get the MP-VP will be
described.

22

3.3.1 Multiple Paths
The main difference between the methods is the increased set of paths. Note that, also
for this method, the paths are predefined, and the assumption that all paths are free of
collision with any static objects stands. The method can be used on an arbitrary number
of paths larger than zero. A set of five parallel paths with equal separation have been used
in this thesis, an illustration of the paths can be seen in Fig. 3.5 as blue lines. The set of
paths are defined as a set of start and endpoints in {n}, Ppn start = [Npn start, Epn start],
Ppn end = [Npn end, Epn end], where n is the path number. The paths are numbered from
left to right in the direction of travel, therefore the upper path in the figure is path no 1, the
lower path is path no 5, and the centerpath is path no 3. The predefined paths are separated
with a distance of lsep. From the predefined paths, a set of possible branching paths from
the current location of the vessel to the destination along the predefined paths is calculated.
In the calculations, it is not assumed that the vessel is on any of the paths. Therefore, the
calculations start by finding the shortest way onto one of the predefined paths. This is done
by first finding the cross path error to all the paths

εn cp = leta sin(θpath − θl eta), (3.39)

where θpath is the course of the path and

, θl eta = atan2((E − En start), (N −Nn start)) (3.40)

is the course of
leta =

√
(N −Nn start)2 + (E − En start)2, (3.41)

where N and E is the north and east position of the vessel, respectively. The current
path is then selected to be the path with the shortest absolute cross-track error. From
the current path, a set of branching subpaths are made to the other paths in the set of
predefined paths. The branching subpaths are defined by the parallel path separation lsep
as well as the branching angle αbranch, that is the change in course the vessel has to
make to branch out from the current path. The branching subpath starts from the point
Psn start = [Nsn start, Esn start], where s is the index of the path it is branching to, with

Ns start = N +
εn cp

sin(αbranch)
cos(θpath − sgn(εn cp)αbranch), (3.42)

Ns start = N +
εn cp

sin(αbranch)
sin(θpath − sgn(εn cp)αbranch), (3.43)

and ends in the point Psn end = [Ns end, Es end]

Ns end = Ns start +
lsep|k|

sin(αbranch)
cos(θpath + sgn(k)αbranch), (3.44)

Es end = Es start +
lsep|k|

sin(αbranch)
sin(θpath + sgn(k)αbranch), (3.45)

with k = nend − ncurrent where ncurrent is the number of the current path, and nend
is the number of the predefined path the branching subpath is branching to. This ensures

23

-100 0 100 200 300 400 500 600 700

-20

0

20

40

60

80

100

Figure 3.5: Predefined paths in blue, and set of possible branching paths in red, with branching,
merging and parallel subpaths. The current location of the vessel as green asterisk. Start and end
point for transit in blue and green asterisk respectively.

that the vessel will travel at the angle αbranch onto the current path if it has a cross track
error greater than zero, and branch out from the current path at an angle αbranch. Hence
αbranch can be used to design the behaviour of the ferry to make large enough changes
in course that it is clear to other objects, as well as keeping courses that keep the ferry
moving towards the destination.

Once the branch out subpaths are calculated, the branch back subpaths needs to be
calculated in order to ensure that the set of paths all end in the desired destination, marked
as a green asterisk in Fig. 3.5. The branch-back subpaths all end in the same point,
Pt end = [Nt end, Et end], on the centerpath from the start points to the desired destination.
The branch back subpaths also use the angle αbranch. The starting points Ptn start =
[Ntn start, Etn start] becomes

Ntn start = Nt end +
lsep|j|

sin(αbranch)
cos(θpath − sgn(j)αbranch + π), (3.46)

Etn start = Et end +
lsep||

sin(αbranch)
sin(θpath − sgn(j)αbranch + π), (3.47)

with j = n− ncenter where ncenter is the index of the centerpath of the predefined paths,
and n is the path where the branch back subpath is starting from.

With the branch-out and branch-back subpaths defined, the parallel subpath, the part
of the branching path that is parallel to the centrepath, is defined by the end point of the
branch-out subpath Psn end and the start point of the branch-back subpath Ptn start.

The set of branching paths consisting of branch-out, parallel and branch-back subpath
for a transit starting in [0, 0] and ending in [80, 600] can be seen in Fig. 3.5. In the figure,
the vessel is on predefined path number 4. The position of the vessel is marked by a green
asterisk. The red lines give the possible branching paths from the current position to the
destination of the transit.

24

Figure 3.6: Illustration of the vertices and ROC in path × time space for five parallel paths and
four moving objects.

3.3.2 Transformation to Path-Time Space

As the paths are created, the objects can be transformed onto the path× time space. The
method for this is the same as for a single path, but since we now have multiple paths
this will give a set of path × time spaces. Since the minimum cost node search problem
needs to have vertices combining the paths, a third dimension is added to the node search
problem, where the new dimension represents the predefined path index as a layer in the
path× time space, and the merging and branching subpaths make the path for the vertices
between the layers. Fig. 3.6 displays such a representation in path × time space for a
transit with four moving objects. In the figure, the five parallel subpaths make up the path
dimension in each flat layer, and the merging and branching subpaths make up the surfaces
containing the vertices combining the layers.

3.3.3 Start Nodes and Vertices

The time coordinate for the start nodes in each layer depends on the desired transit velocity,
the separation between the paths lsep and the cross-track error to the current path. If the
ferry is a distance greater than zero away from the position of a start node, nodei, it will
take the ferry a time ti greater than zero to reach the node. This time has to be added to
the current time t0 to get start nodes with feasible time coordinates. For the current layer
the distance to travel is dependent on the cross-track error and the angle of attack, and
becomes

tc =
|εn cp|

sin(αbranch)vdes
, (3.48)

where εn cp is the cross track error of the current path. The added time for the starting
nodes in the layers that are not the current layer becomes

ti = tc +
lsep ∗ |c− i|

sin(αbranch)vdes
, (3.49)

25

where c is the index of the current layer. The coordinates of the start node in each layer
therefore become

nodei start = [0, ti], (3.50)

where i is the index of the layer. The path coordinate is zero since the start nodes are
placed at the beginning of each parallel subpath.

Additional start nodes can be added in order to facilitate branching at different veloc-
ities than vdes. This can be done by simply adding a ∆t to the time coordinate of the
start nodes. In Fig. 3.6, each layer except for the current layer have 5 start nodes with a
separation ∆t = 4[s].

Branch Vertices

The branch vertices are the vertices from the start nodes in the current layer to the start
nodes in the rest of the layers. It is the branch vertices that make the connection be-
tween the layers. The vertices are created in much the same manner as in the single path
method. Of the four criteria listed in Section 3.2.4, the first three are true by design for
the branch vertices, the fourth one must be tried. This is done by firstly transposing the
object representations in {n} onto the path× time space for the branch-out subpath, and
subsequently checking if the vertices intersect any of the forbidden regions. The cost for
the vertices are calculated from the same cost function as in (3.28), but with an additional
term, costbranch ≥ 0 that adds a cost related to the branching maneuver.

Parallel Path Vertices

For the parallel subpath, the method is the same as for the single path method. The object
nodes are found by transforming the object representation onto the path. End nodes are
added at the end of the path, with time-coordinates based on transit-velocity from all the
start and object nodes and the vertices are made as described in Section 3.2.4.

Merge Vertices

The merge vertices combine the end nodes in each layer to the end nodes in the centre
layer. The procedure is identical to the branching vertices. The objects are transformed
onto the branch-back subpath, and the vertex from each end node in the branched layer to
each end node in the centre layer is tried on the four criteria in Section 3.2.4. If it passes
the criteria, a cost is calculated according to (3.28). There is no additional cost related to
the merging maneuver.

3.3.4 Find Minimum Cost Path
Once all the vertices and weights are calculated, the lowest cost path from the current
position to all the end nodes in the centre layer can be found by the same minimum cost
path algorithm as for the single path. Fig. 3.6 displays the complete set of vertices for the
problem. The rest of the algorithm is the same as for the single path. The path is calculated
from the minimum cost nodes, and the reference filter is applied.

26

3.3.5 Heading and Course

A consideration to make when creating the trajectory from the nodes for the multiple-path
approach is what to do about the vessel heading in the branching subpaths. In theory,
there is an infinite set of options, but arguably only two reasonable ones. One is to keep
the vessel heading and course reference aligned, and thereby perform a yaw movement of
±αbranch, at the start and end of each branching subpath. The second option is to keep
the heading constant and aligned with the parallel paths, during the whole crossing, and
hence perform a crab motion in the branching and merging subpaths. Fig. 3.7 gives an
illustration of the two methods for determining the vessel heading.

-50 -40 -30 -20 -10 0 10

-20

-10

0

10

20 course

heading

(a)

-50 -40 -30 -20 -10 0 10

-20

-10

0

10

20 course

heading

(b)

Figure 3.7: Illustration of the two ways of handling the heading when branching. (a) Keep a constant
heading, and perform a crab motion in the branching maneuvers. (b) Align heading and velocity,
and perform a yaw rotation at the start and end of each branching maneuver.

The method of aligned course and heading reference is similar to what one would
expect from a ”traditional” vessel. This is because most vessels are under-actuated in
the sway motion, and therefore not capable of crab motions. This behaviour is also what
other actors in the environments expect to observe when a vessel changes its course, and
therefore, it increases predictability and ”readability”. The COLREGs also dictate some
guidelines for this in Rule 8, Actions to avoid collision COLREGs (1995). The rules say
that ”Any alternation of course and/or speed to avoid collision shall, if the circumstances of
the case admit, be large enough to be readily apparent to another vessel observing visually
or by radar”, and ”If there is sufficient sea room, alteration of course alone may be the
most effective action”.

The method of keeping a constant heading independent of course limits the yaw mo-
tions during the transit, which might increase passenger comfort. In addition, on the
shorter transits, the excessive yawing might mislead both passengers and other actors with
respect to the intention of the ferry in terms of destination, and therefore induce uncertainty
among the passengers.

The method should, therefore, be picked according to the operating environments for
the ferry. If the ferry is crossing an open sound or a small fjord, an alignment of course

27

and heading might be the best choice of actions, since this will increase the readability
for other vessels especially if the crossing is so long that it is not apparent where the ferry
is heading. In short crossings, on the other hand, the method of constant heading might
be preferable, since the constant heading will signal the long-term intention of the vessel
while the course changes signal the short-term actions. In any situation, the branch out
angle αbranch needs to be large enough to be readily apparent.

3.4 Reactive Object Monitoring

The reactive part of the COLAV system is a submodule that monitors the moving objects
in the environment and continuously evaluates the feasibility of the current plan and situa-
tion. If the reactive object monitoring detects an infeasible plan or a drastic change in the
understanding of the situation, a replan in the deliberate layer is triggered. The method for
this is roughly twofold, one part checks if the current trajectory still is collision-free based
on the current object data. The other part keeps track of the object information and which
of the observable objects that need to be taken into account in the planning.

3.4.1 Trajectory Feasibility

In the test for trajectory feasibility, it is the trajectory waypoints that is used. The method
tests each leg of the trajectory independently by firstly calculating a path of the leg accord-
ing to (3.5), where Pstart is the waypoint at the start of the leg, and Pend is the waypoint
at the end of the leg. Subsequently, the regions of collision for all objects are translated
onto the path and give a path× time space for that subtrajectory. After that, a vertex can
be made between the two waypoints, where the time-coordinate is given by the time of the
waypoint. The path-coordinate is zero for the first node, and l for the second node where
l is given by (3.6). With the vertex of the subtrajectory and the regions of collision in the
same path × time space, the vertex can be evaluated according to point four in Section
3.2.4. This is done for every subtrajectory, and if one of them fails the test, a replan in the
deliberate layer is triggered.

3.4.2 Object Monitor

The object monitor performs two tasks. One is to evaluate which of the observable ob-
jects that need to be considered in the trajectory planning. This ensures that unnecessary
objects are kept out of the node search problem, and thereby reduces the complexity and
the runtime. This be, for example, a situation with a stationary fishing vessel that is not
intersecting the path, or other vessels moving parallel to the path. The other task is to
trigger a replan in the deliberate layer when a new object has to be considered, or when
an old object no longer has to be considered. This to ensure that potential situations are
handled with as good time margin as possible and that the trajectory is best suited for the
current situation.

The second task is done simply by triggering a replan every time an object is added or
removed from the list of objects to be considered.

28

The first task bases its decision making on the DCPA and the TCPA. The DCPA is
the estimated shortest distance between an object and the ferry at any point in time. The
distance is between the ferry and an object is

dist(t) =
√

((N(t)−No(t))2 + (E(t)− Eo(t))2), (3.51)

and hence the DCPA becomes

DCPA = min(dist(t)), (3.52)

where N(t) and E(t) is the north and east coordinate of the ferry in {n}

N(t) = N0 + U cos(ψ)(t− t0), (3.53)
E(t) = E0 + U sin(ψ)(t− t0), (3.54)

where N0 and E0 is the position of the ferry at time t0 and U is the velocity of the ferry.
No(t) and Eo(t) is the north and east position of the object in {n}

No(t) = N0 obj + U0 obj cos(ψ0 obj)(t− t0 obj), (3.55)
Eo(t) = E0 obj + U0 obj sin(ψ0 obj)(t− t0 obj), (3.56)

where N0 obj and E0 obj is the position of the object at time t0 obj , and U0 obj > 0 and
ψ0 obj is the object SOG and COG respectively. Since the transit is happening within a
limited scope of time and path, it is not of interest what the DCPA is outside of this scope.
Therefore an estimate of the time at destination is needed. The estimate does not need
to be precise, and a little overshoot is better than undershooting. The estimate can be as
simple as

tdestination =

√
(N −Ndestination)2 + (E − Edestination)2

Udes ∗ kvel
, (3.57)

where Ndestionation and Edestionation is the north and east coordinate of the destination
and Udes is the desired transit velocity. kvel ∈ (0, 1] is a factor that reduces the risk of
undershooting in the estimate. And hence the DCPA becomes

DCPA = min(dist(t)) t ∈ [t0, tdestination], (3.58)

where t0 is the current time.
The DCPA is found by first finding the TCPA. The TCPA is the time where (3.51) has

its minimum value and can be found at the time where the derivative of dist(t) is zero.
Since it is assumed that all objects are moving at a constant SOG and COG in the prediction
of object movement, the DCPA will have one global minimum and will go towards infinity
for t → ±∞ unless both ψ = ψ0 obj and U = U0 obj . For the latter case, the two vessels
will have a constant DCPA for all time. For simplicity, the derivative of the square of the
dist(t) is found, since both will have a minimum at the same time.

dist(t)2 = (N(t)−No(t))2 + (E(t)− Eo(t))2), (3.59)

= (∆N)2 + (∆E)2, (3.60)

29

with

∆N = N0 −N0 obj − U cos(ψ)t0 + U0 obj cos(ψ0 obj)t0 obj

+ (U cos(ψ) + U cos(ψ0 obj))t,
(3.61)

∆E = E0 − E0 obj − U sin(ψ)t0 + U0 obj sin(ψ0 obj)t0 obj

+ (U sin(ψ) + U sin(ψ0 obj))t,
(3.62)

which can be written on the form

∆N = A+Bt, (3.63)
∆E = C +Dt, (3.64)

with

A = N0 −N0 obj − U cos(ψ)t0 + U0 obj cos(ψ0 obj)t0 obj , (3.65)
B = U cos(ψ) + U cos(ψ0 obj) (3.66)
C = E0 − E0 obj − U sin(ψ)t0 + U0 obj sin(ψ0 obj)t0 obj , (3.67)
D = U sin(ψ) + U sin(ψ0 obj). (3.68)

This gives the derivative of the square DCPA

d

dt
dist(t)2 =

d

dt
(A+Bt)2 + (C +Dt)2) (3.69)

=
d

dt
A2 + 2ABt+B2t2 + C2 + 2CDt+D2t2 (3.70)

= 2(AB + CD) + 2(B2 +D2)t (3.71)

The TCPA is found by solving for d
dtdist(t)

2 = 0, giving

t = TCPA = −AB + CD

B2 +D2
(3.72)

Inserting this result into (3.63)-(3.64), and further inserting that into (3.60) gives

DCPA2 =
(AD − CB)2

B2 +D2
, (3.73)

and finally, applying the square root to get

DCPA =

√
(AD − CB)2

B2 +D2
, (3.74)

with A, B, C and D from (3.65)-(3.68). Note that if t 6∈ [t0, tdestination] whichever limit
is being violated is to be used instead.

With the DCPA, the logic for determining what objects to consider can be formulated.
Intuitively, it is desirable to consider objects that will be in proximity to the ferry during
the transit, so a boolean value

boolDCPA = (DCPA <= lDCPA), (3.75)

30

can be used to categorize the objects as ”objects to be considered” or ”objects not to be
considered”. Here lDCPA is a threshold value, in meters, for what is acceptable DCPA.
This value is a tuning parameter and does not have to be the same for all objects, it can,
for example, be a function of the object size.

The DCPA and TCPA calculations presented here assume that both the ferry and the
moving object keep a constant COG and COG. These assumptions will not hold in most
cases, but for this purpose, it will be sufficient. In (Sang et al., 2016), a method for im-
proved DCPA and TCPA estimations is presented. The method uses the Rate Of Turn
(ROT) and Change Of Speed (COS) to improve the predictions of the object trajectories
before calculating the DCPA and TCPA. In the article, the ROT and COS values come
from an AIS system, which is not realistic for the scenario considered in this thesis, since
AIS is not standard equipment for small vessels. An advanced object detection and track-
ing system could potentially provide an estimate for the needed values. Another approach
is to use knowledge about static environments to predict object behaviour. With a priori in-
formation on sea-markings, harbours and commercial traffic in the area, a statistical model
for the object trajectory can be used in the predictions. Another simple way to improve the
DCPA and TCPA predictions is to use the planned trajectory, and not the current velocity
and heading from the ferry, but for the sake of limiting the scope, this is left for future
work.

31

32

Chapter 4
Simulation Results

In this chapter, the simulator, simulation scenarios and simulation results are presented.
Firstly a system overview of the ferry and GNC system in the simulator is presented,
followed by some in-depth descriptions on the features of the simulator. Subsequently
follows a description of some supporting modules to the simulator that emulate COLAV-
critical modules on the ferry that is currently under development, and therefore not ready
for use. In Section 4.2 the simulation scenarios are described. In the last four sections of
this chapter, the simulation results are presented and discussed. Firstly results from the
SP-VP and MP-VP system is presented in Section 4.3 and Section 4.4 respectively. In
these sections, the basic function of the algorithms is commented on. In Section 4.5, the
performance of the two systems are evaluated and compared to each other as well as an
implementation of a Velocity Obstacle COLAV algorithm. The chapter is rounded of by
Section 4.6, with a summary of the discussions.

4.1 Simulator
Despite having a full-scale functional prototype of an electric autonomous passenger ferry
available for testing purposes, it might not be the method of choice for developing and
testing a COLAV system. Apart from the obvious reason (the risk of colliding), the time
consumption is a high motivation for doing testing in a simulation-environment. In addi-
tion to this, the milliAmpere does not yet have a sufficient situational awareness system
to deliver the required extended object tracking-data required by the COLAV system pre-
sented in this report. Therefore a simulator was developed. The simulator development is a
continuation of the work done in (Thyri, 2018), where the thruster model, ROS-framework
and a vessel model based on a model of the C/S Inocean Cat Drillship from (Bjørnø,
2016) was implemented. In this thesis, the simulator is augmented with a coupled ves-
sel model of the milliAmpere platform and an emulated situational awareness in the form
of an object-detection system. The new vessel model is included in the report, while the
thruster-modeling is included in Appendix A for completeness.

Since there is a number of people working on the milliAmpere project, the simulator

33

Figure 4.1: Overview of the vessel and GNC system during simulations. The yellow box is the sim-
ulator, the other parts are part of the actual ferry GNC system, and therefore the same for simulations
and sea trials.

is developed to be generic and adaptable, so that anyone can understand it and fit it to
their needs. In order to facilitate full pipeline testing before going out for sea trials, all
the ROS-interfaces in the simulator is made the same as on the milliAmpere platform.
The simulator is made so that it can run as a stand-alone ROS node, and therefore be
run on the OBC of the ferry while it is at the dock as a penultimate test before sea trials.
The simulator can also run in Matlab/Simulink and is therefore easy to use for everyone
involved in the project. The simulator has also been implemented in python code. This was
done to resolve some timing-issues experienced when running the simulator in Simulink
while running other parts of the system independent from Matlab/Simulink. This problem
occurred because there is no way (to the best of the author’s knowledge) to synchronize
the simulation time in Simulink with wall-time on a Linux-based OS.

In the following, the layout of the simulator is presented, the interfaces with the rest
of the systems on the ferry are pointed out, and some of the features of the simulator are
described in detail.

4.1.1 Simulator Layout
An overview of the system-layout for the ferry and simulator is displayed in Fig. 4.1.
The yellow block contains all systems that are part of the simulator. These are systems
that have a physical aspect, like the thrusters, sensors and the vessel itself, as well as
the object detection, which simply does not exist yet, and needs to be emulated by the
dummy object detection. In the remainder of this paragraph, a short description of each
sub-module is given, while some of the sub-modules are described in more detail in the
following paragraphs.

• Dummy Object Detection: Emulates multiple objects in the environments and sup-
ports a set of object behaviours. The module provides extended object tracking data
to the COLAV system and is described in further detail in Section 4.1.5.

• COLAV system: This system is described in detail already. It receives object data
and outputs a trajectory reference to the reference filter.

• Reference Filter: The reference filter takes the reference from the COLAV system

34

and makes a feasible pose, velocity and acceleration reference for the control system
to follow.

• Control System: Is a model reference adaptive controller. The system inputs a
pose, velocity and acceleration reference and outputs a 3 DOF force request to the
thrust allocation. The system is described in detail in (Sæther, 2019).

• Thrust Allocation: inputs a 3 DOF force vector from the control system, and out-
puts RPM and azimuth angle setpoints to each of the two thrusters on the ferry. The
thrust allocation problem is solved as a nonlinear scalar optimization-problem. The
thrust allocation was developed the summer of 2018, by Tobias Torben.

• Thruster Model: A model of the two azimuth thrusters on the ferry. It inputs a
rotational velocity setpoint and azimuth angle setpoint and outputs a 3 DOF force,
as well as the actual rotational velocity and azimuth angle. The thruster model is
described in detail in Section 4.1.3.

• Vessel Model: A 3 DOF model of the milliAmpere platform. Described in detail in
Section 4.1.2.

• Dummy Navigation Sensors: Keeps track of the vessel states and outputs states
through a ROS-interface on the same format as the navigation-system on the mil-
liAmpere platform.

4.1.2 3 DOF Vessel Model

The vessel model used in the simulator is a 3 DOF model like the one presented in (2.6).
The model parameters are determined by Anders Pedersen through the work done in his
Master’s thesis during the spring of 2019 (Pedersen, 2019). The parameters are estimated
using linear regression on data from steady-state coupled and uncoupled motions with the
milliAmpere platform, along with simulator-based methods on transient data.

The inertia matrix
M = MRB +MA, (4.1)

with

MRB =

 m 0 0
0 m mxg
0 mxg Iz

 , (4.2)

and

MA =

 −Xu̇ −Xv̇ −Xṙ

−Yu̇ −Yv̇ −Yṙ
−Nu̇ −Nv̇ −Nṙ

 . (4.3)

For the milliAmpere ferry, the CO coincides with the center of gravity. Since all sensor
values are transformed to the CO, xg is zero in (4.2) and (4.6). Due to challenges related
to separating the added mass terms from the rigid body terms in the inertia matrix in the

35

experimental data, the sum of the terms are in stead estimated. The inertia matrix therefore
becomes

MA =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 , (4.4)

with m11 = m −Xu, m22 = m − Yv and m33 = Iz −Nr. The parameters are given in
Table 4.1.

The centripetal matrix

C(ν) = CRB(ν) +CA(ν), (4.5)

with

CRB(ν) =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 , (4.6)

and

CA(ν) =

 0 0 Yṙr + Yv̇v
0 0 −Xu̇u

−Yṙr − Yv̇v Xu̇u 0

 , (4.7)

also has all cross terms assumed zero, along with xg = 0. The centripetal matrix becomes

C(ν) =

 0 0 c13

0 0 c23

c31 c32 0

 , (4.8)

with c13 = −m22v, c23 = m11u, c31 = −c13 and c32 = −c23v. The damping matrix

D(ν) = Dt +Dn(ν), (4.9)

with the linear damping

Dt =

 −Xu −Xv −Xr

−Yu −Yv −Yr
−Nu −Nv −Nr

 , (4.10)

and the non-linear damping

D(ν) =

 D11(ν) 0 0
0 D22(ν) D23(ν)
0 D33(ν) D32(ν)

 , (4.11)

with

D11(ν) = −Xu −X|u|u|u| −Xuuuu
2, (4.12)

D22(ν) = −Yv − Y|v|v|v| − Yvvvv2, (4.13)

D23(ν) = −Yv − Y|v|v|v| − Yvvvv2, (4.14)
D32(ν) = −N|v|v|v| −N|r|v|r| (4.15)

D33(ν) = −Nr −N|r|r|r| −Nrrrr2. (4.16)

36

Parameter Value Unit
m11 2131.80 kg
m12 1.00 kg
m13 141.02 kgm
m21 -15.87 kg
m22 2231.89 kg
m23 -1244.35 kgm
m31 -423.76 kgm
m32 -397.64 kgm
m33 4351.56 kgm2

Xu -68.676 kg
s

X|u|u -50.08 kg
m

Xuuu -14.93 kgs
m2

Xv -25.20 kg
s

Xr -145.30 kgm
s

Yu 90.15 kg
s

Parameter Value Unit
Yv -8.69 kg

s

Y|v|v -189.08 kg
m

Yvvv -0.00613 kgs
s2

Y|r|v –3086.95 kg

Yr -24.09 kgm
s

Y|v|r -338.32 kg
Y|r|r 1372.06 kgm2

Nu -38.00 kgm
s

Nv -97.26 kgm
s

N|v|v -18.85 kg
N|r|v 5552.23 kgm

Nr -230.19 kgm2

s
N|r|r -0.0063031 kgm2

Nrrr -0.0006723 kgms
N|v|r -5888.89 kgm

Table 4.1: Estimated model parameters for the milliAmpere ferry (Pedersen, 2019).

The model parameters are given in Table 4.1.
The simulator solves

ν(t) =

∫ t

t0

M−1(τ −C(ν)ν −D(ν)ν)dt+ ν(t0), (4.17)

and

η(t) =

∫ t

t0

R(ψ)νdt+ η(t0), (4.18)

where the initial condition ν(t0) and η(t0) is set in the initiation file of the simulator,
and

τ = τthruster + τexternal, (4.19)

is the forces on the vessel where τthrusters come from the thruster model (A.2), and

τexternal = R(η)TFexternal, (4.20)

is the external forces acting on the vessel, where Fexternal can be defined in the simulator
initialization file, andR(η) is given by (2.1).

4.1.3 Thruster Model
The thruster system on milliAmpere is a set of two azimuth thrusters capable of 360 de-
grees rotation. The thrusters are positioned along the centerline of the vessels front-aft
axis, and symmetrical about the port-starboard axis. The motor drivers have a ROS inter-
face where the input is a rotational velocity setpoint ωset and an azimuth-angle setpoint
θset, and the output is the actual rotational velocity and azimuth-angle, that is fed into the

37

feedback-loop of the thrust-allocation. The thruster model was developed by the author
and was first presented in (Thyri, 2018). The modeling is also included in Appendix A.

4.1.4 Reference Filter

The reference filter is not part of the simulator but is a part of the GNC pipeline. The filters
were introduced and explained in detail in Section 3.2.7.

Filter Saturation Limits

In order to determine the the filter saturation limits in acceleration as well as velocity, a
step input test was performed on the vessel model described in the preceding paragraphs.
The thrust input has two steps, at t = 5s a step from zero to maximum thrust in the body
x-direction, namely τ = [1000, 0, 0]T . At t = 40s the direction of the thrust changes to
τ = [−1000, 0, 0]T . The velocity and acceleration response can be seen in Fig. 4.2. The
step input test yielded velocity limits of [Umax, Umin] = [2.930,−2.930]m/s and accel-
eration limits of [amax, amin] = [0.466,−0.932]m/s2. From this, one can see that the

0 10 20 30 40 50 60 70 80
-4

-2

0

2

4

Surge Velocity

0 10 20 30 40 50 60 70 80
-1.5

-1

-0.5

0

0.5

1

Body X Acceleration

Figure 4.2: Vessel response on step input in thrust.

acceleration capabilities of the vessel are within the limits of passenger comfort in all situ-
ations, and both the comfort filter and response filter needs to be saturated in acceleration
according to (3.38) to ensure a feasible reference.

38

Determining Filter Error

The testing of the reference filters was done by firstly defining a reference with steps in
velocity, similar to the references the COLAV system provides and feeding that reference
through the reference filters. Subsequently, the reference is fed into a trajectory tracking
control system that provides a 3 DOF thrust that is used as input to the simulator equa-
tion in (4.17). The simulations were run without external forces, and the reference was
constructed with only surge velocity, travelling with a heading ψ = 0.

The reference is constructed to represent realistic situations for the ferry. It is a 140
second transit along a straight line, travelling north, with ψ = 0. The velocity profile for
the transit can be seen in Fig. 4.3 as the Hard Velocity Reference. The first part of the
reference represents typical transit situations, where small step changes in the velocity are
requested. The last part of the reference at 45s represents a critical situation where the
velocity steps from 1.5m/s to −1.5m/s. Fig. 4.3 also shows the velocity reference from
both the Comfort Filter and the Response Filter.

0 20 40 60 80 100 120 140
-3

-2

-1

0

1

2

Hard Velocity Reference

Vessel Velocity Comfort Filter

Filter Velocity Comfort Filter

Vessel Velocity Response Filter

Filter Velocity Response Filter

Figure 4.3: Velocity profiles for the Hard Reference with steps in the velocity, the velocity reference
from both reference filters, as well as the vessel velocity in both cases.

Fig. 4.4 shows the tracking error introduced by the filter

efilter = ηd − rn, (4.21)

as well as the total tracking error

etotal = η − rn, (4.22)

where rn is the hard reference. Fig. 4.5 shows the absolute value of the difference in error

ediff = abs(ecomfort filter − eresponse filter), (4.23)

39

0 20 40 60 80 100 120 140
-2

0

2

4

6

8

10

Filter Error Comfort Filter

Filter Error Response Filter

Total Error Comfort Filter

Total Error Response Filter

Figure 4.4: Filter error and total error for both the Comfort Filter and Response Filter with saturation
matching the physical limitations of milliAmpere.

where ecomfort filter and and eresponse filter is the error in (4.21) for the comfort filter,
and response filter respectively.

From Fig. 4.3-4.5 it is apparent that the difference in performance of the two filters
is small. This is due to the low maximum thrust of the thruster system on the vessel
milliAmpere. The acceleration limits of the vessel saturate both filters, and hence only the
saturation in jerk for the comfort filter differs them.

Fig. 4.6 displays the same data as Fig. 4.4, for a vessel identical to the milliAmpere
ferry, but with a thruster system capable of 6000N of thrust. From the figure, it is appar-
ent that the comfort filter reduces the total tracking capabilities of the vessel-filter system
compared to the response filter by a significant amount in the critical situation. The in-
creased filter tracking error is about 3m higher with the comfort filter, while in the normal-
operation-part of the reference, the performance is more comparable, with a difference of
about 0.5m. With a logic unit able to detect a critical situation, for example by looking at
the steps in reference velocity, or cases where the velocity is negative, switching between
the two reference filters can be done automatically. This can give the benefit of maximum
passenger comfort as well as high response and increased safety.

By determining the tracking performance of the system consisting of the vessel-filter-
system, with the two filters along with a switching unit, the maximum tracking error can
be added to the dimensions determining the forbidden regions surrounding the moving
objects. By doing this it can be assured that COLAV system plans a trajectory that ensures
no collisions, given the assumptions on observable objects as well as reasonable object
behaviour.

40

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

Error Difference

Figure 4.5: Filter error and total error for both the Comfort Filter and Response Filter with saturation
matching the physical limitations of milliAmpere.

Structure Field Parameter Unit
ηobj i (Nobj i, Eobj i, ψobj i) ([m], [m], [rad])

V elocityobj i Uobj i [m/s]
Sizeobj i (lobj i, bobj i) ([m], [m])

Table 4.2: Information about object obj i that is available through the get object data() interface.

4.1.5 Dummy Object Detection
An object detection module has been developed to facilitate testing and simulation of the
COLAV system. The module emulates the interface of an object detection system that
is capable of extended object tracking. The module has the interface get object data()
that returns an array of data structures, one for each object. The data structure contains
information about the object position, heading, velocity and size. Table 4.2 shows the
parameters that are stored in the structure of Object i. The module has been augmented
with a set of ”behaviours” that is to resemble human operator behaviour. The behaviours
are designed to emulate recreational vessels driven by non-professionals in a confined
space. The movements of an object only adapt to the ferry, and not any other objects.
The behaviours are described in detail in the following paragraphs. The Object detection
module fetches information about the object from an initialization file upon simulation
start-up and integrates the ηobj i andUobj i according to the defined behaviour and the state
of the object. The object detection module can also add noise on the ”estimate” of both
object heading and object velocity. It is also possible to adjust the region of observation,
by setting a parameter robservation, where only objects inside a circle with centre in the
ferry coordinates (N,E) will be provided information on through the get object data()
interface.

41

0 20 40 60 80 100 120 140
-1

0

1

2

3

4

5

Filter Error Comfort Filter

Filter Error Response Filter

Figure 4.6: Filter error for comfort filter and response filter designed for a vessel identical to mil-
liAmpere, but with a thruster system capable of 6000N of thrust.

Behaviour 1 - Constant object behaviour

With this behaviour, the objects move at a constant speed and constant heading. They
do not react to the behaviour of the ferry, nor any aspect of the environments. This is
in line with what is assumed about the objects in the projection of the objects onto the
path× time space.

Behaviour 2 - Slow Down

The behaviour of the moving objects are defined by their distance to the ferry. Two circles
with center in current position of the ferry, (x, y) = (N,E), and radius rv startramp and
rv stopramp where rv startramp ≥ rv stopramp define the behaviour. If the object is outside
rv startramp it keeps a constant velocity and heading like in scenario 1. If the object enter
rv stopramp it will reduce its velocity vobji as a linear function of the distance to the ferry
according to

vobj i = min(v0 obj i, v0 obj i
robj i − rv stopramp

rv startramp − rv stopramp
), (4.24)

until it hits zero velocity at rv stopramp. Here v0 obj i is the initial velocity of object i, and

robj i =
√

(N −Nobj i)2 + (E − Eobj i)2, (4.25)

gives the distance between the position of the ferry and the position of the object obj i.
The min() function in (4.24) prevents the objects from ”backing up”, and instead keeps
the objects stationary when inside the circle given by rstopramp.

42

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

Ferry

Starbord Sector

Port Sector

Figure 4.7: The two approaching sectors that defined the object behaviour.

Behaviour 3 - Pass In Front of Ferry

With Behaviour 3, the behaviour of the objects is based on the distance to the object,
the objects angel of approach to the ferry and object heading. The behaviour is to be
triggered when the object is approaching the ferry in one of the sectors in Fig. 4.7, and is
traveling towards the ferry, with a relative heading ψrel obj i ∈ [π/5, 6π/8] or ψrel obj i ∈
[−6π/8,−π/5] depending whether it is in the port or starboard sector respectively. The
angle of approach is given by

αapproach = atan2((Eobj i − E), (Nobj i −N)), (4.26)

where atan2 is the 2-argument arctangens function. The relative heading of the object is

ψrel obj i = ψ − ψobj i. (4.27)

The object keeps constant velocity and heading as long as it is clear of the given regions
with the corresponding relative headings. If the object enters the region and fulfills the
heading requirements it will increase its velocity by a factor kinc vel and adjust its heading

43

to aim for a point with a distance lfore straight in front of the ferry. The velocity of the
object is then given by

Uobj i = kinc velU0 obj i, (4.28)

and the object heading

ψobj i = atan2((Efore − Eobj i), (Nfore −Nobj i)), (4.29)

with

(Nfore, Efore) = (N + lforecos(ψ), E + lforesin(ψ)). (4.30)

This will keep up until the object exits the region. Upon exit, it will go back to the
initial heading in a smooth transition given by

ψt+1
obj i = αψψ

t
obj i + (1− αψ), ψ0 obj i (4.31)

vt+1
obj i = αvelv

t
obj i + (1− αvel)v0 obj i, (4.32)

where αψ ∈ [0, 1] and αvel ∈ [0, 1] are smoothing factors, and ψtobj i and vtobj i are the
heading and velocity of object i in the timestep t respectively.

Behaviour 4 - Pass Behind Ferry

Behaviour 4 is similar to Behaviour 3. The behaviour is triggered in the same manner, but
the object will instead aim for a point that lies a distance laft straight behind the ferry. The
object velocity is given by (4.28), while the object heading becomes

ψobj i = atan2((Eaft − Eobj i), (Naft −Nobj i)), (4.33)

with

(Nfore, Efore) = (N + laftcos(ψ), E + laftsin(ψ)). (4.34)

Once the behaviour is over, the smooth transition back to v0 obj i and ψ0 obj i is the same
as for Behaviour 3.

Behaviour 5 - Follow COLREG

With Behaviour 5, the objects are acting according to COLREGs Rule 8 and Rule 15. If
the object is approaching the vessel from the port side, it will try to pass behind the vessel,
and if it approaches from the starboard side it will try to pass in front of the vessel since it
has the right of way. The behaviour is triggered in the same way as in Behaviour 3. The
velocity and heading of the object are calculated in the same way as in Behaviour 3 and
Behaviour 4, depending on whether it is the give-way or stand-on vessel.

44

4.2 Scenario Overview
The results presented in this thesis is from a set of simulated scenarios. The scenarios
are combinations of two different crossings, namely Crossing 1 and Crossing 2, and the
five different object behaviours described in Section 4.1.5. For simplicity, the scenarios
are given numbers as names, where the number have no other purpose than relieving the
author from coming up with more original names. Table 4.3 contains an overview of the
simulated scenarios that are included in this thesis. The table contains the scenario name,
the subsection that contains the simulation data, the crossing number, the object behaviour
and COLAV algorithm that is used.

Most of the simulations are run with four moving objects. This is a high traffic picture,
especially when one considers the short transit-length of about 100m. The motivation
for this is to stress test the COLAV system, and the objects are initialized in such a way
that the ferry is to get ”caught” in a situation mid-way, and not wait at the start of the
transit for the objects to pass. The single path planner was tested in Thyri (2018), with
up to 6 moving objects, and has no problems finding a feasible trajectory. Therefore a
situation with one or two objects and infinite region of observation might be too trivial for
the planner, and not produce any interesting results. On Crossing 2, only two objects are
used, since the scenarios are looking into the effect of region of observation. It is worth
mentioning that in Thyri (2018) the transit is only planned once, and not run, so the ferry
and object behaviour is not considered.

4.2.1 Crossing 1 - Straight Path, Short Crossing
Crossing 1 is a transit from Start at [North,East] = [0, 0] to Finish at [North,East] =
[100, 30]. The transit follows a straight line between the start and finish, and is supposed to
represent the ferry crossing over a canal or a confined urban space. The motivation for this
crossing is that it very much resembles a transit-area in Trondheim, where the milliAmpere
ferry is supposed to perform fully autonomous transits. The area is very confined, but it
has a layout that allows for good object monitoring. In this crossing, it is assumed that all
relevant objects are observable, and the radius of observation is therefore set to infinite.

4.2.2 Crossing 2 - Straight Path, Long Crossing
Crossing 2 start at [North,East] = [0, 0] and finish at [North,East] = [80, 600]. The
transit follows a straight line between the start and finish, and represent the ferry crossing
over a fjord, sound or between two islands in proximity to each other. The transit length of
605.3m is not of importance, and could just as well be 6km, but for the sake of simulation
time and data visualization, it is shorter. The motivation for this crossing is to see how
the system handles a limited situational awareness. In such long crossings, it is not fair
to assume that on-land monitoring systems can cover the whole operational area, and in
some cases, the ferry may be limited to the on-board sensors. This is emulated by limiting
the radius of observation.

45

Scenario Section Crossing Behaviour COLAV system
Scenario 1 4.3.1 1 1 SP-VP
Scenario 2 4.3.2 1 2 SP-VP
Scenario 3 4.3.3 1 3 SP-VP
Scenario 4 4.3.4 1 4 SP-VP
Scenario 5 4.3.5 1 5 SP-VP
Scenario 6 4.3.1 1 1 SP-VP
Scenario 7 4.3.1 1 1 SP-VP
Scenario 10 4.3.6 2 1 SP-VP
Scenario 11 4.3.6 2 1 SP-VP
Scenario 12 4.3.6 2 1 SP-VP
Scenario 20 4.4.2 2 1 MP-VP
Scenario 21 4.4.2 2 1 MP-VP
Scenario 22 4.4.2 2 1 MP-VP
Scenario 41 4.4.1 1 2 SP-VP
Scenario 51 4.4.1 1 2 MP-VP

VO-Scenario 1 4.5.2 1 1 VO
VO-Scenario 2 4.5.3 1 2 VO
VO-Scenario 3 4.5.4 1 3 VO
VO-Scenario 4 4.5.5 1 4 VO
VO-Scenario 5 4.5.6 1 5 VO

Table 4.3: Overview of all the simulated scenarios that are included in this Master’s thesis. The
number in the scenario name has not other purpose than relieving the author from coming up with
original names for every scenario.

4.3 Single-Path Algorithm

In this section, the simulation results from the SP-VP algorithm are presented.

4.3.1 Scenario 1, 6 and 7 - Measurement Noise

Scenario 1, 6 and 7 are from Crossing 1 with constant object behaviour. In the scenarios,
the objects keep constant heading and velocity, and are therefore acting according to the
assumptions in the COLAV system and the object detection module does not have any
measurement noise. Snapshots of the scenarios during transit can be seen in Fig. 4.8. The
Distance to Closest Object (DCO) of Scenario 1 can be seen in Fig. 4.9. The velocity and
planned velocity profiles can be seen in Fig. 4.10a. From the figures, one can see that the
COLAV algorithm only performs one run of velocity planning, and follows the initial plan
the whole trajectory, as would be expected since all of the assumptions hold throughout
the transit.

Scenario 6 is the same as Scenario 1 but with the introduction of measurement noise
on the estimate of object heading and velocity from the dummy object detection. From
Fig. 4.10b it is visible that the system is sensitive to noise on the object behaviour. During
the transit, the algorithm replans the trajectory five times in addition to the initial plan

46

-25 0 25 50 75

0

25

50

75

100

(a) t = 40[s]

-25 0 25 50 75

0

25

50

75

100

(b) t = 61[s]

-25 0 25 50 75

0

25

50

75

100

(c) t = 91[s]

-25 0 25 50 75

0

25

50

75

100

(d) t = 121[s]

Figure 4.8: Scenario 1: Overview of the transit. Ferry in blue and moving objects in red.

0 50 100 150 200
0

10

20

30

40

50

60

Distance

Critical Line

Figure 4.9: Scenario 1: Distance to closest object. Green dashed lines indicate the time of re-
planning.

47

due to the current trajectory being evaluated to be unfeasible because it intersects with
the regions of collision around at least one of the objects. This happens because of the
previously mentioned limitations with the object representation from Fig.3.3a in Section
3.2.1. The representation is very sensitive to changes in object behaviour as well as noise
in object states because it makes the projections of the objects onto the path× time space
fluctuate. Scenario 7 is the same as Scenario 6, but with the introduction of the improved
object representation presented in Fig. 3.3b in Section 3.2.1. From Fig. 4.10c one can see
that under the same conditions, the algorithm only performs one replan during the transit.
This is due to the increased robustness of the new object representation.

The remainder of the scenarios are run with the improved object representation and no
measurement noise.

4.3.2 Scenario 2 - Slow Down
Fig. 4.11 contains snapshots of the transit in Scenario 1. In this scenario, the objects slow
down as they approach the ferry. One thing to note from this scenario is the timestamps
of the snapshots. From Fig. 4.11b and Fig.4.11c, one can see that it takes the ferry 40s
to pass in front of the two objects approaching from the port side. Fig. 4.12 gives an
indication of why this is the case. The original plan of the ferry was to start off with a
velocity below transit velocity and let the two objects pass in front, before accelerating
up to transit velocity for the remainder of the transit. As the moving objects reduce their
velocity, the ferry reduces velocity in response. The ferry and objects keep reducing their
velocity until the objects come to a complete stop, and the ferry is able to find a collision-
free trajectory that passes in front of the objects. After 121s, another similar situation
occurs. The ferry is planning to go behind the object after it has passed, but as the object
reduces its velocity and stops, it does so in a way that blocks the path for the ferry and
causes a deadlock. Even though the object is not physically interfering with the path of
the ferry, the forbidden region that includes the object and safety margins does intersect
the path, effectively blocking it, causing the ferry to stop until the simulation terminates.
From Fig. 4.13 one can see that the ferry is clear from any collisions during the transit,
even when one of the objects come to a stop in its path. However, the longer the ferry
has to wait for the path to clear up, the higher the risk of unexpected situations become,
this factor is not modelled in any way in the COLAV system. The SP-VP does not have
any way of handling objects that block the predefined path, which is a major limitation. A
possible approach to solve this problem will be discussed in a later section.

This scenario is not unrealistic to expect from some of the moving objects that the ferry
will face in its operating environment, for example, small boats controlled by individuals
that find an autonomous vessel interesting and stops to let it pass and get a good close look
at it at the same time, not realizing how the COLAV system reacts to such behaviour.

4.3.3 Scenario 3 - Going in Front
Fig. 4.14 shows six snapshots from Scenario 3, where the objects try to pass in front of the
ferry. During the transit, the ferry encounters two situations. The first one occurs when the
two objects coming in from the port side speeds up and changes course in order to pass in
front of the ferry. From Fig. 4.15 one can see that the algorithm replans twice during this

48

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

Velocity Initial Plan

(a) Scenario 1: Velocity and planned velocity profile. Since the object behaviour is constant, and
there is no noise, the algorithm only needs to plan once.

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

Velocity

Initial Plan

Replan #1

Replan #2

Replan #3

Replan #4

Replan #5

(b) Scenario 6: Velocity and planned velocity profile for Scenario 6. This is the same as in Scenario
1, but with measurement noise. The object representation is the initial one from Section 3.2.1. Note
that the algorithm replans five times due to the disturbances.

0 20 40 60 80 100 120 140 160 180 200
-0.5

0

0.5

1

Velocity

Initial Plan

Replan #1

(c) Scenario 7: Velocity and planned velocity profiles. This is the same as in Scenario 6, but with
the improved object representation from Section 3.2.1. Note that the algorithm only replan once, in
comparison to Scenario 6.

Figure 4.10: Scenario 1,6 and 7: Velocity and planned velocity profiles.

49

-25 0 25 50 75

0

25

50

75

100

(a) t = 30[s]

-25 0 25 50 75

0

25

50

75

100

(b) t = 50[s]

-25 0 25 50 75

0

25

50

75

100

(c) t = 91[s]

-25 0 25 50 75

0

25

50

75

100

(d) t = 172[s]

Figure 4.11: Scenario 1: Overview of the transit. Ferry in blue and moving objects in red.

0 20 40 60 80 100 120 140 160 180 200

-0.5

0

0.5

1

Velocity

Initial Plan

Replan #1

Replan #2

Replan #3

Replan #4

Replan #5

Replan #6

Replan #7

Replan #8

Replan #9

Figure 4.12: Scenario 2: Velocity and the set of planned velocity profiles. Red stars mark the time
of re-planning.

50

0 50 100 150 200
0

10

20

30

40

50

60

Distance

Critical Line

Time of Replanning

Figure 4.13: Scenario 2: Distance to closest object. Dashed green lines indicate the time of re-
planning.

situation, once to compensate for the first object, and once for the second object. In the
second situation, only one replan is necessary in order to avoid a collision, and complete
the transit. The DCO from Fig. 4.16 shows that the first situation is handled without
violating the critical line, while in the second situation, the DCO barely touches it. The
low DCO in the second situation is due to the object changing its course to the south as
it passes in front of the ferry, while the algorithm assumes that it will continue with the
East-Northeast heading it had at last replanning. The duration of the violation is so short
that the reactive layer fails to register it before it passes, and therefore does not compensate
for it.

The second situation of this scenario, where the vessel from the right speeds up to pass
in front of the ferry is a somewhat realistic one. The object has the right of way since
it approaches from the starboard side of the ferry, and while they are not initially on a
collision course, this might not be obvious from the view of the object operator.

4.3.4 Scenario 4 - Going Behind
In this scenario, the objects try pass behind the ferry. Fig. 4.17 shows four snapshots from
the transit. The initial plan from Fig. 4.18 shows that the ferry was to pass behind the first
two objects, but instead, the object adjusts course and velocity to go clear behind the ferry.
The same is the case for the last of the objects in Fig. 4.17d.

Despite the unforeseen changes in the situation, the algorithm does not perform any
replans, as can be seen form Fig. 4.18, where the initial plan and the actual trajectory
coincide throughout the trajectory. This is because none of the changes in object heading
or velocity make the initial trajectory infeasible.

This scenario did not introduce any challenges for the algorithm in terms of avoiding
collisions, but one could argue that the system would benefit from replanning when rapid
changes in the environments occur, such as objects drastically changing velocity and/or
course. This could introduce a higher safety factor, wherein this case, it could lead to the
ferry keeping a higher velocity and arrive before the last objects intersect the path. This
could increase the DCO for the whole last part of the transit, as well as reduce the transit

51

-25 0 25 50 75

0

25

50

75

100

(a) t = 30[s]

-25 0 25 50 75

0

25

50

75

100

(b) t = 40[s]

-25 0 25 50 75

0

25

50

75

100

(c) t = 50[s]

-25 0 25 50 75

0

25

50

75

100

(d) t = 91[s]

-25 0 25 50 75

0

25

50

75

100

(e) t = 101[s]

-25 0 25 50 75

0

25

50

75

100

(f) t = 111[s]

Figure 4.14: Scenario 3: Overview during the transit. Ferry in blue and moving objects in red.

52

0 20 40 60 80 100 120 140 160 180 200
-0.5

0

0.5

1

Velocity

Initial Plan

Replan #1

Replan #2

Replan #3

Figure 4.15: Scenario 3: Velocity and the set of planned velocity profiles. Red stars mark the time
of re-planning.

time.

4.3.5 Scenario 5 - Follow COLREGs
Snapshots from Scenario 5, with objects acting according to Behaviour 5, ”Follow COL-
REGs”, can be seen in Fig. 4.20.

The initial plan was to pass behind the first two vessels, as can be seen from Fig. 4.21,
but instead, the objects give way to the ferry. For the same reasons as in Scenario 4, the
algorithm does not generate any reaction to this. For the next two objects, the ferry plans
to move in front of them. When the objects speed up and alter their course to pass in front
of the ferry, the plan is rendered unfeasible by the reactive layer. A replan is triggered,
once for each object, and the algorithm reacts by reducing the velocity in order to let both
objects pass.

53

0 50 100 150 200
0

10

20

30

40

50

60

Distance

Critical Line

Time of Replanning

Figure 4.16: Scenario 3: Distance to closest object. Dashed green lines indicate the time of re-
planning.

-25 0 25 50 75

0

25

50

75

100

(a) t = 30[s]

-25 0 25 50 75

0

25

50

75

100

(b) t = 50[s]

-25 0 25 50 75

0

25

50

75

100

(c) t = 101[s]

-25 0 25 50 75

0

25

50

75

100

(d) t = 131[s]

Figure 4.17: Scenario 4: Snapshots during the transit. Ferry in blue and moving objects in red.

54

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

Velocity Initial Plan

Figure 4.18: Scenario 4: Velocity and the set of planned velocity profiles. Red stars mark the time
of replanning.

0 50 100 150 200
0

10

20

30

40

50

60

Distance

Critical Line

Figure 4.19: Scenario 4: Distance to closest object. Dashed green lines indicate the time of re-
planning.

55

-25 0 25 50 75

0

25

50

75

100

(a) t = 30[s]

-25 0 25 50 75

0

25

50

75

100

(b) t = 50[s]

-25 0 25 50 75

0

25

50

75

100

(c) t = 91[s]

-25 0 25 50 75

0

25

50

75

100

(d) t = 101[s]

-25 0 25 50 75

0

25

50

75

100

(e) t = 121[s]

-25 0 25 50 75

0

25

50

75

100

(f) t = 131[s]

Figure 4.20: Scenario 5: Overview during the transit. Ferry in blue and moving objects in red.

56

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

Velocity

Initial Plan

Replan #1

Replan #2

Figure 4.21: Scenario 5: Velocity and the set of planned velocity profiles. Red stars mark the time
of trajectory planning.

0 50 100 150 200
0

10

20

30

40

50

60

Distance

Critical Line

Time of Replanning

Figure 4.22: Scenario 5: Distance to closest object. Red line indicate the critical distance. Dashed
green lines indicate the time of re-planning.

57

4.3.6 Scenario 10-12 - Region of Observation
This subsection presents the results from Scenario 10-12. The three situations have identi-
cal traffic, where two objects approach the path from the ferry port side. The objects have
the same velocity and heading, and is moving one behind the other. The first object is
initialized in a way that gives it a point of collision with the ferry 400m into the path if the
ferry keeps the desired transit velocity of 2m/s. The region of observation for the ferry is
450m, 150m and 75m in Scenario 10, 11 and 12 respectively. Fig. 4.23 give the velocity
profile of the ferry, as well as the planned velocity profiles for the three situations.

From Fig. 4.23a one can see that in Scenario 10, the COLAV algorithm reacts to the
first object by slowing down to pass behind it. As the second object appears in the region
of observation, it re-planned to speed up and pass in front of both objects. Due to the large
region of observation of 450m, the situation is reacted to with enough time to speed up and
pass in front of both objects. In Scenario 11, with a smaller region of observation, there is
not enough time to pass in front. Therefore, the ferry has to slow down to let the objects
pass. From the velocity profile in Fig. 4.23b one can see that the COLAV algorithm first
slows down as a reaction to the first object, but as the second object enters the region of
observation, it has to reverse the ferry along the path in order to avoid a collision. This can
also be seen from the overview of Scenario 11 in Fig. 4.24, where the ferry has moved
backwards from Fig. 4.24a to Fig. 4.24b. In Scenario 12, the situation is even more
critical. As the first object enters the region of observation, the velocity is re-planned from
transit velocity of 2m/s to hard reverse of −1m/s in order to avoid entering the ROC of
the objects.

These situations revile the consequences of the same problem as seen in Scenario 2 in
Section 4.3.2. If an object has a velocity vector that has a small component orthogonal to
the path, it will spend a long time crossing the path and hence take up much space in the
path × time space. This will give the COLAV system a limited set of options, and can,
as we have seen, be forced to stop or reverse in order to avoid a collision. The cause for
this bottoms out in one of the fundamentals of this approach, namely the single predefined
path. It limits the options of the COLAV either moving forward or backwards along the
path at a velocity U ∈ [−Umax, Umax].

This scenario also highlights another point about this COLAV algorithm and many
other algorithms for that matter. The algorithm is only as good as the data available to it.
The SP-VP is a deliberate algorithm that plans a global trajectory from the current states
to the goal state. If the information is only available out to a certain region of observation,
the deliberate algorithm becomes a reactive algorithm with a time horizon defined by the
region of observation. In the best case, it has a time horizon of the time it takes the ferry
to travel the radius of the region of observation, and in the worst case, the time it takes any
fast-moving vessel to travel the distance.

58

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

Velocity

Initial Plan

Replan #1

(a) Region of Observation 450m

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

Velocity

Initial Plan

Replan #1

Replan #2

(b) Region of Observation 150m

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

Velocity

Initial Plan

Replan #1

Replan #2

(c) Region of Observation 75m

Figure 4.23: Actual and planned velocity profiles for Scenario 10-12.

59

-50 0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

(a) t = 192[s]

-50 0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

(b) t = 222[s]

-50 0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

(c) t = 232[s]

Figure 4.24: Scenario overview during the transit of Scenario 11. Ferry in blue and moving objects
in red. The green circle indicates the region of observation. Note that the ferry is moving backwards
on the path form Fig. 4.24a to Fig. 4.24b.

60

4.4 Multiple-Path Algorithm
As seen and discussed in the previous section, the SP-VP comes with a set of limitations
that are mainly related to the single-path restrictions. Therefore a multiple-path augmen-
tation was made to the system in order to increase the possible actions available to the
COLAV algorithm, in the hope of increasing the robustness of the method. The augmenta-
tions of the SP-VP to the MP-VP algorithm was presented in Section 3.3. In this section,
results from the MP-VP are presented and compared to scenarios where the SP-VP had
problems. A more thorough evaluation is done in the next section, where the SP-VP and
MP-VP algorithms are compared to each other and a VO algorithm.

4.4.1 Scenario 41 and 51 - Slow Down
In Scenario 41 and 51, the objects are acting according to Behaviour 2, ”Slow Down”.
The setup is identical in both scenarios, except for the algorithms, where Scenario 41 runs
SP-VP, and Scenario 51 runs MP-VP. Snapshots from the scenarios can be seen in Fig.
4.25. In the figure, the blue ferry and red objects are from Scenario 41, while the green
ferry and pink objects are from Scenario 51. From the snapshots, we see that the MP-VP
is able to find a path without encountering a deadlock with any of the objects, in contrast
to the SP-VP, that gets stuck in its path waiting for a slow-moving object to pass. The
SP-VP eventually manages to clear itself from the deadlock, but this happens long after
the MP-VP arrives at its destination.

4.4.2 Scenario 20-22 - Region of Observation
Scenario 20-22 are identical to Scenario 10-12, but the former run the MP-VP, and the
latter run the SP-VP. Fig. 4.27 gives the velocity profiles for the scenarios, and Fig. 4.26
shows snapshots of the transit from Scenario 21. In the plots, the tracking of the ferry from
Scenario 11 is included for comparison. The objects are the same for both scenarios.

By comparing the velocity profiles for Scenarios 20-22 in Fig. 4.27 with Scenario 10-
12 in Fig. 4.23, it is apparent that the increased maneuvering options in the MP-VP have
removed the need for emergency stopping and reversing. In Scenario 20, the behaviour is
identical to Scenario 10. The region of observation of 450m gives the algorithm enough
time to increase the velocity and pass in front of the objects without branching. In Scenario
21 and 22, the algorithm chooses to branch out as soon as the objects are detected, allowing
the ferry to keep a forward velocity throughout the transit.

Also with the MP-VP, the short region of observations limits the long-term planning of
the deliberate layer, so that the algorithm resembles more a reactive one. The performance
is an improvement to the SP-VP, but one could argue that a reactive algorithm with a
broader range of possible actions would be better equipped to handle the small region of
observation. Then again, the SP-VP and MP-VP are designed to keep within the predefined
path(s), which will not be guaranteed with a reactive algorithm like the VO or DW. In
addition, SP-VP and MP-VP are designed based on the assumptions that the situational
awareness is able to track all objects that will intersect the path in the scope of the transit.

61

-25 0 25 50 75

0

25

50

75

100

(a) t = 22[s]

-25 0 25 50 75

0

25

50

75

100

(b) t = 48[s]

-25 0 25 50 75

0

25

50

75

100

(c) t = 66[s]

-25 0 25 50 75

0

25

50

75

100

(d) t = 101[s]

Figure 4.25: Scenario 41 and 51: Scenario overview during the transit. The blue ferry and the red
objects belong to Scenario 41, while the green ferry and pink objects belong to Scenario 51.

62

-50 0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

(a) t = 178[s]

-50 0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

(b) t = 209[s]

-50 0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

(c) t = 217[s]

Figure 4.26: Scenario 21: Snapshots from the transit. Ferry from Scenario 21 in green and ferry
from Scenario 11 in blue. Objects are the same for both scenarios.

63

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

Velocity

Initial Plan

Replan #1

(a) Region of Observation 450m

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

Velocity

Initial Plan

Replan #1

(b) Region of Observation 150m

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

Velocity

Initial Plan

Replan #1

Replan #2

(c) Region of Observation 75m

Figure 4.27: Scenario 20-22: Velocity and planned velocity profiles.

64

4.5 Evaluation and Comparison
In this section, a thorough evaluation of the SP-VP and MP-VP is conducted. For the sake
of perspective, the performance is compared to another well-known COLAV algorithm. A
version of the velocity obstacle (VO) method was adapted to fit the model and simulator.
The method is implemented by Anette Yttisrud in the work done in her project thesis
during the spring of 2019. It is based on (Kuwata et al., 2014). The VO used in the
comparison does not do any COLREGSs considerations.

The VO uses a LOS guidance law to calculate the desired course

χd = αk + atan2(−ect/llookahead, 1) (4.35)

where ect is the cross-track error to the straight-line path from the start-point to the end-
point, equal to the path of the SP-VP presented in Section 3.2, and

αk = atan2(Eendpoint − E,Nendpoint −N), (4.36)

with N and E as the north and east position of the ferry, respectively. The lookahead
distance

llookahead = min(lla, lep), (4.37)

with

lep =
√

(Eendpoint − E)2 + (Nendpoint −N)2, (4.38)

and lla > 0 as a constant maximum look-ahead distance. In the simulations lla was set to
25m. The choice of αk and llookahead ensures that the ferry will converge to the endpoint,
and not the straight line through the start-point and endpoint.

The scenarios used for comparison of the VO is the same as scenarios 1-5 in Table 4.3
in terms of path and object initialization. The VO uses the same Dummy Object Detection
and reference filter as the SP-VP and MP-VP.

The Scenarios from the VO are presented one by one in the following subsections,
where the performance of the VO is commented on and compared to the performance of
the respective scenarios for the SP-VP and MP-VP. In the figures where the data from the
VO simulations are presented, the tracking of the ferry from the corresponding scenario
with SP-VP and MP-VP is included. This is done to aid the comparisons. The objects
from the SP-VP and MP-VP scenarios are omitted in order to maintain the readability of
the figures. The object data can be found in the section of the respective scenario.

It should be noted that the VO used for this comparison has not been designed for
this specific case with confined space and high traffic. It has faults and limitations that
there exist solutions to in literature, but have not been implemented, since this is time-
consuming, and not within the scope of this thesis.

4.5.1 Performance Metrics

A set of performance metrics have been formulated to aid the comparison of the SP-VP,
MP-VP and the VO. The metrics are based on the body acceleration, power usage and

65

Name Value
u̇lim 1.1m/s2

v̇lim 1.1m/s2

ṙlim 0.2rad/s2

Table 4.4: Normalizing parameters for the performance metrics.

duration of each transit. The body accelerations metrics are intended to quantify the pas-
senger comfort of the transit. The calculated values for each transit is presented along with
the results.

The values for the body acceleration metrics Iu̇, Iv̇ and Iṙ are calculated according to

Iu̇ =

∫ T1

T0

|u̇(t)|
u̇lim

dt, (4.39)

Iv̇ =

∫ T1

T0

|v̇(t)|
v̇lim

dt, (4.40)

Iṙ =

∫ T1

T0

|ṙ(t)|
ṙlim

dt, (4.41)

where u̇lim, v̇lim and ṙlim are normalizing parameters based on limits of what is consid-
ered comfortable accelerations for a standing passenger. The values are given in Tab. 4.4.
The power metric is simply the power usage during the transit

Ipower =

∫ T1

T0

τ (t) · ν(t)dt, (4.42)

where τ is the 3 DOF control input and ν is the body velocity vector of the ferry. The
integration limits T0 and T1 are the start-time and end-time of the transit. The value for
the time-metric is the duration of the transit in seconds,

Iduration = T1 − T0, (4.43)

from the ferry starts moving, to the ferry enters a circle of radius 0.5m with the centre
in the destination.

4.5.2 VO-Scenario 1
This scenario has constant object behaviour, and therefore concur with the assumptions
made in both VO and the velocity-planning methods. Fig. 4.28 contains snapshots from
the transit. Initially, the VO speeds off along the path but diverges to starboard as the two
vessels are approaching from the port side. The divergent maneuver becomes extra long as
the first vessel from the starboard side blocks the possibility of moving back onto the path.
After the object from starboard has passed, the VO moves back to the path and eventually
to the destination. The lack of global perspective in the reactive VO algorithm becomes
apparent when it chooses a diverging maneuver that creates a situation that calls for a new

66

diverging maneuver with another object. The unlucky maneuvers result in a transit that is
more than a minute longer than the velocity-planning methods, as can be seen in Table
4.5.

COLAV Algorithm Iu̇ Iv̇ Iṙ Ipower(kJ) Iduration(s)
SP-VP 16.9 5.07 9.04 12.0 128.0
MP-VP 46.4 30.1 17.8 25.6 125.0

VO 58.1 63.0 26.8 26.2 199.0

Table 4.5: VO-Scenario 1: Values for the metrics of VO-Scenario 1 and the corresponding scenarios
for SP-VP and MP-VP. The best value in each column is highlighted in bold.

The VO performs the transit without collision, but with considerably higher maneu-
vering efforts than SP-VP, and overall higher than MP-VP, as can be seen from the values
in Table 4.5. The SP-VP score overall best, and has by far the lower energy consumption.
This is due to the straight-line path, which results in the heading and course reference be-
ing aligned through the transit, giving it less drag from the hull. For the same reason, the
Iv̇ is lower for the SP-VP than the two other methods. The SP-VP has the lowest Iv̇ in all
five comparison scenarios, and the reason the value is not closer to zero is that the vessel
is unstable in yaw, and induces oscillations in all three degrees of freedom.

The fixed path(s) of the VP methods ensures that the ferry moves toward the goal,
whereas the course of the maneuvers VO performs has a high angle relative to the centre-
path, which can induce uncertainty and confusion both to passenger and operators of the
objects as to the intentions of the ferry.

4.5.3 VO-Scenario 2
In this scenario, the objects slow down as they approach the ferry. Snapshots from the
transit is displayed in Fig. 4.30. Also in this scenario the VO finds a collision-free transit.
The MP-VP finds the fastest and smoothest transit in terms of velocity profile. This is
because it is able to branch out, and therefore avoid the first two objects approaching from
the port side. The branching transit is planned in a way that avoids a situation with the
two objects approaching from starboard as well. The VO and SP-VP are unable to avoid a
situation with the first two objects, where the VO again diverges to the starboard in a way
that causes it to halt and stop for the first object from starboard. The SP-VP slows down for
the first two objects, but gets stuck on the last objects, as have been seen earlier in Section
4.3.2. The SP-VP did therefore not complete the transit before the simulations terminated,
but the results will be considered nevertheless. Values for the metrics are given in Table

COLAV Algorithm Iu̇ Iv̇ Iṙ Ipower(kJ) Iduration(s)
SP-VP 26.8 6.65 13.3 6.23 > 200.0
MP-VP 24.1 27.2 15.7 21.8 104.0

VO 74.9 95.4 36.6 17.7 268.0

Table 4.6: VO-Scenario 2: Values for the metrics of VO-Scenario 2 and the corresponding scenarios
for SP-VP and MP-VP. The best value in each column is highlighted in bold.

67

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(a) t = 30[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(b) t = 69[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(c) t = 89[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(d) t = 168[s]

Figure 4.28: VO-Scenario1: Snapshots from the transit of VO-Scenario1. The ferry in blue, moving
objects in red, the ferry from Scenario 1 in orange and the ferry from Scenario 50 in pink. The paths
from the multiple-path COLAV has nothing to do with the VO, but are included for comparison.

4.6, where the best value for each metric is highlighted in bold. Once again, SP-VP comes
out best on comfort, maneuvering and power, while VO has the worst performance, with
high rate-changes compared to the two others. The cause of this can be seen in the velocity
reference for the VO in Fig. 4.31 in combination with plot of the performance metrics
as a function of time, given in Fig. 4.6. Between 50s and 100s into the transit, the
velocity reference shows oscillatory behaviour, that propagates to the vessel velocity. In
Fig. 4.6 it is clear that the values for VO have most of the growth in this region. Another
situation occurs between 120s and 170s into the transit, the VO gets stuck on first object
approaching from starboard. This is caused by the algorithm alternating between trying to
pass in front and behind the vessel. The reference filter smooths out this behaviour, and
the ferry comes to a near halt. This is a common problem for the VO algorithm, and can
be solved adjusting the cost function to penalize changes in velocity and/or heading, but
will, as a consequence, reduce the response of the system.

68

0 50 100 150 200 250
0

10

20

30

40

50

60

SP-VP

MP-VP

VO

(a)

0 50 100 150 200 250

0

10

20

30

40

50

60

70

SP-VP

MP-VP

VO

(b)

0 50 100 150 200 250

0

5

10

15

20

25

30

SP-VP

MP-VP

VO

(c)

0 50 100 150 200 250

0

5

10

15

20

25

30

SP-VP

MP-VP

VO

(d)

Figure 4.29: VO-Scenario 1: Growth of metrics during the transit. (a): body-x acceleration, (b):
body-y acceleration, (c): yaw acceleration, (d): power.

4.5.4 VO-Scenario 3
In this scenario, the objects speed up and try to pass in front of the ferry. Snapshots from
the transit are shown in Fig. 4.33. This comparison highlights one of the main advantages
of the SP-VP and MP-VP, namely that they will not diverge from the predefined paths and
therefore not risk to pass through the area that is not guaranteed to be free of static objects.
It also shows a weakness that many of COLAV algorithms have, where the vessel can get
”caught” by a passing vessel because the COLAV algorithm keeps diverging from the path
in order to avoid a collision.

Once again the SP-VP comes out on top according in the metrics in Table 4.7.

COLAV Algorithm Iu̇ Iv̇ Iṙ Ipower(kJ) Iduration(s)
SP-VP 59.6 12.0 24.3 16.6 145.0
MP-VP 101.0 52.9 27.7 36.4 164.0

VO 117.0 118.0 45.6 40.6 226.0

Table 4.7: VO-Scenario 3: Values for the metrics of VO-Scenario 3 and the corresponding scenarios
for SP-VP and MP-VP. The best value in each column is highlighted in bold.

69

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(a) t = 59[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(b) t = 99[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(c) t = 198[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(d) t = 267[s]

Figure 4.30: VO-Scenario 2: Snapshots from the transit of VO-Scenario 2. The ferry in blue,
moving objects in red, the ferry from Scenario 2 in orange and the ferry from Scenario 51 in pink.
The paths from the multiple-path COLAV has nothing to do with the VO, but are included for
comparison.

70

0 50 100 150 200

0

0.5

1

1.5

2

Velocity Reference

Figure 4.31: VO-Scenario 2: Velocity and velocity reference.

0 50 100 150 200 250 300
0

20

40

60

80

SP-VP

MP-VP

VO

(a)

0 50 100 150 200 250 300

0

20

40

60

80

100

SP-VP

MP-VP

VO

(b)

0 50 100 150 200 250 300

0

10

20

30

40

SP-VP

MP-VP

VO

(c)

0 50 100 150 200 250 300

0

5

10

15

20

25

SP-VP

MP-VP

VO

(d)

Figure 4.32: VO-Scenario 2: Growth of metrics during the transit. (a): body-x acceleration, (b):
body-y acceleration, (c): yaw acceleration, (d): power.

71

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(a) t = 39[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(b) t = 69[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(c) t = 109[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(d) t = 148[s]

Figure 4.33: VO-Scenario 3: Snapshots from the transit of VO-Scenario 3. The ferry in blue,
moving objects in red, the ferry from Scenario 3 in orange and the ferry from Scenario 52 in pink.
The paths from the multiple-path COLAV has nothing to do with the VO, but are included for
comparison.

72

0 50 100 150 200 250
0

20

40

60

80

100

120

SP-VP

MP-VP

VO

(a)

0 50 100 150 200 250

0

20

40

60

80

100

120

SP-VP

MP-VP

VO

(b)

0 50 100 150 200 250

0

10

20

30

40

50

SP-VP

MP-VP

VO

(c)

0 50 100 150 200 250

0

10

20

30

40

50

SP-VP

MP-VP

VO

(d)

Figure 4.34: VO-Scenario 3: Growth of metrics during the transit. (a): body-x acceleration, (b):
body-y acceleration, (c): yaw acceleration, (d): power.

73

4.5.5 VO-Scenario 4
In this scenario, the objects try to pass behind the ferry. Fig. 4.35 contains snapshots from
the transit. The VO find, once again, a collision-free transit, but encounters a situation with
the first object from starboard, when it alters its course to pass behind the ferry. The VO
has to reverse the ferry in order to avoid a collision. Both the SP-VP and the MP-VP have
shown similar behaviour when objects suddenly alter the course towards the ferry. This is,
of course, an extreme situation, where the behaviour of the moving objects is unpredictable
and dangerous and is at the limit of what can be expected from a COLAV system. An
increased safety-factor, i.e. by increasing the radius of the object representation, could
prevent this kind of emergency maneuvers both for the VO, SP-VP and MP-VP.

The time development of the metrics is given in Fig. 4.36, and the final values are
shown in Table 4.8. VO gets a poor score, much due to the unfortunate near-collision,
but SP-VP and MP-VP produce a noteworthy result. MP-VP branches out initially, and
branches back in as the first two objects are passed, but as it has branched back to the
path, it ends up behind SP-VP. This is because the assumptions on object behaviour did
not hold, and what initially seemed to be the better option (to branch), turned out not to
be. The branching comes at a cost both in terms of energy consumption and passenger
comfort, and since the assumptions are faulty, the potential gain of branching should be
considerable, for it to be the favourable choice. This can be improved by increasing the
cost of branching until the desired adverseness is achieved.

COLAV Algorithm Iu̇ Iv̇ Iṙ Ipower(kJ) Iduration(s)
SP-VP 23.6 6.17 10.3 10.3 148.0
MP-VP 53.1 41.6 18.4 20.0 143.0

VO 75.6 96.5 42.0 35.9 160.0

Table 4.8: VO-Scenario 4: Values for the metrics of VO-Scenario 4 and the corresponding scenarios
for SP-VP and MP-VP. The best value in each column is highlighted in bold.

4.5.6 VO-Scenario 5
In this scenario, the objects try to follow the COLREGs. Snapshots from the transit can
be seen in Fig. 4.37. In this MP-VP branches out to pass behind the first two vessels
approaching from the port side, and manages to pass the two objects from the starboard,
before they approach the path, giving it a problem-free, short duration, as can be seen from
the values of Table 4.9, where it has the by far best Iu̇ value, and overall best score. The
SP-VP, on the other hand, ends up in close quarters with the final two objects and has to
perform emergency braking, as have been seen from the velocity profile in Fig. 4.21 in
Section 4.3.5.

In this scenario one can once again see how the VO performs a transit at consider-
able higher maneuvering efforts than both the SP-VP and MP-VP. It is highly reactive to
changes in object behaviour, but this comes at the cost of both passenger comfort. The two
VP-algorithms performs the transit at shorter time, with less maneuvering, as can be seen
by Table 4.9.

74

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(a) t = 39[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(b) t = 69[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(c) t = 99[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(d) t = 148[s]

Figure 4.35: VO-Scenario 4: Snapshots from the transit of VO-Scenario 4. The ferry in blue,
moving objects in red, the ferry from Scenario 4 in orange and the ferry from Scenario 53 in pink.
The paths from the multiple-path COLAV has nothing to do with the VO, but are included for
comparison.

COLAV Algorithm Iu̇ Iv̇ Iṙ Ipower(kJ) Iduration(s)
SP-VP 61.6 9.98 21.0 15.8 156.0
MP-VP 22.3 23.9 16.2 19.0 114.0

VO 80.3 83.9 30.6 27.6 176.0

Table 4.9: VO-Scenario 5: Values for the metrics of VO-Scenario 5 and the corresponding scenarios
for SP-VP and MP-VP. The best value in each column is highlighted in bold.

75

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

SP-VP

MP-VP

VO

(a)

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

SP-VP

MP-VP

VO

(b)

0 20 40 60 80 100 120 140 160 180

0

10

20

30

40

50

SP-VP

MP-VP

VO

(c)

0 20 40 60 80 100 120 140 160 180

0

10

20

30

40

SP-VP

MP-VP

VO

(d)

Figure 4.36: VO-Scenario 4: Growth of metrics during the transit. (a): body-x acceleration, (b):
body-y acceleration, (c): yaw acceleration, (d): power.

76

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(a) t = 49[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(b) t = 99[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(c) t = 119[s]

-25 0 25 50 75

0

25

50

75

100 SP-VP

MP-VP

VO

(d) t = 158[s]

Figure 4.37: VO-Scenario 5: Snapshots from the transit of VO-Scenario 5. The ferry in blue,
moving objects in red, the ferry from Scenario 5 in orange and the ferry from Scenario 54 in pink.
The paths from the multiple-path COLAV has nothing to do with the VO, but are included for
comparison.

77

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

SP-VP

MP-VP

VO

(a)

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

SP-VP

MP-VP

VO

(b)

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

25

30

35

SP-VP

MP-VP

VO

(c)

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

25

30

SP-VP

MP-VP

VO

(d)

Figure 4.38: VO-Scenario 5: Growth of metrics during the transit. (a): body-x acceleration, (b):
body-y acceleration, (c): yaw acceleration, (d): power.

78

4.6 Discussion
In a scenario with four moving objects and constant object behaviour, both SP-VP and
MP-VP are able to find a collision-free trajectory with ease. The trajectories give a pre-
dictable behaviour with low maneuvering effort compared to a VO-based system.

The improved object representation increases the robustness to noise in the object es-
timations. Nevertheless, the trajectory planning is only as good as the available object
information. If the object state estimations are faulty, the planned trajectory will be as
well.

The SP-VP, due to the restrictions of the predefined path, runs the risk of stopping
for considerable periods when objects have a small velocity-component orthogonal to the
path. This is a safe, intuitive and energy-efficient method of handling the situation, but it
comes at the cost of transit time.

The cost of branching in terms of passenger comfort and increased energy consump-
tion should be better reflected in the cost of choosing a branching path in the node search
problem. The assumptions on object behaviour are weak, and therefore, the potential gain
of branching should be considerable before it is pursued.

The fixed branching angle of the MP-VP gives the method the same weakness as the
SP-VP where it can get stuck if a slow-moving object is too close and therefore blocks the
branching possibilities. This can be improved by a dynamic branch angle but will, in turn,
introduce higher complexity in the algorithm and higher maneuvering efforts.

The branching option of MP-VP reduces the need for long halts, emergency maneuvers
and backing up the ferry, compared to the SP-VP. If the branching option is made available
only in critical situations, the MP-VP can combine the comfortable and predictable charac-
teristics of the SP-VP with the increased response and safety introduced by the branching.

When the situational awareness of the algorithm is restricted, the global perspective
of the deliberate layer is reduced, and the algorithm, in practice, becomes a reactive al-
gorithm with a time-horizon defined by the perception-range. In cases with short range,
the SP-VP renders useless, since the whole concept of adapting velocity collapses. The
MP-VP is somewhat more robust to this, due to its increased range of actions, yet it is still
very restricted. In such cases, a reactive algorithm like the VO would be a better choice.

79

80

Chapter 5
Experimental Results

In this chapter, the results from the sea trials of the COLAV system are presented and
discussed. In the first two subsections, the experimental platform and the testing environ-
ments are described. In the following subsections, the experimental data is visualized. The
data is discussed as it is presented, and a summary of the discussion is included in the last
section of the chapter.

5.1 Experimental Platform
The platform that is used to perform the experiments is the milliAmpere ferry. A system
overview of the ferry can be seen in Fig. 5.1. The guidance and control system was intro-
duced in the simulator overview in Section 4.1.1, and will therefore not be addressed here.
The vessel and navigation system, on the other hand, is different from the simulations,
where a vessel and thruster model was used to simulate the system.

The ferry has an overall length of 5m, a beam of 2.8m and weighs approximately
1670kg. The vessel has a flat-bottomed hull with no keel. A side-view and a front-view of
the ferry can be seen in Fig. 5.2.

Figure 5.1: Overview of the ferry and GNC on the experimental platform.

81

(a) (b)

Figure 5.2: CAD drawings for the hull, roof and sensor jig, courtesy of Glenn Angell. (a) Side-view
of the milliAmpere platform. (b) Front view of the milliAmpere platform.

Navigation

The base of the navigation system is IMU sensors and a GPS. The IMU is an Xsens MTi-
20, which outputs the linear acceleration and rotational velocities of the vessel. The GPS
is a VectorTM VS330 GNSS Receiver, set up with an antenna separation of 2m. The GPS
has RTK capacity, providing a position accuracy of 10mm in the horizontal plane, 20mm
in the vertical dimension and 0.05odeg in heading. The navigation node uses an Error
State Kalman Filter for sensor fusion of the GPS and IMU data. The filter is described in
detail in (Sæther, 2019).

On Board Computer

The computing power on the vessel comes from the onboard computer (OBC), an Ax-
iomtek eBOX670-883-FL with an Intel Core I7 processor. The OBC runs Ubuntu OS and
the Kinetic ROS distribution.

5.2 Testing Environments

The sea trials are performed in the harbour basin at Pirkaia in Trondheim city. There
are few vessels located in the area, and the traffic is at a minimum, the basin does also
have a good shielding from currents and waves. Fig. 5.3 shows a satellite picture of
the location. The picture has a north-up orientation. A local NED frame with origo in
the red dot, located on top of the blue-green vessel, is used. All the experimental data
is given in the local NED frame. The red line illustrates the path that is used during
testing. In the case of the MP-VP algorithm, the red line is the centerpath. The path goes
between the north-west destination at [N,E] = [26,−79] and the south-east destination at
[N,E] = [−41,−11] in the local {n}. All experiments are performed with virtual objects

82

Figure 5.3: Location for the sea trials, a harbour basin located in Pirkaia. The red line illustrates
the path that is used. The red dot on top of the blue-green vessel marks the origin of the local NED
frame. Courtesy of Google Maps.

from the object detection module introduced in Section 4.1.5. None of the features from
the testing-area are considered, so the objects can move freely in the local NED frame.

5.3 Experimental Results and Discussion
In this section, the experimental results are presented. Firstly, a description and overview
of the experiments are given, followed by a visualization of the results. Only a subset of
the transits performed during testing is presented and commented on in this chapter. The
results for the rest of the transits are included in Appendix B.

5.3.1 Overview
A total of nine transits were performed. The transits are named Transit n, where the
number n is given from the chronological order they were performed. Table 5.1 gives an
overview of the transits, with the COLAV algorithm and object behaviour. All transits go
between the two positions marked in Fig. 5.3, the odd-numbered transits travel from the
south-east point to the north-west point, while the even number transits travel the opposite
direction. Transit 1-7 are run with four moving objects, approaching at an angle close to
90o to the path. Transit 8-9 are run with two objects at a steeper angle to the path.

5.3.2 Transit 1
This is the simplest of all the transits, in terms of collision avoidance. The constant object
behaviour concur with the assumptions in the algorithm, giving a predictable scenario with

83

Figure 5.4: The milliAmpere ferry from at sea trials the 2 June 2019 . Nice conditions with calm
water and only the occasional light breeze.

Situation Section COLAV algorithm Behaviour
Transit 1 5.3.2 SP-VP 1
Transit 2 5.3.3 SP-VP 2
Transit 3 B.1 SP-VP 3
Transit 4 5.3.4 MP-VP 2
Transit 5 B.2 MP-VP 3
Transit 6 B.3 SP-VP 2
Transit 7 5.3.5 MP-VP 1
Transit 8 B.4 SP-VP 1
Transit 9 B.5 MP-VP 1

Table 5.1: Overview of the nine transits performed during the experiments. Some of them are
included in Chapter. 5, the rest can be found in Appendix B.

minor changes. Fig. 5.6 shows four snapshots of the situation during the transit, and Fig.
5.7 shows the velocity and velocity reference during the transit.

The transit is performed without any critical situations, it starts off slowly, to pass
behind the first object approaching from the right and proceeds in transit velocity for the
rest of the transit. As a passenger, the transit was fairly comfortable, but as can be seen
from the velocity profile, the ferry has some oscillatory behaviours. The actual velocity of
the ferry oscillates around the velocity reference throughout the transit. The cause for this
is not the COLAV system, but a mismatch between the ferry model and the ferry. It mainly
originates from the thruster system, where the delay in the thrusters has been underrated
in the modeling, both in azimuth angle turn rate, and in the ramp-up of the propellers.
In addition, an unmodeled delay of up to 0.4s in the communication between the thrust
allocation and thrusters was discovered by Anders Pedersen in his work on determining
model parameters. The consequence is that the control system is unable to follow the
acceleration reference from the reference filter, and the filter ”runs away” from the ferry,

84

0 50 100 150 200 250
-70

-65

-60

-55

-50

-45

Heading

Reference

Figure 5.5: Transit 1: Heading and heading reference.

which results in the control system having to catch up with the reference. A solution to
this could be to, either improve the thruster model, include logic in the reference filter to
reset the filter states to the current states when the tracking error of the filter is above a
certain limit or improve the thruster-assumptions in the reference filter to better match the
actual thruster model. Ideally, all three solutions should be realized.

Another contribution to the problem is that the ferry is unstable in yaw. This causes it
to diverge from the heading reference at the initial acceleration, as can be seen from the
heading and heading reference in Fig. 5.5. This, in turn, calls for a yaw moment, and
hence, a rotation of the azimuth thrusters which reduces the available thrust in the surge
direction and thereby further increases the absolute tracking error.

5.3.3 Transit 2
In this transit, the objects slow down as they approach the ferry. The transit is very similar
to what was seen in Section 4.3.2, where the ferry has to stop and wait for a slow-moving
object to pass. The transit is performed collision-free and is not very interesting in terms of
collision avoidance, but it highlights another interesting feature, namely the ”stop-and-go”
possibilities of a fully actuated vessel. From Fig. 5.11 one can see that the ferry comes to
a halt between 50s and 150s into the transit. Due to the DP capabilities of the vessel, it is
able to track a constant pose reference, as can be seen from the absolute tracking error in
Fig. 5.8, along with the heading and heading reference from Fig. 5.9, where the tracking
error is less than 0.25m and heading error is less than 3deg during the halt. This way
of handling a situation might be more time consuming than the alternatives, but in turn,
has little risk attached to it, since it makes the intentions of the ferry highly visible to the
operators of the other vessels. The halt arguably also aids the passenger comfort, given
that the duration is limited, by reducing the maneuvering effort.

5.3.4 Transit 4
This transit is a multiple-paths transit where the objects slow down close to the ferry.
Snapshots of the transit are included in Fig. 5.12. The ferry initially branches out to

85

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 16[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 48[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 76[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 104[s]

Figure 5.6: Transit 1: Snapshots of the situation. Moving objects in red, ferry in blue with green
heading vector and blue course vector.

0 20 40 60 80 100 120 140
-0.5

0

0.5

1

1.5

Velocity

Reference

Figure 5.7: Transit 1: Velocity and velocity reference.

86

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

Absolute Tracking Error

Figure 5.8: Transit 2: Absolute tracking error.

0 50 100 150 200 250
115

120

125

130

135

140

Heading

Reference

Figure 5.9: Transit 2: Heading and heading reference.

87

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 24[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 52[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 180[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 208[s]

Figure 5.10: Transit 2: Snapshots of the situation. Moving objects in red, ferry in blue with green
heading vector and blue course vector.

0 50 100 150 200 250
-0.5

0

0.5

1

1.5

Velocity

Reference

Figure 5.11: Transit 2: Velocity and velocity reference.

88

pass behind the two objects from the starboard side, and subsequently branches back to
the centerpath in order to pass behind the objects from the port side. The velocity and
velocity reference in Fig. 5.13 show that the ferry has to reduce the velocity or stop on
three occasions during the transit due to the moving objects reducing their velocity as the
ferry gets closer. Similar situations have been seen previously in simulations. In many
of the situations where this is the case, the object is not intersecting the path, but the
added size of the object-representation is what intersects and halts the ferry. In reality, it
is therefore clear to proceed, but the system is held back by its perception of the objects.
An improvement to this could be to augment the object representation to include a factor
representing the uncertainty. The added dimensions could, for example, be a function of
how close the object is to the ferry, and the direction of travel the object has with respect
to the ferry, travelling away, in proximity to the ferry would give a tighter area behind it
than an object approaching from a distance on a near collision course.

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 28[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 76[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 124[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 156[s]

Figure 5.12: Transit 4: Snapshots of the situation. Moving objects in red, ferry in blue with green
heading vector and blue course vector.

89

0 50 100 150 200 250
-0.5

0

0.5

1

1.5

Velocity

Reference

Figure 5.13: Transit 4: Velocity and velocity reference.

5.3.5 Transit 7
In Transit 7, the objects keep a constant heading and velocity. Snapshots from the crossing
are included in Fig. 5.15. This scenario has the same initial conditions as Transit 1, where
the only difference is that Transit 1 runs the SP-VP and Transit 7 runs the MP-VP.

In the transit, the ferry branches out initially to pass behind the two objects approaching
from starboard, and subsequently branches back to the centerpath for the last half of the
transit. This is similar to what we saw in Transit 4, but since the objects keep a constant
velocity, the ferry avoids the reducing of velocity and stopping. An interesting comparison
to Transit 1 is that, despite the branching, Transit 7 and Transit 1 have the same arrival time.
It is hard to reason why the MP-VP favours branching in this case, but it might be that it
was able to avoid using the nodes of one of the objects. This theory can be supported by
Fig. 5.14, where the distance to the closest object is visualized for Transit 1 and Transit
7. The graphs show that the branching transit has a greater distance throughout most of
the transit. In any case, one could argue that Transit 1 is better in terms of passenger
comfort and power consumption and that the added safety in the increased distance to
closest object does not compensate for the increased risk introduced by the misleading
intention and maneuvering related to the branching.

90

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

Transit 1

Transit 7

Figure 5.14: Transit 1 and 7: Distance to closest object.

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 20[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 56[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 76[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 112[s]

Figure 5.15: Transit 7: Snapshots of the situation. Moving objects in red, ferry in blue with green
heading vector and blue course vector.

91

0 20 40 60 80 100 120 140
-1

-0.5

0

0.5

1

1.5

Velocity

Reference

Figure 5.16: Transit 7: Velocity reference and actual velocity.

5.4 Discussion
The COLAV system runs problem-free on the OBC, and interfaces with all sub-modules
correctly. The behaviour at sea trials is sufficiently similar to the simulations, with respect
to the COLAV system. The parameters of the reference filter were somewhat off, due to a
faulty thruster system model, which led to most of the error between simulations and sea
trials. Improvement of this is left to future work.

As long as the COLAV system is run with a situational awareness system that consists
of the same dummy object detection module used in simulations, the differences between
sea trials and simulations are minor with respect to the behaviour of the COLAV system.
It is therefore arguably more rewarding to spend resources on improving the emulated sit-
uational awareness and simulator than spending time preparing for sea trials. That being
said, there is no good substitute for passenger feedback in a simulator, so sea trials are a
necessity in the development process of autonomous passenger ferries.

As a passenger during sea trials, the situations when the ferry was halting and waiting
for objects to pass, gave more of an impression that the ferry was avoiding a collision in a
safe manner than the situations where the ferry branched out. A contributing factor to this
is, of course, the oscillations in both heading and velocity that have been discussed earlier.

The DP capabilities of the vessel make the ”stop-and-go” strategy very viable. The
ferry is stable during stationkeeping and uses very little power compared to maneuvering
around an object. The energy aspect might change in an environment with more wind and
current, but the investigation of this is left for future work.

During the sea trials, it became apparent that a 100m transit with four intersecting ob-
jects in the short time-span is a quite high-traffic situation. In many of the situations, it
would be favourable to simply postpone the transit for half a minute or so. That being said,
testing in worst-case situations is beneficial and can reveal unforeseen behaviour. Another

92

point that became apparent during sea trials was how aggressive and unreasonable the ob-
ject behaviours were at times, especially considering the scale of the operational area. The
behaviour would in many cases be considered reckless and dangerous.

93

94

Chapter 6
Conclusions and Future Work

Two versions of a complete COLAV system for autonomous transit with passenger fer-
ries have been implemented and tested through simulations and sea trials. Both methods
are based on path-velocity decomposition. The systems have been tested with up to four
moving objects intersecting the transit, with different object behaviours. Both systems de-
livered satisfactory results in simulations as well as in sea trials.

The systems were also compared to a velocity obstacle algorithm. In the comparison, both
the SP-VP and MP-VP method produced more predictable, energy-efficient and comfort-
able transits. This is much due to the predefined path and the global perspective of the
deliberate layer.

The SP-VP method proved to be a simple but effective way of trajectory planning. It pro-
duced the most comfortable transits, with the least maneuvering, but suffered from long
transit duration in situations with slow-moving objects. For short transits with high traffic,
the ”stop-and-go” approach proves to be a safe, intuitive and predictable way of avoiding
collision, but the benefits decrease as the transit length is increased and the environment is
less confined.

The MP-VP method improved on the transit time of the SP-VP method in most scenarios,
but at the same time introduced more maneuvering by branching in scenarios where it was
not needed. The negative effect of this is less apparent in longer transit, where the branch-
ing maneuver makes up a smaller part of the transit. The possibility of branching increases
the number of modes for collision avoidance and makes the system more robust to sud-
den changes in the environment. By adjusting the threshold for branching, and introducing
a dynamic branch angle, the best features from each method can be achieved in the MP-VP.

The following should be investigated in future work:

• Increase the threshold for branching so that ”stop-and-go” is the primary mode for
collision avoidance.

95

• Introduce a dynamic branch angle, to ensure that the ferry can get ”unstuck” from
all stationary or slow-moving objects.

• Improve the reference filter to ensure a feasible trajectory reference at all times.

• Improve the object representation so that it better reflects the areas of risk around
each particular object.

96

Bibliography

Amazon, December 2016. First prime air delivery. Available at https://www.
amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.

Bjørnø, J., 2016. Thruster-assisted position mooring of C/S Inocean Cat I drillship. Mas-
ter’s thesis, Norwegian University of Science and Technology, Trondheim, Norway.

Brekke, E., Ruud, K. A., Eidsvik, J., 09 2018. LIDAR Extended object tracking of a
maritime vessel using an ellipsoidal contour model. In: Sensor Data Fusion: Trends,
Solutions, Applications (SDF). Bonn, Germany, pp. 1–6.

Campbell de Oliveira, S., Abu-tair, M., Naeem, W., 05 2013. An automatic COLREGs-
compliant obstacle avoidance system for an unmanned surface vehicle. Proceedings of
the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Mar-
itime Environment 228, 108–121.

COLREGs, November 1995. International regulations for preventing collisions at sea.
Available at http://inoa.net/zeilen/colreg.html#RULE8.

Eriksen, B.-O., Breivik, M., 08 2017. MPC-based mid-level collision avoidance for ASVs
using nonlinear programming. In: IEEE Conference on Control Technology and Appli-
cations. Hawaii, USA.

Eriksen, B.-O., Breivik, M., 2018. A model-based speed and course controller for high-
speed ASVs. In: 11th IFAC Conference on Control Applications in Marine Systems,
Robotics and Vehicles. Opatija, Croatia.

Eriksen, B.-O., Breivik, M., Pettersen, K., Wiig, M., 2016. A modified dynamic window
algorithm for horizontal collision avoidance for AUVs. In: IEEE Multi-Conference on
Systems and Control (MSC). Buenos Aires, Argentina.

Fossen, T. I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons.

97

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
http://inoa.net/zeilen/colreg.html#RULE8

Fraichard, T., Laugier, C., May 1993. Path-velocity decomposition revisited and applied
to dynamic trajectory planning. In: [1993] Proceedings IEEE International Conference
on Robotics and Automation. Atlanta, USA, pp. 40–45 vol.2.

FutureAgenda, January 2019. Autonomous transport , future agenda. Available at https:
//www.futureagenda.org/insight/autonomous-transport.

Gat, E., 1997. On three-layer architecture. Artificial Intelligence and Mobile Robots, 195–
210.

Hagen, I. B., Kufoalor, D. K. M., Brekke, E. F., Johansen, T. A., 2018. MPC-based col-
lision avoidance strategy for existing marine vessel guidance systems. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). Brisbane, Australia, pp.
7618–7623.

Hoberock, L., 1977. A survey of longitudinal acceleration comfort studies in ground trans-
portation vehicles. In: Journal of Dynamic Systems, Measurement, and Control. Vol. 99.

Kant, K., Zucker, S. W., 1986. Toward efficient trajectory planning: The path-velocity
decomposition. The International Journal of Robotics Research 5, 72–89.

Kirk, J., March 2015. Dijkstra’s minimum cost path algorithm. Available at
https://se.mathworks.com/matlabcentral/fileexchange/
20025-dijkstra-s-minimum-cost-path-algorithm.

Kongsberg Maritime, 2018. Autonomous ship project, key facts about YARA Birkeland.
URL https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/
AllWeb/4B8113B707A50A4FC125811D00407045?OpenDocument

Kortenkamp, D., Simmons, R., 2007. Springer Handbook of Robotics. Springer-Verlag,
Berlin, Heidelberg, Ch. Robotic Systems Architectures and Programming, pp. 187–206.

Kuwata, Y., Wolf, M. T., Zarzhitsky, D., Huntsberger, T. L., Jan 2014. Safe maritime
autonomous navigation with COLREGs, using velocity obstacles. IEEE Journal of
Oceanic Engineering 39 (1), 110–119.

Loe, Ø. A. G., 2008. Collision avoidance for unmanned surface vehicles. Master’s thesis,
Norwegian University of Science and Technology, Trondheim, Norway.

Lussier, B., Chatila, R., Guiochet, J., Ingrand, F., Killijian, M.-O., Powell, D., 05 2019.
State of the art on dependability of autonomous systems.

M. Lavalle, S., Kuffner, J., 01 2000. Rapidly-exploring random trees: Progress and
prospects. Algorithmic and computational robotics: New directions.

NRK, May 2019. Her føres passasjerene over fjorden av en
selvkjørende ferge. Available at https://www.nrk.no/hordaland/
her-fores-passasjerene-over-fjorden-av-en-selvkjorende-ferge-1.
14563924.

98

https://www.futureagenda.org/insight/autonomous-transport
https://www.futureagenda.org/insight/autonomous-transport
https://se.mathworks.com/matlabcentral/fileexchange/20025-dijkstra-s-minimum-cost-path-algorithm
https://se.mathworks.com/matlabcentral/fileexchange/20025-dijkstra-s-minimum-cost-path-algorithm
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/4B8113B707A50A4FC125811D00407045?OpenDocument
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/4B8113B707A50A4FC125811D00407045?OpenDocument
https://www.nrk.no/hordaland/her-fores-passasjerene-over-fjorden-av-en-selvkjorende-ferge-1.14563924
https://www.nrk.no/hordaland/her-fores-passasjerene-over-fjorden-av-en-selvkjorende-ferge-1.14563924
https://www.nrk.no/hordaland/her-fores-passasjerene-over-fjorden-av-en-selvkjorende-ferge-1.14563924

Pedersen, A. A., 2019. Optimization based system identification for the milliAmpere ferry.
Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway.

RioTinto, January 2018. Rio Tinto autonomous trucks now hauling a quar-
ter of Pilbara material. Available at http://www.mining.com/
rio-tinto-autonomous-trucks-now-hauling-quarter-pilbara-material/.

ROS.org, November 2018. About ROS.
URL http://www.ros.org/about-ros/

Sang, L., Yan, X.-p., Wall, A., Wang, J., Mao, Z., 2016. CPA calculation method based on
AIS position prediction. Journal of Navigation 69, 1409–1426.

Scania, March 2019. Autonomous trucks on public roads in Singapore. Available
at https://www.scania.com/global/en/home/experience-scania/
features/autonomous-truck-platoon-in-singapore.html.

Sæther, B., 2019. Development and testing of navigation and motion control systems for
milliAmpere. Master’s thesis, Norwegian University of Science and Technology, Trond-
heim, Norway.

Thyri, E. H., 2018. Trajectory planning and following for autonomous passenger ferries.

Wärtsilä, 2018. Wärtsilä achieves notable advances in automated shipping with latest
successful tests. Available at https://www.wartsila.com/media/news/
28-11-2018-wartsila-achieves-notable-advances-in-automated-shipping-with-latest-successful-tests-2332144.

99

http://www.mining.com/rio-tinto-autonomous-trucks-now-hauling-quarter-pilbara-material/
http://www.mining.com/rio-tinto-autonomous-trucks-now-hauling-quarter-pilbara-material/
http://www.ros.org/about-ros/
https://www.scania.com/global/en/home/experience-scania/features/autonomous-truck-platoon-in-singapore.html
https://www.scania.com/global/en/home/experience-scania/features/autonomous-truck-platoon-in-singapore.html
https://www.wartsila.com/media/news/28-11-2018-wartsila-achieves-notable-advances-in-automated-shipping-with-latest-successful-tests-2332144
https://www.wartsila.com/media/news/28-11-2018-wartsila-achieves-notable-advances-in-automated-shipping-with-latest-successful-tests-2332144

100

Appendix A
Thruster Model

Thrust Model

The mapping between the RPM and thrust is based on data from a bollard pull test per-
formed on the ferry 06.06.2018 by Tobias Torben when he developed the thrust allocation
system. The data can be seen in Table. A.1. To make a model of the thrust as a function of
RPM, the data was imported to Matlab and a 5th degree polynomial was curve-fitted to the
thruster data. The fitted curve can be seen in Fig. A.1a. From the polynomial, an evenly
distributed data set of corresponding RPM and thrust values were calculated, for use in a
linear look-up table. The fitted curve and the brake-points can be seen in Fig. A.1b.

-1500 -1000 -500 0 500 1000 1500

-300

-200

-100

0

100

200

300

400

500

600

Bollard Pull Data

Fitted Curve

(a) 5th degree polynomial curve, fitted to the data
from a bollard pull test. The data is listed in Table.
A.1.

-1500 -1000 -500 0 500 1000 1500
-300

-200

-100

0

100

200

300

400

500

600

Fitted Curve

Lookup-table Brakepoints

(b) Brake-points relating RPM to thrust for the
thruster model look-up table.

Figure A.1: Curve-fitting of the RPM and thrust data.

101

Motor Speed [%] Positive Thrust [N] Negative Thrust [N]
5.0 0 0

10.0 29.0 0
15.0 59.0 0
20.0 69.0 0
25.0 88.0 9.8
30.0 122.0 29.0
35.0 166.0 49.0
40.0 200.0 69.0
45.0 222.0 88.0
50.0 277.0 111.0
55.0 322.0 144.0
60.0 399.0 199.0
65.0 411.0 211.0
70.0 433.0 233.0
75.0 466.0 266.0
80.0 477.0 277.0
85.0 499.0 277.0
90.0 500.0 288.0
95.0 500.0 299.0
100.0 500.0 300.0

Table A.1: Results from the bollard pull test performed with the milliAmpere ferry 06.06.2018.

Azimuth-angle Model

The dynamics of the azimuth angle is also modeled based on data from the same day of
testing. Data from step inputs in the azimuth angle setpoints are presented in Table. A.2.
Since this is all the data available it is assumed that the thruster rotates at a constant angular
velocity until it is close to the setpoint, and then ramps down the velocity until the azimuth
angle corresponds with the setpoint. The thruster is modeled with a velocity proportional
to the error

eθ = θset − θ, (A.1)

where θset is the azimuth angle setpoint and θ is the actual azimuth angle. A saturation
is added to match the maximum angular rate of the thrusters which is found from the test
data in Table. A.2. The azimuth angle model from Simulink is displayed in Fig. A.2.

Thruster Force Transformation

The two thrusters are modeled independent of each other and generates independent forces
Ffront and Frear at the azimuth angles θfront and θrear respectively. The vessel model
inputs a 3 DOF thruster force τthruster, therefore a transformation needs to be done. The
position of the thrusters can be seen in Fig. A.3. Both thrusters are placed on the front-aft
centerline of the vessel, symmetrical about the midship beam. The relationship between

102

Figure A.2: Azimuth angle modeling in Simulink. The angular velocity is set proportional to the
error, and saturated to max angular rate. The saturation value is found from the data in Table. A.2.

Step Start[deg] Step End[deg] Time [s]
0 360 9
0 180 4
0 90 2

360 0 9
270 0 6
180 0 4
90 0 1.9

Table A.2: Results from step input test of azimuth angle on the thruster system. The table gives
start value and end value of the step input, as well as the corresponding response time of the azimuth
thruster.

103

the thruster forces and angles and the 3 DOF force is

τthrusters =

 cos(θfront) cos(θrear)
sin(θfront) sin(θrear)

−lTAsin(θfront) lTAsin(θrear)

[Ffront
Frear

]
, (A.2)

where lTA > 0 is the front and rear thruster arm.

Figure A.3: Topside view of the thruster layout on milliAmpere. The ferry is symmetrical, and
hence the front and rear thruster arm is the same.

104

Appendix B
Additional Experimental Results

B.1 Transit 3
In Transit 3, the objects try to pass in front of the ferry. The transit runs the SP-VP
algorithm. An overview of the transit can be seen in Fig. B.1. The velocity profile velocity
profile is shown in Fig. B.2. The velocity has similar oscillations as have been seen earlier.
The cause for this is discussed in Section 5. This effect of the instability in yaw can also
be seen in Fig. B.1a where the heading and velocity is clearly not aligned, despite the
heading reference being constant, and aligned with the course reference.

B.2 Transit 5
In Transit 5, the objects try to pass in front of the ferry. Snapshots from the transit can be
seen in Fig. B.3. The transit runs the MP-VP algorithm. The velocity profile can be seen
in Fig. B.4. This is the transit scenario transit with where the ferry was the most unstable,
which is reflected both in the velocity reference in Fig. B.4 and in the heading and heading
reference in Fig. B.5. At one point, about 80s into the transit, the tracking-error in heading
is 70deg.

B.3 Transit 6
Transit 6 runs the SP-VP algorithm. The objects slow down as they get close to the ferry.
Snapshots are shown in Fig. B.6 and the velocity profile is shown in Fig. B.7. The transit
starts of by waiting for an object to pass, and thereafter proceed in transit velocity. During

105

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 28[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 52[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 88[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 128[s]

Figure B.1: Transit 3: Snapshots of the situation. Moving objects in red, ferry in blue, with green
heading vector and blue course vector.

0 20 40 60 80 100 120 140 160
-0.5

0

0.5

1

1.5

Velocity

Reference

Figure B.2: Transit 3: Velocity and velocity reference.

106

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 32[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 60[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 76[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 124[s]

Figure B.3: Transit 5: Snapshots of the situation. Moving objects in red, ferry in blue, with green
heading vector and blue course vector.

0 20 40 60 80 100 120 140 160 180 200
-1

-0.5

0

0.5

1

1.5

2

Velocity

Reference

Figure B.4: Transit 5: Velocity and velocity reference.

107

0 20 40 60 80 100 120 140 160 180 200
-120

-100

-80

-60

-40

-20

0

Heading

Reference

Figure B.5: Transit 5: Heading and heading reference.

this transit, the heading remained somewhat stable, as can be see in Fig. B.8. This is
reflected in the velocity, where it is able to track the reference without (big) oscillations.

B.4 Transit 8
Transit 8 runs the SP-VP algorithm. The objects have constant behaviour. In Transit 8
and Transit 9, the objects have a steeper approach angle to the path than the rest of the
transits. The algorithm starts off slowly until the objects pass, and speeds up for the rest
of the transit. This is very similar to typical simulations, and show clearly how the SP-VP
functions.

B.5 Transit 9
Transit 9 runs the MP-VP algorithm. The objects have constant behaviour, and have iden-
tical initial conditions as Transit 8. The algorithm branches out, and thereby keeps close
to transit velocity the whole transit, and arrives 20s earlier, compared to Transit 8.

108

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 28[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 60[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 96[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 136[s]

Figure B.6: Transit 6: Snapshots of the situation. Moving objects in red, ferry in blue, with green
heading vector and blue course vector.

0 50 100 150 200 250
-0.5

0

0.5

1

1.5

Velocity

Reference

Figure B.7: Transit 6: Velocity and velocity reference.

109

0 50 100 150 200 250
115

120

125

130

135

140

Heading

Reference

Figure B.8: Transit 6: Heading and heading reference.

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 36[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 52[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 60[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 76[s]

Figure B.9: Transit 8: Snapshots of the situation. Moving objects in red, ferry in blue, with green
heading vector and blue course vector.

110

0 20 40 60 80 100 120 140
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Velocity

Reference

Figure B.10: Transit 8: Velocity and velocity reference.

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) t = 28[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) t = 40[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) t = 72[s]

-100 -80 -60 -40 -20 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) t = 96[s]

Figure B.11: Transit 9: Snapshots of the situation. Moving objects in red, ferry in blue, with green
heading vector and blue course vector.

111

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5

Velocity

Reference

Figure B.12: Transit 9: Velocity and velocity reference.

112

Em
il H

jelseth Thyri
A

 P
ath-Velocity D

ecom
position A

pproach to C
ollision Avoidance for A

utonom
ous P

assenger Ferries

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Emil Hjelseth Thyri

A Path-Velocity Decomposition
Approach to Collision Avoidance for
Autonomous Passenger Ferries

Master’s thesis in Cybernetics and Robotics
Supervisor: Morten Breivik

June 2019

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Problem Description
	Contributions
	Previous Work
	Outline

	Theoretical Background
	Vessel Modelling
	Kinematics
	Kinetics

	Trajectory Tracking
	ROS

	Collision Avoidance System
	System Architecture
	Module Overview

	Single-Path COLAV System
	Object Representation
	Transformation to Path-Time Space
	Add Start and End Nodes
	Vertex Generation
	Vertex Cost Function
	Search for Best Vertices
	Generate Trajectory from Nodes

	Multiple-Path Augmentation
	Multiple Paths
	Transformation to Path-Time Space
	Start Nodes and Vertices
	Find Minimum Cost Path
	Heading and Course

	Reactive Object Monitoring
	Trajectory Feasibility
	Object Monitor

	Simulation Results
	Simulator
	Simulator Layout
	3 DOF Vessel Model
	Thruster Model
	Reference Filter
	Dummy Object Detection

	Scenario Overview
	Crossing 1 - Straight Path, Short Crossing
	Crossing 2 - Straight Path, Long Crossing

	Single-Path Algorithm
	Scenario 1, 6 and 7 - Measurement Noise
	Scenario 2 - Slow Down
	Scenario 3 - Going in Front
	Scenario 4 - Going Behind
	Scenario 5 - Follow COLREGs
	Scenario 10-12 - Region of Observation

	Multiple-Path Algorithm
	Scenario 41 and 51 - Slow Down
	Scenario 20-22 - Region of Observation

	Evaluation and Comparison
	Performance Metrics
	VO-Scenario 1
	VO-Scenario 2
	VO-Scenario 3
	VO-Scenario 4
	VO-Scenario 5

	Discussion

	Experimental Results
	Experimental Platform
	Testing Environments
	Experimental Results and Discussion
	Overview
	Transit 1
	Transit 2
	Transit 4
	Transit 7

	Discussion

	Conclusions and Future Work
	Bibliography
	Thruster Model
	Additional Experimental Results
	Transit 3
	Transit 5
	Transit 6
	Transit 8
	Transit 9

