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Abstract

Model predictive control is a repetitive control method that solves an optimal con-

trol problem for a finite horizon at each time step, in order to find the current

control action and apply it to the system.

For constrained linear systems with bounded additive disturbance, one can design

a control law combining traditional feedback with the control action from model

predictive control to ensure all realizations of the state trajectory stay within a

range of the nominal state. When this is the case, it is simpler to consider the

control of the uncertain system as controlling all possible trajectories. Further,

applying tightened constraints to the nominal system ensures that the bundle of

trajectories adheres to the original constraints. Thereby one has constrained the

states of the actual system to a tube centered around the nominal states. This is

termed tube-based robust model predictive control.

The main part of this paper is focused on deriving the mathematical formulation

behind this specific method to demonstrate the aforementioned aspects of the con-

trol law.

In this paper, the control method is implemented in MATLAB and applied to a

two-dimensional linear system modeled with bounded additive disturbance. Demon-

strating how each step of this method works can aid in an intuitive understanding
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of how to apply it to more complex systems. The performance of the controller is

discussed along with the effect certain approximations have on the controller.
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Chapter 1

Introduction

Model predictive control (MPC) was invented in industrial process control, and

from there brought into academia where numerous variations of the method were

developed. As a result of this unconventional evolution, there is a gap between

the theoretical research and the practical applications of MPC, in the sense that

for many theoretical methods the practical applications are rarely applied. [13]

Model predictive control is a method of control where at each time step, a finite

horizon optimal control problem is solved for an optimal control sequence where

the first element is applied to the system. The general version of this is the infinite

horizon linear quadratic regulator (LQR), which is optimal in the unconstrained

case. When a system is constrained, this same optimization is performed for a

finite horizon under the given constraints; a trade-off between optimality and fea-

sibility.

The feedback MPC, which includes the state of the system at each time step in

the online calculation, is much more complex than the deterministic variety, and

therefore a lot of research has focused on reducing complexity, by sacrificing op-
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timality [10]. Feedback in any control system is inherently important when there

is uncertainty present. The research in this paper focuses on a specific type of

uncertainty, where it is assumed that the disturbance is bounded. There are nu-

merous methods for handling this robust uncertainty in MPC, which will briefly

be discussed in this chapter. One such category of methods, called tube-based

methods, is the focus of this paper.

Tube-based methods, first proposed in 2005 in [8], arise from the following obser-

vation: if one introduces a control law to the system that ensures all the possible

trajectories of the uncertain system, given the assumptions around the uncertainty,

stay within a certain radius of the nominal system, then one can apply stricter con-

straints to the nominal system which in turn ensures the uncertain system adheres

to the original constraints. The nominal system is the model of the system without

uncertainty, and is much easier to control. Thus controlling the uncertain system

by controlling this bundle of trajectories, which simplifies the problem.

The tube-based method uses a control law of the form u = ū+K(x−x̄), whereK

is a feedback matrix chosen by the designer, and ū comes from solving a feedback

MPC problem online for the nominal system with tightened constraints, calculated

offline. This law ensures the aforementioned property.

In figure 1.1 this relatively simple concept is visualized for a two-dimensional

system. The nominal system trajectory is in red and a few realizations of the actual

trajectory are shown in black. The control law used for the actual trajectories is

the one stated above, and ensures that the trajectories always stay within a certain

distance of the nominal system. This specific distance is visualized by the set

plotted for every time step. This set is called a disturbance invariant set, and its

calculation and significance is discussed in detail in chapter two.
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Figure 1.1: Visualization of tube-based control of an uncertain system

Since the control law uses feedback from the actual system, and only one of the

visualized trajectories can be used as the feedback, the other realizations are not

contained in this set. This does not speak to the performance of the controller.

The controller is robustly stable, provided that the uncertainty adheres to the as-

sumptions regarding its boundedness, which will be shown in chapter two.

The paper is organized as follows. The main focus is devoted to deriving the

mathematical formulation behind the tube-based method which is done in chapter

two. At the end of this chapter, stability for the method is shown. The system

used in the simulation is presented in chapter three, along with the structure of

the implementation and relevant code snippets. Chapter four shows the results of

the simulation. Chapter five is a discussion of the results, and the conclusion is

presented last, in chapter six.

Note that this paper assumes the reader is well known with the model predic-

tive control method and its formulation as it does not go into the specifics of the
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method, only the variations involved in the tube-based method.
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Chapter 2

Theory

2.1 Type of systems

Uncertainty in a system is a realistic inevitability, and denotes any factor that con-

tributes to the actual behavior of the system not being equivalent to the predicted

behavior. This can be external factors affecting the system, model inaccuracies

and much more. Depending on what is known regarding the specifics of uncer-

tainty, designing a controller that ensures stability and constraint satisfaction can

be anything from trivial to impossible.

There are different ways of modeling uncertainty in linear systems depending on

how these factors interact with the system dynamics. Two main categories of mod-

eling are parametric uncertainty and unstructured uncertainty. The former denotes

uncertainty due to parametric differences between the model and the physical sys-

tem, while the latter refers to structural differences.

If the system parameters are not precisely known and vary over a certain range,

for example x+ = (A + δA)x + (B + δB)u, where δA,B denotes the variation, it
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can be modeled as parametric uncertainty.

Unstructured uncertainty, however, denotes uncertainty in the underlying dy-

namics of the system. For example, an additive disturbance for a linear system

would be modeled as x+ = Ax + Bu + Ew and multiplicative disturbance as

x+ = (Ax+Bu) ·Ew, where w denotes the disturbance factor and E denotes the

disturbance matrix.

Combining these models to form mixed uncertainty is also common.

To have any chance of designing stable controllers for systems with uncertainty,

certain assumptions have to be made. One can, for instance, consider the uncer-

tainty a stochastic variable belonging to a specific probability distribution. This is

called stochastic uncertainty. Another, perhaps more strict, way which will be the

focusing on in this paper, is assuming the uncertainty is bounded and enclosed in

a compact set W. This is referred to as robust uncertainty and leads the way to

robust model predictive control. [1]

There are numerous approaches to robust MPC, and only a few are mentioned

here. One method minimizes the objective function for the worst case of the dis-

turbance sequence. This is called min-max MPC. [4] Another method is tightening

the constraints used in the online calculations to prevent infeasibility from a dis-

turbance. This is constraint tightening MPC [11]. A third method is separating

the state dynamics into the nominal state x̄ and error state e = x − x̄, and intro-

ducing a control law that ensures the state trajectories stay relatively close to the

nominal trajectories for all realizations of the disturbance sequence. This is the

method presented in the introduction, called tube-based MPC.

This section will focus on the mathematics behind applying the robust tube-based

model predictive control method to a linear system with additive disturbance.
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2.2 Tube-based methods

The feedback control law,

u = ū+K(x− x̄) , (2.1)

where K is a feedback matrix chosen by the designer, and ū = Kx̄, is the optimal

feedback control law in the unconstrained linear system.

This can be extended to the constrained case in (2.2), if ū = Kx̄ is replaced

with ū = κN(x̄) which comes from solving, online, a finite-horizon optimization

problem

x+ = Ax+Bu+ Ew ,

x ∈ X, u ∈ U, w ∈W .
(2.2)

Here,A is the state matrix,B is the control matrix andE is the disturbance matrix.

The sets X,U,W are the constraints for their respective variables.

Using this feedback control law, one can show that all realizations of the state

trajectory will lie in a bounded neighborhood of the nominal trajectory. Further,

subjecting the nominal system to a set of tightened constraints in the online calcu-

lations, one can control this bundle of trajectories around the nominal trajectory to

adhere to the original constraints. This is the principle behind tube based control.

The calculation of the tightened constraints, as well as the calculation of the feed-

back matrix K, can be done offline, and this method is therefore not as compu-

tationally expensive as one might assume. The online calculations in this case

are identical to nominal MPC, with the only difference being using the tightened

constraints in the problem.

For linear systems with convex constraints such as the one in equation (2.2), a tube
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may be designed to bound all realizations of the state trajectory: Xi = {x̄i} × S,

where S is a disturbance invariant set, and x̄i is the state of the nominal system at

time i.

Even though it is assumed that the reader is quite familiar with MPC, for future

reference, the finite-horizon optimal control problem used in the online calcula-

tions is,

min
ū

N−1∑
j=0

(
x>j Qxj + u>j Ruj

)
+ x>NPxN , (2.3)

subject to

x0 = x(0) given ,

xj+1 = Axj +Buj, j ∈ Z0:N−1 ,

xj, uj ∈ (X× U), j ∈ Z0:N−1 , (2.4)

xN ∈ Xf ⊆ X . (2.5)

The cost matrices are Q and R for x and u respectively, and P represents the

terminal cost matrix. The set Za:b, where a < b, denotes the set of integers {a, a+

1, . . . , b − 1, b} and this notation will be used throughout the text. Also note that

Z+ = {z ∈ Z, z ≥ 1}.
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2.3 Mathematical basis for tube-based method

Given the system and nominal system

x+ = Ax+Bu+ Ew , (2.6)

x̄+ = Ax̄+Bū , (2.7)

where

x ∈ Rnx , u ∈ Rnu , w ∈ Rnw ,

(x, u) ∈ Y = {X× U} ,

w ∈W .

(2.8)

The constraint sets are polytopic and can be described as

Y = {(x, u) | Cx+Du ≤ e} ,

W = {w | Eww ≤ gw} .
(2.9)

One must also assume that the disturbance set W is a compact set that contains

the origin in its interior, which ensures the existence of a disturbance invariant set

that will become clear later in this chapter.

{0} ∈ int(W), where W is a compact set. (2.10)

Allowing the transformation from (x, x̄) to (e, x̄) as follows,

e
x̄

 =

I −I
0 I

x
x̄

 , (2.11)
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and introducing the control law in equation (2.1), yields the system equations

e+ = AKe+ Ew , (2.12)

x̄+ = Ax̄+Bū . (2.13)

with AK = A + BK. Consequently, this is an asymptotically stable system by

design, since K is chosen by the designer. Since this transformation is invertible,

the original states can be acquired at any time.

It is important to note that the transformation in (2.11) can be considered separat-

ing the state into x = x̄+ e, with the following separate dynamics

x+ = x̄+ + e+ ,

e+ = (A+BKe)x+ Ew ,

x̄+ = Ax̄+Bū .

(2.14)

In this formulation there are in theory two separate feedback matrices,Ke andKx̄.

Ke is the robust feedback matrix, used in the control law u and for the calculation

of the disturbance invariant set SK . This is selected by the designer such that the

error dynamics are stable.

The feedback matrix Kx̄ used in the nominal system to calculate the terminal

constraint set and terminal cost is the solution to the discrete time algebraic Riccati

equation, and is used as the feedback control law in the infinite horizon optimal

control problem. In this paper, Ke = Kx̄ = K, for simplicity and because it was

not necessary as the closed-loop error dynamics was asymptotically stable with

the feedback matrix Kx̄.
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The following notation, from [10], is used throughout the text: ū = κN(x̄). For

each state of the system, the finite-horizon optimal control problem is solved to

acquire the optimal control sequence, and the first element, ū(0;x), is applied to

the system. This is only calculated for the actual states of the system. However,

if the optimal control sequence was calculated for every possible feasible state of

the problem, one can think of this as a feedback control law κN(x̄) = ū(0;x), x ∈

X̄N , without needing to actually calculate the exact expression.

Therefore the composite closed-loop system can be written as

e+ = AKe+ Ew ,

x̄+ = Ax̄+BκN(x̄) .
(2.15)

2.3.1 Existence of disturbance invariant set

To ensure that the state trajectories stay within a certain compass of the nominal

state, the existence of a disturbance invariant set must be shown.

A disturbance invariant set X (also called robustly positively invariant) for x+ =

f(x,w) satisfies the following equation,

f(x,w) ∈ X ∀ x ∈ X,w ∈W . (2.16)

Equivalently, X is a disturbance invariant set if and only if

AX ⊕W ⊆ X . (2.17)

Further the minimal disturbance invariant set is the set with the above proper-

ties that is contained in every other closed disturbance invariant set for the same
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system.

One can observe the following evolution of the error dynamics, from chapter 3.5

in [10],

e1 = AKe0 + Ew0 ,

e2 = AKe1 + Ew1 = AK(AKe0 + Ew0) + Ew1

= A2
Ke0 + AKEw0 + Ew1 ,

e3 = AKe2 + Ew2 = AK(A2
Ke0 + AKEw0 + Ew1) + Ew2

= A3
Ke0 + A2

KEw0 + AKEw1 + Ew2 ,

...

ei = AiKe0 +
i−1∑
j=0

AjKEwi−1−j, w ∈W .

(2.18)

This results in the following definition of a set sequence, denoting the set of all

states reachable at i starting from e0 = 0,

SK0 = {0} ,

SKi =
i−1∑
j=0

AjKEW, i ∈ Z+ .
(2.19)

Here
∑

denotes the set addition ⊕ defined in appendix B.

It can be shown that this sequence converges to a disturbance invariant set SK ,
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which is the minimal disturbance invariant set for (2.12),

SK =
∞∑
j=0

AjKEW . (2.20)

Since AK is stable by design, any e0 ∈ SK implies ei ∈ SK ∀ i ∈ Z+. This is

significant because it means the possibility that for a certain set of initial states of

the system, the system evolution of the error dynamics will be contained in the

set, for any realization of the disturbance sequence. In other words, the system

will stay in an SK-neighborhood of the nominal system for any realization of the

disturbance sequence.

Theorem 4.1 in [5] states that under the assumptions in (2.10), and the fact thatAK

is asymptotically stable, there exists a compact disturbance invariant set SK ⊂ Rn

such that SKi ⊂ SK ∀ i ∈ Z+ and the sequence SKi, i ∈ Z+ converges to SK . In

corollary 4.2, SK is shown to be the minimal disturbance invariant set.

It can be instructive to prove this theorem. Recalling thatAK being asymptotically

stable implies any power of AK is strictly decreasing and W being compact and

containing the origin implies ∃ c ∈ R such that EW ⊂ cBn where Bn is a ball

with arbitrary radius n and center in the origin. So, combined

∃ c > 0, λ ∈ (0, 1) and i ∈ Z+ , (2.21)

such that AiKEW ⊂ cλiBn . (2.22)

Since SKi+1 = SKi+AiKEW, it follows that dH(SKi+1, SKi) ≤ cλi. Noting that

a set sequence is Cauchy if for every ε > 0, ∃ N such that dH(Sm, Sn) < ε for

all m,n > N, (m,n,N ∈ Z+), it is apparent that the sequence {SKi : i ∈ Z+}

is Cauchy. Since SKi ∈ R2, which is a complete metric space, and all Cauchy
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sequences in complete metric spaces converge [12], the sequence converges to

SK , i.e. limi→∞ SKi = SK .

This limit SK is also disturbance invariant because SK = AKSK + E W, and

therefore

∀x ∈ SK , x+ = AKx+ EW ∈ SK . (2.23)

To prove minimality, let X be any closed disturbance invariant set for the system

(2.12), i.e.

x0 ∈ X → AiKx0 +
i−1∑
j=0

AjKEwi−1−j ∈ X ∀ i ∈ Z+. (2.24)

Since {0} ∈W, this implies
∑i−1

j=0A
j
KEwi−1−j can be zero and therefore

x0 ∈ X ⇒ AiKx0 ∈ X ∀ i ∈ Z+. (2.25)

The closed-loop system matrixAK being asymptotically stable means limi→∞A
i
Kx0 =

0 and therefore {0} ∈ X . Furthermore, x0 = 0 means the state trajectory xi stays

in X ∀ i ∈ Z+, w ∈W.

By the definition of the sequence (2.19), SKi ⊂ X, ∀ i ∈ Z+, meaning SK ⊂ X

and hence SK must be the minimal disturbance invariant set for (2.12).

2.3.2 Approximation of disturbance invariant set

Since this set is defined as an infinite sum, an explicit expression does not neces-

sarily exist.

From remark 4.2 in [5], if there exists N ∈ Z+ and α ∈ [0, 1) such that ANKE =

αE, then SK = (1− α)−1SKN . See appendix D.1 for the proof of this.
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Unfortunately, this is a special case and cannot be used very often. However, [9],

∃ N ∈ Z+ and α ∈ [0, 1) such that ANKE ⊆ αE. From there, a disturbance

invariant outer approximation for SK exists and is defined as

SKN(α) = (1− α)−1SKN . (2.26)

A discussion regarding the accuracy of this approximation, and the selection of α,

is taken briefly in appendix D.2

The existence of the minimal disturbance invariant set can be used in designing

a disturbance invariant bounding tube for the system evolution. Let X(x, ū) be

defined as follows

X(x, ū) =
(
X(0;x), X(1;x, ū), ..., X(N ;x, ū)

)
,

X(i;x) = {x̄i ⊕ SK} .
(2.27)

This means that given an initial state x and control sequence ū = ū0, ū1, . . ., the

solution to the system will lie in this tube, for every realization of the disturbance

sequence.

If the state of the system always lies within this tube, defining the constraints of

the nominal system as

X̄ = X	 SK ,

Ū = U	KSK ,
(2.28)

ensures that the state and control input of the actual system lie within their respec-
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tive constraint sets X and U.

Here 	 denotes the set subtraction defined in appendix B.

2.3.3 Explicit characterization of certain constraints

To implement this for a linear system, an explicit characterization of the tightened

constraint set needs to be derived, expressed as a set of linear inequalities.

To compute an explicit characterization of the tightened set, define the worst-case

minimal disturbance invariant set SKmax as

SKmax = max
w
{
∞∑
j=0

AjKEwi |w ∈W} . (2.29)

The definition of set subtraction from appendix B is

Ȳ = {(x, u) ∈ Y | (x, u) + (s1, s2) ∈ Y ∀ (s1, s2) ∈ (SK ×KSK)} . (2.30)

Hence, the tightened constraint set will be

Ȳ = {(x, u) | C(x+ SKmax) +D(u+KSKmax) ≤ e}

= {(x, u) | Cx+Du ≤ e− (C +DK)SKmax} .
(2.31)

Using the outer approximation for SK from (2.26), this can be rewritten as

Ȳ = {x, u | Cx+Du ≤ e− θN} , (2.32)
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where

θN = (1− α)−1 max
w
{
N−1∑
j=0

CAjKEwj +DKAjKEwj |w ∈W} . (2.33)

Another element of the controller that requires an explicit formulation before mov-

ing on to the stability analysis and the implementation, is the formulation of the

terminal constraint x̄N ∈ Xf for the MPC. The goal is to guarantee constraint

satisfaction for an infinite horizon, which in turn contributes to stability.

To calculate a suitable set, one uses a method called "quasi-infinite horizon" [2],

where the terminal constraint is calculated with the optimal feedback control law

ū = Kx̄ for the unconstrained infinite-horizon.

Consider the maximal positively invariant set, defined in appendix C, for the nom-

inal system with ū = Kx̄, under the tightened constraint set Ȳ. This can be written

as

x̄+ = AK x̄ ,

x ∈ Ȳk = {x | CKx ≤ e− θN} ,
(2.34)

with CK = C +DK.

Requiring the last state of the finite horizon, x̄N , to be in this set guarantees the

evolution of the infinite-horizon closed loop nominal system never leaves the set.

The reason to use the maximal set, is that it is favorable for the constraints in the

online problem to be as slack as possible, to ensure maximal feasibility.
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2.4 Stability of tube-based MPC

This section demonstrates the robust asymptotic stability (RAS) of tube-based

MPC, from [10]. It is sufficient to show RAS for the system with states (e, x̄)

(2.15).

Robust asymptotic stability of a set B for system z+ = f(z, w) in set A, where

B ⊂ A, implies ∃ KL-function β(·, ·) such that

d(φ(i; z,w), B) ≤ β(d(z, B), i) ∀ i ∈ Z+ , (2.35)

where φ(i; z,w) is every solution of z+ = f(z, w) with z0 ∈ A and w ∈W∞.

Using the definition in (2.35), one can show that the set S1 = SK×{0} is robustly

asymptotically stable for the system in the set S2 = SK × X̄N , where X̄N is the

set of all states for which there exists a feasible solution to the N -horizon optimal

control problem (2.3). This is equivalent to proving RAS for tube-based MPC of

linear systems.

The origin for the closed loop nominal system x̄+ = Ax̄ + BκN(x̄) is asymp-

totically stable. From the definition of asymptotic stability, ∃ KL-function β(·, ·)

such that

|φ̄(i; x̄)| ≤ β(|x̄|, i) ∀ i ∈ Z+ (2.36)

for every solution φ̄(·; x̄) of the system with initial state x̄ ∈ X̄N .

Noting that

d((ei, φ̄(i; x̄)), (SK × {0})) ≤ d(ei, SK) + d(φ̄(i; x̄), {0})

= d(ei, SK) + |φ̄(i; x̄)|
(2.37)
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and that e0 ∈ SK ⇒ ei ∈ SK ∀ i ∈ Z+, i.e. e0 ∈ SK ⇒ d(ei, SK) = 0 ∀ Z+, then

d((ei, φ̄(i; x̄)), (SK × {0})) ≤ β(|x̄|, i) (2.38)

which in turn shows us that the set S1 is RAS for (2.15) in S2, given the definition

in (2.35).

This proof is based on the fact that the origin of x̄+ = Ax̄ + BκN(x̄) is asymp-

totically stable, which depends on the stability of the nominal MPC. The terminal

cost in the objective function and the terminal constraint set ensures this stability.

This is discussed further below.

2.4.1 Stability of nominal MPC

The robust asymptotic stability of the tube-based controller is based on the sta-

bility of the nominal MPC. The terminal constraint set Xf and the terminal cost

x>NPxN both ensure this stability. [6]

The terminal constraint set Xf in the nominal MPC is described in section 2.3.

This is the set of states such that the evolution of the state trajectory stays in the

set and satisfies the tightened constraints, when ū = Kx̄. Chapter 2.6 in [10]

addresses the necessity of the terminal constraint.

The terminal cost x>NPxN , where P is the solution to the discrete time algebraic

Riccati equation also ensures stability. Let the infinite horizon objective function,

given state feedback u = Kx, whereK is the state feedback matrix corresponding

to the discrete-time algebraic Riccati equation, be

∞∑
k=0

x>kQxk + u>k Ruk =
∞∑
k=0

x>k (Q+K>RK)xk . (2.39)
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The discrete time algebraic Riccati equation,

A>PA− P +Q− A>PB(R +B>PB)−1B>PA = 0 , (2.40)

with the state feedback matrix

K = −(R +B>PB)−1B>PA , (2.41)

can be written as

A>KPAK − P +Q+K>RK = 0 . (2.42)

with AK = A+BK.

Then,

∞∑
k=0

x>kQxk + u>k Ruk =
∞∑
k=0

x>k (P − A>KPAK)xK

=
∞∑
k=0

x>k Pxk −
∞∑
k=0

x>k+1Pxk+1

= x>0 Px0 .

(2.43)

Therefore one can split the infinite horizon objective function into a sum with the

finite horizon objective function and the results from above,

∞∑
k=0

x>kQxk + u>k Ruk =
N−1∑
k=0

(
x>kQxk + u>k Ruk

)
+
∞∑
k=N

(
x>kQxk + u>k Ruk

)
=

N−1∑
k=0

(
x>kQxk + u>k Ruk

)
+ x>NPxN .

(2.44)

This result shows that it is possible to optimize on the infinite horizon, with a
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finite sum in the objective function. The idea is that the control input for the finite

horizon handles the constraints so the LQR controller is optimal for the rest of the

horizon. [3]

A detailed proof of the stability of nominal MPC is outside the scope of this pa-

per. However, the above derivations have hopefully given the reader an intuitive

understanding of the contribution the terminal constraint set and terminal cost has

to the stability of the MPC.
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Chapter 3

Methodology

The theory described in the previous sections will be applied to a relatively simple

system, presented in this chapter. The implementation in MATLAB shown in code

snippets is also presented in this chapter.

Note: (x̄, ū) is referred to as (z, v) in this chapter because this is what is used in

the MATLAB code for the simulation for simplicity.

3.1 System

Given a simple mechanical system, a double integrator ÿ = u + w, where the

uncertainty w is deviation from the control force u applied,

ẋ =

0 1

0 0

x+

0

1

u+

1 0

0 1

w . (3.1)

Discretizing this system with step length h yields the following discrete system
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x+ =

1 h

0 1

x+

0

h

u+

1 0

0 1

w , (3.2)

where

x+ = Ax+Bu+ Ew ,

x, w ∈ R2, u ∈ R1 ,

x ∈ X, u ∈ U, w ∈W .

(3.3)

The constraints have been chosen arbitrarily, but ensuring they fulfill the previous

assumptions stated in (2.10),

X = {x : x ∈ [−20, 20]× [20, 20]} ,

U = {u : u ∈ [−50, 50]} ,

W = {w : w ∈ [−0.2, 0.2]} .

(3.4)

Written as linear inequalites this becomes



1 0

−1 0

0 1

0 −1

0 0

0 0


x+



0

0

0

0

1

−1


u ≤



20

20

20

20

50

50


,


1 0

−1 0

0 1

0 −1

w ≤


0.1

0.1

0.1

0.1

 .

(3.5)
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which is what is used in the formulation, with the names of the variables coming

from (2.9).

In the implementation, h = 0.1 is used.

3.2 Offline calculations

3.2.1 Feedback matrix K

K is calculated from solving the discrete time algebraic Riccati equation. In MAT-

LAB [K,P,eig] = dlqr(A,B,Q,R,N) returns both the optimal feedback

matrix K to u = −Kx and the infinite horizon solution P . Listing 3.1 shows the

MATLAB implementation of this. For the notation in this paper, u = Kx has

been used and therefore the sign of K must be changed.

Listing 3.1: Calculating the feedback matrix K and terminal cost matrix P

1 [K, c o s t . P ] = d l q r ( sys tem . A, sys tem . B , . . .

2 c o s t . Q, c o s t . R) ;

3 sys tem .K = −K;

3.2.2 Outer approximation of SK

The calculation of the outer approximation of SK , denoted SKN(α) in the previous

chapter has to be done. This is used as the initial constraint set for the online

calculations. Listing 3.2 shows the implementation of this.
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Listing 3.2: Calculating the initial constraint set SK

1 i =1 ;

2 W = P o l y h e d r o n ( d i s t u r b a n c e . E , d i s t u r b a n c e . g ) ;

3 S_K_seq ( i ) = W;

4 w h i l e and ( n o t ( sys tem . A_K^ i ∗ W <= a l p h a ∗ W) , . . .

5 i <= sys tem . Nsim )

6 i = i + 1 ;

7 S_K_seq ( i ) = sys tem . A_K ∗ S_K_seq ( i −1) . . .

8 + sys tem . E ∗ W;

9 end

10 N = i ;

11 S_K = (1 − a l p h a ) ^(−1) ∗ S_K_seq (N) ;

12 c o n s t r a i n t s . S = S_K .A;

13 c o n s t r a i n t s . r = S_K . b ;

3.2.3 Tightened constraint set for state and control input Ȳ

From equation (2.28) an explicit characterization of the tightened constraint set

for the state and control input Ȳ is implemented in MATLAB. Listing 3.3 shows

the code snippet that handles this calculation in the implementation. S_K has

already been calculated from listing 3.2.

26



Listing 3.3: Calculating the tightened state and control input constraint set Ȳ

1 c o n s t r a i n t s . C_K = c o n s t r a i n t s . C . . .

2 + c o n s t r a i n t s .D ∗ sys tem .K;

3 f o r i = 1 : s i z e ( c o n s t r a i n t s . C_K , 1 )

4 t h e t a _ N ( i ) = S_K . s u p p o r t ( c o n s t r a i n t s . C_K( i , : ) ’ ) ;

5 end

6 t h e t a _ N = the ta_N ’ ;

7 c o n s t r a i n t s . e = c o n s t r a i n t s . e − t h e t a _ N ;

3.2.4 Terminal constraint set Xf

The terminal constraint set in the optimal control problem, seen in (2.5), is essen-

tial for stability in the finite-horizon case, because enforcing a certain constraint

on the final state can ensure the stability of the trajectory past the current horizon.

This is discussed in the last part of section 2.3.

Listing 3.4 shows us the code snippet that calculates the tightened terminal con-

straint set in the implementation. This comes after listing 3.3, so constraints.e

is now constraints.e - theta_N. The condition not(X_f(i-1) == X_f(i))

in the while-loop ensures the iteration terminates when the set converges, i.e. giv-

ing the maximal positively invariant set under these conditions. This is the imple-

mentation of the equation (C.1).
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Listing 3.4: Calculating the tightened terminal constraint set Xf

1 i =1 ;

2 X_f ( i ) = P o l y h e d r o n ( c o n s t r a i n t s . C_K , c o n s t r a i n t s . e ) ;

3 cond = t r u e ;

4 w h i l e cond

5 i = i +1 ;

6 c u r r e n t _ t a r g e t .G = X_f ( i −1) .A;

7 c u r r e n t _ t a r g e t . h = X_f ( i −1) . b ;

8 A=[ c o n s t r a i n t s . C_K ;

9 c u r r e n t _ t a r g e t .G∗ sys tem . A_K ] ;

10 b =[ c o n s t r a i n t s . e ; c u r r e n t _ t a r g e t . h ] ;

11 X_f ( i ) = P o l y h e d r o n (A, b ) ;

12 cond = and ( n o t ( X_f ( i −1) == X_f ( i ) ) , i <= sys tem .

Nsim ) ;

13 end

14 c o n s t r a i n t s .G = X_f ( i ) .A;

15 c o n s t r a i n t s . h = X_f ( i ) . b ;

3.2.5 N -step controllable tube

Another set that is generated offline, to be used in the plotting of the results, is the

N -step controllable tube for the nominal system

x̄+ = Ax̄+Bū ,

x̄, ū ∈ X̄× Ū ,
(3.6)

with target Xf from the previous section.
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This tube is defined in appendix C. This is the set of all the initial states that

lead to the terminal constraint in the N -step finite horizon. The controller can

still be stable for an initial state outside of this set, however stability is then not

guaranteed, as discussed in section 2.4.1.

Listing 3.5 shows the functions that generates this set. This is an implementation

of the equation (C.2).

Listing 3.5: Function for computing the N -step controllable tube

1 f u n c t i o n X= c _ t u b e ( system , c o n s t r a i n t s )

2 i =1 ;

3 X( i ) = P o l y h e d r o n ( c o n s t r a i n t s . G, c o n s t r a i n t s . h ) ;

4 w h i l e i <= sys tem .N

5 i = i +1 ;

6 c u r r e n t _ t a r g e t .G=X( i −1) .A;

7 c u r r e n t _ t a r g e t . h=X( i −1) . b ;

8 %g e n e r a t e i−s t e p c o n t r o l l a b l e s e t

9 L=[ c o n s t r a i n t s . C c o n s t r a i n t s .D;

10 c u r r e n t _ t a r g e t .G∗ sys tem .A c u r r e n t _ t a r g e t .G∗

sys tem . B ] ;

11 r =[ c o n s t r a i n t s . e ; c u r r e n t _ t a r g e t . h ] ;

12 X( i ) = P o l y h e d r o n ( L , r ) . p r o j e c t i o n ( 1 : sys tem . n ) ;

13 end
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3.3 Online calculations

The problem solved online at each timestep is MATLAB’s quadprog function.

min
φ

1

2
φ>Hφ+ g>φ subject to

Aineq · φ ≤ bineq ,

Aeq · φ = beq ,

(3.7)

where

φ =
[
z0 z1 ... zN v1 v2 ... vN−1

]>
. (3.8)

3.3.1 Objective function

The N -horizon optimal control problem,

N−1∑
j=0

(z>j Qzj + v>j Rvj) + z>NPzN (3.9)

becomes

1

2
· φ> · 2 ·



Q
. . . 0

Q

P

R

0 . . .

R


· φ+

[
0 . . . 0

]
· φ . (3.10)

Naturally, since there are no linear elements in the objective function, the matrix
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g contains all zeros.

Listing 3.6 shows generating these matrices in the implementation in MATLAB.

Listing 3.6: Generating the matrices for the objective function

1 H = b l k d i a g ( kron ( eye (N) , c o s t .Q) , c o s t . P , . . .

2 kron ( eye ( sys tem .N) , c o s t . R) ) ;

3 mpc_cos t .H = 2 ∗ H;

4 mpc_cos t . f = z e r o s ( s i z e ( mpc_cost . H, 1 ) , 1 ) ;

3.3.2 Equality constraints

There is a single equality constraint, which is the system equation (2.7) expressed

as

− Azj + zj+1 −Bvj = 0 . (3.11)

Aeq =


−A I 0 −B 0

. . . . . . . . .

0 −A I 0 −B

 , beq =
[
0 . . . 0

]>
. (3.12)

Listing 3.7: Generating the matrices for the equality constraints

1 a = [ kron ( eye (N) , −sys tem .A) z e r o s ( n∗N, n ) ] + . . .

2 [ z e r o s ( n∗N, n ) kron ( eye (N) , eye ( n ) ) ] ;

3 b = kron ( eye (N) , −sys tem . B) ;

4 m p c _ c o n s t r a i n t s . Aeq = [ a b ] ;

5 m p c _ c o n s t r a i n t s . beq = z e r o s (N∗n , 1 ) ;

31



3.3.3 Inequality constraints

The inequality constraints are

(zj, vj) ∈ Ȳ, j ∈ Z0:N−1 ,

zN ∈ Xf ,

e0 = x0 − z0 ∈ SK ,

(3.13)

which, in the polytopic-case, is equivalent to

Czj +Dvj ≤ e− θN = et, j ∈ Z0:N−1 ,

Gzn ≤ h ,

S(x− z0) ≤ r .

(3.14)

Since the actual system state x for each iteration appears in one of these in-

equalities the general inequality constraint in (3.7) must be edited to reflect that:

Ain · φ ≤ bin + cin · x.

Listing 3.8 shows the code for generating these in MATLAB.

Ain =



C 0 0 D 0
. . . . . .

0 C 0 0 D

0 G . . . 0 . . .

−S 0 . . . 0 . . .


, bin =



et
...

et

h

r


, cin =



0
...

0

0

−S


.

(3.15)
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Listing 3.8: Generating the matrices for the inequality constraints

1 c = b l k d i a g ( kron ( eye (N) , c o n s t r a i n t s . C) , c o n s t r a i n t s .G) ;

2 d = [ kron ( eye (N) , c o n s t r a i n t s .D) ; . . .

3 z e r o s ( s i z e ( c o n s t r a i n t s . G, 1 ) , N) ] ;

4 a = [ c d ] ;

5 s = z e r o s ( s i z e ( n , 1 ) , s i z e ( a , 2 ) ) ;

6 s ( 1 : s i z e ( c o n s t r a i n t s . S , 1 ) , 1 : s i z e ( c o n s t r a i n t s . S , 2 ) ) . . .

7 = −c o n s t r a i n t s . S ;

8 b = kron ( ones (N, 1 ) , c o n s t r a i n t s . e ) ;

9 c i n = z e r o s (N∗ s i z e ( c o n s t r a i n t s . C , 1 ) . . .

10 + s i z e ( c o n s t r a i n t s . G, 1 ) , n ) ;

11

12 m p c _ c o n s t r a i n t s . Ain = [ a ; s ] ;

13 m p c _ c o n s t r a i n t s . b i n = [ b ; c o n s t r a i n t s . h ; c o n s t r a i n t s . r ] ;

14 m p c _ c o n s t r a i n t s . c i n = [ c i n ; −c o n s t r a i n t s . S ] ;

3.3.4 Execution

The function online_calc(problem,x) solves the finite horizon optimiza-

tion problem described in the previous section, with the current state of the system

and returns the optimal state and control sequence and the optimal cost, seen in

listing 3.9.

This is simulated with the system equation and a disturbance sequence generated

with the assumptions on the uncertainty, seen in listing 3.10. Since this function

is executed for every time step online, the complexity has to be as low as possible

so the calculation of the current control action does not slow down the system.

After the simulation, the disturbance invariant tube, which is the disturbance in-
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variant set SKNα with the nominal state x̄i as the center, is generated to used in

the plotting of the results.
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Listing 3.9: Solving the finite-horizon optimal control problem

1 f u n c t i o n o p t i m a l = o n l i n e _ c a l c ( problem , x )

2 mpc_cos t = problem . mpc_cost ;

3 m p c _ c o n s t r a i n t s = problem . m p c _ c o n s t r a i n t s ;

4 o p t i o n s = o p t i m s e t ( ’ D i s p l a y ’ , ’ o f f ’ ) ;

5 % g e t o p t i m a l d e c i s i o n v a r i a b l e and o p t i m a l v a l u e

6 [ o u t p u t , o p t i m a l . cos t_V ] = . . .

7 quadprog ( mpc_cost . H, . . .

8 mpc_cost . f , . . .

9 m p c _ c o n s t r a i n t s . Ain , . . .

10 m p c _ c o n s t r a i n t s . b i n + m p c _ c o n s t r a i n t s . c i n

∗ x , . . .

11 m p c _ c o n s t r a i n t s . Aeq , . . .

12 m p c _ c o n s t r a i n t s . beq , . . .

13 [ ] , [ ] , [ ] , . . .

14 o p t i o n s ) ;

15

16 % d e v e c t o r i z e o u t p u t t o o b t a i n o p t i m a l x

17 % and o p t i m a l u

18

19 z = z e r o s ( n ,N) ;

20 v = z e r o s (m,N) ;

21 z ( : , 1 ) = o u t p u t ( 1 : n ) ;

22 f o r i =1 :N

23 z ( : , i +1) = o u t p u t ( i ∗n + 1 : ( i +1) ∗n ) ;

24 v ( : , i ) = o u t p u t ( (N+1) ∗n + ( i −1)∗m + 1 : (N+1) ∗n + i ∗

m) ;

25 end

26 o p t i m a l . v=v ;

27 o p t i m a l . z=z ;
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Listing 3.10: Execution of robust tube MPC

1 W = P o l y h e d r o n ( d i s t u r b a n c e . E , d i s t u r b a n c e . g ) ;

2 W _ v e r t i c e s = s i z e (W. V, 1 ) ;

3 f o r i =1 : Nsim

4 w_sequence ( : , i ) = (W.V) ’∗ r and ( W_ver t i ce s , 1 ) ;

5 end

6

7 x ( : , 1 ) = sys tem . x0 ;

8

9 f o r i = 1 : Nsim

10 % R e t u r n s o p t i m a l z and v f o r h o r i z o n

11 o p t i m a l ( i ) = mpc ( problem , x ( : , i ) ) ;

12 z ( : , i ) = o p t i m a l ( i ) . z ( : , 1 ) ;

13 v ( : , i ) = o p t i m a l ( i ) . v ( : , 1 ) ;

14 u ( : , i ) = v ( : , i ) + problem . sys tem .K ∗ ( x ( : , i ) − z

( : , i ) ) ;

15 x ( : , i +1) = problem . sys tem .A ∗ x ( : , i ) + problem .

sys tem . B ∗ u ( : , i ) . . .

16 + problem . sys tem . E ∗ problem . sys tem .

w_sequence ( : , i ) ;

17 end

18

19 %g e n e r a t i n g d i s t u r b a n c e i n v a r i a n t t u b e

20 f o r i =1 : Nsim

21 X_tube ( i ) = z ( : , i ) + problem . sys tem . S_K ;

22 end
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3.4 Controller

The parameters used in the cost function of the controller were

Q =

3 0

0 3

 , R = 2, P =

51.75 27.05

27.05 43.97

 , (3.16)

where Q and R were selected by the designer and P came from solving the

discrete-time algebraic Riccati equation. The feedback matrix used in the con-

troller also came from the Riccati equation,

K =
[
−1.1089 −1.9130

]
, (3.17)

which in turn resulted in the asymptotically stable closed-loop system matrix,

AK =

 1 0.1

−0.1109 0.8087

 ,
with eigenvalues: λ1,2 = 0.9043± 0.04401i .

(3.18)

The final result is the controller

uk = ūk +K(xk − x̄k) ,

ūk, x̄k = z0, v0 where ,

z = z0, z1, . . . , zN ,

v = v0, v1, . . . , vN−1 ,

(3.19)
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with

z,v =z,v

( ∑
j∈Z0:N−1

(x>j Qxj + u>j Ruj) + x>NPxN
)
,

subject to

zj+1 = Azj +Bvj, j ∈ Z0:N−1 ,

zj, vj ∈ X̄× Ū = {x | Cx+Du ≤ et} ,

zN ∈ Xf = {x |Gx ≤ h} ,

xk − z0 ∈ SKN=36(α = 0.15) = {x | Sx ≤ r} .

(3.20)

The actual values for these sets are not that interesting in the context of the con-

troller, but can be calculated from the code presented in this chapter.
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Chapter 4

Results

The results from the implementation described in the previous chapter are pre-

sented here.

The system described in 3.1, with the tube-based robust MPC controller described

in 3.4, was simulated with four different initial conditions,

x1
0 =

−15

−15

 , x2
0 =

 19.5

−19.5

 , x3
0 =

15

15

 , x4
0 =

−19.5

19.5

 , (4.1)

from the four quadrants of R2. These were selected primarily for feasibility and

because all points lie on the edge of the N -step controllable tube explained below.

Figures 4.1, 4.2, 4.3 and 4.4 show the four graphs with four different initial condi-

tions. The disturbance invariant tube is shown in blue and the N -step controllable

tube generated in section 3.2.5 is also plotted in gray. The purple set shows the

same tube with the disturbance invariant set SKN(α) added for every step. This

describes the N -step controllable tube for the actual system, based on the fact that

the system trajectory x ∈ {x̄⊕ SKN(α)}. The axis are simply x1 and x2.
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Figure 4.1: Simulation with x0 = x1
0

Figure 4.2: Simulation with x0 = x2
0
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Figure 4.3: Simulation with x0 = x3
0

Figure 4.4: Simulation with x0 = x4
0
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All four simulations converge towards the origin. The error dynamics behave as

expected, beginning on the boundary of the set SK before eventually converging

towards the origin.
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The outer approximation of the minimal disturbance invariant set SK can have a

large impact on the performance of the controller. Figure 4.5 displays the N -step

controllable set for the nominal system and actual system for two different choices

of α, with minimal N . It is apparent that the choice of α has a significant impact

on the set of initial states for which the controller is guaranteed stable.

Figure 4.5: Controllable sets for α = 0.8 and α = 0.25
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Figure 4.6 and 4.7 shows how the controller performs when α = 0.6 is used to

calculate the approximation, giving a less accurate and larger approximation than

before. The simulation is still stable but the approximation of the disturbance

invariant set in the origin, which represents the set of states for which the system

can evolve to, is unnecessarily large. The initial states had to be decreased for

feasibility to

x̃2
0 =

 19

−19

 , x̃3
0 =

16.5

11.5

 , (4.2)

because the larger approximation also gives a smaller feasibility area, as seen in

figure 4.5.

Figure 4.6: Simulation with x0 = x̃2
0

44



Figure 4.7: Simulation with x0 = x̃3
0
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Figure 4.8 is included to show how accurate the outer approximation of SK is.

Plotting the actual set SK isn’t possible because no explicit expression exists for

the system, but the sequence of sets {SKi} for i = 1, . . . , 80, is shown along with

an approximation SKN(α = 0.15).

Figure 4.8: Plot of the sequence SKi and SKN (α)
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Figure 4.9 shows the minimal N for varying α, to satisfy the equation ANKW ⊆

αW. From the figure, a minimal of N = 13 is needed, however this gives a

high value of α, resulting in a larger approximation than necessary. The area to

choose from is above the plotted line, so there is some freedom in selecting this

approximation.

Figure 4.9: Minimum N for varying α
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Chapter 5

Discussion

From the previous chapter, a stable tube-based robust model predictive control is

presented for various initial states and different values of α.

The state trajectory of the actual stays within a disturbance invariant set centered

in the nominal state trajectory, which can be visualized by the error state being in

the boundary of SK for the beginning of the system, then converging to the origin.

For this simulation, α = 0.15 was chosen, after some trial and error. The accu-

racy of this approximation is shown in figure 4.8. The trial and error involved

simulating for different values of α and seeing the change in the outer approxi-

mation, compared to the sequence of sets. After a certain threshold, decreasing

α had a negligible effect on the approximation, but increased the computational

cost of calculating it by increasing the minimal N . Selection of the ideal α to

approximate SK prior to the simulation is not straight forward. As discussed in

appendix D.2, and shown in figure 4.8 in the results, this selection can affect the

performance of the controller.

Using one of the methods discussed in [9] to find the best approximation of SK is
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a potential improvement for the controller. This was not focused on in this paper,

as the approximation of SK does not have a large impact.

The work done in [9] regarding the invariant approximations to SK is essential to

the implementation of the tube-based MPC. There is however, room for improve-

ment regarding the accuracy of the approximation. Specifically, developing an

algorithm for the selection of α and N would be a tremendous advancement.

Why is it beneficial for the disturbance invariant set to be a small as possible?

Figure 4.6 shows the system with the controller using α = 0.6 to approximate

SK . Remembering that the system should be as close to the origin as possible,

and that the set displayed is the area for which the system state can evolve, having

this set be minimal is parallel to the goal of the controller.

Another improvement to the controller is choosing two different feedback matri-

ces, Ke and Kx̄. Kx̄ should come from the Riccati equation to ensure stability of

the MPC, but Ke, the feedback matrix for the error dynamics, can be selected and

tuned so the system performs optimally. This can be a topic for further studies.

The use of the MPT toolbox should be reconsidered for future work. Calculations

involving the structure from this toolbox has taken an unusually large amount of

time given the implementation, and simulating for many initial conditions could

take up to an hour.
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Chapter 6

Conclusion

The robust control of uncertain systems is a large and important area of research

because if its many applications. One such control method combines the control

action from MPC with traditional feedback control to ensure the system trajectory

stays close to the system modeled without uncertainty, which is easier to control.

This is the tube-based method, first proposed in 2005 in [8], has increased in pop-

ularity, but most of the research is understandably focused in non-linear systems.

In this paper, the tube-based controller was applied to a two-dimensional linear

system with robust additive disturbance. The intent being to visually and intu-

itively explain the main parts of this controller, in order to understand it better.

Chapter two discussed the mathematical basis for the controller, including the ex-

istence and approximation of a disturbance invariant set. Furthermore, the stability

of the method was demonstrated. Chapter three described the implementation of

the tube-based method in MATLAB and the specific linear system used in the sim-

ulation. In chapter four the results from the simulation were presented with two

different outer approximations of the disturbance invariant set. Figures visually
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describing the accuracy of this approximation and the relationships between the

parameters used to calculate the approximation were also shown. The discussion

of the results in chapter five mostly focused on this outer approximation and how

the potential improvement can affect the controller.

This method and the results presented in this paper can be used for all linear

systems with a bounded disturbance.

The interest in the research of model predictive control has grown drastically since

the beginning of its invention, and the tube-based method being only thirteen years

old speaks to its potential improvement.
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Appendices



Appendix A

MPT Toolbox

The Multi-Parametric Toolbox (https://www.mpt3.org/) is an open-source Matlab-

based toolbox. In this project, it is for the most part used for creating the structure

Polyhedron in the code.

The command S = Polyhedron(A,B) creates the Polyhedron-structure in

MATLAB equivalent to the set S = {x | Ax ≤ b}. The Polyhedron-structure has

many properties, but only a few are used in this paper.

• The property V, which is an array with the vertices of the set

• Addition + and subtraction - becomes set addition ⊕ and subtraction 	 for

this structure

• The operator <= is equivalent to ⊆ for this structure

• The function s = support(S,x) is equivalent to s = maxy x
>y, y ∈

S.
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Appendix B

Necessary set theory

Set addition, also called the Minkowski sum, is defined as

A⊕B = {a+ b | a ∈ A, b ∈ B} . (B.1)

Set subtraction, also called the Pontryagin difference, is defined as

A	B = {a ∈ A | a+ b ∈ A ∀ b ∈ B} . (B.2)

The Hausdorff distance dH(·) is a metric for how far two subsets are from each

other in any metric space (M,d), and is defined as

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} . (B.3)

A close set S contains all its boundary points. A bounded set S in some metric

space (M,d) means ∃ x ∈M, r > 0 such that ∀s ∈ S, d(x, s) < r.

A compact set is defined as a set that is closed and bounded.
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The interior of a set int(S), are all the points not in the boundary of S. The

boundary of S are all the points that can be approached from the outside and the

inside of the set.

B.0-3



Appendix C

Controllability and backward

reachability

Backward reachability for x+ = f(x), x ∈ X with target set Xf determines the

set of every x ∈ X that gives f(x) ∈ Xf . The N -step backward reachable set

for x+ = f(x) gives us the set of every x0 ∈ X that ensures x1, x2, . . . ∈ X and

xN ∈ Xf .

Computing the ∞ − step backward reachable set with Xf = X, until the set

sequence converges is called the maximal positively invariant set. This is often

used in the nominal MPC to find the target set, or terminal constraint set, for the

finite-horizon optimization problem.

The N -step backward reachable set for the polytopic-constraint case, where X =

{Cx ≤ d} and Xf = {Gx ≤ h}, is defined recursively as [7]

XB
N = {Cx ≤ d |GN−1Ax ≤ hN−1}

= {x | ≤ GNx ≤ hN} ,
(C.1)
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where GN−1, hN−1 comes from the (N − 1)-step backward reachable set XB
N−1.

Much the same, controllability for x+ = f(x, u), x ∈ X, u ∈ U with target set Xf

determines the set of every x ∈ X for which there exists a control input u ∈ U that

gives f(x, u) ∈ Xf . The N -step controllable set gives us the set of every x0 ∈ X

for which there exists a control sequence u1, u2, . . . ∈ U such that x1, x2, . . . ∈ X.

The 1-step, 2-step, ..., N -step steps are together referred to as a controllable tube.

The N -step controllable set for the polytopic-constraint case, where X × U =

{Cx+Du ≤ e} and Xf = {Gx ≤ h}, is defined recursively as [7]

XC
N = Proj R2{Cx+Du ≤ e |GN−1(Ax+Bu) ≤ hN−1}

= {x | ≤ GNx ≤ hN} ,
(C.2)

where GN−1, hN−1 comes from solving for the (N − 1)-step controllable set

XC
N−1.

Both of these definitions can be extended to systems under uncertainty w ∈W by

requiring the exact same thing for all realizations of the disturbance sequence.

Further, a control invariant set is any controllable set where the target set Xf is the

set itself. Meaning, the system evolution stays in the set.

C.0-5



Appendix D

D.1 Proof of explicit expression for SK whenAN
KE =

αE

We observe the following, when ANKE = αE, α ∈ [0, 1], given the definition for

SK =
∑∞

j=0A
j
KEW.

SK = EW + AKEW + . . . AN−1
K EW

+ ANKEW + . . .+ A2N−1
K EW

+ A2N
K EW + . . .+ A3N−1

K EW + . . .

= SKN + ANKSKN + A2N
K SKN + . . . .

(D.1)
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Because of this relation

ANKSKN = αSKN ,

A2N
K = ANKA

N
KSKN = αANKSKN = α2SKN ,

...

AtNK SKN = αtSKN .

(D.2)

This results in

SK = (1 + α + α2 + . . .) · SKN . (D.3)

Noting that

∞∑
i=0

ri =
1

1− r
, |r| < 1. (D.4)

one gets the following result,

SK = (1− α)−1SKN . (D.5)

D.2 Approximating the minimal disturbance invari-

ant set SK

In [9] a disturbance invariant upper approximation SKN(α) for the minimal dis-

turbance invariant set SK is derived.

From the assumptions regarding AK and W, there exists N ∈ Z+ and α ∈ [0, 1)

such that

ANKW ⊆ αW . (D.6)
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Based on this, let

SKN(α) = (1− α)−1SKN (D.7)

be a disturbance invariant set for the system (2.12) and an outer approximation for

SK , i.e. SK ⊆ SKN(α).

To prove SKN(α) is disturbance invariant, recall that it is equivalent to showing

AKSKN(α)⊕W ⊆ SKN(α) from (2.17).

AKSKN(α)⊕W = AK(1− α)−1

N−1∑
j=0

AjKEW⊕W

= (1− α)−1

N∑
j=1

AjKEW⊕W

= (1− α)−1ANKW⊕ (1− α)−1

N−1∑
j=1

AjKEW⊕W .

(D.8)

Using the fact that ANKW ⊆ αW from (D.6),

AKSKN(α)⊕W ⊆ (1− α)−1αW⊕ (1− α)−1

N−1∑
j=1

AjKEW⊕W

= [(1− α)−1α + 1]W⊕ (1− α)−1

N−1∑
j=1

AjKEW

= (1− α)−1W⊕ (1− α)−1

N−1∑
j=1

AjKEW

= (1− α)−1

N−1∑
j=0

AjKEW = SKN(α) .

(D.9)

Hence, AKSKN(α) ⊕W ⊆ SKN(α) and therefore SKN(α) is a disturbance in-

variant set. Based on the proof in section D.1, it is apparent that SK ⊆ SKN(α).
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The same paper, [9], also proves that if one defines N(α) to give the smallest N

for any α such that D.6 holds then

SKN(α(N))→ SK as N →∞ , (D.10)

and vice-versa for α(N) when α→ 0.

The paper suggests various methods for selecting the best approximation, one

involving starting at a given N and incrementing until α satisfying the conditions

is found.
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