
Ingunn Johanne Vallestad
P

ath Follow
ing and C

ollision Avoidance for M
arine Vessels w

ith D
eep R

einforcem
ent Learning

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Ingunn Johanne Vallestad

Path Following and Collision
Avoidance for Marine Vessels with
Deep Reinforcement Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas

June 2019

Ingunn Johanne Vallestad

Path Following and Collision Avoidance
for Marine Vessels with Deep
Reinforcement Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This thesis is the result of my work at the Department of Engineering Cyber-
netics at the Norwegian University of Science and Technology during the spring
semester of 2019. It has utilised work carried out in my own project thesis of au-
tumn 2018, in which a study of reinforcement learning methods was conducted
and algorithms were implemented in the Python programming language. In the
�nal stage of the project thesis, a DRL algorithm taken from the work of Lilli-
crap et. al. [1] was implemented and applied to a vehicle steering task. The DRL
algorithm is reused here, but it has been adapted for application with two di�er-
ent marine craft models. Content relevant for this thesis has been rewritten and
included here, and is comprised of background material in deep reinforcement
learning (DRL) and arti�cial neural networks (ANNs), and implementation of
the DRL algorithm.

This thesis is concerned with path following and collision avoidance algo-
rithms for marine vessels with the use of DRL, applied to two di�erent vessel
models. Recent results within DRL path following in the Master’s thesis of Mar-
tinsen [2] has been a source of inspiration and has provided a starting point for
my own development of path following and collision avoidance algorithms.

A marine craft simulator was made available by DNV GL for the purpose of
vessel modelling. Assistance in utilisation of the simulator was provided by Jon
Arne Glomsrud, as well as example code on starting the simulator and how to
communicate with it using the Python programming language. Furthermore, a
model of a container vessel from the Marine Systems Simulator (MSS), speci�-
cally the MSS GNC Toolbox, of Fossen and Perez [3] was ported from MATLAB
to Python.

The Tensor�ow library, which is an open source software library for high
performance numerical computation with strong support for machine learning
and deep learning, was used for implementation of function approximators in
the form of ANNs. Tensor�ow provides building blocks for implementation
and training of ANNs and includes automatic backpropagation and optimisa-

i

tion techniques. Additionally, the NumPy library for scienti�c computing with
Python was used for performing numerical computations such as linear algebra.

Finally, invaluable insights into DRL, and ideas and discussion of how col-
lision avoidance DRL algorithms may be developed, has been supplied by my
supervisor, Anastasios Lekkas.

Ingunn Johanne Vallestad
Trondheim, June 17, 2019

ii

Abstract

Interest in fully autonomous vehicle control has increased rapidly in recent
years, motivated by promises of higher e�ciency as well as reduced cost and
environmental impact. Within vessel control, collision avoidance is a vital com-
ponent of full autonomy, as it usually entails the following of a path as well as
detection and avoidance of unforeseen obstacles. In marine navigation in par-
ticular, the vessel is also required to follow the International Regulations for
Preventing Collision at Sea (COLREGS). The regulations were created to suit
human reasoning and have not yet been fully adapted to the �xed nature of
computers, thus complicating the development of autonomous marine vessels.

Advances within arti�cial intelligence and deep learning have supported the
claims that intelligent autonomous systems are achievable, and deep reinforce-
ment learning (DRL) is one of the �elds that have shown great promise. DRL
methods optimise behaviour based on a user-speci�ed performance measure
and require no a priori knowledge of dynamics of the controlled vessels or the
world they operate in, and are therefore well suited for complex tasks involving
environmental disturbances and inaccuracy in modelling. In this thesis, a DRL
algorithm suitable for continuous systems will be used in the implementation
of a path following system with surge control, which is applied to two di�er-
ent vessels. Results show a successful control system that is able to optimise its
control input to achieve approximate path convergence.

The path following system is further developed to include collision avoid-
ance, and experimental results in a collision avoidance situation with a container
vessel show promising results. This illustrates the potential DRL has in solving
complicated control tasks and indicates that completely autonomous collision
avoidance can be developed using DRL.

iii

iv

Sammendrag

Interessen for fullt autonome kjøretøy har økt raskt i løpet av de siste årene, mo-
tivert av løfter om økt e�ektivitet samt reduserte kostnader og miljøpåvirkning.
Innenfor fartøystyring er kollisjonsunngåelse en viktig del av full autonomi, da
slike oppgaver vanligvis innebærer å følge en sti i tillegg til deteksjon og un-
ngåelse av uforutsette hindringer. Spesielt for maritim navigasjon er at fartøyet
også må følge de internasjonale reglene for kollisjonsunngåelse på sjøen (COL-
REGS). Reglene ble utarbeidet for å passe til menneskelig resonnering og har
ennå ikke blitt tilpasset maskiners fastsatte natur, noe som gjør det utfordrende
å utvikle autonome marine fartøy.

Fremskritt gjort innen kunstig intelligens og dyp læring støtter påstanden
om at intelligente autonome systemer er innen rekkevidde, og dyp forsterkende
læring (eng. deep reinforcement learning, DRL) er et av feltene som er svært
lovende. DRL-metoder optimerer oppførsel basert på et brukerde�nert ytelses-
mål og krever ingen tidligere kunnskap om de kontrollerte fartøyenes dynamikk
eller om verdenen som opereres i, og er derfor velegnet for komplekse oppgaver
der miljøforstyrrelser og modelleringsunøyaktigheter er til stede. I denne opp-
gaven vil en DRL-algoritme egnet for kontinuerlige systemer anvendes på to
ulike fartøy i et sti-følgesystem med hastighetskontroll. Resultatene viser at
kontrollsystemet er vellykket i den forstand at det kan optimalisere pådraget
for å oppnå sti-følging.

Sti-følgesystemet har blitt videreutviklet for inkludering av kollisjonsun-
ngåelse, og eksperimenter med et containerskip i en typisk situasjon innen kol-
lisjonsunngåelse viser lovende resultater. Det foregående illustrerer dyp forsterk-
ende lærings potensiale innen kompliserte oppgaver, og tyder på at DRL kan an-
vendes til utvikling av fullstendig autonome systemer for kollisjonsunngåelse.

v

vi

Table of Contents

Preface i

Abstract iii

Sammendrag v

List of Tables xi

List of Figures xiii

Nomenclature xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Literature review . 4
1.3 Objective and contributions . 9
1.4 Outline of report . 10

2 Theory 11
2.1 Marine vessel model . 11
2.2 Straight-line path following . 16
2.3 Collision avoidance and COLREGS 18

2.3.1 Relevant rules . 19
2.4 Deep reinforcement learning . 20

vii

2.4.1 Reinforcement learning 20
2.4.2 Deep neural networks 34
2.4.3 Deep deterministic policy gradients 40

3 Design and implementation 43
3.1 DRL algorithm details . 45
3.2 The platform supply vessel simulation interface 47
3.3 Control of a platform supply vessel using deep reinforcement

learning . 49
3.3.1 Surge control . 50
3.3.2 Surge and heading control 51

3.4 Path following using deep reinforcement learning 53
3.4.1 Control input . 53
3.4.2 Performance measure 55
3.4.3 State vector . 57

3.5 Collision avoidance using deep reinforcement learning 59
3.5.1 Performance measure 61

3.6 Overview of controllers . 64

4 Simulations 67
4.1 Control of a platform supply vessel (PSV) 67

4.1.1 Training . 68
4.1.2 Surge control . 68
4.1.3 Surge and heading control 71

4.2 Path following . 75
4.2.1 Training . 76
4.2.2 Platform supply vessel simulations 77
4.2.3 Container vessel simulations 79

4.3 Path following and surge control 82
4.3.1 Training . 82
4.3.2 Platform supply vessel simulations 84
4.3.3 Container vessel simulations 86

4.4 Collision avoidance . 89
4.4.1 Training . 90

viii

4.4.2 Head-on situation . 92
4.4.3 Head-on situation with early and substantial action . . . 96

4.5 Summary of results . 100
4.6 Future work . 101

5 Conclusion 105

Bibliography 107

A Container model 115

B Experiment details 119
B.1 Vessel control with PSV . 119
B.2 Path following and surge control with two vessel types 120
B.3 Collision avoidance . 121

C Additional plots showing thruster input to the platform supply
vessel 123
C.1 Path following . 123
C.2 Path following and surge control 125

ix

x

List of Tables

2.1 The notation of SNAME [4] for marine vessels [5] 12

3.1 Overview of DRL control systems 65

4.1 Waypoints used for generating test paths 75
4.2 Head-on initial values . 92

A.1 Container parameter values . 118

B.1 Parameters used in PSV control 119
B.2 Parameters used in path following for PSV 120
B.3 Parameters used in path following for container vessel 120
B.4 Parameters used in collision avoidance 121

xi

xii

List of Figures

2.1 Linear and angular velocities in BODY frame 12
2.2 Relationship between course χ, heading ψ and sideslip β 15
2.3 Illustration of path-�xed coordinate system. The NED frame is

grey, the path-�xed frame is black, and the path given by way-
points pnk and pnk+1 is shown in red. 17

2.4 Head-on situation. Vessels should alter their course to starboard. 19
2.5 Reinforcement learning . 21
2.6 The actor-critic architecture . 31
2.7 Feed-forward arti�cial neural network 35
2.8 Node or unit of an arti�cial neural network 36
2.9 Transfer learning from source task knowledge and new data [6] 39

3.1 The DRL algorithm’s implemented actor and critic structure . . 46
3.2 Graphic user interface of the PSV simulator 48
3.3 Shape of reward signal given by Equation (3.3) 50
3.4 Shape of reward signal given by Equation (3.7) 52
3.5 SHape of reward signal given by equation (3.14) 55
3.6 Shape of reward signal given by equation (3.15) 57
3.7 Teardrop-shaped penalty region for encouraging substantial ac-

tions in collision avoidance . 63

4.1 Velocities of a DRL agent performing surge control on a PSV . . 68

xiii

4.2 Heading commands and responses of a DRL agent performing
surge control on a PSV . 69

4.3 Trajectories of a DRL agent performing surge control on a PSV . 70
4.4 Surge commands and responses of a DRL agent performing surge

control on a PSV . 70
4.5 Trajectories of a DRL agent performing surge and heading con-

trol on a PSV . 71
4.6 Surge commands and responses of a DRL agent performing surge

and heading control on a PSV 72
4.7 Comparison of uc with and without penalty proportional to u̇c,

of a DRL agent performing surge and heading control on a PSV 72
4.8 Velocities of a DRL agent performing surge and heading control

on a PSV . 73
4.9 Heading commands and responses of a DRL agent performing

surge and heading control on a PSV 74
4.10 Close-up of surge command and response of a DRL agent per-

forming surge and heading control on a PSV (with penalty pro-
portional to u̇c) . 74

4.11 Reward history for the path following task 76
4.12 Trajectory of two DRL agents performing path following on a PSV 77
4.13 Cross-track error of two DRL agents performing path following

on a PSV . 78
4.14 Heading command and response of two DRL agents performing

path following on a PSV . 78
4.15 Trajectory of a DRL agent performing path following on a con-

tainer vessel . 80
4.16 Cross-track error of a DRL agent performing path following on

a container vessel . 80
4.17 Rudder input and heading of a DRL agent performing path fol-

lowing on a container vessel . 81
4.18 Reward history for the path following and surge control task . . 82
4.19 Trajectory of DRL agent performing path following with surge

control on a PSV . 83

xiv

4.20 Cross-track error of DRL agent performing path following with
surge control on a PSV . 83

4.21 Heading command and response of DRL agent performing path
following with surge control on a PSV 84

4.22 Surge command and response of DRL agent performing path fol-
lowing with surge control on a PSV 85

4.23 Velocity of DRL agent performing path following with surge
control on a PSV . 85

4.24 Trajectory of DRL agent performing path following with surge
control on a container vessel . 86

4.25 Cross-track error of DRL agent performing path following with
surge control on a container vessel 87

4.26 Rudder input and heading of DRL agent performing path follow-
ing with surge control on a container vessel 88

4.27 Shaft speed input and velocity of DRL agent performing path
following with surge control on a container vessel 88

4.28 Reward history for the collision avoidance task 91
4.29 Simulation of DRL agent performing collision avoidance in head-

on situation . 93
4.30 Rudder input and heading of DRL agent performing collision

avoidance in head-on situation 94
4.31 Cross-track error and instantaneous reward of DRL agent per-

forming collision avoidance in head-on situation 94
4.32 Relative positions of DRL agent performing collision avoidance

in head-on situation . 95
4.33 Simulation of DRL agent performing collision avoidance in head-

on situation following convention of Rule 16 97
4.34 Rudder input and heading of DRL agent performing collision

avoidance in head-on situation following convention of Rule 16 98
4.35 Cross-track error and instantaneous reward of DRL agent per-

forming collision avoidance in head-on situation following con-
vention of Rule 16 . 98

xv

4.36 Relative positions of DRL agent performing collision avoidance
in head-on situation following convention of Rule 16 99

4.37 Extension of obstacle (red) in the direction of COLREGS violation 102

C.1 Thruster angles of two DRL agents performing path following
on a PSV . 123

C.2 Thruster forces of two DRL agents performing path following
on a PSV . 124

C.3 Thruster angles of DRL agent performing path following and
surge control on a PSV . 125

C.4 Thruster forces of DRL agent performing path following and
surge control on a PSV . 125

xvi

Nomenclature

Abbreviations

AI Arti�cial intelligence

ANN Arti�cial neural network

CA Collision avoidance

COLREGS The International Regulation for Preventing Collisions at Sea

DDPG Deep deterministic policy gradient

DL Deep learning

DNN Deep neural network

DOF Degree of freedom

DP Dynamic programming

DRL Deep reinforcement learning

IMO International Maritime Organisation

LOS Line-of-Sight

MDP Markov decision process

ML Machine learning

xvii

MPC Model predictive control

NED North-East-Down frame

POMDP Partially observable Markov decision process

PSV Platform supply vessel

ReLU Recti�ed linear unit

RL Reinforcement learning

TD Temporal di�erence

Symbols

αp Path tangential angle

T Angular velocity transformation matrix

A Action space

R Reward function

S State space

T Transition model

η Pose vector of marine craft

ν Velocity vector of marine craft

τ Force vector of marine craft

θ Parameter vector for a function approximator

Θnb Euler angles

a Action vector in a deep reinforcement learning system

b Bias vector in arti�cial neural network

p Position vector

xviii

Rn
b Rotation matrix from BODY to NED frame

s State vector in a deep reinforcement learning system

W Weight matrix in arti�cial neural network

µ(·) Deterministic policy

π(·) Stochastic policy

A(s, a) Advantage function

dsafe Safe distance in collision avoidance

Lpp Length of marine craft

Q(s, a) Estimated action-value function

q(s, a) Action-value function

U Total speed

V (s) Estimated value function

v(s) Value function

Subscripts and Superscripts

∗ Optimality property

b Coordinate in BODY frame

c Commanded value

d Desired value

e Error

k Current waypoint

n Coordinate in North-East-Down frame

r Relative value

t Time step

xix

xx

Chapter 1
Introduction

1.1 Motivation

Autonomous systems are entering many areas of today’s society, such as self-
driving cars, household items like robotic lawn mowers and vacuum clean-
ers [7], autopilots in aircraft, and space exploration vehicles [8], to name a few.
One of the advantages of autonomous vehicles is the possibility of increased ef-
�ciency and safety of operations. This is particularly prevalent in environments
unsuitable for humans – such as prolonged underwater missions, areas exposed
to radiation or toxic waste, and even planets like Mars – although the bene�ts
of autonomy are present in all areas where autonomy is pushed.

In marine navigation, a signi�cant incentive for making the transition to
autonomous vehicles is the high density of large marine craft used for shipping
of trade goods (which itself makes up 90% of world trade transport [9]), trans-
portation of passengers, and the �shing industry, where accidents can have seri-
ous consequences for humans, the environment and other assets. Humans may
make erroneous decisions or misjudge dangerous situations under stress, and
this is reported to cause as many as 60% of accidents in ocean navigation [10],
thus the development of fully autonomous vessels may reduce the risk of colli-
sions, and consequently reduce cost and environmental impact. An additional
improvement of autonomous vessels compared to human-operated ones is the
potential for optimising the path travelled, for instance with respect to minimal

1

Chapter 1. Introduction

fuel consumption, or minimum time or distance.

In autonomous ship navigation, there are many challenges to deal with. A
few examples include low-level control of under-actuated or fully-actuated ves-
sels, path following, trajectory tracking and collision avoidance. Development
of controllers include design and tuning of heading and speed controllers, spe-
ci�c for each vessel, and these implement a translation from a heading and speed
error to control inputs to the vehicle. Such inputs can be e.g. rudder angles or
thruster forces and directions, depending on the vessel construction. Path fol-
lowing and tracking involve development of heading and speed guidance laws
that allow the vessel to follow or track a path, minimising position error. In the
path following problem there are no temporal constraints imposed on the vehi-
cle, thus the position error includes only a cross-track error, while the trajectory
tracking problem includes the desired position of the vehicle along the path at
each time instant.

The collision avoidance problem is among the most complicated navigation
challenges, as it involves an assessment of the risk of collision with target ves-
sels, and creating a plan for how to avoid them. This usually also includes an
underlying path following task, in order to steer the vessel towards its �nal des-
tination. To create some structure for this kind of navigation, the International
Maritime Organization (IMO) have developed regulations that specify appropri-
ate behaviour in various scenarios, known as COLREGS [11]. These regulations
were originally intended as a guide for crew and captain manually controlling
ships [12] and are therefore inherently vague, both in their description of appro-
priate actions as well as in distinguishing potential collision scenarios from each
other. These kinds of rules are suited for human reasoning, but are required to
be more speci�c in order to be tackled by computers in autonomous systems. In
spite of the vague nature of COLREGS, obeying them is necessary for making
the interaction between autonomous and human control systems predictable,
and therefore COLREGS plays a crucial role in paving the way for autonomy in
marine navigation.

Usually, previous works in areas of marine vessel navigation have been
based on models that represent vessel dynamics and kinematics, which are then
used to develop guidance and control laws that achieve a control objective, util-

2

1.1 Motivation

ising suitable methods from linear or nonlinear control theory. A common ap-
proach is to place the vessel model and guidance and control systems in a cas-
caded structure, where the control system drives the vessel actuators, while the
guidance system provides input to the control system. Some examples include
Line-of-Sight (LOS) systems for path following [13, 14], and collision avoidance
(CA) control systems that separate the CA module from the rest of the system,
either by switching between path following and CA guidance systems [15], or
by letting the CA system modify the nominal guidance law [12]. An accurate
model with respect to the vessel and environmental forces it is based on can re-
sult in completely predictable behaviour when the control laws are employed in
the real vessel, while a model with fewer non-linearities, and that is placed in a
cascaded structure, may simplify the stability analysis during design of control
laws. Thus, a compromise must be made in the design of the system, sometimes
trading o� accuracy for less complicated control laws.

Reinforcement learning (RL) is a branch of arti�cial intelligence developed
for optimal system performance where there is uncertainty in environment and/or
the system itself. As opposed to the previously mentioned guidance and control
laws which are based on instructive feedback, RL is based on evaluative feed-
back. This feedback is called the reward signal, which encapsulates the control
objective by giving high reward for actions resulting in something good and low
reward, or penalty, for undesired outcomes. The RL algorithm then adjusts its
policy (the mapping from observations to actions) through exploration of the
possible solutions, in order to �nd the optimal solution to the control objec-
tive. An advantage of RL algorithms is their ability to solve complex problems
without, or with only partial, knowledge of the system it controls and its sur-
roundings. This is usually referred to as being model-free, and means that vessel
models and descriptions of environmental disturbances need not be known for
the RL agent to solve a task, as long as the reward signal, actions and observa-
tions are de�ned suitably.

In recent years, a combination of RL and deep neural networks has emerged,
and received attention as a theory for employing RL in problems with high-
dimensional or continuous state space and action space. Neural networks are

3

Chapter 1. Introduction

used for representation purposes (e.g. for the policy), which allow the RL algo-
rithm to approximate functions e�ectively without visiting every combination
of states and actions. This is called deep reinforcement learning (DRL). Signif-
icant results include agents learning to play Atari games [16] and the achieve-
ment of super-human performance in the game of Go, without any knowledge
beyond game rules [17], in which DRL architectures are applied to systems of
high-dimensional state spaces. The results of [1, 18–20] have shown success in
applications such as vessel path following, trajectory tracking for AUVs (au-
tonomous underwater vehicles), and control tasks such as cartpole swing-up,
dexterous manipulation, legged locomotion and car driving, which include con-
tinuous state and action spaces.

The advantages of RL and DRL, and the following literature review, support
the possibility of utilising DRL in the development of complicated control sys-
tems for use in autonomous vessels. This thesis will focus on path following and
collision avoidance.

1.2 Literature review

For underactuated marine surface vessels, the 3 degree of freedom (3 DOF) path
following and trajectory tracking problem has received much attention. The
problems are interesting because conventional ships usually have two available
controls – propellers for surge control and rudders for turning control – and
thus sideways speed (sway) is uncontrolled. In other words, the vessels are un-
deractuated because they are steered in 3 DOF using two control inputs. The
controllers for yaw and speed are usually decoupled, where the focus lies in de-
velopment of yaw controllers that solve the path following problem. An example
of a 3 degrees of freedom path following controller for an underactuated marine
vessel is given in [13]. Here, a path was generated as straight line segments
connecting several waypoints, and a Line-of-Sight (LOS) guidance system with
yaw and surge controllers was derived using backstepping in order to obtain
a dynamic feedback controller that includes the uncontrolled sway mode. For
curved paths, both path planning and guidance is addressed in [14]. A monotone
cubic Hermite spline interpolation (CHSI) method is used for generating a path

4

1.2 Literature review

between waypoints that avoids zigzag behaviour when switching between way-
points. The LOS guidance law that is used includes a time-varying look-ahead
distance, which results in less oscillatory behaviour around the desired path
compared to a constant look-ahead distance. When unknown environmental
forces such as current are included, the LOS guidance law is often augmented to
account for these disturbances, which may be challenging due to the modelling
uncertainties that arise. An example is to use adaptive feedback linearisation
combined with sliding mode [21].

The above mentioned path following results have in common that they do
not consider the possibility of obstacles and the need to avoid these. Since the
development of fully autonomous ships require the incorporation of collision
avoidance, a review of some CA approaches follows.

One of the �rst COLREGS-compliant control systems for autonomous ma-
rine vehicles was introduced by Benjamin et. al. [22] in 2004, and the presented
paper addresses challenges related to interpretation of the COLREGS and uses
a behaviour-based control architecture to encapsulate both the precision and
�exibility inherent to the rules.

Previous works based on model predictive control (MPC) have shown that
by simulation of a �nite set of control behaviours in a collision avoidance setting,
the optimal behaviour can be selected by comparison of an associated cost func-
tion based on hazard [12,23]. MPC is a powerful framework for the CA problem
because constraints of operation, the minimisation of danger, and other objec-
tives can be formalised as a cost function and constraints in a numerical optimi-
sation problem, and it can be applied to systems with nonlinear vehicle models
and uncertain environmental forces. However, solving numerical optimisation
problems may take time, and collision avoidance scenarios require real-time so-
lutions. Therefore care must be taken to ensure a solution is found as quickly
as possible. In order to reduce computational complexity, the numerical optimi-
sation problem is avoided by replacing it with �nite-horizon simulation, where
a �xed set of scenarios are evaluated and compared. Additionally, only a single
change in control input is considered per prediction horizon, since increasing
the number of control input changes will cause the number of simulation sce-
narios to increase exponentially. The CA system is designed as its own module

5

Chapter 1. Introduction

that communicates with a guidance system by modifying the course and speed
commands proposed by the guidance, before passing them to the vessel control
system. In the most recent approach [23], the CA module does not simulate the
guidance system to predict its proposed commands, but rather obtains them di-
rectly. This module can thus be inserted in existing systems with any guidance
module. The vessel used to illustrate the results of the approach has relatively
fast dynamics, thus it is argued that the vessel model used by the CA system to
predict behaviour can be reduced to the kinematic equation, implying instant
turning and no drift due to wind and ocean current. If one wishes to apply this
to larger ships where the instant turn assumption is infeasible, it is possible that
a more complex vessel model should be applied. This would in turn increase the
computational cost of the approach. The proposed CA method adheres to COL-
REGS by including a penalty component in the MPC cost function for violating
COLREGS, as well as somthing called a COLREGS-transitional cost, penalising
control behaviours that abort a COLREGS-compliant manoeuvre.

An alternative approach is using a set-based method for switching between
a path following mode and a collision avoidance mode [15]. This architecture
enables the user to decide which combination of path following controller and
CA controller to be used, independently of the switching mechanism. The path
following controller used here is LOS with extensions that ensure compensation
of disturbances caused by environmental forces, without knowledge of their
magnitude or direction. It is shown that the proposed controllers depend only on
absolute velocity measurements, circumventing the need for estimation of ocean
currents, and that the collision avoidance guidance law guarantees the tracking
of a circular path around moving obstacles with a safe radius. No information
about the obstacle dimension or dynamics is required, only position and velocity.
It is proven that the vessel converges to the desired path when in path following
mode, and that obstacles are avoided in a COLREGS-compliant manner.

The reviewed CA approaches cover only a fraction of the research on the
�eld. Some other commonly applied methods include arti�cial potential �elds
[24, 25]; where potential �elds attracting the vehicle to a goal and repelling it
from obstacles are de�ned, dynamic window [26]; where a search for velocities
that are reachable for the vessel under its dynamic constraints and safe with

6

1.2 Literature review

respect to obstacles is made, and velocity obstacles [27, 28]; which generates a
cone in velocity space consisting of all velocity vectors a vessel can choose that
can lead to a collision, and then ensures the velocity vector of the vessel lies in
the safe region outside this cone.

The above discussed methods include some drawbacks. The computation
time in the MPC-based methods is one of them, where the number of possible
behaviours must be severely limited in order to compute the optimal one in the
limited time between detection of an obstacle and a potential collision. All ap-
proaches discussed in any depth here also require complex control laws to be
able to comply with the navigational rules of COLREGS. An advantage of the
approaches is that mathematical proof can be found which show guaranteed
avoidance of collision if avoidance is possible. However, the proofs assume the
models of vessel dynamics and environmental forces used in derivation of con-
trol laws is accurate, and changes to these may cause the algorithms to fail. A
potential solution to the issue of online computational complexity is to use rein-
forcement learning. The reward function of the RL framework is similar to the
cost function of MPC, but RL algorithms may be preferred in CA systems due to
their low computational cost at run-time. That is, once an RL system has found
a good control behaviour through learning, it requires very little e�ort to com-
pute. Another one of the major assets of reinforcement learning is, as pointed
out in Section 1.1, their applicability in systems with uncertainty regarding ves-
sel dynamics and behaviour of environmental disturbances. This makes DRL
algorithms good candidates for applications in marine control problems, and a
few recent works are summarised below. The focus is on DRL for path following
and collision avoidance.

When it comes to path following, it has been demonstrated that a deep rein-
forcement learning based controller for path following can replace the guidance
system and controller of conventional underactuated ships, applying appropri-
ate rudder angle and propulsion commands directly to the vessel [18, 19]. Ex-
perimental results show that the controller is able to compensate for unknown
disturbances, can be applied to di�erent vessel types, and that it outperforms
traditional Line-of-Sight. The reward signal design is simple while also ensur-
ing smooth rudder commands.

7

Chapter 1. Introduction

A DRL obstacle avoidance algorithm for underactuated marine vessels is
shown in [29], in which the control behaviours are de�ned as discrete incre-
ments or decrements of propeller force, and application of force to either sides
of the rudder, causing a yaw moment that increases or decreases the rate of turn.
The experiments illustrate that the vessel successfully �nds a collision-free path
through an area of obstacles, however all obstacles are stationary. Addition-
ally, the control system is not designed to abide by COLREGS. An approach
outlined by Shen et. al [30] uses a deep Q-learning framework, with discrete ac-
tion space, for automatic collision avoidance of multiple ships. Human knowl-
edge and experience is incorporated by several techniques, including a polygon
shaped “bumper" de�ning detection distances to obstacles surrounding the ves-
sel, with larger required distance in the front. The bumper is then used to decide
when to switch between normal mode and collision avoidance mode. Similarly,
the reward signal is designed so that di�ering distances are de�ned as collision,
depending on where the obstacle is located. Results indicate that the proposed
algorithm can avoid collision in cluttered environments while accounting for
navigational rules, both in simulated environments and an experimental set-
ting using miniature ships. However, the many heuristics used to incorporate
existing knowledge into the controller makes the design slightly cluttered and
introduces a fair amount of design parameters.

Trajectory tracking [20] and position tracking [31] of autonomous under-
water vehicles has been achieved using the deep deterministic policy gradient

algorithm. In [31], a goal-driven architecture is applied, translating the goal
and vehicle position to a relative position. The agent learns thruster inputs for
six thrusters directly from measurements. A cooperative multi-vehicle collision
avoidance system is created in [32], where a value function is learned through
approximate value iteration with least-squares regression. Two vehicles coop-
erate to avoid collision between them and return to their respective paths. To
choose from continuous actions, a search algorithm chooses the best turning
speed for both vessels.

Evidently, DRL for contnuous control is a rapidly expanding research �eld,
thus only a few examples of speci�c application in marine vessel control and
collision avoidance are addressed here. It is expected that by the time of thesis

8

1.3 Objective and contributions

completion, a growing number of publications will be available for review.

1.3 Objective and contributions

The ultimate objective of this thesis is to implement an autonomous collision
avoidance control system for a marine vessel by using deep reinforcement learn-
ing, and analysing the performance. The suggested method can provide an al-
ternative way to solve the collision avoidance problem, and has the advantage
of being model-free while also optimising a performance measure. This calls for
time-consuming computations ahead of deployment, but is nonetheless appli-
cable in real-time situations requiring short reaction time once learning is com-
pleted and the system is deployed. DRL also includes the possibility of creating
end-to-end control laws, eliminating the need for cascaded system structures
where performance of one module is highly dependent on performance of oth-
ers. However, DRL does not eliminate the possibility of cascaded structures, and
we will see that DRL and already developed control laws can be used concur-
rently.

The intention was to use a provided vessel model with accompanying simu-
lation interface given by DNV GL for all experiments, due to the simulator be-
ing equipped with functionality for environmental disturbances, obstacle ves-
sels and implementations of path following and collision avoidance algorithms.
However, complexity of the simulation interface provided a disadvantage in
training of DRL algorithms, and it was deemed necessary to include a second
vessel model in the thesis. The second vessel is a container type, and the �rst
one is a platform supply vessel, from now on referred to as a PSV.

A step-by-step approach is used in order to arrive at the �nal goal, starting
with an initial implementation of a plain DRL guidance system for a platform
supply vessel. The next step is a path following system tested on two vessel
types with the inclusion of surge control, and �nally the thesis culminates in
application of DRL in a collision avoidance system.
The main contributions of this thesis are as follows:

• Create a DRL guidance system for a PSV, with vessel model and simula-

9

Chapter 1. Introduction

tor provided by DNV GL, feeding heading and surge references to corre-
sponding controllers included with the PSV.

• Implementation, tests and analysis of DRL straight-path following control
structure originally presented in [2, 18] for two vessel types:

– For the kind of container vessel also used in [2, 18].

– For a PSV.

• Adaptation of said path following method to include (i) surge control in
the case of a container and (ii) guidance system for surge in the case of a
PSV.

• Creation of a collision avoidance system trained for a head-on situation
using DRL, and analysis of results in said situation.

• Adaptation of the CA system to follow one of the rules in COLREGS, and
suggestions on how to comply with other rules.

1.4 Outline of report

The thesis consists of �ve chapters, including this introductory chapter whose
aim has been to give an introduction to motivation behind the thesis, an overview
of related work and a speci�cation of the main objective and contributions.
Chapter 2 presents relevant theoretical background, by brie�y explaining main
concepts within modelling and guidance for marine vessels, before moving on to
a thorough description of deep reinforcement learning and the algorithm used
in the following chapters. In Chapter 3 we address the objectives of the thesis
by building a control algorithm step by step, where the end goal is to perform
collision avoidance and path following for a marine vessel. Simulation results of
the implemented control systems are presented and discussed in Chapter 4. This
chapter ends with a brief summary of the �ndings and a discussion of suggested
future work. Chapter 5 gives a brief conclusion of the thesis.

A description of the container vessel model can be found in Appendix A,
while parameter values for the performance measures of controllers and a few
additional simulation plots are placed in Appendix B and C, respectively.

10

Chapter 2
Theory

The following chapter contains relevant background theory for this thesis. First,
an introduction to modelling of marine vessels is given in Section 2.1, before es-
sential concepts and notation within straight-path following for marine vessels
are described in Section 2.2. Section 2.3 provides some insight into rules and
regulations for navigation at sea, called COLREGS. Finally, deep reinforcement
learning is introduced and thoroughly explained in Section 2.4. Here, funda-
mental ideas within reinforcement learning are gone through �rst in Section
2.4.1, then deep neural networks are introduced as a powerful function approxi-
mation tool in Section 2.4.2, before a description of the deep deterministic policy
algorithm is given in Section 2.4.3.

2.1 Marine vessel model

Kinematics is the analysis of geometrical aspects of motion, and are important
for the development of equations of motion for marine craft. The equations of
motion describe both kinematics and kinetics (which describe the forces causing
the motion), and are needed in order to simulate and analyse a vessel. Usually,
this model of the system is necessary for the design of control laws and guidance
systems, but as will be seen, a controller based on DRL may not require a model
at all. However, an introduction is included here for the sake of completeness,
to describe notation and because a vessel model has been used for simulation.

11

Chapter 2. Theory

The following is a summary of relevant sections in Fossen’s Handbook of Marine

Craft Hydrodynamics and Motion Control [5].
For marine craft that can move along and rotate around all 3 coordinate axes

(x, y, and z), we say that it moves in six degrees of freedom (DOF), and thus six
coordinates are needed to determine position and orientation, called surge, sway,
heave, roll, pitch and yaw. The notation used here is given by Table 2.1 and an
illustration is given in Figure 2.1.

DOF Forces /
moments

Linear /
angular

velocities

Positions /
Euler angles

1 surge X u x
2 sway Y v y
3 heave Z w z
4 roll K p φ
5 pitch M q θ
6 yaw N r ψ

Table 2.1: The notation of SNAME [4] for marine vessels [5]

��

��

��

�

�

�

�

�

�

Figure 2.1: Linear and angular velocities in BODY frame

The North-East-Down (NED) coordinate system {n} = (xn, yn, zn) is de-
�ned as the tangent plane on the surface of the earth moving with the craft,
but for vessels operating in a local area, a frame �xed to a point on the earth’s
surface can be used as an inertial coordinate system. The x-axis points to the
true North, the y-axis points towards East, and the z-axis points downwards.

A body-�xed coordinate frame {b} = (xb, yb, zb) (denoted as BODY frame)

12

2.1 Marine vessel model

is a moving coordinate frame with origin �xed to the craft, x-axis pointing from
aft to fore, y-axis pointing starboard and z-axis in the direction from top to
bottom of the craft. It is used for expressing the linear and angular velocities of
a craft, whereas the position and orientation are described relative to the inertial
frame.

By de�ning vector notation for variables in BODY and NED frame, where ob
is the origin of {b}:

pnb/n position of the point ob with respect to {n} expressed in {n}

vbb/n linear velocity of the point ob with respect to {n} expressed in {b}

f bb force with line of action through the point ob expressed in {b}

Θnb Euler angles between {n} and {b}

ωbb/n angular velocity of {b} with respect to {n} expressed in {b}

mb
b moment about the point ob expressed in {b}

the components of Table 2.1 can be grouped in vectors:

NED
position pnb/n =

xy
z

 ∈ R3 Attitude Θnb =

φθ
ψ

 ∈ S3
Body-�xed
linear
velocity

vbb/n =

uv
w

 ∈ R3
Body-�xed
angular
velocity

ωbb/n =

pq
r

 ∈ R3

Body-�xed
force f bb =

XY
Z

 ∈ R3 Body-�xed
moment mb

b =

KM
N

 ∈ R3

where R3 is the three-dimensional Euclidean space and S3 is the sphere given
by three angles on the interval [0, 2π]. This gives the pose vector η, the velocity
vector ν , and a force vector τ that describe the general motion of a marine craft

13

Chapter 2. Theory

in 6 DOF:

η =

pnb/n
Θnb

 =



x

y

z

φ

θ

ψ


, ν =

vbb/n
ωbb/n

 =



u

v

w

p

q

r


, τ =

 f bb
mb

b

 =



X

Y

Z

K

M

N


(2.1)

Then the equations of motion for a marine craft moving in 6 DOF, without
wind and current forces, can be written as [5]:

η̇ = J(η)ν (2.2)

Mν̇ +C(ν)ν +D(ν)ν + g(η) + g0 = τ (2.3)

where M , C(ν), and D(ν) are the inertia matrix, Coriolis–centripetal matrix
and dampening matrix of the craft, respectively. The matrix J(η) describes
a transformation from BODY to NED frame, and consists of a linear velocity
rotation matrixRn

b (Θnb) and an angular velocity transformation T(Θnb):

J(η) =

Rn
b (Θnb) 03×3

03×3 T(Θnb)

 (2.4)

where (if we abbreviate sin to s, cos to c and tan to t)

Rn
b (Θnb) = Rz,ψRy,θRx,φ

=

cψ −sψ 0

sψ cψ 0

0 0 1


 cθ 0 sθ

0 1 0

−sθ 0 cθ


1 0 0

0 cφ −sφ

0 sφ cφ

 (2.5)

T(Θnb) =

1 sψtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 (2.6)

The components g(η) and g0 are hydrostatic forces. For marine craft mov-

14

2.1 Marine vessel model

ing in the horizontal plane, the hydrostatic forces can be neglected, and the
equations are reduced to

η̇ = J(η)ν (2.7)

Mν̇ +C(ν)ν +D(ν)ν = τ (2.8)

Course, heading and sideslip are angular variables useful for manoeuvring of
marine craft in the horizontal plane, and the relationship between them is given
by (2.9) and illustrated in Figure 2.2. The course angle χ is the angle from the
xn-axis of {n} to the velocity vector of the vessel, while the heading (yaw) angle
ψ is the angle from the xn-axis to the xb-axis of {b}. Sideslip β can be explained
as the di�erence between a craft’s orientation and its direction of travel, hence
it can become nonzero when a vessel is exposed to ocean currents or during a
turning motion.

χ = ψ + β (2.9)

�
�

�
�

�

�

�

�
�

�
�

Figure 2.2: Relationship between course χ, heading ψ and sideslip β

15

Chapter 2. Theory

2.2 Straight-line path following

This section will introduce terms and notation which are important when dis-
cussing path following on the ocean surface.

Path following is the task of controlling a vessel such that it converges to
a prede�ned path, and the simplest task is to follow straight-line paths. There
are no restrictions placed on temporal propagation along the path, so the path
following objective in the horizontal plane can be achieved by choosing any
speed U = ‖vbb/n‖ =

√
u2 + v2 > 0.

A path consisting of straight line segments is de�ned by a collection of way-
points, where each one is speci�ed using coordinates in {n}: pnk = [xk, yk]

> for
k = 1, ..., n. If we consider a path decided by the straight line between two
waypoints pnk and pnk+1, its positive angle relative to the xn-axis is given by

αp = atan2 (yk+1 − yk, xk+1 − xk) (2.10)

where atan2(y, x) ∈ [−π, π] is the same as arctan(y/x) ∈ [−π/2, π/2] de�ned
in four quadrants. To achieve a positive angle from this, one must wrap the
resulting αp to [0, 2π].

Then, coordinates of the vessel can be computed in a path-�xed coordinate
frame rotated byαp around the zn-axis and with origin placed inpnk . An illustra-
tion of the path-�xed coordinate system and its relation to the NED system can
be found in Figure 2.3. The rotation matrix corresponding to this transformation
is

R(αp) =

cosαp − sinαp

sinαp cosαp

 (2.11)

and the path-�xed coordinates of a vessel at position pn = [x, y]> can be com-
puted by

p =

xe
ye

 = R(αp)
> (pn − pnk) (2.12)

where xe is the along-track position of the vessel, and ye is the cross-track posi-
tion, usually named cross-track error. Thus, the control objective for straight-line

16

2.2 Straight-line path following

�
�

�
�

��
�+1

p
�
�

��

��

��

Figure 2.3: Illustration of path-�xed coordinate system. The NED frame is
grey, the path-�xed frame is black, and the path given by waypoints pnk and
pnk+1 is shown in red.

path following is reducing the cross-track error to zero:

lim
t→∞

ye(t) = 0 (2.13)

In order to move along a path made up of straight lines connected by way-
points, it is necessary to design a switching mechanism for selecting which
straight line segment to follow. Since a line is decided by two consecutive way-
points pnk and pnk+1 in a database consisting of n points, the switching can be
made when the craft lies within a circle of acceptance with radius Rk+1 around
[xk+1, yk+1]

>. At this point, the waypoints of the path switch to pnk+1 = pnk+2

and pnk = pnk+1. The switching condition is then

(xk+1 − x)2 + (yk+1 − y)2 ≤ R2
k+1 (2.14)

where a guideline for choosing the radius of acceptance is Rk+1 = 2Lpp, and
Lpp is the ship length.

17

Chapter 2. Theory

A commonly used path following method is Line-of-Sight (LOS) guidance,
which produces a desired yaw angle ψd or course angle χd. The performance
of LOS is therefore dependent on the performance of the system’s heading con-
troller, which translates a desired heading or course to a low-level control input
(i.e. rudder angle or thruster con�guration). The steering law can be selected as

χd = αp + χr (2.15)

where χr is a velocity-path relative angle describing the angle between the path
and velocity vector of the vessel, chosen to ensure convergence to the path. In
the lookahead-based steering scheme, this angle is given by

χr = arctan

(
−ye
∆ye

)
(2.16)

and the lookahead distance ∆ye > 0 represents the point on the path towards
which the velocity is directed, a distance ∆ye ahead of the projection of pn on
to the path [5].

2.3 Collision avoidance and COLREGS

COLREGS [11] describe a set of tra�c rules that vessels at sea must follow, es-
tablished by the International Maritime Organisation in 1972. The rules make
other vessels’ future trajectories more predictable for the crew/control system
aboard ships. However, one must be prepared for the situation where others are
unable, or unwilling, to follow these rules.

Due to the rules being developed for human operators, some of the rules
may appear vague when it comes to applying them to autonomous ships. They
are intended for use in many di�erent vessels, and with the subjective opinions
of many di�erent people, thus de�ning exact rules are a challenge. When a rule
states that a vessel shall “take early and substantial action to keep well clear
[of the other vessel]", it is important to acknowledge that di�culties may arise
in letting an autonomous collision avoidance algorithm know what exactly this
means, in terms of e.g distance, speed and direction of travel.

18

2.3 Collision avoidance and COLREGS

2.3.1 Relevant rules

The rules directly relevant to this thesis are given here, taken from the Interna-
tional Regulations for Preventing Collisions at Sea [11] from 1972. An illustra-
tion of Rule 14 can be found in Figure 2.4.

Rule 14: Head-on situation

(a). When two power-driven vessels aremeeting on reciprocal or nearly

reciprocal courses so as to involve risk of collision each shall alter her

course to starboard so that each shall pass on the port side of the other.

(b). Such a situation shall be deemed to exist when a vessel sees the

other ahead or nearly ahead and by night she could see the masthead

lights of the other in a line or nearly in a line and/or both sidelights

and by day she observes the corresponding aspect of the other vessel.

(c). When a vessel is in any doubt as to whether such a situation exists

she shall assume that it does exist and act accordingly. ([11])

Rule 16: Action by give-way vessel

Every vessel which is directed to keep out of the way of another vessel

shall, so far as possible, take early and substantial action to keep well

clear. ([11])

Figure 2.4: Head-on situation. Vessels should alter their course to starboard.

19

Chapter 2. Theory

2.4 Deep reinforcement learning

The control approaches studied in this thesis are based on deep reinforcement
learning (DRL), therefore this section will provide the necessary material in or-
der to understand what DRL is, how it can be implemented, and what its advan-
tages may be.

Deep reinforcement learning refers to methods that use deep arti�cial neural
networks to �nd an approximately optimal solution to a reinforcement learning
problem. This section is therefore structured as follows: Section 2.4.1 introduces
the reinforcement learning problem and some signi�cant solution approaches,
such as policy gradient and actor-critic methods. Furthermore, it is explained
that using a function approximator is often crucial when applying RL to real-
world problems, since their states can be continuous – with in�nitely many
possible values – and an approximator can represent the full state-space from a
�nite set of parameters. Then, neural networks are introduced in Section 2.4.2,
as an e�cient way to perform function approximation. Finally, the algorithm
used in this thesis is detailed in Section 2.4.3.

2.4.1 Reinforcement learning

The core of reinforcement learning is learning from experience. The RL agent
initially has no knowledge of its environment or objective, and in order to achieve
its objective it explores the world around it to learn what to do. Along the way it
receives some evaluative feedback in the form of a reward signal on whether its
current choice of action was good or not. This feedback signal thus de�nes the
objective of the agent, and instructs the agent in what it should keep doing, and
what kind of behaviour should be avoided. Eventually, the agent should achieve
near-optimal behaviour with respect to maximising the reward signal.

Figure 2.5 illustrates the main components of reinforcement learning. It in-
cludes an agent and an environment, and they interact through signals called
actions, states and rewards. The agent consists of a decision making algorithm
with states as inputs and actions as outputs, controlling for instance a ship or
a car. This is the part that learns from the observed reward signal. The envi-
ronment can be described as the world the agent operates within. The agent’s

20

2.4 Deep reinforcement learning

Reward
rt

Agent

Environment

State
st

Action
at

Figure 2.5: Reinforcement learning

knowledge of the world is incorporated into the state, while the action is used
to in�uence the environment in order to change the state and receive a new
reward. The details of how this is computed are unknown to the agent.

2.4.1.1 Markov decision processes

When formalising reinforcement learning problems, a framework called Markov
Decision Processes (MDPs) is used. An MDP describes a sequential decision
problem where the environment is fully observable (i. e. the observed state
is the true state of the environment), the transition model T is stochastic and
Markovian, and there is a reward functionR associated with the transition from
state s to s′ through the action a.

For T to be Markovian, the Markov property must be assumed for all states.
This means that the current state depends on only a �nite �xed number of pre-
vious states [33]. To simplify this, it can be argued that a state depending on
any number of previous states can be converted into depending only on the one
immediately preceding it by changing the state to incorporate the appropriate
history. Thus, a state in an MDP contains all information about past states that
make a di�erence for the future.

Then, the MDP is de�ned by the tuple 〈S,A, T ,R〉, where S is the set of
all states, A(s), s ∈ S is the set of actions associated with each state, T is the
environment’s stochastic transition model, and R is the reward function. T is

21

Chapter 2. Theory

given by
T (s, a, s′) = P

[
St+1 = s′|St = s,At = a

]
(2.17)

and R is the expected immediate reward when performing an action a in state
s, as given below.

R(s, a) = E
[
Rt|St = s,At = a

]
(2.18)

A partially observable MDP (POMDP) is di�erent from MDPs in that the
environment is only partially observable. In other words, the true state s is not
available to the agent, which must rely on a partial observation o instead, in
which some information is hidden from the agent. In such a process, the state
space S is replaced by the observation space O to clarify that the true state is
not observed.

2.4.1.2 Policies, value functions and the Bellman equation

In order to understand how an RL agent learns, �rst we must de�ne what it
learns. The agent can learn a policy, a value representation, or both, that de�ne
its behaviour, as will be detailed in the following sections. A policy is a func-
tion describing the rules an agent follows when deciding actions, depending on
the current state. It can be deterministic, usually denoted by µ as a = µ(s),
which gives a single action corresponding to each state. Another alternative is
a stochastic policy, which gives a probability distribution over actions, denoted
π. To choose an action the stochastic policy must be sampled, as a ∼ π(·|s).

The value function provides the agent with some measure of how good it
perceives being in a particular state (and performing and action) to be. The value
thus gives information about what cumulative reward is expected when starting
in this state or state-action pair, given that the agent follows a chosen policy in
the future.

The term return is usually used when talking about cumulative reward in
RL. The return can be de�ned as the sum of rewards in a �xed window of time
steps (called an episode), such as

Gt = E

 T∑
t=0

Rt

 (2.19)

22

2.4 Deep reinforcement learning

or it can be an in�nite-horizon discounted return,

Gt = E
[
Rt + γRt+1 + γ2Rt+2 + ...

]
= E

 ∞∑
k=0

γkRt+k

 (2.20)

which is used in cases where there is no natural end to a sequence of states and
actions, or we simply do not care as much about future reward as immediate
reward. Because of the discount factor γ ∈ [0, 1), the sum converges to a �nite
value, and is a mathematically convenient notation. Unless otherwise stated,
this thesis will use the discounted return from now on.

Returning to the value function, we can now de�ne some functions. The
state-value function vπ(s) is the expected return given if the agent starts in state
s and follows policy π:

vπ(s) = Ea∼π
[
Gt|St = s

]
(2.21)

The action-value function qπ(s, a) gives the expected return when starting
in state s and taking action a, and thereafter following policy π:

qπ(s, a) = Ea∼π,s∼T
[
Gt|St = s,At = a

]
(2.22)

From this, it is clear that the value can be viewed as the sum of the immediate
reward of being in the current state and the discounted value of the next state,
as shown in Equations (2.23), (2.24).

vπ(s) = Ea∼π
[
Rt + γ(Rt+1 + γRt+2 + γ2Rt+3 + ...) | St = s

]
= Ea∼π

[
Rt + γGt+1 | St = s

]
= Ea∼π

[
Rt + γvπ(St+1) | St = s

] (2.23)

qπ(s, a) = Ea∼π,s∼T
[
Rt + γvπ(St+1) | St = s,At = a

]
(2.24)

A policy π is de�ned as better than or equal to another policy π′ if vπ(s) ≥
vπ

′
(s) ∀s ∈ S , thus by following an optimal policy π∗, one can obtain opti-

mal value functions, v∗(s) , maxπ v
π(s) and q∗(s, a) , maxπ q

π(s, a). The
superscript ∗ denotes optimal solutions.

23

Chapter 2. Theory

These de�nitions bring us to the Bellman optimality equations, which are
recursive equations describing the relationship between the value of a state and
its successor states [34]. These equations are important in this context because
their solution is the solution to the reinforcement learning problem, as they
uniquely de�ne the optimal value function for a given MDP. The basis of Bell-
man optimality is the following relationship,

v∗(s) = max
a∈A(s)

q∗(s, a) (2.25)

stating that the state-value when following an optimal policy π∗ from a state
must be equal to the best (maximum) action-value in the same state. This gives
the Bellman optimality equations for v∗ and q∗:

v∗(s) = max
a∈A(s)

q∗(s, a)

= max
a

Es∼T
[
Rt + γv∗(St+1) | St = s,At = a

]
= max

a

∑
s′,r

T (s, a, s′)
[
r + γv∗(s′)

] (2.26)

q∗(s, a) = Ea∼π,s∼T

[
Rt + γ max

a′∈A(St+1)
q∗(St+1, a

′) | St = s,At = a

]

=
∑
s′,r

T (s, a, s′)

[
r + γ max

a′∈A(s′)
q∗(s′, a′)

] (2.27)

where s′, a′ denote the next state and action after being in state s taking action
a, and r is the immediate reward received from this transition, given byR. Once
the value function is found, one can establish the policy by choosing the action
that moves the agent to the neighbouring state with the highest value.

2.4.1.3 Learning approaches

As mentioned, solving the Bellman optimality equations solves the RL problem.
There are several ways to solve them explicitly, such as value iteration and pol-

icy iteration within dynamic programming. However, since the equations are
a set of nonlinear equations corresponding to each state or state-action pair,

24

2.4 Deep reinforcement learning

solving all the equations quickly becomes computationally expensive and time-
consuming in large state or action spaces. Additionally, the transition model of
the MDP must be known in order to compute the value function. Thus, these
methods are only applicable when the state and action spaces are discrete and
�nite and the environment model is known, and they will not be explained fur-
ther in this thesis. The reader is referred to the book Reinforcement Learning: An

Introduction by R. Sutton and A. Barto [34] for further information.

The reinforcement learning methods are usually divided into three separate
approaches – policy-based or actor-only methods, in which a policy is learned
explicitly; value-based or critic-only methods, where the agent learns the value
function (implicitly de�ning the policy); and actor-critic methods, where both
policy and value functions are learned. This chapter will focus on actor-only
and actor-critic methods, since the critic-only methods have the drawback of
needing to iterate through all available actions at each state in order to deter-
mine which action gives highest expected return. They are thus unsuitable in
continuous action spaces.

Usually, approximate solution methods must be employed. This means that
the value function or policy, or both, must be estimated based on observed tran-
sitions rather than knowledge of transition models. The experience can be sam-
pled from real or simulated transitions, and estimates can be updated after each
step in the environment, after n steps, or after an episode is completed. The
latter case is called Monte Carlo learning, and assumes that episodes terminate
after a �nite number of time steps. This way of sampling full episodes is called
o�-line training, while the opposite (updates after every step) is called online

training. Methods that update their estimates before the episode is completed
are part of temporal-di�erence (TD) learning, and they work as such: observe the
reward received by following a policy for n steps, and combine this (discounted)
sum with the estimated value of the state at step number n + 1, to be denoted
as the TD target. Then, the estimate of the value function is moved towards the
target using a step size α. With n = 1, we get the expressions

V (s) = V (s) + α
[
r + γV (s′)− V (s)

]
(2.28)

25

Chapter 2. Theory

Q(s, a) = Q(s, a) + α
[
r + γQ(s′, a′)︸ ︷︷ ︸

TD target

−Q(s, a)
]

︸ ︷︷ ︸
TD error, δt

(2.29)

where V,Q are estimates of vπ, qπ .
An example of a TD algoritm that �nds the optimal policy is SARSA, which

is an on-policy method. Thus, the action-value qπ is estimated for the policy
π, while simultaneously π is changed towards greediness with respect to the
action-value [34, p. 129]. This means that the next action, a′ of Equation (2.29)
is decided by the policy. According to Sutton and Barto [34], the algorithm
converges to an optimal π∗ and q∗ with probability 1 if the following conditions
are met: (i) all state-action pairs are visited an in�nite number of times and (ii)

the policy converges to the greedy policy.
Q-learning is an example of an o�-policy TD algorithm, in which the opti-

mal q∗ is approximated directly, independently of the policy. In terms of Equa-
tion (2.29), a′ is chosen greedily as the action that maximises Q: δt = r +

γmaxa′ Q(s′, a′) − Q(s, a). The policy’s purpose in this case is to determine
which actions and states to visit so that the environment is explored. Q con-
verges to q∗ with probability 1 as long as all state-action pairs continue to be
visited and thus its estimate is updated.

SARSA and Q-learning are tabular solution methods, used in discrete prob-
lems, meaning that they keep track of Q and π as tables, where each entry cor-
responds to a state-action pair. They both learn an action-value function, and
are thus critic-only methods.

When the action and/or state space is continuous, tabular methods can not be
applied. A simple solution to this challenge is to discretise the spaces, but a too
�ne-grained discretisation may lead to a slow, ine�cient algorithm, while infor-
mation can be lost from very coarse discretisation. Thus, another approach is in-
vestigated here – function approximation. This entails parameterising func-
tions by parameter vectors, rather than using lookup tables. The parameter vec-
tor is usually denoted θ ∈ Rd. If we have a function F (x), an example param-
eterisation is the linear combination of a set of features f1(x), f2(x), ..., fd(x),
which becomes F θ(x,θ) = θ1f1(x) + θ2f2(x) + ... + θdfd(x). By choosing

26

2.4 Deep reinforcement learning

appropriate features and parameters, one can achieve F θ ≈ F .
Thus, if a value function or policy is parameterised by θ, and assuming that

the chosen parameter space makes it possible to approximate the value or policy
su�ciently well, an RL agent can learn the elements of θ to approximate the true
value or policy. This results in a drastic reduction in the number of learned val-
ues, from in�nitely many (in continuous systems) to the number of parameters
in θ. Additionally, the agent is no longer required to visit every state-action pair
in order to learn a good approximation of the value or policy. The combination
of these traits makes function approximators suitable for solving reinforcement
learning problems in continuous spaces.

2.4.1.4 Policy gradient methods

A branch of methods that use function approximators is called policy gradient

methods. These methods learn a parameterised policy π(·|s,θ) without check-
ing the value function �rst. They are thus policy-based, or actor-only, methods,
which allow the agent to sample from the continuous action space. The policy
π must be parameterised such that its gradient ∇θπ(a|s,θ) exists and is �nite
for all s ∈ S , a ∈ A(s), θ ∈ Rd.

The performance of the policy parameterisation is measured by a score func-
tion J(θ), which depends on the parameters. Then, we can maximise the score
by gradient ascent on θ,

θt+1 = θt + α∇θJ(θt) (2.30)

where α is the learning rate and ∇θJ(θ) is the gradient of J with respect to θ.
Usually, the score is chosen as the true value of the start state of the episode,

J(θ) , vπθ(s0) = Ea∼πθ
[
G0|S0 = s0

]
(2.31)

since this gives a true measurement of the performance. However, the true value
function is unknown, therefore the gradient update of Equation (2.30) must be
approximated by sampling transitions in the environment. The estimated gra-
dient should be proportional to the true gradient.

By the policy gradient theorem [35], we have the relationship of Equation

27

Chapter 2. Theory

(2.32), where we have omitted the θ subscript from the∇ operator because there
is no ambiguity regarding which parameter is used in the di�erentiation. This
notation is used from now on.

∇J(θ) = ∇vπ(s0) ∝
∑
s

ρπ(s)
∑
a

qπ(s, a)∇π(a|s,θ) (2.32)

Here, ρπ is the on-policy distribution under π, which means the fraction of
time spent in each state if following policy π. Then the sum over states can be
replaced by an expectation under π, from which states are sampled. The sum
over actions can be modi�ed by following a similar argument, as outlined below.

∇J(θ) ∝
∑
s

ρπ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

= Es∼ρπ
[∑

a

qπ(St, a)∇π(a|St,θ)

]

= Es∼ρπ
[∑

a

π(a|St,θ)qπ(St, a)
∇π(a|St,θ)

π(a|St,θ)

]

= Ea∼π,s∼ρπ
[
qπ(St, At)

∇π(At|St,θ)

π(At|St,θ)

]
= Ea∼π,s∼ρπ

[
qπ(St, At)∇ lnπ(At|St,θ)

]

(2.33)

Then we have a formula for the policy gradient, and by estimating qπ(s, a),
the gradient update can be applied to the parameter vector θ. This is called the
stochastic policy gradient and produces an unbiased estimate of the true gradi-
ent. For an intuitive understanding of this gradient, Sutton and Barto [34] give
a well-formulated explanation, recounted here: look at the second to last line of
Equation (2.33). The numerator of the fraction is the gradient of the probability
of taking action At in state St, and the expression in the denominator gives the
probability of taking that action. This means that the numerator ensures that
the update changes the parameter vector θ in the direction of highest increase
in probability of taking this action on future visits to state St. Dividing by the
probability prevents actions that occur frequently to be favoured over actions
that yield better returns, yet are rarely visited. Multiplying this by the action-
value makes the update largest in the direction of actions that give higher value,

28

2.4 Deep reinforcement learning

i. e. are better.
A well-known policy gradient method that uses Monte Carlo sampling is

called REINFORCE [36], in which the action-value function is estimated by the
expected episode return. From (2.22), we have Q(s, a) = E[Gt|St = s,At = a],
and get

∇J(θ) ∝
∑
s

ρπ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

= Ea∼π,s∼ρπ
[
Gt∇ lnπ(At|St,θ)

]
.

(2.34)

The procedure is outlined in Algorithm 1. An episode is sampled from start at
t = 0 to end at t = T − 1 by following the policy, before any updates are made.
Then, a separate return is computed from each encountered state to the end of
the episode, and an update is made for each of these returns.

Algorithm 1 REINFORCE
Ensure: A di�erentiable policy parameterisation π(a|s,θ)
Require: Step size α > 0

1: Initialise policy parameter θ ∈ Rd (e.g to 0)
2: for each episode do
3: Generate an episode S0, A0, R0, ..., ST−1, AT−1, RT−1, following
π(·|·,θ)

4: for each step t = 0, 1, ..., T − 1 of the episode do
5: G←

∑T−1
k=t γ

k−tRk
6: θ ← θ + αγtG∇ lnπ(At|St,θ)
7: end for
8: end for

A modi�cation of REINFORCE is to add a baseline function b(s) that is
subtracted from the action-value. As mentioned, the policy gradient described
above gives an unbiased estimate of∇J(θ), but the estimates can still have large
variance. A bias can lead to the algorithm being unable to converge to a solution,
or it can converge to a poor one. The e�ect of high variance, on the other hand,
is the need for many samples before the algorithm can converge. Thus, both
low bias and low variance is desired, and using a baseline in the policy gradient
estimate can achieve lower variance while maintaining low bias [34, p. 329].

The baseline can be any function that does not depend on the action. The
expected subtracted quantity then becomes zero, and the expected gradient re-

29

Chapter 2. Theory

mains the same as before:

∇J(θ) ∝
∑
s

ρπ(s)
∑
a

(qπ(s, a)− b(s))∇π(a|s,θ)

=
∑
s

ρπ(s)

(∑
a

qπ(s, a)∇π(a|s,θ)− b(s)∇
∑
a

π(a|s,θ)

)
=
∑
s

ρπ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

(2.35)

A common choice of baseline is an estimate of the state-value function, V (s).
The general expression for the estimated gradient is then

∇J(θ) = Ea∼π,s∼ρπ
[
(Q(St, At)− V (St))∇ lnπ(At|St,θ)

]
= Ea∼π,s∼ρπ

[
A(St, At)∇ lnπ(At|St,θ)

] (2.36)

where A(s, a) is the advantage function, which gives a measure of how much
better or worse action a in state s is compared to following the policy. The value
function is a good baseline because it varies with s, giving high value in states
where all actions give a high value, and opposite. Hence, the advantage, and the
gradient, does not depend as heavily on where in the state space the gradient is
computed.

The described modi�cation of REINFORCE is simply called REINFORCE
with baseline. The outline is the same as in Algorithm 1, with the addition
of estimating a parameterised value function, V (s,φ). It can for example be
estimated using gradient updates in a similar way as the policy gradient. An
example score function is the squared advantage

J(φ) =
1

2
A(st, at,φ)2 =

1

2

(
Gt − V (st,φ)

)2 (2.37)

which has the gradient

∇φJ(φ) = A∇φA = −A∇φV (s,φ) (2.38)

The score function based on advantage should be minimised, since nonzero
advantage represents a possible improvement to the policy. Thus, gradient de-
scent should be applied in this case, as φ = φ− αφ∇J(φ).

30

2.4 Deep reinforcement learning

The policy gradient is given by

∇θJ(θ) = (Gt − V (st,φ))∇θ lnπ(at|st,θ) = A∇θ lnπ(at|st,θ) (2.39)

and the parameter update equations for REINFORCE with baseline become

φ← φ+ αφA∇V (st,φ)

θ ← θ + αθγ
tA∇ lnπ(at|st,θ)

(2.40)

2.4.1.5 Actor-critic methods

The term actor-critic covers reinforcement learning methods that combine pol-
icy and value function approximation. The policy is the actor, which chooses and
applies actions to the environment based on the current state, while the value
function is called the critic because it measures the performance of the policy
and uses this to improve both the policy and its own estimate. The framework
of such methods is illustrated in Figure 2.6.

st
rt at

Actor

Critic

State Action Reward

V(s), Q(s, a)

π(s)

Environment

Agent

TD error

Figure 2.6: The actor-critic architecture

31

Chapter 2. Theory

The REINFORCE with baseline method detailed above learns an approxi-
mated policy and state-value function, however, the value is not used as a critic.
In that case, the action-value was estimated by the Monte Carlo returnGt, while
the state-value approximation was only used as a baseline. Thus, REINFORCE
with baseline is not considered an actor-critic method.

If the actor is parameterised by θ and the critic is parameterised by φ, they
are given by πθ(·|s,θ) and Qφ(s, a,φ), respectively. When both functions are
parameterised like this, they are both applicable when states and actions are
continuous, because the approximators generalise from observed states and ac-
tions to unseen ones.

The policy parameters θ are adjusted as previously, according to the pol-
icy gradient of Equation (2.33). In place of the true, unknown action-value q,
the parameterised approximation of the critic, Qφ(s, a,φ), is used: ∇θJ(θ) =

E
[
Qφ(s, a,φ)∇θ lnπθ(a|s,θ)

]
.

The critic’s parameters can be estimated by any appropriate method, and an
example is temporal-di�erence learning. The squared TD error can be used as
the critic’s score function, which should be minimised, giving

J(φ) =
1

2

(
yt −Qφ(st, at,φ)

)2
=

1

2

(
rt + γQφ(st+1, at+1,φ)−Qφ(st, at,φ)

)2
=

1

2
δ2t

(2.41)

By ignoring yt’s dependence on φ, the gradient update rules are as follows,

φ← φ+ αφδt∇Qφ(st, at,φ)

θ ← θ + αθγ
tQφ(st, at,φ)∇ lnπθ(at|st,θ)

(2.42)

An o�-policy deterministic actor-critic algorithm is the deterministic pol-
icy gradient (DPG) algorithm [37], which learns a deterministic policy a =

µ(s,θ) parameterised by θ by following a stochastic behaviour policy β(·|s).
Learning about a deterministic policy results in an intuitive handling of contin-
uous actions - the output of the policy is simply a real value, and can thus take
on any value. However, since there is no stochasticity inherent to the policy,
one cannot follow this policy while learning and expect to explore the environ-

32

2.4 Deep reinforcement learning

ment su�ciently. So, an o�-policy approach must be used. By letting the critic
approximate the action-value function, thus learning the values of all actions
in each state, we enable the agent to learn about the deterministic policy while
following an exploratory behaviour policy during training.

Furthermore, it has been shown that the deterministic policy gradient can
be estimated more e�ciently than the stochastic gradient [37], by avoiding a
sum/integral over actions. By assuming a policy a = µ(s,θ) with parameter
vector θ, an action-value function qµ(s, a) and a performance measure J(θ) =

E
[
G0|S0 = s

]
, the Deterministic Policy Gradient Theorem [37] gives

∇J(θ) ∝
∑
s

ρµ(s)∇θqµ(s, µ(s,θ))

=
∑
s

ρµ(s)∇aqµ(s, a)∇θµ(s,θ)

= Es∼ρµ
[
∇aqµ(St, a)∇θµ(St,θ)|St = s, a = µ(s,θ)

]
(2.43)

Consequently, there is no need to compute the expectation over actions, and
so the policy gradient of Equation (2.43) is suitable when the action space is
continuous or high-dimensional.

When implementing an o�-policy deterministic policy gradient, states are
sampled from a behaviour policy β(·|s) rather than the deterministic policy,
giving the gradient

∇J(θ) ≈ Es∼ρβ
[
∇aqµ(St, a)∇θµ(St,θ)|St = s, a = µ(s,θ)

]
(2.44)

By applying an o�-policy algorithm for estimating the critic, such as Q-learning
or gradient temporal-di�erence learning, the o�-policy deterministic actor-critic
algorithm is completed.

These past two sections have shown that using function approximators to rep-
resent value functions and policies allows reinforcement learning to be applied
to problems where action and state space may be high-dimensional and con-
tinuous. However, a major challenge in this approach is how to decide which
representation, and which features, to use. The chosen representation and fea-
tures must be able to provide an adequate approximation to the real function.

33

Chapter 2. Theory

Nonetheless, typical function approximators such as linear or sigmoidal ones,
can represent only a limited set of functions, and additionally rely on features
to be hand-designed to suit speci�c problems [34].

Using large, nonlinear function approximators, such as deep arti�cial neural
networks (deep ANNs, or DNNs), can mitigate some of the challenges mentioned
above – they can approximate any continuous function [38], and they can learn
from raw sensory input rather than relying on pre-designed features. Despite
this, early results of combining temporal-di�erence reinforcement learning al-
gorithms with DNNs, or any nonlinear function approximators, showed that it
could cause the value of the approximator and its parameters to diverge [39].
Additionally, one cannot theoretically guarantee convergence to optimal per-
formance [1], thus DNNs were often avoided in reinforcement learning prior to
the success of Deep Q-learning [16]. This algorithm, however, has shown that
DNNs can be applied in RL with good results, and the combination is called deep

reinforcement learning (DRL). A signi�cant DRL algorithm will be presented in
Section 2.4.3, while the following section will explain arti�cial neural networks
more thoroughly.

2.4.2 Deep neural networks

The structure of arti�cial neural networks allows them to approximate nonlin-
ear functions using a relatively small set of parameters. As we saw in Section
2.4.1, function approximation is usually necessary when applying reinforcement
learning to real-valued control problems, and it has been shown that deep arti-
�cial neural networks can be used for this purpose [16,17,40]. This section will
give some insight into the structure of ANNs and the theory behind them.

The main idea of ANNs is to use training data to learn an approximation,
ypred = g̃(x), of a function g(x). The training data consists of input-output
pairs (x, ytarget) corresponding to inputs and outputs of the real function, and
the ANN adjusts its parameters so that the network’s predicted output converges
towards the target output provided by the training data for all inputs.

This section describes the key components of ANNs below, before providing
a brief overview of the way ANNs learn in Sections 2.4.2.2 and 2.4.2.3.

34

2.4 Deep reinforcement learning

2.4.2.1 Feed-forward networks

The ANNs that will be focused on in this thesis are feed-forward neural net-
works, meaning that there are no loops in the network, i.e. connections are only
in one direction. A di�erent kind of network that can also be applied in RL is
called a recurrent neural network, where the output depends on both the current
input and previous outputs. The feed-forward network structure is illustrated
by Figure 2.7.

Input layer

Hidden layers

Output layer

Figure 2.7: Feed-forward arti�cial neural network

The networks consist of neurons called nodes, or units, arranged into lay-

ers. The �rst layer, consisting of the input, is called the input layer, and the last
layer is called the output layer. All layers in between are referred to as hidden,
because the values of nodes in the hidden layers are internal to the function
approximator. There exist several ways to implement the connections between
layers in a feed-forward network, where one of the most commonly used are
fully-connected layers. A fully-connected neural network has connections be-
tween every unit in subsequent layers, so that the value of a unit in�uences all
the units coming after it. Other typical layer types include convolutional layers
and pooling layers, used in networks that process images.

Until now, ANNs and DNNs have been mentioned somewhat interchange-
ably in this thesis, although there is a slight di�erence in their meaning. The
main di�erence between the two terms is that an ANN refers to a function ap-
proximator inspired by networks of neurons found in humans, of the form in

35

Chapter 2. Theory

Neuron

∑

Activation
function

yj

w1j

w2j

wnjxn

x1

x2

f (∑ +)wijxi bj...
...

bj1

WeightsInputs

Bias

Output

Figure 2.8: Node or unit of an arti�cial neural network

Figure 2.7, while a DNN is usually described as an ANN with at least one hid-
den layer. The more hidden layers a network has, the deeper the network is. A
DNN with a single hidden layer and enough nodes can approximate any non-
linear function [38], but deeper networks may simplify the approximation task
for very complex functions.

The structure of units is shown in Figure 2.8. The layering structure means
that the inputs of the units in a layer, denoted x, are the outputs of the pre-
ceding layer’s units. Each unit’s output is given by an activation function, y =

f(x,w, b), which is a nonlinear function - usually an s-shaped (e.g. sigmoid

or tanh) function or a recti�ed linear unit (ReLU). The activation depends on
the input vector x, the bias b and the parameters w in that a weighted sum of
the input is computed before being passed to the activation, shown in Equation
(2.45).

y = f(x1w1 +x2w2 + ...+xnwn + b) = f(

n∑
i=1

xiwi + b) = f(wx+ b) (2.45)

Thus, an entire layer can be represented by the activation function f of its
units, a weight matrixW and a bias vector b, containing the weight vectors and
the scalar biases associated with the nodes in the layer, respectively. Then, the
output of a layer is given by y = f(Wx + b), where x is a vector of outputs

36

2.4 Deep reinforcement learning

from the previous layer. Then an element wij in W represents the connection
from node i in the previous layer to node j in the current layer, and the bias and
output of the current node are bj and yj , respectively.

An important note is that units in the same layer use the same activation
function. Additionally, all hidden layers usually share activation as well. The
output layer may use a di�erent activation to re�ect the characteristics of the
output, which depends on the task at hand. A softmax-function is often used
at the output in classi�cation tasks, to assign decimal probabilities to di�erent
classes that sum up to 1. The hyperbolic tangent, on the other hand, gives an
output in the range (−1, 1). One of the most popular hidden layer activations
is the Recti�ed Linear Unit (ReLU).

2.4.2.2 Backpropagation

The training of DNNs is done by adjusting the weights of the network so that the
predicted output becomes closer to the desired output for all inputs, by utilising
training data consisting of reference input-output pairs (x, ytarget). An error
function typically used to measure the distance between predictions and correct
values is the squared error:

E(ypred − ytarget) =
1

2
(ypred − ytarget)2 (2.46)

where ypred is the output predicted by the network, and ytarget is the real output
which the network’s output should be equal to.

To learn the weights, two phases must be carried out, called the forward
propagation and backpropagation [41] phases. The forward propagation simply
passes the input of a data pair to the network, receiving a predicted output and
the computed error. Backpropagation then updates the weights of the network
by a gradient descent algorithm to minimise error. The gradient of the error
with respect to each weight inW tells the network how the weights should be
updated in order to reduce error. The update rule is give by

wij = wij − α
∂E

∂wij
(2.47)

37

Chapter 2. Theory

where α > 0 is referred to as the learning rate. If ∂E
∂wij

< 0, the error goes down
when the weight increases, thus the weight should be increased by the update.
If ∂E
∂wij

> 0, the error goes up when the weight increases, thus the weight should
be decreased by the update.

To calculate the derivatives, the backpropagation algorithm uses the chain
rule to move backwards in the network, from the output to the input. Consid-
ering the weight between neurons i and j in subsequent layers, wij , we get

∂E

∂wij
=
∂E

∂yj

∂yj
∂zj

∂zj
∂wij

=
∂E

∂yj

∂yj
∂zj

yi

=
∂E

∂yj
f ′j(zj)yi

(2.48)

where yi denotes the output of neuron i, zj =
∑n

k=1wkjyk+bj is the total input
to neuron j, and fj(·) is the activation function of neuron j. For neurons in the
last layer, the �rst factor becomes ∂E

∂ypred
= (ytarget− ypred), and this derivative

is propagated backwards in the layers to calculate the rest of the derivatives. For
neuron i in layer L− 1, we can use the calculations from layer L:

∂E

∂yi
=
∑
l∈L

(
∂E

∂yl

∂yl
∂zl

wil

)
(2.49)

where l denotes units in layer L. Similar arguments can be made for derivatives
with respect to the biases, where ∂zj

∂bj
= 1.

There exist several optimisation algorithms that implement the gradient up-
dates of backpropagation, and some commonly used in neural networks are Ada-
Grad [42], RMSProp [43], and Adam [44], with Adam being the most recent.

A challenge that arises when training DNNs is over�tting, in which the net-
work �ts the output only to the presented training examples, but is unable to
generalise when faced with new examples. Several solutions to this has been
proposed, such as dropout [45], L1 or L2 weight regularisation [46] or early stop-
ping. Batch normalisation [47] is a technique that improves stability of neural
network training, thus allowing higher learning rates and faster convergence.

38

2.4 Deep reinforcement learning

2.4.2.3 Transfer learning

An inherent part of human learning is how they recognise similarities between
tasks and are able to apply the relevant knowledge in order to master some-
thing new. Similarly, transfer learning in machine learning means to make use
of knowledge gained when learning about one task to improve learning of a
di�erent, related, task. The approach moves the learning process of machine
learning algorithms, which traditionally handle isolated tasks, towards how hu-
mans transfer knowledge from previous settings when encountering unknown
tasks.

In general, transfer learning can improve the initial performance in a new
task compared to starting from zero knowledge. Additionally, it can reduce the
amount of time and data needed to converge to a good solution, and may some-
times give a better �nal performance than if transfer learning was not used. The
e�ectiveness of the transfer learning approach depends on the relationship be-
tween the source task and target task – the more similar they are, the easier it
becomes to transfer knowledge between them.

Source	task
knowledge

Target	task

Given Learn

Data

Figure 2.9: Transfer learning from source task knowledge and new data [6]

In the context of arti�cial neural networks, there are two common approaches
to transfer learning – the �nal weights of the source task network can be used
as initial values for the weights of the new network, or a number of the �rst
layers of the source task network can be used as a feature extractor for the new
task. In the latter case, the weights of the �rst layers are frozen in the new task,

39

Chapter 2. Theory

meaning that they will not be a�ected by backpropagation. This can be useful
when the available training data for the target task is limited, since restricting
the number of trainable weights may reduce chances of over�tting of the net-
work. The choice of how many layers to freeze depends on the similarity of the
tasks, as earlier layers produce more general features than the later ones – thus
more layers can be reused when the di�erences are small. In the �rst case, all
weights may be �ne-tuned during learning, which is applicable when a larger
amount of training data is available for the target task.

2.4.3 Deep deterministic policy gradients

The deep deterministic policy gradient (DDPG) algorithm was �rst introduced in
2015, and has shown that the contribution of Deep Q-learning [16, 40], which
could solve problems with high-dimensional state spaces, can be expanded to
suit continuous action spaces [1]. The procedure is outlined in Algorithm 2.

It is an o�-policy actor-critic DRL algorithm, where the policy and action-
value functions are approximated using DNNs. As the name suggests, a policy
gradient approach is used for estimating the policy network. The policy is deter-
ministic rather than stochastic, and the e�ects of this were introduced in Section
2.4.1.5. Additionally, DDPG uses experience replay [48] to sample transitions in
the environment from a replay bu�er, rather than learning from transitions that
were encountered in sequence and are thus temporally correlated. This is useful
when using DNNs, since good approximation is usually dependent on uncor-
related training data and exploration of di�erent parts of the state space. An
experience is saved as a tuple, (s, a, r, s′), consisting of the current state, action,
observed reward and the next encountered state. The experiences are uniformly
sampled in mini-batches and passed to the networks when training.

The exploratory behaviour policy is computed by adding a noise processN
to the deterministic policy. In the original DDPG algorithm [1], an Ornstein-
Uhlenbeck noise process [49] was used. This noise process results in noise val-
ues centred around 0, which are also temporally correlated. The behaviour pol-
icy is given by (2.50).

a = µ(s,θ) +N (2.50)

40

2.4 Deep reinforcement learning

In order to stabilise learning of parameters in neural networks, using the
network representing the critic, Q(s, a,φ), for calculating the TD target values
in (2.41) and simultaneously updating the parameters of Q should be avoided.
To prevent the updates from diverging, DDPG uses separate target networks for
the critic and actor, Q′(s, a,φ′) and µ′(s,θ′) respectively, whose weights are
updated by slowly tracking the parameters of the learned networks Q(s, a,φ)

and µ(s,θ). These target updates are

φ′ ← τφ+ (1− τ)φ′

θ′ ← τθ + (1− τ)θ′
(2.51)

where τ � 1 is the rate of updates for the target networks. By reducing the rate
of change of the target values of the critic in this way, the problem of learning
the action-value is moved closer to a supervised learning problem, in which
the backpropagation of error is computed based on an approximately stationary
target yi. This results in improved stability of learning.

DDPG is the method used for the vehicle control, path following and colli-
sion avoidance tasks in Chapters 3 and 4.

41

Chapter 2. Theory

Algorithm 2 DDPG
1: Randomly initialise critic Q(s, a,φ) and actor µ(s,θ) networks with

weights φ and θ.
2: Initialise target network Q′ and µ′ with weights φ′ ← φ, θ′ ← θ
3: Initialise replay bu�er R
4: for episode = 1, ...,M do
5: Initialise random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, ..., T do
8: Select action at = µ(st,θ) +Nt according to the current policy and

exploration noise
9: Execute action at and observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from

R
12: Set yi = ri + γQ′(si+1, µ

′(si+1,θ
′),φ′) for i ∈ 1...N

13: Update critic by minimising loss: L = 1
N

∑
i(yi −Q(si, ai,φ))2

14: Update actor policy using the sampled policy gradient:

∇θJ ≈
1

N

∑
i

∇aiQ(si, ai,φ)∇θµ(si,θ)

15: Update the critic target network: φ′ ← τφ+ (1− τ)φ′

16: Update the actor target network: θ′ ← τθ + (1− τ)θ′

17: end for
18: end for

42

Chapter 3
Design and implementation

The main contribution of this thesis is to investigate how deep reinforcement
learning can be used in developing control systems for marine vessels, speci�-
cally path following and rudimentary collision avoidance algorithms. To achieve
this, a stepwise process is followed, where the complexity of the tasks we aim
to solve increases throughout the thesis. This approach was chosen due to the
novelty of the ultimate goal of the work, namely designing a fully autonomous
collision avoidance system using DRL – it was deemed essential to con�rm the
success of path following and surge control before attempting collision avoid-
ance. In this chapter, the design decisions and implementation details related
to each control problem are presented and discussed. First, Section 3.1 gives an
overview of the DRL algorithm used in all experiments.

Two ship types have been used when implementing control systems, where
the �rst is a platform supply vessel (PSV) and the second is a container type
vessel. The PSV was provided as part of a simulator given by DNV GL for the
work of this thesis, and is introduced in Section 3.2 below. The container was
originally described by Son and Nomoto in 1981 [50], and has been ported from
the Marine Systems Toolbox (MSS) [3] to Python. This means that the full de-
scription of the container’s dynamics is available to us, while the same cannot
be said about the PSV. Therefore, the container model is described in detail in
Appendix A, while the PSV is super�cially described in this chapter. For the
reinforcement learning agent, there will be no apparent di�erence between the

43

Chapter 3. Design and implementation

two vessels, and it will treat the ship and its dynamics as a part of the environ-
ment which it must learn how to interact with. In other words, the agent has no
knowledge of any of the two vessels before training is started.

The main reason for applying learning algorithms to the container vessel as
well as the PSV is the time needed for simulation of the two di�erent ship mod-
els. The PSV requires the provided simulator interface, which is computationally
heavy, thus resulting in an excessive amount of time needed just to simulate the
ship’s movement. The container, on the other hand, is implemented in Matlab as
simple equations without a graphic interface or additional modules, and there-
fore its computations are quick compared to the PSV. This results in less time
used on simulating ship movement when using the container, and more time
available for training of the neural networks.

In Section 3.3, we report on how to teach a reinforcement learning agent
to control the PSV. The two tasks are surge control in Section 3.3.1 and simul-
taneous surge and heading control in Section 3.3.2. Implementing controllers
for relatively simple tasks on the PSV have played a vital part in understanding
which considerations should be made when creating a DRL agent for this par-
ticular vessel. These experiments are the �rst in a series of increasingly complex
control problems, that will eventually allow us to design an autonomous colli-
sion avoidance agent.

Section 3.4 moves on to implementation of a path following system, and
discusses the performance measure, states and actions necessary for the task.
The pure path following task is also extended to include surge control. The
design of these controllers is based on the works of Martinsen [2] and Martinsen
and Lekkas [18], which have shown promising results when applying a proposed
path following agent to di�erent vessel models from the MSS Toolbox. The
vessel types were a mariner, a tanker and a container ship. Here, an equivalent
path following framework is applied to a container vessel of the same kind as
in [2], and to the PSV introduced in Section 3.2, with the extension of surge
control.

Finally, a collision avoidance system using DRL is outlined in Section 3.5.

44

3.1 DRL algorithm details

3.1 DRL algorithm details

The DRL learning algorithm used in this thesis is the DDPG algorithm of Sec-
tion 2.4.3 shown in Algorithm 2. The reason for choosing this algorithm is its
suitability for environments where the possible state values and action values
are continuous, and discretising may discard important information. Further-
more, DDPG has previously shown promise when applied to straight-line [18]
and curved [19] path following tasks for marine vessels.

The algorithm consists of a policy and an action-value function, known as
an actor and critic, both estimated by DNNs. The functions are implemented as
fully-connected neural networks with two hidden layers of 400 and 300 units
each, and all hidden layers use the ReLU function as activation, which is imple-
mented as relu(x) = max(0, x). The input to the actor is the state vector s, and
its output is the action vector a, restricted to the range (−1, 1) by a tanh acti-
vation function. To produce the necessary control actions for the system, this
output is then scaled by a linear transform to the range (amin,amax), where
amin and amax give the saturating limits of the actuators of the system.

The critic uses both the state and action as input, and produces a scalar
action-value at the output. The state vector is an input to the �rst hidden layer,
thus passed through both layers, while the action is added as input to the second
hidden layer. The structures are outlined in Figure 3.1 below, where Q(s,a) is
the action-value and µ(s) is the output from the policy. The notation of Section
2.4.2 is used, where Wi and bi denote weights and biases associated with layer
i, and the activation function is given by f(x) = relu(x).

For learning the neural network parameters, the learning rates 10−4 and
10−3 were used in the actor and critic, respectively, with the Adam optimizer
[44]. The discount factor was γ = 0.99, and the target update rate was set to τ =

0.001. The maximum replay bu�er size was 106 transitions and the parameters
of the noise process utilised for exploration were θ = 0.15 and σ = 0.2. These
parameter choices and network structures were based on the work of Lillicrap
et. al. [1].

In order to allow e�ective training of the neural networks, we implement lin-
ear scaling of network inputs to ensure their possible values lie within±1. This

45

Chapter 3. Design and implementation

relu(� +)�1 �1

relu(+)�2�
1

�2

�

(�)�
1

(�)�
2

tanh(+)�3�
2

�3

� = �(�)

(a) Actor

relu(� +)�1 �1

relu([, � +)�2 �
1

]⊤ �2

�

(�)�
1

(�, �)�
2

�

+�3�
2

�3

�(�, �)

(b) Critic

Figure 3.1: The DRL algorithm’s implemented actor and critic structure

will be especially important when training DRL agents for path following tasks,
where we will implement the state vector to include information about distance
to the path (see Sections 3.4–3.5). This distance can be up to several thousand
meters, making these state vector entries disproportionately large compared to
heading, for instance, which is limited to ±π. If standardisation of input data is
not carried out, the propagation of values through the networks will result in
some input features a�ecting the output more than others. Additionally, weights
can become very large, leading to unstable learning, or very small, slowing down
learning signi�cantly.

For this to work as intended, it is crucial that the transitions saved in the
replay bu�er consists of these processed states and unscaled actions, so that
training is performed with intended network inputs.

Training was carried out in mini-batches of size 256. The size is increased
compared to 64, which was the case in [1], due to the length of episodes and na-

46

3.2 The platform supply vessel simulation interface

ture of vessels in the tasks of this thesis. Training episodes were of length 1000

or 1500 steps, and it was found that the �rst 64 transitions in this context were
often similar to each other. By increasing the mini-batch size, more variation
could be included in the �rst training batch.

Training of the policy and critic was performed by placing the vessel on
the map with randomised position, heading and velocity, before simulating for
a speci�ed number of time steps. Simultaneously, the state, action and reward
at each time step was recorded and stored in the replay bu�er, and training
was carried out in batches at each time step by randomly sampling the replay
bu�er and updating network weights through backpropagation. A time step
corresponded to one second in simulation time, and one action was applied per
time step, resulting in a control rate of 1 Hz. Further details concerning episode
length and initial conditions will be given in Chapter 4.

3.2 The platform supply vessel simulation interface

A simulator implementing the dynamics and visualisation of a platform supply
vessel (PSV) was provided for this thesis. Examples on how to communicate
with the simulator were also given, and this was modi�ed to suit the needs of
the work done here. All relevant signals are read from the simulator as ground
truth values, thus it is assumed that these signals can be measured accurately in
the following experiments. A screen shot illustrating the graphic user interface
is shown in Figure 3.2. The ship has two thrusters located aft of the ship and
has length 94m and width 21m.

A heading controller and speed controller have been provided with the sim-
ulator, along with corresponding allocation of thruster forces. Thus the vessel
can be controlled through two inputs - by setting the currently desired head-
ing and surge. The speed controller includes a reference model, which smooths
out the surge reference signal before feeding it to the controller. By controlling
the vessel in this manner, the resulting DRL control system will not be end-to-

end, from measurements to thruster con�guration. It may, however, simplify
the analysis of controller behaviour once learning is complete, on the grounds
that the relationship between commands and resulting heading and surge can

47

Chapter 3. Design and implementation

Figure 3.2: Graphic user interface of the PSV simulator

be understood more intuitively in this case.
There is an abundance of possible controllers and guidance systems that

could be made available to the simulator con�guration, which is one of the main
reasons the use of this simulator is considered interesting for this thesis. For in-
stance, a LOS guidance system is available, where the user needs only specify
the waypoints of a path and initial conditions of the vessel. There is also the pos-
sibility of including a collision avoidance algorithm with modelling of a number
of obstacles, which would make it possible to compare the DRL collision avoid-
ance system proposed here to a trusted algorithm. Additionally, environmental
forces, such as wind, current and waves are modelled and can easily be turned
on or o�.

The model of the PSV’s dynamics are unknown to us. For the purposes of
this thesis however, this is not a problem. In reinforcement learning, the ship is
considered part of the unknown environment, and thus is treated as a black box.
Combining this with the fact that the ship’s simulator comes with controllers

48

3.3 Control of a platform supply vessel using deep reinforcement learning

that are already tuned appropriately, such as heading and surge controllers, ex-
plicit knowledge of equations of motion is redundant.

The dynamics of our ship are rather slow, and a high control rate may be
needlessly complex in this case. The vessel’s heading and surge responses will
not be fast enough to be able to react to several substantial control input changes
per second, and the result may be rapid changes in thruster con�gurations that
yield barely noticeable change in movement of the ship. The control rate is set
to 1 Hz in the following experiments. Reducing it further should be considered.

3.3 Control of a platform supply vessel using deep
reinforcement learning

Even though it has been argued that knowledge of equations of motion is un-
necessary from a reinforcement learning perspective, some insight into how a
vessel behaves can still be helpful when designing state vectors, actions, and
particularly reward signals. In order to gain this insight, this section is dedi-
cated to the design of relatively simple control systems for the platform supply
vessel.

The �rst case is a surge control system, laid out in Section 3.3.1, where a DRL
agent learns to reach a speci�ed surge speed through feeding reference values
to a surge controller. In Section 3.3.2, heading is added to the system. From now
on we will refer to these guidance systems as performing surge control and surge

and heading control. Although not technically correct, this notation simpli�es
the discussion laid out in the thesis, since referring to a “guidance system which
feeds surge and heading reference trajectories to the controllers of a PSV" can
be thought of as long and winding, and takes away from the main arguments of
the thesis.

The control input from the DRL agent to the vessel is a reference heading,
given to the heading controller, and a reference surge speed which is fed to the
speed controller. Then the action vector of our learning agent (the output of the
policy network) becomes

a =
[
ψc uc

]>
(3.1)

49

Chapter 3. Design and implementation

3.3.1 Surge control

The �rst attempt at learning to control the vessel entails learning to reach and
maintain a surge velocity of ud. The observation vector for the �rst experiment
was chosen as in (3.2), and the corresponding reward signal is shown in Equation
(3.3) and Figure 3.3, where ũ = u− ud and ṽ = v − vd.

s =
[
ψ r u v

]>
(3.2)

R(u, v) = max
(
0, 1− gu|ũ| − gv|ṽ|

)
(3.3)

The reward is shaped as a pyramid, so that the maximum is reached when
u = ud and v = vd = 0. The gains de�ne the size of the pyramid’s base, and
the gains used to generate the signal in Figure 3.3 were gu = 1 and gv = 4. The
desired velocity was [ud, vd] = [5, 0].

(a) Surface plot of reward signal as
function of u and v, where ud = 5
and vd = 0

(b) Contour plot of reward signal as
function of u and v, where ud = 5
and vd = 0

Figure 3.3: Shape of reward signal given by Equation (3.3)

It can often be bene�cial to include more information in the reward signal,
so that the performance measure becomes a weighted sum of several goals. Our
main objective is to reach a surge ud, and an additional desire is to limit “bang-
bang" control, which is often unnecessary and can lead to needless wear on
actuators. Our previous reward gave no indication of desired heading behaviour,
so we propose a penalty based on change inψc, as in (3.5). To make this objective
easier to achieve, the observation vector is extended to include the previous

50

3.3 Control of a platform supply vessel using deep reinforcement learning

heading command and its derivative, shown in (3.4).

s =
[
ψ r u v ψc ψ̇c

]>
(3.4)

R(u, v, ψ̇c) = max
(
0, 1− gu|ũ| − gv|ṽ|

)
− cψ̇cψ̇

2
c (3.5)

The constant cψ̇c can be seen a a weight factor, deciding the relative importance
of smooth heading actions versus reaching the desired surge.

This kind of penalty term in the reward signal is not strictly necessary in
order to achieve smooth control inputs. An inherent part of DRL algorithms is
the randomness introduced by exploration, and due to this random process an
agent may �nd a solution with smooth actions even though the penalty related
to smoothness is omitted from reward calculations. However, such an agent
will see little di�erence between solutions with extremely erratic actions and
smooth actions, as the two cases often lead to similar vessel movement. With
this in mind, one can argue that a small penalty allows the agent to di�erentiate
between the mentioned cases, and can make sure aggressive control behaviour
is discouraged.

It is also worth mentioning that the addition of ψc and ψ̇c to the state vector
is a technique used in this case to help the learning agent calculate similar ac-
tions at consecutive time steps, but is in many cases not required. It will be seen
in Chapter 4 that control of the PSV using a DRL agent proved to be challeng-
ing, and this is the main reason for augmenting the state vector when including
penalties.

3.3.2 Surge and heading control

In this case, the objective is to travel at a constant forward speed of ud, in a
certain direction ψd. When choosing an observation vector for this problem, it
could be bene�cial to make sure the optimal values of the elements are the same
for all choices of ud and ψd. This can be implemented by introducing error
terms, such as ψ̃ = ψ − ψd, r̃ = r − rd, ũ = u − ud and ṽ = v − vd, which
all become zero when the desired surge and heading is reached and maintained.

51

Chapter 3. Design and implementation

As long as ψd is constant, rd = ψ̇d = 0 and vd = 0 can be assumed.

s =
[
ψ̃ r̃ ũ ṽ

]>
=
[
ψ − ψd r − rd u− ud v − vd

]>
(3.6)

The reward signal is given by (3.7). Its shape is illustrated in Figure 3.4,
where it is shown that a deviation of up to 1 rad and 1.5 m/s from desired heading
and surge, respectively, gives nonzero reward. These limits were generated by
setting gu = 2

3 and gψ = 1.

R(ũ, ψ̃) = max
(

0, 1− gu|ũ| − gψ
∣∣∣ψ̃∣∣∣) (3.7)

(a) Surface plot of reward signal as
function of ũ and ψ̃

(b) Contour plot of reward signal as
function of ũ and ψ̃

Figure 3.4: Shape of reward signal given by Equation (3.7)

By the same arguments as in Section 3.3.1, a penalty can be added to limit
the occurrence of erratic control actions. For this task, it may be useful to place
the penalty on change in uc, which gives a state vector and reward signal shown
below.

s =
[
ψ r u v uc u̇c

]>
(3.8)

R(u, v, u̇c) = max
(
0, 1− gu|u− ud| − gv|v − vd|

)
− cu̇c u̇2c (3.9)

It would have been possible to penalise ψ̇c in the same way as in the surge
tracking task, or even penalise both u̇c and ψ̇c. However, it was found through
experiments that the current design was most e�cient.

52

3.4 Path following using deep reinforcement learning

3.4 Path following using deep reinforcement
learning

As has previously been mentioned, the path following DRL controller developed
in [2, 18] provides the basis for this work, and the reward function design and
the elements of the state vector are the same. However, since all components
have been re-implemented for this thesis, they are presented here to illustrate
the reproduction of the results for the container vessel, and to con�rm the ap-
plicability of the same path following system for the PSV. Furthermore, this will
provide insight into design of the extended path following and surge guidance
system, as well as the collision avoidance system of Section 3.5.

3.4.1 Control input

The two vessel types for which control systems have been developed in this
thesis expect di�erent kinds of control inputs. This section clari�es their char-
acteristics, and how the action vector of each control system is designed.

3.4.1.1 Platform supply vessel

The PSV expects a control input vector of two elements, a heading command ψc
and surge command uc. These signals are sent to the heading and surge con-
troller of the vessel, and have units radians and m/s, respectively. For the pure
path following task, a constant surge command is sent to the surge controller to
achieve constant speed, and thus only the heading ψ must be controlled in or-
der to achieve the path following objective. This means the output of the policy
network is a 1-dimensional action,

a = ψr = ψc − αp (3.10)

which is chosen so that the output of the policy is invariant to path orienta-
tion. The heading command ψc is obtained by adding the path angle αp to ψr ,
and then given to the heading controller to steer the craft. This steering law is
inspired by lookahead-based steering schemes, in which a course angle assign-
ment χd is separated into a path-tangential angle αp and a velocity-path relative

53

Chapter 3. Design and implementation

angle χr , by χd = αp + χr . The velocity-path relative angle thus de�nes the
direction of the velocity vector of the vessel. Here, a heading angle command
is given in place of course angle, thus ψr is the orientation of the BODY xb-axis
relative to the path. Letting the policy learn this value rather than a direct head-
ing assignment allows it to be applied to any straight path, and thus need not
be exposed to several path orientations during training. This results in faster
training of the path following system.

Once surge tracking is included in the system, the policy network’s output must
include a surge command in addition to heading. This gives an action vector of
two elements:

a = [ψr uc]
> =

[
ψc − αp uc

]> (3.11)

The heading command is extracted in the same manner as in the pure path fol-
lowing case, and both heading and surge commands are fed to their respective
controllers as desired set-points.

3.4.1.2 Container vessel

The container vessel expects a control input vector of two elements, a rudder

angle δc and shaft speed nc, given in radians and rpm, respectively. Resulting
rudder angle and shaft speed is described by (A.3) and (A.4) in Appendix A.

In path following, a constant shaft speed command is sent to the propeller
to achieve approximately constant surge speed, and thus only the rudder angle
δ must be controlled. This means the policy network output is a 1-dimensional
action,

a = δc (3.12)

For the path following task with surge control a shaft speed command must be
included in the action vector:

a = [δc nc]
> . (3.13)

54

3.4 Path following using deep reinforcement learning

3.4.2 Performance measure

A Gaussian shaped reward signal dependent on the cross-track error is chosen
as the performance measure for the path following task. It encourages path con-
vergence, since it increases monotonically as the position error approaches zero.
To ensure the vessel is travelling along the path in the desired direction, reward
is given only when the vessel’s yaw angle deviates from the path tangential an-
gle by less than 90°. Equation (3.14) shows the resulting function, where cpf is
the amplitude, and σ decides the width (standard deviation) of the bell-shaped
curve.

R(ye, ψ̃) =

cpfe
−y2e/2σ2

, if
∣∣∣ψ̃∣∣∣ < π

2

0, otherwise
(3.14)

An example of this kind of reward function, with parameters cpf = 1 and σ =

30, is illustrated in Figure 3.5. The reward signal presented here will be used as a
base reward, which provides a foundation on which the extensions in following
sections can build.

-200 -150 -100 -50 0 50 100 150 200
0

0.25

0.5

0.75

1

c
pf

 = 1, = 30

Figure 3.5: SHape of reward signal given by equation (3.14)

3.4.2.1 Additional surge control objective

Here, simultaneous path following and surge control is implemented, and there-
fore the reward signal must include two objectives – let cross-track error con-
verge to zero and let surge equal a desired surge. There exists several possible
ways to implement this. For instance, a positive reward may be given only when
the vessel travels along the path while maintaining the correct velocity. How-
ever, this approach may restrict the agent’s learning abilities due to a too sparse

55

Chapter 3. Design and implementation

reward signal. Rewards associated with each objective may be added together
and weighted, equally or otherwise – this may result in a control system where
only one of two goals have been reached, due to �nding a local optimum of
reward maximisation. Experience shows that the task of travelling at approx-
imately correct surge speed is easier than converging to a path. This makes
sense when considering the expected amount of necessary exploration in the
two tasks: if one assumes constant heading, the surge control task simpli�es
to giving a constant input to the vessel which translates to a surge speed equal
to the desired, thus little exploration is needed before this relationship can be
approximated. To follow a path, on the other hand, the control input related to
heading should not be constant – the vessel must make a turn towards the path
in order to reach it before adjusting to the constant heading corresponding to
path direction.

Motivated by the above discussion, the following reward signal for path fol-
lowing and surge control is suggested:

R(ye, ψ̃, ũ) = R(ye, ψ̃) +

cue
−ũ2/2σ2

u , if
∣∣∣ψ̃∣∣∣ < π

2

0, otherwise
(3.15)

where a Gaussian reward is added to the base reward of (3.14), but only when
the vessel is travelling in the general direction of the path, with heading error
within ±90°. This facilitates learning of some behaviour related to path follow-
ing before giving too much velocity-related reward, possibly reducing chances
of settling into a locally optimal solution. Parameters cu and σu specify the am-
plitude and standard deviation of the curve. A depiction of the shape of this
reward signal when

∣∣∣ψ̃∣∣∣ < π/2 can be found in Figure 3.6, where parameters
were chosen as cpf = cu = 0.5, σ = 30 and σu = 0.25.

3.4.2.2 Counteracting action noise

In the case of the container vessel, a limitation on unnecessary changes to the
rudder angle can be introduced to reduce wear on actuators and increase com-
fort. This can be added to the reward function as a supplementary objective,
where the original reward function can be any of the ones proposed above. By

56

3.4 Path following using deep reinforcement learning

Figure 3.6: Shape of reward signal given by equation (3.15)

subtracting a small penalty cδ̇δ̇ δ̇
2 from the proposed reward, the agent will pre-

fer smoother control actions. This gives the following reward signal for path
following:

R(ye, ψ̃, δ̇) = −cδ̇δ̇ δ̇
2 +R(ye, ψ̃) (3.16)

and an equivalent design when surge control is added:

R(ye, ψ̃, ũ, δ̇) = −cδ̇δ̇ δ̇
2 +R(ye, ψ̃, ũ) (3.17)

An alternative penalty term is needed for the PSV, due to the vessels’ di�er-
ing control input characteristics. However, a system with penalty for the PSV
path following task will not be presented. The results laid out in Section 4.1 and
4.2.2–4.3.1 point out the di�culties of designing an appropriate performance
measure for the PSV including counteraction of input noise, and it followed that
a decent reward function design was not found in this case.

3.4.3 State vector

The state vector used in the path following system, with both vessel models, is

s =
[
ye ẏe ψ̃

˙̃
ψ u v

]>
=
[
ye ẏe ψ − αp r u v

]> (3.18)

57

Chapter 3. Design and implementation

where ye is the cross-track error of the vessel and ψ̃ is the vessel’s heading
relative to the path angle αp, called heading error. The cross-track error and
its derivative ẏe give information about the distance to the path and how fast
the vessel is moving towards it, while the heading error and heading error rate
˙̃
ψ = r give a measure of the current orientation and angular velocity of the
vessel. By choosing elements of the state vector with respect to the path, they
become invariant to the path orientation. As discussed previously, the e�ect of
this is faster training of the path following system, because the need to train the
agent on several path orientations is eliminated.

In [2] an augmented state vector where course information is included, was
tested and compared to the state vector of Equation (3.18). It was found that
course information, which entails telling the agent about the direction of its
velocity vector, could increase the system’s robustness, especially its ability to
compensate for disturbances such as ocean currents, and in the case of following
a curved path. However, it was also found that the added value of extending the
state vector was modest, if present, in the case of following straight-line paths
with no disturbances.

In this thesis, the e�ect ocean currents or other disturbances may have on the
performance is not investigated, and neither is curved path following. There-
fore, the state vector is kept as the one shown above.

3.4.3.1 Augmentation for surge control

In order to achieve the additional objective of surge control, it can be useful
to provide the DRL algorithm with supplementary information regarding surge
and sway and their relation to the desired velocity, as well as knowledge about
how these values change. The state vector for this task is presented below:

s =
[
ye ẏe ψ̃ r ũ v ˙̃u v̇

]>
=
[
ye ẏe ψ − ψd r u− ud v u̇− u̇d v̇

]> (3.19)

where ũ is the surge error. It is assumed that the desired sway is always zero,
therefore the error term ṽ = v is omitted. When desired surge is constant, the
surge error derivative is reduced to ˙̃u = u̇.

58

3.5 Collision avoidance using deep reinforcement learning

The additional elements describing error terms assist the algorithm in learn-
ing an optimal policy e�ciently, by transforming absolute velocity measure-
ments (u, v) into signals related to the objective before feeding them to the al-
gorithm, thus reducing the amount of transformations to be approximated by
the policy.

3.5 Collision avoidance using deep reinforcement
learning

In order to achieve collision avoidance of ships, a heading control system based
on deep reinforcement learning is proposed here. The container vessel [50]
model is used in simulations of ship movement, and the algorithm takes in a low-
dimensional vector of measurement signals and provides a commanded rudder
angle to the vessel. The goal is to follow a prede�ned path while there is no
danger of collision, and perform suitable evasive manoeuvres whenever there is
a risk of colliding with a detected obstacle. The decision to control heading, and
not surge, was made due to the large size of the container vessel. A ship with
large mass makes changes to forward speed less desirable than heading changes,
since there are signi�cant constraints placed on forward acceleration [51]. This
may also simplify the design of the DRL performance measure, as the need for an
objective with respect to surge is eliminated, and consequently speed up train-
ing of the controller. Thus, the vessel’s shaft speed command is held constant
here. It follows that the action given by the policy network is given by (3.20).

a = δc (3.20)

For this task, it is essential to include information about obstacle position and
velocity in the observation vector of the DRL agent, which is shown in (3.21).
The �rst six elements of the resulting vector are identical to the pure path fol-
lowing task, while four elements are augmented which describe position and
motion of the obstacle with respect to the controlled vessel. The agent’s own
vessel position is de�ned in a coordinate frame aligned with the path, with ori-
gin placed at the �rst waypoint of the straight-line segment, and the notation

59

Chapter 3. Design and implementation

p = [xe, ye]
> is used. This means p is actually the along-track and cross-track

position of the vessel. The obstacle position is de�ned in a similar manner, as
po = [xeo, yeo]

>.

s =



ye

ẏe

ψ̃
˙̃
ψ

u

v

xer

yer

ẋer

ẏer



=



ye

ẏe

ψ − αp
r

u

v

xe − xeo
ye − yeo
ẋe − ẋeo
ẏe − ẏeo



(3.21)

In other words, the relative x-position xer and velocity ẋer are the di�erences
between positions and velocities along the path, called along-track distance and
relative velocity. The cross-track distance yer and relative velocity ẏer are thus
de�ned normal to the path.

The collision avoidance task includes at least three sub-goals that can be ar-
ranged according to priority, from higher to lower priority:

1. Avoid collision by keeping a safe distance dsafe to the obstacle at all times:

‖p(t)− po(t)‖ ≤ dsafe ∀t ≤ t0

2. Converge to the desired path:

lim
t→∞

ye(t) = 0

3. Limit abrupt changes to control input δc

An essential part of these goals is that in the case of a possible collision in the
vicinity of the path, the �rst two goals contradict each other. The CA controller
would in this case need to waver from the path in order to keep the safe distance
to the obstacle, and for a DRL algorithm in which there is a single scalar perfor-

60

3.5 Collision avoidance using deep reinforcement learning

mance measure, learning this can be problematic and lead to unstable learning.
With this in mind, a few potential design approaches will be discussed here.

A simple way to implement a DRL collision avoidance system when a frame-
work for a successful path following system is already developed, as is the case
here, is to expand that system with an additional term in the reward signal re-
lated to collision. By appropriate tuning of the weight factors in the performance
measure, one can end up with a successful CA algorithm. However, a drawback
is the issue of stability already mentioned, due to con�icting objectives. Addi-
tionally, a complete CA control system should behave according to COLREGS,
which are not addressed by the prioritised list above, and including speci�c rules
in a scalar reward signal may turn out to be challenging.

Another approach is to make use of the trained path following guidance
system directly, by implementing the collision avoidance separately as its own
path planner. This allows the complete DRL control system – which would be
a combination of path planning for collision avoidance and path following – to
plan a new safe path when there is risk of collision, and utilising the path fol-
lowing controller to follow the new path. This system should preferably plan
curved paths around obstacles, and thus requires a path following system for
curved paths. The currently developed path follower of this thesis is only di-
rectly applicable to straight-line paths, but can be further developed for curved
paths through transfer learning [2]. By eliminating the path following objective
from the CA controller itself, the inclusion of COLREGS-compliant behaviour
can be made with less risk of unstable learning.

The �rst of these methods is implemented in this thesis, due to a combination
of time limitations and the simplicity of the approach. The training procedure
is outlined in Section 4.4.1.

3.5.1 Performance measure

In order to accommodate the priorities of a collision avoidance task, the per-
formance measure must incorporate a large penalty term related to collision, in
addition to the path following reward and rudder penalty terms applied previ-

61

Chapter 3. Design and implementation

ously. A simple reward signal is proposed here:

R(ye, ψ̃, δ̇,pr) =


−ccollision, if Scollision(pr)

−cδ̇δ̇ δ̇
2 +

cpfe
− y2e

2σ2 , if
∣∣∣ψ̃∣∣∣ < π

2

0, otherwise
, otherwise

(3.22)
where ccollision is a weight factor determining how heavily an unsafe distance
to obstacles is penalised. To enforce the priorities listed above, this term should
be much larger in magnitude than the others. In addition, a termination criteria
Scollision is added to the system, shown in (3.23),

Scollision(pr) =

True, if ‖pr‖ < dsafe

False, otherwise
(3.23)

which states that if ‖pr‖ = ‖p− po‖ < dsafe, the episode is terminated due to
the vessel moving too close to an obstacle. This means that when the controlled
vessel is outside an unsafe region surrounding an obstacle, reward is given ac-
cording to the path following task, and otherwise a penalty of ccollision is given
before terminating.

3.5.1.1 Accommodating selected regulations

The central scenario that will be investigated in this thesis is a head-on situation.
Its de�nition, as well as navigational rules imposed on vehicles in this situation
can be found in Rule 14 in 2.3.1. Furthermore, compliance with Rule 16 (action
by give-way vessel) is attempted. The reward function presented in (3.22) does
not take Rule 14 into account, as it will give the same evaluative feedback to
the DRL agent independently of whether it alters its course to starboard or port.
Whether Rule 16 is accommodated is open for discussion due to the vague def-
inition of appropriate action – the rule simply states that early and substantial

action should be taken, and the vessel shall keep well clear [of the other vessel].
Thus it can be argued that by appropriately large selection of dsafe, the above
proposed reward signal will result in following this rule.

62

3.5 Collision avoidance using deep reinforcement learning

However, by modifying (3.22) with additional penalty within a certain shape
surrounding the obstacle and its unsafe circular area, it may be possible to achieve
earlier and/or more substantial actions. The shape of this area of penalty can dic-
tate which trajectory the agent chooses when avoiding obstacles. For instance, if
the goal is conforming to Rule 14 it may be designed as a an ellipse or rectangle
stretching out on the port side of the obstacle (from the viewpoint of the con-
trolled vessel), which would encourage passing the obstacle on starboard side.

Figure 3.7: Teardrop-shaped penalty region for encouraging substantial ac-
tions in collision avoidance

A suggested region of penalty has the shape shown in Figure 3.7. This choice
is motivated by creating a wide area ahead of the obstacle which is more expen-
sive in terms of penalty, therefore encouraging the agent to take earlier action
to avoid this region. The corresponding reward function is given by (3.24),

R(ye, ψ̃, δ̇,pr) =


−ccollision, if Scollision(pr)

−cδ̇δ̇ δ̇
2 +


−c16, if P16(pr) ≤ 0

cpfe
− y2e

2σ2 , if
∣∣∣ψ̃∣∣∣ < π

2

(3.24)

where the teardrop-shaped region is de�ned by the functionP16(pr) = 5752x2er−

63

Chapter 3. Design and implementation

(350 + yer)
3(350 − yer) ≤ 0. The penalty inside the region of P16 is given by

a weight factor c16, named after the rule in COLREGS which inspired it. The
same termination criteria as before is used.

An important aspect of the kind of obstacle expansion performed here is that
entering the expanded region should result in penalty, but not termination of the
episode. In other words, entering the penalty-region should not be prohibited,
merely discouraged. This suits the regulations de�ned by COLREGS, because
the reward function design will result in an agent following the rules we have
imposed unless an emergency situation arises – when the only collision free
trajectory violates the rules, it must be possible to choose this trajectory over
collision.

3.6 Overview of controllers

Table 3.1 shows a summary of the implemented control structures which have
been described in this chapter. The state vectors, actions, reward functions and
vessel types are included, as well as references to corresponding implementation
details (under Info) and results. Penalties are omitted from reward functions in
the table for simplicity.

64

3.6 Overview of controllers

Co
nt

ro
lle

r
St

at
e

Re
w

ar
d

fu
nc

tio
n

Ve
ss

el
Ac

tio
n

In
fo

Re
su

lts

Su
rg

e
[ψ
,r
,u
,v

]>
m

ax
(0
,1
−
g u
|ũ
|−

g v
|ṽ
|)

PS
V

[ψ
c

u
c

]
3.3

.1
4.1

.2

H
ea

di
ng

an
d

su
rg

e
[ψ̃
,r̃
,ũ
,ṽ
] >

m
ax

(0
,1
−
g u
|ũ
|−

g v

∣ ∣ ∣ψ̃∣ ∣ ∣)
PS

V
[ψ

c

u
c

]
3.3

.2
4.1

.3

Pa
th

fo
llo

w
[y e

,ẏ
e
,ψ̃
,r
,u
,v
] >

c p
f
e−

y
2 e
/
2
σ
2

if
∣ ∣ ∣ψ̃∣ ∣ ∣<

π 2

PS
V

ψ
r

3.4
4.2

.2
Co

nt
ai

ne
r

δ c
3.4

4.2
.3

Pa
th

fo
llo

w
an

d
su

rg
e

[y e
,ẏ
e
,ψ̃
,r
,ũ
,v
,

˙̃ u
,v̇
] >

c p
f
e−

y
2 e
/
2
σ
2

+
c u
e−

ũ
2
/
2
σ
2 u

if
∣ ∣ ∣ψ̃∣ ∣ ∣<

π 2

PS
V

[ψ
r

u
c

]
3.4

4.3
.1

Co
nt

ai
ne

r
[δ c n

c

]
3.4

4.3
.3

Co
lli

sio
n

av
oi

da
nc

e

[y e
,ẏ
e
,ψ̃
,r
,u
,v
,

x
er
,y
er
,ẋ

er
,ẏ
er

] >
    −

c c
o
ll
is
io
n

if
S c
o
ll
is
io
n
(p
r
)

c p
f
e−

y
2 e

2
σ
2

if
∣ ∣ ∣ψ̃∣ ∣ ∣<

π 2

Co
nt

ai
ne

r
δ c

3.5
4.4

.2

          −
c c
o
ll
is
io
n

if
S c
o
ll
is
io
n
(p
r
)

    −
c 1

6
if
P
1
6
(p
r
)
≤

0

c p
f
e−

y
2 e

2
σ
2

if
∣ ∣ ∣ψ̃∣ ∣ ∣<

π 2

Co
nt

ai
ne

r
δ c

3.5
4.4

.3

Ta
bl
e
3.
1:

O
ve

rv
ie

w
of

D
RL

co
nt

ro
ls

ys
te

m
s

65

Chapter 3. Design and implementation

66

Chapter 4
Simulations

In this chapter, results of the proposed deep reinforcement learning control sys-
tems of Chapter 3 are presented and analysed. For each system, speci�cations
of parameters used in training are documented, and representative simulation
results are presented and discussed. The �nal section provides an overview of
the �ndings.

4.1 Control of a platform supply vessel (PSV)

In these case studies, the DRL agent acts as the guidance system of a PSV by
feeding a surge command uc and a heading command ψc to the surge and head-
ing controllers of the PSV. The goal is to learn to choose these values so that the
actual surge and heading converge to desired values, ud and ψd. In the �rst case,
only a desired surge is chosen as ud = 5m/s, whereas in the second case both
a desired surge and desired heading are speci�ed, as ud = 5m/s and ψd = 45°,
respectively. In other words, only the �rst case allows heading to drift.

This iterative method, where objectives are added to the guidance system
one by one, was mainly used because the PSV behaviour was unknown before-
hand and it was necessary to con�rm that straightforward tasks could be per-
formed using DRL in this vessel. If it had been attempted to learn a complicated
task �rst, it would have been more di�cult to �nd errors in the implementa-
tion. Simulations of these case studies are included in this chapter because they

67

Chapter 4. Simulations

were applied to a vessel for which DRL had never been tried, and the results
therefore give relevant insight, both to speci�c characteristics of the PSV, and
to issues that may arise when implementing DRL algorithms.

4.1.1 Training

Training was carried out using the DDPG algorithm with speci�cations given in
Section 3.1. In both case studies, the vessel was placed on the map with random
initial position and heading, and the episode length was 1000s. The initial surge
was sampled from a uniform distribution in the range uinit ∈ [2, 6] m/s. Actions
were limited to the values ψc ∈ [−π, π] and uc ∈ [0, 6]. Parameters used in the
reward functions for each of the case studies are given in Appendix B, Table B.1.

4.1.2 Surge control

Section 3.3.1 saw a description of two di�erent state vectors and reward signals
for the surge control task – one where there is no limitations on the behaviour
of heading, found in (3.2)–(3.3), and another where we have added a penalty
related to change in inputs to the heading controller, see (3.4)–(3.5). DRL agents

S
u

rg
e

[m
/s

]

 Velocity

Step [1 s]

S
w

ay
 [

m
/s

]

Figure 4.1: Velocities of a DRL agent performing surge control on a PSV

68

4.1 Control of a platform supply vessel (PSV)

for both variants have been trained and the results are shown here.
With a desired surge velocity of ud = 5 m/s, we get the velocities for the

ship shown in Figure 4.1. The blue lines represent the system where the reward
does not include any penalty term for ψ̇c, while the orange lines are from the
system with penalty. It is clear that the penalty term reduces �uctuations in
the system. Even though the penalty is placed on heading command, one can
expect that smoother directional commands a�ects the behaviour of surge and
sway due to the coupling between heading and velocities.

The e�ect of a penalty term in the reward signal is most visible in the head-
ing. As seen in Figure 4.2, the heading command sent to the controller is very
erratic when there exists no penalty to prevent such behaviour. When there is
penalty, on the other hand, the results show a slowly drifting commanded head-
ing, demonstrating the signi�cant reduction of erratic behaviour by the modi�ed
reward signal.

Trajectories and surge responses can be found in Figures 4.3 and 4.4. The
trajectories of the two systems are similar to each other, but the result of the
ψ̇c-penalty is evident when examining commanded and resulting surge.

H
ea

d
in

g
 [

ra
d

]

 Without penalty

H
ea

d
in

g
 [

ra
d

]

 With penalty

Figure 4.2: Heading commands and responses of a DRL agent performing
surge control on a PSV

69

Chapter 4. Simulations

200 400 600 800 1000 1200 1400 1600

East [m]

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N
o
rt

h
 [

m
]

10
4 Trajectories

Start position

Without penalty

With penalty

Figure 4.3: Trajectories of a DRL agent performing surge control on a PSV

S
u

rg
e

[m
/s

]

 Without penalty

Step [1 s]

S
u

rg
e

[m
/s

]

 With penalty

Figure 4.4: Surge commands and responses of a DRL agent performing
surge control on a PSV

The �gures include the surge command given by the agent, uc, the real input to
the surge controller generated by a reference model, and the resulting surge u.
The bottom plot in Figure 4.4 depicts a smooth surge command, which results in

70

4.1 Control of a platform supply vessel (PSV)

a nice-looking surge response very close to the desired ud, while in the topmost
plot both uc and u oscillate in the proximity of ud.

4.1.3 Surge and heading control

With desired surge and heading set to ud = 5 m/s and ψd = 45°, the results
presented in Figures 4.5–4.10 were obtained. Commanded surge and its response
can be found in Figure 4.6, while velocities in surge and sway are shown together
in Figure 4.8. Heading command and response is presented in Figure 4.9, and
resulting trajectories in Figure 4.5. All �gures present the results of two di�erent
reward signals – without and with penalties on change in control input, given
by (3.7) and (3.9), respectively.

0 500 1000 1500 2000 2500 3000

East [m]

8000

8500

9000

9500

10000

10500

11000

11500

N
o
rt

h
 [

m
]

 Trajectories

Start position

Without penalty

With penalty

Figure 4.5: Trajectories of a DRL agent performing surge and heading control
on a PSV

When comparing results with and without added penalty, it is found that
both systems ful�l their main objective approximately equally well – they con-
verge to ψ ≈ ψd and u ≈ uc. The most apparent di�erence is the behaviour
of uc and how this a�ects ψc and sway v. Figure 4.7 shows a comparison of
surge commands uc in the cases with and without penalty. It illustrates how
the surge commands di�er in the two agents – when penalty is added, consecu-
tive changes to uc become slightly smaller, and the shape of the surge command
appears similar to a periodic signal.

71

Chapter 4. Simulations

0 200 400 600 800 1000
0

2

4

S
u

rg
e

[m
/s

]
 Without penalty

u
c

u
ref

u

0 200 400 600 800 1000

Step [1 s]

0

2

4

S
u

rg
e

[m
/s

]

 With penalty

u
c

u
ref

u

Figure 4.6: Surge commands and responses of a DRL agent performing surge
and heading control on a PSV

0 200 400 600 800 1000

Step [1 s]

0

1

2

3

4

5

6

S
u
rg

e
[m

/s
]

u
c
 without penalty

u
c
 with penalty

Figure 4.7: Comparison of uc with and without penalty proportional to u̇c, of
a DRL agent performing surge and heading control on a PSV

72

4.1 Control of a platform supply vessel (PSV)

The e�ect of this is not obvious in the surge response, but one can see a
clear improvement to sway and heading. The commanded heading becomes
slightly smoother, and this in turn results in less adjustment to orientation of
the vessel. This again leads to less sway velocity, due to the fact that sway is
induced when a marine craft is turning. However, the added penalty has not
resulted in completely smooth control inputs, and oscillations are still present
in the resulting u. Tuning the weight factors, as well as general design of the
reward signal, was found to be challenging in the tasks where the DRL algorithm
controlled heading and surge simultaneously, resulting in the presented results
being the best obtained solutions.

A signi�cant remark that must be made in this context is that the thruster
allocation method of the PSV is unknown to both the DRL algorithm and to
the author of this thesis. This means that explaining the coupling between de-
sired and actual surge, sway and yaw is challenging, and that there may exist
some combination of actions which result in contradictory behaviour that the
algorithm is unable to approximate well.

0 200 400 600 800 1000

3.5

4

4.5

5

5.5

S
u
rg

e
[m

/s
]

 Velocity

0 200 400 600 800 1000

Step [1 s]

-0.3

-0.2

-0.1

0

S
w

ay
 [

m
/s

]

Figure 4.8: Velocities of a DRL agent performing surge and heading control
on a PSV

73

Chapter 4. Simulations

H
ea

d
in

g
 [

ra
d

]
 Without penalty

H
ea

d
in

g
 [

ra
d

]

 With penalty

Figure 4.9: Heading commands and responses of a DRL agent performing
surge and heading control on a PSV

500 520 540 560 580 600

Step [1 s]

4.5

4.7

4.9

5.1

5.3

5.5

5.7

S
u

rg
e

[m
/s

]

u
c

u
c
 after reference model

u

Figure 4.10: Close-up of surge command and response of a DRL agent per-
forming surge and heading control on a PSV (with penalty proportional to u̇c)

74

4.2 Path following

A concern is raised regarding the response time in forward speed – from uc

to u. The PSV’s surge controller includes a reference model serving as a �lter
for the surge commands, which delays the response in surge signi�cantly. A
close-up of this e�ect is shown in Figure 4.10, which exhibits a delay of close
to 10 seconds between the time uc begins to increase until u increases. When
creating a DRL controller, this could result in considerably delayed rewards: the
controller must wait too long before receiving a reward for its action, making it
challenging to assign credit to the correct action.

These complications will characterise the PSV simulations of later sections
as well.

4.2 Path following

Results from the path following task in two vessel models is presented here,
where simulations of the PSV and container vessel are shown in Section 4.2.2
and 4.2.3, respectively. The container vessel results are included for the sake of
comparison, although similar results were obtained and discussed in [2,18]. For
the PSV, a constant surge command uc = 5 m/s is given to the controller, and a
similar surge speed of u ≈ 5 m/s is achieved in the container by letting the shaft
speed be nc = 50 rpm. The path is then followed by adjusting vessel heading:
the PSV uses heading commands ψc and the container uses rudder angle δc for
this.

Waypoint Position (x, y)

1 (0, 600)
2 (3880,−4680)
3 (2248,−7662)
4 (3878,−10644)
5 (2246,−13626)

(a) For the PSV

Waypoint Position (x, y)

1 (0, 600)
2 (3880,−6680)
3 (2248,−10662)
4 (3878,−14644)
5 (2246,−20626)

(b) For the container

Table 4.1: Waypoints used for generating test paths

The paths used to obtain results presented in this section consist of the way-
points in Table 4.1. The path for the container vessel is more stretched out than

75

Chapter 4. Simulations

for the PSV to accomodate di�erences in the vessels’ maximum turning rates.

4.2.1 Training

Training was performed by placing the vessel in a random position within 500m
of the path, with random heading. For the container vessel, the initial value of
the rudder angle was in the range δinit ∈ [−2°, 2°]. The maximum episode length
was 1000s, and an upper limit on the cross-track error was used to reduce the
size of the state space. The limit was ye,max = 2000m. The action space for the
PSV was de�ned by ψr ∈ [−π, π] and the action space for the container was
δc ∈ [−10°, 10°].

Training steps

E
p
is

o
d
e

re
w

ar
d

(a) PSV
Training steps

E
p
is

o
d
e

re
w

ar
d

(b) Container

Figure 4.11: Reward history for the path following task

Evaluation of the trained agent was performed every 10 episodes by turning
o� exploration and running the agent for a full episode from a representative
set of initial conditions, and then averaging the results. Training progress when
using the PSV and container can be found in Figure 4.11. The agents converge to
a good policy after about 370, 000 training steps for the PSV, and about 600, 000

steps for the container. Di�erences in training time and achieved accumulative
reward between the vessels is likely due to the limited turning rate of the con-
tainer vessel, meaning that the PSV is able to turn towards, and consequently
reach the path, faster than the container, which in turn results in higher total re-
ward. It should be pointed out that training of the PSV was the slowest measured
in time spent, despite needing less training steps than the container. This was

76

4.2 Path following

discussed in Section 3.2 as one of the reasons the container had to be included
in this thesis.

Parameters used in the reward functions for each agent are given in Ap-
pendix B, Tables B.2 and B.3.

4.2.2 Platform supply vessel simulations

-15000 -10000 -5000 0

East [m]

7000

8000

9000

10000

11000

12000

N
o

rt
h

 [
m

]

 Case 1
Reward = 3565.8161

Trajectory

Start

-15000 -10000 -5000 0

East [m]

 Case 2
Reward = 3513.2831

Trajectory

Start

Figure 4.12: Trajectory of two DRL agents performing path following on a
PSV

Two solutions are presented in order to illustrate some of the challenges
one is faced with when training DRL algorithms. For this vessel, a satisfac-
tory reward signal designed to counteract unpredictable action noise was not
found, hence these results were obtained using the base reward of Equation
(3.14). Some discussion related to di�culties in tuning of penalty terms for the
platform supply vessel was laid out in Section 4.1.3.

It has been pointed out that a penalty in the reward signal placed on the
derivative of actions is not the only way to achieve smooth control inputs from
a DRL algorithm. A learning agent may �nd such a solution without the penalty
terms, and the main reason for including these terms is thus to make it easier
for the agent to di�erentiate between solutions. Here, a solution with erratic
actions (referred to as case 1) is shown and compared to a similar solution with
smooth actions (case 2), and it is shown that they receive approximately the

77

Chapter 4. Simulations

Step [1 s]

C
ro

ss
-t

ra
ck

 e
rr

o
r

[m
]

Case 1

Case 2

Figure 4.13: Cross-track error of two DRL agents performing path following
on a PSV

H
ea

d
in

g
 [

ra
d

]

 Case 1

Step [1 s]

H
ea

d
in

g
 [

ra
d

]

 Case 2

Figure 4.14: Heading command and response of two DRL agents performing
path following on a PSV

78

4.2 Path following

same reward.
Figure 4.12 clearly shows that the craft is able to follow the provided path

in both cases. Examining Figure 4.13, however, it is evident that the cross-track
error in case 1 is closer to zero than in case 2, meaning that the agent whose
actions are not smooth is objectively better at solving the path following task.
This is one of the reasons tuning of weight factors in a reward function can be
challenging – one must make sure the importance of smooth control inputs is
high enough to prefer case 2 over case 1, while also being low enough to encour-
age reaching the path in the �rst place. As shown in Figure 4.14, the change in
control input is signi�cant when the vessel must change its orientation to follow
the path, which illustrates that considerable control input changes should not
always be discouraged.

Figures of thruster forces and orientations for the two solutions are placed
in Appendix C. They are included to show the consequences of unnecessarily
frequent control input adjustments, which subjects thrusters to needless wear
and tear, possibly reducing their lifespan.

4.2.3 Container vessel simulations

The container simulations shown in this section were obtained using the reward
with penalty for counteraction of rudder noise, of Equation (3.16), with cδ̇δ̇ = 10.
The trajectory of the craft as it attempts to follow a given path is shown in Figure
4.15, Figure 4.16 shows cross-track error, and the the rudder input along with
resulting rudder angle and heading of the vessel can be found in Figure 4.17.

The controller is able to converge to a small cross-track error by adjusting
its rudder angle appropriately and without an unreasonable amount of changes
to rudder input. However, the steady-state value of ye is nonzero, as seen in
Figure 4.16, so convergence to the path is not achieved. This was addressed
in [2, 18], where compensation for this e�ect was achieved by estimating the
steady-state error as ŷe,ss using integration of the cross-track error, and then
replacing ye in the state vector with ye + ŷe,ss. This was applied to a trained
policy, i.e. not implemented during training, and anti-windup action was ap-
plied in the integration strategy. The result was path convergence. This steady-
state error compensation strategy was not applied here, yet it can be expected

79

Chapter 4. Simulations

East [m]

N
o

rt
h

 [
m

]
 Trajectory

Figure 4.15: Trajectory of a DRL agent performing path following on a con-
tainer vessel

0 1000 2000 3000 4000 5000

Step [1 s]

0

300

600

C
ro

ss
-t

ra
ck

 e
rr

o
r

[m
]

y
e

4200 4600 5000
-20

-10

0

Figure 4.16: Cross-track error of a DRL agent performing path following on a
container vessel

80

4.2 Path following

R
u

d
d

er
 a

n
g

le
 [

d
eg

]

 Rudder angle

Step [1 s]

H
ea

d
in

g
 [

ra
d

]

 Heading

Figure 4.17: Rudder input and heading of a DRL agent performing path fol-
lowing on a container vessel

to have the desired e�ect due to the DRL algorithm designs being equivalent.
The phenomenon where the DRL controller does not accomplish path conver-
gence, even though the Gaussian reward function has its maximum at ye = 0, is
typical in DRL algorithms – their random nature of exploration usually result in
converging to a sub-optimal solution by virtue of being unable to visit the full
state space, as well as possibly using too high learning rates.

Comparing the trajectory of Figure 4.15 with Figure 4.12, it can be seen that
the PSV is able to perform signi�cantly sharper turning manoeuvres than the
container. This is mainly due to the limitation on rudder angle for the container,
which ensures δ is less than 10°, whereas the PSV does not include the same kind
of restriction – it can position its thrusters sideways to achieve higher turning
rate.

81

Chapter 4. Simulations

4.3 Path following and surge control

The following section presents results from simultaneous path following and
surge control in the two vessel models, the PSV (Section 4.3.1) and container
(Section 4.3.3). A path is followed by adjusting heading in the same manner as
before, while a desired surge is held by adjusting surge command uc in the PSV,
and shaft speed nc in the container. Desired surge was chosen as ud = 5 m/s.

The simulation results of this task were obtained using the same test paths
as in the path following task. The waypoints can be found in Table 4.1.

4.3.1 Training

Training was executed in the same way as laid out in Section 4.2.1, except that
a randomly initialised surge within uinit ∈ [ud − 2, ud + 2] m/s was imple-
mented. The action limits in the case of the PSV were ψr = [−π, π] and uc =

[0, 10] m/s. In the container, actions were constrained to δc = [−10°, 10°] and
nc = [0, 100] rpm.

Evaluations were performed every 10th episode, and training progress when
using the PSV and container can be found in Figure 4.18. In this task, the agents
converged to a good policy after about 500, 000 training steps for the PSV, and
about 1, 300, 000 steps for the container. Parameters used in the reward func-
tions for each agent are given in Appendix B, Tables B.2 and B.3.

Training steps

E
p
is

o
d
e

re
w

ar
d

(a) PSV

Training steps

E
p
is

o
d
e

re
w

ar
d

(b) Container

Figure 4.18: Reward history for the path following and surge control task

82

4.3 Path following and surge control

East [m]

N
o
rt

h
 [

m
]

 Trajectory

Figure 4.19: Trajectory of DRL agent performing path following with surge
control on a PSV

Step [1 s]

C
ro

ss
-t

ra
ck

 e
rr

o
r

[m
]

Figure 4.20: Cross-track error of DRL agent performing path following with
surge control on a PSV

83

Chapter 4. Simulations

4.3.2 Platform supply vessel simulations

Representative results after training a DRL agent with the reward of Equation
(3.15) and using the state in Equation (3.19) are shown here. Figures 4.19 and
4.20 illustrate that the path following task is solved similarly well as in Section
4.2.2, in that the vessel converges to a steady-state cross-track error between 0

and 10m within a fairly short amount of time of around 400 seconds.
The control inputs and resulting heading and surge can be found in Fig-

ure 4.21 (ψ) and Figure 4.22 (u). It is clear that smooth control inputs were not
achieved here, and a solution accomplishing this feat was not found within the
time available for this thesis. The heading command is relatively steady com-
pared to the surge command – uc almost spans its entire space of possible values
between 0 and 10. This is re�ected in velocities of Figure 4.23, where the ampli-
tude of oscillations in u has larger magnitude than in v. One can also observe
that the cross-track error is not converging to a perfectly constant value, possi-
bly a result of small perturbations in heading.

Step [1 s]

H
ea

d
in

g
 [

ra
d

]

Figure 4.21: Heading command and response of DRL agent performing path
following with surge control on a PSV

Despite these drawbacks, it is demonstrated that simultaneous path follow-
ing and surge control can be achieved for the PSV, at least to a certain degree. If
it is found in the future that this DRL algorithm cannot learn to give a reliably
constant surge command, it may be bene�cial to apply a low-pass �lter after
training, e�ectively removing oscillations from uc. However, due to the system

84

4.3 Path following and surge control

Step [1 s]

S
u
rg

e
[m

/s
]

Figure 4.22: Surge command and response of DRL agent performing path fol-
lowing with surge control on a PSV

S
u
rg

e
[m

/s
]

 Velocity

Step [1 s]

S
w

ay
 [

m
/s

]

Figure 4.23: Velocity of DRL agent performing path following with surge con-
trol on a PSV

85

Chapter 4. Simulations

already being equipped with a surge controller, one could argue that forcing a
DRL algorithm to learn which surge control inputs to apply is redundant. Equiv-
alent results can be obtained by calculating or choosing the desired surge and
feeding this to the controller. For these reasons, further investigation of DRL
algorithms for the PSV is not conducted here.

For the interested reader, �gures of thruster forces and orientations for these
simulations can be found in Appendix C.

4.3.3 Container vessel simulations

The results obtained in the path following with surge control task for the con-
tainer vessel can be found here. Equation (3.17), which includes rewards for
small cross-track error and surge error, and penalty for shaky actions, was used
in training of the DRL agent. The state vector is given by Equation (3.19).

From the trajectory of Figure 4.24 and corresponding cross-track error of
Figure 4.25, one can see that the path following task is almost accomplished,
with a steady-state error of less than 10m, which is comparable to the result of
Section 4.2.3. However, slightly wider turns are made by the vessel in this case.
A possible reason for this behaviour is the fact that the surge is now controlled,

East [m]

N
o

rt
h

 [
m

]

 Trajectory

Figure 4.24: Trajectory of DRL agent performing path following with surge
control on a container vessel

86

4.3 Path following and surge control

meaning that only insigni�cant amounts of surge speed is lost during turning.
In Section 4.2.3 on the other hand, a �xed shaft speed was applied, resulting
in transfer of speed from the surge component to sway as a result of sideways
movement. This means that when a surge controller with constant reference is
applied, the vessel usually moves at higher total speed during turning motion
– and wider turns are produced. As a sidenote, if it is of importance to remain
as close as possible to the path at all times, it is often bene�cial to design the
desired surge to be reduced whenever abrupt turning is required. This would
allow the vehicle to be controlled more precisely, but is not addressed in this
thesis.

Figure 4.26 shows the rudder input δc together with actual rudder angle δ in
the top �gure, and resulting heading ψ in the bottom �gure. The rudder input
has been successfully discouraged from being erratic, and the result is that the
rudder angle follows the command with very little deviation. Heading angle
converges to the path angle αp once cross-track error has reached its steady-
state value, which is as expected.

Step [1 s]

C
ro

ss
-t

ra
ck

 e
rr

o
r

[m
]

Figure 4.25: Cross-track error of DRL agent performing path following with
surge control on a container vessel

The shaft speed input nc and corresponding shaft speed n can be found in
Figure 4.27. This �gure also shows the surge and sway of the vessel, which
demonstrate how sway is nonzero when the vessel is turning, and how this is

87

Chapter 4. Simulations

R
u

d
d

er
 a

n
g

le
 [

d
eg

]
 Rudder angle

Step [1 s]

H
ea

d
in

g
 [

ra
d

]

 Heading

Figure 4.26: Rudder input and heading of DRL agent performing path follow-
ing with surge control on a container vessel

S
h

af
t

sp
ee

d
 [

rp
m

]

 Shaft speed

Step [1 s]

S
u

rg
e

an
d

 s
w

ay
 [

m
/s

] Velocity

Figure 4.27: Shaft speed input and velocity of DRL agent performing path
following with surge control on a container vessel

88

4.4 Collision avoidance

compensated for by the surge controller: the commanded shaft speed changes
to increase or reduce total speed, producing near constant surge u.

There was no penalty placed explicitly on ṅc, but the shaft speed command
still converges to a constant value when the vessel is moving in a straight line.
This is in contrast to the behaviour of the PSV, in which oscillations in surge
command could not be counteracted easily, if ever. This indicates that it is eas-
ier for a DRL algorithm to �nd an adequate policy approximation for the con-
tainer than for the PSV in the case of surge control. Since the container uses a
rudder and rotating propeller for directional and speed control, the two control
inputs can be considered as practically decoupled, and the relationship between
control inputs and changes to direction and velocity is unambiguous. For the
PSV, which is controlled at the lowest level by two thrusters that can produce
di�erent forces at di�erent angles, we can not assume the same. Certain com-
binations and sequences of heading and surge commands may counteract each
other, for instance.

4.4 Collision avoidance

This section presents simulation results obtained after training a DRL agent to
perform collision avoidance on a container vessel as described in Section 3.5,
using the state vector of (3.21), performance measures of (3.22) and (3.24), and
commanded rudder angle δc as control input. The obstacle is modelled as a
container vessel moving in a straight line with constant velocity.

Two cases are investigated. Both entail avoiding an obstacle vessel approach-
ing from a reciprocal course, in other words a head-on situation. In the �rst
case, the reward signal of (3.22) was used without any modi�cations dictating
the conventions of COLREGS. These simulation results can be found in Section
4.4.2. Secondly, the reward signal is expanded to include a penalty inside the
region illustrated in Figure 3.7, given by (3.24). This change was made for the
purpose of encouraging early and substantial action to avoid collision, which is
the essence of Rule 16 of COLREGS. Results of this training is shown in Section
4.4.3. These two case studies will be referred to as simple head-on and extended

head-on for easy distinction.

89

Chapter 4. Simulations

4.4.1 Training

Training was carried out as follows. First, a pure path following guidance sys-
tem was trained using the full state vector needed for collision avoidance, but
with the reward signal designed for path following with penalty, as shown in
(3.16). Then transfer learning was utilised by applying the trained actor and
critic networks of the path following agent as initial values for the simple head-
on collision avoidance agent. Since path following is a vital part of a complete
collision avoidance guidance system, this approach enables the agent to re�ne
the policy to include avoidance of obstacles rather than needing to build a path
follower and obstacle avoidance simultaneously from scratch, consequently re-
ducing the necessary training time. When moving on to the extended head-on
case, the best performing simple head-on agent was used as the starting point
through transfer learning once again. An alternative for the extended head-on
CA agent is to begin training with transfer learning directly from the path fol-
lowing agent in the same manner as for the simple head-on case. The reason
for using a simple head-on CA agent as starting point was an attempt to reduce
training time.

The path following agent was trained by treating the obstacle vessel as a
make-believe vessel where small distances had no e�ect on reward or episode
termination. This kind of training would thus not be feasible when working
with real vessels. It can be discussed whether this is the best approach, or if the
path following agent should only be exposed to states where there would be no
possibility of collision, to avoid any contradictory learning.

Initial values during training of the path following system were chosen in the
same manner as in Section 4.2.1, in addition to letting shaft speed and heading
of the obstacle vessel be no = 20 rpm and ψo ∈

[
αp − 4 π

180 , αp + 4 π
180

]
, re-

spectively. Initial values for distances to the obstacle were chosen in the ranges
xer ∈ [−4500, 4500]m and yer ∈ [−100, 100]m, which allow the agent to expe-
rience several phases of a head-on scenario in early stages of training. A limit
was applied to the measured along-track distance to simulate a detection range,
so that whenxer > 2500m, xer is assumed equal to 2500. The maximum episode
length was 1000s.

When using transfer learning to train the collision avoidance agent for head-

90

4.4 Collision avoidance

on situations, it is assumed the agent has learned to follow the path. Thus,
the initial cross-track error range was reduced slightly in this phase and set
to ye ∈ [−300, 300]m. The initial heading range was also reduced, to ψ ∈[
αp − π/4, αp + π/4

]
. For collision avoidance, we expect an evasive manoeu-

vre to take longer than reaching a path, therefore the maximum episode length
was 1500s. The safe distance imposed on the vessel was dsafe = Lpp = 175m
and the action limits were δc = [−10°, 10°]. Reward function parameters of
(3.22) and (3.24) can be found in Table B.4 in Appendix B.

Training steps

E
p
is

o
d
e

re
w

ar
d

(a) Training progress for head-on situa-
tion

Training steps

E
p
is

o
d
e

re
w

ar
d

Head-on training

Head-on with early/substantial action

(b) Training progress for head-on situa-
tion with early and substantial action

Figure 4.28: Reward history for the collision avoidance task

Evaluation of the agent was performed every other episode for this task,
which was needed in order to reduce chances of missing out on a truly good
agent. Figure 4.28 shows the training progress of the CA agent training for a
head-on scenario, where Figure 4.28a is the progress in the case of the simple
head-on case and the green curve of Figure 4.28b illustrates the progress made in
the extended head-on case. It can be seen that the training is not stable. At some
points the agent performs well, passing the obstacle vessel and re-converging
to the desired path, which corresponds to the spikes seen in the training curve.
Most of the time, however, �nding a solution to the collision avoidance task
becomes a challenge for the agent, and it often ends up in a local maximum
where it believes that following the path is a good solution regardless of the
obstacle vessel position and velocity. The vessels crash after about 500 seconds,

91

Chapter 4. Simulations

thus the accumulative reward received in these cases was also 500 in the simple
head-on case. These observations suggest the magnitude of the penalty given
when colliding may be too low. It could also suggest that the chosen system
architecture and reward function design can be improved.

4.4.2 Head-on situation

In a head-on situation, two vessels meet when travelling in approximately op-
posite directions, and each vehicle must steer clear of the other to avoid collid-
ing. The simulation results presented here were obtained by testing the trained
DRL agent of Section 3.5 with reward signal of (3.22). The controlled vessel
was placed in an initial position on the path with heading equal to the path
angle αp, and shaft speed n = 50 rpm (translating to a BODY-�xed velocity
vbb/n ≈ [5, 0]>). The obstacle vessel was placed on the path with an along-track
distance of 4500m to the controlled vessel, with heading ψo = αp +π and shaft
speed no = 20 rpm. The initial values of the test scenario are summarised in
Table 4.2.

Vessel Position
(x, y)

Heading
(ψ)

Shaft speed
(n) Waypoints

Controlled (0, 600) −π/2 rad 50 rpm (0, 700), (0,−5000)
Obstacle (0,−3900) π/2 rad 20 rpm (0,−5000), (0, 700)

Table 4.2: Head-on initial values

In the simulation only one of the vessels, denoted the controlled vessel, is
controlled by the DRL agent, whereas the obstacle vessel travels straight ahead
with no attempts at avoiding collision. The main reason for disregarding Rule
14 of COLREGS in the obstacle vessel is simplicity. Additionally, exposing the
DRL agent to situations where the obstacle behaves according to the rules during
training, could result in the agent learning to continue along the path rather than
taking action to avoid the other vessel, as this would give maximum reward with
the current design.

Figure 4.29 shows the simulation of the collision avoidance manoeuvre, with
obstacle vessel in black and controlled vessel in yellow (with blue line showing

92

4.4 Collision avoidance

 East [m]

 N
o
rt

h
 [

m
]

 279s

Path Vessel Obstacle

(a) Initial path following

 East [m]

 N
o
rt

h
 [

m
]

 629s

Path Vessel Obstacle

(b) During avoidance

 East [m]

 N
o
rt

h
 [

m
]

 979s

Path Vessel Obstacle

(c) Converging to path after avoidance

 East [m]

 N
o
rt

h
 [

m
]

 1349s

Path Vessel Obstacle

(d) Converged to path

Figure 4.29: Simulation of DRL agent performing collision avoidance in head-on situ-
ation

93

Chapter 4. Simulations

R
u

d
d

er
 a

n
g

le
 [

d
eg

] Rudder angle

Step [1 s]

H
ea

d
in

g
 [

ra
d

]

 Heading

Figure 4.30: Rudder input and heading of DRL agent performing collision
avoidance in head-on situation

C
ro

ss
-t

ra
ck

 e
rr

o
r

[m
] Cross-track error

Step [1 s]

R
ew

ar
d

 Reward at each time step

Figure 4.31: Cross-track error and instantaneous reward of DRL agent per-
forming collision avoidance in head-on situation

94

4.4 Collision avoidance

its trajectory). The rudder angle and heading of the controlled vessel during
simulation is shown in Figure 4.30, and its cross-track error and received reward
per time step can be found in Figure 4.31. Figure 4.32 depicts position of the
obstacle relative to controlled vessel in the path-�xed coordinate frame.

Rudder angle and heading converge nicely to 0 and αp, respectively, when
the vessel follows the given path. This corresponds to the desired behaviour
of a CA control system. The agent manages to adjust the heading to let the
vessel move away from the path, before converging again once it has passed
the obstacle. The point where ψ crosses αp at close to 625s lines up with the
trajectory of Figure 4.29b, which shows the vessel position in the middle of its
evasive manoeuvre at 629s.

At �rst sight, the plotted reward of Figure 4.31 suggests that the agent is not
behaving optimally, due to the long period where zero reward is given to the
agent. However, the alternative would have been to collide with the obstacle
and receiving a considerable penalty. The distances between vessels shown in
Figure 4.32 con�rm that the vehicles pass each other in the period with reduced

A
lo

n
g

-t
ra

ck
 d

is
t.

 [
m

] Distance between own ship and obstacle in path frame

Step [1 s]

C
ro

ss
-t

ra
ck

 d
is

t.
 [

m
]

Figure 4.32: Relative positions of DRL agent performing collision avoidance
in head-on situation

95

Chapter 4. Simulations

reward, and that this movement is therefore close to optimal behaviour.
In conclusion, a collision avoidance control system successfully steering

clear of an obstacle in a head-on situation was found. A drawback of this solu-
tion is that it violates COLREGS, as the correct behaviour in a head-on scenario
would have been alteration of course to starboard rather than to port. The lack
of information regarding COLREGS in the performance measure is to blame for
this result.

4.4.3 Head-on situation with early and substantial action

Section 3.5.1 suggested implementing a teardrop-shaped penalty region, shown
in Figure 3.7, to accommodate Rule 16 of COLREGS. Rule 16 describes guidelines
for actions taken by the give-way vessel in a collision avoidance situation, and
is repeated in Section 2.3.1. In this Section, simulation results were realised by
testing the DRL agent trained for the extended head-on case with the reward
given by (3.22), with an additional penalty of −5 inside the region of Figure 3.7.
Initial conditions of the obstacle and controlled vessels are equal to the previous
section, and can be found in Table 4.2.

The movement of the controlled vessel can be found in Figure 4.33, and it is
shown that collision is successfully avoided in that the vessel initially follows the
path, then performs an avoidance manoeuvre before going back to the path after
passing the obstacle. Figures 4.34–4.36 show the rest of the simulation results.
The actions of the controlled vessel are noticeably more substantial here, which
Figure 4.34 illustrates. The rudder angle is at its limit more often than previously,
indicating that the agent has learned to utilise the maximum turning rate. The
largest cross-track error of Figure 4.35 is about 400m, twice the distance reached
in Section 4.4.2, which con�rms that a wider region of penalty does inspire larger
course changes and path deviation.

The �rst action to avoid collision was taken at approximately 300s, which
was also the case in simulations of the simple head-on case. The reason for this
is likely to be the maximum measured along-track distance between vessels. It
can be observed in both Figure 4.36 and 4.32 that this distance is believed to be
2500m until about 300s have passed, at which point the agent begins to dodge
the obstacle.

96

4.4 Collision avoidance

 East [m]

 N
o
rt

h
 [

m
]

 279s

Path Vessel Obstacle

(a) Initial path following

 East [m]

 N
o
rt

h
 [

m
]

 642s

Path Vessel Obstacle

(b) During avoidance

 East [m]

 N
o
rt

h
 [

m
]

 1005s

Path Vessel Obstacle

(c) Converging to path after avoidance

 East [m]

 N
o
rt

h
 [

m
]

 1399s

Path Vessel Obstacle

(d) Converged to path

Figure 4.33: Simulation of DRL agent performing collision avoidance in head-
on situation following convention of Rule 16

97

Chapter 4. Simulations

R
u

d
d

er
 a

n
g

le
 [

d
eg

] Rudder angle

Step [1 s]

H
ea

d
in

g
 [

ra
d

]

 Heading

Figure 4.34: Rudder input and heading of DRL agent performing collision avoid-
ance in head-on situation following convention of Rule 16

C
ro

ss
-t

ra
ck

 e
rr

o
r

[m
] Cross-track error

Step [1 s]

R
ew

ar
d

 Reward at each time step

Figure 4.35: Cross-track error and instantaneous reward of DRL agent performing
collision avoidance in head-on situation following convention of Rule 16

98

4.4 Collision avoidance

This collision avoidance agent ended up with severe �uctuations in rudder
input in the last phase, where the vessel has passed the obstacle and is allowed to
converge to the path once again. This can be seen in the rudder angle in Figure
4.34 as well as in the received reward shown in Figure 4.35, where the erratic
rudder angle results in reduced reward.

In conclusion, the results have shown that shaping a region of penalty ap-
propriately and letting the region surround the obstacle, can guide the collision
avoidance agent in adapting to conventions of COLREGS. The region can have
any shape, and thus, in theory, the agent can be trained to comply with any rule.
However, it was found that the agent was prone to giving shaky control input.
Such behaviour is often the result of training a DRL agent for too long, some-
times resulting in saturation of the policy network output. This could perhaps
have been counteracted by increasing the weight of the δ̇-penalty, providing
even more incentive to reduce changes in δ.

A
lo

n
g

-t
ra

ck
 d

is
t.

 [
m

] Distance between own ship and obstacle in path frame

Step [1 s]

C
ro

ss
-t

ra
ck

 d
is

t.
 [

m
]

Figure 4.36: Relative positions of DRL agent performing collision avoidance in
head-on situation following convention of Rule 16

99

Chapter 4. Simulations

4.5 Summary of results

This chapter has presented several results within deep reinforcement learning
control of di�erent types of marine vessels. The control tasks were implemented
as an iterative process, because �nding solutions in later tasks were dependent
on success within earlier tasks.

A DRL guidance system for the PSV was tested in Section 4.1, which gave
reference signals to heading and surge controllers embedded in the vessel. It
was shown that DRL can provide suitable inputs causing the vessel to reach its
desired heading and surge quickly, by letting the reference signals overshoot
desired values. Guiding the surge towards a constant value was found to be
challenging, however, and requires more investigation before control systems
based on DRL can be utilised in the PSV.

DRL control systems for path following, with and without surge control,
were presented for two vessel types in Section 4.2 and 4.3. The trained agents
performed particularly well in simulations of the container vessel. Due to con-
trol allocation di�erences between the two vessel types, it was found that the
PSV was able to reach a path more quickly than the container, but that reward
function tuning for the PSV was more challenging.

Performance of a DRL collision avoidance system, shown in Section 4.4, was
promising as a �rst result. The task was constrained to head-on situations with
a single obstacle, but was found to satisfactorily avoid collision. An experiment
with obstacle expansion for COLREGS compliance was conducted, which illus-
trated the possibilities of extending the system with di�erent rules of navigation.

The investigation performed in this thesis has been extensive, while at the
same time limited. The e�ects of environmental disturbances have not been
considered, and neither has extension to path following for curved paths. A
single collision scenario with one obstacle has been examined, and no more than
one rule from COLREGS was directly incorporated in the �nal system. Due
to the experimental procedure of the research in deep reinforcement learning
for continuous control systems, these expansions were not prioritised, but are
nonetheless requirements in a successfully deployed collision avoidance system
and should be investigated further.

100

4.6 Future work

4.6 Future work

The work done in this thesis can be taken further in a number of directions.
Some of the most obvious have already been mentioned, such as investigation
of robustness to environmental disturbances and application with curved paths,
and also expansion for handling of several obstacles and further investigation of
control structures speci�c for the PSV. This section will focus on three ways to
improve the collision avoidance system: COLREGS compliance, explainability
and choosing a di�erent system architecture.

COLREGS compliance

Expanding the obstacle as explained in Section 3.5.1.1 can guide the DRL agent
to prefer actions that comply with COLREGS over actions that result in vio-
lation of the rules. In a head-on situation the vessel is instructed to pass on
the port side of the obstacle (from the point of view of the obstacle), thus the
expansion should be in a direction perpendicular to the obstacle’s velocity vec-
tor, on its starboard side. In an overtaking situation, passing on the obstacle’s
starboard side is preferred, therefore its port side should induce penalty from
the expanded region. Demonstration of obstacle expansion in a head-on and
an overtaking situation is shown in Figure 4.37. Thus, depending on the situ-
ation, di�erent penalty regions can be de�ned such that the system becomes
COLREGS compliant.

Explainability

A signi�cant driving force behind utilisation of DRL in continuous control is
the potential to encompass a wide set of instructions and decisions by learning
from examples rather than explicit programming. However, this means that the
inner workings of a trained system is often too complicated for humans to easily
understand. This is why AI, within which DRL belongs, is often referred to as
a black box, and analysing arti�cially intelligent systems is a challenge due to
complexity.

Explainability in AI is important in establishing trust – a human interacting
with an arti�cially intelligent machine is often naturally sceptic, and reluctant to

101

Chapter 4. Simulations

Path

(a) Head-on

Path

(b) Overtaking

Figure 4.37: Extension of obstacle (red) in the direction of COLREGS violation

trust decisions made by the AI system without knowledge about its reasoning.
Additionally, analysis of an agent’s decision making process can help uncover
inconsistencies, and is thus a strategy for checking whether the data (input to
output) makes sense. LIME [52] and integrated gradients [53] are techniques
for explaining the predictions of deep networks, which can assist users both in
providing explanations for speci�c decisions and suggesting which features of
input data are most important for decision making. For these reasons, applying
explainable AI to the collision avoidance agent of this thesis could be helpful
in determining strengths and weaknesses of the approach, and thus guide re-
searchers in expanding this work.

It is important to distinguish between trusting a system to perform without
fail and trust in the context of understanding why a decision was made. Ex-
plainable AI can provide the latter. It can also assist developers in uncovering
inconsistent behaviour that should be corrected. However, it should be stressed
that explainable AI cannot replace the need for extensive testing of systems be-
fore applying them in the real world.

102

4.6 Future work

Alternative system architecture

An alternative approach to development of a DRL collision avoidance system
was discussed in Section 3.5, and it was suggested to combine a path planner
with a path following system, both implemented and trained as DRL agents.
The path planner can modify the originally intended path in the case of danger
of collision, and the path follower can be used to follow the newly planned path.
With this architecture, the already implemented DRL path following agent can
be used.

By separation into two tasks, the reward function design can be simpli�ed,
making the full collision avoidance system potentially more robust to con�icting
objectives. For instance, the path following objective will in this case be less
likely to overrule collision avoidance due to path following being performed
separately.

Another possible design change is to investigate other DRL algorithms than
DDPG. Recent years has seen rapid development within DRL, and some promis-
ing algorithms were presented as late as summer 2018. Some examples in-
clude twin delayed DDPG (TD3) [54], which has been shown to improve stability
of learning compared to DDPG, and soft actor-critic [55], which is a powerful
stochastic o�-policy DRL algorithm.

103

Chapter 4. Simulations

104

Chapter 5
Conclusion

This thesis has investigated the use of deep reinforcement learning in path fol-
lowing and collision avoidance for marine vessels with unknown models. The
deep deterministic policy gradient algorithm was used.

Results of a previously presented DRL path following system [18] have been
reproduced and extended to include surge control. Robustness of the proposed
control structure has been con�rmed by applying the same method to two vessel
models with substantially di�ering control allocation and demonstrating their
respective successes. Furthermore, DRL has been applied to a rudimentary col-
lision avoidance task for a container vessel by building on the framework used
for path following, and it was demonstrated that the proposed reward func-
tion could be extended to include guidelines in accordance with COLREGS. The
resulting performance of the collision avoidance control system showed that
transfer learning can be used as a tool to help solve a new control task only by
changing the reward function of an agent trained to solve a similar task.

The simulation results presented for each problem indicate that DRL gen-
erally results in good performance, and is a suitable framework for the exam-
ined navigation tasks. To be considered as a completely autonomous collision
avoidance system, more research, development and testing is needed. Some sug-
gestions for future work have been given, based on the challenges encountered
during this thesis.

105

Chapter 5. Conclusion

106

Bibliography

[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
CoRR, vol. abs/1509.02971, 2015.

[2] A. B. Martinsen, “End-to-end training for path following and control of ma-
rine vehicles,” Master’s thesis, Norwegian University of Science and Tech-
nology, 2018.

[3] T. I. Fossen and T. Perez, “Marine Systems Simulator (MSS),” 2004.
[Online]. Available: https://github.com/cybergalactic/MSS

[4] SNAME, The Society of Naval Architecture and Marine Engineers,
“Nomenclature for treating the motion of a submerged body through a
�uid,” Technical and Research Bulletin No. 1–5, 1950.

[5] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons, 2011.

[6] A. N. Gorban and A. Y. Zinovyev, “Transfer learning,” in Handbook of Re-

search on Machine Learning Applications and Trends: Algorithms, Methods,

and Techniques. IGI Global, 2009, pp. 242–264.

[7] H. Sahin and L. Guvenc, “Household robotics - autonomous devices for
vacuuming and lawn mowing,” Control Systems, IEEE, vol. 27, pp. 20 – 96,
May 2007.

107

https://github.com/cybergalactic/MSS

[8] M. Bajracharya, M. W. Maimone, and D. Helmick, “Autonomy for Mars
rovers: Past, present, and future,” Computer, vol. 41, no. 12, pp. 44–50, Dec
2008.

[9] D.-G. Kim, K. Hirayama, and T. Okimoto, “Ship collision avoidance by dis-
tributed tabu search,” TransNav, the International Journal on Marine Navi-

gation and Safety of Sea Transportation, vol. 9, no. 1, pp. 23–29, 2015.

[10] E. Demirel and D. Bayer, “The further studies on the COLREGs (collision
regulations),” TransNav, the International Journal on Marine Navigation and

Safety of Sea Transportation, vol. 9, pp. 17–22, March 2015.

[11] International Maritime Organization, “COLREGS -— Convention on the
International Regulations for Preventing Collisions at Sea,” 1972. [Online].
Available: http://www.jag.navy.mil/distrib/instructions/COLREG-1972.
pdf

[12] T. A. Johansen, T. Perez, and A. Cristofaro, “Ship collision avoidance and
COLREGS compliance using simulation-based control behavior selection
with predictive hazard assessment,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 17, no. 12, pp. 3407–3422, Dec 2016.

[13] T. I. Fossen, M. Breivik, and R. Skjetne, “Line-of-sight path following of
underactuated marine craft,” in 6th IFAC Conference on Manoeuvring and

Control of Marine Craft (MCMC), vol. 36, no. 21, 2003, pp. 211 – 216.

[14] A. M. Lekkas and T. I. Fossen, “Integral LOS path following for curved
paths based on a monotone cubic hermite spline parametrization,” IEEE

Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2287–2301,
Nov 2014.

[15] S. Moe and K. Y. Pettersen, “Set-based line-of-sight (LOS) path following
with collision avoidance for underactuated unmanned surface vessels un-
der the in�uence of ocean currents,” in 2017 IEEE Conference on Control

Technology and Applications (CCTA), Aug 2017, pp. 241–248.

108

http://www.jag.navy.mil/distrib/instructions/COLREG-1972.pdf
http://www.jag.navy.mil/distrib/instructions/COLREG-1972.pdf

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing Atari with deep reinforcement learning,”
CoRR, vol. abs/1312.5602, 2013.

[17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game
of go without human knowledge,” Nature, vol. 550, pp. 354–359, October
2017.

[18] A. B. Martinsen and A. M. Lekkas, “Straight-path following for underac-
tuated marine vessels using deep reinforcement learning,” 11th IFAC Con-

ference on Control Applications in Marine Systems, Robotics, and Vehicles

(CAMS), vol. 51, no. 29, pp. 329 – 334, 2018.

[19] A. B. Martinsen and A. Lekkas, “Curved path following with deep re-
inforcement learning: Results from three vessel models,” in OCEANS

MTS/IEEE, October 2018, pp. 1–8.

[20] R. Yu, Z. Shi, C. Huang, T. Li, and Q. Ma, “Deep reinforcement learning
based optimal trajectory tracking control of autonomous underwater ve-
hicle,” in 2017 36th Chinese Control Conference (CCC), July 2017, pp. 4958–
4965.

[21] S. Moe, K. Y. Pettersen, T. I. Fossen, and J. T. Gravdahl, “Line-of-Sight
curved path following for underactuated USVs and AUVs in the horizontal
plane under the in�uence of ocean currents,” in 2016 24th Mediterranean

Conference on Control and Automation (MED), June 2016, pp. 38–45.

[22] M. R. Benjamin and J. A. Curcio, “Colregs-based navigation of autonomous
marine vehicles,” in 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE

Cat. No.04CH37578), June 2004, pp. 32–39.

[23] I. B. Hagen, D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, “MPC-based
collision avoidance strategy for existing marine vessel guidance systems,”
in 2018 IEEE International Conference on Robotics and Automation (ICRA),
May 2018, pp. 7618–7623.

109

[24] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in 1985 IEEE International Conference on Robotics and Automation,
vol. 2, March 1985, pp. 500–505.

[25] H. Lyu and Y. Yin, “Ship’s trajectory planning for collision avoidance at
sea based on modi�ed arti�cial potential �eld,” in 2017 2nd International

Conference on Robotics and Automation Engineering (ICRAE), Dec 2017, pp.
351–357.

[26] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to col-
lision avoidance,” IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 23–
33, March 1997.

[27] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger, “Safe mar-
itime autonomous navigation with colregs, using velocity obstacles,” IEEE
Journal of Oceanic Engineering, vol. 39, no. 1, pp. 110 – 119, Jan 2014.

[28] W. Zhang, S. Wei, Y. Teng, J. Zhang, X. Wang, and Z. Yan, “Dynamic ob-
stacle avoidance for unmanned underwater vehicles based on an improved
velocity obstacle method,” Sensors, vol. 17, p. 2742, Nov 2017.

[29] Y. Cheng and W. Zhang, “Concise deep reinforcement learning obstacle
avoidance for underactuated unmanned marine vessels,” Neurocomputing,
vol. 272, pp. 63 – 73, 2018.

[30] H. Shen, H. Hashimoto, A. Matsuda, Y. Taniguchi, D. Terada, and
C. Guo, “Automatic collision avoidance of multiple ships based on deep
Q-learning,” Applied Ocean Research, vol. 86, pp. 268 – 288, 2019.

[31] I. Carlucho, M. De Paula, S. Wang, B. V. Menna, Y. R. Petillot, and G. G.
Acosta, “AUV position tracking control using end-to-end deep reinforce-
ment learning,” in OCEANS 2018 MTS/IEEE Charleston, Oct 2018, pp. 1–8.

[32] Q. Wang and C. Phillips, “Cooperative collision avoidance for multi-vehicle
systems using reinforcement learning,” in 2013 18th International Confer-

ence on Methods Models in Automation Robotics (MMAR), Aug 2013, pp. 98–
102.

110

[33] S. J. Russel and P. Norvig, Arti�cial Intelligence. A Modern Approach, 3rd ed.
Upper Saddle River, New Jersey, USA: Prentice Hall, 2010.

[34] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, Massachusetts, USA: The MIT Press, 2018.

[35] R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in In Ad-

vances in Neural Information Processing Systems 12. MIT Press, 2000, pp.
1057–1063.

[36] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,”Machine Learning, vol. 8, no. 3, pp. 229–256,
May 1992.

[37] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic Policy Gradient Algorithms,” in Proceedings of the 31st In-

ternational Conference on Machine Learning, vol. 32. JMLR.org, 2014, pp.
I–387–I–395.

[38] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, Dec
1989.

[39] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-di�erence learn-
ing with function approximation,” IEEE Transactions on Automatic Control,
vol. 42, no. 5, pp. 674–690, May 1997.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. G Bellemare,
A. Graves, M. Riedmiller, A. K Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, pp. 529–33, 02 2015.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct 1986.

111

[42] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning

Research, vol. 12, pp. 2121–2159, July 2011.

[43] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude,” COURSERA: Neural Networks
for Machine Learning, 2012.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from over�tting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[46] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational invari-
ance,” in ICML, 2004.

[47] S. Io�e and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167,
2015.

[48] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning,
planning and teaching,” Machine Learning, vol. 8, no. 3, pp. 293–321, May
1992.

[49] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian mo-
tion,” Phys. Rev., vol. 36, pp. 823–841, Sep 1930.

[50] K. Son and K. Nomoto, “On the coupled motion of steering and rolling of
a high speed container ship,” Journal of the Society of Naval Architects of

Japan, vol. 1981, pp. 232–244, 01 1981.

[51] M. S. Wiig, K. Y. Pettersen, and T. R. Krogstad, “A reactive collision avoid-
ance algorithm for vehicles with underactuated dynamics,” in 2017 IEEE

56th Annual Conference on Decision and Control (CDC), Dec 2017, pp. 1452–
1459.

112

[52] M. T. Ribeiro, S. Singh, and C. Guestrin, “"Why should i trust you?": Ex-
plaining the predictions of any classi�er,” in Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.
New York, NY, USA: ACM, 2016, pp. 1135–1144.

[53] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proceedings of the 34th International Conference on Machine

Learning - Volume 70. JMLR.org, 2017, pp. 3319–3328.

[54] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxima-
tion error in actor-critic methods,” in Proceedings of the 35th International

Conference on Machine Learning, J. Dy and A. Krause, Eds., vol. 80. PMLR,
Jul 2018, pp. 1587–1596.

[55] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: O�-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
Proceedings of the 35th International Conference on Machine Learning, J. Dy
and A. Krause, Eds., vol. 80. PMLR, Jul 2018, pp. 1861–1870.

[56] M. Abkowitz, Lectures on Ship Hydrodynamics: Steering and Maneuvrabil-

ity, ser. Technical report Hy-5. Hydro- and Aerodynamics Laboratory,
Hydrodynamics Department, 1964.

113

114

Appendix A
Container model

The Container vessel model has 4-DOF (degrees of freedom). A MATLAB model
can be found in the MSS Toolbox [3], based on the work of Son and Nomoto [50].
In certain cases, a 3-DOF model is su�ciently accurate for describing the mo-
tion of a surface vessel, such as when motion in roll, pitch and heave can be
neglected. However, since the roll and sway-yaw dynamics are often strongly
coupled, including roll in the equations of motion can increase model accuracy.
The state vectors of such a 4-DOF vessel model are η = [x y φ ψ]> and
ν = [u v p r]>, where η is a position vector in the NED (North-East-
Down) coordinate frame, and ν is a velocity vector given in the vessel’s BODY
frame. The control vector τ consists of the desired rudder angle δc and desired
shaft speed nc, where rudder angle is speci�ed in radians and shaft speed is in
rotations per minute (rpm). The equations of motion can be written in vector
form as:

η̇ = J(η)ν (A.1)

Mν̇ +C(ν)ν +D(ν)ν = τ (A.2)

115

δ̇ =

δc − δ, if δ ≤ δmax
0 otherwise

(A.3)

ṅ =
60

Tm
(nc − n) (A.4)

where M is the system inertia matrix, consisting of rigid body and hydrody-
namic added mass matrices,M = MRB+MA. The Coriolis-centripetal matrix
C(ν) can be similarly decomposed intoCRB andCA, andD(ν) is the damping
matrix.

The nonlinear terms of Equation (A.2) can be modelled from �rst principles such
as surge resistance and cross-�ow drag [5], or by curve-�tting of experimen-
tal data to a Taylor-series. The latter approach results in the nonlinear model
of Abkowitz [56], which describes the nonlinear terms as N(ν) = C(ν)ν +

D(ν)ν . If we include the control input τ , Equation (A.2) becomes

Mν̇ +N(ν, τ) = 0 (A.5)

The matrix J(η) denotes a transformation between BODY and NED coordinate
frames and is given by a rotation of φ about the x-axis followed by a rotation of
ψ about the z-axis, and by an angular velocity transformation matrix T(φ):

J(η) =

Rz,ψRx,φ 02×2

02×2 T(φ)

 =


cψ −sψcφ 0 0

sψ cψcφ 0 0

0 0 1 0

0 0 0 cφ

 (A.6)

The inertia matrix of the Container model is

M =


m+mx 0 0 0

0 m+my −myly myαy

0 −myly Ix + Jx 0

0 myαy 0 Iz + Jz




L
U2 0 0 0

0 L
U2 0 0

0 0 L2

U2 0

0 0 0 L2

U2

 (A.7)

116

where L is the length and U =
√
u2 + v2 is the speed of the ship. The nonlin-

earities N(ν, τ) =
[
X(ν, τ), Y (ν, τ),K(ν, τ), N(ν, τ)

]> consist of forces
and moments modelled as polynomials, given below:

X(ν, τ) =X2
uuu + (1− t)T +Xvrvr +Xvvv

2 +Xrrr
2 +Xφφφ

2+

cRXFN sin δ + (m+my)vr
(A.8)

Y (ν, τ) =Yvv + Yrr + Ypp+ Yφφ+ Yvvvv
3 + Yrrrr

3 + Yvvrv
2r+

Yvrrvr
2 + Yvvφv

2φ+ Yvφφvφ
2 + Yrrφr

2φ+

Yrφφrφ
2 + (1 + aH)FN cos δ − (m+mx)ur

(A.9)

K(ν, τ) =Kvv +Krr +Kpp+Kφφ+Kvvvv
3 +Krrrr

3+

Kvvrv
2r +Kvrrvr

2 +Kvvφv
2φ+Kvφφvφ

2+

Krrφr
2φ+Krφφrφ

2 − (1 + aH)zRFN cos δ+

mxlxur −WGMφ

(A.10)

N(ν, τ) =Nvv +Nrr +Npp+Nφφ+Nvvvv
3 +Nrrrr

3+

Nvvrv
2r +Nvrrvr

2 +Nvvφv
2φ+Nvφφvφ

2+

Nrrφr
2φ+Nrφφrφ

2 + (xr + aHxH)FN cos δ

(A.11)

vR = gav + cRrr + cRrrrr
3 + cRrrvr

2v

uP = cos v((1− wp) + τ((v + xpr)
2 + cpvv + cprr))

J = uPU/(nD)

KT = 0.527− 0.455J

uR = uP ε
√

1 + 8kkKT /(πJ2)

αR = δ + arctan vR/uR

FN = −(6.13∆/(∆ + 2.25))(AR/L
2)(u2R + v2R) sinαR

T = 2ρD4/(U2L2ρ)KTn|n|

W = ρg∇/(ρL2U2/2)

and parameters are given in Table A.1.

117

Term Value Term Value Term Value

m 0.00792 mx 0.000238 my 0.007049
Ix 0.0000176 Iz 0.000456 lx 0.0313
Jx 0.0000034 Jz 0.000419 ly 0.0313
L 175 αy 0.05

g 9.81 ∇ 21222 AR 33.0376
∆ 1.8219 D 6.533 GM 0.3/L
ρ 1025 t 0.175

Xuu −0.0004226 Xvr −0.00311 Xrr 0.00020
Xφφ −0.00020 Xvv −0.00386

Kv 0.0003026 Kr −0.000063 Kp −0.0000075
Kφ −0.000021 Kvvv 0.002843 Krrr −0.0000462
Kvvr −0.000588 Kvrr 0.0010565 Kvvφ −0.0012012
Kvφφ −0.0000793 Krrφ −0.000243 Krφφ 0.00003569

Yv −0.0116 Yr 0.00242 Yp 0
Yφ −0.000063 Yvvv −0.109 Yrrr 0.00177
Yvvr 0.0214 Yvrr −0.0405 Yvvφ 0.04605
Yvφφ 0.00304 Yrrφ 0.009325 Yrφφ −0.001368

Nv −0.0038545 Nr −0.00222 Np 0.000213
Nφ −0.0001424 Nvvv 0.001492 Nrrr −0.00229
Nvvr −0.0424 Nvrr 0.00156 Nvvφ −0.019058
Nvφφ −0.0053766 Nrrφ −0.0038592 Nrφφ 0.0024195

kk 0.631 ε 0.921 xR −0.5
wp 0.184 τ 1.09 xp −0.526
cpv 0 cpr 0 ga 0.088
cRr −0.156 cRrrr −0.275 cRrrv 1.96
cRX 0.71 aH 0.237 zR 0.033
xH −0.48

Table A.1: Container parameter values

118

Appendix B
Experiment details

B.1 Vessel control with PSV

Experiment Parameter Value

Surge control

No added
penalty

gu 1
gv 4

Added
penalty

gu 2/3
gv 2
cψ̇c 0.1

Surge and
heading control

No added
penalty

gu 2/3
gψ 1

Added
penalty

gu 2/3
gψ 1
cψ̇c 0.02

Table B.1: Parameters used in PSV control

119

B.2 Path following and surge control with two vessel
types

Experiment Parameter Value

Path following cpf 1
σpf 30

Path following
with surge
control

cpf 0.5
σpf 30
cu 0.5
σu 0.1

Table B.2: Parameters used in path following for PSV

Experiment Parameter Value

Path following

No added
penalty

cpf 1
σpf 30

Added
penalty

cpf 1
σpf 30
cδ̇δ̇ 10

Path following
with surge
control

No added
penalty

cpf 0.5
σpf 30
au 0.5
σu 0.25

Added
penalty

cpf 0.5
σpf 30
cu 0.5
σu 0.25
cδ̇δ̇ 10

Table B.3: Parameters used in path following for container vessel

120

B.3 Collision avoidance

Experiment Parameter Value

Simple head-on
situation

cpf 1
σpf 30
cδ̇δ̇ 10

ccollision 10

Extended head-on
situation

cpf 1
σpf 30
cδ̇δ̇ 10

ccollision 10
c16 5

Table B.4: Parameters used in collision avoidance

121

122

Appendix C
Additional plots showing thruster
input to the platform supply vessel

C.1 Path following

0 1000 2000 3000 4000
-5

0

5

T
h
ru

st
er

 d
ir

ec
ti

o
n
 [

ra
d
] Case 1

Left Right

0 1000 2000 3000 4000

Step [1 s]

-4

-2

0

2

4

T
h
ru

st
er

 d
ir

ec
ti

o
n
 [

ra
d
] Case 2

Left Right

Figure C.1: Thruster angles of two DRL agents performing path following on
a PSV

123

0 1000 2000 3000 4000
0

1

2

3

T
h
ru

st
er

 f
o
rc

e
[N

]

10
5 Case 1

Left Right

0 1000 2000 3000 4000

Step [1 s]

-1

0

1

2

3

T
h
ru

st
er

 f
o
rc

e
[N

]

10
5 Case 2

Left Right

Figure C.2: Thruster forces of two DRL agents performing path following on
a PSV

124

C.2 Path following and surge control

Step [1 s]

T
h

ru
st

er
 d

ir
ec

ti
o

n
 [

ra
d

]

Left Right

FigureC.3: Thruster angles of DRL agent performing path following and surge
control on a PSV

Step [1 s]

T
h
ru

st
er

 f
o

rc
e

[N
]

Left Right

Figure C.4: Thruster forces of DRL agent performing path following and surge
control on a PSV

125

Ingunn Johanne Vallestad
P

ath Follow
ing and C

ollision Avoidance for M
arine Vessels w

ith D
eep R

einforcem
ent Learning

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Ingunn Johanne Vallestad

Path Following and Collision
Avoidance for Marine Vessels with
Deep Reinforcement Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas

June 2019

	Preface
	Abstract
	Sammendrag
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Literature review
	Objective and contributions
	Outline of report

	Theory
	Marine vessel model
	Straight-line path following
	Collision avoidance and COLREGS
	Relevant rules

	Deep reinforcement learning
	Reinforcement learning
	Deep neural networks
	Deep deterministic policy gradients

	Design and implementation
	DRL algorithm details
	The platform supply vessel simulation interface
	Control of a platform supply vessel using deep reinforcement learning
	Surge control
	Surge and heading control

	Path following using deep reinforcement learning
	Control input
	Performance measure
	State vector

	Collision avoidance using deep reinforcement learning
	Performance measure

	Overview of controllers

	Simulations
	Control of a platform supply vessel (PSV)
	Training
	Surge control
	Surge and heading control

	Path following
	Training
	Platform supply vessel simulations
	Container vessel simulations

	Path following and surge control
	Training
	Platform supply vessel simulations
	Container vessel simulations

	Collision avoidance
	Training
	Head-on situation
	Head-on situation with early and substantial action

	Summary of results
	Future work

	Conclusion
	Bibliography
	Container model
	Experiment details
	Vessel control with PSV
	Path following and surge control with two vessel types
	Collision avoidance

	Additional plots showing thruster input to the platform supply vessel
	Path following
	Path following and surge control

