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Problem description

In all major subsea industries, such as oil and gas and aquaculture, there is currently a
large and increasing demand for autonomous underwater vehicles (AUVs) to carry out
various types of inspection and intervention tasks. Very often, the need for autonomy
is based on a need for reducing the use of costly surface vessels required to carry out
underwater operations with remotely operated vehicles (ROVs).

To achieve high levels of autonomy in underwater robots, it is essential that
these robots can use machine vision, such as optical cameras or sonars, to map their
environment and navigate based on this map. This capability is the focus of this
project and requires that the robot can carry out SLAM (Simultaneous Localization
and Mapping), as well as autonomous motion planning and navigation in the mapped
environment. The project will be carried out in close collaboration with Eelume AS, a
spin-off company from NTNU developing underwater snake robots in cooperation
with Statoil and Kongsberg Maritime. The Eelume vehicles are designed to live in
docking stations on the seabed over extended periods in order to carry out operations
on subsea infrastructure (visual inspection, valve operations, etc) without the need for
surface vessel support. Autonomous navigation and mapping is an essential capability
for the upcoming autonomy of these vehicles.

The objective of this project is to implement underwater SLAM algorithms based
on optical cameras, where an Eelume robot is considered as the target platform. The
Eelume vehicle is a particularly relevant platform for SLAM since its long body allows
for a good spatial distribution of the cameras and lights used for mapping, thereby

i



enabling cameras and lights from different angles. The overall objective is to enable
the robot to develop a 3D map of its environment (such as the seabed, structures on the
seabed, or floating structures) and also to enable the robot to continuously determine
its own location as it moves in the mapped environment.

An additional objective is to develop algorithms where the vehicle autonomously
plans and executes motion with respect to the mapped environment, such as:

• station keeping based on visual odometry (by fixating on features in the camera
image).

• scanning around an object at a fixed distance.

• following a pipeline on the seabed.

An Eelume vehicle, as well as the lab basin of Eelume, will be made available to
this project work for experimental testing. The use of a simulator currently being
developed by NTNU and Eelume should also be considered for early testing.

As this task is intented to be worked on by three students it has been further
devided into three main elements, SLAM, control and detection.

The report shall be written in English and edited as a research report including
Abstract, Introduction with motivation, literature survey, contributions of the project
work, and the outline of the report. This is followed by the chapters describing the
results of the project work, simulation results and corresponding discussion, and a
conclusion including a proposal for further work. It is assumed that the Department of
Engineering Cybernetics, NTNU, can use the results freely in its research work, unless
otherwise agreed upon, by referring to the student’s work.
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Faglærer:
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Abstract

This report presents the work done in preparation for implementation of an underwater
visual SLAM algorithm in a underwater snake robot. In order to do good development
and evaluation of such a system a acoustic underwater localisation system have been
installed and tested in the pool at the Eelume lab. Further two stereo camera rigs have
been assembled and calibrated using two different camera models. The best resulting
system have been used to evaluate state-of-the-art visual SLAM algorithms in the
Eelume pool.
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Chapter 1

Introduction

This introductory chapter will briefly provide context for the material/results presented
in this report and give motivation and a description of the problem to be solved.
The scope of the work is then defined through a list of assumptions. Finally, the
contributions of the thesis are defined and elaborated.

In all major subsea industries, such as oil & gas and aquaculture, there is currently a
large and increasing demand for autonomous underwater vehicles (AUVs) to carry out
various types of inspection and intervention tasks. Very often, the need for autonomy
is based on a need for reducing the use of costly surface vessels required to carry out
underwater operations with remotely operated vehicles (ROVs).

To achieve high levels of autonomy in underwater robots, it is essential that
these robots can use machine vision, such as optical cameras or sonars, to map their
environment and navigate based on this map. This capability is the focus of this
project and requires that the robot can carry out SLAM (Simultaneous Localization
and Mapping).

There will be a focus on visual SLAM in this project, that is SLAM methods based
on optical cameras. The camera faces several challenges underwater:

• Turbidity.
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2 CHAPTER 1. INTRODUCTION

• Unstructured environment: few edges and features.

• Light scattering, refraction and blurring.

• Visual degradations induced by the medium properties.

These effects cause the cameras to have limited range and make it difficult finding
good geometric models and very difficult finding photometric models, (Corke et al.;
2013). However the camera provide a lot of information, and the ability to recognise
places it has been before are very useful during mapping, (Agarwal et al.; 2011; Bryson
et al.; 2013).

SLAM has gotten a huge boost lately due to the interest from autonomous car
industry, cheap quad copters and VR and AR as well as cheaper/smaller computational
power and cameras. Great work by the research community sharing open-cource code
and detailed publications. All this has resulted in great visual SLAM system working
well above water which are now entering industry (VR/AR/autonomous drones/self
driving cars etc..).

However there have been less work for under water use, due to more difficulty and
expensiveness of generating test data as well as less people are interested in it. But
now, when the above water methods have stabilised, reached a satisfactory level of
robustness and accuracy it is time to look under water . Even though the under water
interest is less than above water , the need is much bigger. There are huge unexplored
areas under water . There is no gps signal. Humans can not be under water . This
is what robotics should be all about. This is the ideal usecase for robotics: Creating
robots that can do things humans can not do. Good under water SLAM is the key
component for truly autnoumous under water robots.

Why visualunder water SLAM: Cheap sensors, detailed mapping, perhaps the
most complex sensor available. If the visualpart is understood adding additional
sensor data such as SONAR would be easier as the information is much closer to the
actual SLAM problem: It is already geometric information. While visualsensors provide
photometric info which would have to be preprosessed using keypoints and descriptors
and descriptor matching to get geometric data which then can be used in slam. (Or
even more complicated use direct methods which do SLAM using the photometric info
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directly.) So if we need visualdata in our problem, it would be reasonable to get that
working first.

1.1 Assumptions

For this project it is assumed that the snake robots will operate in structured envi-
ronments without large amounts of turbidity our other occlusions. For the project
all test will be done in a indoor pool, but the snake-robots are planned to be used
for inspection and maintenance, and thus it is naturally to assume they will operate
in man-made environments in real scenarios as well. Further they are planned to be
used at around 300 meters depth, where there are little fish and turbidity, thus these
assumptions are not too unrealistic. It is also assumed that there are strong uniformed
lightening covering the area the snake robot is operating. These are met in the pool,
however it is uncertain if these will be met in real scenarios, but keep in mind the
shape of the snake robot allow for good spacing between camera and the lights, thus
it is possible these assumptions are met. Further it is assumed that the robot will move
relatively smooth, without huge roll movements.

1.2 Background and Contributions

Contributions: Necessary preparations for implementing an under water visualSLAM
method.

• Underwater acoustic positioning system setup and calibration, including creating
ROS driver.

• Camera setup and calibration.

• Literature review

• Creation of under water dataset

• Evaluation of modern visualSLAM methods under water .



4 CHAPTER 1. INTRODUCTION

Except for the ROS driver for the underwater acoustic positioning system, I have
not contributed to very much new source code. Most of the results are based on
open source code, however there were quite some work fixing old dependencies and
maintaining the source code.

• Camera setup:

– ROS Point Grey camera. driver1.

– ROS OpenCV video streamer2.

• Camera calibration:

– ROS camera calibration3

– Kalibr4 (Oth et al.; 2013).

– Pinax model5 (Łuczyński et al.; 2017)

• SLAM methods:

– ORB-SLAM26 (Mur-Artal and Tardos; 2016)

PhD candidate Marco Leonardi provided nice build guide for the Pinax model,
including a fix to an old, very tricky broken build dependency. He also helped with
a lot of the recordings for camera calibration and the final data sets. Master student
Øystein Barth Utbjoe also helped with recording calibration data sets as well as setup
and calibration of the underwater acoustic positioning system.

1.3 Outline

The report is organised as follows: In Chapter 2 we describe the the problem of
optimisation based SLAM, including a brief probabilistic formulation. Then in chapter 3

1https://github.com/ros-drivers/pointgrey_camera_driver
2http://wiki.ros.org/video_stream_opencv
3https://github.com/ros-perception/image_pipeline
4https://github.com/ethz-asl/kalibr
5https://github.com/pinax/pinax-models
6https://github.com/raulmur/ORB_SLAM2

https://github.com/ros-drivers/pointgrey_camera_driver
http://wiki.ros.org/video_stream_opencv
https://github.com/ros-perception/image_pipeline
https://github.com/ethz-asl/kalibr
https://github.com/pinax/pinax-models
https://github.com/raulmur/ORB_SLAM2
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we go deeper into how some selected popular SLAM methods work and discusses
which would be suitable to try underwater. In chapter 4 we go through the preparations
and experiments conducted during the project, while in chapter 5 we conclude and
discuss future work.
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Chapter 2

SLAM

SLAM refers to the problem of estimating the trajectory of a robotic vechile over time
while simultaneously estimating a map of the surrounding environment, Cadena et al.
(2016).

SLAM or simultaneously localisation andmapping is a fundamental problemwithin
robotics. It allow the robot to observe its environment with respect to itself, thus giving
spatial awareness. We will focus on visual SLAM, where one uses cameras as sensors,
but there are also SLAM systems for other sensors like lidar. In theory one could
perform SLAM with any sensor suit where one is able to observe the environment and
recognise places one has been before, so called place recognition. Topics similar to
visual SLAM include structure from motion (SFM) and visual odometry (VO). Visual
odometry is the problem of estimating the movement of a camera system purely by
using the images from the cameras and is the buidling block of any visual SLAM
method. Structure from motion is the general problem of generating 3D structures
from 2D images. This is possible by looking at the structures from different views
etc. by moving the camera. In order to generate the 3D structures SFM first needs to
estimate the pose of the cameras when the 2D images where taken. Thus it solves the
same problem as SLAM. However SFM generally do not run in real time, the most
known example of SFM, "Building Rome in a Day", Agarwal et al. (2011), actually used
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Landmarks

Camera

Figure 2.1: Simple 2D Visual Odometry: estimate the trajectory of the camera by
tracking the landmarks in each image. Visual SLAM is an extension where one also
estimate a global map of the landmarks and handles loop closures.

one day (21 hours) to complete its calculation using a cluster with 500 compute cores,
still impressive considering it was 150K images, mostly taken by tourists. SLAM and
VO needs to run in real time, allowing the robot to make decisions based the current
time instead of the present.

The input to a SLAM algorithm is a stream of noisy measurements Z = {zi : i =
1, . . . ,nz } from the real world and the objective is to estimate the state X. Which
consist of the state of the robot and the map of the environment.

X =


η

m

 =

Robot state

Map


In visual SLAM, the robot state is normally just the ego-motion of the robot

represented as a set of 3D poses, η = {xi : i = 1, . . . ,nx }, sampled from the robot
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trajectory.

xi = Tbi ,b0 =

Rbi ,b0 tbi ,b0

01×3 1

 (2.1)

Here the pose is represented using homogeneous transformations matrices, T ∈

SE(3) consisting of a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3, but
it could also be represented using other representations like quaternions or twists.
The subscript bi ,b0 represents time instances of the coordinate systems used. For
visual SLAM bi would be the camera coordinate system for the current pose and b0
would typically be the first camera pose. From the visual odometry one get the pose
of the camera relative to the last frame, see figure 2.1, then one can accumulate the
measurements to get the position relative to the first frame.

Tbi ,b0 = Tbi ,bi−1Tbi−1,b0 (2.2)

For more complete SLAM systems, perhaps with multiple sensors bi could be the
body frame at index i and b0 could be the inertial frame I . The robot state could also
include sensor information like the intrinsic parameters of the camera or, in case of
visual-inertial SLAM, velocity of the robot and bias estimates for the IMU.

For visual SLAM the map is typically a set of landmarksm = {li : i = 1, ...,nl }
represented as 3D points.

2.1 Probabilistic formulation

Like most estimation problems, the fundamental problem of SLAM is formulated in a
probabilistic framework. One can think of probability theory as the bridge between
the well-defined mathematics and the random real world. In a probabilistic framework
the state is modelled as stochastic variable, Xstoc , with a probability density function
pXstoc (X). Such that the probability that the stochastic variable Xstoc is equal to some
value X is pXstoc (X). This is written as Pr(Xstoc = X) = pXstoc (X). We simplify
the notation pXstoc (X) to p(X) as is done in Cadena et al. (2016), which a lot of our
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probabilistic notation is based on, and most of the literature.
The SLAM problem is usually formulated as a maximum a posteriori estimation

problem, that is, we define the state estimator X̂MAP as the assignment of the state
Xstoc that maximise the probability of obtaining the given measurements.

X̂MAP = argmax
X

p(X|Z ) (2.3)

Using the Bayes theorem we can reformulate the problem

X̂MAP = argmax
X

p(Z |X)p(X)

p(Z )

= argmax
X

p(Z |X)p(X)

Where p(Z |X) is the likelihood of the measurements Z given the state X. p(X)

is a prior probability of the state. The last equality follow from the fact that p(Z ) is
independent of X.

Remark 2.1.1 If we do not have any prior information or p(X) is a uniform distribution,
then (2.3) becomes equal to a maximum likelihood estimator.

Assuming the measurements Z are independent, we can factorise (2.3) into

X̂MAP = argmax
X

p(X)

nz∏
i=1

p(zi |Xi ) (2.4)

where Xi is all the states that zi is dependent upon, for visual SLAM, where zi is a
image, Xi represents all the landmarks visible in that image as well as the pose of the
camera when the image was taken.

Definition 2.1.1 (Factor graph, Kschischang et al. (2001)) Supposeд(x1, . . . ,xn) fac-
tors into a product of several local functions, fj each having some subset X j of {x1, ...,xn}
as arguments; i.e., suppose that
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д(x1, . . . ,xn) =
∏
j ∈J

fj (X j ) (2.5)

A factor graph is a bipartite graph that expresses the structure of the factorisation
(2.5). A factor graph has a variable node for each variable, a factor node for each local
function, and an edge-connecting variable node, xi to factor node fj if and only if xi is an
argument of fj .

If we define a factor node ϕi as

ϕi (Xi ) =


p(zi |Xi ), for i ∈ {1 . . .nz }

ϕpr ior = p(X), for i = 0
(2.6)

we see that (2.4) can be written as

X̂MAP = argmax
X

nz∏
i=1

ϕi (Xi ) (2.7)

which by definition 2.1.1, is a factor graph optimisation problem.
As introduced by Klein and Murray (2007) we separate between the backend and

frontend of a SLAM method. The backend solves (2.7), while the frontend sets it up.
That includes collecting all the necessary data, do data association and estimate an
initial solution (Huang and Dissanayake; 2016).

If we had all the data available from the go, we could first run the frontend one
time, then run the backend. This would be a typical SFM problem. Since a SLAM
algorithm need to run in real time, new measurements arrive continuously and the
frontend and backend need to interact and run continuously. There are several ways
of implementing this interaction, we will look into how some of the most popular
methods have done it. See for example figure 3.2.

2.2 Classification of SLAMmethods

Often when talking about SLAM methods we classify them by two measures:



12 CHAPTER 2. SLAM

Figure 2.2: Factor graph example. Green circle represents the robot states, the brown
circles are the map represented as landmarks. The small black circles represents the
factors. The lines shows which variables each factor are depending on.

• Direct vs Indirect

• Sparse vs Dense

Sparse vs dense simply indicates how dense the resulting map is.
An direct SLAM/VO method optimises directly over the image intensities. Ideally,

to determine how much the camera have moved since last frame, a direct method uses
a complete model of the camera to warp the current image step by step until it looks
exactly like the last frame. The camera pose and map representation that made the
two images look exactly the same are then the solution. For direct methods the factor
ϕi (Xi ) becomes equal the photo-metric error. The photo-metric error can be thought
upon as an error describing how similar two images are.

An indirect SLAM/VO method reduces the problem into a geometric problem by
first using image features and descriptors. The first thing a indirect method does, to
find out howmuch the camera have moved since last frame, is to extract image features
and match them between the two frames. Then the reaming problem is similar to as a
direct method. It uses a geometric camera model to tell which pose of the camera and
3D position of the map-points that makes the points in both the two images correspond
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to the points in the map. For indirect methods the factor ϕi (Xi ) becomes equal the
reprojection error, and the optimisation problem (2.7) is often referred to as Bundle
adjustment. The reprojection error is an error measuring the sum of distances between
measured points in a image and the estimated 3D points reprojected back into the 2D
image.

While a direct method ideally uses the entire image, all the information available,
a indirect method looses a lot of the information when reducing the problem to a
geometric model.



14 CHAPTER 2. SLAM



Chapter 3

Literature review

Wewill look more into the relevant literature and available open source SLAMmethods,
while trying to keep a focus on optimisation based visual SLAM. First a quick review
of the reviews. Table 3.1 list some of the most relevant resent surveys both for under
and above water.

Table 3.1: Relevant surveys

Year Citation Topic

2018 Chen, Zhu, Li and You Visual-Inertial SLAM
2018 Delmerico and Scaramuzza Visual-Inertial Odometry
2018 Saputra et al. Visual SLAM in dynamic Environments
2017 Lu et al. Underwater Optical Image Processing
2017 Wang, Zhang and An SLAM on unstructured lunar environment
2016 Cadena et al. Past present and future of SLAM
2016 Lowry et al. Visual place recognition
2015 Hidalgo and Braunl Underwater SLAM techniques
2015 Massot-Campos and Oliver-Codina Underwater 3D reconstruction
2014 Paull et al. AUV Navigation and Localisation

In the past most underwater navigation and localisation methods were based on
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expensive inertial sensors or installed beacons in the region of interest, but with
the advances of SONAR and optical SLAM there is a new future in sight where the
limitations of pre-installed beacons can be surpassed Paull et al. (2014). Massot-Campos
and Oliver-Codina (2015) performs a comprehensive classification of different sensors
and techniques used for underwater 3D reconstruction. For many methods they even
includes a estimate of accuracy and resolution. They estimate that stereo vision and
SfM have less than 3 m range in typical seawater. Turbidity and occlusions like fish is a
challenge. So far SLAMmethods have typically been assuming a constant environment,
but allowing for dynamic environments are in progress (Saputra et al.; 2018).

Lu et al. (2017) presents a review of the state-of-the art within underwater optical
image processing techniques, for both hardware (Polarization, range-gate, stereo
imaging etc..) and software techniques (Wavelenght compensation based on physical-
and non physical- models as well as colour reconstruction ). One interesting method
by Gracias et al. (2008): they presented a solution to the shallow water flickering
problem that arises because of the waves effect on the sunlight. They observed that
neighbouring images from a video sequence differ in two ways, one is related to the
illumination field and the other to the registration error, caused by imperfect image
stitching. Using a low pass filter, they were able to separate the difference caused by
flickering, then use it to correct the original image while maintaining the sharpness of
the image. However they do not state their run time, and for every image the process
includes extracting and matching robust features and computing the temporal median
of several images, thus it could be challenging to incorporate it in a real time SLAM
system. However it could be used for instance only over the keyframes.

3.1 Model-assisted bundle adjustment

Model-assisted bundle adjustment is an interesting topic within SLAM, particularry
in our case where our snake robot will operate in desert areas at the bottom of the
sea with only a few man-made structures. There will exist models of the man-made
structures, and model-assisted bundle adjustment is about including these model into
the optimisation problem. Early work on model assisted bundle adjustment used for
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Figure 3.1: Factor graph with map prior.

face reconstruction, recently Geva et al. (2015) in which an UAV surveys a remote area.
They used digital terrain models to regularise the position of 3D features observed
from the camera mounted on the UAV.

Ozog et al. (2017) uses cad models of ship hulls as prior for mapping using BA using
DVL and visual features. They show that their implementation is a special case of the
Gaussian max-mixture models proposed by Olson and Agarwal (2013). See figure 3.1,
the prior on the model position is created from the range measurements of the DVL,
mapped to the model using generalised-icp by Segal et al. (2009).

Something similar could been experimented in our case, only we could use the
result from the object detection as a prior for the detected object when inserted into
the SLAM-map.
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3.2 DSO

Direct sparse odometry by Engel et al. (n.d.) is the firs VO method to be both direct
and sparse. Direct methods benefits of precise camera models including auto-exposure
and gamma correction. Thus benefits more from the new cameras which are designed
to be used in perception task.. DSO have performed very well above water. Direct
methods, requires a good model and calibration of camera (Engel et al.; n.d.). Not only
geometric properties, but photometric as well. This becomes complicated underwater,
colour changes with depth and water conditions (Lu et al.; 2017). The paper states
that good calibration is extremely important, our results does not reflect this, thus we
would expect huge errors, and probably divergent solutions.

Table 3.2: Extensions of DSO

Year Name Citation Extension Source

2016 DSO Engel et al. Original code
2018 LDSO Gao et al. Loop closure mechanisme code
2018 Omnidirectional DSO Matsuki et al. Omnidirectional
2018 VI-DSO von Stumberg et al. Incorporate IMU measurments
2017 Stereo DSO Wang, Schworer and Cremers Stereo cameras code
2018 Deep DSO Yang et al. Deep learning for depth prediction

Matsuki et al. (2018) extended DSO to work with omnidirectional cameras. They
state the importanse of having a large field of view (FOV) during VO/SLAM, as the
large FOV will make it possible to track the same areas for longer, giving a more stable
and robust result.

3.3 SVO

Semi-direct visual odometry by Forster et al. (2017, 2015). They try to combine the
best of direct and indirect methods, by utilise all available information during tracking
with directly minimising the photometric error of image pacthes in gradient rich areas.
And the well defined BA for indirect methods by extracting features in keyframes.

https://github.com/JakobEngel/dso
https://github.com/tum-vision/LDSO
https://github.com/JiatianWu/stereo-dso
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Figure 3.2: Distrobution between backend and frontend in ORB_SLAM2

3.4 ORB-SLAM

ORB-SLAM (Mur-Artal et al.; 2015; Mur-Artal and Tardos; 2016, 2017) is a sparse,
indirect method, based on PTAM by Klein and Murray (2007). It uses ORB-features
Rublee et al. (2011) for tracking, mapping and place recognition.

Figure 3.2 shows the different parts of ORB-SLAM, categorised by backend and
frontend as well as how the SLAM problem is distributed in 4 threads to achieve real
time operation. The first thread, tracking is running the fastest and has highest priority
as it needs to run in real time. For each new image the tracking thread extracts ORB
feature from the image and initialises the pose of the camera when the image was
taken by minimising the reprojection error with points matched with the last frame
only. Then using this as a initial pose it performs local motion bundle adjustment.
The local mapping thread runs almost in real time. While the loop closing and full BA
threads are running in the background updating the map once in a while when the
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heavy optimisation have converged.
ORB-SLAM uses DBoW2 Galvez-López and Tardos (2012) for place recognition.

DBoW2 is a bag of words method. Simply put it discretizes the Keyframes into a set of
visual words by comparing the ORB-descriptors to a pre-trained bag of words. Then it
stores the words of the Keyframe in a tree sorted by these visual words, such that it is
very fast and easy to find Keyframes with a lot of the same visual words.

The backend uses the Levenberg-Marquardt implemented in g2o (Kummerle et al.;
2011) for factor graph optimisation.

The frontend uses max ratio test (Lowe; 1999) and cross-check as data-association
enhancement.

Table 3.3: Extensions of ORB-SLAM

Year Name Citation Extension Source

2018 GVORB Chen, Hu, Zhang, Shi and Li Incorporate GNSS measurments
2018 ORBSLAMM Daoud et al. Use multiple maps code
2017 VIORB Mur-Artal and Tardos Incorporate IMU measurments code
2017 PL-SLAM Pumarola et al. Include lines as features
2016 ORB-SLAM2 Mur-Artal and Tardos Extend to Stereo and RGB-D code
2016 MultiCol-SLAM Urban and Hinz Multiple non-overlapping cameras code
2015 ORB-SLAM Mur-Artal et al. Original code

ORB-SLAM is a very popular method in the visual SLAM community where new
methods often compare their results against ORB-SLAM. ORB-SLAM is also often used
as a base, witch new papers extends or modify with their contributions. Some are
listed in Table 3.3.

Urban andHinz (n.d.) extended ORB-SLAM to use any rigidly coupledmulti-camera
systems, even if the cameras are not overlapping. They achieved this by modifying the
key-frames to what they call Multi-Keyframes, where each Multi-Keyframes consists
of the images from all the cameras. An interesting problem would be to extend this
work to non-rigid multi-camera systems, where the cameras could move relative to
each other, but with known movement. For instance where there are cameras which
are placed both on the robot base and on a robot arm connected to the base.

https://github.com/hdaoud/ORBSLAMM
https://github.com/jingpang/LearnVIORB
https://github.com/raulmur/ORB_SLAM2
https://github.com/urbste/MultiCol-SLAM
https://github.com/raulmur/ORB_SLAM


3.4. ORB-SLAM 21

To combat low textured scenes Pumarola et al. (2017) added lines as features to be
used in the optimisation. They focused on computational efficiency by using LSD by
von Gioi et al. (2012) for line detection and the relational graph strategy by Zhang and
Koch (2013) for line matching.

Based on the theory of on-manifold preintegration by Forster et al. (2016), Mur-
Artal and Tardos (2017) extends ORB-SLAM to, in a tightly manner, include IMU
measurements. They add both velocities and IMU biases as nodes in the factor-graph
optimisation problem discussed in chapter 2.

ORB-SLAM as well as most other of the current methods only operates with one
map, one big global map. If the robot looses tracking and thus looses its location in
the map, ORB-SLAM tries to relocate in the map by comparing new frames against
old key-frames. If exploring new areas the robot often wont return to the same place
it have been before, thus it will not be able to relocate its position, and be lost. Daoud
et al. (2018) proposes a solution; instead of trying to relocate in the map after lost
tracking, the robot simply initialises a new map, mark it as the active map and stores
the old map. If it returns to a location in the old map, it then merges the two maps.
Their method can also be used for multi-robot SLAM, where there are multiple robots
exploring the same area, continuously sharing and merging their maps.

Lastly Chen, Hu, Zhang, Shi and Li (2018) incorporates GNSS measurements. Even
though they add two additional threads to the system, they follow the same factor-
graph representation and optimisation by adding GNSS measurements as priors to the
Keyframes.

3.4.1 Discussion

Special designed cameras with exact mathematical models both for intrinsic as well as
photometric combined with online estimation of the water state, like salinity, temper-
ature, and pressure could give rise to direct underwater methods, which potentially
could also track better than indirect methods in feature less areas. However until then,
indirect methods have an advantage over direct methods because of the lack of precise
camera models under water, which direct methods suffer more than indirect methods
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(Engel et al.; n.d.). Thus we will focus on ORB-SLAM2 in this project, as ORB-SLAM2
is still considered state-of-the-art within indirect methods.



Chapter 4

Experiments

To improve and test our SLAM methods we need data sets or test facilities where we
can evaluate and compare the results. For above water there exists several good public
datasets like Burri et al. (2016) and Geiger et al. (2013). However for underwater use
there exist, to the knowledge of the author, no public available datasets with ground
truth. Codevilla et al. (2004) made public a dataset where they tested the robustness of
features with regards to changing turbidity. They used a small thank with a image of
the seabed in the bottom and a fixed camera pointed at the image, then they added milk
to simulate turbidity. Ferrera et al. (n.d.) used the state of the art SFM method Colmap
Schonberger and Frahm (2016) to estimate ground truth in real world images acquired
with an ROV. Duarte et al. (2016) created a simulated dataset using the Underwater
Simualtor1 (UWSim) by Prats et al. (2012).

To generate ground truth for underwater one could use underwater cameras
combined with reflective markers, but such systems are expensive and requires clear
water. One could also use a fixed setup with rails but that is not mobile and is very
restrictive for possible motions. We decided to try an acoustic positioning system.
Unlike vision based systems it is capable of estimating position in turbid waters and
it is mobile giving the possibility to do testing in different environments. It might

1https://github.com/uji-ros-pkg/underwater_simulation
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https://github.com/uji-ros-pkg/underwater_simulation
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not be as accurate as the two previously mentioned options, but when it comes to
underwater SLAM we would argue that it is more important to evaluate robustness
regarding different environments and turbidity than very precise accuracy.

4.1 Setup

We have performed our experiments in the pool at the Eelume lab. The pool is around
6 m long, 3.6 m wide and 1 m deep. See figure 4.1 and 4.3. An underwater GPS system
from Waterlinked was placed in the pool.

4.1.1 Acoustic positioning

We have strategically placed the acoustic receivers for the underwater GPS system in
the pool to get as big baselines as possible while avoiding metal objects and occlusions,
see figure 4.1. We custom made wood structures to keep the receivers steady in the
pool without damaging the pool surface, see figure 4.2.

d1 [m] d2 [m] d3 [m] d4 [m]
0.43 0.42 0.38 0.39

Table 4.1: Measured depth for each receiver.

l12 [m] l13 [m] l14 [m] l23 [m] l24 [m] l34 [m]
3.66 3.87 2.93 2.92 24.54 2.52

Table 4.2: Measured distance between the four receivers.

The coordinate system used for the Waterlinked underwater GPS system, uwдps ,
is defined with the xy-plane at the water surface, the z-axis perpendicular to the water
surface pointing down, origo right above the position of receiver 1 and x-axis going
along the water surface passing right above the position of receiver 2. See figure 4.3a.
First we measure the depth of all the receivers, di i = 1, 2, 3, 4, relative to the water
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Figure 4.1: Pool at the Eelume lab used for experiments, with acoustic receivers marked
with red arrows in the image.
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Figure 4.2: Placement of the acoustic receivers at around 0.4 m depth.
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surface, see table 4.1. All the receivers are placed around 0.4 m depth, with the biggest
difference being 5 cm. Then we measure the distance between all the receivers notated
as li j for distance between receiver i and j, see table 4.2. These distances are between
2.5 m and 4.5 m, thus when calculating the xy-position of the receivers we assume
they are laying at the same depth, i.e we do not take the difference in depth into
account. Using this assumption and the defined uwдps coordinate system the position
of receiver 1 and 2 are directly given, while 3 and 4 are found by simple triangulation:

p
uwдps
1 = [0, 0, d1]⊤ (4.1)

p
uwдps
2 = [l12, 0, d2]⊤ (4.2)

We use the law of cosines to find the angle between the line going through receiver
2 and 1, and the line going through receiver 1 and 3, see figure 4.3a.

θ213 = arccos
l212 + l

2
13 − l223

2l12l13
(4.3)

This angle corresponds to the angle of the position vector of receiver 3 in the uwдps
coordinate system. Thus the position is directly given as:

p
uwдps
3 = [l13 cosθ213, l13 sinθ213, d3]⊤ (4.4)

We calculate the position of receiver nr. 4 similarly, but by using the distance l14
instead of l13. Finally we use the distance l34 as a quality check. Using our triangulated
position of receiver 3 and 4, the distance l34 should be 252.4 cm while the measured
distance was 252 cm, suggesting accurate measurements.

To evaluate the system with lack of ground truth we performed some static mea-
surements. We placed the locator/transmitter at a fixed, known position, then we
collected several measurements. See figure 4.3b. We performed two rounds of mea-
surements, each round consisting of four measurements, one nearby each receiver.
The first round, marked in red, we placed the transmitter close to the receiver. The
second round, marked in green, we placed the locator closer to the middle of the
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Figure 4.3: Underwater gps setup and experiment.
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pool. As one can see from the figure we have a case of relative high precision, but
low accuracy as there are in general a large bias, the mean error is as high as 0.47
m, but mostly low standard deviation, 0.1 m to 0.01 m. The bias tends towards the
middle of the pool. One possible reason being that reflections from the walls causing
perceived longer travel distances than reality. We did this experiment two times, the
first time the receivers were as close to the walls of the pool as possible, the second
time we moved the receivers approximately 30 cm towards the middle of the pool, but
there were no significant difference in the performance. We have been in dialogue
with Waterlinked, they inspected our setup and are working on software updates to
increase performance for use in pools and tanks, therefor we decided to wait for the
software update before performing more experiments.

4.1.2 Cameras

We have used two sets of stereo cameras, the first stereo camera consists of two FLIR
(previosly Point Grey) Blackfly 1.3 MP GigE PoE cameras, further refereed to as just
Blackfly. They have global shutter, 1288 x 964 pixel resolution at 30 FPS. The Blackfly
cameras are placed inside custom made waterproof containers with a flat 3.6 mm
Plexiglass in front, see figure 4.4a. We are using the ROS pointgrey camera driver2 to
feed the image streams into the ROS topics. We are using software synchronisation to
trigger the cameras at the same time. However, what turned out to be a problem, the
cameras are equipped with a magnifying lens.

The other set of cameras are two Teledyne Bowtech Divecam-720-AL, further
refereed to as Divecam. They have 720x576 pixel resolution, rolling shutter, 25 FPS.
They are made for underwater use with a 3.6 mm thick sapphire glass lens rated for
1000 m with a 91 ◦ diagonal field of view (FOV) in air and 65 ◦ in water. To create
a stereo setup we mounted two of them to a piece of thick wood slightly pointing
towards each other to increase the common field of view of the two cameras, see
figure 4.4b. The Divecams are transmitting the images as analogue data, and are thus
combined with a Z3 Technology FSDI-DCK-13 encoder. We use the ROS OpenCV

2https://github.com/ros-drivers/pointgrey_camera_driver

https://github.com/ros-drivers/pointgrey_camera_driver
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(a) Blackfly underwater stereo camera. (b) Teledyne Divecam stereo camera.

Figure 4.4: Underwater stereo cameras used for experiments. Both stereo cameras
have a baseline of 20 cm.

video streamer3 to publish the image streams to their ROS topics from the encoder.

4.2 Camera calibration

Underwater geometric camera models are a bit tricky due to the water-glass-air inter-
face. The light rays changes direction when passing between materials with different
refraction indexes. The normal approach have been to ignore this effect and absorb
the errors into the standard camera parameters, particularly the radially lens distor-
tion (Shortis; 2015). However Kunz and Singh (2008) argued that this is a significant
modelling error, particularly if the object of interests are at varying distances from
the camera. A more general geometric correction solution is developed for plane
port housings in: Jordt-Sedlazeck and Koch (2012) where they employ a two step
approach of first calibrating the camera on land, then calibrate the housing underwater.
Łuczyński et al. (2017) presents Pinax Model as it combines aspects of a virtual pinhole
model with the projection function from the axial camera model. See figure 4.5b, the
stapled line represents the refraction corrected light-ray. It allows pre-computation of
a lookup-table for very fast refraction correction of the flat-pane with high accuracy.
The model takes the refraction indices of water into account, especially with respect
to salinity, and it is therefore sufficient to calibrate the underwater camera only once
in air. It is demonstrated by real world experiments with several underwater cameras

3http://wiki.ros.org/video_stream_opencv

http://wiki.ros.org/video_stream_opencv
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Figure 4.5: Water-glass-air interface refraction. The light-rays changes direction when
they passes between the different materials.

in different salt and sweet water conditions that the proposed process outperforms
standard methods. Among others, it is shown how the presented method leads to
accurate results with single in-air calibration and even with just estimated salinity
values.

We have gathered 4 calibration sets, two for each stereo camera, one above water
and one under water. Then we have for both cameras tested two camera models:

1. The Pinhole model with radial distortion.

2. The Pinax model by Łuczyński et al. (2017).

At last we compared the reprojection error for the two models on the underwater
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datasets.

4.2.1 Calibration data-set

For the Blackfly stereo setup we took around 100 images with 2 seconds interval while
we kept the camera fixed and moved the calibration board around, both in air and
underwater. While for the Divcam stereo setup we used the default calibration method
in ROS which is based on opencv. While one move the calibration board around,
the ROS calibration algorithm will automatically and in real time save the images it
find good enough. Thus these data sets contains less images, 30 and 40 images for
underwater and in air respectively, but each image contains more unique information
compared to the Blackfly calibration set.

Unless the used camera model is perfect, it will often perform best when the objects
of interest typically are in the same distance from the camera as the calibration pattern
was during the calibration. The Blackfly cameras are equipped with magnifying lenses
thus we needed to keep the calibration board at least 2.5 m distance in order to get
the entire board in on image, even further to get the entire board in both the left and
right images from the stereo camera. From figure 4.7 we also see that the spread in
distance from the camera is larger for the Blackfly camera than the Divecam. This is
largely because the Blackfly has higher resolution images, and less field of view, thus
it is able to accurately detect the calibration pattern all the way across the pool. The
Divecam has a wider field of view and less resolution thus it only manged to detect
the calibration pattern at maximum 2.5 meters distance.

We used the ROS camera calibration node when gathering the calibration set for
the Divecam, where every image of the calibration board where checked live as we
recorded, and if it could not detect the calibration pattern it did not save the image. We
suspect that this calibration pattern detector, which ran in real time while we recorded
the images, performed worse than the ones used later (Matlab and Kalibr) when we did
a deeper analysis, but since it only saved the images when it could detect the pattern,
we can not verify this hypothesis before we can record new images. In other words
we discarded a lot of the raw data from the experiments too soon and as a result the
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Figure 4.6: Calibration board used. A machine painted 18x10 chessboard pattern, with
5x5 cm squares, on a glass plate. The paint started to fall off so we kept it together by
using black and white tape, we made sure to only tape within the squares to not effect
the detected pattern.
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(a) Blackfly underwater stereo camera. (b) Teledyne divecam stereo camera.

Figure 4.7: Extrinsic visualisation of the underwater calibration data sets. Note that for
the Blackfly calibration set the distance between the calibration board and the camera
varies almost 2.5 m, while for the Divecam it only vary around 1 m. Also note that
because of the magnifying lens mounted on the Blackfly cameras it can not detect the
calibration board at distances closer than 2.5 meter.

spread of detected calibration patterns in the Divecam calibration set probably could
have been better, and should be improved in future work. But we learned an important
lesson, that one should be extremely careful in disregarding and removing raw data
from experiments.

4.2.2 Pinhole

The Pinhole camera model is the oldest and most used camera model, with only 4
parameters it is very simple, but effective. We have used it in combination with a
radial distortion model with two parameters. For underwater use it is fundamentally
wrong as it do not take into account the refraction caused by the water-to-glass and
air-to-glass interface, however as demonstrated in Łuczyński et al. (2017) it will still
work reasonably well if the object of interest stays at a fixed distance from the camera
and the pinhole model is calibrated for this exact distance (by keeping the calibration
board at this distance during calibration).
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4.2.3 Pinax

As an alternative to the Pinhole model we have tested the Pinax model by Łuczyński
et al. (2017) for our underwater camera model. The Pinax model is a geometric camera
model for underwater camera systems where the camera is shielded from the water by a
flat-pane interface, e.g. a glass window. It is a combination of the pinhole camera model
and the axial camera model. Unlike most methods used for underwater geometric
camera calibration it only needs one in-air calibration. Then it is able to calculate
the underwater projection matrix and distortion effects based on four physical values
which needs to be known:

• d0 - Distance between the center of projection of the camera and the glass
window.

• d1 - Thickness of the glass.

• nд - Refraction index of the glass.

• nw - Refraction index of the water.

Table 4.3: Parameters used in the Pinax model for the Divecam stereo setup. and Austin
and Halikas (1976). The same parameters where used for both left and right cameras
in each stereo setup.

w [pix] h [pix] d0 [mm] d1 [mm] nд nw

Divecam 720 676 0.5 3.6 1.768 1.334
Point Grey 1288 964 8 19 1.492 1.334

Table 4.3 shows the parameters used for the Pinax model, the glass used in the
Divecam is made of Sapphire glass while the one used in the Blackfly is Plexiglass
and the refraction indexes where found from https://refractiveindex.info. The
water refraction index is taken from Austin and Halikas (1976), where we estimated
salinity to be 0.5 ppm and the temperature to be 20 ◦C. d0 was estimated using a
Matlab-script provided by Łuczyński et al..

https://refractiveindex.info
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Figure 4.8: Camera calibration data flow. We want to compare the Pinax model vs
in-situ calibrated pinhole model. Since the pinhole model is estimated directly from
the underwater calibration set we split the set in two and use one for training and one
for testing. For the test set we only removed images which qualified as outliers for
both the Pinax and the Pinhole model.

4.2.4 Comparison

We estimated the pinhole model in-situ, that is directly from the underwater calibration
images, which are the same images we used to compare the Pinhole model and the
Pinax model. To prevent the Pinhole model from over-fitting and thus create an unfair
comparison with the Pinax model we split the data set in two equal parts keeping
somewhat the same calibration board poses in each part. Then we used one of the data
sets for training and one for testing. See figure 4.8. Since the pinhole model with radial
distortion only consists of 6 parameters the chance of over fitting is minimal, but the
calibration software typically regards the images with the worst re-projection error as
outliers and removes them, thus drastically increase the chance of over-fitting. For the
test set we thus only removed the images where both the Pinax and the Pinhole model
scored particularly bad, which was around 20-30 % of the images and mostly due to
motion blur and poor lightning.

Table 4.4 shows the results from calibration of the underwater stereo setup equipped
with Blackfly cameras. Firs row shows the mean and standard deviation in pixels from
the in-air calibration of a Pinhole model. The second row shows the results of the
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Mean [pix] Standard deviation [pix]
In-air 0.249 0.114
Pinax 0.212 0.084
In-Situ Pinhole 0.401 0.159

Table 4.4: Reprojection errors from the calibration of the Blackfly stereo camera setup.

Mean [pix] Standard deviation [pix]
In-air 0.361 0.031
Pinax 1.513 0.391
In-Situ Pinhole 0.122 0.027

Table 4.5: Reprojection errors from the calibration of the Divecam stereo camera setup.

Pinax model on the underwater evaluation set, note that these results are based on the
results from the in-air calibration as they are used to calculate the Pinax model. The
last row displays the results from the Pinhole model calibrated on underwater images.
It is a bit surprising that the In-air Pinhole reprojection errors are higher than from
the underwater Pinax model, it could be explained by the fact that the FOV is quite
larger in air than underwater, but the difference is less than a half standard deviation,
and not very relevant. Further we note that the Pinax model score almost twice as
good as the Pinhole model under water.

Table 4.3 shows the results from calibrating the stereo setup consisting of two
Divecam cameras in their original enclosure. Here the Pinax model is not as promising,
it is possible the assumption of a flat lens was wrong.

4.3 SLAM

The Blackfly camera turned out to have too much zoom to be able to be used for visual
SLAM in the pool, thus we only used the Divecam stereo rig for testing visual SLAM
in the pool. Since we do not yet have a reliable acoustic positioning system to use as
ground truth, we recorded two data set where we started and ended in the exact same
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Figure 4.9: Images from the datasets, we used small black metal pieces to create some
texture in the enivironment.

position. We achieved this by leaning the camera rig towards a ladder placed in the
pool at the beginning and end of the each run. Using these data sets we can:

• Do qualitative evaluation of the map.

• Verify the loop closure mechanism.

• Quantify drift by turning off loop closure and measure the difference between
start and end pose.

First we tested SVO 2, but it was not able to complete any of the datasets, most likely
due to the fact that the cameras does not have global shutter, and we used Pinhole
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Figure 4.10: Resulting map and trajectory from running ORB-SLAM2 on dataset 1.
The brown and red points represents the map, while the green frames represents the
Keyframes and the black lines represent the connectivity graph.
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(a) Before loop closure. (b) After loop closure.

Figure 4.11: Loop closure in dataset 2.

model under water, resulting in a relative inaccurate camera model. An accurate
camera model is very critical for direct methods, as shown in Engel et al. (n.d.).

Second we tested ORB-SLAM2, which is an indirect method, and thus more robust
to rolling shutter and inaccurate camera models. The results follow: The numerical
values was found by taking the median out of 5 runs, the parameters for ORB-SLAM2,
are as following: we used the Pinhole camera model, (We tried the Pinax, but was
only able to complete the second data set, and got significantly worse results than the
Pinhole). Further we changed the feature thresholds to: 1000 features per image, initial
FAST feature threshold set to 20, and minimum set to 2.

Sequence one is approximately 9 meter long, this estimate is found by using the
resulting trajectory after loop closure, the camera is for the most of the time in the
surface pointing down towards the bottom and the movement is rather slow. Before
loop closure the distance between the end and start position of the camera is 0.25
meters, resulting in approximately 2.8 % error which is quite impressive.

Sequence two is approximately 11 meter long, the camera is moving around in the
water changing between pointing downwards, forward and sideways, the movement
is faster than in the first dataset. Before loop closure the distance between the end and
start position of the camera is 0.70 meters, resulting in approximately 6.3 % error.

For each dataset ORB-SLAM2 managed to detect and close the loop, see figure 4.11,
after returning to the same position 7/10 times. Even though the environment was
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very similar around the pool, this should have been higher since the camera returned
to the exact same position every time.



42 CHAPTER 4. EXPERIMENTS



Chapter 5

Conclusions and future work

In this project we have

• Set up and tested an underwater acoustic positioning system, including pro-
gramming a ROS driver to publish the resulting measurements to a ROS topic.

• Set up two different underwater stereo camera systems, both with different ROS
drivers, one of them with software synchronisation.

• Calibrate both the camera systems using two camera models, the Pinhole and
the Pinax model.

• Recorded two datasets and tested two SLAM methods. One which shows quite
promising results.

In the final result we used the Pinhole camera model, which is not accurate for
underwater use and a stereo camera which was not properly synchronised, but still
ORB-SLAM 2 performed good. This showcase the robustness of indirect methods
towards modelling errors. However the movement of the camera was quite slow,
and we worked in an ideal environment with clear water and artificially structures
with sharp corners. In the future we will improve our camera setup by ordering new
wide-angle lenses for the Blackfly cameras. Further we will continue working on
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ORB-SLAM2, extending it to include IMU measurements and depth measurements,
hopefully making it more robust. We have already gotten hold of an IMU and pressure
sensor and are working on creating a waterproof enclosure. Then the next step will
be to combine the SLAM method with the planning and control system as well as the
object detection part of the bigger project, to create a more complete autonomous
system, capable of performing simple tasks such as hovering and follow a pipeline. We
also want to get the acoustic positioning system to work properly. We can either use it
as ground truth or as an extra sensor to be used for a even more robust SLAM system.
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