Sondre Bg Kongsgard

SISaY} S, J91se

A Deep Learning-Based 3D Vision
Pipeline for Shape Completion of
3D Objects

610¢
Master's thesis

U
f
y
L
g
s

288 June 2019

c

lo

NTN
ity
0
Faculty of Information Technology and Electric
eri
eti

Norwegian Univers
Engine

pJebsbuoy og aipuos
Department of Engineering Cyber

Science and Techn

@NTNU @NTNU

Norwegian University of Norwegian University of
Science and Technology Science and Technology

@NTNU

Norwegian University of
Science and Technology

A Deep Learning-Based 3D Vision
Pipeline for Shape Completion of 3D
Objects

Sondre Bg Kongsgard

Cybernetics and Robotics
Submission date: June 2019
Supervisor: Annette Stahl
Co-supervisor: Ekrem Misimi

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Problem Description

In order for robots to operate safely and effectively, they must be aware of their surroundings.
This includes knowledge of the 3D geometry and position of objects in the scene. The purpose
of this thesis is to develop a pipeline which processes a single RGB-D image in real time, and
outputs a more complete rendition of the scene around the robot. This problem is concerned
with (1) detection and segmentation of objects, (2) point cloud registration, and (3) shape
completion of the objects of interest. The objects can be both deformable and compliant,
and could potentially be different in various scenarios, which calls for a data-driven approach
that can use prior information to infer more details than what is directly given in an image. A
series of deep learning networks combined into an overall shape completion pipeline is therefore
proposed in this MSc thesis.

Abstract

Single-view shape completion entails the problem of estimating the complete geometry of
objects from a single partial observation, and is at the core of many vision and robotics
applications. This task could be considered an upsampling process, as the goal is to introduce
new data that cannot be directly inferred from the given data, but which can be implied by
comparing the partial scan to similar geometries in a prior dataset. Existing shape completion
methods use structural assumptions about the underlying shape, but this limits the potential
usage and the generalization of the resulting perception system.

In recent years, deep learning has significantly improved the performance of many
applications in computer vision, including 3D machine learning problems such as shape
completion. Even though its popularity has escalated, it is not always easy to apply deep
learning to real-world problems. Especially in the related work for deep learning on shape
completion there has so far only been limited results in successfully transferring the final
agents from inferring complete shapes of the objects used in the training dataset to those
found in depth scans of the real world. Either the resulting geometries are very coarse (i.e.
considerably low resolution) or they do not fully match the given partial observations.

In this thesis, I investigate whether splitting the shape completion agent into multiple deep
learning architectures might be helpful in adapting the learning-based methods to the real-
world domain. By defining the problem as a series of components including semantic instance
segmentation, point cloud registration, and shape completion in isolation, I am able to fully
utilize the latest advances in the state-of-the art of the respective fields. Consequently, the
input and output from each component is made more similar to the data used during training
(which is customized for each component) and thus narrows the gap between the training
environment and real-world applications. This approach also constitutes a framework which
can be further built upon. In particular, each component in the perception system can be
exchanged for future improved methods in the literature.

The proposed perception system predicts the 3D shape of the objects of interest in a scene.
Since predictions are inferred directly from neural networks and no optimization methods are
used, shape completion is done in the order of about a second, which means that the system
can be used for online processing applications. Furthermore, training of the models can be
done using a simulation environment, which simplifies the generation of data and reduces cost
of adapting the system to new applications. These advantages are inherent to the presented
approach, and thus strongly motivates future research on the proposed framework.

Keywords: 3D reconstruction, single-view shape completion, robot wvision, semantic
instance segmentation, point cloud registration, RGB-D imaging

Sammendrag

Enkelt-vis formfullfgring omhandler problemet hvor malet er & estimere den komplette
geometrien fra delvise observasjoner av objekter, noe som er essensielt i mange applikasjoner
innen datasyn og robotikk. Denne oppgaven kan anses som en prosess som oppjusterer
opplgsningen til den gitte dataen. Siden den manglende dataen ikke kan finnes direkte
méa den istedet finnes implisitt ved & sammenligne den delvise observasjonen med lignende
geometrier i et datasett. Navaerende formfullfgringsmetoder bruker strukturelle antakelser
om den underliggende formen, men dette begrenser de potensielle bruksomradene og
generaliserbarheten til det resulterende persepsjonssystemet.

I de senere ar har dyp leering forbedret ytelsen betydelig av mange applikasjoner innen
datasyn, inkludert 3D maskinlaering anvendt pa formfullfgring. Selv om populariteten til dyp
leering har gkt markant, sa er det ikke alltid lett & anvende disse metodene til applikasjoner
i den virkelige verden. Relatert arbeid innen dyp leering for formfullfgring har forelgpig gitt
szerdeles begrensede resultater for overfgring av de lserte metodene til den virkelige verden.
Enten er den resulterende geometrien ganske grov (dvs. sveert lav opplgsning) eller sa passer
den ikke helt med den gitte delvise observasjonen.

I denne avhandlingen undersgker jeg om det & dele opp formfullfgrings-oppgaven til flere
dype leeringsarkitekturer kan vaere gunstig for a tilpasse de laeringsbaserte metodene til
den virkelige verden. Ved & definere problemet som en serie med komponenter (semantisk
forekomstsegmentering, punktskyregistrering og isolert formfullfgring) kan jeg fullt utnytte de
siste fremskrittene innen hvert felt. Dermed vil inngangs- og utgangsdataen for hver komponent
veaere mer lik den dataen som er brukt under treningen, og som er tilpasset hver komponent,
og dermed minke gapet mellom treningsmiljget og virkelige anvendelser. Denne tilnszermingen
danner ogsa et grunnlag for et rammeverk som kan pabygges videre. Hver komponent i det
resulterende persepsjonssystemet kan byttes ut med framtidige utbedrede metoder.

Det foreslatte persepsjonssystemet kan forutsi 3D-formen til de utvalgte objektene i
en scene. Siden prediksjonene kommer direkte fra nevrale nettverk uten bruk av noen
optimeringsmetoder, sa kan hele formfullferingen gjgres pa omtrent ett sekund, noe som betyr
at systemet kan brukes i sanntidsapplikasjoner. Videre kan treningen av modellene gjgres
i et simuleringsmiljg, slik at datagenerering forenkles og kostnader vedrgrende tilpassing av
systemet til nye anvendelser reduseres. Disse fordelene er iboende til den nevnte metoden, og
motiverer derfor sterkt framtidig forskning pa det foreslatte persepsjonssystemet.

Ngkkelord: 3D-rekonstruksjon, formfullforing, robot wvision, semantisk forekomstseg-
mentering, punktskyregistrering, RGB-D bildebehandling

Preface

This MSc thesis concludes my Master of Science in Cybernetics and Robotics at the Norwegian
University of Science and Technology, at the Department of Engineering Cybernetics. The
thesis is a continuation of my specialization project completed during the fall of 2018.

The assignment is formulated in collaboration with SINTEF Ocean in the project
called iProcess (www.iprocessproject.com) where SINTEF Ocean is working with robotic
manipulation of compliant food objects based on visual information from an RGB-D camera in
an eye-in-hand configuration on a 7-DOF manipulator. Robot grasping necessitates a detailed
understanding of the scene, including the complete 3D geometry of the objects of interest, and
thus motivates the idea for this thesis.

I would like to thank my supervisors Annette Stahl and Ekrem Misimi for their support,
guidance, and feedback during the completion of this project. They have steered me in the
right direction, and helped me focus on the most important problems at hand. I would also
like to thank PhD candidate Jonatan Dyrstad for conversations on 3D modelling and for
recommending the PyTorch framework, and PhD candidate Simen Haugo for discussions on
signed distance functions. Additionally, I find SINTEF Ocean to be very generous in allowing
me to use the tools and workstations in their robot lab MARO.

This work was completed on a workstation with a Nvidia GeForce GTX 1080 graphics card
and an Intel RealSense D435 RGB-D camera. A variety of software was used for 3D modelling
and editing; including Meshlab, Meshroom, CloudCompare, Blender, and Unreal ROX. Python
is used as the programming language of choice, with the following core frameworks and libraries:
PyTorch, Open3D, Scikit-Learn, and Trimesh. All the mentioned software are open-source.

Trondheim, June 17, 2019

Son&g 375’ Kﬁgﬁ?ﬂ

Sondre Bg Kongsgérd

www.iprocessproject.com

Contents

Problem Description i
Abstract ii
Sammendrag iii
Preface iv
Contents v
1 Introduction 3
1.1 Motivation e 3
1.2 Background 4
1.3 Problem Formulation 4
1.4 Research Questions L 6
1.5 Contributions 7
1.6 Thesis Outline e 8

2 Theoretical Background 9
2.1 3D Shape Reconstruction 9
2.1.1 Capturing Depth 9

2.1.2 3D Representations Lo 15

2.1.3 Metrics e 17

2.2 Deep Learning e 20
2.2.1 Neural Networks 21

2.2.2 Convolutional Neural Networks 27

2.2.3 Representation Learning Techniques 30

3 Related Work 38
3.1 Depth Image Denoising and Enhancement 38
3.2 Semantic Segmentation and Object Detection 39
3.3 Point Cloud Registrationo 43
3.4 3D Shape Completion 44
3.4.1 Geometry-based shape completion 44

3.4.2 Alignment-based shape completion 47

3.4.3 Learning-based shape completion, 48

3.5 Datasetso e e o1

4 Methodology, Implementation and Results 54

Contents

vi

4.1 Preparation of Datasets
4.1.1 3D Model Dataset
4.1.2 3D Scene Dataset

4.2 RGB-D Semantic Segmentation
4.2.1 Network Architecture
4.2.2 Implementation Details
4.2.3 Evaluation

4.3 Shape Completion e
4.3.1 Network Architectures
4.3.2 TImplementation Details 0.
4.3.3 Evaluation

4.4 Point Cloud Registration
4.4.1 Network Architecture
4.4.2 Implementation Details 0oL,
4.4.3 Evaluation

4.5 Combining the Building Blocks to Create a 3D Vision Pipeline

5 Conclusion
5.1 SUMMATY oo oo e e e
5.2 Future Work oL
A Tools

A.1 Hardware Environment

A.2 Software Environmento
A.2.1 Python Libraries

A.2.2 3D Computer Graphics Software

Bibliography

54
o4
o8
99
99
60
62
63
64
70
71
72
74
76
76
78

85
85
86

89
89
89
89
90

92

Abbreviations

Al
CD
CE
CNN
COS
CPU

Artificial Intelligence

Chamfer Distance
Cross-Entropy

Convolutional Neural Network
Center of Symmetry

Central Processing Unit

DGCNN Dynamic Graph Convolutional Neural Network

EMA
EMD
FoV
GAN
GPU
ICP
IoU
JIT
JSD
MAP
MISE
MSE
NAG
PDA

Exponential Moving Average
Earth Mover Distance

Field of View

Generative Adversarial Network
Graphics Processing Unit
Iterative Closest Point
Intersection over Union
Just-in-Time

Jensen-Shannon Divergence
Maximum-a-Posteriori
Multiresolution Isosurface Extraction
Mean Squared Error

Nesterov Accelerated Gradient

Principal Symmetry Axes

PRST Planar Reflective Symmetry Transform

R-CNN Region-based Convolutional Neural Network

Contents

R-FCN Region-based Fully Convolutional Network
ReLU Rectified Linear Unit

Rol Region of Interest

RPN Region Proposal Network

SDF Signed Distance Function

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition

TSDF Truncated Signed Distance Fields

VAD Variational Autodecoder

VAE Variational Autoencoder

VR Virtual Reality

CHAPTER 1
Introduction

1.1 Motivation

In any interactions with the physical world, 3D geometry and physics information is mandatory.
For a robot to plan object manipulation, it needs a representation of the 3D scene. Finding
a good such representation is a difficult problem, and the requirements could also be affected
by the task at hand. For instance, how quickly the robot needs to operate can depend on the
surrounding workstation. Consequently, there are various levels of accuracy and performance
requirements of the perception system that will process the visual information gained from the
robot’s sensors.

SINTEF Ocean through projects iProcess (www.iprocessproject.com), MarineRobotics
and activeVision has developed an active vision methodology for an eye-in-hand robot
configuration based on an RGB-D camera, rich point clouds and visual servoing [99]. The
approach developed by Dr. Ekrem Misimi is validated for different objects and is currently
under preparation for publication. The approach involves both simulation and real-world
implementation and validation. The simulation is done by importing rich point clouds of
objects scanned with the RGB-D camera to a simulation environment, implementing classical
machine learning methods for active vision. The real-world setup is developed to scan objects
in real time with the RGB-D camera, process the point clouds in real-time, and by robot
control by means of visual servoing, active vision is achieved in an automatic manner.

While giving a detailed and high-resolution 3D model of the scene, the aforementioned
method has some limitations. The robot is often unable to gather all necessary views in order
to generate the full 3D models of the objects in the scene. This limitation could be due to
obstructions in the working space, such as overlapping objects or when the objects are placed
such that the robot cannot move to scan them from all views, e.g. when they are too far away
or in the corner of a box. Additionally, scanning the objects in a scene from all views is time
consuming. The active vision method by Misimi et al. estimates an inference time of up to 10
seconds per object. For applications such as handling objects on a conveyor belt, this is too
slow.

Recent studies indicate that single-view 3D reconstruction is possible, which would address
all the problems inherent in active vision (i.e. multi-view) methods. Even though single-view
3D reconstruction is heavily under-constrained, the most likely completion of the 3D geometries
in a scene can be inferred from priors encoded in a model. By representing the scene as a
collection of 3D objects with rich attributes, the problem of reconstructing the whole scene
can be split into smaller sub-problems where the task is to infer the shape completion of each
individual object. This would not only allowing for the completion of arbitrary scenes, but also
potentially give a direction on how to create an artificial system with rich compositional visual
intelligence. Moreover, the inference time would be reduced to less than a second, allowing for
high-paced real-time applications.

www.iprocessproject.com

1.2 Background 4

1.2 Background

Computer vision has evolved tremendously in the past several years. From simple image
processing techniques, the field now has merit in sub-domains such as scene reconstruction,
object recognition, and 3D pose estimation. In some cases, image classification has
been shown to outperform humans [54, 134], indicating an enormous potential for future
endeavours. Recent technological advances such as high-resolution imaging sensors and
powerful programmable GPU hardware offer new possibilities for researchers. Whereas
traditionally the field has required rigorous mathematical models, the advent of large-scale
image datasets and deep convolutional neural networks moved the field into being more data-
driven, where labeled data can supervise the learning of an optimal inference system.

iProcess, a SINTEF Ocean research project, has a main objective of developing novel
concepts and methods for flexible and sustainable food processing. Omne of their work
packages, Flexible Processing Automation, focuses on robots capable of using computer vision
to recognize and localize compliant objects [60, 110, 100, 61]. Specifically, handling of food
objects like meat and fish is of special interest. Currently, the food processing industry requires
manual labor to tasks such as removing the breast fillet from a chicken. iProcess envisions
assigning the responsibility of such tasks to robots, with potentially higher accuracy than
humans so more of the raw materials could be preserved. Consequently, food production will
be more sustainable, both in terms of profitability and reduction of food waste.

In order to sensibly interact with the 3D physical environment, the robot must possess the
ability to sense and understand its surroundings. In this context, this means that it needs
to capture physical signals in the environment and record them digitally. Additionally, this
information must be processed to infer representations of the environment, which could then
be used for decision making such as how to move the robot so it can grasp an object. Therefore,
robots are typically equipped with a camera in an eye-in-hand configuration, i.e. the camera
is placed on the end joint of the robot. At SINTEF Ocean, they employ the manipulator
(robot arm) Franka Emika Panda with the RGB-D camera Intel RealSense D435. This camera
captures depth images in addition to color images, and thus encodes 3D information of the
scene.

1.3 Problem Formulation

The main aim of this thesis is to complete the 3D geometries of the objects in a scene given
a partial observation, such as a single view from an RGB-D camera. The resulting perception
system should segment the objects from the rest of the scene, infer their full 3D shapes from
the partial observation, and render a complete 3D representation of the scene where the objects
of interest have a complete geometry. The robot can then determine how it should move to
position its end-effector (i.e. gripper) around the objects for grasping.

For instance, the scene could be some objects laying on top of a table as in Figure 1.1.
While the complete geometry of the orange in Figure 1.1(a) could be represented as a point
cloud, as in Figure 1.2(a), only what is presented in Figure 1.2(b) can be directly inferred
from a single-view partial scan from an RGB-D camera. This illustrates the natural occlusion
inherent of physical objects — it is not possible to see the back of an object. However, other
physical occlusions are often present in a scene as well. Objects could partially cover each
other, as in Figure 1.1(b). It could be desirable to complete the geometry of each of these

1.3 Problem Formulation 5

Figure 1.1:

Figure 1.2:

(a) (b) (c)

A simple representation of objects in a scene illustrating some examples scenarios
on how an object can be occluded from the view in the camera direction.
Figure 1.1(a) shows an example of natural occlusion — there is no way for the
camera to see the backside of the orange from the current view. The object can
also be partially occluded by other objects in the vicinity, such as in Figure 1.1(b).
Moreover, an interesting scenario where single view shape completion is very
much desired is when the object is in the corner of a box. Here, even if we would
chose active vision or multi-view shape completion, the physical barrier of the
box makes it impossible to see the occluded part of the object at the corner of the
box. Physical occlusions such as the walls of a box could hinder the camera to
see the objects, as illustrated in Figure 1.1(c). The same effect would also occur
if a hand or an end-effector picked up an object, as it would most likely cover
some part of it to be able to grasp it. The scenes in this illustration consist of
objects from a custom dataset compiled as part of this thesis, and were rendered
in Blender.

(a) (b)

Left: A complete point cloud of an orange. Right: A partial point cloud of an
orange, which would be what a camera system would see if it was viewing the
orange from the left side of the image. The color information has been removed
and replaced by a grayscale map to better illustrate the depth as seen from the
camera.

1.4 Research Questions 6

objects, which is something that needs to be addressed. The objects of interest could also
be partially covered by other structures such as walls, as illustrated in Figure 1.1(c), or the
end-effector of the robot.

In this work, the problem is considered as a consecutive set of various subproblems,
including segmentation, alignment, and completion. Deep learning methods have proven to
give overwhelmingly better results than traditional methods, and are therefore of interest to
research further in the context of this work. Their performance will be necessary in order
to find satisfactory approaches to each of these problems, as they are highly complex. For
segmentation, state-of-the art approaches have only come to a level where they solve the
problems in a satisfactory manner. On the other hand, state-of-the art shape completion
agents are still to be considered only proof-of-concepts, as currently scans of real-world objects
are not considered for completion. Further, they are limited to completing only partial scans
which are in canonical pose (the scale, translation, and rotation is known prior to completion)
and doesn’t take real-world partial scans into consideration. Therefore, in the light of the
state-of-the art, it is clear that this MSc thesis has an exceedingly ambitious goal. The way
the problem is defined puts the goal several steps ahead of the current related work.

To emphasize, the work presented in this MSc thesis is a report over research investigations
carried out to inventively improve and adapt the recent advances in deep learning on 3D data
to perform shape completion of scans of real-world objects. Therefore, the presented applica-
tions to shape completion are novel and innovative.

Aim of the Study

The main aim of this thesis is to complete the 3D geometries of the objects in a scene
given a partial observation, such as a single view from an RGB-D camera.

1.4 Research Questions

There is an increasing number of published papers on shape completion, where the goal is to
find the complete 3D geometry given a partial observation of an object. Traditionally, the
approaches have consisted of aligning a dataset model to fit the partial observation. However,
recent efforts have introduced deep learning as a plausible method. These have currently only
been applied to curated training datasets, and not real depth scans. Thus, the first research
question becomes:

(R1): Is shape completion of real-world objects based on a single-view partial
scan feasible?

To address this question with data-driven deep learning models, it is necessary to find a
suitable method of transforming the partial scan of an object such that it has similar properties
to those given in the dataset used to train the model. This leads to the second research question:

(R2): How can the partial scan of an object be digitally represented in a
similar manner as the objects used in the prior dataset?

1.5 Contributions 7

Real-world shape completion turns out to consist of multiple subproblems, such as seman-
tic segmentation and point cloud registration, that are not considered in the current methods
on shape completion. These subproblems, however, have been addressed in isolation where
deep learning is used in the state-of-the art methods. Several deep learning models, one for
each sub-problem, must therefore be designed and implemented. They will then have to be
combined into an overall pipeline to solve the main aim, but this sequencing of deep learn-
ing models is uncommon in the literature. The final research question is therefore the following:

(R3): Can multiple deep learning methods be combined in a succeeding fash-
ion to create a robust perception system, or will image noise and limited
prior knowledge hinder this?

1.5 Contributions

The main research interest in this work is to develop a perception system which can accurately
predict the complete geometry of objects in a partial scan of a scene. The idea is to do this
by improving, adapting and combining the state-of-the art 3D deep learning methods. To the
best of the author’s knowledge, this work is the first effort to perform real-world single-view
shape completion using such methods.

Contributions introduced in this thesis are described below:

e Semantic Segmentation Network: A state-of-the art ResNet-like architecture was
adapted to high resolution color and depth images. By using two separate branches in
the encoder, both the color and depth information are utilized fully, which has been a
challenge in previous network architectures. With this network, accurate masks can be
achieved of any scene which resemble the images used in the training dataset. Further,
the network has shown a high generalizability in allowing training used on images from
a simulation environment to also predict masks on real-world images.

e Shape Completion Network: A learning-based shape completion method that
operates on sampled level sets, and which can take partial observations of objects in
the form of point clouds as inputs to produce smooth complete objects was designed as
part of this work. By representing the output as a continuous function, the problem of
shape completion is restated as a boundary decision problem. Thus, the surface can be
represented implicitly, and this is easier for a neural network to learn. The results show
that the shape completions using the network closely follow the given partial observations
on test data of the classes used during training.

e Point Cloud Registration Network: One of the hardest problems in this thesis was
to find a robust way to align the segmented point clouds of objects from world coordinates
into a representation where they are axis-aligned and unit-scaled, and thus similar to the
objects in the prior dataset the shape completion agent had trained on. The reason for
the complexity is that the objects can be of different scale, rotation, and translation.
Additionally, only partial scans of the objects are given, and an exact match might not
exist in the dataset of which they should be aligned to. In the literature, this problem
is referred to as point cloud registration, and current methods are only able to perform

1.6 Thesis Outline 8

local optimizations when only rotation and translation are considered. In this work, I
adapt a state-of-the art neural network to learn mappings between point clouds. This
network is able to avoid converging the alignment to local optimas, and instead align the
point clouds regardless of their initial orientation. A heuristic assumption is added to
account for the scaling factor.

e« 3D Vision Pipeline: A 3D vision pipeline which combines the methods mentioned
above into a coherent perception system. It takes an RGB-D image of a scene as input,
for then to segment and complete objects of interest in the scene. This constitutes a
novel framework which adapts deep learning networks into a system that can be used on
real-world applications such as robotic vision.

Additionally, a dataset preparation and preprocessing approach has been developed, which
can generate aligned and unit-sphere scaled models as point clouds or signed distance fields from
arbitrary compilations of CAD or mesh models. This was used in this work to create a dataset
consisting of food objects, which can be used in conjunction with the popular ShapeNet [13]
or ModelNet [160] datasets.

The terminology and concepts used above are described in detail in Chapter 2.

1.6 Thesis Outline

The remainder of the thesis is organized into the following chapters.

Chapter 2, Theoretical Background, explains the necessary theoretical foundation to
build upon. It presents the relevant literature from computer vision and deep learning.

Chapter 3, Related Work, presents a thorough study of related work. Several fields
are covered, and each section includes a discussion on the fields’ relevance and use for the
problem in this work. The most recently published papers are highlighted, as these fields have
developed rapidly in the last years, and the most recent papers present the ideas that will
be built upon in this work. Additionally, extra attention is given to related work on shape
completion, as that is the most important subproblem in this thesis.

Chapter 4, Methodology, Implementation and Results, presents the details and
performance of the implemented models. It covers how both scene and model datasets were
prepared and converted into the required format for the chosen network agents. Furthermore,
it presents details on how the deep learning networks for semantic segmentation, shape
completion, and point cloud registration were implemented. It also gives a reflection on how
the proposed 3D vision pipeline approach can be used in a real-world setting.

Chapter 5, Conclusion, provides a short summary and serves as the conclusion of this
thesis.

CHAPTER 2
Theoretical Background

This chapter presents the theoretical background of 3D reconstruction and deep learning in
connection to the work completed as part of this thesis. The next chapter builds upon this
theory to present the related work

3D shape reconstruction refers to inferring 3D information from RGB- and/or depth-
images. Depth images can be acquired from a range of various depth sensing techniques, and
this is explained in Section 2.1.1. Further, 3D information can be stored in multiple formats
such as meshes, voxels, point clouds, and more. An overview of these 3D representations is
given in Section 2.1.2. Finally, the quality of the 3D reconstruction can be quantitatively
measured by using a metric to determine the similarity between the reconstruction and a
ground truth, which is described in Section 2.1.3.

Deep-learning methods are data-driven approaches that have the property of being universal
function approximators, which will in this work be used for finding a mapping from a partial
scan of an object to its complete geometry. It will also be used for segmentation of RGB-D
images. In this chapter, an in-depth presentation of deep learning will be given, including feed-
forward networks, convolutional neural networks, and generative models. A literature review
on the state-of-the art approaches on segmentation and shape completion will be presented in
the next chapter.

2.1 3D Shape Reconstruction

2.1.1 Capturing Depth

Depth is important in computer vision for many applications. With depth maps, a scene can
easily be segmented into foreground and background and track objects. There are many ways
to capture depth from a scene, but they can be roughly categorized into two main classes:
Either the depth is directly inferred from the scene through a depth camera system (with a
full overview given in Table 2.1), or the depth information is reconstructed from one or more
images. Here, the most frequently used techniques from each class are presented: structured
lighting and stereo vision. The theory for these methods are mostly extracted from the book
Concise Computer vision [73], and with some details from Computer Vision Metrics: Survey,
Tazonomy and Analysis [79] and Computer Vision: Algorithms and Applications [145].

Structured lighting: An example of a depth camera system, where 3D information is
inferred by the projection of a light pattern under calibrated geometric conditions onto an
object. Typically, one camera and one light source are used. Calibration includes determining
the pose of the light source with respect to the camera. Refer to Figure 2.1, where it is assumed

2.1 3D Shape Reconstruction 10

Depth Sensing # of Illumination Method Characteristics
Technique Sensors
Parallax and 2/1/array Passive — Normal Positional shift measurement in FoV

Hybrid
Parallax

Size Mapping 1

Depth of 1
Focus

Differential 1
Magnification
Structured 1
light

Time of Flight 1

Shading shift 1

Pattern 1
spreading

Beam tracking 1

Spectral Focal 1
Sweep

Diffraction 1
Gratings

Conical Radial 1
Mirror

lighting

Passive — Normal
lighting
Passive — Normal
lighting

Passive — Normal
lighting

Active — Projected
lighting

Active — Pulsed
lighting

Active — Alternating
lighting

Active — Multi-beam
lighting

Active — Lighting on
object(s)

Passive — Normal
lighting

Passive — Normal
lighting

Passive — Normal
lighting

between two camera positions, such
as stereo, multi-view stereo, or array
cameras

Utilizes color tags of specific size to
determine range and position

Multi-frame with scanned focus

Two-frame image capture at dif-
ferent magnifications, creating a
distance-based offset

Multi-frame pattern projection

High-speed light pulse with special
pixels measuring return time of
reflected light

Two-frame shadow differential mea-
surement between two light sources
at different positions

Projected 2D spot pattern exapand-
ing at different rate from camera
lens field spread

Two-point light sources mounted on
objectes in FoV to be tracked

Focal length varies for each color
wavelength, with focal sweep to
focus on each color and compute
depth

Light passing through sets of grat-
ings or light guides provides depth
information

Light from a conical mirror is
imaged at different depths as a
toroid shape, depth is extracted
from the toroid

Metrics [79].

Table 2.1: Some methods for capturing depth information. Adapted from Computer Vision

2.1 3D Shape Reconstruction 11

that the base distance b is given by light source calibration and that the angle o by controlled
light plane sweeping.

Object

NP = (X;, Y, Zy)

)]S [
T Yu
!

s .
A=
(\ S u o\ Light source

Os Xs . X'g
------------ Base distance b - - ------- ’

Figure 2.1: Structured lighting system. The projection centre is located at the origin Oy in
a left-hand X Y;X, coordinate system. The image plane is parallel to the X Y;
plane at focal distance f. For simplification, it is assumed that the light source
is on the X axis. Courtesy of Concise Computer Vision [73].

P=(XS’ —}TS"?‘??.
p=(xu,yu)l______.-——-'"'"'
S 7,
le—— f ——1)(“
VX,

Figure 2.2: The central projection of a point P = (X, Y, Z5) into a pixel location p =
(Zw,Yy). The corresponding sides of the highlighted triangles are all in the same
proportion. Courtesy of Concise Computer Vision [73].

The camera is positioned in a 3D space, with a left-hand X;Y;Z, camera coordinate system.
Os is the projection centre, and the optical axis of the camera coincides with the Z;-axis. The
image plane is parallel to the X Yg plane, at focal distance Z; = f. The ray theorem of
elementary geometry says that f to Zg is the same as x, to X, and with analogous ratios in
the Y;Z, plane (Figure 2.2), resulting in the equations

T _ I
(. Zs

_JYs
Yu = 7.

(2.1)

2.1 3D Shape Reconstruction 12

Further, from the trigonometry of right triangles the following is true

Zs
= 2.2
tan o b X (2.2)
It then follows that
X
Z:;-f:tana-(b—X)
f (2.3)
X -|=4+tana | =tana-b
which gives the solution
Xy tana - b
f+az-tana
v — tana - b (2.4)
- f+z-tana ’
Z—f. tana - b
f+az- tana

Stereo Vision: A binary vision method similar to the human visual system. Left and right
views of a scene are captured, and the depth or distance to the visual points are calculated
by first determining the corresponding points in each view. In Figure 2.3 two cameras are
considered to follow the pinhole-camera model and positioned in general poses in projection
centres O1 and Os. A 3D point P in X, Y, Z,, world coordinates is projected into a point p;
in image 1 and onto a corresponding point in ps. The task is then to locate the point ps by
starting at point p; in the first image. By looking at Figure 2.3, one can see that the points
01, O9, and the point P defines a plane which is called the epipolar plane. The same plane
is defined by O7, O2, and py in image 1, and is also intersected by the image plane of image
1 to form the epipolar line. It is evident that ps can only be found on this line in image 2,
which means that searching for ps is reduced to a simpler problem of finding a corresponding
problem on a line, rather than the entire image plane.

Epipolar plane
Image plane 2

Image plane 1

Base line

Zy Epipole

Epipolar line 1
aX, p1p

Figure 2.3: Epipolar geometry for two cameras in general poses. Courtesy of Concise
Computer Vision [73].

2.1 3D Shape Reconstruction 13

Assume that the two cameras are virtually identical, and oriented the same way apart from
one camera shifted by the distance b along the X;-axis of the X;Y;Z, camera coordinate system
of the left camera. This setup is referred to as canonical stereo geometry, and results in two
coplanar images of identical size Ncols X Nrows, With parallel optic axes, identical effective focal
length f, and collinear image rows. By utilizing the equations (2.1), the point P = (X, Ys, Z5)
is mapped to the undistorted image points

PurL = (l’uLvyuL) = (ij(S7 fZZ/tg) (25&)
Pur = (Tur, Yur) = <f’(§z_b), fZY> (2.5b)

For undistorted coordinates, a pixel p;, = (zr,y) and its corresponding pixel pr = (zg, y) have
x-values where xp < xp. With the base distance denoted as b > 0 and f the focal length, Z,
can be eliminated from (2.5a) and (2.5b) by

:f'Xs:f'(Xs_b)

Zs 2.
Tyl TuRr (6)
This equation can further be solved for X to yield
b- Xy,
Xy=— vk (2.7)
Tyl — TuR
which can be inserted back into (2.6) to get
b
Z, = LAY (2.8)
Tyl — TuR
The final coordinate, Ys, can be obtained by using this value of Z; in (2.5a) and (2.5b):
by
Y, = Yo (2.9)
Tyl — TuR

Here, yu = yur = Yur-

It is generally desirable, however, to tilt the cameras slightly towards each other, such
that the space of objects being visible in both cameras is maximized. This is referred to as a
convergent setup, illustrated in Figure 2.4.

The Cartesian coordinate system XY Z can be transformed into the X;Y;Z; system by a
rotation —@ about the Y-axis followed by a translation b/2 to the left on the X — axis

X, cos(#) 0 sin(@)| | X — %
vil=| o 1 0 % (2.10)
zy, —sin(#) 0cos(6) Z

XrYRrZR can be acquired in the same manner,
Xgr cos(0) 0 —sin(0)| | X + %
Yr| = 0 1 0 Y (2.11)
Zr sin(#) 0cos(0) Z

2.1 3D Shape Reconstruction 14

Figure 2.4: Convergent camera system. The left and right cameras are symmetric to the
Z-axis, but tilted towards each other such that the optical axes intersect at the
point of convergence C' on the Z-axis. Courtesy of Concise Computer Vision [73].

A point P = (X,Y, Z) projected into the left z,ry, and the right x,ry, coordinate systems
can then be represented in the centred XY Z-coordinate system based on the central projection
equations:

XL, cos(0)(X — §) +sin(6) - Z
Tl =7 f—sin(@)(X_ D)+ eos(d) - Z (2.12a)
_ [-Xr _ ,cos(9)(X +§) —sin(0) - Z
TR = = e X 1 b) ¥ cos(9) - Z (2.12b)
_ f 'YL o f 'YR . Y
T R _f—sin(e)(X—g)+cos(9).Z (2.12¢)

The following system of equations follows:

[—zyr -sin® — f - (0)]X + [xyr - cos(0) — f -sin(0)]Z = —[gmuL -sin(0) + gf] (2.13a)

[@yp - sin(f) — f - cos(0)] X + [zyr - cos(0) + f - sin(9)] Z = —[g:vuR sin(6) — gf] (2.13b)

: b .

[—yu - sin(0)]X + [—f1Y + [yu - cos(8)]Z = [iyu -sin(6)] (2.13c)
which can easily be solved for X, Y, and Z. Thus, convergent stereo ends up being no more
complex than canonical stereo in terms of calculating the world coordinates of a point.

As an aside, disparity is in the general case defined as the virtual shifts of a point

P = (X,Y,Z) projected into a point p; in one image ¢ to the point p; in another image
Js

dij = p; —pj

(2.14)
dji = pj — pi

where the disparity value d;; is defined as the magnitude ||d;j||2. For the special case of
canonical stereo geometry, the disparity value is x;, — zr due to the restriction that zg < xy.

2.1 3D Shape Reconstruction 15

2.1.2 3D Representations

Depending on the intended use, shapes can be represented in a variety of convertible formats.
Some of the most important 3D representations are illustrated in Figure 2.5.

SRS

22

25

N

) 2
7 == | |
SN SEEED - —
Voxelization Point Cloud Signed Distance

Figure 2.5: 3D representations of the Stanford bunny. Meshes are sparse water-tight
representations which are slightly complicated by consisting of different
components (vertices, edges, faces). Voxel representations are regular structures,
but which have a high memory cost, are computationally inefficient to perform
operations on, and generally are not able to represent detailed geometric
information. Point clouds are simple sparse representations which do not encode
any information about the surface of objects. Signed distance functions implicitly
define the surface of an object with a continuous function, which theoretically
means that they are representations with infinite resolution.

Polygon meshes store 3D information in a collection of connected vertices, edges, and
faces. Kach vertex is associated with neighboring vertices in a standard pattern such as a
triangle describing the surface, each having a surface normal, 3D coordinates (z,y, z), color,
and texture.

Meshes can also be stored in the AABB tree data structure, which is useful for performing
efficient intersection and distance queries against sets of finite 3D geometric objects. The data
structure is created by converting a mesh into primitives, of which a hierarchy of axis-aligned
bounding boxes (AABBs) is constructed.

A vozxel volume is a 3D volumetric data structure composed of a 3D array of voxels, which
are volumetric elements like pixels are picture elements. Since the voxels are regularly spaced
in the 3D array, their depth coordinates are not explicitly encoded. Each voxel may contain
color and normal information.

An extension to the voxel representation is the octree, which has an adaptive grid size. This
allows for lossless reduction of memory consumption compared to a regular voxel grid.

Point clouds are sparse representations of geometric shapes, where the surface is given by a
set of 3D points. Each point in the cloud may contain information about 3D location (z,y, 2),
color, and normal.

Point clouds can also be represented as k-dimensional trees or k-d trees — binary search
trees that are very useful for range and nearest neighbor searches. In this case, k will always
be 3. Each level of a k-d tree splits all children along a specific dimension, using a hyperplane

2.1 3D Shape Reconstruction 16

that is perpendicular to the corresponding axis. At the root of the tree all children will be
split based on the first dimension. Each level down in the tree divides on the next dimension,
returning to the first dimension once all others have been exhausted.

A signed distance function (SDF) is a continuous function that, for a given spatial point,
outputs the point’s distance to the closest surface, whose sign encodes whether the point is
inside (negative) or outside (positive) of the watertight surface:

SDF(z)=s:xz R seR (2.15)

The underlying surface is implicitly represented by the isosurface of SDF(-) = 0.

Additionally, a depth map image can represent the 3D information. Each point in a 2D
pixel array may contain color and depth information. This is typically the format of the raw
depth data from RGB-D cameras.

2.1.2.1 Conversion between 3D Representations

It can often be of use to convert one 3D representation to another, as depending on the
application a water-tight representation such as meshes, a regular representation such as voxels,
a sparse representations such as point clouds, or a continuous representations such as SDFs
might be desirable. The conversions are unfortunately not straight-forward and most often not
lossless. In the following two paragraphs, the most common methods to convert from meshes
to point clouds and from SDFs to meshes are presented, as they are used in the methodology
in this work.

Mesh to Point Cloud: A mesh could intuitively be converted to a point cloud simply by
selecting the vertices of the mesh. While this is a feasible strategy, it has several limitations.
First, this only allows for a predefined number of points in the point cloud. Second, more points
will be aggregated in areas of the mesh with a higher face density, resulting in an uneven and
poor representation of the object.

Instead, points could be uniformly sampled on the mesh faces. The process consists of
simply choosing a random triangle, and then generate a point within its bounds until a desired
number of samples is reached. This sampling process still has the second issue mentioned
above, i.e. it is more likely to randomly select a face in the higher density areas of the mesh.

One of the most common methods to sample points from a mesh is called Poisson
disk sampling, which guarantees the minimum distance between each sample to be 2r [24].
Therefore, a disk of radius r centered on each sample does not overlap any other disk,
which implicitly means that biased distributions of points are avoided. Since this method
is implemented and used in this work, the pseudo-code of the algorithm is summarized in
Algorithm 1.

Point clouds may also store the normal of the mesh face the point is sampled from. This
can easily be added by identifying the face the point is sampled from, and calculate the normal
from the vector product of two of its edges. Some mesh file formats such as .off also explicitly
stores the normal for each mesh, which provides an alternative way of how the normal can
be acquired. The resulting point cloud datastructure is a list of [x-coordinate, y-coordinate,
z-coordinate, x-normal, y-normal, z-normal] for each point.

Signed Distance Function to Mesh: Marching cubes is the reference algorithm for
converting a scalar field such as SDFs to a 2D surface mesh [91]. It requires a data volume

2.1 3D Shape Reconstruction 17

Algorithm 1 PoissonDiskSampling

1: Given: number of points N
2: SamplePool Pool = GenerateSamplePool(N) > Pre-generate samples on the mesh

3: SpatialHashTable Cells = FillSpatialHashTable(Pool) > Fill a spatial index for fast
access to samples

4: RandomShuffle(Cells)

5: Samples Samples > Random shuffie of the cells

6: while Cells.IsNotEmpty() do > Main loop

7 Cell Cell = ExtractCell(Cells) > Choose a cell with a probability proportional to the

number of samples contained in it

8: Sample P = ExtractFromSamplePool(Cell, Pool) > Generate a valid sample inside
the current cell by extracting it from the pre-computed sample pool

9: Samples.Add(P)

10: if IsValid(P) then > Subdivide cell if necessary and update active cells
11: RemoveCell(Cell, Cells)

12: else

13: SubdivideCell(Cell, Cells)

14: end if
15: end while
16: return Samples

(a cuberille grid, equivalent to a voxel volume) and an isosurface value. The vertices on each
cube in the volume are classified as as positive or negative, according to their comparison with
a given isovalue, which in the case of SDFs is where SDF(x = 0). Then it uses a lookup table
to tile the surface inside the cube. However, this simple algorithm can lead to cracks in the
resulting mesh. Therefore, a variant called Lewiner marching cubes [82] is always used. It
ensures a topologically correct result, i.e. a manifold mesh for any input data.

As an alternative to marching cubes, raycasting could be used for visualizing SDFs in a
direct manner. This method does not produce any conversion loss except for the limiting
factor of the number of pixels in the resulting image, but it is generally much slower than the
marching cubes algorithm and does not output a mesh. In raycasting, one ray for each of the
pixels in the resulting image is traced from a virtual camera, and the intersection of the closes
object blocking the path of that ray is found, determining the resulting value for each pixel.

2.1.3 Metrics

A metric is a measure of a distance between two sets. Generally, metrics should satisfy the
following axioms:
d(f,g) > 0 (non-negativity) 2.16a

(
f=giftd(f,g) = 0 (identity of indiscernibles) (2.16b
d(f,g) = d(g, f) (symmetry) (2.16¢
d(f,g) <d(f,h)+d(h,g) (triangle inequality) (2.16d

Here, d is the distance between two real-valued functions f, g defined on the same discrete
domain, and A is a third real-valued function. However, a proposed metric does not necessarily
have to fulfill all these properties. If so, it is sometimes called a semimetric.

)
)
)
)

2.1 3D Shape Reconstruction 18

The two foundational distance functions are the £ and Lo norms, which are defined as

Ly =di(f,9) Z |f(z) — g(z)| (2.17a)
Ll

Lo =day(f,g9) = T\l > (f(x) - g(x))* (2.17b)
r=1

on the same discrete domain 1,2,...,7T and satisfy all the properties in (2.16).

Metrics based on point-wise distances There are two permutation-invariant metric for
comparing unordered sets that have been proposed in the literature [32].

The Chamfer pseudo-distance (CD) metric calculates the squared distance between each
element in one set S; C R? to the nearest neighbor in the other set Sy C R3:

dop(Sy, S2) = Z m1n||x—y|]2+ Z m1n||93—y\|2 (2.18)
Z‘ES yES2

The triangle-inequality does not hold for dop, but it is a non-negative function that is
continuous and piecewise smooth. For each element, dop gives the nearest neighbor in the
other set and sums up the squared distances. The search for each element is independent,
and therefore this calculation is easily parallelizable. Even better acceleration of the nearest
neighbor search can be used by using k-dimensional trees (binary search trees) to represent
the sets, resulting in a O(nlogn) complexity.

The other metric is named FEarth Mover’s Distance (EMD) — also called Wasserstein
distance in the field of mathematics — after it was originally discovered as a measure on how
to transport soil from one place to another with minimal effort. It requires the two sets
51,85 C R3 to be of equal size s = |S1| = |Ss], and is defined as

dEMD(Sl,SQ mm Z H.I‘— Hg (2.19)

where ¢ : S1 — Ss is a bijection (a mapping that is both one-to-one and onto) which minimizes
the average distance between the corresponding points. Even with modern graphics hardware,
finding the exact computation of Earth Mover’s distance is too expensive. Therefore, an (1+¢)
approximation scheme given by Bertsekas et al. [8] is typically used for finding the optimal
¢. This algorithm gives an approximation error around 1% for most typical inputs, and is
easily parallelizable. However, the complexity of calculating dgpsp is still as high as O(n?),
making it too expensive to use when n is large. Compared to Chamfer Distance, Earth Mover’s
distance favors distributions of points that are similarly evenly distributed as the ground truth
distribution. A low Chamfer distance may be ahcieved by assigning just one element in Ss to
a cluster of points in S;. On the other hand, to achieve a low Earth Mover’s distance, each
cluster of elements in S requires a comparably sized cluster of elements in Sa.

Another evaluative metric is the Jensen-Shannon Divergence (JSD) between marginal
distributions defined in the Euclidean 3D space, which can be used for comparing two point
clouds. By having point-cloud data that are axis aligned, one can assume a canonical voxel
grid in the ambient space and count the number of point lying within each voxel [1]. JSD is
then a measure of the distance between the two empirical distributions P and @,

JSD(PI|Q) = 5 Dit.(PIIM) + 3 Dict Q1) (220)

2.1 3D Shape Reconstruction 19

where M = %(P—I—Q) and Dy, (+||-) is the Kullback-Leibler divergence, which calculates exactly
how much information is lost when one distribution P is approximated by another distribution
@, and is defined as

Dir(PlIQ) = 3 P(x)log (gw (2.21)
zeX

The metrics mesh accuracy and mesh completion compare the point-wise distances between
generated points and the ground truth mesh [135]. Specifically, mesh accuracy is the minimum
distance d such that 90% of generated points are within d of the ground truth mesh. Mesh
completion, on the other hand, is the fraction of points sampled from the ground truth mesh
that are within some distance parameter A, e.g. A = 0.01 to the generated mesh. Higher
values are better for both of these metrics. Since a good mesh accuracy can be achieved by
generating one small portion of the ground truth and ignoring the rest, mesh accuracy does
not measure how complete the generated mesh is. Therefore, the two metrics should be paired
together.

Metrics based on geometric alignment Several metrics based on geometric alignment
are available, including Intersection over Union, cross entropy, and mean squared error.

Intersection over Union (IoU), also known as the Jaccard index, is defined as the size of
the intersection between two sets S; and S divided by the size of the union of the sets:

_ |Sl N 52‘ _ ’Sl| + |SQ| — ‘Sl N SQ|
|51U52‘ |51ﬂ52‘

Specifically, for voxels the IoU between a predicted 3D voxel grid and its true voxel grid is
i (LWl >)+ T(yige)|

S [1 (105> 9) + I0))

IOU(Sl, SQ) (2.22)

ToU = (2.23)

where y;jk is the predicted value at the (i, j, k) voxel, y;;r is the ground truth value at the
(1,7, k) voxel, and p is the threshold for voxelization (typically set to p = 0.5), and I(-) is an
indicator function. The indicator function of a subset A of a set X is defined as

1 ifzeAd
I(x) = {0 ¢ A (2.24)

The IoU value ranges between 0 and 1, with small values indicating low similarity and large
values indicating high degrees of similarity.
Cross-entropy is defined as

1
CE = 7K Z’; [yijk log(yijx) + (1 — yijn) log(1 — yz,‘jk)] (2.25)
ij
A low cross-entropy means that the predicted value is close to the ground-truth value.
Mean squared error (MSE) is defined as

1 , \2
MSE = 7K 2. (yijk — yijk) (2.26)

which is always non-negative, with a perfect value being 0, i.e. MSE values close to zero
indicate that the prediction is close to the ground-truth.

2.2 Deep Learning 20

Metrics based on visual similarity The light field descriptor is inspired by the human
vision system. It considers a set of rendered views of a 3D shape from various camera
angles [14]. The dissimilarity D4 between two 3D models is defined as

10
Dy =min Y _ d(Iig, Io), i=1,2,...,60 (2.27)
bok=1

where ¢ denotes different rotations between camera positions of two 3D models. The camera
is positioned on the vertices of a dodecahedron surrounding each model. A dodecahedron has
20 vertices, each connected by 3 edges, which results in a total of 60 different rotations for
each camera system. I7; and I9; are corresponding images under the i-th rotation. Finally, d
denotes the dissimilarity between two images,

d(I,) =Y |C1, — Cy,

7

(2.28)

This is the £; distance between the coefficients C1 and Cy of two images, which are the
combined coefficients of the Zernike moment descriptors and Fourier descriptors of the images.
There are 35 coefficients for the Zernike moment descriptor and 10 coefficients for the Fourier
descriptor, totaling 45 coefficients for each image. ¢ denotes the index of their coefficients.

2.2 Deep Learning

Deep learning is an approach to solving problems through allowing computers to learn from
experience, and understand their environment through a hierarchy of concepts. By acquiring
knowledge from experience, the computers can make decisions without humans formally
specifying the exact rules needed. The hierarchy is organized such that simple concepts are
combined to build increasingly complex representations. A graph can be drawn showing how
these concepts relate to one another. It would be a deep graph with many layers, which
explains the term ’deep learning’.

In general, deep learning is a specific approach in the field of artificial intelligence (AI) [43].
One of the main desires among computer scientists have been to create machines that are
intelligent. Several efforts have been made to hard-code knowledge in a formal language, but
they have deemed unsuccessful. Instead, machines seem to require a learning based approach,
by extracting patterns from data. This approach is called machine learning. A set of features
is fed into a machine learning agent, which then learns how the features correlate with various
outcomes. Figure 2.6 gives a naive schematic on this distinct difference between the two
programming dogmas. Representation learning further builds upon this by using a machine
learning approach for both mapping a representation to an output and the representation
itself. However, many factors influence the data that can be observed, while not affecting
the outcome. Therefore, high-level features are desired. Deep learning solves this problem by
building up a hierarchy of representations, gradually abstracting the lower-level concepts. The
relationship between the Al disciplines is illustrated in Figure 2.7.

Recently, deep learning has seen an immense success due to several factors such as dataset
sizes, model sizes, and real-world applications. Since computers have become increasingly
interconnected, data is readily available from online sources. Datasets of significant sizes, such
as ImageNet [30], were first released in the late 2000s, which have enabled deep learning to

2.2 Deep Learning 21

> E — .
Rules Answers Machine

——> Answers Loarnin ——> Rules
Data —| &

Classical
Programming

Data —

Figure 2.6: The different programming paradigms of machine learning and traditional
programming. With machine learning, data as well as the answers expected
from the data are given as the input, and the output from the program are the
rules. These rules can then be applied to new data to produce original answers.

Machine Artificial

Intelligence

Deep Representation

Learning Learning

Learning

Figure 2.7: A Venn diagram illustrating the relation between artificial intelligence, machine
learning, representation learning, and deep learning.

solve problems that were infeasible earlier. Moreover, faster CPUs and GPUs, in addition to
better software infrastructure have allowed for the deep learning models to grow in size. A
breakthrough came in 2012 when a deep learning approach won the annual ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), the largest contest in object recognition [134],
and in all consecutive years deep learning approaches has won the competition. Similar results
have been presented in other fields, rendering deep learning one of the most promising tools
in numerous fields.

2.2.1 Neural Networks

The word neuron is used to describe the computations

n
z= Z Tpwp +b=w'x+b (2.29a)
k=1

y=¢(z) (2.29b)

which are also illustrated in Figure 2.8.

Equation (2.29a) is a weighted sum of its inputs x, i.e. the inputs x are multiplied by
variables w called weights. The weights signify strengths between the input and output. For
example, 1 influences the output more than xo if wq has a higher value than ws. The value b
is the bias, which is not multiplied by a weight. With this term, the function is not constrained
to the origin. The weighted sum and the bias are the linear part of the neuron. z is then passed
through a nonlinear activation function ¢ to get the output y in (2.29b). This is necessary for
the neuron to be able to model a non-linear problem. Example activation functions are given
in Figure 2.9.

2.2 Deep Learning 22

Input
1

x2
o(-)
o Output
Activation
T3 — Y
function

Tn

Figure 2.8: Neuron structure. The output y is defined as the sum of a bias b and the weighted
sum of it inputs > }_; xpwy passed through an activation function ¢.

As an example, consider a binary classification problem where y is defined as the true label
(y=0o0ry=1) and ¢ is the predicted output. Put another way, § is the probability that
y = 1 given inputs w and @, which give the equations

Ply=1llw,z) =179 (2.30a)
Ply=0lw,z)=1—7 (2.30b)

This can be written more compactly as
p(ylw,) = §*(1 - §)' ¥ (2.31)

Further, by taking the logarithm a loss function can be defined as

L(y,9) = —(ylogg) + (1 — y)log(1 — 7)) (2.32)

The goal of the loss function is to minimize the error between the predicted and desired output
and thus arrive at an optimal solution for one training sample. The logarithm operation
was added to make the following derivations simpler, and it could be done since the goal
is to minimize (2.31) which is equivalent to minimizing any strictly increasing function of
(2.31). However, to get useful results the average of the loss over a training set that contains
m independently generated training samples is needed. This is defined as the cost function
J(w, b), where the goal is to find w and b that minimize it:

1 m
J(w,0) = — % L(fiy:)
1’:1m (2.33)
=——> [wilog i + (1 — ;) log(1 —)]

=1

2.2 Deep Learning 23

Sigmoid os
W)= .
Hyperbolic Tangent (Tanh) o
¢2) == g
Rectified Linear Unit (ReLU)
¢(2) = max(0, z)

Leaky RelLU

¢(z) =max(z,az), a<1

-100 -75 -50 -25 00 25 5.0 75 100

o N & o o

Figure 2.9: Some alternatives which can be used as activation functions. Most literature
recommend using ReLU (or its variations like leaky ReLU) for all layers except
the output layer, where a sigmoid or tanh are more suitable because of their
symmetric property.

J(w,b) is the binary cross entropy between the target and the output, and is a convex function
with a single global optimum. Therefore, by moving in the direction of the steepest slope
from any point on the function will iteratively give a value that is closer to the minima. This
method is called gradient descent. In this case, the formulas are

B 0J(w,b)
w=w—a— (2.34a)
B 0J(w,b)

The term « is called the learning rate, and is a measure on the step size in each iteration.
This is an important parameter to tune, as if it is too small the model will take numerous
steps before finding the minima. On the other hand, if it is too large the model will simply
overshoot the minima and fail to converge.

The training process is twofold: forward propagation and backward propagation. First the
input is propagated through the model as given in (2.29) to get an output 3. Backpropagation,
however, is the process of calculating the partial derivatives from the loss function back to the
inputs, and thereby updating the values of w and b:

OL(y.5) _ OL(y.5) 9 0=

ow 89 0z0w (2.352)

2.2 Deep Learning 24

OL(y,5) _ 0L(y,7) 0502
b oy 9z 0b

One epoch of learning has been completed if the procedure above has been performed for the
entire dataset.

Generally, a neural network combines several neurons together, and the same components
as above — a model, a cost function, an optimizer, and a dataset — apply to all networks. These
components can be replaced almost independently from the others.

(2.35D)

Models Feedforward neural networks are the most important deep learning models. These
models are called feedforward because information flows through some function f evaluated
from @ as defined in (2.29), and to the output y. For instance, there might be four functions
fO @ G and £ connected in a chain f(z) = fO(fE(FA(fD(x)))). This gives a
network structure that can be illustrated as given in Figure 2.10. In this case, f() is called
the input layer, f@ and f®) are called hidden layers, and f® is the output layer.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

Figure 2.10: Feedforward neural network with 2 hidden layers. The nodes in this graph are
simplified representations of the neuron structure as given in Figure 2.8.

Each function £, where i denotes the layer, is a combination of neurons given as
FO = o(Wizi + b)) = i (2.36)

which is the generalized version of (2.29). With a total of m weights and n neurons, the weight
matrix W;

Wiy 3 Wige o0 Wi,
Wiy, Wigy 0 Wiy,

W, = .) . (2.37)
wim,l wim,Q e wim7n

y; is the outputs for layer ¢, @; is either the input to the model or the outputs from layer ¢ — 1,
and b; is the biases:

Yiy Tiy bi,

) T b,
Yio . i2 io (2.38)

I
8
I
&
Il

Yi

Yin, T, bi,

2.2 Deep Learning 25

Other networks, including convolutional neural networks and autoencoders, will be
presented in Section 2.2.2 and Section 2.2.3.

Cost functions A cost function is needed to give a quantitative measurement on the model’s
predictions, and the choice of cost function is an important part of network design. With (2.33)
in the example above, the cross-entropy between the training data and the model’s predictions
is used. Alternatively, some statistic of the output can be predicted based on the input.

Two requirements must be satisfied by a cost function [107]. First, the cost function J
must be able to be written as an average

J==>C (2.39)

This requirement allows the gradient to be computed for a single training example. Second,
the cost function must not be dependent on any outputs except for the last layer. Otherwise,
backpropagation would not be possible.

The cost function may also include additional regularization terms. Weight decay is one of
the most common regularization terms, as it adds a criterion to minimize the weights to have
a smaller norm. For L9 regularization, the cost function is

J(w,b) = J(w,b) + dw " w (2.40)

where A determines the strength of preference for small weights.

Optimizers The optimizer updates the model in response to the output of the cost function,
such that the predictions are as correct as possible. Gradient descent, as presented previously,
is the most straightforward optimizer. It computes the gradient of the cost function with
respect to the parameters 6 (includes both the weights w and the biases b) for the entire
dataset, and is therefore also called batch gradient descent:

0=0—a-VeJ(H) (2.41)

For convex surfaces, batch gradient descent is guaranteed to converge to the global minima,
while for non-convex surfaces it will converge to a local minimum. As the gradients for the
entire dataset is needed to perform a single update, batch gradient descent can be very slow.
Additionally, a dataset of substantial size will not fit in memory at once, making batch gradient
descent infeasible.

To alleviate these challenges, stochastic gradient descent (SGD) can be used instead. It
performs a parameter update for each training sample 2@ and label y(i):

0=0—a-VeJ 0,z yD) (2.42)

As only one update is done at a time, this algorithm is much faster than gradient descent.
However, that property also causes SGD to have a high variance, such that the cost function
can fluctuate heavily. On the one hand, this gives SGD the opportunity of jumping to another
and potentially better local minima for non-convex problems. On the other hand, SGD will
keep overshooting the minima if the learning rate is not set low enough.

2.2 Deep Learning 26

A third version of a gradient descent optimizer is mini-batch gradient descent, which
combines the best properties of the two aforementioned optimizers:

0 =0—aVgJ(0,zFFm) yE+m)y (2.43)

By performing an update for every mini-batch of m training samples, the variance of the
parameter updates is reduced, which can lead to a more stable convergence. Mini-batch
gradient descent is almost always used instead of batch gradient descent and SGD, and the
term SGD is usually employed also when mini-batches are used. Therefore, this thesis will use
the term SGD for mini-batch gradient descent, and specify the batch size where applicable.
Further, the parameters ("t and y(#+™) are left out of the modifications of SGD for
simplicity.

SGD performs poorly when the surface of one dimension is much steeper than another,
which led to the introduction of momentum as a method to accelerate the gradient descent
in the relevant direction. Momentum does this by adding a fraction -, usually set to around
v = 0.9, of the update vector of the past time step to the current update vector:

vy = yvi—1 + aVeJ(0) (2.44a)

0=0—u (2.44D)

The momentum term v; increases for dimensions whose gradients point in the same directions
and reduces updates for dimensions whose gradients change directions. This results in faster
convergence and reduced oscillations.

Still, further improvements can be made, such as giving the optimizer a notion of the slope
ahead. Nesterov accelerated gradient (NAG) computes 6 —~yv;_1, which gives an approximation
on where the parameters will be for the next time step. The gradient is then computed not
with respect to the current parameters, but with respect to approximate future location of the
parameters:

vy = yvi—1aVeJ (0 — yvi—1) (2.45a)

0=0—uv (2.45b)

Adagrad is an optimizer that additionally adapts the learning rate to the parameters. It
performs smaller updates for parameters associated with frequently occurring features, and
larger updates for parameters associated with infrequent features. This makes Adagrad well
suited for sparse data. Since there is a different learning rate for each parameter 6;, the notation
becomes slightly more complex than for the previously mentioned optimizers. g¢; is used to
denote the gradient at time step ¢, and g;; is then

Gti = V@J(@m) (2.46)
In the update rule for Adagrad, the learning rate « is updated for every parameter 6; based
on the past gradients that have been computed for 6;:
e

9t+1,z‘ = 9t,i - \/ﬁ * Gt
K

Here, G; € R4 is a diagonal matrix where each diagonal element i, is the sum of the squares
with respect to 6; up to time step t. To avoid division by zero, € is added as a smoothing
term and is typically around € = 1078, One of the main benefits with this algorithm is that

(2.47)

2.2 Deep Learning 27

manual tuning of the learning rate is not needed. On the other hand, the accumulated sum of
the gradients in the denominator keeps growing during training since every term is positive.
Consequently, the learning rate will eventually shrink to become too small to further update
the position of the parameters.

Adam is an optimizer that seeks to resolve this flaw with Adagrad. It stores an exponentially
decaying average of past gradients m; and wvy:

my = Prmi—1 + (1 — B1)gt (2.48a)

v = Bovi—1 + (1 — B2) g} (2.48Db)

Both m; and v; are initialized as vectors of 0’s, and therefore have a bias towards zero. To
counteract these biases, the bias-corrected estimates are first calculated as

R mi
t 1— ﬁ{ ()
N %
which are then used in the Adam update rule,
o 6 4w (2.50)
= e m .
T Jai+e

Generally, the suggested values for the constants are 51 = 0.9, 82 = 0.999, and € = 1075.
Several other optimizers exist, but they have limited or no improved performance over the
Adam optimizer.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) is a kind of network that is specifically adapted to
data that has a known grid-like topology. They have been immensely successful in practical
application, and especially in applications where image data is used. In place of general matrix
multiplication, convolution is used in some or all layers of the network. These convolution
layers can be broken down into three stages: the convolution stage, the detector stage, and the
pooling stage as illustrated in Figure 2.11. The convolution stage performs several convolutions
in parallel to create a set of linear activations. In the following detector stage, each linear
activation is passed through a set of nonlinear activation functions, such as the ones previously
presented in Figure 2.9. Finally, the output is further modified in the pooling stage before it is
passed on to the next layer. What the convolution and pooling stages specifically entails will
be presented in more detail in the following paragraphs.
The convolution operator is defined as

s(t) = /x(a)w(t —a)da (2.51)

where z(t) is the input and w(t) is the kernel, if the terminology for convolutional neural
networks is used. s(t) is then called a feature map. Typically, the convolution operator is
denoted as

s(t) = (x xw)(t) (2.52)

2.2 Deep Learning 28

Convolutional layer

Previous N Convolution Detector Pooling | | Next
layer stage stage stage layer

Figure 2.11: The stages of a convolutional layer in a neural network. Freely adapted from
the book Deep Learning [43].

In the discrete domain, the integral reduces to a sum,

s(t) = (zxw)(t) = Z z(a)w(t — a) (2.53)
which for M dimensions is
s(m,ng,...,nM) = Z Z cee Z $(k1,k2,...,]€]\/[)w(n1 —kl,TZQ—kQ,...,nM—kM)
k1=—00 ka=—00 ky=—o0

(2.54)
For a two-dimensional image (i.e. a grayscale image), the convolution operator should be
applied over two axes at a time. Using a two-dimensional kernel K on an image I, the
convolution operator becomes

S(i,5) =T« K)(i,j) =>_> I(m,n)K(i—m,j—n) (2.55)

= (K *1)(i,§) =YY I(i—m,j—n)K(i,j) (2.56)

where the third equality follows from convolution being a commutative operator.

The kernel is typically a 3 x 3, 5 X 5 or 7 X 7 matrix, which is likely much smaller than the
image. The two-dimensional convolution with a 2 x 2 kernel is illustrated in Figure 2.12. This
kernel is slided over the input image, producing the feature map. How far the kernel moves
when traversing the image is called the stride. The default for this value is usually 1, but a
stride of 2 could be used if for instance downsampling of the input is desirable. Without any
padding, which defines how the border of the sample is handled, the feature map will be & — 1
pixels smaller than the input if a k X k kernel is used. Instead, if the dimensionality of the
input should be maintained in the output, the input can be surrounded (or padded) with e.g.
zeros with a size of (k — 1)/2 if a stride of 1 is chosen. In general, the formula for calculating
the outpus size for any convolution layer is

0= w +1 (2.57)
where o is the output height/length, w is the input height/length, k is the kernel size, p is
the padding, and s is the stride. Note that the input size has to be considered when selecting
the stride and padding, as the convolution operator is not defined if the kernel does not cover
input units for all of its elements.

2.2 Deep Learning 29

Input
Kernel
a b c d
| w z
e f g h
y z
7 j k l
v Output
_>
aw + br + bw + cx + cw + dr +
ey + fz fy + gz gy + hz
ew + fr + fw + gr + gw + hx +
iy + jz jy 4+ kz ky + |z

Figure 2.12: A schematic illustration of 2D convolution with a 2 x 2 kernel on a 3 x 4 image
grid. In this figure the stride is 1 and the output is restricted to positions where
the kernel lies entirely within the image. Courtesy of Deep Learning [43].

In most networks, the images used are actually three-dimensional, and thus these
convolutions are performed in 3D. This is because an image is represented as a 3D tensor (i.e.
multidimensional array) with dimensions of height, width and depth, where depth corresponds
to the color channels RGB. A kernel, by design, covers the entire depth of its input and should
therefore be three-dimensional. However, multiple kernels can be used in one layer which would
output just as many disjoint feature maps stacked along the depth dimension, as illustrated
in Figure 2.13. In the next layer the kernel depth dimension must then match the number of
kernels used in the previous layer.

@Ss N

|

Figure 2.13: Illustration of how two feature maps can be stacked along the depth dimension.

In the pooling stage, a pooling operator replaces the output of the net at a certain location
with a summary statistic of the nearby outputs. This leads to a reduction in the number of
parameters, which could be necessary if the images are large. It will therefore also reduce the
training time, and counteract overfitting of the network. More importantly, pooling helps make

2.2 Deep Learning 30

the representation nearly invariant to small translations of the input. If it is more important
to know whether a feature exists in an image, rather than the location of that feature, the
invariance property could be useful. Common pooling functions include max pooling, average
pooling, and sum pooling. Max pooling is illustrated in Figure 2.14.

QU O | |
G| | 00| ©
=~ N W

=W N | =

Figure 2.14: Max pooling outputs the maximum value within a rectangular neighborhood.
This example uses max pooling with a 2 x 2 filter with a stride of 2.

In the stages presented above, the CNN utilizes three ideas: sparse interactions, parameter
sharing, and equivariant representations.

Sparse interactions refer to a property of CNNs; they store fewer parameters than their
fully connected feed-forward network counterparts. It is accomplished by making the kernel
smaller than the input. If there are m inputs and n outputs, forward propagation using a fully-
connected layer will have O(m x n) runtime. On the other hand, if the number of connections
each output may have is limited to k, the number of parameters is reduced to k x n which
results in a runtime of O(k x n). Good performance can in many applications still be obtained
with k several orders of magnitude smaller than m.

Second, using the same parameter for more than one function in a model is referred to
as parameter sharing. Specifically, the convolution operator uses parameter sharing to learn
only one set of parameters, instead of separate set for every location. This has no impact on
the runtime of forward propagation, but it reduces the memory requirements of the layer to k
parameters.

Third, equivariance refers to a property for a function where the output changes the same
way as the input. In mathematical terms, two functions f(z) and g(x) are equivariant if
f(g(x)) = g(f(x)). For a convolutional layer, the parameter sharing causes the layer to have
the additional property of being equivariant to translation. As an example, consider a function
f which maps one image function I describing a grayscale image to another image function I,
such that I'(x,y) = I(z—1,y). This operation shifts every pixel of I one unit to the right. The
same result will be obtained irrespectively of the order of convolution and this transformation
to I is applied. However, convolutional layers are not inherently invariant to changes such as
scaling or rotation.

2.2.3 Representation Learning Techniques

The goal of representation learning, or feature learning, is to automatically discover a set of
features of the data that make it easier to extract useful information when building classifiers or
other predictors [7]. A good representation is both one that captures the posterior distribution
of the underlying explanatory factors for the observed input, and one that is useful as input
to a supervised predictor. In deep learning, the representations are formed by composition of
multiple non-linear transformations of the input data. One should note that representation

2.2 Deep Learning 31

learning is here referring to the characteristics of the transformed input, and not the model
that is causal to it.

The representation of the data has a vital role in effective deep learning, and representation
learning provides a data-driven approach for achieving the best data transformations.
Generally, the performance of a model is critically dependent on the representations it learns
to output, which in turn is dependent on the model and on what is fed as input. In the context
of deep learning, this helps explain the reasoning for stacking a linear layer on top of one or
more complex blocks with many non-linear layers of different kinds. These complex blocks
transform the input to a rich representation which then only require a simple linear layer to
do the desired task. Without the transformation performed by the complex blocks it would
not be possible to extract key abstract features.

There are several priors that can impact the accuracy of a representation, and Bengio et
al. [7] cover these comprehensively. In the following f denotes a function that maps input z to
output representation y. Models may implement one or more of these priors to learn output
representations suited to a specific task.

e Smoothness: It is assumed that small changes in x leads to small changes in y: x1 ~ x2
implies f(z1) = f(z2). Some models require training examples to map out all the wrinkles
in the training function, or otherwise those features will not be represented by the model
as it is interpolating between neighboring samples for generalization.

o Multiple explanatory features: A model could potentially generalize without requiring as
many examples as there are variations in the underlying function f. This compactness
can only be achieved if the features are reused across examples that are not necessarily
in a local neighborhood, which is unlike the smoothness prior mentioned above. Deep
learning models can learn distributed representations of size O(N) to distinguish O(2¥)
input regions where £ = N in a densely distributed representation and £k < N in a
sparsely distributed representation. In distributed representations, k features are used to
represent a concept. Moreover, each feature participates in the representation of multiple
concepts. Sparse distributed representations, specifically, add a restriction where only
k < N features can be changed at any time. Distributed representations allows for
exponential combinations to represent the input.

e Depth - a hierarchical organization of explanatory factors: This hierarchy is beneficial
for mainly two reasons. First, deep learning models add increasing levels of abstraction
as they learn functions that transform input to output using a composition of non-linear
functions stacked in layers. Second, the depth allow for feature reuse across layers, which
adds numerous paths in the computational graph within the network.

o Semi-supervised learning: Representations that are useful for P(X) tend to be useful
when learning P(Y'|X) (where X is the input and Y is the target to predict), since a
subset of the factors explaining X’s distribution explain much of Y, given X.

e Shared features across tasks. This refers to sharing of learned representation across tasks,
where P(Y'|X, task) are explained by facors that are shared with other tasks.

e Manifold representations: Probability mass concentrates near regions that have a much
smaller dimensionality than the original space where the data resides. Autoencoders
explicitly exploit this hypothesis to learn lower dimensional representations of high

2.2 Deep Learning 32

dimensional data. For example, a 28 x 28 black and white image (such as the images in
MNIST [80], one of the simplest datasets in machine learning) has 784 degrees of freedom
which yield 27®* possible images, but most of them would not be naturally occurring
images. The hypothesis is that small variations in the naturally occurring images, such
as rotations, are mapped to corresponding changes in the learned representation.

o Natural clustering: Different values of categorical variables such as object classes tend
to be associated with separate manifolds, where each manifold is composed of learned
representation of an object class. That is, P(X|Y = i) for different i do not have much
overlap.

e Temporal and spatial coherence: Consecutive or spatially nearby observations tend to
be associated with the same value of relevant categorical concepts, or result in a small
move on the surface of the high-density manifold. Even though different features change
at different spatial and temporal scales, the values of the categorical variables of interest
tend to change slowly. Consequently, this prior can be used as a mechanism to force the
representatiosn to change slowly.

e Sparsity: For any given observation z, only a small fraction of the possible features are
relevant. In terms of representation, this could be represented by features that are often
zero or by the fact that extracted features are insensitive to variations of x.

e Simplicity of factor dependencies: With a high-level representation, the features that
may relate to each other through simple, typically linear dependencies. This can be seen
several laws of physics. For deep learning models, this explains why several state-of-the
art network architectures which have one or more linear layers near the output perform
well.

The approaches that are used for the purpose of learning data distributions of the
training set to generate new data points are also called generative models. In brief, some
of the most important generative models are the following: Generative Adversarial Networks
(GANs) aim to achieve an equilibrium between a generator and a discriminator, Variational
Autoencoders (VAEs) focus on maximizing a variational lower bound of the data log-likelihood,
and Variational Autodecoders (VADs) which are similar to VAEs but allow for inference to be
performed with gradient descent.

One thing these models have in common is that they are optimizing a latent vector,
which is a set of variables that are not directly observed but rather inferred through a
mathematical model. The neural network maps the input to this typically low-dimensional
latent representation. However, the exact way the latent vector is generated is unique to each
network architecture.

Generative model learning can roughly be grouped into four classes [111]: variational
learning, wake-sleep learning, joint-stochastic-approximation learning, and adversarial
learning. Only variational learning (of which VAEs and VADs belong) and adversarial learning
(of which GANSs belong) will be presented here.

2.2.3.1 Variational Learning

Variational learning is mainly applied to prescribed models, which are models that provide an
explicit parametric specification of the distribution of the observed random variable z, and

2.2 Deep Learning 33

where the likelihood function or target model density pg(z) is specified with the parameter 6.
Further, the auxiliary density introduced in training is denoted by ¢4(-) with parameter ¢.

Specifically, variational learning uses the variational lower bound of the marginal log-
likelihood as the single objective function to optimize the target models and auxiliary
model [111].

Variational Autoencoders (VAEs) The most important class of models in variational
learning is VAEs, which aims to learn the marginal likelihood of the data in a generative
process [71]. This section explains the concepts behind VAEs.

A prescribed latent variable model could be generally defined as

po(x, h) := po(h)pe(z|h) (2.58)

where h are hidden variables, which are also called the latent code. It is difficult to directly
evaluate and maximize the marginal log-likelihood logpg(z). An auxiliary inference model
¢s(hlx) with parameters ¢ is introduced in the variational inference approach, to be an
approximation to the exact posterior py(h|z). It is often called wariational distribution in
the context of variational inference [174]. Technically, the implementation of g, (h|x) is similar
to implementing py(z|h) as a prescribed model.

log o) = Eyp (1) 108 (pG(fL] ﬁ;) + Dicao (b} I (hf)

a6(
h

where Dk, (+]|-) is the Kullback-Leibler divergence introduced in (2.21). L£(z;6, ¢) is called the
variational lower bound, which could be rewritten as

(2.59)

L(x;0,9) = Ey, (njz) [log po(x,)] — Dxr(go(h|z)||pe(hlz)) (2.60a)
= Eq¢(h,x) [10gpg<l’, h)] + H(q¢(h’$)) (260b)

The two terms in (2.60a) are the expected negative reconstruction error and the KL divergence
between the approximate posterior and the prior which is a regularizer, respectively. Presented
this way, it becomes clear why py(z|h) and gy (h|z) are referred to as encoder and decoder.
Further, the combination of the two terms in (2.60a) hints at performing autoencoding, i.e.
automatically finding encodings for input x.

Variational learning aims to maximize (2.60) over the entire training data:

o ~ pg(l’, h’)
max L{0, ¢) = max Ej(z)q,(hja) 108 (2o ()) (2.61)

In words, the objective itself is aimed to be maximized by maximizing a lower bound to the true
maximume-likelihood objective in maximum likelihood learning, which is defined by maximizing
the data log-likelihood:

n
max = Z log po(xr) (2.62)
k=1

2.2 Deep Learning 34

The above optimization problem in (2.61) can be solved by finding the root of the following
system if the zeros of the gradients of the objective with respect to (6, ¢) are set to zero:

Ej(2)qo(hlz) [Vo log po(z, h)] =

z (2.63)
Eip(2)go (hlx) [10% (ZZEAB) x Vg log qqs(h:v)] =0

A simple schematic illustrating the encoder-decoder architecture above is given in
Figure 2.15.

T —> D

>

Figure 2.15: Autoencoder. A neural network E (encoder) learns a mapping from the input
data = to its latent representation h. D (decoder) can then reproduce a
reconstruction & based on h.

Variational Autodecoders (VADs) In contrast to VAEs, a VAD does not use any encoder
during the learning process [171], as illustrated in Figure 2.16. In brief, it is in the inference
step that the major distinction between VAEs and VADs become the most apparent.

backpropagate

Figure 2.16: Autodecoder. A neural network D (decoder) directly accepts a latent vector as
an input, which is optimized through backpropagation.

VADs perform inference by a multi-step procedure. The input z; € X is given to a
probabilistic decoder F(h;0) with parameters 8* to give the posterior distribution,

p(hlxs, A;) = N(F(2;0%); 24, Ay) (2.64)

where A; is the covariance defined as a diagonal positive semi-definite matrix with random
variables «; on its main diagonal whenever «; # 0. Given the sample h; given at time ¢, the
possible steps at time step ¢+ 1 are chosen to follow a normal distribution centered around z;.
This leads to a higher chance of visiting points closer to z; next, which makes the sampling
seem like a random walk when they are taken from the posterior p(h|z;, A;). The following
acceptance criteria is used to determine which samples are chosen:

¢ = min <W 1) (2.65)

p(2e|zs, A

2.2 Deep Learning 35

where ¢ is the probability of 1 from a Bernoulli distribution. If the result of the test is 1,
the step is accepted. Otherwise, if the result is 0, the step is rejected and z;4+1 = z;. In the
end, a set of points H = hq,...,hp is produced, where T is the number of samples drawn
from a posterior p(h|z;, A;). Note that this procedure to generate the latent representation is
much slower than using an encoder as in VAEs, but potentially give a superior performance in
dealing with partial data.

For an approximate posterior g(h|z;) from a set of known simpler distributions where
sampling can be done more easily, the following variational lower bound is maximized:

arg;nax Eq¢(z|:pi) [lngg* (h7 xz) — log Q¢(h|$z)] (266)

This equation can be maximized using the expectation maximization algorithm to learn ¢
in such a way that samples from p(h|z;, A;) are reasonably generated by the approximate
posterior. The inference output is gg(h|z;).

The training procedure of VAD models can be summarized in two steps that are iteratively
taken until no further improvement in the variational lower bound in (2.60) is achieved. In
the first step, inference as defined in the previous paragraph is performed. This maximizes the
lower bound with respect to ¢. Then, in the next step, the lower bound is maximized with
respect to 6. In the end, a trained decoder F(h;0*) with parameters 6* is obtained.

2.2.3.2 Adversarial learning

Adversarial learning uses a technique where an auxiliary model is introduced to act like a
discriminator and optimized simultaneously as an implicit model is learned. The implicit
model uses a latent variable €, and transform it using a deterministic function Gy(e) to define

z = Gy(e)

2.67
e~ p(e) (267
Quite often, a feed-forward network is used to represent Gy(¢€), which is called a generator in
this context. e is also referred to as an input noise variable, and assumed to obey a simple
priori p(e) such as the standard normal N0, 1] or the uniform distribution. A distribution
pe(x) is thus implicitly defined by the transformation.
In the following, the adversarial learning methods Generative Adversarial Networks and
Variational Divergence Minimization learning are presented.

Generative Adversarial Networks (GANs): GAN training is formulated as playing
a two-player minimax game where the goal is to find py(z) that best describes the true
distribution given a set of independent and identically distributed samples D = {z1,...,2,}
from an unknown distribution po(z) [42]:

min max FGAN(0,v) = Eppy(a)[10g Dy ()] + Eenp(e) [l0g(1 — Dy (Go(€)))] (2.68)

Here, Dy(x) represents the discriminator, which calculates the probability that x comes from
the data po(x) rather than py(z). Dy(x) is trained to maximize the probability of assigning the
correct labels to both training examples and generated examples, while Gy(¢) is simultaneously
trained to minimize the probability of the correct labeling of generated samples. In other words,

2.2 Deep Learning 36

Gy(e) tries to trick the discriminator into believing that py(x) actually comes from the true
distribution pg(x). For any fixed generator Gy(€) the optimal discriminator is

~ po(x)
Dy (@) = po(z) + po(x) (2.69)

When the discriminator is optimal, the objective in (2.68) becomes

po(x) o po(z)
o <p0(37) +P9(HT)> + Bert [l : <p0(96) +p9<x>>] (2.70)
— —log(4) + 2 - JSD(po(x) |ps(a))

where JSD(+) is the Jensen-Shannon divergence defined in (2.20).
After the training is finished, hopefully a saddle-point (pg(z) = po(x)) of (2.68) is found.
A schematic of a GAN is given in Figure 2.17.

FGAN(Qa ¢*) - Exwpo(x)

|-
=N

Figure 2.17: Generative Adversarial Network. A neural network G (generator) synthesizes
samples that look indistinguishable from real data based on a distribution e.
D (discriminator) tries to distinguish the real samples z from the synthesized
samples .

Variational Divergence Minimization Nowozin et al. [109] showed that the learning
objective of GANs are actually variational bounds on a divergence between two distributions.
This enables extending the GAN objective to general f-divergences, which is defined as follows:

Di(pollpe) = /Xpe(m)f (ggg;) dx (2.71)

f is a generator function f : Ry — R which is convex, lower-semicontinuous and satisfying
f(1) = 0, which leads to D(po|[po) = 0 for all distributions pg. Various choices of f are
available, including the Kullback-Leibler divergence. This generalization of GANs is called
variational divergence minimization.

To see how one can learn by variational divergence minimization, the lower bound for
the f-divergence has to be derived. First, it is important to note that every convex, lower-
semicontinuous function f has a convex conjugate function ff. fi = f, which means that the

2.2 Deep Learning 37

pair (f, f1) is dual. Furthermore,

fit)= sup {ut - f(u)}

uedom ¢

flw)= sup {tu— fi(t)}

tedome

(2.72)

A lower bound on the f-divergence can be obtained by using the variational representation of

f:

Df(PoHpe)Z/Xpe(w) sup {tpo(x) —fT(t)}da:

tedom ¢ po(x)
> ;1217{ (/X po(x)T (x)dx — ng(x)fT(T(x))dx) (2.73)
= SUp (Epo() T'(@)] = Bpy(o) [/ (T(@))])

where T' is an arbitrary class of functions 7' : X — domy;. Two reasons can be stated for
why the above derivation yields a lower bound. First, because of Jensen’s inequality (which
states that if a function f is convex and x is a random variable then E[f(x)] > f(F[z])) when
swapping the integration and supremum operations. Second, the class of functions 7" may
contain only a subset of all possible functions. The bound is tight for

T*(z) = f' <p0(m)> (2.74)

po ()

when taking the variation of the lower bound of (2.73) with respect to T Here, f’ denotes the
first-order derivative of f.

The variational lower bound in (2.73) can be used on the f-divergence D(po||ps) to
estimate the implicit generative model py(x) given the true distribution pg(x):

it max F7(0,) = Epy(o) [T(2)] = By 1 (T (2)] (2.75)

Here, T)y(x) is a parametrized vector of the variational function T'. To find the saddle points
of F(0,1), it is necessary to set the gradients of it to zero with respect to (6,1) and then find
the root of the resulting system.

CHAPTER 3
Related Work

As the goal of this work is to create a 3D vision pipeline which fills in the occluded parts of the
objects of interest in a scene or a workspace, ideas from several fields will have to be combined.
Therefore, for a holistic understanding, this chapter includes a literature review on as many
as four fields related to RGB-D imaging and 3D vision; denoising and filtering (Section 3.1),
segmentation and object detection (Section 3.2), point cloud registration (Section 3.3), and
shape completion (Section 3.4).Extra attention is given to the current state-of-the art, in
addition to some methods which could potentially be used in a novel way.

Additionally, a section on available 3D datasets is included (Section 3.5). Compiling and
annotating datasets is an intensive process which requires numerous man-hours. Since deep
learning models in particular require thousands of objects in the datasets used for training,
the design of such models are enabled by the availability of public datasets.

3.1 Depth Image Denoising and Enhancement

RGB-D cameras and related sensor technology have recently become more widely available
and affordable, and thus enabled new applications in computer vision in the 3D domain.
Unfortunately, for most methods of depth acquisition, the resolution and quality of the depth
component are significantly lower than that of the RGB component. Additionally, the depth
cameras still suffer from heavy sensor noises. This results in the need for post-processing depth
images acquired from RGB-D cameras, by using methods in denoising and upsampling, and
other enhancements.

In the color image domain, the most widely accepted framework employs the combination
of transform domain techniques and nonlocal similarity characteristics of natural images [76].
Based on this framework, many competitive methods model the correlation of RGB channels
with pre-defined or adaptively learned transforms. In the depth image domain, however,
different approaches are needed.

Since the RGB-D camera captures images that are of higher resolution and lower noise than
the depth sensors, it is a reasonable approach to use the color information to improve the depth
data. Some of these methods use a heuristic assumption between color and depth [31, 78, 90,
112, 167, 180], but typically produce depth maps with artifacts and which are not metrically
accurate. RGB images can also be used to improve depth quality by investigating the depth
transport process [6, 49, 169, 175]. For instance, shape-from-shading techniques can be used
to refine the geometry of the structures in the depth map via inverse rendering optimization.
However, such optimization is immensely challenging with traditional optimization methods.
Additionally, artifacts may appear if the geometry is not precisely estimated.

Another approach is to use multiple depth frames as input, and fuse them together to
improve the depth quality. Fusion methods combine feature extraction and matching for

3.2 Semantic Segmentation and Object Detection 39

succeeding RGB-D scans of a scene [26, 48, 105], which in addition to reducing noise also
performs 3D reconstruction of the scene. By integrating signed distance functions, some
methods are able to effectively reduce noise [15, 108]. The limitation with these approaches is
that they require multiple frames to improve the accuracy of the original depth map.

Data-driven methods may be used to improve the solutions of the previously mentioned
approaches. For instance, Barron et al. [5] use a statistical method where priors derived from
images are used to find reflectance, shape and illumination in the inverse rendering problem.
Methods like these do not require any learning, but they typically require segmentation of
foreground objects and depend heavily on the quality of such segmentation. On the other
hand, neural networks such as CNNs [161, 162, 85] are able to produce impressive results that
are generalizable to a wide range of scenarios. These methods also upsample the resolution of
the depth images to comparable sizes to those of the RGB images. Hybrid methods [128, 141]
have also been proposed, where subsequent optimization stages are applied to the CNN output
to produce sharper results. Voinov et al. [153] demonstrate that using a visual appearance-
based loss, used with e.g. a CNN, yields significantly improved 3D structures with less artifacts
than the previously mentioned methods.

Another option is to denoise the resulting point clouds after conversion from the depth
maps. In this domain, deep learning models are by far producing the best results [44, 57, 81,
124]. There does not seem, however, to be any advantage of denoising the point clouds rather
than the depth maps.

3.2 Semantic Segmentation and Object Detection

Perhaps the most important task when working with images is to identify what the image
represents. To gain a complete image understanding, effort should not only be put on classifying
images, but also to estimate which objects are represented and their locations in the image.
These tasks have different names depending on the exact formulation of the problem. Object
detection refers to the task of detecting all objects in an image and localize them with a
bounding box. The bounding box could also be labeled to add information on the object
inside. Segmentation, however, refers to a partition of an image into several coherent parts.
Specifically, semantic segmentation both partitions the image and classify each part into one
set of predefined classes, which in practice means that the goal is to classify each pixel in the
image. Instance segmentation is an even more ambitious task, where each instance of objects
belonging to the same class should be identified. The difference between all these tasks is
illustrated in Figure 3.1. It should be noted that these tasks can also be applied to other data
than images. For instance, bounding boxes can be drawn around three-dimensional data which
could also be segmented into its constituent parts.

Recent surveys and reviews [38, 148, 178] conclude that deep learning methods is the current
state-of-the art, and that they have many promising directions for future work. These methods
are able to extract high-level features and are thus able to address the issues existing with
classical methods. Most notably, popular classical methods such as gray level segmentation,
which hard-codes rules (gray level intensities) a region must satisfy for it to be assigned a
particular label. It might work somewhat well for depth images, where objects in the foreground
might have distinctly different depth than their surroundings. However, it will fail for cases
such as a tabletop which can span a relatively high length in the depth dimension, and thus

3.2 Semantic Segmentation and Object Detection 40

(¢) Semantic Segmentation (d) Instance Segmentation

Figure 3.1: The difference between classification (identify which object is in the scene), object
detection (find tight bounding boxes around each instance of an object in a scene),
semantic segmentation (identify the pixel locations of each object class in a scene),
and instance segmentation (identify the pixel locations of each instance of each
class in a scene).

be falsely be segmented into multiple partitions. Deep learning methods, on the other hand,
are producing results of impressive quality in cases like these.

In this work, RGB-D images will be the raw data which should be segmented in order
to extract the objects of interest. Since each object has to be individually identified, instance
segmentation methods in particular will be of special interest. The additional data in the depth
image should intuitively give a vastly improved information foundation compared to images
with only color data. However, the state-of-the art approaches which use only color images
as the training data could possibly be transferred to corresponding approaches where RGB-D
data is used instead, as the only difference is an added channel to the neural network input
(i.e. the depth).

Current instance segmentation methods can be roughly categorized into two classes;
detection based methods and segmentation based methods. Detection-based methods [16,
27, 55, 86, 119] use detectors from object-detection networks such as Faster R-CNN [126] or

3.2 Semantic Segmentation and Object Detection 41

R-FCN [28] to get the region of each instance, and then predict the mask for each region.
A common limitation with these methods is that mask quality is only measured by the
classification scores, which only distinguishes the semantic categories of proposals, and do
not control the quality of the instance mask. High classification scores can be achieved for the
localized bounding boxes, but the corresponding masks may be inaccurate. The other class,
segmentation based methods [12, 34, 51, 64, 72, 87, 106], predict the category labels of each
pixel first and then group them together to form the region masks. However, a drawback with
both of the aforementioned classes is that they do not consider the alignment between mask
score and mask quality. A mask hypothesis could be ranked with low priority if it has a low
mask score, even though its IoU against ground truth is high.

Huang et al. [59] addressed these issues by introducing a detection score correction to
the detection-based method Mask R-CNN [55], which resulted in a network that is the current
state-of-the art. Conceptually, as shown in Figure 3.2 the network is composed of Mask R-CNN
with a MaskIoU head, which predicts the intersection over union between the input mask (the
instance feature and the predicted mask) and the ground truth mask. Mask R-CNN further
consists of two stages. The first stage is called the Region Proposal Network (RPN), which
regardless of object categories propose candidate object bounding boxes. The second stage is
referred to as the R-CNN stage, which for each proposal extracts features using RolAlign as
more precisely explained in Figure 3.3. It also performs classification, bounding box regression
and mask prediction.

1 Backbone network . . RCNN Head

1
= o ose |
. ! RolAlign, | | 7x7 class |
' ' > | [x256| —>[1024 ﬁl 1024 ﬁ '
[] T 1 1 1
1] 1 oX
[] 1] |
L7 '
: : e :
1 L} 1 '
" t ' ' :
. ! RolAlign | [14x14 zaxzs 8x28 ' sxza
' e | |*256| --- -> %256 x| L —» x1
1 1 1 '
: t : L :
1 1 1
! / ' ' } Mask Head |
Vo . Concat < MaxPooling
: :
1 L}

E MashoUE
” E —>[1024 Ul 1024 ﬁ @ :
/; - : .

Inputimage :— -— —] MaskloU Head ,
Figure 3.2: Mask Scoring R-CNN architecture. A backbone network is using RPN and
RoIAlign on the input image to generate Rol features. Both the RCNN Head and
Mask Head are components extracted from Mask R-CNN. The MaskloU Head is
used to predict the MaskloU. The layers with numbers k X k x d are convolutional
layers, while the layers with only one number are fully connected. Courtesy of
Huang et al. [59].

3.2 Semantic Segmentation and Object Detection 42

Figure 3.3: RolAlign computes the value of each sampling point by bilinear interpolation
from the nearby grid points on the feature map. In the figure, the dashed grid
is represented as a feature map, while Rol is here represented by solid lines with
2 x 2 bins, and the dots are the four sampling points in each bin. Courtesy of He
et al. [55].

The scoring of predicted mask is defined as Spask = Scls * Siou, Where S¢js is the score of the
classification proposal and s;oy is the score for regressing the MaskloU. This decomposition of
Smask directly follows from two criteria: It should be equal to the pixel-level IoU between the
predicted mask and its matched ground truth mask. Since a mask only belongs to one class,
it should also be positive for ground truth category, and zero for other classes.

Previous work in RGB-D image segmentation combined two networks for RGB and data. A
common approach with these methods is to pretrain a model on a large RGB dataset and then
fine tune it on the target RGB and depth dataset. This has been a necessary approach as until
recently RGB-D datasets have been limited in terms of size (see Table 3.2 in Section 4.1.2).
However, the approach has several limitations. The low-level filters learned from the RGB data
are not used for the depth data, and thus the network cannot properly exploit depth-specific
patterns. Further, RGB and depth features are only combined a high levels (i.e. the last
layers).

A second option on including depth data in segmentation networks is to encode them as
RGB data, such as using the HHA approach by Gupta et al. [46]. With this encoding, the depth
image is represented with three channels at each pixel: horizontal disparity, height above the
ground, and the angle the pixel’s local surface normal makes with the inferred gravity direction.
Hazirbas et al. [52] showed that RGB-HHA outperforms other input forms such as RGB-D,
which have similar accuracy as only RGB input. However, they also showed that the HHA
encoding does not hold more information than the depth image, but hinted that splitting up
the RGB-D data into RGB and depth images would fully utilize the depth information.

More recent RGB-D image segmentation networks have successfully trained encoder-
decoder-like networks on combined RGB and depth data [52, 63, 136]. The encoder in these
networks consists of multiple branches that simultaneously extract features from RGB and
depth images. These features are then fused together after each layer. The network RedNet
by Jiang et al. [63] in particular achieve state-of-the art on the SUN RGB-D benchmark dataset
by also applying depth fusion structure on the downsample part of the network, and apply
skip-connections to bypass the fused information to the decoder for full-resolution semantic
prediction. A main limitation with RedNet is that it needs to be modified to do instance

3.3 Point Cloud Registration 43

segmentation, which is a non-trivial task.

In the 3D domain, segmentation and object detection on point clouds has shown promising
results [118, 121, 139, 163]. As point clouds could be directly inferred from depth images,
such methods could potentially be of interest in this work. However, they discard any color
information in the data and are thus more relevant for LIDAR scans in terms of real-world
applications.

3.3 Point Cloud Registration

Point cloud registration is a key problem in computer vision which involves finding a rigid
transformation from one point cloud to another so that they align. Use cases include scanning
a scene, where it is important to transform the point clouds to the same reference coordinates,
or aligning a partial scan of an object to that of a reference point cloud acquired from a dataset,
which is one of the core tasks in this work.

Iterative Closest Point (ICP) [9] is the most popular registration algorithm. This algorithm
iteratively estimates the point corresponcence in the following manner: For each point in the
first point cloud, the closest point in the second point clouds is searched for. Then, solve for an
affine transformation which minimizes the distance between these point pairs. The first point
cloud is then updated with this affine transform, and the process is repeated until the change
in mean-square error falls below a preset threshold. The are multiple variations of ICP [133],
which handles these steps slightly differently to address issues regarding e.g. outliers in the
point clouds. For instance, the search for closest points could be done using k-d tree nearest-
neighbor search, and the transforms could be solved using singular value decomposition (SVD).
However, all variations of ICP methods have some essential drawbacks: They are sensitive to
initialization, in that they are prone to a local minima due to non-convexity. Further, the closest
point correspondences are explicitly estimated, which causes the complexity not to scale well
with increasing point cloud sizes. It would also be useful to incorporate these methods into a
deep learning context, but this is nontrivial due to issues with differentiability.

When a global solution is desired, i.e. when the point clouds are not roughly aligned prior
to registration, Go-ICP [166] could be used. It is a branch and bound-based optimization
approach to search the motion space SFE(3) to obtain a globally optimal pose. Other
methods which attempt to find the globally optimal estimates are based on Riemannian
optimization [132], semi-definite programming [58, 92|, and mixed integer programming [62].
All these methods are severely limited in terms of real-time usefulness due to their large
computation time.

Some approaches estimate interest points to help with registration [40, 41]. These methods
might increase the computational speed, but are not generalizable to all applications.

Recent efforts have applied graph neural networks to address difficulties in the classical
ICP pipeline. For instance, Aoki et al. [2] use a PointNet-architecture to learn point cloud
representations [123], while Wang et al [155] use DGCNN [156] for this purpose. The latter
method, named Deep Closest Point (DCP), constitutes the current state-of-the art on point
cloud registration and will form the basis for the registration part of this work. If extra
accuracy is desired, ICP can be used to the output from DCP to refine the result.

A major drawback with all the aforementioned approaches is that they only align point
clouds that are of the same size. That is, they are able to correctly rotate and translate the
point clouds to match, but not scale them appropriately. Most applications include point clouds

3.4 3D Shape Completion 44

of different scales, which means that this is a very important issue. However, this research in
this area still seems to be in the early stages. Some recent work [17, 18, 89] presents a few
approaches to the issue, but they give a limited accuracy on point clouds which are of widely
different scales, or when they differ in terms of completeness.

3.4 3D Shape Completion

3D shape completion is a sub-field in computer vision and computer graphics which is concerned
with the problem of estimating a complete 3D structure of an object given sparse or partial
input observations of an object. Such partial observations could be depth images from
one viewing angle or point clouds from LiDAR scans. This problem corresponds to image-
inpainting in 2D computer vision. In three dimensions, the problem is even more daunting as
in theory an infinite number of 3D models can be associated with a partial observation. For
reference, a related problem is 3D reconstruction, which is the problem of recovering object
shape from either a single image or multiple images. Zollhofer et al. [181] recently published
a review on state of the art on 3D reconstruction with RGB-D cameras, but their main focus
is on reconstructing complete scenes, and not individual objects. Therefore, the most relevant
papers to 3D shape completion are missing in that review.

In general, existing methods for 3D shape completion can roughly be categorized into
geometry-based, alignment-based and learning-based approaches. These approaches will be
discussed in detail in the following sections, with a focus on the learning-based approaches as
the most recent literature and state-of-the art belong to this category.

3.4.1 Geometry-based shape completion

Geometry-based shape completion use geometric properties from the partial input without any
external data to output a complete shape.

In geometry processing, shape completion has been a long-studied problem where hole
infilling in particular has been one of the main areas of focus. Several traditional algorithms
aim to fit in local surface primitives such as planes or quadrics. For instance, minimum area
triangulation [4] finds the triangulation of a mesh that has the smallest measure in terms of
metrics such as area or edge length. Liepa’s hole-filling algorithm [88] instead looks for a
triangulation with the smallest dihedral angle (the angle between two intersecting planes). A
volumetric approach is introduced in the robust repair [65] algorithm, which determines grid
edges of a regular voxel grid that intersect the mesh, and then uses marching cubes [91] to
reconstruct a complete polygon surface. These algorithms finish in up to O(n?®) time, making
them too slow for real-time applications.

Alternatively, a continuous energy minimization approach such as Laplacian smooth-
ing [104, 142, 177] could be applied. This is equivalent to formulating the problem as an
optimization problem. These methods represent a mesh as a graph G = (V, E), with vertices
V and edges E, where V = [v],vg,...,v,]]", v; = [viz, viy,vi:] | € R? is the original geom-
etry, and V' is the displaced geometry. Furthermore, d; is the Laplacian of wv;, the result of
applying the discrete Laplace operator to v;, i.e.

Gi= D, wi(vi—vi)=| > wyvj| —vi (3.1)

{i,j}€E {i,j}€E

3.4 3D Shape Completion 45

where 3 ¢; hepwij =1, and weights

wij
Wi = ———— (3.2)
! Z{i,j}eE Wiy

where w;; can be chosen to be e.g. w;; = 1. The Laplacian for the entire mesh is obtained by
using the n x n Laplacian matrix L with elements

-1 i=j
Lij=Sw; (i,j)c€E (3.3)
0 otherwise

This Laplacian matrix is used in the algorithm least square meshes by Sorkine et al. [142],
who demonstrate how a mesh can be reconstructed from only connectivity information. The
positions x, y and z are solved for separately by minimizing the quadratic energy

2 2
+ Z w2 vl — veq (3.4)
seC

Jr.v;

Here, C C V of m geometrically constrained vertices (anchors) and V] =
[V] s Vs - -, Vg Ty d € {z,y,2}. The scalars vgy are the stored anchor positions and w? are
weighting factors. The overdetermined linear system

L 0
——|V]=|—— 3.5
[Imxm‘O] I [Wl...m)d] ()
S

where I, «m is the identity matrix and o is the zero-vector is then solved with least squares
as V) =(ATA)"1ATb.

Laplacian mesh smoothing [104] generalizes the previous method by modifying it to include
all vertices as both Laplacian and positional constraints.

A third option is Poisson surface reconstruction [68, 69], which is a technique for creating
watertight surfaces from oriented point samples, such as point clouds acquired from 3D range
scanners. The watertight mesh can be obtained by transforming the oriented point samples
into a continuous vector field in 3D, for then to find a scalar function whose gradients best
match the vector field, and finally extract the appropriate isosurface, which is a surface that
represents points of a constant value. In this context, the isosurface implies the surface of a
3D object.

The original Poisson surface reconstruction approach reconstruct the surface of the model
M by solving for an indicator function x of the shape:

1 ifpeM

0 ifpg M (3.6)

XM =

This indicator function is defined as 1 inside the model, and 0 outside. The problem is then
rephrased into how the indicator function can be constructed. Given a point cloud with
oriented points, there is a relationship between the normal of the field and the gradient of
the indicator function Vy ;. By representing the points by a vector field 7, and finding the

3.4 3D Shape Completion 46

function y whose gradient best approximates 7 the problem reduces to inverting the gradient
operator, i.e. mmXHVX — H If the divergence operator is applied, this problem can further
be transformed into a Poisson problem:

V- (V) =V-Vevy=v.V (3.7)

The entire procedure is illustrated in Figure 3.4

S . ? ,,,,, o ,O 0 O o
R WA 0 N ;i 0
: Vi i0 o e
- Tod 0
-, - . 0 0 0
TN R 0 0
Oriented points Indicator gradient Indicator function Surface
V \%; Am oM

Figure 3.4: Illustration of Poisson reconstruction in 2D. Courtesy of Kazhdan et al. [68].

Symmetry-driven methods [101, 102, 115, 120, 140, 144, 149] constitute another
subcategory of geometry-based shape completion, where the approach is to identify symmetry
axes and repeating regular structures in the partial input in order to copy parts from observed
regions to unobserved regions. For instance, Zabrodsky et al. [56] and Podolak et al. [120]
propose the planar reflective symmetry transform (PRST) to encode a continuous notion of
symmetry of an object about any any reflective plane in 3D. Given a reflective plane ~, the
PRST for a function f is defined as:

PRST?(f,7) =1 — d(f| |J’Z|T§ i (3.8)
where the function d(f,~v(f)) is defined as
d(f,7(f)) = min||f — g (3.9)

which is the distance of the function f to the closest function g that is symmetric with respect
to the transform defined by ~. Hence, v(g) = g. Equation (3.9) can be simplified to

d(f,v(£) =[lf = (f ++(1)/2| (3.10)
. P ;)| (3.11)

since the closest function is the average of f and its reflection +f, and thus the equation for

PRST reduces to
1+f9(f) (3.12)

PRST2(f,7) = —

where f is assumed to be normalized, i.e. || f|| = 1.
PRST is a general-purpose transform with several potential applications such as alignment,
matching, segmentation, and viewpoint selection. In the context of shape completion,

3.4 3D Shape Completion 47

alignment using PRST is the most relevant. Three principal symmetry axes (PSA), which the
normals of the orthogonal set of planes with maximal symmetry, are found in a sequential
manner. The first principal symmetry axis is found by finding the plane with maximal
symmetry, and the second axis is found by searching for maximal symmetry on the planes
that are perpendicular to the first. The final axis is found in the same way. With these axes,
the center of symmetry (COS) is also defined as the intersection of those three planes. With
multiple partial scans of an object, each partial scan can be aligned based on its PSA and
COS, providing a unified model. However, for individual scans, PRST provides an automatic
alignment of the object into a canonical coordinate frame, which could be of use for other shape
completion methods. Additionally, the same approach could be of use in the preparation of
aligned 3D model datasets.

To summarize, multiple caveats apply to the methods presented in this section. They
mainly only fill in smaller holes, and thus require surrounding geometry around the part that is
to be reconstructed. Therefore, they are more applicable to completing human-designed meshes
that are not watertight or contain undesired internal structures than partial observations or
incomplete data from the real world, as they are generally too sparse for such approaches to
give any satisfying completions.

3.4.2 Alignment-based shape completion

Alignment-based approaches complete shapes by matching the input with template models
from a large database.

An idea is to fit models from a shape database to the partial observation from a range scan.
The matched models could either be complete objects [47, 84, 103, 116, 137], or object parts
that are then assembled to obtain the complete shape [66, 70, 94, 138, 144].

For better generalizability, models in the dataset could be deformed to match the partial
observation [11, 37, 45, 83, 130, 131]. Particularly for models such as humans and animals,
approaches like these would be beneficial. Such models might pose in numerous ways, but the
core geometry constituting the models are still the same. Therefore, representing e.g. humans
with a single model, the completion of a partial observation amounts to identifying the joint
angles (i.e. elbows, knees, etc.) and characteristics such as height to deform the base model
appropriately.

Alternatively, geometric primitives such as planes and quadrics (ellipsoids, paraboloids,
hyperboloids, etc.) could be used in place of a shape database.

If an exact match of the object is in the database, alignment-based approaches might
give the best completion, but otherwise these methods fall short. Therefore, in an industrial
application such as an assembly line where the geometry of objects are known at millimeter
precision, shape completion with an alignment-based approach could be the method of choice.
On the other hand, since these methods do not easily generalize to previously unseen shapes,
they are of limited use in open environments. Additionally, for the methods that deform or
assemble parts of objects, the completion procedure requires expensive optimization. This
would in turn make them too slow for online, i.e. real-time, applications. Finally, the methods
are sensitive to noise. This could be addressed by filtering the partial observation first, but
this adds extra complexity.

3.4 3D Shape Completion 48

3.4.3 Learning-based shape completion

Learning-based approaches complete shapes with a parameterized model, such as a deep
learning network, which directly maps the partial input to a complete shape. This property of
these approaches consequently enable fast inference and better generalization. In the literature,
most approaches adapt an autoencoder approach such as variational autoencoders. In the
following, the literature review is therefore organized according to the data representation of
3D models, as that seems to be the main concept to differentiate between the various methods.
Still, there are some variations in the architectures for each data representation, and the main
novel ideas will be highlighted.

Voxel Representations: FEarly works introduced learning-based models to 3D shape
completion using voxels as the chosen data representation. Wu et al. [160] proposed a CNN
which complete models from depth images, where they generalized the convolution operator
to three dimensions in order to convolve volumes. Further, it was shown that networks such as
GANSs also can be utilized in the 3D domain [158], although the training is heavily unstable.
A third paper formulated a recurrent neural network approach to the problem [20], but this
approach seems to be more rare in the literature.

However, these approaches were limited to very small grid sizes, such as 323. This creates a
very blocky model, which can only complete simple man-made objects such as tables and chairs
somewhat accurately. The reason behind this limitation is explained by the cubic increase in
the voxel grid, causing the memory requirements to be very high. More recent papers try to
address these caveats by designing more complex architectures [159, 157, 164, 165, 176]. Yang
et al. [165], for instance, adds linear upsampling at the output from the discriminator in their
GAN-architecture. Although these networks support resolutions up to 2563, it is only made
possible by having shallow architectures or small batch sizes, which leads to either poor shape
completions or slow training.

Alternatively, the grids could be represented in tree-structures such as octrees [50, 127,
146]. This alleviates the compute and memory limitations of regular voxel methods, and can
support resolutions up to 5123 [146]. Unfortunately, these methods are difficult to implement,
and they require multiple passes over the input to generate the final 3D model. Therefore, they
could also become quite slow for inference, rendering them unusable for online applications.
In the end, octrees only allow for slightly better resolution compared to voxels, and therefore
only partly solves the memory issues.

While still keeping voxel grids as the data representation, sub-voxel precision could be
introduced by predicting truncated signed distance fields (TSDF) [25, 129, 143, 173] where
each point in a 3D grid stores the truncated signed distance to the closest 3D surface point.
Since these methods store distance functions in addition to the voxel grids, networks that work
with this kind of data representation have to learn additional parameters making the learning
process harder. The TSDFs are also confined to a voxel grid, and thus the resolution is still
limited by the underlying grid structure, while the memory usage is even higher than regular
voxels.

Recent research indicate that these limitations with voxel-based approaches can not be
solved by designing better network architectures, as the 3D domain introduce challenges
that are not present in the two dimensional domain of images on which these methods draw
inspiration. The main problem with voxels is that for high resolutions, a substantial fraction
of the data structure does not represent any part of the 3D object, as it is inside the model.

3.4 3D Shape Completion 49

For most applications, only the surface of the model is of interest. As the memory limitations
of the voxel grids hinders the resolution to be set high, finer details can not be preserved. The
only advantage with a voxel-based learning method seems to be that it can be used to fairly
directly adapt novel methods presented in 2D computer vision to the 3D domain.

Mesh Representations: Meshes have been considered as the data representation, but
suffer from being overly complex in a deep learning perspective. In the computer graphics
community, however, meshes have always been the main representation. There are a few
key differences between the two fields that explains this discrepancy. For computer graphics,
describing geometry with vertices, edges, and faces allow for simple descriptions of objects. A
flat surface such as a wall can be coded as a single triangle, while objects that are in focus can
be devoted more triangles. On the other hand, a neural network will have a higher difficulty
in understanding such optimal encodings of objects. This insight helps explain why existing
mesh-based deep learning efforts are only able to generate shapes with simple topology [154],
require a reference template from the same object class [67, 75, 125], or cannot guarantee
closed surfaces [150]. They are also prone to generating self-intersecting meshes, which would
require advanced post-processing to be of use.

Other works introduce novel convolution and pooling operations for meshes [152], of which
the recently released work by Feng et al. [35] is of special interest. They claim to solve the
complexity and irregularity problem of meshes, by introducing new descriptors for meshes and
a novel mesh convolution operator. Currently, their presented network MeshNet only solves
tasks such as classification. It will be interesting to see their mesh convolution task applied to
the task of shape completion, and how it compares to the state-of-the art in that area.

Point Representations: Learning on point clouds was pioneered by the PointNet
architecture [123, 122], which was first applied to the 3D reconstruction problem by Achlioptas
et al. [1] The main concept they introduced was achieving permutation invariance by applying
1x1 convolution followed by a global pooling operation, which might sound somewhat peculiar.
Intuitively, convolution cannot happen on a single 1x1 cell. For layers with only one channel,
1x1 convolution would simply be multiplication. However, if there are multiple channels, two
effects can be applied with this operation. Non-linearities are introduced to the network due
to the activation functions included in the convolution. Additionally, the depth of the input
volume can be either increased or decreased by choosing the appropriate number of filters in
the 1x1 convolution. It turns out that this is enough for a network to learn 3D representations,
as otherwise fairly standard autoencoder architectures are used.

Several more recent approaches build upon the PointNet architecture for shape
completion [33, 168, 172], but the Point Completion Network by Yuan et al. [170] seems
to be the current state-of-the art of the point-based approaches. It combines two networks
into one: an autoencoder that generates a coarse output with a resolution of 1024 points, and
a folding network which learns how to deform 4x4 point patches around the points from the
coarse output, effectively upsampling the point cloud 16 times to a fine-detailed output. The
folding network is simply a feed forward network that deforms the 4x4 patches into a smooth
2D manifold in 3D space. The idea to combine several networks have been used in several
other approaches, including the voxel-based network proposed by Yang et al. [165] mentioned
earlier. It seems like this is an effective way of guiding or helping the network to learn more
easily in the training phase. A common problem in deep networks with many layers, which is

3.4 3D Shape Completion 50

a necessity to be able to represent complex functions, is the vanishing gradient problem. For
each layer, the gradient during backpropagation becomes smaller for the first layers, which
makes it more difficult for their weights to update during training. Therefore, by introducing
checkpoints such as comparing the first network to a simpler ground-truth and the second to
the complete shape, each network can be designed to be smaller. Phrased this way, the idea
can be perceived similar to the concept of skip-connections [53], where neurons from some of
the first layers in a network are directly connected to some of the layers closer to the output.

Since point clouds as a 3D representation is sparse and lightweight, and match the output
from typical sensors such as LiDAR or depth cameras, it would seem to be the ideal data
representation for applying learning-based methods. However, point clouds do not describe
topology, i.e. they do not explicitly encode the inside and outside of objects. Converting them
to other data representations such as meshes requires non-trivial post-processing steps, which
would also add to the total inference time.

Surface Representations: Interestingly, four papers were independently published in
december 2018 or january 2019, which all argued for using signed distance functions as the
data representation for 3D shape completion [19, 96, 98, 113]. Prior to these papers, there
were no existing literature on using this data representation for learning-based approaches.
Although these methods have resemblance to the TSDF methods mentioned as part of the
voxel-based representations, the distance functions are not restricted to a grid. Therefore, the
memory usage of these methods is quite low. In fact, Park et al. explains that their models
only use 7.4 MB of memory to represent entire classes of shapes [113], which is less than half
of a single 5123 voxel model.

Park et al. also introduces the concept of auto-decoders to the 3D domain, a method
which seems to have several advantages compared to other representation learning techniques
such as GANs or VAEs. While VAEs perturb the bottleneck features with Gaussian noise to
achieve smooth and complete latent spaces, auto-decoders do not use any encoder. Instead they
optimize the latent codes and the decoder weights simultaneously through back-propagation
during training. The decoder weights are then fixed for inference, while the optimal latent
vector is searched for to match the partial observation. The complete method can be explained
as follows.

A set of K point samples ; and their signed distance values s; are prepared from a dataset

of N shapes represented with signed distance function SDF%L:
Xi = {(acj,sj) 185 = SDFZ(Q.TJ)} (3.13)
Each latent code z; is paired with training shape X;, which gives the posterior probability

po(zi|Xi) =p(z:) [polsslzisz) (3.14)
(5,85)€X;

where the prior distribution over codes p(z;) is assumed to be a zero-mean multivariate-
Gaussian with a speherical covariance of o21, and @ parameterizes the SDF likelihood expressed
by a deep feed-forward network fy(z;, x;), which is assumed to take the form

po(8jlzi;xj) = exp(—=L(fo(zi, xj), 55)) (3.15)

L(fo(zi,x;),s;) is a loss function which could be chosen to be for instance the £; or £2 norm.
During training, the joint log posterior over all training shapes are maximimized with respect

3.5 Datasets 51

to the individial shape codes {z;}, and the network parameters :

N [K

. 1
argmin S (32 Loz a5), 55) +]2 (3.16)
0.4z}, i=1 \J=1 g

Finally, for inference a shape code z; for shape X; can be estimated via Maximum-a-Posterior
(MAP) estimation as

5 . 1
z=argmin Y L(fo(zi,z)),55) + ﬁﬂzHg (3.17)
T (wys)EX

In this work, an approach based on signed distance functions is chosen due to its apparent
advantages. Networks where signed distance functions are the chosen data representation seem
to be able to represent fine details in the 3D models, unlike any of the other voxel-, mesh-,
or point-based networks. The signed distance functions’ continuous and implicit description
of the surface of an object with the notion of inside or outside is ideal for neural networks,
as they effectively define decision boundaries, i.e. the isosurfaces. In fact, using this data
representation, the problem of representing shapes resembles that of regression problems. For
instance, the training data could be in the form of points [z,vy, z,d] sampled from meshes,
where z, y, and z denote the position and d denotes the distance to the closest part of the
mesh (negative if inside, positive otherwise). By sampling points closely around the surface of
the mesh, the fine details of the object will then be preserved. On the downside, the isosurface
encoded by the signed distance function has to be acquired through either ray-casting or
approximated with the marching cubes algorithm. This is necessary to include the completed
shape in the acquired partial observation of a scene. However, isosurface extraction should still
be fast enough to allow for online applications of methods where signed distance functions are
used.

Additionally, the recently introduced auto-decoder will provide the starting point on how
the shape completion network will be designed, as it has some benefits that are particularly
useful in this domain. The auto-decoder can handle any form of partial observations, since the
latent code can be found via a MAP estimation. This removes the need to prepare training
data of partial shapes, which is necessary for all autoencoder architectures. Additionally, the
training time is reduced compared to VAEs, since only a decoder is used. However, as the
goal is to create an online application, the duration of the inference stage is desired to be as
low as possible. Therefore, the time to search for a latent code that best matches a partial
observation has to be optimized. Consideration has to be given to these potential issues in
order to keep the inference time low for this method.

3.5 Datasets

3D datasets is a necessity in bringing the experimentation of real-world applications to a
simulated environment. Recent advances in robotics and computer vision required huge
datasets, and the trend seems to be that research in these fields tend to be increasingly data-
driven. However, compiling such datasets is a labor-intensive process. Researchers have used
several techniques such as synthesising 3D models using 3D design software or scanning real
world 3D objects from multiple views with RGB-D cameras. Some of these curated datasets

3.5 Datasets 52

have been released publicly to simplify and lower the threshold for other researchers to work
with 3D data. A non-extensive overview of synthetic and real-world datasets is presented in
Table 3.1 and Table 3.2.

Dataset Thousands Year Comments
of Objects
Synthetic Datasets
IKEA 0.2 2013
PASCAL3D+ 36 2014
ModelNet 128 2015
ShapeNet 3000 2016 Only a subset, ShapeNetCore (with 51 000
objects), is publicly available
ObjectNet3D 44 2016
Thingil0K 10 2016
PartNet 3000 2018
ABC 1000 2019

Real World Datasets

BigBird 0.1 2014
YCB 0.6 2015 Physical objects in the dataset can be requested
3D Scan 10 2016
T-LESS 0.03 2017
RBO 0.02 2018 Has articulation that allows it to be animated

kinematically in physics engines

Table 3.1: Synthetic and real world datasets of 3D models.

The tables 3.1 and 3.2 show that there are significant differences in the sizes between the
datasets. Real world datasets, in particular, are several orders of magnitude smaller than the
synthetic datasets. However, there are also several similarities. Household objects and scenes
containing such objects are the main classes in the majority of the datasets. These datasets
also have huge class imbalances, where objects such as chairs and tables have a relatively higher
number of instances.

Many challenges are present in the curation of a synthetic dataset. Even if the objects are
publicly available from an online repository, there are challenges that have to be addressed.
Objects from such sources often require manual filtering, including removing duplicate vertices
and normals. Some models might have missing textures, or the wrapping of the textures is not
as expected. Moreover, a significant percentage of the models are unfinished, and it is hard
to identify them using an automatic process. The creators of the 3D objects could also have
forgotten to provide information about scale or position the model in a canonical reference
frame. Additionally, for objects to be used in a physics engine, a collision shape is required.
Lastly, skeletonization is required for meshes that have dense point clouds.

3.5 Datasets

53

Dataset Thousands Thousands Year Comments
of Frames of Layouts
Synthetic Datasets
PBR Princeton 500 45 2016
SUNCG 130 45 2017
Facebook House3D - 45 2017 Sourced from the SUNCG dataset
HoME - 45 2017
SceneNet 5000 0.057 2017
The RobotriX 8000 0.016 2018 Generated using UnrealROX
Real World Datasets
NYU Depth Dataset 1.5 0.464 2012
SUN RGB-D 10 - 2017
ScanNet 2500 1.5 2017
Matterport3D 200 0.09 2017 Includes 10,800 panoramic views

Table 3.2: Synthetic and real world datasets of 3D scenes.

The curation of real world datasets has been made possible by the recent advances in
multi-view stereo methods and online real-time 3D reconstructions, and have therefore been
introduced to the community more recently. Working with real world objects is even more
labour intensive than synthetic objects, which provides additional limitations on scalability.
As the data gathering is completed by scanning the objects, it can be difficult to get watertight
3D models with crisp textures. Several tries or cumbersome methods might be necessary to keep
the textures from becoming blurry. Real world scanning is also a question about practicalities,
as scanning rigs require multiple cameras or moving a single camera in a pre-determined path,
where only slight perturbations could result in an unsuccessful scan.

The ideal object dataset is a synthetic dataset with a large variety in the types of objects
included. It should be a uniform distribution between all kinds of classes to avoid any bias
towards a particular set, as in the ABC dataset[74]. Due to the extra challenges in acquiring real
world datasets, without the gain of any advantages, writing efficient synthetic data-processing
techniques will provide higher-quality results. In terms of data formats for 3D models, CAD
is preferred [13, 74]. This data format allows for sampling at an arbitrary resolution without
any loss of data, and it provides the option of using 3D printing to have an exact real world
replica of the model. As a bonus, physical parameters could be attached to each object, so
that it could be realistically manipulated in a physics engine.

CHAPTER 4

Methodology,
Implementation and
Results

This chapter presents approaches and concepts in the implementation of the perception system
developed as part of this work. The overall system, called the 3D vision pipeline, is given in
Section 4.5 and presents how RGB-D imaging, semantic segmentation, point cloud registration,
and shape completion are combined to infer the complete geometry of real-world objects.

Sections 4.2 to 4.4 cover the deep learning methods used in the 3D vision pipeline and
present the perception system components in more detail. These sections are organized as
follows: First, the network architecture is presented, such that the design intentions and
decisions are clearly stated. Second, the implementation details are given, which includes loss
function, optimizer, training parameters, etc., necessary for reproducing the results. Finally, 1
give an evaluation on the network’s quantitative and qualitative performance, with the latter
being the most important factor in determining the visual appeal and practical usage of the
method.

A crucial step in the development of these deep learning methods is the compilation and
curation of datasets. Therefore, a discussion on how the dataset preparation was done in this
work was presented in Section 3.5, which also gives a reasoning behind the chosen training
data for the models.

4.1 Preparation of Datasets

As a learning-based data-driven approach is chosen for the two core parts — semantic instance
segmentation and shape completion — of the 3D vision pipeline, datasets for both objects and
scenes are needed. The datasets are presented in the two following sections, with information
about acquiring, compiling, and converting the datasets so that they have a suitable size and
format for the chosen network architectures they will be used for.

41.1 3D Model Dataset

Generally, the research on shape completion uses pre-made datasets tailored for learning-based
methods. An overview of the most notable datasets was presented in Table 3.1, with ModelNet
and ShapeNet possibly being the most frequently used. These datasets contain mostly man-

4.1 Preparation of Datasets 55

made objects, such as cars, airplanes, chairs, couches, etc., in mesh formats. Since they are
used so frequently, they also make a good baseline on which to compare deep learning methods.

In this work, however, it is desirable to have a custom dataset specifically containing 3D
models of food objects such as fruit and vegetables, fish and meat, etc. These are objects the
robot manipulator in a food processing plant would handle, and it is therefore of interest to see
whether completion can be done for these objects as well. In contrast to man-made objects,
the same class of an organic object can have widely different sizes and features, but still be
identifiable as a specific class. This will inherently increase the difficulty of shape completion.

Effort was made to produce a dataset based on real-world scans, but this unfortunately
deemed unsatisfactory results. The approach taken was to use a mobile camera to take 20-30
images of a still-life object (for instance a strawberry attached to a thin straw) from various
views, and stitch them together in the software Meshroom [97], which infers the geometry
of a scene from a set of unordered photographs or videos. In most cases, even for scans of
whole scenes, this software is able to predict the 3D information with errors in the order of
centimeters or even millimeters. It turns out, however, that this is still too big for creating
realistic 3D objects from scans of smaller objects such as fruit and vegetables. Although the
3D reconstructions do not have to be an exact match with the real-world object used for the
scan in creating a dataset, it should still have a similar topology.

Therefore, models of fruits and vegetables, bread varieties, and some processed food were
sourced from online providers of 3D models. These models are highly realistic and accurate
representations of their real-world counterparts, as can be seen in the collage Figure 4.1 with
some objects extracted from the compiled dataset. In fact, each model contain up to as many
as 3 million faces. This is an extremely high number of faces, much higher than any neural
network has a capacity to represent. It would also take too long to process such objects
during training. Subsampling is therefore needed in order to reduce the complexity, which was
done using quadric edge collapse decimation in a software called Meshlab[21]. This algorithm
iteratively picks a mesh region and applies a decimation operator. Decimation involves selecting
a vertex in the mesh region, then selecting and removing all the faces sharing that vertex, for
then to fill in the resulting hole with new faces. Further, the algorithm then adds the quality
of the mesh region after decimation to a queue, and gets the best mesh region from that queue
based on an error metric of the difference between the simplified and original mesh region until
no further reduction in the number of faces is possible.

The resulting mesh was decided to consist of about 100 000 faces, which based on
experimentation turned out to give a satisfactory representation of the object while still not
taking too long to process for further use. In this process, it was also verified that the meshes
are water-tight, i.e. that no holes or double-sided faces are present in the 3D models. They
were also converted and saved as .off-files, which is the filetype used in the ModelNet dataset.

While this results in a dataset that has 3D models in the same format as ModelNet, some
further processing was done to adapt the dataset to neural network architectures that do not
necessarily take meshes as input, but rather representations such as point clouds. Therefore,
the approach described in Section 2.1.2 was implemented in C++ to convert meshes into a
point cloud with a pre-defined number of points. Since it is straight-forward to subsample
points later, as many as 250000 points were sampled for each mesh. The C+4 program first
uniformly samples points on the surface of a given mesh, for then to redistribute the points
using the Poisson disk sampling method, which gives a good distribution of points on the
surface of the 3D model. Moreover, the normal of the face where the point is sampled from is
also stored. The normal is calculated by taking the vector product of two of the edges of the

4.1 Preparation of Datasets 56

Figure 4.1: The vegetables in the custom-made dataset compiled from highly realistic 3D
models, including vegetables such as avocado, lemon, orange, pear, potato, etc.

face. Lastly, the point clouds were scaled to fit within the unit sphere, i.e. the maximum value
along any dimension is 1. This is important, as neural networks require scaled data as input.
There will also be less variation between the different objects which belong to the same class.

Moreover, a third variation of the dataset was made in order to be able to train a network
which would implicitly define the surface of an object. The idea was that using SDF samples
for a set of meshes, a network would be able to learn a continuous SDF of the surface. To get
these samples, both the point cloud and the mesh representations of the dataset were used.
The points in the point cloud dataset was first duplicated where each half was perturbed along
all xyz axes with mean-zero Gaussian noise with a variance of either 0.0025 or 0.00025. This
resulted in 500000 sampled near the surface of the mesh. It is important that sampling is done
to such a high number for points near the surface, since this potentially allows for a model to
accurately predict the zero-crossings. However, 25000 points were uniformly sampled within
the unit sphere to also more globally indicate the true SDF. For each of these points, the
distance to the closest face on the mesh is stored.

A close estimate of the distance could be calculated by constructing a KD-tree of the
points and find the closest point in the original point cloud with the L2-norm. The sign of
the distance, i.e. whether the point is inside or outside the original point cloud, could be
calculated by calculating the dot product between the normal of the point and the vector
difference between the point and the closest point from the point cloud. The dot product
would be positive if the point is outside the original point cloud, and negative otherwise.
However, while being a fast approach in terms of runtime as processing each 3D model is done
on the order of a couple seconds, this approach fails for objects that have relatively sharp or
thin structures. Figure 4.2 illustrates this problem. As a consequence, deciding the sign of
the distance is more complicated than what one would intuitively think. One solution could
perhaps be to use the numerically greatest dot product based on the vector difference from

4.1 Preparation of Datasets 57

the point to a set of points in the original point cloud, but this also fails in some special cases.
Beerentzen et al. [3] builds further upon this idea by introducing a pseudonormal which they
call the angle weighted normal, and prove that this always determines the correct sign.

~~~~~
g -
- N
- .,

.
.
L)
L)
.
[}
.
.
.
\
.
PY Ppecd \
'
1]
.
]
1]
1]
’
’
J
’
/

Figure 4.2: Consider the lines in this illustration to be faces of a mesh, and n; and no to
be their normals. The schematic then shows that it is possible to have the same
distance from a point ppeq to two points p; and po, while the sign of the dot
product of the direction vector is not the same for the two normals.

In this work however, I utilize the fact that I have both a point cloud and a mesh
representing the same object, and thus the sign can be correctly calculated by the dot product
of the point normal and the normal of the closest face in the mesh. Independently of how
the points are sampled, this method will always give the correct sign. However, a naive
implementation of this method where all the faces are iterated through to find the closest face
results in a very long runtime. For instance, calculating the sign for 250000 points sampled
around a mesh that is represented with 100000 faces takes about 2 days. Fortunately, similarly
to how KD-trees efficiently can be used to calculate distances for point clouds, AABB trees
can be used to perform distance queries on meshes. By using this structure to find the nearest
mesh face to a point with the Python library trimesh [29], the runtime is reduced to about 5
minutes. This is still a fairly long time, but low enough to convert all the models for one class
in a reasonable time-frame. Further improvements could be done by parallelizing the process,
for instance by using multiple threads or by moving the process to the GPU.

It is difficult to give a good illustration of the resulting data structure, since the points are
scattered uniformly around in a unit sphere. An attempt is made in Figure 4.3(c), where a slice
along one dimension is flattened to give a two-dimensional scatter plot with the point colors
indicating their SDF values. The surface of the object can be seen by the high number of points
in that area. There are also only points with positive SDF values outside the surface (and vice
versa), indicating that the method used to generate this data representation is successful.
Figure 4.3 also illustrates its corresponding mesh and point cloud representations.



4.1 Preparation of Datasets 58

(a) Mesh (b) Point Cloud (c) Signed Distance Samples

Figure 4.3: Example object in the custom-made 3D object set consisting of fruit and
vegetables, processed food, and an assortment of bread. Left: A subsampled
mesh with the color information removed. Middle: A point cloud generated
from the mesh using Poisson disk sampling. Right: Signed distance samples
generated by perturbing the point cloud with Gaussian noise, calculating the
distance to the unperturbed points, and finally finding the sign of the distance
by registering whether the perturbed points are inside or outside the mesh.

4.1.2 3D Scene Dataset

A 3D scene dataset consisting of color and depth images with groundtruth masks is a necessity
in this work. It constitutes the foundation a neural network uses to learn a good segmentation
of objects in a scene. For that reason, it should include images that are similar to the given
use case — both in terms of the scene setup (structures, lighting, etc.) and in terms of the
resolution and quality of the images. Most segmentation networks do not consider any depth
component, and therefore use datasets with only color images. In the recent literature on RGB-
D segmentation, however, it seems that the SUN RGB-D dataset [] is most frequently used.
The segmentation network is therefore also trained on this dataset for comparison purposes
with other methods.

While a real-world 3D scene dataset might be the most realistic option to choose, simulated
datasets have properties that now outweigh that factor. Additionally, with the UnrealROX [93]
engine it is fairly easy to create a highly realistic rendition of any scene. Compared to the
real-world datasets, datasets made with this engine have the following advantages: (1) The
simulator automatically generates ground-truth masks, which greatly simplifies the generation
process. For real-world datasets, researchers have outsourced the mask generation to hundreds
of workers using companies such as Amazon Mechanical Turk. These workers draw the mask by
freehand, which is a method that is prone to errors and coarse masks. Such a process is clearly
tedious and expensive. (2) Any scene can be imaged. Especially for scenes containing food
items which decay over time, this can be very helpful. In many cases, it might be impossible to
gather real-world images. (3) An unlimited number of virtual cameras can be used to capture
a process from multiple views.

In this work, I use the RobotriX [39] studio apartment dataset made with the UnrealROX
engine. This dataset was generated by a person wearing a VR-headset which was manipulating
objects such as an apple and an orange in a simulated kitchen environment. An example scene
is given in Figure 4.4. Since this scene is fairly similar to the designated use case of this work,
and the RobotriX dataset contains thousands of images from various views, it is an ideal choice
for the final dataset to be used with the segmentation network presented in Section 4.2.

There are, however, some challenges associated with using this dataset. Generally, synthetic



4.2 RGB-D Semantic Segmentation 59

2t/
(a) RGB (b) Depth (¢) Mask

Figure 4.4: Example scene called ’Studio Apartment’ from the RobotriX dataset [39],
where the ground truth mask is automatically generated for each frame by the
UnrealROX simulator [93].

datasets feature numerous discrepancies between them and real-world datasets. This is known
as the reality gap. While Robotrix dataset is realistic in terms of the rendition of the scenes, the
image capturing process is too perfect compared to particularly the real-world depth sensors,
which has numerous faults such as holes occuring in the resulting depth images taken of
a scene. Future work on the UnrealROX engine could therefore include adding simulated
physical behavior of real RGB-D cameras.

4.2 RGB-D Semantic Segmentation

The related work on semantic segmentation clearly shows that deep learning architectures
are by far the methods with the highest accuracy. While the Mask-scoring R-CNN approach
seems to be the state-of-the art approach on color images, this network does not take depth
into consideration. While depth could be added as another channel to the images propagated
to such a network, this would not fully utilize the depth information. Therefore, I’ve chosen
to build my segmentation network upon RedNet [63], as this network seems to have found a
good way to incorporate depth into the network architecture. Although it does not perform
instance segmentation, this is of lesser importance as most scenes to be segmented in this work
only contain unique objects. The output from a semantic segmentation network should then
be the same as that from a semantic instance segmentation network.

42.1 Network Architecture

An overview of the network architecture for the segmentation network is given in Figure 4.5.
This is an encoder-decoder network, which first adds several downsample operations to the
input in the encoder, for then to upsample the resulting latent representation. It is strongly
inspired by the general ResNet [53] architecture, but has been extended to two branches in the
encoder part of the network (the upper half of the flowchart); the color branch and the depth
branch. These two branches have the same configuration except for the very first convolution
layer, which has 3 channels for the color image input, and only 1 channel for the depth image
input. The lower half of the flowchart illustrates the decoder. Several skip-connections, i.e.
direct connections from early layers to later layers, are added (illustrated by the Conv2D layers
in the left half of the flowchart) to aid with back-propagation and avoid the vanishing-gradient
problem often present in networks of this depth. These 2D convolutional layers have kernel



4.2 RGB-D Semantic Segmentation 60

sizes 1 x 1 and strides equal to 1. Note that batch normalization and ReLLU activation functions
are applied after each convolution operation, but that they are omitted from the figure to avoid
too much cluttering.

The encoder consists of a convolution layer followed by a series of four residual layers,
each with a different number of residual units, as illustrated in Figure 4.6. The convolution
layer encodes the depth image, and increases the feature channel from 3 (or 1 for the depth
layer) to 64. The layers one through four have 3, 4, 6, and 3 residual units, respectively. As
illustrated in Figure 4.7(a), the residual unit consist of two branches of which the outputs are
added together before being propagated to the next layer. However, only the first unit in each
residual layer has the right branch with the single convolutional layer. The left branch consists
of a 1 x 1 convolution with stride 1, a 3 x 3 convolution with stride 2, and a 1 x 1 convolution
with stride 1. In the right branch, the input is propagated through only one convolutional
layer (with kernel size 1 x 1 and stride 2).

The decoder mirrors to a large degree the encoder by also consisting of a series of residual
layers. These layers, however, have upsample residual units as illustrated in Figure 4.7(b).
”Conv'Transpose2D” in this figure refers to the transposed convolution operator, which is an
upsampling operator. It can be seen as the gradient of 2D convolution (”Conv2d”) with respect
to its input. The left branch consists of 3 x 3 convolution with stride 1, and 3 x 3 transposed
convolution with stride 2, while the right branch consists of a single 2 x 2 transposed convolution
with stride 2. Similarly to the residual layers for the encoder, the right branch is only included
in one residual unit, but in this case it is for the final unit in the layer. The residual upsampling
layers one through five have 6, 4, 3, 3, and 3 units, respectively.

4.2.2 Implementation Details

The network is implemented in PyTorch, with the encoder pretrained on the ImageNet dataset
(the network weights are available through the PyTorch interface). For the optimizer, SGD is
chosen with momentum v = 0.9 and a weight decay (L2 regularization) of 10~%. The initial
learning rate is set to & = 2- 1072, and decayed with a factor of 0.8 every 80 epochs to slow
down training and avoid overshooting as the global optimum is closed in on.

The loss function used takes into consideration all the intermediate outputs shown in
Figure 4.5:

L(s,9) = = 3"~ log (exp('s[g])) 1)
’ N < > exp(si[k])

This is the summation of five 2D cross entropy losses between the output and the groundtruth
where ¢g; € R denote the class index of the groundtruth mask on location i (acquired
by downsampling the full resolution groundtruth using nearest-neighbor interpolation) and
s; € RNe denote the score vector of the network output on location i with N, being the
number of classes in the dataset. The reasoning behind using this loss function is to address
the gradient vanishing problem, which might occur for networks of this depth. In fact, the
downsampled cross entropies are given more weight in (4.1) to shorten the backpropagation
distance, and incentivize the lower layers in the decoder part of the network to learn the global
features, while the higher layers only refine and upsample the output.



4.2 RGB-D Semantic Segmentation

61

’ Color ‘ ’ Depth ‘
¥ ¥

’ Conv2d ‘ ’ Conv2d ‘
%

’ Maxpool ‘ ’ Maxpool ‘
¥ ¥

’ ResLayer w/downsample ‘ ’ ResLayer w/downsample ‘

e

’ ResLayer w/downsample ‘ ’ ResLayer w/downsample ‘

Con@
Con@

e

’ ResLayer w/downsample ‘ ’ ResLayer w/downsample ‘

D

’ ResLayer w/downsample ‘ ’ ResLayer w/downsample ‘

i

’ Conv2d ‘

i
Conv2d ’ ResLayer w/upsample ‘
v
O, {Conv2d H Outl ‘
¥

’ ResLayer w/upsample ‘

% {Conv2d H Out2 ‘
’ ResLayer w/upsample ‘

Ct\ {Coand H Out3 ‘

V

’ ResLayer w/upsample ‘

% {Conv2d H Out4 ‘

’ ResLayer ‘

¥
ConvTranspose2d
| |

)
’ Output ‘

Figure 4.5: Overview of the semantic segmentation network architecture.



4.2 RGB-D Semantic Segmentation 62

|

’ Residual Unit 1 ‘
1
v

’ Residual Unit N ‘
1

Figure 4.6: Residual unit sequence.

|
¥

|

’ Conv2d ‘ ’ Conv2d ‘ ’ ConvTranspose2d ‘ ’ ConvTranspose2d ‘

(a) Downsample residual unit (b) Upsample residual unit

Figure 4.7: Residual units.

4.2.3 Evaluation

By using the semantic segmentation network on the SUN RGB-D dataset 1 get segmentation
masks as shown in Figure 4.8. The network is clearly able to find good masks corresponding
to what a human annotator would assign to the images. It achieves a mean IoU of 0.45 on
the test partition of the dataset, which is better or on par with other semantic segmentation
networks on RGB-D data. This indicates that having a separate branch for color and depth
data works as intended, as it seems to effectively exploit RGB-D information where the feature
distributions of RGB and depth images vary significantly in different scenes. A qualitative
evaluation is needed to better understand the numerical value achieved for the mean IoU, and
this will be discussed in the following paragraphs.

Note that the network output mask does not have any black pixels. In the color chart used
to visualize the images, I used black to denote the label "unknown”, i.e. pixels which have not
been annotated in the groundtruth masks. The designed network architecture, however, does
only have a representation of the class labels, and therefore learns a mapping which fills in the
gaps shown in Figure 4.8(b).

In some cases, the network seems to have learned a better mapping than what is given in the
ground truth from the SUN RGB-D dataset. One such instance is presented in Figures 4.8(d)
to 4.8(f). Here, the table in the upper left corner is annotated as a box in the ground truth
mask. Although it might be hard to see in Figure 4.8(d), this annotation is not accurate, as
the area under the tabletop is actually the floor darkened by a shadow from the table. The
network, however, correctly assigns the mask to the tabletop and its legs. This is also a good



4.3 Shape Completion 63

(¢) Predicted Mask

(d) Color Image (e) Ground Truth Mask (f) Predicted Mask

Figure 4.8: Example outputs from the semantic segmentation network when trained on the
SUN RGB-D dataset with image resolution of 640 x 480. In the illustration, two
and two images are grouped together. The depth image is omitted from this
figure, but still used in the network.

example of illustrating the generalizability of this network. Moreover, this adds another reason
for using auto-generated datasets — which can only be made in a simulation environment —
instead of human annotated datasets.

In images with many objects, such as the background part of the image given in
Figure 4.8(a), the network output becomes noisy. The groundtruth mask for these areas
are either missing (i.e. assigned the "unknown” label), or only coarsely follow the outlines
of objects in the scene. It should also be mentioned that the number of classes is restricted
to 37 for this dataset, which complicates the annotation when objects outside of this list are
present (such as the whiteboard eraser on the table in this example). However, the network
output for images with such areas do not seem to be overall affected by the mismatched masks
of those locations. That is, as in Figure 4.8(c), the table and chair masks are nicely aligned
to the groundtruth even though the upper left part of the mask is noisy. This indicates that
the network’s class label probabilities for the noisy locations are approximately equal. Human
annotators would also have trouble giving a correct mask for these occurences, and the network
has no opportunity to learn the groundtruth masks as in this dataset they are either too coarse
or not present (i.e. the areas are assigned the "unknown” label). As a consequence of this
observation, further extensions should be added to the network such that the network is not
forced to output a label for every pixel in the image. This will, however, possibly be a major
change as it might require the concept of Bayesian neural networks to be added to the network
architecture.

4.3 Shape Completion

Shape completion is at the core of this work, as the methods in this field perform the completion
of 3D geometries. Initially, the aim was to adapt the relevant approaches presented in the
literature to be applicable to real-world shape completion, but this turned out to be infeasible.
The range of possible completions is too large if there are no restrictions on the locations,
dimensions and transforms of the objects in the scene, and the scene as a whole. This is why



4.3 Shape Completion 64

the preceding semantic segmentation network and the following point registration network were
introduced. With these two networks processing the RGB-D scan of a scene, only partial scans
of objects of interest in a canonical pose are selected as the input to the shape completion
agent. Therefore, the shape completion agent should be designed to maximize the accuracy
and resolution of the resulting geometry given such an input.

The field of shape completion is still in its early stages, with many new methods emerging
recently. Therefore, the design and development of shape completion agents in this work has
been an iterative process. Starting from voxel-based models, which were state-of-the art a
year ago, the current models output a continuous representation of the resulting geometry,
which immensely increases generalizability and resolution. In Section 4.3.1, this design process
is presented. The final selected network architecture is the last one given. This network
represents the output with a continuous function through occupancy functions such that high-
resolution 3D geometries can be achieved.

4.3.1 Network Architectures

Several network architectures have been developed and tested as part of this work. However,
most of them did not give satisfactory results. Although these architectures were unfit to
be used for real-world shape completion, there is still interesting insight to be gathered from
those architectures, such as the reasoning behind their design. Therefore a short presentation
of them are given in this section, but specific implementation details will not be addressed
except for the final selected shape completion network.

GAN based on voxels The first network developed as part of this work was implemented
during my specialization project [77]. It is a generative adversarial network which is able
to generate voxelized chairs with a resolution of 323 based on a latent vector. A schematic
of the architecture is given in Figure 4.9. The discriminator consists of five consecutive 3D
4 x 4 convolution layers with stride 2, where 3D batch normalization and leaky ReLLU activation
functions are applied to each layer except the output layer, where a sigmoid activation function
is used instead. The generator is almost a mirrored version of the discriminator. It consists
of five consecutive transpose of 3D 4 x 4 convolution layers with stride 2, which function as
upsampling operators. In contrast to the discriminator, ReLLU activation functions are used
instead of the leaky variants.

Although this architecture does not encode a latent vector based on a partial observation,
it is able to generate objects that look similar to the ones given in the dataset, as illustrated
in Figure 4.10. Technically, it could be extended with an encoder, resulting in an architecture
as in the simplified illustration given in Figure 4.11. However, the output resolution with a
model based on voxels is too low to be of any practical use, and therefore I did not look further
into this alternative.

Encoder-decoder architecture based on point clouds Since the partial observation of
a scene is a partial scan represented as a point cloud (alternatively a depth map, which can
be directly converted to a point cloud), it could be argued that point clouds should be the 3D
representation of choice throughout the network, as all other representations will alternatively
be derived from point clouds. This reasoning was the foundation behind researching an
improved network architecture compared to the voxel-based network mentioned previously.



4.3 Shape Completion 65

Latent vector

‘ ConvTranspose3d Layer 1 ‘ —){ Conv3d Layer 1 ‘

‘ Coanransp(fsei%d Layer 2 ‘ ‘ Conv3d¢Layer 2 ‘
‘ Coanranspcfse?)d Layer 3 ‘ ‘ Conv3d¢Layer 3 ‘
‘ Coanranspj)se?)d Layer 4 ‘ ‘ Conv3d¢Layer 4 ‘
‘ Coanransch;seBd Layer 5 ‘ ‘ Conv3d Layer 5 ‘

Figure 4.9: 3D-GAN generator and discriminator network architecture.

Figure 4.10: A chair generated by the 3D-GAN implemented as part of the specialization
project [77]. This network architecture accepts a randomly generated latent
vector as input, and is able to generate various objects based on identifying
small features in the vector that it has learned to map to some specific object
during training. In this case 3D-GAN was trained on a subset of ShapeNet,
with 10668 chairs.

Related work by Achlioptas et al. [1] and Yuan et al. [170] seemed to get promising results
with point cloud based network architectures.

Therefore, I tested the network given in Figure 4.12. This network is based on an encoder-
decoder architecture, where the encoder consists of a series of convolution layers, and the
decoder is a series of fully connected layers. The main issue with point clouds in a deep
learning setting, is that the data is both sparse and unordered, i.e. the order of the points
do not have any inherent meaning. As a result, using the standard convolution operator on
point cloud data is not possible for kernel sizes larger than 1. However, as Qi et al. [123]
showed, information in point clouds can in fact be encoded with convolution with kernel size
1. In the used encoder, I have four consecutive 1D convolution layers, with 128, 512, 1024,



4.3 Shape Completion 66

Tpartial - [ h HG/‘ z
SN
'

Figure 4.11: An extended version of a GAN, where the latent vector fed to the generator
is made by an encoder. Since the encoder-generator pair resembles that of an
encoder-decoder pair in a VAE (and could be designed in the same manner),
this architecture is referred to as VAE-GAN.

and 1024 output channels, respectively. ReLU activation is used in each convolution layer.
I also add a point-wise maxpool branch which finds a global feature of the output from the
second layer, and repeat this to match the vector dimension of the output such that they can
be concatenated before being passed to the next layer. The intent behind this branch is to
increase the network’s invariance to permutation and tolerance to noise. The decoder, on the
other hand, consists of two fully connected layers each with 1024 output features and a final
fully connected layer with 3 times the desired number of points in the resulting point cloud.
Leaky ReLU activation is used for each layer, except for the final layer which uses a sigmoid
layer to avoid any bias in the output.

| Input |

] Conv1d¢Layer 1 \ —»] Fully Connected Layer 1 \

] Conv1d¢Layer 2 \ ] Fully Connetted Layer 2 \
| Ma;pool | | Fully Conneicted Layer 3 |
e | o

& |

’ Convld Layer 3 ‘

v
’ Convld Layer 4 ‘

¥
’ Maxpool }

Figure 4.12: Network architecture for the encoder-decoder architecture based on point
clouds.

By using the Adam optimizer and Chamfer distance (presented in Section 2.1.3) as the
loss function, I get shape completions as shown in Figure 4.13. Here, the network has been



4.3 Shape Completion 67

trained on a subset of the ShapeNet dataset which consists of a variety of cars. As seen in
the figure, the completed point cloud does not resemble either the input or the ground truth.
The completed point cloud, in isolation, is a good point cloud representation of a sedan or a
coupe. It turns out that these two types of car have by far the most instances of 3D models
in the dataset. Therefore, it seems like the network has only been able to learn a general
representation of the dataset, and outputs variations of this for each shape completion. This is
a possible indication of the encoder not being able to produce a fully detailed representation.
Alternatively, only the decoder part of the overall network was trained, possibly caused by a
vanishing gradient problem. However, inspection of the weights during training indicated that
they were changing for all layers. These challenges have been encountered by other researchers
too, and was recently extensively studied by Tatarchenko et al. [147]. They claim that several
state-of-the art single-view reconstruction and completion networks does not actually perform
reconstruction, but image classification.

,.,.-,hgtﬁ.'; € oo o

YT S AN e

e et 8o0q % °2

.ﬂgti.‘«.'f.‘: ':"‘ ;,'.
c':.-.'-v'-' 277 S g

0 °
.

(b) Ground Truth (c) Completion

Figure 4.13: Shape completion using the encoder-decoder architecture based on point clouds.
The network was in this case trained on a dataset consisting of cars which were
mostly of the type sedan and coupe. Left: A partial observation of a trolley.
Middle: The completed ground truth point cloud of the partial observation.
Right: A sedan is outputted from the network, which does not match the
observation.

Autodecoder based on signed distance functions Early this year, as discussed in
Section 3.4.3, multiple papers were published which argued for learning a continuous function as
the output from the network. In this way, the problem is simplified into a binary classification
problem where the surface of an object is represented implicitly by a decision surface. One
of these network architectures, DeepSDF [113], is based on the idea to use the network to
map SDF samples (generated by the dataset preprocessing described in Section 4.1.1) to a
continuous SDF. By propagating samples from various objects, including variations within the
same object, a neural network should in theory be able to estimate a smooth function that
basically functions as a binary decision surface, separating the inside of the objects from the
outside.

In my experimentation, I tried to replicate their results by imitating their proposed network
architecture. It is a series of fully-connected layers, each with 512 output channels, as illustrated
in Figure 4.14. Additionally, a skip-connection is added where the latent vector is concatenated
to the output from the fourth fully connected layer before being passed into the fifth layer.
This is done to improve the gradient flow in the network, which is quite deep due to its eight
layers.

Unfortunately, I could not get the loss to decrease during the training of this network. The



4.3 Shape Completion 68

Latent vector

’ Fully Connected Layer 1 ‘

¥
’ Fully Connected Layer 2 ‘

¥
’ Fully Connected Layer 3 ‘

i
’ Fully Connected Layer 4 ‘

v
7
’ Fully Connected Layer 5 ‘

¥
] Fully Connected Layer 6 \

¥
’ Fully Connected Layer 7 ‘

i
’ Fully Connected Layer 8 ‘

v

Figure 4.14: A feed-forward autodecoder network.

authors of DeepSDF did indicate that training could become unstable and that they had to
tune the training parameters, but they did not disclose all their values. I could not find any
indication of a better loss curve regardless of my choices of training parameters, and therefore
moved on from this network architecture. It should also be noted that a fully connected
network has the apparent disadvantages of not using any spatial information which could be
present in the data, which also motivates a more complex network architecture.

Autoencoder based on occupancy functions The overall network architecture of the
occupancy function network is presented in Figure 4.15. It is the network considered for the
remainder of this section on shape completion. As seen in the overview, the network accepts
three components as the input, and passes them through three subnetworks to produce an
output. The inputs include the ground-truth points (i.e. the full-resolution point cloud), the
partial input (a subset of the ground-truth points, alternatively a different set of points sampled
from the mesh), and the occupancies which state whether the ground-truth points are inside
or outside the surface of the corresponding mesh.

The encoder is based on a PointNet architecture with ResNet blocks, as illustrated in
Figure 4.16(a). This is a fully-connected network, as it only consists of fully-connected layers.
In total, there are 5 ResNet units, where the output from each unit is concatenated with
the maxpooled output before being passed into the next unit. Each ResNet unit shown in
Figure 4.17(a) consists of two branches of fully-connected layers, where the output is the sum
of the input passed through either two or one fully-connected layers. ReLU is used as the
activation function for all layers.

The decoder, on the other hand, is a series of 1D convolutional layers of which some are
organized as ResNet Units, as illustrated in Figure 4.16(b). All convolutional layers use a kernel



4.3 Shape Completion

69

Ground-truth Points‘ ’ Occupancies ‘ ’

Input

I —

I

|

Infer z ‘

|

Encoder

|

¢l¢

|

Decoder ‘

¥

|

Output ‘

Figure 4.15: Shape completion network architecture. Three inputs are given to the network
which consists of three subcomponents. The Infer ¢ component is just a Normal
distribution that is trained with the rest of the network.

size of 1, and are followed by ReLU activation. The ResNet units shown in Figure 4.17(b) have
the same architecture as the ResNet units used in the encoder, except that convolutional layers
are used instead of fully-connected layers.

|

’ Fully Connected ‘
¥

’ ResNet Unit H Maxpool ‘ l
6? | Convld
’ ResNet Unit H Maxpool ‘ l
| ResNet Unit
¢ l
’ ResNet Unit H Maxpool ‘ ResNet Unit
X | |
CYI> ResNet Unit
’ ResNet Unit H Maxpool ‘ l

¥

7
’ ResNet Unit ‘

l

’ Fully Connected ‘
¥

(a) Encoder

Figure 4.16: Shape completion encoder and decoder architecture.

ResNet Unit

|

ResNet Unit

|

Convld

i

(b) Decoder



4.3 Shape Completion 70

! |

’ Fully Connected ‘
¥

’ Fully Connected ‘ ’ Fully Connected ‘ ’ Convld ‘ ’ Convld ‘
) | ! |

v v
(a) Residual unit with fully connected (b) Residual unit with convolutional

layers used in the PointNet encoder for the layers used in the decoder
shape completion network

Figure 4.17: Residual units used in the encoders and decoders of the shape completion
network.

4.3.2 Implementation Details

The implemented PyTorch model follows the final network architecture discussed in
Section 4.3.1; where the aim is to model the 3D objects as occupancy functions. The Adam
optimizer with an initial learning rate of 10~ is chosen for updating the network parameters.
Additionally, a multistep learning decay is added to slow down the learning rate with a factor
of 10 after 75, 150, and 225 epochs.

The chosen loss function used to learn the parameters of the neural network fy(p,x) is a
cross-entropy classification loss averaged over the batch B:

1 Bl K
L(0) = 18] D0 Lfo(pij, i), 0(pig)) (4.2)

i=1j=1

Here, x; is the i'th observation of the batch, p;; € R, j = 1,..., K are points sampled from
the i’th observation, and o(p;;) denotes the true occupancy at point p;;.

For inference, the surface of the occupancy function needs to be extracted. This could be
done with marching cubes, but here I use an extension to this method presented by Mescheder
et al. [96]. This method is called multiresolution isosurface extraction (MISE), and is able to
efficiently produce high resolution meshes from the occupancy network. The volumetric space
is first discretized at an initial resolution of e.g. 323, and then the occupancy network fy(p, )
is evaluated for all points p on this grid. The points p for which fp(p,x) is greater than some
threshold 7 are marked as occupied. Then the voxels for which two adjacent grid points have
differing occupancy predictions are marked as active voxels, i.e. these will be subdivided into
eight subvoxels for which new grid points are introduced to improve the resolution. These steps
are then repeated until the final desired resolution is reached, for which the original marching
cubes algorithm is applied:

{p eR’| fo(p,z) = 7} (4.3)

In total, this inference stage takes 2-3 seconds, which can be too long for some applications.
This algorithm could, however, be parallelizable on the GPU. Alternatively, the final resolution
could be adjusted to render a coarser output.



4.3 Shape Completion 71

4.3.3 Evaluation

By training the shape completion network on a subset of the ShapeNet dataset I get accurate
predictions of the complete geometry of the test objects. Table 4.1 gives a quantitative
evaluation of the network, along with equivalent metrics reported for two former state-of-
the art networks. These networks are trained on the same subset as the network implemented
as part of this work, and can thus be compared directly. The shape completion network that
I implemented gains a few percentage points improvement compared to the other networks.
The papers on shape completion discussed in Section 3.4.3 have not reported the same metrics
or used the same dataset, and are therefore omitted from this overview.

Model IoU TIoU (voxelized)
This network  0.62 0.69
3D-R2N2 - 0.57
DMC - 0.65

Table 4.1: Test metrics on unseen partial input for this network and two other former state-
of-the-art networks. I measure the intersection over union (IoU) and the IoU
with a voxelized representation. All networks are trained on the same subset of
ShapeNet, such that their metrics can be compared directly.

A qualitative evaluation can be done based on example outputs from the network, such as
the ones given in Figure 4.18. In this figure, the completed shapes are converted to meshes
using the MISE approach described in the previous section. The meshes could be further
converted to point clouds, if desirable. For the input to the network, a point cloud with as
few as 300 points is used. It turns out that this is enough points to uniquely represent most
objects. A resulting advantage of this observation, is that inference can be done in a short
amount of time, as only a few points are propagated through the network. The main bottleneck
during inference is in fact the conversion step from the occupancy function to the mesh. On
the other hand, while the network accepts any number of points as input, it does not seem like
the completed object has a noticeable improved geometry if more points are used in the point
cloud used as the partial observation.

Based on the meshes, and the partial observation (point clouds), it is clear that for all
classes the completion is detailed and accurate. The network is able to capture small details,
such as the side mirrors of the car in Figure 4.18(a). This means that if the side mirrors are not
visible from a certain view, the shape of the remainder of the car indicates that they should
be present, and the network has learned this connection. Additionally, holes such as the ones
underneat the armrests in Figure 4.18(d), are correctly preserved in the completed geometry.
The network also has the capacity to simulateneously represent all classes (12 in total) in the
training dataset, indicating its extensibility to learn representations for a wide range of objects.

It should also be noted that all resulting meshes are water-tight. This is an inherent result
inforced by having the network architecture output occupancy functions.



4.4 Point Cloud Registration 72

(a) Car (b) Airplane (c) Vessel

(d) Bench (e) Cabinet

Figure 4.18: Shape completion of unseen objects from the ShapeNet dataset, but of the same
categories as used for training. In this illustration, the input partial observation
is overlaid as yellow points on the resulting mesh. The wireframes of the meshes
are also visible, to showcase the high resolution (i.e. number of faces).

4.4 Point Cloud Registration

Point cloud registration is a crucial component in adapting shape completion neural networks
to be usable for real-world problems, as these networks require the partial observation to be
approximately in a canonical pose (defined by the objects used in the prior dataset). However,
achieving this pose is a strictly non-trivial task, as the alignment of the partial scan requires
finding a transformation that includes scaling, rotation, and translation — resulting in 7 degrees
of freedom. Ideally, this alignment of a partial scan should be done compared to a unit scale
axis. However, this seems to be an unsolvable problem as it is highly under-constrained, and
the optimal alignment is not uniquely defined. Moreover, only part of the object is given,
which means that several standard algorithms fail.

On the other hand, if a complete point cloud of the object was given, the optimal
translation and rotation between two point clouds X = {x1,...,®;,...,zy} (input object)
and Y = {y1,...,Yi,...,yn} (corresponding object in the dataset) of the same object could
be found in the following manner. First, the centroid of both clouds are found by averaging



4.4 Point Cloud Registration 73

their points:

1N
centroidy = — x;
X N Z:l 7

(4.4)
centroidy = % Z Yi
Then the two matrices are multiplied together to form an intermediary matrix,
N
H = Z(mZ — centroidy)(y; — centroidy) " (4.5)
By taking the singular value decomposition of this matrix,
[U,S,V]=SVD(H) (4.6)
the rotation between the two clouds is given as
Ryy=VU' (4.7)
and the translation as
tyy = —Rxy X centroidy + centroidy (4.8)

This method assumes that both point clouds have the corresponding points in the same order
(i.e. that «; and y; are paired), are of the same scale, and with limited noise. If there are more
than three points in the point cloud, this method minimizes the mean-squared error

E(Rxy,txy) = Z |Rxyxi + taxy — uil | (4.9)

Since this method obviously fails in the general case, a more sophisticated approach is
needed. ICP is generally the method of choice, but it fails in this case as it is only able
to converge to a local optimization, which would require the two point clouds to be roughly
aligned initially. Go-ICP, which tries to find a global optimum, often fails by converging to
anti-symmetries in the point clouds. Surprisingly, it turns out that the only feasible method is
a deep learning network which can find global mappings between point cloud alignments. ICP
could optionally be used with the network’s output to refine the alignment.

The network implemented as part of this work is based on Deep Closest Point [155],
which performs accurate alignment of point clouds. With this approach, the goal is to learn
embeddings which recover a matching m(-),

m(x;,Y) = argmin [|[Rx ya; + txy — y;l| (4.10)
J

which finds the corresponding y,,(,,) to each x;. The objective function (4.9) is then slightly
modified to account for matching;:

1
E(Rxy,txy) = — Z |Rx yTi + txy — Ym(an|® (4.11)

A

2



4.4 Point Cloud Registration 74

However, this network assumes the point clouds to be of the same scale, i.e. it only performs
a rigid transformation with respect to rotation and translation. Therefore, I add a heuristic
assumption on scaling where the point clouds are scaled to the unit sphere, which makes them
roughly the same size. Further, I also change one of of the input point clouds during training
to only contain a subset of the points, which is done to emulate partial scans. The other point
cloud to align the partial scan to is determined based on a corresponding object from the class
determined by the segmentation network.

441 Network Architecture

The overall network architecture of the point registration network is presented in Figure 4.19.
In short, the network consists of two branches — one for the source point cloud and one for
the target point cloud which the source point cloud should be transformed to by rotation
and translation. Each branch has an embedding network, which learns a high-dimensional
representation of the point clouds, and a transformer, which encodes contextual information.
The branches are intertwined, as seen in the figure, and finally joined together in the SVD
layer, which estimates the alignment between the point clouds. These three types of layers are
presented in the following paragraphs.

—{ Source ‘ ’ Target }—
¥ ¥
Embedding Network ‘ ’ Embedding Network

| — ]

’ Transformer ‘ ’ Transformer ‘

3 x

v v
SVD Layer

e

v v
Rotation Translation

(source — target) (source — target)

Figure 4.19: Overview of the point cloud registration network architecture.

The embedding network, which is based on a module called DGCNN [156], seeks to find
a feature per point in the source and target point clouds. DGCNN has proven to produce
a good representation by explicitly incorporating local geometry. It constructs a nearest
neighbor graph G, that is used as the input to the network, as illustrated in Figure 4.20.
The convolutional layers all have kernel size equal to 1 and stride 1, which means that they
only apply a nonlinearity to the input. The series of operations can be summarized with the
following equation:

wh = f({hy(xl" 2" Vi e Ni}) (4.12)

where N; denotes the neighbors of vertex i in graph G. PointNet [123] could potentially also be
used as the embedding network, but DGCNN is able to find local neighborhood information
which is favorable for later steps in the overall point cloud registration network.

A transformer is a network architecture based on a self-attention mechanism that especially
in the natural language processing domain outperforms both recurrent and convolutional



4.4 Point Cloud Registration 75

’ Conv2d Layer 1 H Maxpool

¥
’ Conv2d Layer 2 H Maxpool

J Conv2d Layer 5 H Output
’ Conv2d Layer 3 H Maxpool

¥

’ Conv2d Layer 4 H Maxpool

Figure 4.20: DGCNN embedding network.

models [151]. The network architecture is given in Figure 4.21. As this figure shows,
the architecture includes two subcomponents; simple feed-forward networks and multi-head
attention layers.

—{ Source ‘ ’ Target ‘
4l 17
’ Multi-head Attention ‘ ’ Multi-head Attention ‘
&

I

’ Feed-forward Network ‘

{ Multi-head Attention ‘

—

’ Feed-forward Network ‘

e

DA

7

’ Output ‘

Figure 4.21: Transformer network architecture.

In Figure 4.19 the transformer is used to learn a function ¢ : RV*F x RNXFP y RNxP,
where P is the embedding dimension, which provides new embeddings for the points clouds,

Py = Fx + ¢(Fx, Fy)
Dy = Fy + ¢(Fy, Fx)

Here, Fx and Fy are the embeddings produced by the previous layer. The intent is to modify
the original embeddings by adding the residual term ¢ which has encoded the structure of the
other point cloud. The updated embeddings are used to find a probability vector which maps
one point cloud to the other, i.e. each x; € X is assigned a probability vector over elements of
Y given by

(4.13)

m(xi, V) = softmax(@y@l—i) (4.14)



4.4 Point Cloud Registration 76

The SVD layer extracts the matched points in the point cloud ) for each point in X’ from
(4.14):
i =Y "'m(x;,)) e R? (4.15)

Here, Y € RV*3 is defined to be a matrix containing the points in . The rotation Ryy and
translation tyy are then found with (4.7) and (4.8) based on the pairing x; — 9;Vi.

4.4.2 Implementation Details

Like the other networks previously discussed, the point cloud registration network is also
implemented in PyTorch. The Adam algorithm with weight decay 10~ is chosen to optimize
the network parameters. The learning rate is initially set to o = 1072, and divided by 10 every
75 epochs.

The chosen loss function measures the deviation of the rotation and translation of a pair
of point clouds from the ground truth using mean squared error:

L(Rxy,txy) = [|[RyyR%y — I|]” + [[txy — thyl)? (4.16)

In this equation, X and ) are a pair of point clouds which are mapped with a rigid motion
[Rxy,txy] (rotation, translation) that aligns them together. The ground-truth is denoted by
the superscript g.

During training, 1024 points are sampled from objects in the ModelNet40 dataset and the
custom 3D dataset, and then centered and scaled to fit in the unit sphere. This source point
cloud X is then applied a random rigid transformation including a rotation between 0 and 45
degrees, and a translation between -0.5 and 0.5. The transformed point cloud is used as the
target.

4.4.3 Evaluation

The point cloud registration network as presented outperforms the other alternative methods
on point cloud registration. A quantitative summary of the test metrics for the network is
given in Table 4.2, along with corresponding metrics for ICP and Go-ICP. It should also be
noted that the inference time for the network on a point cloud with 1000 points is less than 0.1
seconds, which is faster than both of the other methods (ICP is slightly slower, while Go-ICP’s
inference time is on the order of about 15 seconds).

Model MSE (rotation) MAE (rotation) MSE (translation) MAE (translation)
This network 3.3 1.2 0.00001 0.002
ICP 895 25 0.08 0.25
Go-ICP 140 2.5 0.0007 0.007

Table 4.2: Test metrics on unseen point clouds for this network, ICP, and Go-ICP. I measure
the mean squared error (MSE) and mean absolute error (MAE).

One of the core design requirements of the network is that it should be flexible in terms
of how many points are passed as the input. The network satisfies this requirement, and



4.4 Point Cloud Registration 77

the number of points in the source and target point clouds don’t even have to be the same.
There is a practical limitation, however, due to the GPU memory limitations (8 GB for the
Nvidia GeForce GTX 1080) which restrains the maximum points in either cloud to be less
than 4000 points. For this network to be used in a production environment, it might therefore
be necessary to use a modern high-end GPU, or use an array of GPUs linked together. Since
the core OS functions of the host computer use about 3 GB memory, slightly increasing the
GPU memory will potentially double the number of points that could be passed through the
network.

(a) Airplane (b) Bottle (c) Car (d) Chair (e) Plant

(f) Airplane (g) Bottle (h) Car (i) Chair (j) Plant

Figure 4.22: Point cloud registration of objects from the ModelNet40 dataset. Top row:
Unaligned point clouds. Bottom row: Aligned point clouds.

(a) Avocado (b) Lemon (¢) Mushroom (d) Orange (e) Pear

(f) Avocado (g) Lemon (h) Mushroom (i) Orange (j) Pear

Figure 4.23: Point cloud registration of objects from the custom food object dataset. Top
row: Unaligned point clouds. Bottom row: Aligned point clouds.

By evaluating the sample inferences given in Figure 4.22 and Figure 4.23, it seems like the
network is able to generalize to unseen cases. All these point clouds are not in the training
set, and therefore have not been affecting the learning stage of the network. Nevertheless, for
the objects in the ModelNet40 dataset (top row) the alignment is close to perfect, while for
the custom dataset consisting of food objects (middle row) the alignment is an improvement
compared to the original unaligned cases, but with some offsets. The reason behind the lesser
alignment of the food objects could partially be explained by these objects being more different
from most of the objects in the training dataset, as they constitute a smaller number of the



4.5 Combining the Building Blocks to Create a 3D Vision Pipeline 78

(a) Avocado (b) Lemon (¢) Mushroom (d) Orange (e) Pear

(f) Avocado (g) Lemon (h) Mushroom (i) Orange (j) Pear

Figure 4.24: Point cloud registration of objects from the custom food object dataset, where
half of the points in the source point cloud is removed. Top row: Unaligned
point clouds. Bottom row: Aligned point clouds.

training samples. Additionally, it could indicate that the intraclass variance among the food
objects are bigger than the classes and objects given in the ModelNet40 dataset. Considering
this caveat, the alignment is performing fairly well. Therefore, effort should be done to make
a bigger dataset which covers most variations of fruit and vegetables, as this would most likely
solve these alignments issues.

Figure 4.24 depicts the same objects as in Figure 4.23, and with the same initial
transformation applied to the target point cloud, but with about half of the source points
missing. With these conditions, the network output is still able to rotate and translate the two
point clouds in the right direction, but the source point cloud (corresponding to the partial
input) is centered inside the target point cloud, instead of being slightly offset to match up
with the target points. The reasoning for this result might be due to the network optimizing
the mean distance between all the points in both point clouds, instead of just the points in
the point cloud with the lesser number of points. Thus, the nearest-neighbor distance should
be aimed to be minimized, but only for the points in the source point cloud. This necessitates
a change in the network architecture, that would imply making it less symmetrical than the
current structure. For an improvement to be made, the goal should be to only minimize the
distances between the points in the point cloud with the least amount of points to the other
point cloud, and ignore any optimization regarding the latter point cloud. Although these idea
might prove a promising direction for future work, currently ICP should be used on the output
of the network to produce a better alignment, as the network makes a global optimization that
enables ICP to perform its local optimization.

4.5 Combining the Building Blocks to Create a 3D Vision
Pipeline

All the previous methods are interesting on their own, but they have to be combined in order
to solve the main aim of this study. Figure 4.25 gives a schematic overview on the proposed
program flow for how the entire process from capturing an RGB-D image to inferring the
complete geometry of the objects in a scene. During this work it became apparent that the



4.5 Combining the Building Blocks to Create a 3D Vision Pipeline 79

necessary subproblems for real-world shape completion is naturally a series of succeeding steps,
where the output from one step is the desired input of the next. The pipeline is therefore an
end-to-end framework for completing 3D geometry, which combines and automates all the
necessary processes needed for optimal completion.

In the following, I discuss the responsibility of the steps and how they relate to the methods
presented earlier in this chapter. Some of the steps are more strongly related, and will be
discussed jointly. I will also add more specific schematics to some steps, to illustrate more in
detail what the abstract steps in Figure 4.25 involve.

RBG-D
Imaging

Filtering

Conversion Segmentation

Latent Space
Representation

Alignment

Pose
Estimation

Completion

Figure 4.25: 3D reconstruction end-to-end pipeline from a single-view raw RGB-D image to
a complete 3D model with a given pose. The output from one block is the input
to the next block.

Imaging and Filtering: In Figure 4.26, the process of imaging and filtering is illustrated.
It portrays a real-world scene of some fruit on a flat surface. The Intel RealSense D435 camera,
which is used in this work, captures RGB images with resolution 1920 x 1080 and depth images
with resolution 1280 x 720. It is clear that the color image does not need further processing
before being sent to the segmentation network. On the other hand, the depth image clearly
needs some post-processing to remove noise. In addition to being used for improving the
accuracy of segmentation, the depth information is used for the completion network. A good
completion accuracy depends on the quality of the raw depth data.

The post-processing used to generate the right depth image in Figure 4.26 includes a
threshold filter, a spatial filter, and a temporal filter. The threshold filter specifies the minimum
and maximum distance for depth information to be included in the depth image. In scenes like
this one, the objects of interest could be in the range from right next to the camera sensor and
up to typically less than 1.5 meters away. Further, the spatial filter applies edge-preserving
smoothing of the depth data. The amount of smoothing is determined by the one-dimensional



4.5 Combining the Building Blocks to Create a 3D Vision Pipeline 80

rgh

depth depth

Figure 4.26: RGB and depth images captured with Intel RealSense D435 at its highest
density setting. The depth image to the left has been post-processed to give
the right image, where some noise has been removed. The low quality of the
depth image illustrates a hitherto unmentioned advantage of shape completion;
it is not only useful for filling in the parts of the object that can’t be seen,
but also for upsampling the depth range and filling in missing details of the
observed parts of the object. The arrows which point right from the images in
the illustration signify that they are propagated as input to the next step in the
pipeline.

exponential moving average (EMA) equation, given as

Yy t=1
St = ¢ aY; (1 — Oé)St_l t>1land A= ’St — St_1| < Othresh (417)
Y: t>1land A = ’St — St71| > Othresh

where S; is the value of the EMA at any time period ¢, Y; is the newly recorded instantaneous
value of disparity or depth, and « represents the degree of weighting decrease (chosen to be
a = 0.5). Othresh (chosen to be dnresh = 8/32 disparities). Lastly, the temporal filter filters
depth data by looking into previous frames, which is a form of time averaging of the depth
data. EMA is also used for calculating this filter, where setting o = 1 amounts to no filtering,
while reducing « will increase averaging and smoothing.

Holes, patches of the depth image where z = 0, are still present by design in the post-
processed image. These holes commonly result from one or more of the following four reasons:

e Occlusions: Shadowing causes the left and the right images to not see the same object.



4.5 Combining the Building Blocks to Create a 3D Vision Pipeline 81

e Lack of texture: Since the stereo matching relies on matching feature descriptors in the
left and right images, depth estimation for texture-less surfaces will be challenging.

e Multiple matches: This is a case where features in one image can be matched with
multiple features in the other image, which could happen if the surface has a uniform
periodic structure.

e No signal: If the exposure is too high or too low, or the object is too far away there
might not be any signal to calculate depth from. It could also occur if the object is closer
than the minimum search-range for the stereo vision algorithm.

While an image with no holes is more visually appealing, for the application of shape completion
it is better to leave the holes without doing anything as hole filtering might introduce erroneous
depth information. Anyhow, the shape completion network will fill in the missing parts of the
objects of interest — including any holes they might have. This showcases another use for shape
completion, as it can also improve the depth quality of the partial scan.

More effort could be done to add more advanced filters, but the main issue is the quality
of the current consumer-grade depth cameras such as Intel RealSense. The reality is that the
current models are limited in their ability to correctly infer the depth information of a scene.
This is also one of the reasons behind using a simulated environment for evaluating the overall
3D vision pipeline. However, it is clear that the development of better camera hardware is
evolving at a high pace. With the field of developing RGB-D camera hardware being highly
competitive, the quality of the depth cameras will probably be much better in the near future.

Segmentation and Conversion: A schematic of the process of next couple of steps in the
pipeline, segmentation and conversion, is given in Figure 4.27. It uses the color and depth
images to segment and isolate the object of interest, for then to convert it to a point cloud.

Converting the depth map to a point cloud is done using Open3d [179]. It requires the
intrinsic camera parameters of the camera used to correctly calculate the depth scale of the
resulting point cloud. With the UnrealROX engine used to generate the RobotriX dataset
(which I used), the field of view (FOV) is specified as 90°, and the parameters can be calculated
using the following equations:

fx:

w
2
Cx =

(4.18)

Cy:

NS S

where w and h are the image width and height, respectively, and f, and f, are the x-axis and
y-axis focal length. The principal point offset (the location of the principal point relative to
the image origin) are given by the pixel locations ¢, and ¢,. For completeness, in general the
focal length should be calculated with

fac:f =

y = m (4.19)

The segmentation network presented in Section 4.2 is used to create the segmentation
mask in Figure 4.27 from the color and depth images. This mask is then used to isolate a



4.5 Combining the Building Blocks to Create a 3D Vision Pipeline 82

depth

l point cloud

l point cloud

|

Figure 4.27: A flowchart of the proposed segmentation process. Both the color and depth
image are used to find a mask which best segments the objects using the
segmentation network. The depth image is also converted into a point cloud,
which constitutes the 3D representation of the scene. Each object of interest
are identified and isolated by extracting points based on a selected class in the
mask. Then each object are passed on to the point cloud registration network
for alignment with its reference object in the prior object dataset.



4.5 Combining the Building Blocks to Create a 3D Vision Pipeline 83

point cloud of the segmented object. Specifically, the whole depth image is converted to a
point cloud where the mask is used as the color value of each point. Then, each point is
compared to an array with all the possible mask colors (each class has its own color) based
on its color value. By following this procedure, a boolean array is achieved where the truthy
values indicate the indexes of the points in the point cloud which belong to the segmented
object. Based on this array, the object point cloud can be created. The runtime to complete
this step is less than 0.2 seconds for images with a resolution of 1920 x 1080.

Alignment: Continuing from the isolated object point cloud (from now on referred to as
the source point cloud), it now needs to be aligned to the world coordinate system in the
same way as the objects in the dataset used to train the shape completion network. This
process is also called point cloud registration. There are several issues that arise as part of
this challenge, which turned out to be one of the toughest problems in this work. As can be
seen in Figure 4.28, the source point cloud has a different scale, rotation, and translation than
one of its matches in the dataset, which is defined to be in a canonical pose. While the object
point cloud acquired from the dataset (from now on referred to as the target point cloud) is of
a known size, i.e. it is constrained to be within the unit sphere, the number of unknown poses
increases the complexity of finding a good alignment between the two point clouds, especially
considering only a partial scan is given of the source point cloud.

As a small digression, consider the input point cloud to be complete, i.e. it has all the
missing parts already filled in. This would tremendously simplify the problem, as the scale
of the point cloud can then be determined in a few simple steps; find the maximum distance
between two points in the point cloud, and globally scale the point cloud such that this distance
would be 2 (twice the unit length). By subtracting the mean of the point cloud, it is now
centered within the unit sphere. Consequently, the scale is the same as the target point
cloud and the approach given in Section 4.4, which correctly identifies the needed rotation and
translation transformation to align the input point cloud with the target point cloud. However,
this approach to find the correct scale will fail when the input point cloud is a partial scan. The
maximum distance between two points in a partial scan will be less than that of the maximum
distance of the complete object, resulting in finding a scale factor which is too large.

These difficulties are addressed in Section 4.4, and the approach mentioned in that section
is used in this step of the pipeline. The end result from this step is a scale, rotation, and
translation transformation of the partial point cloud. The transform is saved until the shape
completion is done, as then the inverse transform will be applied to the completed point cloud
to place it in the correct pose in the scene.

Completion: With the partial object scan aligned to its corresponding canonical object in
the dataset, the shape completion network presented in Section 4.3 can infer its full shape. Of
course, it would be possible to simply use the canonical object for the shape completion as
well, but the network may be able to make the resulting object geometry a better fit by using
the observed data. Since the output from the completion network is an implicit function, it
is first converted to a mesh with marching cubes and then to a point cloud using the Poisson
disk sampling method. By applying the inverse transform of the previous alignment of the
partial scan to the complete object point cloud, the object is placed back into its correct size
and pose in the scene.



4.5 Combining the Building Blocks to Create a 3D Vision Pipeline 84

(a) Unaligned Partial Scan (b) Aligned Ground-truth

Figure 4.28: Left: Segmented partial point cloud scan (small black disk) plotted with an
axis cross with axes equal to 1. Right: Complete point cloud from the dataset,
which is scaled to be within the unit sphere. The partial point cloud has to
be aligned to some part of the complete scan for the completion network to be
able to infer its full geometry.

An extension to this part of the pipeline could be to calculate a weighting average of the
prior dataset object and the resulting object from the shape completion network. By calculating
the distances between the partial scans and the completed geometries using one of the point
metrics described in Section 2.1.3, one could determine whether the optimal completion is the
one from the shape completion network or the corresponding dataset object, or a combination
of the two. The combination of multiple point clouds in this way is done by simply appending
the points from one cloud to the other.

3D object pose: Identifying the pose of the object is out of the scope for this work, but
it is added to the pipeline schematic in Figure 4.25 as it is considered the final step for a
robotic vision system to have a complete understanding of the scene. Additionally, with the
full geometry of the object, which is also segmented from the rest of the scene, this becomes
almost a trivial task compared to the current approaches for pose estimation.



CHAPTER D
Conclusion

5.1 Summary

In this chapter the essential points of this thesis are summarized. Based on the motivation — to
complete the 3D geometry of objects in a scene based on a partial scan — the main aim was to
explore and validate the feasibility of using deep learning methods to utilize prior knowledge
from a dataset to perform shape completion. A custom dataset and three deep-learning based
methods were introduced: one for semantic segmentation of RGB-D images, one for shape
completion of point clouds, and one for point cloud registration. Furthermore, a 3D vision
pipeline architecture was proposed to consolidate the various subtasks into a coherent whole.
There are three main limitations with current active vision and multi-view methods which
can be overcome by employing a single-view agent, and thus represent a motivation for such
an approach. First, current multi-view and active vision methods may take as much as 10
seconds to infer a complete 3D model of the object of interest for grasping. In an industrial
setting, this would be a severe bottleneck in the overall process. Moreover, for some instances,
the objects that should be picked by the robot might be moving on a conveyor belt and pass
by it in that time-frame. Second, most objects are partially covered in some way from the
view of a camera. A single object will always cover other parts of the same object, in what
is called natural occlusion. Furthermore, physical occlusions such as other objects or physical
obstructions often hinder the full object from being visible. Third, if the object of interest is
too far away from the robot agent, the robot can only move such that it sees the object from
approximately the same view. Hence, it is not possible to use multi-view methods to infer the
geometry of the object.
Based on these limitations, in this MSc thesis the focus has been to develop and implement a
pipeline based on deep learning approaches to achieve a robust and accurate perception system.
This work includes the following;:

e Semantic Segmentation Network: In Section 4.2 a deep learning model with a
ResNet-like architecture was used to efficiently and accurately predict an output for each
pixel in the RGB-D image of a scene, resulting in a mask with semantic classification.

e Shape Completion Network: The most important method was covered in Section 4.3,
where a shape completion network which uses continuous implicit functions to define a
complete shape for a partial observation was proposed.

e Point Cloud Registration Network: Section 4.4 presented an approach to align the
resulting isolated objects from the partial scan into their canonical pose corresponding
to similar objects in the prior dataset.

e« 3D Vision Pipeline: Section 4.5 ties the aforementioned methods together into the
overall 3D vision pipeline.



5.2 Future Work 86

In connection to the outlined research questions, and based on the research investigations
carried out and presented in this MSc thesis it can also be concluded that real-world shape
completion is feasible (R1). The partial scan should be segmented with the object of interest
carefully isolated (R2), such that only the relevant information is used in the shape completion
stage. Since point clouds are the data representation that most closely follows that of the
output from the depth sensors, it is reasonable to use this data representation when comparing
3D objects. It also turns out that deep learning models cannot only be pipelined (R3), but that
this actually improves results and reduces noise compared to a one-for-all approach. Although
it is in its early stages, the work presented here provides a framework to be built further upon
in future work.

The key features of the resulting pipeline implemented in this MSc thesis are provided
below:

e Adaptability: The perception system is highly adaptable. It will produce reasonable
outputs for any scene, as long as the objects to be completed are in the prior dataset (or
similar objects) used to train the agent.

e Online Processing: The pipeline performs real-time completion of objects, as the
inference time is about a second. This removes lag and other delays in the robot system,
effectively addressing the main bottleneck in current processes.

e« Compositional Visual Intelligence: The classification, segmentation and completion
of objects is inherently tasks that add to the ”intelligence” of the robot. These are tasks
that are usually tagged as human-only, and especially the combination of them brings
the robot’s understanding of a scene closer to that of humans — increasing its possibilities
to do general tasks such as grasping and manipulation of objects.

e« Component-based System: The components in the 3D vision pipeline can be
exchanged independently of one another. For instance, the segmentation method could
be exchanged with a future improved version without affecting the remainder of the
pipeline. This enables continuous improvement, as each component in the pipeline can
be updated with the future state-of-the art for the specific task that component performs.

e Simulation-based Learning: All the data, both for the objects and the scenes, are
acquired from digital models and simulations. The learning does not seem to be limited
by not using real-world data, which leads to some opportunities by using such a simulated-
to-real approach: First, acquiring a sizeable dataset is simplified and takes a fraction of
the time. Second, scenes and objects can be digitally represented even though they are
not readily available in the real world, and which would otherwise be difficult to image
and create a dataset of. This also reduces the economical cost of compiling datasets.

5.2  Future Work

This section outlines several ideas which were out of the scope for this thesis, but which are
worth to be investigated in the future and might improve and expand the techniques and
approaches used in this work.



5.2 Future Work 87

e Prepare for Production-Readiness: For using this perception system in the industry,
which is important for the commercialization of the method, optimization of the
production code is of vital importance. Further work should be put on identifying and
removing potential bugs and errors in the code. The deep learning models could make
use of PyTorch’s just-in-time (JIT) compiler, to be usable in most software and hardware
environments, including those of robotic facilities. A general vision system such as this
work presents is an enabling factor in the future multi-billion dollar industry of robotic
automation. In that regard, it could be of interest to look into patenting the approach
presented in this thesis. In practice, however, it possibly builds too much upon related
open-source work for this to be feasible.

e« Use Sequence of Images: A robot with an eye-in-hand camera configuration
performing manipulation would mostly be moving, and capturing a video-stream at all
times. This calls for a merged approach between multi-view and single-view approaches,
where the sequence of images could be stitched together and continuously updated by the
multi-view system, while the single-view agent performs inference and shape completion
on a more detailed partial scan of the scene. Additionally, an image sequence allows
for models such as recurrent neural networks (which use their internal state to process
sequences of inputs) where the next inference could also take into account previous
inferences. Deep reinforcement learning could also be added to the pipeline in the same
fashion.

e Solve the Next-Best-View Problem: Based on the current observation of a scene,
information could be gained to determine the next optimal sensor pose that maximizes
the reconstructed surface of the object of interest. In the literature, this is referred to as
the next-best-view problem. A recent effort by Mendoza et al. [95] introduced supervised
learning as a means to find the next-best-view, but it still remains an open problem.

¢ Reduce Inference Time: Some parts of the methods in the pipeline could be further
optimized to further reduce the overall inference time. For example, there is a potential
of adding modifications marching cubes algorithm used to render the result from the
completion network.

e Verify the Inner Workings of the Shape Completion Network: The neural
networks used as part of the 3D vision pipeline, and particularly the shape completion
network, should be further studied. Do they perform the task they are supposed to do,
or do they only seem to do the task? Insight could be gained by interpolation in the
latent space, testing on specific objects with certain geometries, and comparing with
other neural networks based on different concepts than the ones used.

e Increase the Complexity of the Neural Networks: In the design of the network
architectures used in the pipeline, performance and accuracy improvements could be
gained by using more intricate convolutional operators, such as the ones included in
PyTorch Geometric [36]. It has compiled implementations of convolutional operators
specifically designed for graph representations such as meshes and point clouds.
Moreover, it could be of interest to design a Bayesian neural network using a framework
such as Pyro [10]. Especially for the shape completion agent, this allows the pipeline to
have the concept of being unsure of what the object to be completed is. This could occur



5.2 Future Work 88

either in cases where the object was not in the prior dataset used for training the agent,
or in cases where the view is from an angle where the object class is ambiguous.

e Improve the Simulation Environment: While the simulation environment provided
by UnrealROX [93] renders ultra-realistic scenes, it is limited by the design of the models.
Further work could be devoted to recreating the work environment of the robots at
SINTEF etc. in this tool, which then ends up being a digital twin. In this manner,
one can make a vast dataset with relatively few man-hours. Moreover, the physical
properties of the robot and the rest of the scene could be represented, allowing for
realistic manipulation of objects in the simulation environment. Today, some problems
are potentially only solvable by big tech companies who source data from their users.
Simulation could, however, possibly make the same research possible with comparatively
limited computational resources.

o« Extend the Model Flexibility to Account for Compliant Objects Most organic
objects are deformable, and a robotic manipulation agent which assumes that objects are
rigid might fail to grasp these. This necessitates a 3D representation which addresses the
properties of compliant objects, as the data representations presented in Section 2.1.2
cannot handle such characteristics. In terms of the shape completion agent, it could also
predict the ”skeleton” of the object in addition to its complete geometry. Moreover, it
could be useful to infer whether an object is hard/soft, dry/wet, coarse/sticky, etc., as
these properties affect the optimal grasping policy.



APPENDIX A
Tools

This appendix includes an overview on the used hardware and software environment as part
of the work in this thesis.

A.1 Hardware Environment

o Intel Realsense D435 is an RGB-D camera which uses stereo vision to calculate depth. It
has an infrared projector which projects a non-visible static infrared pattern to improve
depth accuracy in scenes with low texture. In this work, this camera was used to capture
real-world color and depth images of a scene.

e Nuidia Geforce GTX 1080 is a GPU which can be used for faster training and inferencing
of neural networks than what is possible with CPUs. In this work, the GPU was used to
enable parallelization during training of the neural networks.

e Franka Emika Panda 7 DOF is a robot manipulator that can have a payload up to 3
kg with a maximum reach of 855mm. In this work, this manipulator was only used as a
reference to see the target system for the developed perception framework.

A.2 Software Environment

A.2.1 Python Libraries

. AVAVA
OPyTorch  {Qorenap © learn
(a) PyTorch (b) Open3D (¢) Trimesh (d) Scikit-learn

Figure A.1: Python libraries.

o PyTorch [114] is an open source deep learning platform that proces a seamless path from
research prototyping to production deployment. It is a Facebook-backed Python-first
library, with a rich ecosystem of tools and libraries which extend the core functionality. It
is built upon the Lua-framework Torch, but is now Python-first and backed by Facebook.
In this work, PyTorch was used in the implementation of all neural networks. While
many alternatives exist, PyTorch was chosen in this work for its dynamic graph-building,
simple API, and NumPy-like syntax. Dynamic graph-building allows the programmer to



A.2 Software Environment 90

prototype a novel network as it is being built, which simplifies debugging. Furthermore,
since its syntax is similar to that of NumPy, it is a low barrier for Python-developers to
use the framework and its functionality can easily be combined with other libraries.

o Open3D [179] is a 3D data manipulation library with a built-in visualization tool. It also
has support for basic 3D data processing algorithms. In this work, Open3D was used to
visualize point clouds in the deep learning pipeline. It was also used to convert RGB-D
images into point clouds, and to NumPy arrays for further manipulation. Disclosure: 1
am a contributor to this library.

o Trimesh [29] is a library for loading and using triangular meshes, and allows for easy
manipulation and analysis. In this work, Trimesh was used to convert vertices and faces
into meshes.

o Scikit-Learn [117] is a machine learning library designed to interoperate with the libraries
NumPy and SciPy. In this work, Scikit-Learn was used for all non-deep machine learning
algorithms.

A.2.2 3D Computer Graphics Software

CloudCompare"?

&

MESHROOM

(a) UnrealROX (b) Meshlab (¢) CloudCompare (d) Meshroom (e) Blender

Figure A.2: 3D modeling and processing software.

o UnrealROX [93] is an environment built over Unreal Engine 4 which aims to reduce the
reality gap by leveraging hyperrealistic indoor scenes that are explored by robot agents
which also interact with objects in a visually realistic manner in that simulated world.
In this work, the RobotriX dataset [39] was used, which is automatically generated by
UnrealROX.

o Meshlab [21] is a software for processing and editing 3D triangular meshes, and provides a
set of tools for editing, cleaning, healing, rendering, texturing and converting meshes. In
this work, Meshlab was used to decimate/subsample meshes from the custom compiled
dataset, which unedited have up to 3 million faces each.

o CloudCompare [22] is a 3D point cloud and mesh processing software. In this work,
CloudCompare was used for working with 3D models with the .off format, and was also
used for converting a mesh to a point cloud while keeping the color information for each
point.



A.2 Software Environment 91

o Meshroom [97] is a photogrammetry software, i.e. it can infer the geometry of a scene
from a set of unordered photographs or videos. In this work, an effort was made to
use Meshroom to generate a dataset based on real-world scans of food objects. While
Meshroom can generally reconstruct 3D geometry from multiple images (20 per scan)
with a high accuracy, it was not able to give a satisfactory result for small objects such
as fruit and vegetables.

o Blender [23] is a 3D creation suite which supports modeling, rigging, simulation,
rendering, compositing, etc. In this work, Blender was used to generate specific still-
life scenes, such as Figure 1.1.



Bibliography

[12]

[13]

Panos Achlioptas et al. “Learning Representations and Generative Models for 3D Point
Clouds”. In: arXiv e-prints (July 2017), arXiv:1707.02392. arXiv: 1707.02392 [cs.CV]
(cited on pages 18, 49, 65).

Yasuhiro Aoki et al. “PointNetLK: Robust & Efficient Point Cloud Registration using
PointNet”. In: CoRR abs/1903.0 (2019) (cited on page 43).

Jakob Andreas Baerentzen and Henrik Aanaes. “Generating Signed Distance Fields From
Triangle Meshes”. In: (cited on page 57).

Gill Barequet and Micha Sharir. “Filling gaps in the boundary of a polyhedron”. In:
Computer Aided Geometric Design 12.2 (March 1995), pages 207-229. DOI: 10.1016/
0167-8396(94)00011-g. URL: https://doi.org/10.1016/0167-8396(94)00011-g
(cited on page 44).

Jonathan T Barron and Jitendra Malik. “Shape, Illumination, and Reflectance from
Shading Supplementary Material”. In: 2013 (cited on page 39).

Thabo Beeler et al. “Improved Reconstruction of Deforming Surfaces by Cancelling
Ambient Occlusion”. In: ECCV. 2012 (cited on page 38).

Yoshua Bengio, Aaron C Courville, and Pascal Vincent. “Representation Learning: A
Review and New Perspectives”. In: IEEFE Transactions on Pattern Analysis and Machine
Intelligence 35 (2013), pages 1798-1828 (cited on pages 30, 31).

D P Bertsekas. “A distributed asynchronous relaxation algorithm for the assignment
problem”. In: 1985 24th IEEE Conference on Decision and Control. December 1985,
pages 1703-1704. pOI: 10.1109/CDC.1985.268826 (cited on page 18).

Paul J Besl and Neil D McKay. “A Method for Registration of 3-D Shapes”. In: IEEFE
Trans. Pattern Anal. Mach. Intell. 14 (1992), pages 239-256 (cited on page 43).

Eli Bingham et al. “Pyro: Deep Universal Probabilistic Programming”. In: arXiv
preprint arXiv:1810.09538 (2018) (cited on page 87).

Volker Blanz and Thomas Vetter. “A morphable model for the synthesis of 3D faces”.
In: Proceedings of the 26th annual conference on Computer graphics and interactive
techniques - {SIGGRAPH} {\textquotesingle}99. {ACM} Press, 1999. por: 10.1145/
311535.311556. URL: https://doi.org/10.1145/311535.311556 (cited on page 47).

Bert De Brabandere, Davy Neven, and Luc Van Gool. “Semantic Instance Segmentation
with a Discriminative Loss Function” In: CoRR abs/1708.0 (2017) (cited on page 41).

Angel Xuan Chang et al. “ShapeNet: An Information-Rich 3D Model Repository”. In:
CoRR abs/1512.0 (2015) (cited on pages 8, 53).


http://arxiv.org/abs/1707.02392
https://doi.org/10.1016/0167-8396(94)00011-g
https://doi.org/10.1016/0167-8396(94)00011-g
https://doi.org/10.1016/0167-8396(94)00011-g
https://doi.org/10.1109/CDC.1985.268826
https://doi.org/10.1145/311535.311556
https://doi.org/10.1145/311535.311556
https://doi.org/10.1145/311535.311556

Bibliography 93

[14]

Ding-Yun Chen et al. “On Visual Similarity Based 3D Model Retrieval”. In: Computer
Graphics Forum 22.3 (2003), pages 223-232. DOI: 10.1111/1467-8659.00669. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00669 (cited on
page 20).

Jiawen Chen, Dennis Bautembach, and Shahram Izadi. “Scalable real-time volumetric
surface reconstruction”. In: ACM Trans. Graph. 32 (2013), 113:1-113:16 (cited on
page 39).

Liang-Chieh Chen et al. “MaskLab: Instance Segmentation by Refining Object
Detection with Semantic and Direction Features” In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2018), pages 40134022 (cited on page 40).

Wenyu Chen et al. “Polynomial curve registration for matching point clouds of different
scales”. In: 2017 IEEE 2nd International Conference on Signal and Image Processing
(ICSIP) (2017), pages 122-126 (cited on page 44).

Wenyu Chen et al. “Scale registration based on descriptor analysis and B-spline
matching”. In: TENCON 2017 - 2017 IEEE Region 10 Conference (2017), pages 1451—
1456 (cited on page 44).

Zhiqin Chen and Hao Zhang. “Learning Implicit Fields for Generative Shape Modeling”.
In: CoRR abs/1812.0 (2018) (cited on page 50).

Christopher Bongsoo Choy et al. “3D-R2N2: A Unified Approach for Single and Multi-
view 3D Object Reconstruction”. In: ECCV. 2016 (cited on page 48).

Paolo Cignoni et al. “MeshLab: an Open-Source Mesh Processing Tool”. In: Eurographics
Italian Chapter Conference. Edited by Vittorio Scarano, Rosario De Chiara, and Ugo
Erra. The Eurographics Association, 2008. 1SBN: 978-3-905673-68-5. DOI: 10 .2312/
LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136 (cited on pages 55,
90).

“CloudCompare [Computer software]”. In: URL: https://github.com/cloudcompare/
cloudcompare (cited on page 90).

Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation. Stichting Blender Foundation, Amsterdam, 2018. URL: http : / / www .
blender.org (cited on page 91).

Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. “Efficient and Flexible
Sampling with Blue Noise Properties of Triangular Meshes”. In: IEEE Transaction on
Visualization and Computer Graphics 18.6 (2012), pages 914-924. URL: http://vcg.
isti.cnr.it/Publications/2012/CCS12 (cited on page 16).

Angela Dai, Charles Ruizhongtai Qi, and Matthias Niefiner. “Shape Completion Using
3D-Encoder-Predictor CNNs and Shape Synthesis”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017), pages 6545-6554 (cited on
page 48).

Angela Dai et al. “BundleFusion: Real-Time Globally Consistent 3D Reconstruction
Using On-the-Fly Surface Reintegration”. In: ACM Trans. Graph. 36 (2017), 24:1-24:18
(cited on page 39).

Jifeng Dai et al. “Instance-sensitive Fully Convolutional Networks”. In: ECCV. 2016
(cited on page 40).


https://doi.org/10.1111/1467-8659.00669
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00669
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://github.com/cloudcompare/cloudcompare
https://github.com/cloudcompare/cloudcompare
http://www.blender.org
http://www.blender.org
http://vcg.isti.cnr.it/Publications/2012/CCS12
http://vcg.isti.cnr.it/Publications/2012/CCS12

Bibliography 94

[28]

[29]

Jifeng Dai et al. “R-FCN: Object Detection via Region-based Fully Convolutional
Networks”. In: NIPS. 2016 (cited on page 41).

Michael Dawson-Haggerty. “Trimesh [Computer software]”. In: URL: https://github.
com/mikedh/trimesh (cited on pages 57, 90).

Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition (2009), pages 248-255 (cited
on page 20).

James Diebel and Sebastian Thrun. “An Application of Markov Random Fields to
Range Sensing”. In: NIPS. 2005 (cited on page 38).

Haoqgiang Fan, Hao Su, and Leonidas Guibas. “A Point Set Generation Network for
3D Object Reconstruction from a Single Image”. In: arXiv e-prints (December 2016),
arXiv:1612.00603. arXiv: 1612.00603 [cs.CV] (cited on page 18).

Haoqiang Fan, Hao Su, and Leonidas J Guibas. “A Point Set Generation Network for 3D
Object Reconstruction from a Single Image”. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017), pages 24632471 (cited on page 49).

Alireza Fathi et al. “Semantic Instance Segmentation via Deep Metric Learning”. In:
CoRR abs/1703.1 (2017) (cited on page 41).

Yutong Feng et al. “MeshNet: Mesh Neural Network for 3D Shape Representation”. In:
AAAT 2019 (2018) (cited on page 49).

Matthias Fey and Jan E Lenssen. “Fast Graph Representation Learning with {PyTorch
Geometric}”. In: ICLR Workshop on Representation Learning on Graphs and Manifolds.
2019 (cited on page 87).

David A Forsyth. “Object Detection with Discriminatively Trained Part-Based Models”.
In: IEEE Computer 47 (2014), pages 67 (cited on page 47).

Alberto Garcia-Garcia et al. “A Review on Deep Learning Techniques Applied to
Semantic Segmentation”. In: CoRR abs/1704.0 (2017) (cited on page 39).

Alberto Garcia-Garcia et al. “The RobotriX: An Extremely Photorealistic and Very-
Large-Scale Indoor Dataset of Sequences with Robot Trajectories and Interactions”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2018, pages 6790-6797 (cited on pages 58, 59, 90).

Natasha Gelfand et al. “Robust Global Registration”. In: Symposium on Geometry
Processing. 2005 (cited on page 43).

Jared Glover, Radu Bogdan Rusu, and Gary R Bradski. “Monte Carlo Pose Estimation
with Quaternion Kernels and the Bingham Distribution”. In: Robotics: Science and
Systems. 2011 (cited on page 43).

Ian J Goodfellow et al. “Generative Adversarial Nets”. In: NIPS. 2014 (cited on page 35).

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016
(cited on pages 20, 28, 29).

Paul Guerrero et al. “PCPNet Learning Local Shape Properties from Raw Point
Clouds”. In: Comput. Graph. Forum 37 (2018), pages 75-85 (cited on page 39).


https://github.com/mikedh/trimesh
https://github.com/mikedh/trimesh
http://arxiv.org/abs/1612.00603

Bibliography 95

[45]

[46]

[47]

Saurabh Gupta et al. “Aligning 3D models to RGB-D images of cluttered scenes”. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015),
pages 4731-4740 (cited on page 47).

Saurabh Gupta et al. “Learning Rich Features from RGB-D Images for Object Detection
and Segmentation”. In: ECCV. 2014 (cited on page 42).

Feng Han and Song-Chun Zhu. “Bottom-Up/Top-Down Image Parsing with Attribute
Grammar”. In: IEFEE Transactions on Pattern Analysis and Machine Intelligence 31
(2009), pages 59-73 (cited on page 47).

Lei Han and Lu Fang. “FlashFusion: Real-time Globally Consistent Dense 3D
Reconstruction using CPU Computing”. In: Robotics: Science and Systems. 2018 (cited
on page 39).

Yudeog Han, Joon-Young Lee, and In-So Kweon. “High Quality Shape from a Single

RGB-D Image under Uncalibrated Natural lllumination”. In: 2013 IEEFE International
Conference on Computer Vision (2013), pages 1617-1624 (cited on page 38).

Christian Héne, Shubham Tulsiani, and Jitendra Malik. “Hierarchical Surface
Prediction for 3D Object Reconstruction”. In: 2017 International Conference on 3D
Vision (3DV) (2017), pages 412-420 (cited on page 48).

Adam W Harley, Konstantinos G Derpanis, and lasonas Kokkinos. “Segmentation-
Aware Convolutional Networks Using Local Attention Masks”. In: 2017 IEEE
International Conference on Computer Vision (ICCV) (2017), pages 5048-5057 (cited
on page 41).

Caner Hazirbas et al. “FuseNet: Incorporating Depth into Semantic Segmentation via
Fusion-Based CNN Architecture”. In: ACCYV. 2016 (cited on page 42).

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pages 770
778 (cited on pages 50, 59).

Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance

on ImageNet Classification”. In: 2015 IEEE International Conference on Computer
Vision (ICCV) (2015), pages 1026-1034 (cited on page 4).

Kaiming He et al. “Mask R-CNN.” In: IFEFE transactions on pattern analysis and
machine intelligence (2018) (cited on pages 40-42).

Hagit Hel-Or, Shmuel Peleg, and David Avnir. “Symmetry as a Continuous Feature”. In:
IEEE Trans. Pattern Anal. Mach. Intell. 17 (1995), pages 1154-1166 (cited on page 46).

Pedro Hermosilla, Tobias Ritschel, and Timo Ropinski. “Total Denoising: Unsupervised
Learning of 3D Point Cloud Cleaning”. In: CoRR abs/1904.0 (2019) (cited on page 39).

Matanya B Horowitz, Nikolai Matni, and Joel W Burdick. “Convex relaxations of SE(2)
and SE(3) for visual pose estimation”. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA) (2014), pages 1148-1154 (cited on page 43).

Zhaojin Huang et al. “Mask Scoring R-CNN”. In: CoRR abs/1903.0 (2019) (cited on
page 41).

IProcess. iProcessProject, WP3. 2018 (cited on page 4).



Bibliography 96

[61]

[62]

[63]

U J Isachsen, T Theoharis, and E Misimi. “GPU Accelerated 3D Registration -
Evaluation of 3D Registration Algorithms for Robotic Scanning of Compliant Objects”.
In: ICRA (2018) (cited on page 4).

Gregory Izatt and Russ Tedrake. “Globally Optimal Object Pose Estimation in Point
Clouds with Mixed-Integer Programming”. In: 2017 (cited on page 43).

Jindong Jiang et al. “RedNet: Residual Encoder-Decoder Network for indoor RGB-D
Semantic Segmentation”. In: CoRR abs/1806.0 (2018) (cited on pages 42, 59).

Long Jin, Zeyu Chen, and Zhuowen Tu. “Object Detection Free Instance Segmentation
With Labeling Transformations”. In: CoRR abs/1611.0 (2016) (cited on page 41).

Tao Ju. “Robust repair of polygonal models”. In: {ACM} {SIGGRAPH} 2004 Papers
on - {SIGGRAPH} {\textquotesingle}04. { ACM} Press, 2004. DOI: 10.1145/1186562.
1015815. URL: https://doi.org/10.1145/1186562.1015815 (cited on page 44).

Evangelos Kalogerakis et al. “A probabilistic model for component-based shape
synthesis”. In: ACM Trans. Graph. 31 (2012), 55:1-55:11 (cited on page 47).

Angjoo Kanazawa et al. “End-to-End Recovery of Human Shape and Pose”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018),
pages 7122-7131 (cited on page 49).

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Reconstruc-
tion. 2006. DOT: 10.2312/sgp/sgp06/061-070. URL: http://diglib.eg.org/handle/
10.2312/SGP.SGP06.061-070 (cited on pages 45, 46).

Michael Kazhdan and Hugues Hoppe. “Screened poisson surface reconstruction”. In:
{ACM} Transactions on Graphics 32.3 (June 2013), pages 1-13. por: 10 . 1145/
2487228 . 2487237. URL: https://doi.org/10.1145/2487228 . 2487237 (cited on
page 45).

Vladimir G Kim et al. “Learning part-based templates from large collections of 3D
shapes”. In: ACM Trans. Graph. 32 (2013), 70:1-70:12 (cited on page 47).

Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: CoRR
abs/1312.6 (2014) (cited on page 33).

Alexander Kirillov et al. “InstanceCut: From Edges to Instances with MultiCut”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017),
pages 7322-7331 (cited on page 41).

Reinhard Klette. Concise Computer Vision - An Introduction into Theory and
Algorithms. 2014. 1SBN: 978-1-4471-6319-0. DOI: 10.1007/978-1-4471-6320-6 (cited
on pages 9, 11, 12, 14).

Sebastian Koch et al. “ABC: A Big CAD Model Dataset For Geometric Deep Learning”.
In: CoRR abs/1812.0 (2018) (cited on page 53).

Chen Kong, Chen-Hsuan Lin, and Simon Lucey. “Using Locally Corresponding CAD
Models for Dense 3D Reconstructions from a Single Image”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017), pages 5603-5611 (cited
on page 49).

Zhaoming Kong and Xiaowei Yang. “A Brief Review of Real-World Color Image
Denoising”. In: CoRR abs/1809.0 (2018) (cited on page 38).


https://doi.org/10.1145/1186562.1015815
https://doi.org/10.1145/1186562.1015815
https://doi.org/10.1145/1186562.1015815
https://doi.org/10.2312/sgp/sgp06/061-070
http://diglib.eg.org/handle/10.2312/SGP.SGP06.061-070
http://diglib.eg.org/handle/10.2312/SGP.SGP06.061-070
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1007/978-1-4471-6320-6

Bibliography 97

[77]

Sondre Bg Kongsgard. “Learning Latent Space of Compliant Objects with Deep
Learning for Robotic Grasping”. In: 2018 (cited on pages 64, 65).

Johannes Kopf et al. “Joint bilateral upsampling”. In: ACM Trans. Graph. 26 (2007),
page 96 (cited on page 38).

Scott Krig. Computer Vision Metrics: Survey, Taxonomy, and Analysis. 1st edition.
Apress, 2014. 1SBN: 978-1-4302-5929-9,978-1-4302-5930-5 (cited on pages 9, 10).

Yann LeCun. “Gradient-based learning applied to document recognition”. In: 1998 (cited
on page 32).

Jan Eric Lenssen, Christian Osendorfer, and Jonathan Masci. “Differentiable Iterative
Surface Normal Estimation”. In: CoRR abs/1904.0 (2019) (cited on page 39).

Thomas Lewiner et al. “Efficient Implementation of Marching Cubes’ Cases with
Topological Guarantees”™ In: J. Graphics, GPU, & Game Tools 8 (2003), pages 1-15
(cited on page 17).

Guo Li et al. “Analysis, reconstruction and manipulation using arterial snakes”. In:
ACM Trans. Graph. 29 (2010), 152:1-152:10 (cited on page 47).

Yangyan Li et al. “Database-Assisted Object Retrieval for Real-Time 3D Reconstruc-
tion”. In: Comput. Graph. Forum 34 (2015), pages 435446 (cited on page 47).

Yijun Li et al. “Deep Joint Image Filtering”. In: European Conference on Computer
Vision. 2016 (cited on page 39).

Yi Li et al. “Fully Convolutional Instance-Aware Semantic Segmentation”. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017),
pages 4438-4446 (cited on page 40).

Xiaodan Liang et al. “Proposal-Free Network for Instance-Level Object Segmentation”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (2017),
pages 2978-2991 (cited on page 41).

Peter Liepa. “Filling Holes in Meshes”. In: Symposium on Geometry Processing. 2003
(cited on page 44).

Baowei Lin et al. “Scale ratio ICP for 3D point clouds with different scales”. In: 2013
IEEEFE International Conference on Image Processing (2013), pages 22172221 (cited on
page 44).

Marvin Lindner, Andreas Kolb, and Klaus Hartmann. “Data-Fusion of PMD-

Based Distance-Information and High-Resolution RGB-Images”. In: 2007 International
Symposium on Signals, Circuits and Systems 1 (2007), pages 1-4 (cited on page 38).

William E Lorensen and Harvey E Cline. “Marching cubes: A high resolution 3D surface
construction algorithm”. In: {ACM} {SIGGRAPH} Computer Graphics 21.4 (August
1987), pages 163-169. DOI: 10.1145/37402.37422. URL: https://doi.org/10.1145/
37402.37422 (cited on pages 16, 44).

Haggai Maron et al. “Point registration via efficient convex relaxation”. In: ACM Trans.
Graph. 35 (2016), 73:1-73:12 (cited on page 43).

Pablo Martinez-Gonzalez et al. “{UnrealROX}: An eXtremely Photorealistic Virtual
Reality Environment for Robotics Simulations and Synthetic Data Generation”. In:
ArXiv e-prints (2018) (cited on pages 58, 59, 88, 90).


https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422

Bibliography 98

[94]

[95]

[96]

[102]

103]

[104]

[105]

[106]
[107]
[108]

109

Andelo Martinovic and Luc Van Gool. “Bayesian Grammar Learning for Inverse
Procedural Modeling”. In: 2013 IEEE Conference on Computer Vision and Pattern
Recognition (2013), pages 201-208 (cited on page 47).

Miguel Mendoza et al. “Supervised Learning of the Next-Best-View for 3D Object
Reconstruction” In: ArXiv abs/1905.0 (2019) (cited on page 87).

Lars M Mescheder et al. “Occupancy Networks: Learning 3D Reconstruction in Function
Space”. In: CoRR abs/1812.0 (2018) (cited on pages 50, 70).

“Meshroom [Computer software]”. In: URL: https://github . com/alicevision/
meshroom (cited on pages 55, 91).

Mateusz Michalkiewicz et al. “Deep Level Sets: Implicit Surface Representations for 3D
Shape Inference”. In: CoRR abs/1901.0 (2019) (cited on page 50).

E Misimi. “Active Vision from Dense Point Clouds and Visual Servoing”. In: (2018)
(cited on page 3).

E Misimi et al. “Robotic Handling of Compliant Food Objects by Robust Learning from
Demonstration” In: JROS Madrid (2018) (cited on page 4).

Niloy J Mitra, Leonidas J Guibas, and Mark Pauly. “Partial and approximate symmetry
detection for 3D geometry”. In: {ACM} {SIGGRAPH} 2006 Papers on - {SIGGRAPH}
{\teztquotesingle}06. {ACM} Press, 2006. DOI: 10 . 1145/ 1179352 . 1141924. URL:
https://doi.org/10.1145/1179352.1141924 (cited on page 46).

Niloy Jyoti Mitra et al. “Symmetry in 3D Geometry: Extraction and Applications”. In:
Eurographics. 2012 (cited on page 46).

Liangliang Nan, Ke Xie, and Andrei Sharf. “A search-classify approach for cluttered
indoor scene understanding”. In: ACM Trans. Graph. 31 (2012), 137:1-137:10 (cited on
page 47).

Andrew Nealen et al. “Laplacian mesh optimization”. In: Proceedings of the jth
international conference on Computer graphics and interactive techniques in Australasia
and Southeast Asia - {GRAPHITE} {\textquotesingle}06. {ACM} Press, 2006. DOI:
10.1145/1174429 . 1174494, URL: https://doi.org/10.1145/1174429.1174494
(cited on pages 44, 45).

Richard A Newcombe et al. “KinectFusion: Real-time dense surface mapping and
tracking”. In: 2011 10th IEEE International Symposium on Mized and Augmented
Reality (2011), pages 127-136 (cited on page 39).

Alejandro Newell and Jia Deng. “Associative Embedding: End-to-End Learning for
Joint Detection and Grouping”. In: NIPS. 2017 (cited on page 41).

Michael A Nielsen. Neural Networks and Deep Learning. Determination Press, 2015
(cited on page 25).
Matthias NieBner et al. “Real-time 3D reconstruction at scale using voxel hashing”. In:

ACM Trans. Graph. 32 (2013), 169:1-169:11 (cited on page 39).

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. “f~-GAN: Training Generative
Neural Samplers using Variational Divergence Minimization”. In: NIPS. 2016 (cited on
page 36).


https://github.com/alicevision/meshroom
https://github.com/alicevision/meshroom
https://doi.org/10.1145/1179352.1141924
https://doi.org/10.1145/1179352.1141924
https://doi.org/10.1145/1174429.1174494
https://doi.org/10.1145/1174429.1174494

Bibliography 99

[110]

[111]

[112]

[113]
[114]
[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

T Olsen, B M Ottebg, and E Misimi. “Sim-to-Real transfer learning based on Deep
Reinforcement Learning for gripper vector estimation and grasping of semi-compliant
objects”. In: ICRA (2018) (cited on page 4).

Zhijian Ou. “A Review of Learning with Deep Generative Models from perspective of
graphical modeling”. In: CoRR abs/1808.0 (2018) (cited on pages 32, 33).

Jaesik Park et al. “High quality depth map upsampling for 3D-TOF cameras”. In:
2011 International Conference on Computer Vision (2011), pages 1623-1630 (cited on
page 38).

Jeong Joon Park et al. “DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation”. In: CoRR abs/1901.0 (2019) (cited on pages 50, 67).

Adam Paszke et al. “Automatic differentiation in PyTorch”. In: NIPS-W. 2017 (cited
on page 89).

Mark Pauly et al. “Discovering structural regularity in 3D geometry”. In: ACM Trans.
Graph. 27 (2008), 43:1-43:11 (cited on page 46).

Mark Pauly et al. Ezample-Based 3D Scan Completion. 2005. DOI: 10 .2312/sgp/
sgp05/023-032. URL: http://diglib.eg.org/handle/10.2312/SGP.SGPO5.023-032
(cited on page 47).

F Pedregosa et al. “Scikit-learn: Machine Learning in {P }ython”. In: Journal of Machine
Learning Research 12 (2011), pages 2825-2830 (cited on page 90).

Quang-Hieu Pham et al. “JSIS3D: Joint Semantic-Instance Segmentation of 3D Point
Clouds with Multi-Task Pointwise Networks and Multi-Value Conditional Random
Fields” In: CoRR abs/1904.0 (2019) (cited on page 43).

Pedro H O Pinheiro, Ronan Collobert, and Piotr Dollar. “Learning to Segment Object
Candidates”. In: NIPS. 2015 (cited on page 40).

Joshua Podolak et al. “A planar-reflective symmetry transform for 3D shapes”. In:
{ACM} {SIGGRAPH} 2006 Papers on - {SIGGRAPH} {\textquotesingle}06. { ACM}
Press, 2006. po1: 10.1145/1179352.1141923. URL: https://doi.org/10.1145/
1179352.1141923 (cited on page 46).

Charles Ruizhongtai Qi et al. “Frustum PointNets for 3D Object Detection from RGB-
D Data”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2018), pages 918-927 (cited on page 43).

Charles Ruizhongtai Qi et al. “PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space”. In: NIPS. 2017 (cited on page 49).

Charles Ruizhongtai Qi et al. “PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation”. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017), pages 77-85 (cited on pages 43, 49, 65, 74).

Marie-Julie Rakotosaona et al. “POINTCLEANNET: Learning to Denoise and Remove
Outliers from Dense Point Clouds”. In: CoRR abs/1901.0 (2019) (cited on page 39).

Anurag Ranjan et al. “Generating 3D Faces Using Convolutional Mesh Autoencoders”.
In: Computer Vision {\textendash} {ECCV} 2018. Springer International Publishing,
2018, pages 725-741. DOT: 10.1007/978-3-030-01219-9_43. URL: https://doi.org/
10.1007/978-3-030-01219-9%7B%5C_%7D43 (cited on page 49).


https://doi.org/10.2312/sgp/sgp05/023-032
https://doi.org/10.2312/sgp/sgp05/023-032
http://diglib.eg.org/handle/10.2312/SGP.SGP05.023-032
https://doi.org/10.1145/1179352.1141923
https://doi.org/10.1145/1179352.1141923
https://doi.org/10.1145/1179352.1141923
https://doi.org/10.1007/978-3-030-01219-9_43
https://doi.org/10.1007/978-3-030-01219-9%7B%5C_%7D43
https://doi.org/10.1007/978-3-030-01219-9%7B%5C_%7D43

Bibliography 100

[126]

[127]

[128]
[129]

[130]

[131]

[132]
[133]

[134]

[135]

[136]
[137]
[138]

[139)]

[140]

Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39 (2015), pages 1137-1149 (cited on page 40).

Gernot Riegler, Ali O Ulusoy, and Andreas Geiger. “OctNet: Learning Deep 3D
Representations at High Resolutions”. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017), pages 6620-6629 (cited on page 48).

Gernot Riegler et al. “A Deep Primal-Dual Network for Guided Depth Super-
Resolution”. In: CoRR abs/1607.0 (2016) (cited on page 39).

Gernot Riegler et al. “OctNetFusion: Learning Depth Fusion from Data” In: 2017
International Conference on 3D Vision (3DV) (2017), pages 57-66 (cited on page 48).

Jason Rock et al. “Completing 3D object shape from one depth image”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pages 2484—
2493 (cited on page 47).

Diego Rodriguez et al. “Transferring Grasping Skills to Novel Instances by Latent
Space Non-Rigid Registration”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA) (2018), pages 1-8 (cited on page 47).

David M Rosen et al. “SE-Sync: A certifiably correct algorithm for synchronization over
the special Euclidean group”. In: I. J. Robotics Res. 38 (2019) (cited on page 43).

Szymon Rusinkiewicz and Marc Levoy. “Efficient Variants of the ICP Algorithm”. In:
3DIM. 2001 (cited on page 43).

Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision 115 (2015), pages 211-252 (cited on pages 4,
21).

Steven M Seitz et al. “A Comparison and Evaluation of Multi-View Stereo
Reconstruction Algorithms”. In: Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume 1. CVPR ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pages 519-528. 1SBN: 0-7695-
2597-0. por: 10.1109/CVPR.2006.19. URL: http://dx.doi.org/10.1109/CVPR.2006.
19 (cited on page 19).

Lin Shao, Ye Tian, and Jeannette Bohg. “ClusterNet: 3D Instance Segmentation in
RGB-D Images”. In: 2018 (cited on page 42).

Tianjia Shao et al. “An interactive approach to semantic modeling of indoor scenes with
an RGBD camera”. In: ACM Trans. Graph. 31 (2012), 136:1-136:11 (cited on page 47).

Chao-Hui Shen et al. “Structure recovery by part assembly”. In: ACM Trans. Graph.
31 (2012), 180:1-180:11 (cited on page 47).

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. “PointRCNN: 3D Object Proposal
Generation and Detection from Point Cloud”. In: CoRR abs/1812.0 (2018) (cited on
page 43).
Ivan Sipiran, Robert Gregor, and Tobias Schreck. “Approximate Symmetry Detection
in Partial 3D Meshes”. In: Comput. Graph. Forum 33 (2014), pages 131-140 (cited on
page 46).


https://doi.org/10.1109/CVPR.2006.19
http://dx.doi.org/10.1109/CVPR.2006.19
http://dx.doi.org/10.1109/CVPR.2006.19

Bibliography 101

[141]

[142]

[143]

[144]
[145]

[146]

[147]
[148]

149

[150]

[151]

152]

[153)]
[154]

[155]

[156]

Xibin Song, Yuchao Dai, and Xueying Qin. “Deep Depth Super-Resolution : Learning
Depth Super-Resolution using Deep Convolutional Neural Network” In: ACCYV. 2016
(cited on page 39).

O Sorkine and D Cohen-Or. “Least-squares meshes”. In: Proceedings Shape Modeling
Applications. IEEE, 2004. pDO1: 10.1109/smi.2004.1314506. URL: https://doi.org/
10.1109/smi.2004.1314506 (cited on pages 44, 45).

David Stutz and Andreas Geiger. “Learning 3D Shape Completion from Laser Scan
Data with Weak Supervision”. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2018), pages 1955-1964 (cited on page 48).

Minhyuk Sung et al. “Data-driven structural priors for shape completion”. In: ACM
Trans. Graph. 34 (2015), 175:1-175:11 (cited on pages 46, 47).

Richard Szeliski. Computer Vision: Algorithms and Applications. London New York:
Springer, 2011. 1SBN: 978-1-84882-934-3 (cited on page 9).

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. “Octree Generating
Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”. In:
2017 IEEE International Conference on Computer Vision (ICCV) (2017), pages 2107
2115 (cited on page 48).

Maxim Tatarchenko et al. “What Do Single-view 3D Reconstruction Networks Learn?”
In: ArXiv abs/1905.0 (2019) (cited on page 67).

Martin Thoma. “A Survey of Semantic Segmentation”. In: CoRR abs/1602.0 (2016)
(cited on page 39).

Sebastian Thrun and Ben Wegbreit. “Shape from symmetry”. In: Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1 2 (2005), 1824
1831 Vol. 2 (cited on page 46).

M Vakalopoulou et al. “{AtlasNet}: Multi-atlas Non-linear Deep Networks for
Medical Image Segmentation”. In: Medical Image Computing and Computer Assisted
Intervention {\textendash} {MICCAI} 2018. Springer International Publishing, 2018,
pages 658-666. DOI: 10.1007/978-3-030-00937-3_75. URL: https://doi.org/10.
1007/978-3-030-00937-3%7B%5C_%7D75 (cited on page 49).

Ashish Vaswani et al. “Attention Is All You Need”. In: NIPS. 2017 (cited on page 75).

Nitika Verma, Edmond Boyer, and Jakob J Verbeek. “FeaStNet: Feature-Steered Graph
Convolutions for 3D Shape Analysis”. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018), pages 2598-2606 (cited on page 49).

O Voinov et al. “Perceptual deep depth super-resolution.” In: 2019 (cited on page 39).

Nanyang Wang et al. “Pixel2Mesh: Generating 3D Mesh Models from Single {RGB}
Images”. In: Computer Vision {\textendash} {ECCV} 2018. Springer International
Publishing, 2018, pages 55-71. DOI: 10.1007/978-3-030-01252-6_4. URL: https :
//doi.org/10.1007/978-3-030-01252-6%7B%5C_%7D4 (cited on page 49).

Yue Wang and Justin M Solomon. “Deep Closest Point: Learning Representations for
Point Cloud Registration”. In: 2019 (cited on pages 43, 73).

Yue Wang et al. “Dynamic Graph CNN for Learning on Point Clouds”. In: CoRR
abs/1801.0 (2018) (cited on pages 43, 74).


https://doi.org/10.1109/smi.2004.1314506
https://doi.org/10.1109/smi.2004.1314506
https://doi.org/10.1109/smi.2004.1314506
https://doi.org/10.1007/978-3-030-00937-3_75
https://doi.org/10.1007/978-3-030-00937-3%7B%5C_%7D75
https://doi.org/10.1007/978-3-030-00937-3%7B%5C_%7D75
https://doi.org/10.1007/978-3-030-01252-6_4
https://doi.org/10.1007/978-3-030-01252-6%7B%5C_%7D4
https://doi.org/10.1007/978-3-030-01252-6%7B%5C_%7D4

Bibliography 102

[157]

[158]

[159]

160

[161]
[162]

[163)]

[164]

[165]

[166]

[167]

168

[169)]

[170]
[171]

[172]

Jiajun Wu et al. “Learning 3D Shape Priors for Shape Completion and Reconstruction”.
In: Furopean Conference on Computer Vision (ECCYV). 2018 (cited on page 48).

Jiajun Wu et al. “Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling”. In: Advances in Neural Information Processing Systems. 2016,
pages 82-90 (cited on page 48).

Jiajun Wu et al. “MarrNet: 3D Shape Reconstruction via 2.5D Sketches”. In: NIPS.
2017 (cited on page 48).

Zhirong Wu et al. “3D ShapeNets: A deep representation for volumetric shapes”. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015),
pages 1912-1920 (cited on pages 8, 48).

Yi Xiao et al. “Joint convolutional neural pyramid for depth map super-resolution”. In:
CoRR abs/1801.0 (2018) (cited on page 39).

Shi Yan et al. “DDRNet: Depth Map Denoising and Refinement for Consumer Depth
Cameras Using Cascaded CNNs”. In: ECCYV. 2018 (cited on page 39).

Bin Yang et al. “PIXOR: Real-time 3D Object Detection from Point Clouds”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018),
pages 7652-7660 (cited on page 43).

Bo Yang et al. “3D Object Reconstruction from a Single Depth View with Adversarial
Learning”. In: 2017 IEEE International Conference on Computer Vision Workshops
(ICCVW) (2017), pages 679-688 (cited on page 48).

Bo Yang et al. “Dense 3D Object Reconstruction from a Single Depth View.” In: IEEE
transactions on pattern analysis and machine intelligence (2018) (cited on pages 48,
49).

Jiaolong Yang, Hongdong Li, and Yunde Jia. “Go-ICP: Solving 3D Registration
Efficiently and Globally Optimally”. In: 2013 IEEE International Conference on
Computer Vision (2013), pages 1457-1464 (cited on page 43).

Qingxiong Yang et al. “Spatial-Depth Super Resolution for Range Images”. In: 2007
IEEE Conference on Computer Vision and Pattern Recognition (2007), pages 1-8 (cited
on page 38).

Yaoqing Yang et al. “FoldingNet: Point Cloud Auto-Encoder via Deep Grid
Deformation”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2018), pages 206215 (cited on page 49).

Lap-Fai Yu et al. “Shading-Based Shape Refinement of RGB-D Images”. In: 2013 IEEE
Conference on Computer Vision and Pattern Recognition (2013), pages 1415-1422 (cited
on page 38).

Wentao Yuan et al. “PCN: Point Completion Network” In: 2018 International
Conference on 3D Vision (3DV) (2018), pages 728-737 (cited on pages 49, 65).

Amir Zadeh et al. “Variational Auto-Decoder”. In: CoRR abs/1903.0 (2019) (cited on
page 34).

Maciej Zamorski et al. “Adversarial Autoencoders for Generating 3D Point Clouds”. In:
CoRR abs/1811.0 (2018) (cited on page 49).



Bibliography 103

[173]

[174]
[175]
[176]

[177]

178
[179]

[180]

[181]

Andy Zeng et al. “3DMatch: Learning Local Geometric Descriptors from RGB-
D Reconstructions”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017), pages 199-208 (cited on page 48).

Cheng Zhang et al. “Advances in Variational Inference”. In: IEFEE transactions on
pattern analysis and machine intelligence (2018) (cited on page 33).

Ruo Zhang et al. “Shape from Shading: A Survey”. In: IEEFE Trans. Pattern Anal. Mach.
Intell. 21 (1999), pages 690-706 (cited on page 38).

Xiuming Zhang et al. “Learning to Reconstruct Shapes from Unseen Classes”. In:
NeurIPS. 2018 (cited on page 48).

Wei Zhao, Shuming Gao, and Hongwei Lin. “A Robust Hole-Filling Algorithm for
Triangular Mesh”. In: The Visual Computer. Volume 23. 2007, page 22. ISBN: 978-1-
4244-1579-3. pOI: 10.1109/CADCG.2007 . 4407836 (cited on page 44).

Zhong-Qiu Zhao et al. “Object Detection with Deep Learning: A Review”. In: IEEFE
transactions on neural networks and learning systems (2018) (cited on page 39).

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “{Open3D}: {A} Modern Library for
{3D} Data Processing”. In: arXiv:1801.09847 (2018) (cited on pages 81, 90).

Jiejie Zhu et al. “Fusion of time-of-flight depth and stereo for high accuracy depth
maps”. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (2008),
pages 1-8 (cited on page 38).

M Zollhofer et al. “State of the Art on 3D Reconstruction with RGB-D Cameras”. In:
Computer Graphics Forum (Eurographics State of the Art Reports 2018) 37.2 (2018)
(cited on page 44).


https://doi.org/10.1109/CADCG.2007.4407836

