
Introduction to Reinforcement
Learning Methods for Vehicle

Control

Project Thesis

Ingunn Vallestad

Trondheim, December 2018

Supervisor: Anastasios Lekkas

Department of Engineering Cybernetics
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Preface

The work of this project thesis has been the first step towards what will eventually become
a Master’s Thesis focusing on creating an autonomous collision avoidance system for
marine vehicles, using reinforcement learning. In order to achieve this goal during the next
semester, it is necessary to familiarise oneself with reinforcement learning fundamentals.
This report covers an introductory study of reinforcement learning methods and their
application to simulations of physical systems, ranging from the simplest discrete systems
to tasks involving both continuous state space and action space. An investigation of how
reinforcement learning can be applied to the problem of controlling a vehicle’s movement
has been conducted, which will contribute to the work that is to be carried out in the
Master’s Thesis.

i

Abstract

Autonomous control of vehicles, and particularly autonomous collision avoidance, is a
complex problem within control engineering. The design of control laws that result in
optimal movement of a vehicle in a complicated environment is traditionally developed
using intricate nonlinear methods. These usually require extensive understanding of the
vehicle dynamics and kinematics. Another field that has shown promise in creating op-
timal control systems is reinforcement learning (RL), which is an area of work within
machine learning (ML) focused on learning through exploration, or “trial and error”.
The combination of RL with deep learning (DL) has given rise to deep reinforcement
learning (DRL), which allows for the development of complex optimal control laws in
nonlinear systems without the need for knowledge about the inner workings of each sys-
tem.

In this report we will discuss some fundamental RL algorithms and apply some of the
most prominent ones to different control problems. Their performance in their respective
tasks will be discussed, and will allow us to gain understanding of the field of reinforce-
ment learning, and its advantages and disadvantages. An algorithm that is suitable for
continuous systems will be used in the design of an autonomous vehicle control system
that is to steer a vehicle from any start position to a stationary desired position. We
propose a framework for such a controller and discuss some design decisions that should
be made in order to achieve the objective. The controller is applied to a simulation of a
simple vehicle, implemented in this project for this purpose. We show that the algorithm
learns how to control the vehicle to the desired position without any a priori knowledge
about the world it operates in, and we show what effects the design decisions we have
made can have on the final behaviour.

The work done in this project has contributed towards the development of completely
autonomous vehicle control and has demonstrated that utilising DRL for this purpose
shows promise.

ii

Contents

Preface i

Abstract ii

List of Figures iv

List of Tables v

List of Algorithms vi

Nomenclature viii

I Introduction 1

1 Introduction 2
1.1 Background and Motivation . 2
1.2 Thesis and Method . 4
1.3 Tools . 5
1.4 Structure of Report . 5

II Theory and Background Material 6

2 Machine Learning Background 7
2.1 Machine Learning . 7
2.2 Artificial Neural Networks . 8

3 Reinforcement Learning 11
3.1 The Framework . 11

3.1.1 Markov Decision Processes . 13
3.2 The Bellman Equation . 13
3.3 Tabular Solution Approaches . 15

3.3.1 Monte Carlo Methods . 15
3.3.2 Temporal-Difference Learning . 15

3.4 Reinforcement Learning with Function Approximation 17
3.4.1 Policy Gradient Methods . 18
3.4.2 Actor-Critic Methods . 21
3.4.3 Deep Deterministic Policy Gradient (DDPG) 22

iii

III Results 24

4 Implementation of Reinforcement Learning Methods for Simple En-
vironments 25
4.1 OpenAI Gym’s FrozenLake . 25

4.1.1 Solution Method . 26
4.1.2 Simulations: Q-learning . 27

4.2 OpenAI Gym’s CartPole . 28
4.2.1 Solution Method . 29
4.2.2 Simulations: REINFORCE . 30

4.3 OpenAI Gym’s Pendulum . 31
4.3.1 Solution Method . 32
4.3.2 Simulations: DDPG . 32

5 Application of DDPG to a Vehicle Manoeuvring Task 34
5.1 The Point Mass Environment . 34

5.1.1 Vehicle Dynamics . 34
5.1.2 Problem Formulation . 36

5.2 Reward Function Design . 37
5.2.1 Reward Function 1 . 38
5.2.2 Reward Function 2 . 38
5.2.3 Reward Function 3 . 39

5.3 Simulations . 40
5.3.1 Reward Function 1 . 40
5.3.2 Reward Function 2 . 42
5.3.3 Reward Function 3 . 44

5.4 Discussion . 46

6 Conclusion 49

7 Future Work 50

Bibliography 51

Appendices 55

Appendix A Additional Simulation Results of the Vehicle Manoeuvring
Task 56
A.1 Simulation results using r2, with additional training 56
A.2 Simulation results using r3 . 58

List of Figures

1.1 Overview of architecture of the proposed RL system 5

iv

2.1 Artificial neural network . 8
2.2 Neuron of an artificial neural network . 9

3.1 Interaction between agents and environments 12
3.2 General Actor-Critic architecture . 21

4.1 FrozenLake environment. S: Start, F: Frozen, H: Hole, G: Goal. 26
4.2 Reward history for Q-learning in the FrozenLake environment 27
4.3 Number of steps needed to reach the goal, using Q-learning in the Frozen-

Lake environment . 27
4.4 Results in the FrozenLake environment using Q-Learning 28
4.5 Screengrab from the CartPole environment 29
4.6 Reward history for CartPole trained using REINFORCE 30
4.7 Screengrab from the Pendulum environment 31
4.8 Reward history for the Pendulum trained using DDPG 33
4.9 Test of the Pendulum trained by DDPG 33

5.1 Illustration of a point mass with an applied external force 35
5.2 Friction model . 36
5.3 Example of reward function consisting of a Gaussian function with ampli-

tude a = 1, mean µ = 0 and standard deviation σ = 1 or σ =
√

0.4 38
5.4 Evaluation reward history (without exploration) for point mass trained

using DDPG with r1 . 40
5.5 Test the point mass agent trained by DDPG with r1, from (xs, ys) = (2,−2)

and (xs, ys) = (−2, 2) . 41
5.6 Evaluation reward history for point mass trained using DDPG with r2 . . 42
5.7 Test the point mass agent trained by DDPG with r2, from (xs, ys) = (2, 2)

and (xs, ys) = (−2,−2) . 43
5.8 Evaluation reward history for point mass trained using DDPG with r3 . . 44
5.9 Test the point mass agent trained by DDPG with r1, from (xs, ys) = (2,−2)

and (xs, ys) = (−2, 2) . 45
5.10 Comparison of agents’ sample trajectories 47
5.11 Comparison of agents’ actions and position error for the sampled trajecto-

ries of Figure 5.10 . 47

A.1 Test the point mass agent trained by DDPG with r2, from (xs, ys) = (2, 2) 56
A.2 Test the point mass agent trained by DDPG with r2, from (xs, ys) = (−2,−2) 57
A.3 Evaluation reward history for point mass trained using DDPG with r2 . . 57
A.4 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (3, 3) 58
A.5 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (3, 0) 59
A.6 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (3,−3) 60
A.7 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (0,−3) 61
A.8 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (−3,−3) 62
A.9 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (−3, 0) 63
A.10 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (−3, 3) 64
A.11 Test the point mass agent trained by DDPG with r3, from (xs, ys) = (0, 3) 65

v

List of Tables

4.1 The CartPole environment . 29
4.2 The Pendulum environment . 31

5.1 The point mass environment . 37

vi

List of Algorithms

1 SARSA . 16
2 Q-learning . 17
3 REINFORCE . 20
4 DDPG . 23

vii

Nomenclature

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

APF Artificial Potential Field

AUV Autonomous Underwater Vehicle

COLAV Collision Avoidance

DDPG Deep Deterministic Policy Gradient

DL Deep Learning

DP Dynamic Programming

DRL Deep Reinforcement Learning

IMO International Maritime Organisation

LOS Line-of-Sight

MDP Markov Decision Process

ML Machine Learning

MPC Model Predictive Control

PPO Proximal Policy Optimization

ReLU Rectified Linear Unit

RL Reinforcement Learning

ROV Remotely Operated Vehicle

TD Temporal Difference

UUV Unmanned Underwater Vehicle

Subscripts and Superscripts

∗ Optimality property

t Time step

viii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Background and Motivation

Traditionally, navigation at sea has been performed by humans, whether that is at or
below the surface. The need for intelligent autonomous systems has increased in recent
years, with increased amount of underwater operations and systems that require high
precision. Replacing divers with remotely operated vehicles (ROVs) or autonomous un-
derwater vehicles (AUVs) in subsea inspection is potentially safer, more cost-effective
and increases efficiency of operations. These autonomous vehicles must be able to follow
a predefined path, but they must also be able to make intelligent decisions to deviate
from that path in order to avoid collisions and dangerous situations. In other words, the
vessels must optimise and make decisions without human interaction, to ensure safety
of themselves and others. To achieve this, a common set of navigational rules must be
followed to ensure that the vessels’ behaviour is predictable.

On the ocean surface, the rules for ship collision avoidance given by the Convention
on the International Regulations for Preventing Collisions at Sea (COLREGS) have been
developed by the International Maritime Organization (IMO) [1]. For underwater oper-
ations in three dimensions, these rules can not be directly applied, and thus the authors
of [2] have proposed an appropriate set of rules.

The development of control laws that comply with COLREGs while avoiding static
and dynamic obstacles has been studied by many. Past works have shown that simulation-
based model predictive control (MPC) can be used to optimise the planned path while
avoiding obstacles [3, 4]. These works separate the collision avoidance (COLAV) system
from the path following system, thus the method may be combined with several types
of guidance laws. However, the optimisation is over a finite set of control laws, not a
continuous space of actions. The authors of [5] use artificial potential fields (APFs) to
repel the vehicle from obstacles, and the method makes vehicles able to reach moving
goals. However, this only applies to course control, since constant surge speed is assumed.
Other methods include, but are not limited to, dynamic window [6], set-based methods
[7] and velocity obstacles [8].

The aforementioned papers focus on vehicles navigating on the ocean surface. To
avoid collision in three dimensions for underwater vehicles, these methods are not directly
applicable due to differing regulations and conditions, and the fact that motion in all
three dimensions is possible. An example of an AUV COLAV system is the reflexive
vector field with obstacle localisation in [9]. The method results in effectively avoiding
obstacles using a local planner that overrides the mission planner. However, the authors

2

find that many obstacles may cause the local planner to take over completely and never
let the vehicle return to the original mission. Also, this is a horizontal COLAV system
that does not consider evasive manoeuvres in heave. An improved velocity obstacle
method for unmanned underwater vehicles (UUV) is proposed in [10], where a collision
risk evaluation model and motion uncertainty of obstacles increase the speed and safety
of collision avoidance manoeuvres in 2D.

In [11], an APF is used to plan a path for an underwater snake robot through an
environment with obstacles, then a Line-Of-Sight (LOS) guidance law is used to follow
straight line segments between waypoints generated by the path planner. This requires
knowledge about the obstacle locations before planning. To be able to navigate in un-
known environments, a set-based method for planar underwater snake robots is presented
in [12], in which a switching between one mode for path following and one mode for ob-
stacle avoidance is enabled. This switching is based on the results of [7] and generalised
to work in underwater environments and for different kinds of systems. The robot follows
a straight path, and navigates past detected obstacles on the path by switching modes to
follow a circle around the obstacle. The proposed switching strategy is made independent
of the dynamics, and the guidance law is one that suits generic paths of both straight
lines and circles. However, this method is not tested on dynamic obstacles, and not yet
extended to the three-dimensional case.

In general, the above discussed methods include some drawbacks that should be con-
sidered. Some works introduce complex laws for decision making in order to comply
with navigational rules [4, 5, 8], while some simplify the collision avoidance problem -
by considering static obstacles only [9, 11, 12] or by only considering course control [5].
None of the presented methods have been applied to three-dimensional navigation, and
it seems that solving the path following plus collision avoidance problem by a traditional
mathematical approach is difficult.

A potential solution to the problem of increased complexity is to use machine learn-
ing. Many artificial intelligence (AI) algorithms, such as genetic algorithms, swarm in-
telligence and reinforcement learning, aim at solving an optimisation problem. There is
a cost/reward function involved, and the algorithms attempt to find a behaviour that
minimises cost/maximises reward. Such optimisation can be used to determine the best
sequence of input signals to a system, e. g. a ship on its way to a target destination, in
terms of minimal fuel consumption, minimum distance travelled, minimum time spent,
or some other criteria.

The collision avoidance problem can be viewed as a multi-objective optimisation prob-
lem: find a sequence of inputs that lets you follow a path, while minimising cost associated
with collision, and while complying with some well-known rules.

Reinforcement learning has been around for a long time. Turing introduced the con-
cept of rewards and punishments in a machine’s learning process in “Computing Machin-
ery and Intelligence” from 1950 [13]. Here, he proposes that instead of trying to produce
a machine that imitates an adult mind, we may try to create a child-like machine which
possesses some fundamental knowledge, and then educate this machine further. Arthur
Samuel developed a checkers player that learned to play using RL in the period 1952-
1956 [14]. Since then this field has been extensively developed by many researchers.
An example is Donald Michie and Roger A. Chambers, who described a reinforcement
learning controller called BOXES in 1968 [15], which was applied to a pole balancing
problem where a failure signal was given when the pole fell over or reached the edge of

3

its track. This is a good example of early work on reinforcement learning tasks based
on incomplete knowledge. In 1996, Dimitri Bertsekas and John Tsitsiklis published the
book Neuro-Dynamic Programming, which described the combination of dynamic pro-
gramming and artificial neural networks and was the first textbook that fully explained
this [16]. Thus, a combination of deep learning and reinforcement learning had surfaced,
giving rise to deep reinforcement learning (DRL), which made it possible to apply RL
methods to large problems by using function approximators. Some examples of this in-
clude DeepMind’s Atari playing agent based on Deep Q-learning networks [17], and their
AlphaGo Zero system that outperforms the world champion of the game Go, completely
without human supervision during training [18].

In recent years, the application of deep reinforcement learning in continuous control
systems has emerged, such as in [19] where several physics tasks (cartpole swing-up,
dexterous manipulation, legged locomotion, car driving) are solved using an algorithm
called Deep Deterministic Policy Gradient (DDPG). DDPG has also been used to achieve
horizontal trajectory tracking of an AUV [20]. A path following algorithm for complex
marine vessels with many nonlinearities is presented in [21]. In this work, no knowledge
of the vessel dynamics is required, and it is shown that the vessel successfully learns to
follow straight and curved paths, outperforming the Line-of-Sight (LOS) guidance law,
one of the most widely used path following methods of today.

Combining collision avoidance systems with DRL algorithms has been explored in [22],
in which it is demonstrated that the vessel can learn to navigate without prior knowledge
of the world, and without defining a complex control law. The research is promising,
and combining the fields of DRL and control engineering may lead to simpler designs
than the traditional mathematical approaches. Using deep neural networks as function
approximators means that the algorithm generalises well and thus may be applied to
several types of marine vessels.

1.2 Thesis and Method

The goal of this thesis is twofold. The first objective is to build a foundation of re-
inforcement learning knowledge through implementation of RL algorithms on physical
control tasks of varying complexity. The second objective is to use this knowledge in an
investigation of how to apply RL to a manoeuvring problem for a vehicle. We propose
an architecture in Figure 1.1 illustrating the components of our solution, and implement
a vehicle control agent on a simplified vehicle to illustrate usefulness of the solution. It
can be argued that the resulting agent can also be called a path planning agent, since
its goal is to find a trajectory from a start to a goal position with accompanying control
inputs to the vehicle. Thus, the terms vehicle control system and path planner will be
used throughout the thesis to describe the agent.

The architecture consists of an environment and an agent, where the environment
contains a model of our vehicle and how it interacts with its surroundings, and a perfor-
mance measure that tells the agent about the performance level of the current state. The
agent receives only the current state and performance measure from the environment and
thus has no knowledge of the vehicle dynamics. The agent consists of two components -
the controller, also called the policy, and a value function that provides a measure of the
value of control inputs in different states. It outputs a control action that is fed back to
the environment.

4

Agent

Environment

ControlValue function

Vehicle Performance measure

u

x, r

x r

Figure 1.1: Overview of architecture of the proposed RL system

1.3 Tools

The Python programming language was used to implement the algorithms presented in
this thesis. NumPy, the fundamental package for scientific computing with Python, was
used in numerical computiations such as linear algebra.

To implement function approximators, Tensorflow [23] was used. Tensorflow is an open
source software library for high performance numerical computation, with strong support
for machine learning and deep learning. It provides building blocks to create and train
neural network models, with automatic backpropagation and optimisation techniques.

Implementations of control problems were fetched from OpenAI Gym [24], which is
a toolkit for reinforcement learning research. It provides a common interface to several
benchmark problems such that researchers can test their algorithms. It also allows for
implementation of own problems with the same interface, which has been utilised in this
thesis.

1.4 Structure of Report

The report is divided into three main parts - Part I: Introduction, Part II: Theory and
background material, and Part III: Results. Part I is coming to an end, and its aim has
been to introduce the reader to why the work of the thesis can be of importance and how
the work has been carried out.

Part II introduces concepts relevant to this thesis. First, machine learning is briefly
explained, before we delve deeper into a supervised learning framework called artificial
neural networks in Chapter 2. Chapter 3 presents a comprehensive description of the RL
concepts and methods necessary for the contributions of the following chapters.

In Part III, the goals of the thesis are addressed and results are presented. In Chapter
4, some control tasks are described and solved using a number of different RL methods,
culminating in the implementation of the algorithm that will be used in the path planning
agent of Chapter 5, called DDPG. Here, a vehicle simulation on which experiments will
be performed is implemented, before a series of performance measures are shaped in the
hopes of achieving the desired behaviour of the vehicle. Simulation results of agents are
presented in Section 5.3 and discussed in Section 5.4. Chapters 6 and 7 give a brief
conclusion of the thesis and some proposed further work, respectively.

5

Part II

Theory and Background Material

6

Chapter 2

Machine Learning Background

In the following chapters, relevant concepts for this project thesis will be presented. First,
an introduction to machine learning and useful theory regarding artificial neural networks
will be given in Sections 2.1 and 2.2. In Chapter 3, reinforcement learning concepts will
be described.

2.1 Machine Learning

Machine learning (ML) research is part of research on artificial intelligence, seeking to
get computers to learn from data without relying on rule-based programming. The field
of ML can be separated into three main categories, as described in [14].

Supervised learning provides an agent with labelled input-output pairs so that the
agent can learn a function that maps an input to the correct output. This is a form of
function approximation.

Unsupervised learning does not supply any explicit feedback, so the agent has to
learn patterns found in the input on its own. A typical example is clustering, where an
agent groups inputs together in clusters, that potentially provide useful information.

Reinforcement learning gives the agent an indication of whether its actions were
good or bad through reinforcement signals, such as rewards or penalties. For example, a
self-driving car may receive rewards when successfully stopping for pedestrians crossing
the road, which indicates that the car should keep doing this in this situation. Designing
the reward function in order to ensure the agent can learn the desired behaviour is an
important challenge in reinforcement learning problems.

A fourth category is sometimes defined as well, useful when describing hybrid learn-
ing algorithms, called semi-supervised learning. It is a term for describing learning
algorithms where the distinction between supervised and unsupervised is not perfectly
clear.

Deep reinforcement learning (DRL) combines reinforcement learning with elements of
supervised learning. As we will see in Section 3.4, the policy and value functions of a
reinforcement learning agent can be represented by artificial neural networks.

7

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are popular in supervised learning. Their structure
allows for nonlinear function approximation through a relatively small set of parameters,
and we will see in Chapter 3 that this can be particularly useful in reinforcement learning
for physical control tasks.

ANNs can be formed as a feed-forward network or a recurrent network. The latter
form feeds its output back to its input, thus making the response of the network depend
not only in the current input, but on previous inputs as well. The former case is illustrated
by the example network in Figure 2.1. Feed-forward networks have connections only in
one direction, and represent a function of its current input. This is the kind of ANNs
this chapter will focus on.

Input layer

Hidden layer

Output layer

Figure 2.1: Artificial neural network

Feed-forward networks consist of nodes, or units, arranged into layers to form a net-
work inspired by the neural networks found in animals. The basic structure of the nodes
is illustrated in Figure 2.2, which shows that outputs of units in a layer become the inputs
of the next layer’s units. The output of the node is given by a function y = f(·), called
an activation function, dependent on its inputs x and associated parameters, w, and a
bias b. The concept is similar to the behaviour of neurons in animals, where it can be
said that a neuron “fires” when a combination of the input signals becomes larger than
some threshold. The activation function is usually a hard threshold or a soft threshold
(logistic function). By firing, we mean having a non-zero output which can be passed on
as input to other neurons [25].

In artificial neural networks, each unit computes a weighted sum of its input, where
w are the weights of the unit,

y = f(x1w1 + x2w2 + ...+ xnwn + b) = f(
n∑
i=1

xiwi + b) = f(wx+ b) (2.1)

and thus the weight associated with inputs determines the sign and strength of the
connection between each unit of the previous layer and this layer.

Typical activation functions are nonlinear, because these functions allow the network
to approximate nonlinear functions. All nodes in the hidden layers usually share the
same activation function, while the output layer may be different, reflecting the desired
characteristics of the output. Classification tasks often use softmax in the last layer

8

∑
Activation

y

w1

w2

wnxn

x1

x2

f (∑ + b)wixi

...
...

b1

Figure 2.2: Neuron of an artificial neural network

to assign decimal probabilities to each class in a multi-class problem. Those decimal
probabilities must add up to 1.0, and softmax provides this functionality. Alternatively,
the hyperbolic tangent function can be used, which suppresses the output between -1 and
1. One of the most popular hidden layer activations is the Rectified Linear Unit (ReLU).

A layer can be represented by its activation function f , and a weight matrix W and
a bias vector b, containing the weight vectors and the biases associated with the nodes
in the layer, respectively. Then the output of a layer is given by y = f(Wx+ b), where
x is a vector of outputs of the previous layer.

The goal when training an ANN is to learn the weights of the network from data
consisting of input-output pairs (x, ytarget), such that the predicted output is close to the
expected output for all inputs. An error function typically used to measure the distance
to this goal is the squared error:

E(ypred − ytarget) =
1

2
(ypred − ytarget)2 (2.2)

where ypred is the output predicted by the network, and ytarget is the real output which
the network’s output should be equal to.

To learn the weights, two phases must be carried out, called the forward propagation
and backpropagation [26] phases. The forward propagation simply passes the input of a
data pair to the network, receiving a predicted output and the computed error. Back-
propagation then decides how to update each weight by computing the derivative of the
error with respect to each weight in W and applying a gradient update

wij = wij − α
∂E

∂wij
(2.3)

where α > 0 is referred to as the learning rate. If ∂E
∂wij

< 0, the error goes down when the

weight increases, thus the weight is increased by the update. If ∂E
∂wij

> 0, the error goes

up when the weight increases, thus the weight is decreased by the update. To calculate
the derivatives, the backpropagation algorithm uses the chain rule to move backwards in
the network, from the output to the input. Considering the weight between neurons i

9

and j in subsequent layers, we get

∂E

∂wij
=
∂E

∂yj

∂yj
∂zj

∂zj
∂wij

=
∂E

∂yj

∂yj
∂zj

yi

=
∂E

∂yj
f ′j(zj)yi

(2.4)

where yi denotes the output of neuron i, zj =
∑n

k=1 wkjyk+bj is the total input to neuron
j, and fj(·) is the activation function of neuron j. For neurons in the last layer, the first
factor becomes ∂E

∂ypred
= (ytarget − ypred), and this derivative is propagated backwards in

the layers to calculate the rest of the derivatives. For neuron i in layer L− 1, we can use
the calculations from layer L:

∂E

∂yi
=
∑
l∈L

(
∂E

∂yl

∂yl
∂zl

wil

)
(2.5)

where l denotes units in layer L. Similar arguments can be made for derivatives with
respect to the biases, where

∂zj
∂bj

= 1.

There exist several optimisation algorithms that implement the gradient updates of
backpropagation, and some commonly used in neural networks are AdaGrad [27], RM-
SProp [28], and Adam [29], with Adam being the most recent.

A challenge that arises when training ANNs is overfitting, in which the network fits
the output only to the presented training examples, but is unable to generalise when faced
with new examples. Several solutions to this has been proposed, such as dropout [30], L1
or L2 weight regularization [31] or early stopping. Batch normalization [32] is a technique
that improves stability of neural network training, thus allowing higher learning rates and
faster convergence.

10

Chapter 3

Reinforcement Learning

We introduced the term reinforcement learning, or RL in Section 1.1. The fundamental
idea of RL is that an agent must learn by trial and error, and is rewarded for “good”
actions and penalised for “bad” ones. The best outcome for this agent is to act in
such a way that it maximises the total received rewards. It can thus be viewed as an
optimisation problem, where the sequence of decisions is the input and the reward is the
objective function, and by viewing it in this way it is evident that the idea is shared
between many sciences. For example, optimisation is frequently used in both finance and
optimal system control. One fundamental difference between control approaches and RL
approaches, however, is that the RL problem utilises evaluative feedback in the form of
a scalar reward, rather than instructive feedback.

This chapter introduces key concepts of RL in Sections 3.1-3.2 before moving into
the realm of solution methods to the RL problem in Sections 3.3-3.4. We go through
the most basic tabular methods, such as value iteration and policy iteration in 3.3.1 and
Q-learning in 3.3.2, before introducing methods that use function approximators, such
as policy gradient in 3.4.1 and actor-critic in 3.4.2. Section 3.4.3 introduces a recently
developed method, deep deterministic policy gradient (DDPG).

3.1 The Framework

To introduce some terms and definitions that will be used in this paper, consider Figure
3.1 that describes the general RL framework.

Here, the agent is what we want to build when implementing an RL algorithm. Our
goal is to build an algorithm that controls this agent’s decision making. What the agent
interacts with is called the environment. RL agents can observe (parts of) their envi-
ronment through a state, denoted s in Figure 3.1, and can choose actions and perform
them to influence the environment. The environment then responds by presenting new
situations to the agent in the form of a new state. The agent has a goal, to maximize
cumulative reward, and gets rewards based on how it interacts with its environment [33].
We use the subscript t+ 1 for the state to illustrate that a new state is presented to the
agent after it has performed an action, and is thus given one time step after the action
at. A reward is connected to the transition from one state st to the next st+1 through
an action at, so the subscript thus may be ambiguous. We choose here to associate the
reward resulting from an action at and state st with time step t, and denote it rt.

The terms agent, environment and actions correspond to controller, plant and control
signal used in control theory, respectively.

11

State
st+1

Action
at

Reward
rt

Agent

Environment

Figure 3.1: Interaction between agents and environments

An RL agent’s policy determines its behaviour. This policy is a function that maps
states to actions, and is denoted π(a|s). It could be deterministic or stochastic. In the
latter case, the policy is a probability distribution over actions in each state, and in the
former case the policy maps each state to a single action.

Another component of RL agents is the value function, which is a measure of the
value of being in a state, incorporating the expected reward received in the future by
following a chosen policy. If the policy is π, the value function is denoted vπ(s). When
the value function is known, one can establish the policy by choosing the action that
moves the agent to the neighbouring state with the highest value. Equation (3.1) presents
the general expression of the value function, where γ (0 ≤ γ ≤ 1) is a discount factor
describing how much we care about future rewards.

vπ(s) , Eπ[Rt + γRt+1 + γ2Rt+2 + ... | St = s] = Eπ

 ∞∑
k=0

γkRt+k

∣∣∣St = s

 (3.1)

We see that, by defining the return Gt = E
[∑∞

k=0 γ
kRt+k

]
, this expression can be

decomposed into (i) the immediate reward of being in this state, and (ii) the discounted
value of the return from the next state,

vπ(s) = Eπ[Rt + γ(Rt+1 + γRt+2 + γ2Rt+3 + ...) | St = s]

= Eπ[Rt + γGt+1 | St = s]

= Eπ[Rt + γvπ(St+1) | St = s]

(3.2)

This is called a state-value function, because it is a function of state. Alternatively,
an action-value function may be used in place of v(s). The action-value is the value of
taking action a in state s under policy π,

qπ(s, a) , Eπ

 ∞∑
k=0

γkRt+k

∣∣∣St = s, At = a

 (3.3)

which is also called the q-value.

12

The model in RL predicts what the environment will do next, based on the current
state and the agent’s action. There are typically two parts: a transition model, P , that
predicts the dynamics of the environment, and a rewards model, R, that predicts the
next immediate reward. The transition model is often stochastic, and describes how the
environment reacts when a particular action is taken in a particular state, i.e. it gives
a probability distribution describing what the next state will be. If P is deterministic,
there is no uncertainty regarding what the next state will be once an action is chosen.

There exists many combinations of RL methods. The ones that learn a policy explic-
itly are called policy-based methods, while the ones learning a value function (and thus
only implicitly learning about a policy) are called value-based methods. It is possible to
learn both a policy and value function at the same time, and this is denoted as actor-critic
methods. Model-based methods assume the transition model is known and use this for
learning how to behave, while model-free methods assume no such prior knowledge.

It is important to note that value based methods must iterate through all possible
actions in each state it encounters in order to determine the optimal action with the
highest expected return at any step. Therefore, these methods are unsuitable for problems
where the action space is continuous, since the number of actions is not finite. This is
the case in most guidance and control problems, and thus this project report will focus
mostly on policy based and actor-critic methods.

3.1.1 Markov Decision Processes

A state that has the Markov property includes all the information about past states and
actions that makes a difference for the future. In other words, the next state-reward pair
in the agent-environment interaction depends only on the current state and action, and
is independent of any previous states and actions. Thus the probability distribution for
each choice of state s and action a, given by the transition model P ,

P (s′, r|s, a) , Pr{St+1 = s′, Rt = r | St = s, At = a}, (3.4)

completely characterises the environment’s dynamics, and is called a Markovian transition
model [14].

A sequential decision problem where the transition model is Markovian, the envi-
ronment is fully observable and stochastic, and which has a reward function is called a
Markov decision process (MDP). The tuple 〈S,A,P ,R〉 describes an MDP. S is the set
of states, A(s), s ∈ S is the action space, P is the Markovian transition model given by
the transition probability P (s′, r|s, a) and R is the reward function.

The MDP is the framework we use for defining reinforcement learning problems.

3.2 The Bellman Equation

If we denote the best possible policy (or policies) by π∗, we can define optimal state-value
and action-value functions as

v∗(s) , max
π

vπ(s) (3.5)

q∗(s, a) , max
π

qπ(s, a) (3.6)

which are obtained by following π∗. A policy π is defined to be better than or equal
to another policy π′ if vπ(s) ≥ vπ′(s) ∀s ∈ S. There may exist several optimal policies,

13

but they all share the same optimal state-value function and action-value function of
Equation (3.5) and (3.6). q∗ can be considered as the expected return of taking action a
in state s and from there on following policy π∗, and thus it can be rewritten as

q∗(s, a) = E[Rt + γv∗(St+1) | St = s, At = a] (3.7)

By understanding that the value of a state under an optimal policy must equal the
expected return for the best action in that state [33], we get

v∗(s) = max
a∈A(s)

q∗(s, a)

= max
a

E[Rt + γv∗(St+1) | St = s, At = a]

= max
a

∑
s′,r

P (s′, r|s, a)[r + γv∗(s
′)]

(3.8)

q∗(s, a) = E[Rt + γ max
a′∈A(St+1)

q∗(St+1, a
′) | St = s, At = a]

=
∑
s′,r

P (s′, r|s, a)[r + γ max
a′∈A(s′)

q∗(s
′, a′)]

(3.9)

where s′, a′ denote the next state and action after being in state s taking action a. Capital
letters such as St, At, Rt are used in expectations to denote sampled states, actions and
rewards.

Equations (3.8) and (3.9) are called the Bellman optimality equations for v∗ and q∗,
respectively. It is a recursive equation describing the relationship between the value of a
state and the value of its successor states [33]. The value function v∗ or q∗ is the unique
solution to its Bellman optimality equation, and solving the equation gives the solution
to the reinforcement learning problem, as finding v∗ or q∗ will implicitly give the best
possible action in each state, also known as the optimal policy π∗.

If the state space and action space is discrete and finite, and the environment model is
known, we can use dynamic programming (DP) to solve the nonlinear equations. A well
known DP method is called value iteration. It iteratively solves the Bellman equation
by giving an initial guess of the value function, V0(s), and inserting it into the right-
hand side of (3.8), which gives a new estimate of the value function, V1(s). This process
continues for every state until the value function converges. In this thesis, capital letters
in the value functions, such as V or Q, signals that these are estimates of the real value
function, vπ or qπ.

A similar approach, called policy iteration, makes initial guesses for both the value
function and the policy. It is a two-step process, where first the current policy is evaluated
by computing the corresponding value function iteratively, making sure actions are chosen
by following the policy. The second step is called policy improvement, and entails going
trough all states, and for each state computing the Q-value of each possible action. This
means that we consider the reward of each action a in state s, and the value of thereafter
following the current policy. Then we choose the action with the maximum Q-value as
our new policy in state s. These two steps are repeated until the policy no longer changes,
which means the algorithm has converged.

Although an explicit solution to the Bellman optimality equation gives the optimal
policy, the solution is generally difficult to find. The equation is actually a set of equations,
one for each state, so in the case where the state space is large, solving that amount

14

of nonlinear equations is computationally expensive. The solution also depends on us
knowing the dynamics of the environment, which is not always true. In addition, if either
the state space or action space (or both) is continuous, the above mentioned DP methods
cannot be used, since they depend on a finite set of states and actions in order to save
the value functions as tables, with one entry per state/action. The consequence of these
limitations is that approximate solutions is often the only possibility.

3.3 Tabular Solution Approaches

3.3.1 Monte Carlo Methods

A way around the assumption of knowledge about the environment, is to use experience
from real or simulated situations. In Monte Carlo methods, complete episodes are sam-
pled before updating value and policy estimates, assuming that all episodes terminate
after a finite number of time steps T . Tasks that fulfil this requirement are called episodic
tasks. The kind of learning where an episode must complete before any changes/learning
can be applied, is called off-line training. The opposite case is when training updates are
made after every step of an episode, called online training.

In Monte Carlo approaches, we update an estimate of the value function of Equation
(3.1) or (3.3) in the direction of the complete return from the episode,

Gt , rt + γrt+1 + γ2rt+2 + ...+ γT−1rt+T−1 (3.10)

where T is the last time step of the episode. Some such methods will be explained further
in Section 3.4.1.

3.3.2 Temporal-Difference Learning

Temporal-Difference (TD) learning combines ideas from Dynamic Programming with
Monte Carlo learning. TD methods learn directly from experience without the need for
a model of the environment, like in Monte Carlo methods, and TD methods perform
estimate updates without waiting for entire episodes to complete, like DP.

Estimating the Value Function

The simplest form of TD methods is called TD(0), and it updates the estimate of the
value function at every step of every episode. By looking one step into the future, it
observes the received reward it got by following the policy, r, and combines this with the
estimated value of the next state, V (s′). Then the estimate of V (s) is moved towards
this new observed value, called the TD target, using the update,

V (s) = V (s) + α[r + γV (s′)︸ ︷︷ ︸
TD target

−V (s)

︸ ︷︷ ︸
TD error, δt

] (3.11)

An equivalent update can be applied to an estimate of the action-value, Q(s, a):

Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)︸ ︷︷ ︸
TD target

−Q(s, a)

︸ ︷︷ ︸
TD error, δt

] (3.12)

15

TD Control

When we want to use TD methods for the control problem (finding the optimal policy),
Equation (3.12) must be used, since this makes it possible to estimate the value of each
action in each state explicitly. The policy that is used must ensure that the state and
action space is explored sufficiently, so that the action-value function can be estimated
accurately in all parts of the state/action space. Often, an ε-greedy policy is used, which
takes a greedy approach (the best action according to the estimated Q) with probability
1− ε, and takes a random action with probability ε.

An on-policy TD control method is SARSA, whose name comes from the quintuple
of events (s, a, r, s′, a′) that make up a transition from one state-action pair to the next.
On-policy means that the action-value for the policy is estimated while at the same time,
the policy is changed towards greediness with respect to the action-value. In Equation
(3.12), this means that the next action a′ is chosen by following the current policy.

Algorithm 1 SARSA

Parameters: step size α ∈ (0, 1], small ε > 0
1: Initialise Q(s, a) for all s ∈ S, a ∈ A(s) arbitrarily. Q(terminal, ·) = 0
2: for each episode do
3: Initialise s
4: Choose a from s using policy derived from Q
5: for each step of episode do
6: Take action a, observe r, s′

7: Choose a′ from s′ using policy derived from Q
8: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
9: s← s′, a← a′

10: end for
11: end for

Q-learning is similar to SARSA, but an off-policy TD control method, meaning that
the optimal action-value function q∗ is directly approximated by Q, without depending
on the policy being followed at any time step. The update of Equation (3.12) is modified
to

Q(s, a) = Q(s, a) + α[r + γmax
a
Q(s′, a)−Q(s, a)] (3.13)

and the procedure is shown in Algorithm 2.

n-step TD Methods

As we saw in Section 3.3.1, the Monte Carlo updates use the full return Gt when estimat-
ing the value function. In this section, we have shown that a one-step TD method, called
TD(0), observes only the immediately received reward and then estimates the remaining
terms of the complete return by using the current estimated value of the successor state.
It is considered a one-step update because it observes the outcome of one time step from
the start state.

Gt:t+1 = rt + γVt(st+1) (3.14)

16

Algorithm 2 Q-learning

Parameters: step size α ∈ (0, 1], small ε > 0
1: Initialise Q(s, a) for all s ∈ S, a ∈ A(s) arbitrarily. Q(terminal, ·) = 0
2: for each episode do
3: Initialise s
4: for each step of episode do
5: Choose a from s using policy derived from Q
6: Take action a, observe r, s′

7: Q(s, a)← Q(s, a) + α[r + γmaxaQ(s′, a)−Q(s, a)]
8: s← s′

9: end for
10: end for

Here, Vt is the estimate of vπ at time t. Similarly, we could have a two-step TD update,
based on the first two observed rewards, and the estimated value of the state after those
two steps, at time t+ 1. From this, we introduce n-step updates

Gt:t+n = rt + γrt+1 + ...+ γn−1rt+n + γnVt+n−1(st+n) (3.15)

where Vt+n−1 is the estimated value function after n steps, at time t+n− 1. This means
that, for n > 1, the n-step return involves rewards and states that have not yet been seen
before reaching time t + n, thus the n-step return can not be computed until n steps of
the episode have been carried out and the appropriate value function estimate has been
computed.

By this definition, setting n = T results in the Monte Carlo return, while n = 1 gives
TD(0). According to Sutton & Barto [33, p. 157], the intermediate n-step methods will
typically perform better than the extremes.

3.4 Reinforcement Learning with Function Approx-

imation

All methods until now have been applicable to finite, discrete state spaces and action
spaces, where the dimensions of the action-value matrix and state-value vector does not
exceed the memory capacity of the computer solving the algorithms. This made it possible
to learn a value for every single state or state-action pair, thus completely defining an
optimal policy.

But what happens when the state or action space is continuous? After all, this is a
more realistic scenario when developing control algorithms for physical systems. A simple
solution is to discretise the spaces so that for instance Q-learning can be applied, but this
gives rise to a trade-off between accuracy and computational efficiency. Information is
lost when transforming continuous states and actions into discrete ones, but fine-grained
discretisation could make the algorithm slow and inefficient. This section addresses how
to solve problems with continuous state and action spaces.

Function approximation is way to handle such problems. Rather than using a lookup
table to represent our function, such as the action-value matrix of Section 3.3.2, we can
parameterise the function by a parameter vector θ ∈ Rd. An example parameterisation

17

of a function F (x) is a weighted linear function of a set of features, F (x,θ) = θ1f1(x) +
θ2f2(x) + ...+ θdfd(x).

If we parameterise the value function or policy function by such a parameter vector, a
reinforcement learning agent can learn values of the vector such that the parameterisation
eventually approximates the true value function or the optimal policy. This has a few
advantages, and the most obvious is that the number of parameters will be far fewer
than the number of possible states and actions if the state and action spaces are large
or continuous [14]. Another major advantage of the parameter vector is summarised in
[14, p. 846], where a parameterised function is called a function approximator because it
becomes an approximation of the true function:

“The compression achieved by a function approximator allows the learning agent to
generalize from states it has visited to states it has not visited.” ([14])

This means that in large or continuous spaces, it is no longer necessary to visit every
single state or state-action pair in order to learn a good approximation of the value or
policy. Assuming that the chosen parameter space makes it possible to approximate the
value or policy sufficiently well, the RL agent can achieve this by adjusting the entries of
θ.

3.4.1 Policy Gradient Methods

Instead of basing action selection on a learned state-value or action-value function, policy
gradient methods learn a parameterised policy for selecting actions without checking the
value function first. If we write the parameter vector for the policy as θ ∈ Rd, the policy
is π(a|s,θ) = Pr{At = a|St = s,θt = θ}. A major advantage of this kind of approach
over the previously presented methods is that this allows the policy to generate actions
in the complete continuous action space. A drawback is that it can get stuck in a local
optimum, due to the approach being based on gradient ascent.

The only constraint on the way π is parameterised is that the gradient ∇θπ(a|s,θ)
exists and is finite for all s ∈ S, a ∈ A(s), θ ∈ Rd. In a continuous action space, a
deterministic policy can be a smooth function of θ, but with discrete actions, such a
policy can switch between actions due to an infinitesimal change in parameters and con-
sequently make the function non-differentiable with respect to its parameters. Therefore,
in discrete action spaces it is usually required that the policy remains stochastic, i.e. that
π represents a probability distribution, and its values remain in the interval (0, 1) for all
states, actions and parameter vectors. This also ensures exploration, since a stochastic
policy introduces uncertainty in what action will be chosen from a state.

It is worth noting that a continuous action space can be represented as a probability
distribution as well, and not only as a deterministic policy. For example, a normal distri-
bution can be achieved by letting the function approximator give a mean and standard
deviation representing the distribution of an action.

The Policy Gradient

We define a score function J(θ) as a measurement of the policy parameterisation’s per-
formance. In an episodic task, we choose the score function as the true value of the start
state of the episode,

J(θ) , vπθ(s0) (3.16)

18

and since we want to maximise the score, a way of updating the parameters is to use
gradient ascent:

θt+1 = θt + α∇θJ(θt) (3.17)

where α is the learning rate and ∇θJ(θ) is the gradient of J with respect to θ. We do
not know the true value function, thus we must approximate the gradient ascent update
by obtaining samples, such that the expectation of the sampled gradient and the actual
gradient are proportional to each other.

The policy gradient theorem [34] establishes that, for the episodic case,

∇J(θ) = ∇vπ(s0) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ) (3.18)

where ∝ means “proportional to”, and µ is the fraction of time spent in each state if
following π, normalised to sum to one, called the on-policy distribution under π. From
Equation (3.18) onwards, we omit the subscript θ from the gradient notation ∇ for
simplicity, whenever there is no ambiguity regarding which parameter the differentiation
is done with respect to.

We know that the sum over states weighed by the frequency of the states’ occurrence
under the policy π, as in (3.18), is the equivalent to an expectation under that same policy.
By the same argument, we can replace the sum over actions of qπ by an expectation under
π and then sampling the expectation, as shown below.

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

= Eπ

[∑
a

qπ(St, a)∇π(a|St,θ)

]

= Eπ

[∑
a

π(a|St,θ)qπ(St, a)
∇π(a|St,θ)

π(a|St,θ)

]

= Eπ
[
qπ(St, At)

∇π(At|St,θ)

π(At|St,θ)

]
= Eπ

[
qπ(St, At)∇ ln π(At|St,θ)

]

(3.19)

The action-value qπ(St, At) can be sampled from real or simulated experience, and
then the gradient update of Equation (3.17) can be applied.

Monte Carlo Policy Gradient

From Section 3.3.1 we know that Monte Carlo methods sample complete episodes before
making updates. Equation (3.19) can be rewritten as:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

= Eπ
[
Gt∇ lnπ(At|St,θ)

]
(Eπ[Gt|St, At] = qπ(St, At))

(3.20)

where Gt is the return from state-action pair (St, At), which includes all future rewards
up until the episode’s completion. Thus, using this gradient in (3.17) will be a Monte
Carlo algorithm. This particular one is called REINFORCE [35] and we show the outline
in Algorithm 3.

19

Algorithm 3 REINFORCE

Input: A differentiable policy parameterisation π(a|s,θ)
Parameters: Step size α > 0

1: Initialise policy parameter θ ∈ Rd (e.g to 0)
2: for each episode do
3: Generate an episode S0, A0, R0, ..., ST−1, AT−1, RT−1, following π(·|·,θ)
4: for each step t = 0, 1, ..., T − 1 of the episode do
5: G←

∑T−1
k=t γ

k−tRk

6: θ ← θ + αγtG∇ ln π(At|St,θ)
7: end for
8: end for

To explain this algorithm intuitively, let us look at the update equation in a different
form, θt+1 = θt + αγtGt

∇π(At|St,θ)
π(At|St,θ)

. Here, γtGt is the discounted return from time step
t. The discount factor is in this expression because we make an update at each time
step of an episode, starting from t = 0, thus Gt must be discounted by t steps. The
gradient vector is the gradient of the probability of taking action At from state St, and
the expression in the denominator is the probability of taking that action. Combined, the
update will change the parameter vector in the direction of highest increase in probability
of taking this action on future visits to state St. Multiplying by the return makes the
update largest in the directions of actions that gave higher returns, and dividing by the
probability will prevent actions that occur frequently to be favoured over actions that
yield better returns.

Policy Gradient with Baseline

While the stochastic policy gradient produces an unbiased estimate of the gradient of the
expected total returns, these estimates can have large variance. It is possible to modify
the Monte Carlo policy gradient method outlined above by including a comparison of the
action value function with a baseline function, in the gradient. This can be done as long
as the function b(s) does not depend on a, thus the subtracted term will be zero:

∇J(θπ) ∝
∑
s

µ(s)
∑
a

(qπ(s, a)− b(s))∇π(a|s,θπ)

= Eπ
[
(Gt − b(St))∇ lnπ(At|St,θπ)

]
(Eπ[Gt|St, At] = qπ(St, At))

(3.21)

In the above expression, θπ is the parameter vector for π.
Using a baseline function in the policy gradient estimate can reduce the variance while

maintaining low bias, which helps performance. High variance results in needing more
samples for the algorithm to converge, while bias can cause the algorithm to not converge
at all, or converge to a poor solution.

A common choice for the baseline is an estimate of the state-value function, V (s,θv),
parameterised by the vector θv ∈ Rm. The state-value function parameters can be learned
in a similar way as the policy parameters, for example by a Monte Carlo method and
gradient ascent. Using the squared difference between observed return and estimated
value as a score function, we get

J(θv) =
1

2

T−1∑
k=t

γk−trk − V (st,θv)

2

=
1

2
δ2 (3.22)

20

which has the gradient

∇θvJ(θv) = δ∇θvδ = δ∇θvV (s,θv) (3.23)

Then, we get the policy gradient

∇θπJ(θπ) = (Gt − V (st,θv))∇θπ ln π(at|st,θπ) = δ∇θπ lnπ(at|st,θπ) (3.24)

and the parameter update equations for the REINFORCE with baseline method become

θv ← θv + αθvδ∇V (st,θv)

θπ ← θπ + αθπγ
tδ∇ lnπ(at|st,θπ)

(3.25)

Deterministic Policy Gradient

Rather than sampling a stochastic policy, deterministic policy gradients (DPG) use a
deterministic policy a = µθ(s), as the name suggests. According to [36], the deterministic
policy gradient can be estimated much more efficiently than the stochastic gradient, by
avoiding a problematic integral over the action space. It is shown that if we have a
policy µθ : S → A with parameter vector θµ, an action-value function qµ(s, a) and a
score function J(θ) = E

[
Rt|St = s, At = µθ(s)

]
, the deterministic policy gradient can be

defined as
∇θJ(θ) = E

[
∇θµθ(s)∇aqµ(s, a)|a=µθ(s)

]
(3.26)

3.4.2 Actor-Critic Methods

Actor

Critic

State Action Reward

Environment

Figure 3.2: General Actor-Critic ar-
chitecture

Methods that approximate a policy are often called
actor-only methods, because a policy for action se-
lection is learned. Methods that approximate a
value function evaluates states given a policy, and
are therefore called critic-only methods. The combi-
nation of policy and value approximation are there-
fore actor-critic methods. Here, an actor chooses
and performs actions, while a critic finds the value
of a state when following the policy of the actor.
The critic helps the actor update its parameters to
improve the policy, while also updating its own pa-
rameters. This framework is illustrated in Figure
3.2.

If the critic is parameterised by a vector θQ, and
is learning an action-value function, then the output
of the critic is QθQ(s, a|θQ). It can handle contin-
uous states and actions, since the function approx-
imator generalises from seen states and actions to
unseen states and actions. The actor is parame-
terised by θπ, resulting in the policy πθπ(a|s,θπ).

The parameters θπ are adjusted by the actor according to the policy gradient as
described in Section 3.4.1, but in place of the real action-value qπ(s, a) in Equation (3.19),

21

the parameterised approximation QθQ(s, a|θQ) of the critic is used. Then, the policy
gradient becomes

∇θπJ(θπ) = Eπ
[
QθQ(s, a|θQ)∇θπ lnπ(a|s,θπ)

]
(3.27)

The critic uses an appropriate method for estimating value functions, e.g. temporal-
difference learning (Section 3.3.2). By this we mean that the temporal-difference error is
used in the parameter update for the critic,

δt = rt + γQθQ(st+1, at+1|θQ)−QθQ(st, at|θQ) (3.28)

θQt+1 = θQt + αQδt∇θQQθQ(st, at|θQ) (3.29)

3.4.3 Deep Deterministic Policy Gradient (DDPG)

The architecture of deep deterministic policy gradient (DDPG)[19] is similar to the actor-
critic architecture. In DDPG, both a policy and a value function are approximated by
using neural networks as function approximators.

An action-value function is used in the critic, which enables the agent to learn an
optimal policy even when it is not performing the optimal policy, because the values of
all actions in all states are learned. This is especially useful here, since the learned policy
in DDPG is deterministic. Thus, following the learned policy while training would lead
to insufficient exploration of the environment.

The actor computes the deterministic policy parameters by utilising the deterministic
policy gradient described in Section 3.4.1, such that the updates are given by

θµ ← θµ + αµ∇θµQθQ(s, µθ(s))

= θµ + αµ∇θµµθ(s)∇aQθQ(s, a)|a=µθ(s))
(3.30)

In addition to the actor-critic structure, deterministic policy and neural networks,
DDPG uses experience replay [37], where experiences are saved in memory as quadruples
consisting of the state, action, observed reward and the next experienced state, (s, a, r, s′),
and training data is sampled uniformly from this memory. This breaks the temporal
correlation between experiences, as we can sample mini batches of experiences that did
not appear sequentially.

In order to stabilise training when using non-linear function approximators, separate
target actor and critic networks are used for predicting the TD target in the critic’s
parameter update. This prevents the network parameters that are updated from also
being used in the prediction that produces the update. The target network parameters
are updated so that they slowly track the learned networks:

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′
(3.31)

where τ is the rate of updates for the target networks.
As mentioned, DDPG is an off-policy algorithm, thus we also need to decide which

strategy to follow when exploring the environment. The authors of [19] use an Ornstein-
Uhlenbeck noise process [38] N , which “models the velocity of a Brownian particle with
friction, which results in temporally correlated values centered around 0” ([19]), and adds
this to the learned policy to ensure exploration:

at = µθµ(st) +Nt (3.32)

This results in Algorithm 4.

22

Algorithm 4 DDPG

1: Randomly initialise critic network QθQ(s, a) and actor µθµ(s) with weights θQ and θµ.
2: Initialise target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ
3: Initialise replay buffer R
4: for episode = 1, ...,M do
5: Initialise random process N for action exploration
6: Receive initial observation state s1

7: for t = 1, ..., T do
8: Select action at = µθµ(st)+Nt according to the current policy and exploration

noise
9: Execute action at and observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Set yi = ri + γQ′θQ′ (si+1, µ

′
θµ′

(si+1)) for i ∈ 1...N

13: Update critic by minimising loss: L = 1
N

∑
i(yi −QθQ(si, ai))

2

14: Update actor policy using the sampled policy gradient:

∇θπJ ≈
1

N

∑
i

∇aiQθQ(si, ai)∇θµµθµ(si)

15: Update the critic target network: θQ′ ← τθQ + (1− τ)θQ′
16: Update the actor target network: θµ′ ← τθµ + (1− τ)θµ′
17: end for
18: end for

23

Part III

Results

24

Chapter 4

Implementation of Reinforcement
Learning Methods for Simple
Environments

In the following chapter, we present tasks that have been solved in this thesis, the ap-
proaches that were used to solve them and results. To become familiar with reinforcement
learning methods, their advantages and limitations, three simple OpenAI control prob-
lems were solved. Section 4.1 presents a grid-world problem in which an agent must find
a path from start to goal through a discrete environment. This can be viewed as an
introductory problem, as the number of states and actions is low, and a novel tabular
learning approach can be used to solve it. Section 4.2 introduces an environment with
continuous state space, and Section 4.3 further introduces continuous actions. Conse-
quently, these problems require more complex solution methods, and were solved using
function approximation. The REINFORCE algorithm was implemented for the CartPole
of Section 4.2, and for the Pendulum of Section 4.3, DDPG was implemented.

It is important for reinforcement learning agents to be able to explore their environ-
ment, in order to figure out what states and actions are good or bad. In physical systems,
this presents a challenge because such exploration can put both the system that is ex-
ploring, and the environment, in danger. To minimise damage to the system, simulated
environments are used here.

4.1 OpenAI Gym’s FrozenLake

FrozenLake is an environment provided by OpenAI gym. The lake is a 4 × 4 gridworld
with start state in the top left corner and the goal in the bottom right corner, with holes
spread around the lake, shown in Figure 4.1. The states are numbered as

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

and an agent moving in the environment has four possible actions: {left = 0, down =
1, right = 2, up = 3}.

25

S F F F

F H F H

F F F H

H F F G

Frozen Lake

Figure 4.1: FrozenLake environment. S: Start, F: Frozen, H: Hole, G: Goal.

The world is analogous to a frozen lake, where walking on slippery ice leads to un-
certain outcomes. The uncertainty is described in the transition matrix P [s′, s, a] =
Pr{s′|s, a}, where the probability of going in the intended direction, or to the left or
right of this direction, is 1/3 (thus the three probabilities sum to 1, and moving back-
wards is impossible). An example of trying to move down in state 1 is shown in Equation
(4.1).

Pr(s′|s = 1, a = 1) =

1
3
, if s′ = 0

1
3
, if s′ = 2

1
3
, if s′ = 5

0 otherwise

(4.1)

A reward of +1 is given when the goal state is reached, otherwise there are no rewards.
The holes and the goal are terminal states, so moving into any of these forces the agent
to start over from the start state.

4.1.1 Solution Method

This environment has a limited number of states and actions, therefore a tabular solution
method is suitable. Note that the transition model is available, thus an algorithm from
dynamic programming may be used to solve iteratively for the value function. However,
we can assume the transition probabilities are only available because we have access to the
underlying implementation of the environment, thus we can let them remain unknown
to the agent. Then an appropriate solution is to apply a temporal difference learning
method instead. We choose Q-learning, described in Algorithm 2.

Experiment Details

The Q-values were initialised to 0 for all state-action pairs. The algorithm then ran for
10 000 episodes, and this was repeated 10 times to obtain averaged results. For each
episode of running the algorithm, 5 evaluations were carried out where exploration was

26

turned off, to test the currently learned policy. The test results were averaged over the 5
evaluation episodes.

The discount factor was set to γ = 0.999.

4.1.2 Simulations: Q-learning

Simulation results are presented in Figure 4.2, showing the reward history, and 4.3, il-
lustrating the number of steps the agent needs to reach the goal from the start state.
A maximum test limit was set to 100 steps, and we see that in the first episodes, the
agent does not reach the goal at all. The optimal policy learned by the agent and its
corresponding Q-values are illustrated in Figure 4.4.

0 2000 4000 6000 8000 10000

Episodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

w
a

rd

 Q-learning on the FrozenLake environment
 Average reward over previous 100 episodes

 = 0.03, = 0.1

 = 0.03, = 0.4

 = 0.03, = 0.7

(a) Varying exploration rate

0 2000 4000 6000 8000 10000

Episodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

w
a

rd

 Q-learning on the FrozenLake environment
 Average reward over previous 100 episodes

 = 0.02, = 0.4

 = 0.03, = 0.4

 = 0.06, = 0.4

(b) Varying learning rate

Figure 4.2: Reward history for Q-learning in the FrozenLake environment

0 2000 4000 6000 8000 10000

Episodes

30

40

50

60

70

80

90

100

S
te

p
s
 p

e
r

e
p
is

o
d
e

 Q-learning on the FrozenLake environment
 Steps needed to reach the goal

 = 0.03, = 0.1

 = 0.03, = 0.4

 = 0.03, = 0.7

(a) Varying exploration rate

0 2000 4000 6000 8000 10000

Episodes

30

40

50

60

70

80

90

100

S
te

p
s
 p

e
r

e
p
is

o
d
e

 Q-learning on the FrozenLake environment
 Steps needed to reach the goal

 = 0.02, = 0.4

 = 0.03, = 0.4

 = 0.06, = 0.4

(b) Varying learning rate

Figure 4.3: Number of steps needed to reach the goal, using Q-learning in the FrozenLake
environment

The convergence of Q towards q∗ depends on the exploration factor ε, the learning
rate α, and on how many time steps it is allowed to run.

Higher exploration rate can lead to less exploitation of the routes the agent has learned
are good routes, and may in this case lead to falling into a hole at almost every episode
and receiving zero reward, leading to states closer to the goal being less frequently visited.

27

← ↑ ↑ ↑

← ● → ●

↑ ↓ ← ●

● → ↓ ●

●olicy

(a) Optimal policy

←0.7383 ←0.4076 ←0.5716 ←0.4405
↓0.729 ↓0.4695 ↓0.5601 ↓0.4223
→0.7276 →0.4822 →0.5808 →0.4668
↑0.7296 ↑0.7217 ↑0.7014 ↑0.6897

←0.7415 ←0.0 ←0.3579 ←0.0
↓0.4848 ↓0.0 ↓0.2305 ↓0.0
→0.4585 →0.0 →0.3647 →0.0
↑0.5387 ↑0.0 ↑0.2321 ↑0.0

←0.493 ←0.5585 ←0.6823 ←0.0
↓0.4421 ↓0.752 ↓0.5546 ↓0.0
→0.57 →0.4514 →0.4246 →0.0

↑0.7461 ↑0.4902 ↑0.3507 ↑0.0

←0.0 ←0.5618 ←0.8072 ←0.0
↓0.0 ↓0.562 ↓0.9169 ↓0.0
→0.0 →0.8551 →0.8517 →0.0
↑0.0 ↑0.6318 ↑0.8442 ↑0.0

Action-Value Function

(b) Action-values yielding optimal policy

Figure 4.4: Results in the FrozenLake environment using Q-Learning

Figure 4.2a and 4.3a shows that this may lead to the agent finding some good solutions
early on, but the exploration is so high that it takes longer to reach the best policy. Here,
ε = 0.7 looks as though it will be the best exploration rate early on, but is surpassed
by ε = 0.4 Too low exploration and the agent may not learn the correct Q-value for all
states, or may learn very slowly. This is reflected in Figures 4.2a and 4.3a where one can
see that the lowest ε of 0.1 does not converge within the 10000 episodes.

Low learning rate can lead to slow convergence and thus many steps must be taken to
learn the values. If too high, the algorithm may not converge or becomes unstable. Figure
4.2b and 4.3b illustrate these arguments, and we find α = 0.03 to be an appropriate value.
Here, α was constant, but it may lead to better convergence if α decreases with time.

At first glance, the policy found doesn’t appear to make much sense. However, as the
environment is highly stochastic, the optimal policy will be to always attempt to move
in the opposite direction of nearby holes, as this is the only way to avoid any possibility
of falling into them. By following the optimal policy in Figure 4.4, the only state with
any possibility of falling into a hole is state 6, which is reflected by its Q-values, the
lowest of all states. In this particular state, there is no obvious reason why moving right
should be better or worse than moving left, as the probabilities of going up or down
will be the same in both cases. Thus, the optimal Q-value should have the property
q∗(6, left) = q∗(6, right). The learned Q is thus only close to optimal.

4.2 OpenAI Gym’s CartPole

In the CartPole environment, a pole is attached by an un-actuated joint to a cart, which
moves along a frictionless track. The agent’s observation consists of four values: the cart
position along the track, the cart velocity, the pole angle with respect to the vertical axis,
and the pole’s velocity at the top of the pole. There are two available actions that push
the cart to the left or to the right with a force of fixed magnitude.

28

Figure 4.5: Screengrab from the CartPole environment

The pendulum starts in an upright position, with all observations assigned a uniform
random value between -0.05 and 0.05. The episode terminates when the absolute value
of the angle of the pole is more than 24◦, or if the cart exceeds its maximum or minimum
position along the track. Each episode is limited to a length of 200 steps.

The goal is to prevent the pole from falling over. A reward of +1 is given for every
timestep that the pole remains upright, and the environment is considered solved when
the agent gets an average reward of 195.0 over 100 consecutive trials.

Observation Min Max

Position -4.8 4.8
Velocity −∞ ∞

Pole angle -24◦ 24◦

Pole velocity −∞ ∞

(a) Observation space

Action

Left
Right

(b) Action space

Table 4.1: The CartPole environment

4.2.1 Solution Method

Since the observation space is continuous and the action space is discrete, policy gradients
can be applied, and a suitable solution method is REINFORCE with a neural network
that approximates the policy distribution, as described in Algorithm 3. It takes states as
input and gives a distribution over the two states as output. The neural network allows
the agent to generalise from observed to unseen states.

Experiment Details

The network for approximating the policy had two hidden layers of dimensions 10 and 2.
The input layer had four units, representing the four state values, and the output layer
had two units corresponding to the two actions. The hidden layer activation function was
the rectified linear unit (ReLU), and softmax was used as the output activation to ensure
that the output could be considered a probability distribution over the two actions.

Adam [29] was used for learning the neural network parameters, with a learning rate
of α = 0.01. The discount factor for calculating returns was γ = 0.95. The training was
carried out over 5000 episodes of maximum 200 time steps each.

29

4.2.2 Simulations: REINFORCE

Simulation results can be seen in Figure 4.6, where a moving average of the rewards
were computed over the previous 100 episodes. Three variants are shown: with and
without normalisation of returns, and a modified version of the implementation with
normalisation, which will be further explained. The limit of 195.0 shows us when the
environment can be considered solved.

0 1000 2000 3000 4000 5000

Episode

0

20

40

60

80

100

120

140

160

180

200

R
e

w
a

rd

 REINFORCE on the CartPole environment
 Average over previous 100 episodes

Normalised

Normalised w/ modification

Not normalised

195.0

Figure 4.6: Reward history for CartPole trained using REINFORCE

The algorithm without normalisation is not even close to solving the task after 5000
episodes, while the version with normalisation of returns performs much better. In this
case, it is evident that by the definition of solved environment, the training could have
stopped as early as approximately 800 episodes, where the plotted moving average crosses
the 195.0 limit. The drops in performance when training continues beyond this point, is
a common occurrence in REINFORCE. This could be due to overfitting of the network
to the observed data. To counteract overfitting, dropout or weight regularisation could
be used. Another reason for this phenomenon could be the step limit per episode. When
reaching 200 steps, the agent cannot distinguish between termination due to losing or due
to the step limit being reached. This may cause the agent to attempt new combinations
of actions in order to increase the score, unaware of the fact that 200 is the maximum.
Once the agent realises that it cannot find better solutions, it once again learns to balance
until the end of the episode.

In an attempt to mitigate this effect, a modified algorithm with normalisation of
returns was implemented. In this version, whenever an episode terminated due to reaching
the step limit, we did not allow the agent to update its policy parameters. We justify this
by saying that in these cases the agent did not “lose”, thus we do not want it to learn that

30

it did so. When an episode terminates due to the pole falling over, the agent learns in
the same manner as before. By examining Figure 4.6 one can see that this modification
seems to stabilise the training in this environment.

Another modification that could have improved performance is the introduction of a
baseline function, for example by using an estimate of the value function. This would
have increased complexity of the solution, since a function approximator for the value
function must be implemented, however the variance of the estimated returns would be
reduced, which could decrease convergence time of the REINFORCE algorithm.

4.3 OpenAI Gym’s Pendulum

This is an inverted pendulum swing-up problem. An agent’s available observations are the
angle θ, indirectly in the form of sin θ and cos θ, and the angular velocity θ̇, summarised
in Table 4.2a. It can apply a torque between -2 and 2 to the pendulum in order to reach
the goal of balancing the pendulum vertically at θ = 0.

Observation Min Max

cos θ -1.0 1.0
sin θ -1.0 1.0

θ̇ -8.0 8.0

(a) Observation space

Action Min Max

Torque τ -2.0 2.0

(b) Action space

Table 4.2: The Pendulum environment

The reward at each time step is

r = −(θ2 +
1

10
θ̇2 +

1

1000
τ 2) (4.2)

where θ is normalized between −π and π. The maximum possible reward is then 0, and
the lowest is −(π2 + 0.1 ∗ 82 + 0.001 ∗ 22) = −16.2736. Thus, achieving maximum reward
means to remain at zero angle (vertical position) with minimum rotational velocity and
applying minimum effort.

The starting state of each episode is decided by a random angle between −π and π,
and angular velocity between -2 and 2. The only termination criteria for this environment
is the number of time steps, which is maximum 200 per episode. Unlike the CartPole
environment, the Pendulum does not have a specified reward threshold at which it is
considered solved.

Figure 4.7: Screengrab from the Pendulum environment

31

4.3.1 Solution Method

Both the state space and action space of this environment is continuous. Deep determin-
istic policy gradients, introduced in Algorithm 4 in Section 3.4.3, are especially suitable
for these kinds of environments, since the method approximates both the action-value
function and a deterministic policy for action selection, using neural networks.

Experiment Details

Both the actor and critic networks had 2 hidden layers with 400 and 300 units respectively,
and ReLU was used for all units in the hidden layers. The output layer of the actor used a
hyperbolic tangent activation function in order to bound actions between -1 and 1. This
output was then scaled to the range of the torque, which was [−2, 2]. The critic network’s
output was the Q-value, and should be able to take any value, thus no activation function
was used here. Both networks had one output unit, and six input units representing the
state. Actions were also used as input to the critic, but were not included until the second
hidden layer.

The discount factor of the critic’s TD error was γ = 0.99. For the soft target updates
τ = 0.001 was used. Adam [29] was used for learning the neural network parameters,
with a learning rate of 10−4 and 10−3 for the actor and critic respectively. A minibatch
size of 64 and a replay buffer size of 106 was used.

In order to explore we used an Ornstein-Uhlenbeck process [38] with θ = 0.15 and
σ = 0.2.

The agent trained for 600 episodes of 200 time steps each, for a total of 120000 steps.

4.3.2 Simulations: DDPG

The Pendulum environment was solved using DDPG, with function approximator designs
as presented in Section 4.3.1. Results are presented in Figure 4.8, which shows the rewards
from evaluation runs where exploration was turned off and only the current learned policy
was followed. The opaque blue line is the real rewards, while the darker line is a smoothed
version of the received rewards. From the figure we can see that the agent improves until
converging to a mean reward of approximately −150, which is where it has learned to
solve the task by swinging up the pendulum. The achieved reward varies because the
starting conditions vary.

Testing the trained agent from a starting angle of θ = π and zero angular velocity,
θ̇ = 0, we get the results in Figure 4.9, where 4.9a shows the applied torque and 4.9b
shows the resulting angle and angular velocity of the pendulum. For plotting purposes we
do not normalise θ between −π and π, which ensures the resulting plot is continuous and
thus easier to interpret. Here, θ = 0 at the top position and increases as the pendulum
rotates clockwise, so that θ = π at rest in the bottom position, and θ = 2π after one
complete rotation. From this, we can conclude that the pendulum swings back and
forth a few times to gain momentum, before swinging up to the goal position in the
counterclockwise direction. The angle and angular velocity converge to zero, while the
applied torque converges to a small value.

32

Figure 4.8: Reward history for the Pendulum trained using DDPG

0 50 100 150 200

Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

T
o
rq

u
e
 [
N

m
]

 Applied control action

(a) Control action

0 50 100 150 200

0

1

2

3.14

4

5

6

A
n
g
le

 [
ra

d
]

 Angle

0 50 100 150 200

Time

-6

-4

-2

0

2

4

A
n
g
u
la

r
v
e
lo

c
it
y
 [
ra

d
/s

]

 Angular velocity

(b) Angle and angular velocity

Figure 4.9: Test of the Pendulum trained by DDPG

33

Chapter 5

Application of DDPG to a Vehicle
Manoeuvring Task

This chapter shows the implementation and results of a vehicle manoeuvring task using
deep reinforcement learning, which will provide insight into whether such a system can
be useful. The chapter focuses on the DDPG algorithm, because this has proven to
be fairly straightforward to implement, and has been tested in a simple environment
in Chapter 4. The manoeuvring task has continuous state space and continuous action
space, thus a deep reinforcement learning method, such as DDPG, is necessary. An
alternative algorithm would have been Proximal Policy Optimisation (PPO), which is a
DRL method that has shown promise in physical control tasks [39]. PPO computes an
update of the policy at each time step that maximises the score function while ensuring
the deviation from the previous policy is small. This makes PPO more robust in terms
of tuning of step size than DDPG. It is also considered to be more sample efficient than
DDPG, needing less time steps in an environment before learning tasks.

An environment consisting of a point mass whose goal is to reach a pre-defined po-
sition by applying force in a direction and with a certain magnitude is implemented in
Section 5.1. The framework for implementation of RL problems provided by OpenAI
Gym was used when implementing the environment. Training the DDPG agent in this
environment will give an indication of whether a vehicle control system or path planner
can be implemented with reinforcement learning. Several reward function designs will be
considered in Section 5.2, before simulation results are presented and discussed in Section
5.3 and 5.4, respectively.

5.1 The Point Mass Environment

5.1.1 Vehicle Dynamics

A general vehicle was modelled as a point mass whose movement is decided by a force
~Fu with magnitude Fu and direction θ. An illustration of the point and applied force in
the case where friction is ignored is presented in Figure 5.1. Friction was modelled as
Coulomb friction with stiction, meaning that while the vehicle is in motion, the friction
is constant and equal to the Coulomb friction, and when stationary the friction is slightly
larger and equal to the static friction.

The direction θ is defined as the angle relative to the x-axis in the counterclockwise
direction. Positions (x, y) and angles are defined in an inertial (stationary) coordinate

34

frame.

CG

F⃗

u

x˙

y˙

θ

y

x

Figure 5.1: Illustration of a point mass with an applied external force

Newton’s second law for the movement of a point mass in an inertial reference frame
gives

m~a =
∑

~F = ~Fu − ~Ff (5.1)

~a =
1

m

(
~Fu − ~Ff

)
(5.2)

where ~Fu is the applied force vector, ~Ff is the friction force, ~a is the point’s acceleration
and m is the mass. By decomposing the forces and inserting them in (5.2) we get

Fux = Fu cos θ Fuy = Fu sin θ (5.3)

ax = ẍ =
1

m

(
Fu cos θ − Ffx

)
(5.4)

ay = ÿ =
1

m

(
Fu sin θ − Ffy

)
(5.5)

Coulomb friction models the friction force as proportional to load, opposing motion
and independent of contact area. Stiction, also called static friction, models how the
friction force can be larger for zero velocity than for a particle in motion [40]. This means
that the system sticks when the velocity is zero and the applied force is less than the
stiction force, Fu < Fs, and the system breaks away when the applied force is equal to the
stiction force, Fu = Fs. Here, the stiction force Fs is larger than the Coulomb force Fc.
This effect can be implemented as in Equation (5.6), and an illustration of the friction
model in the x-direction is shown in Figure 5.2.

Ffx =

{
Fs, if ẋ = 0 and Fu < Fs

Fc sgn(ẋ) = µmg · sgn(ẋ), otherwise

Ffy =

{
Fs, if ẏ = 0 and Fu < Fs

Fc sgn(ẏ) = µmg · sgn(ẏ), otherwise

(5.6)

where µ is the friction coefficient. Th gravity of earth is denoted g = 9.81m/s2.

35

Ffx

Fs

x˙

Fc

Figure 5.2: Friction model

For simulation of Equations (5.4)-(5.5), we use the simple numerical integration
scheme Euler’s method with step size ∆t = 0.05.

In this environment, the direction θ and magnitude of force Fu are the inputs to
the system, and these are applied instantly, thus there are no separate dynamics for the
inputs. The following section further clarifies this.

5.1.2 Problem Formulation

The observation vector is given by

s =

x̃
ỹ
˙̃x
˙̃y
d

ḋ

=

x− xg
y − yg
ẋ
ẏ
d

ḋ

(5.7)

where d =
√
x̃2 + ỹ2 is the euclidean distance between the current position and the goal,

and the action vector is

a =

[
θ
Fu

]
(5.8)

The observation and action ranges are shown in Table 5.1. The goal position is
(xg, yg) = (0, 0). The episodes begin with initial x̃- and ỹ-positions, (x̃s, ỹs), sampled
from a uniform distribution between -4 and 4, and velocities at zero. The initial distance
to the goal is calculated according to the position coordinates, and the derivative of the
distance is zero. An episode terminates when it reaches the maximum number of time
steps of 200.

By defining elements in the state vector relative to (xg, yg), the problem becomes
independent from the placement of the origin of the chosen coordinate frame. Distance d
is included in the observation because it defines the position error that is to converge to

36

Observation Min Max

x̃ -4.0 4.0
ỹ -4.0 4.0
ẋ -1.0 1.0
ẏ -1.0 1.0
d -10.0 10.0

ḋ −∞ −∞

(a) Observation space

Action Min Max

θ -π π
Fu 0 2.0

(b) Action space

Table 5.1: The point mass environment

zero. It is calculated using only x̃ and ỹ and thus does not introduce unique information
to the system. However, augmenting the state with mappings from coordinates to other
information can speed up learning, since the networks no longer have to approximate
these mappings.

As mentioned in Section 5.1.1, since the angle θ and force Fu are inputs to the vehicle,
there are no equations implemented that describe the change in θ and Fu for the vehicle.
This means that the input vector defines the force ~Fu, with magnitude Fu and direction
θ, that is applied to the vehicle at every time step. These signals may change quickly,
and so there are no limitations on the turning rate or change of acceleration that can be
achieved by the vehicle.

The observation vector of Equation (5.7) is the input to the actor network of the DDPG
agent, while the action vector (5.8) becomes the output of the actor network. Both
the observations and actions are inputs to the critic network, where the actions are not
included until the second hidden layer. The output of the critic is the estimated action-
value of the observation and action. This design of the DDPG algorithm is the same as
what was used on the Pendulum in Section 4.3.1.

5.2 Reward Function Design

Representative reward function designs for the presented tasks are introduced below. All
rewards of this section will be tested in the environment described in Section 5.1.

The reward function is an important part of the reinforcement learning algorithm, as
this is the agent’s measure of how well it is performing. Therefore it is necessary to design
it in a way that makes sure the agent understands what we, as the designers, consider to
be the optimal behaviour.

When designing a reward signal in the point mass environment, the most important
thing to consider is convergence to the goal position. A sparse signal, giving nonzero
reward only exactly at the goal position is unlikely to converge, as the probability of
visiting the exact goal position during exploration is small, which leads the agent to
learn very little about the environment. Therefore, letting the agent receive reward for
being in the vicinity of the goal might improve performance and decrease convergence
time. In these environments, it is crucial to not only get to a position close to the goal,
but to minimise the distance, therefore choosing a signal that increases as the distance is
reduced, reaching its maximum at zero distance could be a good candidate for the reward
function.

37

5.2.1 Reward Function 1

To achieve this, a Gaussian function is considered, which takes the shape of a bell curve
as shown in Equation (5.9) and Figure 5.3, with amplitude a, mean µ and standard
deviation σ.

g(d) = ae−
(d−µ)2

2σ2 (5.9)

This will give the agent some knowledge about how its distance to the goal, d, relates
to the performance measure. However, the control problem contains infinitely many
states and actions, thus the transformation from states to actions may be complicated
and learning may be time-consuming. In other words, this simple reward may be of use,
but to speed up training of the agent we propose an additional reward when the agent
reaches an area defined by a small radius around the goal, to make sure the agent tries
to remain within this area. The total reward signal becomes

r1 = ae−
d2

2σ2 +

{
cd, if d < 0.05

0, otherwise
(5.10)

where a > 0 (amplitude of the Gaussian) and cd > 0 are weighting factors.

-4 -3 -2 -1 0 1 2 3 4

Distance to goal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

w
a

rd

 Bell curve

 = 0, = 1

 = 0, = 0.4

Figure 5.3: Example of reward function consisting of a Gaussian function with
amplitude a = 1, mean µ = 0 and standard deviation σ = 1 or σ =

√
0.4

5.2.2 Reward Function 2

An alternative to the Gaussian reward signal, that also holds the properties suggested in
the introduction to the reward function design section, is implemented here. This reward
function has a different form than r1. Reward Function 1 will produce approximately zero
reward everywhere except in some area surrounding (xg, yg), depending on the choice of
standard deviation, which may cause the learning to be slow. Thus, the reward signal
proposed in this section, called r2, is designed to be less sparse, which can help the agent
learn about good behaviour more quickly.

The design is based on receiving the largest reward at the goal, with a small area
surrounding the goal giving significantly larger rewards than the rest of the environment.
In this area, the signal is given by a Gaussian with an amplitude that ensures this reward

38

is larger than outside the radius. The Gaussian has small standard deviation in order
to make it clear that the reward can increase further by reducing the distance. When
outside of this area, the largest rewards are obtained when the vehicle travels straight
towards the goal, and is given by a value proportional to the derivative of distance, ḋ.
This is added to ensure that the agent can quickly understand what direction of travel
moves it towards the goal.

It will become evident in Section 5.3 that the first reward function, r1, described in
Section 5.2.1, does not directly take into account how the control inputs should behave. In
a real vehicle, it is beneficial to reduce erratic control behaviour since this in turn increases
the lifespan of the actuators. By implementing a penalty on erratic control inputs, the
desired outcome is that these become smoother, and ideally that they converge to zero

when the vehicle is at rest. This penalty is −cḞuḞuḞu
2 − cθ̇θ̇θ̇

2, where cḞuḞu > 0 and
cθ̇θ̇ > 0 are the weighting factors of the thrust and rudder penalties, respectively.

The reward becomes

r2 = −cḞuḞuḞu
2 − cθ̇θ̇θ̇

2 +

ae−
d2

2σ2 , if d < 0.05

−cḋḋ, otherwise
(5.11)

where cḋ > 0 is the weighting factor of ḋ. The −cḋḋ term gives a reward whenever ḋ < 0,
that is when distance is reduced, and a penalty when ḋ > 0.

The environment of Section 5.1 is simplified compared to vehicles in the real world
in the sense that desired control inputs are applied instantly, rather than having their
own dynamics. Since the vehicle of the first environment thus has the possibility of
changing its direction input more quickly than what could be considered ”usual”, we can
expect it to find solutions where the reward of changing direction outweighs the penalty
of fast-changing inputs.

5.2.3 Reward Function 3

Motivated by the discussion of r2 that can be found in Section 5.3.2, we propose a reward
where the penalty on change in applied force is replaced by a penalty on the magnitude
of the force. Hopefully, this motivates the agent to reduce its input to minimum. The
goal is to reduce the applied force as much as possible when the goal position is reached.
If Fu approaches zero, the direction is irrelevant to the movement of the vehicle. Thus,
the penalty on θ̇ is kept as is, in the hopes of resulting in an agent that applies constant
θ when stationary.

The reward is

r3 = −cFuFuF 2
u − cθ̇θ̇θ̇

2 +

ae−
d2

2σ2 , if d < 0.05

−cḋḋ, otherwise
(5.12)

where cFuFu > 0 is the weighting factor of penalty on Fu. As in the previous section,
the weighting factors of θ̇, ḋ and the Gaussian signal are cθ̇θ̇, cḋ and a, respectively. The
magnitude of the weighting factor on the force must make sure the expected reward of
moving closer to the goal by applying force is greater than the penalty linked to the
force.

39

5.3 Simulations

In this section, the reinforcement learning agent whose architecture is described in Section
4.3.1, is trained and tested using the reward signal designs with and without penalties
related to control input, which were presented in Section 5.2. Each of the reward signals
are implemented in the point mass environment, as implemented in Section 5.1, and
results are presented and analysed below, in Section 5.3.1-5.3.3.

5.3.1 Reward Function 1

Letting a = 1, cd = 1 and σ2 = 0.4, and training the DDPG agent for 4000 episodes,
800000 time steps in total, we get the reward history shown in Figure 5.4. These values for
the weight factors result in maximum reward of 2 at (x, y) = (xg, yg), and the underlying
bell curve will look like in Figure 5.3.

Two tests from different start positions are presented in Figure 5.5, where Figures
5.5a,c,e show what happens when the vehicle starts at position (x, y) = (2,−2), and
5.5b,d,f show what happens when starting at (x, y) = (−2, 2). The plotted direction θ is
scaled between −1 and 1 in Figures 5.5e-f.

Figure 5.4: Evaluation reward history (without exploration) for point mass
trained using DDPG with r1

The test runs illustrate that the vehicle successfully learns how to apply actions in
order to move from its start position to the goal, at (0, 0). Figures 5.5c,d confirm that the
position error converges to zero. However, Figures 5.5e,f show how the control actions are
unpredictable. Once the vehicle has stopped at the goal, the applied force does not go to
zero, and the direction is shaky. In fact, in order to stop its movement, it is not necessary
for the agent to apply zero action, as there are no constraints on direction change, thus
a feasible solution will be to change direction by 180◦ at every time step.

40

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 256.04

(a) Trajectory

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 280.87

(b) Trajectory

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o

s
it
io

n
 e

rr
o

r

 Position error

(c) Distance to goal

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o

s
it
io

n
 e

rr
o

r

 Position error

(d) Distance to goal

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(e) Control actions

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(f) Control actions

Figure 5.5: Test the point mass agent trained by DDPG with r1, from (xs, ys) =
(2,−2) and (xs, ys) = (−2, 2)

41

5.3.2 Reward Function 2

We recognise through experiments that by letting the penalty on change in applied force
grow large compared to the combination of the reward close to the goal and the penalty
on change in direction, the agent learns to apply a constant force of Fu = 2. Thus only
the direction of the force is utilised for speed regulation. The reason it learns this is that
the chances of experiencing a situation that results in the real maximum reward, where
Fu ≈ 0, d < 0.05 and θ̇ ≈ 0 through exploration is low. This is especially true when, after
many learning epochs, the agent has been taught that applying more force reaches the
desired position faster, and reducing force will lead to a large penalty. Since maximum
Fu brings the agent quickest to the goal, this approach usually gives the best reward from

the agent’s experience. As a result, setting cḞuḞu = 0 so that cḞuḞuḞu
2

is removed from
Equation (5.11) may produce more interesting results.

The remaining parameters are chosen as a = 2, σ2 = 0.1, cθ̇θ̇ = 0.0015 and cḋ = 1√
2
.

We know that, since θ ∈ [−π, π], then θt − θt−1 ∈ [−π, π], because all angles must be
normalised to lie in this range. This value can easily be scaled to lie within [−1, 1].
This means that θ̇ ∈ [−1, 1] 1

∆t
= [−20, 20], and ḋ ∈ [−

√
2,
√

2], then cθ̇θ̇θ̇
2 ∈ [0, 0.6] and

cḋḋ ∈ [−1, 1]. So by choosing these values for the parameters, the penalty is always less
than the potential reward, which motivates actions during training. The reward history of
this experiment is shown in Figure 5.6. Two test runs from start positions (x, y) = (2, 2)
and (x, y) = (−2,−2) are illustrated in Figure 5.7.

Figure 5.6: Evaluation reward history for point mass trained using DDPG with r2

First of all, we observe that reward r2 causes the solution to converge after only 2000
episodes, which is significantly less than what we saw in Section 5.3.1. Reward r2 is less
sparse than r1, and therefore less exploration is needed before reaching states that give
nonzero reward, and so training is faster.

Comparing trajectories from Figure 5.7 with Figure 5.5, the new reward changes the
behaviour of the vehicle, although not by extreme amounts. It can be seen that the
constraint on turning rate/erratic direction causes the trajectories to appear as if they
were made by a vehicle with limited turning radius. In Figure 5.5, the vehicle was turning
more suddenly, thus the trajectories were less smooth. In addition, Figures 5.7e-f tell us
that the penalty in change of direction has had the desired effect on the inputs. The
plotted actions show a clear change in how the control inputs are being used by the

42

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 300.80

(a) Trajectory

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 290.93

(b) Trajectory

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o

s
it
io

n
 e

rr
o

r

 Position error

(c) Distance to goal

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o

s
it
io

n
 e

rr
o

r

 Position error

(d) Distance to goal

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(e) Control actions

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(f) Control actions

0 50 100 150 200

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(g) Rewards

0 50 100 150 200

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(h) Rewards

Figure 5.7: Test the point mass agent trained by DDPG with r2, from (xs, ys) = (2, 2)
and (xs, ys) = (−2,−2)

43

agent, compared to r1 in Section 5.3.1. Here, Fu approaches a steady value close to zero,
while θ is less erratic than previously. The rewards corresponding to each test are shown
in Figures 5.7g-h, which confirm that large changes in direction correspond to reduction
in the reward signals. Even though the force is not exactly zero, due to friction the vehicle
remains stationary from approximately 75 time steps. Figures 5.7c-d illustrate that this
leads to a steady state error in position, as the vehicle has not learned to stop at the
exact position that maximises reward.

It seems natural, then, that to keep training the neural networks will lead to a perfect
solution. However, this is not the case. Some discussion regarding the cause of this can
be found in Section 5.4. An example of the behaviour can be found in Appendix A.1,
where it is evident that the agent has learned to reduce the position error, but it no
longer understands how to reduce the derivative of the input.

5.3.3 Reward Function 3

The reward signal introduced in Section 5.2.3, given by Equation (5.12) is implemented
with cθ̇θ̇ = 0.0015, cFuFu = 0.03, a = 2, σ2 = 0.1 and cḋ = 1√

2
. Then cθ̇θ̇θ̇

2 ∈ [0, 0.6],

cḋḋ ∈ [−1, 1] and cFuFuF
2
u ∈ [0, 0.12]. The penalty on Fu is designed to be the smallest,

to avoid situations where remaining in the initial position by applying zero force becomes
the optimal solution. The resulting reward history can be found in Figure 5.8, and two
tests from starting positions (x, y) = (2,−2) and (x, y) = (−2, 2) are shown in Figure
5.9.

Figure 5.8: Evaluation reward history for point mass trained using DDPG with r3

Figures 5.9e-f illustrate that the agent applies less force than previously, and that
Fu becomes zero when the vehicle is stopping. The direction of the applied force is also
less erratic than in the previous tests. The position error converges to zero, as shown
in Figures 5.9c-d. The reward signals of Figures 5.9g-h confirm that the reward signal
behaves as intended - it is reduced when Fu is large and when θ changes quickly.

The trajectories seen in Figures 5.9a-b show that the turning of this vehicle appears
even more constrained than in Section 5.3.2. More test results can be found in Appendix
A.2, which show paths taken by the vehicle when the starting position is further from
(xg, yg).

44

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 280.07

(a) Trajectory

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 269.27

(b) Trajectory

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o

s
it
io

n
 e

rr
o

r

 Position error

(c) Distance to goal

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o

s
it
io

n
 e

rr
o

r

 Position error

(d) Distance to goal

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(e) Control actions

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(f) Control actions

0 50 100 150 200

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(g) Rewards

0 50 100 150 200

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(h) Rewards

Figure 5.9: Test the point mass agent trained by DDPG with r1, from (xs, ys) = (2,−2)
and (xs, ys) = (−2, 2)

45

Based on these observations, r3 gives a relatively successful agent, which navigates
from a start position to a goal by applying a force direction and magnitude. The tra-
jectories that the agent learns to follow are not completely straight, neither with this
reward nor any of the previous ones. An issue that we face when teaching an agent how
to move is that there are so many possibilities for the agent’s choice of action. Even with
function approximators that are able to generalise and choose appropriate actions in new
situations, the chances of finding the optimal action in a particular state can be low. This
issue can be especially prominent here because of how the environment is designed. As
pointed out in Section 5.1, the force is applied in the desired direction θ instantly, thus
the agent may benefit from being trained on a vehicle which includes a description of the
dynamics of θ. The consequence of this will be that the turning radius of the vehicle is
limited, giving the agent less freedom, which may in turn produce a better solution.

5.4 Discussion

It has been pointed out during the design of reward signals r2 and r3 (Sections 5.2.2-5.2.3),
and in the results of the previous sections, that penalising the derivative of the direction
input could be beneficial. Sections 5.3.2-5.3.3 confirm that this is the case, where we see
the control inputs behaving as expected, but it is also pointed out that the training of
the agents can be unstable. A discussion of the reason for this behaviour follows.

The agent’s observation, given by (5.7), includes the computed distance and change of
distance to goal in order to reduce the complexity of the function approximator. However,
the observation does not include straightforward information about the vehicle’s current
direction. This was initially considered to be redundant, due to the direction being a part
of the action vector. Also, some knowledge is encoded in ḋ, which is maximised when
the direction of travel is towards the goal. But we find that because of the discontinuity
of the reward signal, ḋ no longer affects the performance measure when the vehicle is
close to the optimal position. Additionally, the velocity is typically low in this area, so
all elements of the observation vector are approximately zero. It could be that the agent
has trouble distinguishing between observations, and it may become difficult to learn
what are the optimal actions in this area, considering that the optimal action depends
on what derivative θ̇ it produces. Thus, an augmentation of the observation vector with
the previous input θ will provide the agent with memory regarding direction, and may
assist in learning the desired behaviour.

It is also important to note that the most important regularisation technique for the
neural networks that has been applied here is in fact early stopping. So if the agent is
allowed to train for too long, the weights of the networks may grow very large or small,
undoing their ability to approximate the functions they are supposed to approximate.
Thus, the addition of dropout to the networks, for instance, may result in more stable
learning.

Figures 5.10 and 5.11 display a comparison of the three agents implemented with
reward signals r1, r2 and r3. These figures support the claims made earlier - that the
main difference between the trajectories appears to be the turning radius achievable by
the vehicle, and that the control inputs become less erratic when the reward function
reflects a desire to reduce the change in input.

The effect on the turning radius of applying penalty to θ̇ is an interesting result
when considering whether this system can be used in the development of a path planner

46

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 256.04

(a) Using r1

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 252.91

(b) Using r2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 280.07

(c) Using r3

Figure 5.10: Comparison of agents’ sample trajectories

0 50 100 150 200

Time

-

-3 /4

- /2

- /4

0

/4

/2

3 /4

A
n
g
le

 [
ra

d
]

 Action:

 with r
1

 with r
2

 with r
3

(a) Direction

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
F

o
rc

e

 Action: F
u

F
u

 with r
1

F
u

 with r
2

F
u

 with r
3

(b) Force

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o

s
it
io

n
 e

rr
o

r

 Position error

Position error with r
1

Position error with r
2

Position error with r
3

(c) Euclidean distance to goal

Figure 5.11: Comparison of agents’ actions and position error for the sampled
trajectories of Figure 5.10

47

for vehicles. The trajectories of Figures 5.10b and 5.10c are similar in appearance to
polynomial trajectories, which is intriguing in this context because it demonstrates that
the reinforcement learning agent can find feasible paths for a vehicle with constrained
motion. In this case, the vehicle’s motion was unconstrained, but the agent still found
trajectories that could have been feasible for other vehicles. Consequently, these paths
can theoretically be fed to a path following system for a constrained vehicle and they
would be possible to follow.

48

Chapter 6

Conclusion

In this thesis we have conducted an investigation of reinforcement learning algorithms
that may be suitable for control of physical systems. We have implemented some of these
algorithms and applied them to control tasks fetched from OpenAI Gym, and established
the resulting agents’ behaviour as successful in their respective tasks.

Further, the thesis has presented a general structure for applying deep reinforcement
learning to a manoeuvring or path planning problem for a vehicle. The resulting method
is model-free, meaning that rather than having knowledge about how the world works
before computation, the algorithm learns a representation that approximates the real
world through exploration. Several reward function designs have been proposed, and
results show that more than one design may lead to a solution. We have found that
penalising control input change, due to less tear on actuators, is preferred. We have also
found that this penalty leads a vehicle with no constraints on control inputs to behave as
if such constraints were present, thus illustrating a potential for the proposed framework
to be applied to other types of vehicles.

Ultimately, we have found that the results presented in this thesis are promising.
They show that the path planning problem in two dimensions can be solved by using a
model-free controller based on reinforcement learning.

Even though the proposed solution shows promise, some drawbacks must be consid-
ered. One such drawback has to do with stability of training. A problem may arise
where the neural networks that approximate the policy and value functions do not con-
verge to good solutions. Another issue with function approximators of this kind is that
the functions they can represent are limited, therefore the true optimal policy and value
function may not be possible to find by using the current network architecture. Smaller,
shallower networks can generally approximate less complex functions than their deeper
counterparts, but retain the advantage of being less computationally demanding. Finally,
the design of performance measure and observations may reduce the complexity needed
by the function approximators, and result in faster convergence.

49

Chapter 7

Future Work

This section will give some recommendations for future work on the vehicle control system
made with reinforcement learning. Firstly, in order to test the performance of the system
on the manoeuvring task more thoroughly, it should be compared to, for instance, a target
tracking controller that is implemented and tuned for the vehicle. Another suggestion
is to compare the trajectories found in this thesis with ones found by a polynomial
trajectory planner. In addition, implementation of one or more alternative DRL methods
should be considered. A possible choice is PPO, which may be more sample efficient
and can give more robust training than DDPG. A more complex vehicle with curvature
constraints, such as a Dubins car or a simulation of a marine vessel, may be substituted
for the currently used vehicle in the agent’s training, to investigate the behaviour of the
proposed system in a different environment. Lastly, the incorporation of obstacles into the
environment, and a redesign of the reward signal that takes the avoidance of obstacles into
account, can transform the system to become an intelligent collision avoidance system. A
thorough investigation of how this may be carried out should be done, which considers the
design of the observation vector, the architecture of the neural networks of the function
approximators, and whether both stationary and moving obstacles are to be included.

50

Bibliography

[1] “COLREGs — Convention on the International Regulations for Preventing
Collisions at Sea,” 1972. [Online]. Available: http://www.jag.navy.mil/distrib/
instructions/COLREG-1972.pdf

[2] M. Candeloro, A. M. Lekkas, J. Hegde, and A. J. Sørensen, “A 3d dynamic voronoi
diagram-based path-planning system for uuvs,” in OCEANS 2016 MTS/IEEE Mon-
terey, Sep. 2016, pp. 1–8.

[3] I. B. Hagen, D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, “MPC-based
collision avoidance strategy for existing marine vessel guidance systems,” in 2018
IEEE International Conference on Robotics and Automation (ICRA), May 2018,
pp. 7618–7623.

[4] T. A. Johansen, T. Perez, and A. Cristofaro, “Ship collision avoidance and colregs
compliance using simulation-based control behavior selection with predictive haz-
ard assessment,” IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 12, pp. 3407–3422, Dec 2016.

[5] H. Lyu and Y. Yin, “Ship’s trajectory planning for collision avoidance at sea based on
modified artificial potential field,” in 2017 2nd International Conference on Robotics
and Automation Engineering (ICRAE), Dec 2017, pp. 351–357.

[6] Øivind Aleksander G. Loe, “Collision avoidance for unmanned surface vehicles,”
Master’s thesis, Norwegian University of Science and Technology, 2008.

[7] S. Moe and K. Y. Pettersen, “Set-based line-of-sight (LOS) path following with col-
lision avoidance for underactuated unmanned surface vessel,” in 2016 24th Mediter-
ranean Conference on Control and Automation (MED), June 2016.

[8] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger, “Safe maritime
autonomous navigation with colregs, using velocity obstacles,” IEEE Journal of
Oceanic Engineering, vol. 39, no. 1, pp. 110 – 119, Jan 2014.

[9] G. Millar, “An obstacle avoidance system for autonomous underwater vehicles: A
reflexive vector field approach utilizing obstacle localization,” in 2014 IEEE/OES
Autonomous Underwater Vehicles (AUV), Oct 2014, pp. 1–4.

[10] W. Zhang, S. Wei, Y. Teng, J. Zhang, X. Wang, and Z. Yan, “Dynamic obstacle
avoidance for unmanned underwater vehicles based on an improved velocity obstacle
method,” in Sensors, 2017.

51

http://www.jag.navy.mil/distrib/instructions/COLREG-1972.pdf
http://www.jag.navy.mil/distrib/instructions/COLREG-1972.pdf

[11] E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “A waypoint guidance strategy
for underwater snake robots,” in 22nd Mediterranean Conference on Control and
Automation, June 2014, pp. 1512–1519.

[12] A. M. Kohl, S. Moe, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “Set-based
path following and obstacle avoidance for underwater snake robots,” in 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Dec 2017, pp.
1206–1213.

[13] M. L. Turing, “Computing machinery and intelligence,” Mind, vol. 49, pp. 433–460,
1950.

[14] S. J. Russel and P. Norvig, Artificial Intelligence. A Modern Approach, 3rd ed.
Upper Saddle River, New Jersey, USA: Prentice Hall, 2010.

[15] D. Michie and R. A. Chambers, “Boxes: An experiment in adaptive control,” Ma-
chine intelligence, vol. 2, no. 2, pp. 137–152, 1968.

[16] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, 1st ed. Athena
Scientific, 1996.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. A. Riedmiller, “Playing atari with deep reinforcement learning,” CoRR, vol.
abs/1312.5602, 2013. [Online]. Available: http://arxiv.org/abs/1312.5602

[18] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” Nature, vol. 550, pp. 354–359, October 2017. [Online].
Available: https://www.nature.com/articles/nature24270

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR, vol.
abs/1509.02971, 2015. [Online]. Available: http://arxiv.org/abs/1509.02971

[20] R. Yu, Z. Shi, C. Huang, T. Li, and Q. Ma, “Deep reinforcement learning based
optimal trajectory tracking control of autonomous underwater vehicle,” in 2017 36th
Chinese Control Conference (CCC), July 2017, pp. 4958–4965.

[21] A. B. Martinsen, “End-to-end training for path following and control of marine
vehicles,” Master’s thesis, Norwegian University of Science and Technology, 2018.

[22] Y. Cheng and W. Zhang, “Concise deep reinforcement learning obstacle avoidance
for underactuated unmanned marine vessels,” Neurocomputing, vol. 272, pp. 63
– 73, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0925231217311943

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B.

52

http://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature24270
http://arxiv.org/abs/1509.02971
http://www.sciencedirect.com/science/article/pii/S0925231217311943
http://www.sciencedirect.com/science/article/pii/S0925231217311943

Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: Large-scale machine learning on heterogeneous distributed systems,”
2016. [Online]. Available: http://arxiv.org/abs/1603.04467

[24] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016. [Online]. Available: http://arxiv.org/abs/1606.
01540

[25] Khan Academy. (2018) The Neuron and Nervous Sys-
tem: Overview of neuron structure and function. [On-
line]. Available: https://www.khanacademy.org/science/biology/human-biology/
neuron-nervous-system/a/overview-of-neuron-structure-and-function

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct 1986.

[27] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-
line learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, pp. 2121–2159, 07 2011.

[28] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by a run-
ning average of its recent magnitude,” COURSERA: Neural Networks for Machine
Learning, 2012.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[31] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational invariance,”
in In ICML, 2004.

[32] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift,” CoRR, vol. abs/1502.03167, 2015. [Online].
Available: http://arxiv.org/abs/1502.03167

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.
Cambridge, Massachusetts, USA: The MIT Press, 2018.

[34] R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” in In Advances in Neural
Information Processing Systems 12. MIT Press, 2000, pp. 1057–1063.

[35] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, May 1992.
[Online]. Available: https://doi.org/10.1007/BF00992696

53

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function
http://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/BF00992696

[36] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic Policy Gradient Algorithms,” in Proceedings of the 31st International
Conference on Machine Learning - Volume 32, ser. ICML’14. JMLR.org, 2014, pp. I–
387–I–395. [Online]. Available: http://dl.acm.org/citation.cfm?id=3044805.3044850

[37] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning
and teaching,” Machine Learning, vol. 8, no. 3, pp. 293–321, May 1992. [Online].
Available: https://doi.org/10.1007/BF00992699

[38] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Phys. Rev., vol. 36, pp. 823–841, Sep 1930. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRev.36.823

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[40] T. Gravdahl and O. Egeland, Modeling and Simulation for Automatic Control. Ma-
rine Cybernetics AS, 2002.

54

http://dl.acm.org/citation.cfm?id=3044805.3044850
https://doi.org/10.1007/BF00992699
https://link.aps.org/doi/10.1103/PhysRev.36.823
http://arxiv.org/abs/1707.06347

Appendices

55

Appendix A

Additional Simulation Results of the
Vehicle Manoeuvring Task

A.1 Simulation results using r2, with additional train-

ing

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 287.65

(a) Trajectory

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
o

s
it
io

n
 e

rr
o

r

 Position error

(c) Distance to goal

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e

w
a

rd

 Reward at each time step

(d) Rewards

Figure A.1: Test the point mass agent trained by DDPG with r2, from (xs, ys) = (2, 2)

56

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 298.15

(a) Trajectory

0 50 100 150 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
o

s
it
io

n
 e

rr
o

r

 Position error

(c) Distance to goal

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
R

e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.2: Test the point mass agent trained by DDPG with r2, from (xs, ys) = (−2,−2)

Figure A.3: Evaluation reward history for point mass trained using DDPG with r2

57

A.2 Simulation results using r3

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 213.67

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.4: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (3, 3)

58

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 256.38

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.5: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (3, 0)

59

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 257.38

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.6: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (3,−3)

60

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 269.19

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.7: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (0,−3)

61

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 160.90

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.8: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (−3,−3)

62

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 267.42

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.9: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (−3, 0)

63

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 219.96

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.10: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (−3, 3)

64

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Trajectory.
 Reward: 275.44

(a) Trajectory

0 20 40 60 80 100 120 140 160 180 200

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
c
ti
o

n
s

 Actions

Direction

Force F
u

(b) Control actions

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

P
o
s
it
io

n
 e

rr
o
r

 Position error

(c) Distance to goal

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
w

a
rd

 Reward at each time step

(d) Rewards

Figure A.11: Test the point mass agent trained by DDPG with r3, from (xs, ys) = (0, 3)

65

	Preface
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	I Introduction
	Introduction
	Background and Motivation
	Thesis and Method
	Tools
	Structure of Report

	II Theory and Background Material
	Machine Learning Background
	Machine Learning
	Artificial Neural Networks

	Reinforcement Learning
	The Framework
	Markov Decision Processes

	The Bellman Equation
	Tabular Solution Approaches
	Monte Carlo Methods
	Temporal-Difference Learning

	Reinforcement Learning with Function Approximation
	Policy Gradient Methods
	Actor-Critic Methods
	Deep Deterministic Policy Gradient (DDPG)

	III Results
	Implementation of Reinforcement Learning Methods for Simple Environments
	OpenAI Gym's FrozenLake
	Solution Method
	Simulations: Q-learning

	OpenAI Gym's CartPole
	Solution Method
	Simulations: REINFORCE

	OpenAI Gym's Pendulum
	Solution Method
	Simulations: DDPG

	Application of DDPG to a Vehicle Manoeuvring Task
	The Point Mass Environment
	Vehicle Dynamics
	Problem Formulation

	Reward Function Design
	Reward Function 1
	Reward Function 2
	Reward Function 3

	Simulations
	Reward Function 1
	Reward Function 2
	Reward Function 3

	Discussion

	Conclusion
	Future Work
	Bibliography
	Appendices
	Appendix Additional Simulation Results of the Vehicle Manoeuvring Task
	Simulation results using r2, with additional training
	Simulation results using r3

