
H
eidi-Irene H

arvey Sollie
Linear M

odel P
redictive C

ontrol of a 3 D
O

F H
elicopter

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Heidi-Irene Harvey Sollie

Linear Model Predictive Control of a 3
DOF Helicopter

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland

June 2019

Heidi-Irene Harvey Sollie

Linear Model Predictive Control of a 3
DOF Helicopter

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This thesis addresses the application of model predictive control (MPC)
to a bench top model helicopter, of which the university owns ten. The
work presented in this thesis has been carried out at the Department
of Engineering Cybernetics at the Norwegian University of Science and
Technology.

The initial plan for my thesis was a different, more theoretical study, that
involved researching and simulating parametrized tube-based MPC. This
project would have been based on the work done last semester where tube-
based MPC was the focus. However, after a month of researching, my
advisor and I came to the conclusion that the project required more time
than was originally assumed. Consequently, six weeks after the beginning of
the masters, the scope and goal of the thesis shifted drastically.

The new thesis became much more practical, and the first idea was trying
both linear model predictive control and tube-based model predictive control,
to build on some of the work done last semester. However, tube-based
model predictive control with the number of states required to control the
helicopter is too computationally expensive when using the implementation
presented in last years project report. Therefore, this thesis focuses on
the implementation of linear model predictive control of Quanser’s 3 DOF
helicopter.

The motivation for choosing this project was mostly wanting to apply my
work from the previous semester to a practical example. In addition, the
practical work in the course TTK4135 Optimization and Control involves
the helicopter lab equipment. Up til now, model predictive control of the
helicopter has not been a part of this work, despite a large portion of
the curriculum involving this topic. Hopefully, the work presented in this

i

thesis can give students a hands-on experience of model predictive control
of dynamic systems.

All work has been carried out at the university, in the rooms where
the helicopters are located. The basis for the MATLAB simulation was
developed last semester. The work has been conducted using MATLAB
2015b, Simulink and QUARC on the computer in the helicopter lab. The
QP solver OSQP was used for the optimization. The basis for the Simulink
model is a part of the lab-handout to students in TTK4135.

First and foremost, I would like to thank my advisor, Professor Lars Struen
Imsland, for invaluable guidance and for being as excited about the work
that was done as I was. I would also like to thank Joakim Rostrup Andersen
for occasionally stopping by the lab and helping out, being available for
questions and generally showing interest and enthusiasm for the project.
In addition, the developers of OSQP who answer Google Forum questions
within the hour deserve a mention.

Finally, I would like to thank my family for having supported me throughout
these five years. Although not every subject and project has been
understood, I have always gotten the support I have needed from you all.
And especially, thank you so much to my father for being a motivational
source and a great inspiration. I also want to thank Knut both for moral
support throughout this process, and for being the only person I know willing
to read a master thesis over ten times.

ii

Abstract

This thesis presents the implementation of linear model predictive control of
a model helicopter with three degrees of freedom (DOF). It is a bench-top
model of a propeller-actuated helicopter where the pitch (roll) and elevation
(vertical) of the helicopter are used as control inputs to steer the system
to its equilibrium from an arbitrary starting point in travel (yaw). A pitch
controller (PD) and elevation controller (PID) make up the lower level of
control.

A nonlinear model of the helicopter dynamics is developed and linearized
to state-space representation. The entire control architecture, along with
the C library for the QP solver, is implemented in Simulink. The real-time
control software QUARC combined with the code generation capabilities of
Simulink, allows for this model being run on the I/O board connected to the
helicopter.

Linear MPC with and without a terminal cost and terminal constraint is
presented, first in a numerical simulation of the linearized model and then on
the physical helicopter. Furthermore, a known constant drift of the helicopter
is modeled and a Kalman filter is implemented to remove the constant offset
in travel that this drift causes.

First and foremost, this thesis is proof-of-concept for the model predictive
control of a dynamic 3 DOF helicopter. It is demonstrated that using MPC
for such a dynamic system is possible with modern QP solvers and advanced
embedded hardware. The QP solver performs the online computation with
an average solve time of about 30 milliseconds, which is frequent enough for
stable control.

iii

iv

Sammendrag

Denne oppgaven presenterer implementasjonen av lineær modellprediktiv
regulering (MPR) av et modellhelikopter med tre frihetsgrader, der pitch
og høyden til helikopteret er brukt som pådrag for å styre systemet til
likevektspunktet fra et vilkårlig startpunkt. En pitch-regulator (PD) og
høyde-regulator (PID) utgjør det laveste nivået av reguleringsarkitekturen.

En ulineær modell av helikopterdynamikken er utviklet og linearisert rundt
likevektspunktet, og uttrykt i tilstandsromrepresentasjon. Hele reguler-
ingsarkitekturen, i tillegg til C-biblioteket til QP-løseren, er implementert
i Simulink. Sanntidsprogramvaren QUARC kombinert med kodegenerasjon-
segenskapene til Simulink gjør det mulig for denne modellen å kjøre direkte
på I/O-kortet som styrer helikopteret.

Lineær MPR med og uten terminalkostnad og terminalbeskrankning
presenteres først i en numerisk simulering av helikoptermodellen og deretter
på det fysiske helikopteret. Videre er en konstant forstyrrelse på helikopteret
modellert, og et Kalmanfilter er implementert for å fjerne avviket denne
driften forårsaker.

Først og fremst er denne oppgaven en testimplementasion av modellprediktiv
regulering på et dynamisk helikopter med tre frihetsgrader. Det er demonstr-
ert at bruk av MPR for et slikt dynamisk system er mulig med nye QP-løsere
og moderne teknologi. QP-løseren utfører optimalseringsberegninger i san-
ntid med en gjennomsnittlig løsetid på rundt 30 millisekunder, noe som er
hyppig nok til å sørge for stabil kontroll.

v

vi

Table of Contents

Preface i

Abstract iii

Sammendrag v

1 Introduction 3
1.1 Background . 3

1.1.1 Motivation . 5
1.1.2 Outline . 5

2 Literature Review 7
2.1 Quanser’s 3 DOF Helicopter 7
2.2 Embedded Optimization . 9

3 Model Predictive Control Theory 11
3.1 Open-loop optimal control problem 12
3.2 Terminal cost and terminal constraint 15
3.3 Integral action in MPC . 18

3.3.1 Kalman filter . 19
3.4 Slack variables . 20
3.5 Stability of MPC . 20
3.6 Robustness of MPC . 21

4 Quadratic Programming Solver 23

5 Developing a process model 27
5.1 Helicopter model . 27
5.2 Selection of constraints . 34
5.3 Modeling the constant disturbance 34

vii

6 Hardware and Software Implementation 37
6.1 OSQP . 37
6.2 Hardware-in-the-loop (HIL) 38
6.3 Implementing the optimization problem for OSQP 40
6.4 Simulink Model . 43

6.4.1 MPC . 44
6.4.2 Estimator . 49

6.5 Multi-Parametric Toolbox . 49

7 Results 51
7.1 Numerical simulation of helicopter model 52
7.2 Experimental results of helicopter performance 60

8 Discussion 73
8.1 Future work . 77

9 Conclusion 79

Acronyms 81

Bibliography 81

Appendices

A System parameters

B MATLAB Code

C Simulink model

D Additional figures from results

viii

List of Figures

2.1 Quanser’s 3 DOF helicopter 7

3.1 Visualization of MPC, from Foss and Heirung [9] 12

4.1 Computation time versus problem dimension for OSQP and
GUROBI for 7 benchmark problem classes [27] 25

5.1 Diagram of helicopter forces, angles and physical sizes 28
5.2 Diagram of system control architecture 32

6.1 Information flow in Hardware-in-the-loop (HIL) testing 38
6.2 A sliced plot of the terminal set Xf 43
6.3 Complete Simulink model . 44
6.4 Simulink model of MPC block 44
6.5 Simulink model of estimator 49

7.1 Simulation of nominal MPC 53
7.2 Simulation of stable MPC . 54
7.3 Simulation of nominal MPC with longer horizon 55
7.4 Simulation of stable MPC with Kalman filter 57
7.5 Estimation of disturbance from simulation 58
7.6 Online performance of nominal MPC 61
7.7 OSQP solve time of nominal MPC 62
7.8 Online performance of stable MPC 63
7.9 OSQP solve time of stable MPC 64
7.10 Online performance of stable MPC with Kalman filter 65
7.11 OSQP solve time of stable MPC with Kalman filter 66
7.12 Online performance of stable MPC with frequency 25 Hz . . . 67
7.13 OSQP solve time of stable MPC with frequency 25 Hz 68
7.14 Online performance of stable MPC with frequency 5 Hz . . . 69

ix

7.15 Estimated disturbance from Kalman filter 70

C.1 Simulink model .
C.2 Helicopter interface .
C.3 Pitch controller .
C.4 Elevation controller .
C.5 Voltage conversion block .
C.6 R6 -> R7 block .

D.1 Simulation of nominal MPC with Kalman filter
D.2 OSQP solve time of simulation of nominalMPC with Kalman

filter .
D.3 Online performance of nominal MPC with Kalman filter . . .
D.4 OSQP solve time of nominal MPC and Kalman filter
D.5 OSQP solve time of stable MPC with frequency 5 Hz

x

Listings

6.1 C code in the S-Function Builder block 45
6.2 timer.h . 47
6.3 Exerpt from gen_code_params.m 48
B.1 execute.m .
B.2 offline_calc.m .
B.3 kalman_filter.m .
B.4 gen_mpc_matrices.m .
B.5 gen_code_osqp.m .

xi

xii

Nomenclature

A ∈ Rn×m A is a matrix with (n×m)-dimensions with real numbers

Acoln The n-th column of matrix A

Arown The n-th row of matrix A

Z0:N The set of all integers from 0 to N

p pitch

e elevation

λ travel

εp slack variable

φ

[
u

εp

]
F (·) terminal cost function

N optimization horizon

V (·) finite horizon cost function

u
[
u0 u1 . . . uN−1

]>
x

[
x1 x2 . . . xN

]>
PN (·) online optimization problem

U input constraint set

X state constraint set

Xf terminal set

1

2

Chapter 1

Introduction

1.1 Background

In recent years, propeller-actuated systems have gained popularity, mainly
due to their increased availability and the advancement of cheaper and more
lightweight electronics. Due to the under-actuated1 nature of a lot of these
types of systems, they make for a challenging control problem. Quanser’s
3 degrees of freedom (DOF) helicopter is a bench-top model of a dual-
propeller actuated helicopter and is an under-actuated multi-input multi-
output (MIMO) system with nonlinear characteristics. With the helicopter
and the Hardware-in-the-loop (HIL) data board, as well as the Simulink
software interface, implementing control techniques on the helicopter is
possible.

The helicopter is made up of three rotational joints, with the end bar
carrying a pair of propellers actuated by DC motors. The joint angles
are supplied by incremental encoders, and the propellers are driven by two
power amplifiers. The helicopter is mounted in a slip ring which allows
for 360-degree movement in the travel angle. There are numerous control
implementations presented for this type of system (a 3 DOF helicopter) from
the past two decades.

However, although a few optimization based control implementations have
been presented, a minority have actually been tested on the physical system.
Additionally, there have been no publications of an actual implementation

1fewer actuators that degrees of freedom

3

of MPC involving online computations on the Quanser helicopter. The
work presented in this thesis demonstrates that due to the advancement
of processing power for embedded hardware and the increased performance
of available QP solvers, model predictive control of a 3 DOF helicopter is in
fact possible.

Model predictive control (MPC) is an optimization based repetitive control
algorithm that solves a finite horizon open-loop optimal control problem
online and applies the first control input to the system at every time
step. It was first advocated by Richalet et al. [24] in the late 1970s2

and quickly became widespread mainly in the process and petrochemical
industry. The reason for this was its ability to handle control of systems
with hard constraints, where offline computation of a control law is difficult,
and it is also easily applied to MIMO systems. MPC is said to be the
only advanced control technology to have a significant impact on industrial
process control [15].

The idea of optimizing the control input by solving an optimal control
problem was not unique at the time. However, MPC differed from other
control methods by solving the control problem online for the current state
of the system, rather than using the control problem offline to develop an
explicit feedback law. The computational complexity involved with the
online calculation of MPC has been the bottleneck when determining which
systems to implement it on. With advancing technology and the increasing
demand for smaller and faster electronic devices, the application of MPC
has been able to move into areas such as robotics, mechatronics, and aerial
vehicles. This involves the concept of embedded optimization, or more
specifically, embedded MPC, where the optimal control problem must be
solved online on embedded hardware. Since the migration of MPC into the
field of dynamic system is relatively new, attitude regulation of helicopters
using MPC is a field not thoroughly explored.

The implementation of model predictive control of the helicopter is made
possible by OSQP, an open-source general-purpose QP solver presented in
2018 by Stellato et al. [27]. The benchmark results for this algorithm shows
that it outperforms most open-source and commercial QP solvers available,
in terms of computational time. The code generation software package also
available with OSQP generates tailored C code for a specific problem that can

2though earlier proposals do exist, such as Propoi (1963) [17]

4

run on embedded platforms [2]. A Simulink model of the HIL architecture
containing the C code from OSQP, along with QUARC, a real-time control
software developed by Quanser, enables this model to run on the embedded
hardware driving the physical system.

1.1.1 Motivation

The rapid advancement in the field of embedded optimization means that
the use of computationally expensive controllers such as MPC can be used
to control highly nonlinear systems with fast dynamics such as a 3 DOF
helicopter. And due to the increasing availability of small scale dynamic
systems for didactic purposes, the development of such implementations is
easier than ever.

The motivation for this thesis is a proof-of-concept demonstration of linear
model predictive control of a helicopter. This will allow the further
development of model predictive control of similar systems.

1.1.2 Outline

First, in Chapter 2, a literature review regarding control methods based on
or implemented on the Quanser Helicopter will be presented, along with
an analysis of the embedded optimization of dynamic systems with model
predictive control. This is followed by model predictive control theory as
well as a robustness and stability analysis, in Chapter 3. Thereafter, in
Chapter 4, the algorithm used in the QP solver, OSQP, and an analysis of
why it outperforms similar solvers will be presented. Then, both the software
and hardware implementation of the controller is described, in Chapter 6.
In Chapter 7, a presentation of the results from both numerical simulation
and the actual helicopter performance takes place. The performance of the
QP solver will also be presented here. Then a discussion of the controller
performance and the work described, as well as potential improvements and
future work is presented in Chapter 8, before, finally concluding the work in
Chapter 9.

5

6

Chapter 2

Literature Review

2.1 Quanser’s 3 DOF Helicopter

Quanser is a Canadian-based company that develops and supplies a wide
range of engineering lab equipment within mechatronics, robotics, and
control, designed for an educational setting. Among these is the 3 DOF
helicopter, a bench-top model of a tandem rotor helicopter, with 3 degrees
of freedom (DOF); pitch (roll), travel (yaw) and elevation (vertical). Figure
2.1, taken from Quanser [19], shows a picture of the equipment.

Figure 2.1: Quanser’s 3 DOF helicopter

Since this hardware is designed for testing and developing control laws for
systems with similar dynamics, there is a lot of research performed and

7

available with regard to this system, mainly control implementations based
on both a linear and nonlinear model.

Veeraboina and Ordonez [29] presents the design and implementation
of numerous different controllers on an Arduino Mega, along with a
performance comparison of them. Controllers such as LQR, LQR based PID,
IO feedback linearization and a direct adaptive fuzzy controller. Arican et
al. [1] presents a state-dependent Riccati equation based optimal control
for the nonlinear system, while Kocagil et al. [14] presents a review of
state-dependent Riccati equation based optimal control, along with model
reference adaptive control and sliding mode control. Just recently, robust
adaptive control of multiple helicopters with actuator faults was presented
by Yang et al. [30].

None of these implemented control methods mentioned are particularly well
equipped for constraint handling, which is an important advantage of MPC.
However, there have been some such methods proposed.

For instance, there are a few explicit model predictive control (EMPC)
methods presented. EMPC is a version of MPC that reduces the online
computational cost of the controller by moving all those calculations offline.
This entails providing an explicit optimal control law by calculating all
possible optimal input trajectories in the operating region of the system.
Although these calculations are more complex than the online calculations
of traditional MPC, because the optimal control problem has to be solved
for every possible state and input combination, there is no time limit for
the offline calculation and it will therefore not affect the performance of the
controller online.

EMPC of the helicopter has been presented and tested by numerical simula-
tion and semi-physical simulation by Ju and Xinyan [12]; both feasibility and
performance is demonstrated. Cheng et al. [33] presents another EMPC for
attitude control and tracking, along with its implementation, and compares
the performance with a PID controller.

These authors have successfully implemented a form of MPC on the
helicopter by reducing the online computational cost. Despite being an
acceptable solution, it requires in general a large memory footprint of the
hardware. Additionally, a larger operating area requires a larger memory, to
store the explicit control law. For embedded hardware with limited memory

8

resources, the best solution would be to efficiently solve the optimal control
problem online.

Nonlinear MPC (NMPC) for attitude regulation using successive lineariza-
tion (continous linearization of the nonlinear model based on the current
state and control input) has been suggested by Zhai [32], which solves the
optimal control problem online for the next control input. Although this
controller is shown to outperform linear MPC, it was not actually imple-
mented on the physical system, only tested with numerical simulation. Sim-
ilarly, the same author suggests successive linearization on a nonlinear model
along with an observer to obtain robust control, but this is also only tested
in simulation [31].

Up til now, there have been no implementation proposals for model predictive
control of this helicopter, and this is therefore a useful and interesting area of
research. Since the framework for this project is the work done last semester,
Sollie [26], based on linear model predictive control, this is the method that
will be used in the implementation presented in this thesis.

2.2 Embedded Optimization

Embedded optimization is the concept of continuously solving an optimiza-
tion problem on an embedded system, where the data is updated real-time
from a system that evolves over time. Naturally, the exact evolution of the
system can only be predicted to a certain degree, therefore the optimization
should be dynamic, a function of both time and the process model. Em-
bedded optimization is complex, mainly because of the close relationship
between the solver, the hardware and the process [13].

In the late 1970s, model predictive control was introduced as a combination
of feedback control theory and numerical optimization [23], and quickly
gained traction as a constraint handling control method, that could easily
be applied to MIMO systems. This algorithm was run on computers at
low frequencies, updating the control input as seldom as once a minute
[18]. As the computer was popularized a few decades later, optimization
methods on embedded hardware were introduced to address needs such as
cost-effectiveness and efficient energy use. Advancements have been made for
optimization calculations in real-time, and successful implementations onto

9

for example central processing units, digital signal processors, programmable
logic controllers, and field-programmable gate arrays have been presented
[8]. Now, this control method originally used in a specific industry could
be applied to areas such as robotics, aerospace and mechatronics, and the
concept of embedded MPC arose. With this development, challenges related
to algorithms and their implementations, as well as the computing hardware
arises.

Embedded MPC is an increasingly relevant method, as modern processing
power has finally caught up to meet the computational demands that
the online calculations require. An implementation of embedded MPC
requires low code complexity and a small memory footprint to ensure it runs
adequately on the applicable hardware and matches real-time demand. The
existing control solutions for embedded systems need a lot of tuning to cope
with constraints and nonlinearities. As mentioned, multivariable control for
MPC, and the incorporation of state and input constraints is the reason for
its rapid spread and a good reason for an implementation on a system such
as a 3 DOF helicopter.

10

Chapter 3

Model Predictive Control
Theory

Model predictive control (MPC), also called receding horizon control, is
a control strategy that implements an implicit control law by repeatedly
solving a constrained optimal control problem over a finite horizon.

The basic idea behind model predictive control is optimizing the control
input and resulting state trajectory, given a finite horizon cost function, for
every time step and applying the first optimal control input to the system.

MPC is one of the most attractive feedback strategies utilized, especially for
constrained linear systems.

The three main stages of the algorithm are

1. Measuring the current state of the system

2. Solving the given optimization problem

3. Applying the first control input to the system, while the others are
rejected

Figure 3.1 shows an abstract visualization of the principle of MPC, taken
from Foss and Heirung [9]. The optimal state and control trajectories are
visualized, and the first control step is applied to the plant.

If a nonlinear process model is used in the prediction, it is referred to as
nonlinear model predictive control (NMPC), while a linear model will just be

11

Figure 3.1: Visualization of MPC, from Foss and Heirung [9]

referred to as MPC, throughout this paper. Using nonlinear model predictive
control results in a more accurate process model leading to a more accurate
prediction, but at the cost of computational cost and run-time.

Linear MPC is by far the most popular of the two. It is less complex 1,
and the feedback mechanism of MPC can account for differences between
the model and the actual system, which will exist since a linear model will
never be completely accurate in an actual process.

3.1 Open-loop optimal control problem

The basic formulation for the open-loop optimal control problem solved
online (in which the initial state is the current state of the system) is,

1in best case it is a convex QP problem

12

PN (x0) = min
x,u

V (x,u) , (3.1)

subject to xi+1 = Axi +Bui ∀ i ∈ Z[0:N−1] , (3.2)

xi ∈ X ∀ i ∈ Z[1:N] , (3.3)

ui ∈ U ∀ i ∈ Z[0:N−1] , (3.4)

with

x =

x1
...
xN

 , u =

u0
...

uN−1

 , (3.5)

(3.6)

and

xi,X ∈ Rn , ui,U ∈ Rm , (3.7)

Q ∈ Rn×n , R ∈ Rm×m , (3.8)

A ∈ Rn×n , B ∈ Rn×m . (3.9)

The goal is to optimize performance by minimizing the finite horizon cost,

V (x,u) =
1

2

N−1∑
k=0

(x>k+1Qxk+1 + u>k Ruk) . (3.10)

The matrices A and B are the matrices for the state space model for the given
system, and Q and R are the weighting matrices for the state and control
input, respectively. The matrices Q and R must be real and symmetric, Q
must be positive semidefinite, and R must be positive definite. The state
must be detectable through Q2. Additionally, the state and input constraint
sets X and U must be polyhedrons, which ensures the constraints are linear.
When these requirements are fulfilled, the optimal control problem is a
convex QP problem.

One thing to consider is that because the initial value x0 is defined and there
is a hard constraint x+ = Ax + Bu, the real optimization variable for this

2(A,
√
Q), must be detectable

13

problem is the control input trajectory u alone, because the resulting state
trajectory merely follows the value of x0 and the state space equation.

Therefore, a common method for reducing the complexity of the online
optimization problem is removing the system equation x+ = Ax+Bu from
the equality constraints and only optimizing over the control inputs u.

Observe the following development

x1 = Ax0 +Bu0 ,

x2 = Ax1 +Bu1

= A2x0 +ABu0 +Bu1 ,

x3 = Ax2 +Bu2

= A3x0 +A2Bu0 +ABu1 +Bu2 ,

...

xk = Ak−1Bu0 +Ak−2Bu1 + . . .+Bu2 +Akx0 .

(3.11)

Writing this for the whole state trajectory yields,
x1

x2
...
xN

 =

B 0 . . . 0 0

AB B . . . 0 0
...

AN−1B AN−2B . . . AB B

u0

u1
...

uN−1

 +

A

A2

...
AN

x0 , (3.12)

or

x = Suu + Sxx0 . (3.13)

This equation (3.13) will be used to remove all states from the optimization
problem, minimizing the complexity of the problem.

In the formulation of the online optimal control problem presented here, the
prediction horizon is identical to the control horizon and will be referred to
as the optimization horizon N . It is possible to have a lower control horizon
than prediction horizon, where the actuator assumes the terminal control
value to be constant past the control horizon. This is also a method for
reducing online computational complexity.

14

3.2 Terminal cost and terminal constraint

The optimization problem presented in Section 3.1 has the same characteris-
tics as some of the earliest proposals of MPC. In these versions, stability was
not guaranteed, but was achieved through tuning the cost and optimization
horizon, and limiting the analysis and applications to stable systems. Later
research devoted considerable attention to proposals of modifying the op-
timal control problem to ensure nominal stability, and one such suggestion
was adding a terminal cost F (xN) and a terminal constraints xN ∈ Xf to
the last state of the optimal trajectory [28]. Most recent model predictive
controllers belong to this category [22].

Terminal cost.

A disadvantage to the finite horizon optimization problem is precisely that
it optimizes over a finite horizon; it does not consider the system states
beyond this horizon N . A strategy to achieve better stability properties
for the finite horizon problem is to optimize over the infinite horizon cost
function, by finding an explicit expression for the cost of the states beyond
the horizon.

First, consider the infinite horizon objective function as a sum split into two
terms,

N−1∑
k=0

(x>k Qxk + u>k Ruk) +

∞∑
k=N

(x>k Qxk + u>k Ruk) . (3.14)

Let the last term be F (·), the cost beyond the horizon, and the goal is to
obtain explicit expression for this term.

The local controller u = κ(x) is introduced for the states beyond the horizon,
where κ(x) = Kx, with K being the feedback gain from the LQR, such that

κ(xk) = Kxk, ∀ k ∈ Z[N :∞] , (3.15)

and

F (·) =

∞∑
k=N

x>k (Q+K>RK)xk . (3.16)

15

The state feedback in an LQR is

K = −(R+B>PB)−1B>PA , (3.17)

where P is the solution3 to the discrete-time algebraic Riccati equation
(DARE),

A>PA− P +Q−A>PB(R+B>PB)−1B>PA = 0 . (3.18)

Inserting K into the DARE gives,

A>KPAK − P +Q+K>RK = 0 , (3.19)

with AK = A+BK which also happens to be the augmented system matrix
for the closed-loop system

xk+1 = Axk +B(Kxk), k ∈ Z[N :∞] . (3.20)

Inserting the revised equation (3.19) into (3.16), yields

F (xN) =
∞∑
k=N

x>k Pxk −
∞∑
k=0

x>k+1Pxk+1

= x>NPxN .

(3.21)

This function is referred to as a terminal cost or sometimes terminal penalty,
and when added to the finite horizon objective function adds a cost to the
states beyond the horizon. The literature shows this term by itself can
achieve stability, however in these analyses, there is an implicit requirement
of a terminal constraint xN ∈ Xf that is satisfied for every initial state x0 in
a given compact set [22].

Terminal constraint.

In Rawlings and Mayne [21], the terminal cost in itself is not considered to
materially affect the online problem, but the addition of a terminal constraint
can have a significant effect.

Although there are many methods of calculating or approximating this set,
Xf , the main idea is to ensure the state trajectory ends in a set with the

3For the solution to exist, (A,B) must be stabilizable

16

property that for any feasible control input, the successor state will also be in
the set. This set is known as a control invariant set, and will ensure nominal
stability past the optimization horizon.

Instead of considering all feasible control inputs, consider all feasible control
inputs that satisfy the feedback control law u = κ(x), where as previously
κ(x) = Kx. From this, an autonomous system model can be obtained,

x+ = AKx ,

(x,Kx) ∈ (X× U) .
(3.22)

For autonomous systems, where there is no control input, the set of all
feasible states where all succeeding states are feasible and remain in the set
is known as a positively invariant set.

Definition: A set Ω is positively invariant if and only if for all states in it,
the states satisfy the constraints and successor states are still in it. The
mathematical definition is given by

∀ x ∈ Ω : (x,Kx) ∈ (X× U) ∧ AKx ∈ Ω . (3.23)

Furthermore, the best option is to use the maximal positive invariant set
(MPIS), which is the positively invariant set that contains all other positively
invariant sets. To calculate the MPIS, start with the set

Ω1 = {(x,Kx) ∈ (X× U) : AK · (x,Kx) ∈ (X× U)} . (3.24)

Then define the general set

Ωi = {(x,Kx) ∈ Ωi−1 : AK · (x,Kx) ∈ (X× U)} , (3.25)

and recompute the sets Ωi, i = 1, 2, . . ., until the sets converge, i.e.
Ωi = Ωi−1. When AK is asymptotically stable4, this set exists and is non-
empty.

The necessity of the terminal constraint is addressed in [21] and is in a sense
‘replacement’ for a longer optimization horizon, because it gives the same

4all eigenvalues are inside the unit circle

17

effect, along with a lower computational cost. The purpose is to steer the
state to Xf in a finite time, and inside Xf , beyond the horizon, a local
stabilizing controller is employed.

3.3 Integral action in MPC

Consider the case where the helicopter has an unmodelled constant
disturbance that affects the helicopter dynamics, such that there is a constant
deviation present in one or more states. Since the MPC controller introduced
in this section does not have integral action, this has to be embedded into
the controller, to mitigate the constant offset.

Let the process model with the disturbance be

x+ = Ax+Bu+Add ,

y = Cx+Du+ Cdd ,
(3.26)

where Ad and Cd are matrices that model how the disturbance is coupled
with the system dynamics and the output.

This disturbance can be incorporated into the system model by including
the additional state d, as follows[

x+

d+

]
=

[
A Ad

0 1

][
x

d

]
+

[
B

0

]
u ,

y =
[
C Cd

] [x
d

]
+Du .

(3.27)

The system model has now been augmented with the state d with the
evolution

d+ = d , (3.28)

to reflect its constant nature.

An observer can now be implemented to estimate this state d, and when this
augmented model is used in the MPC prediction, the optimal control inputs
will be selected so this constant offset is minimized.

Rawlings and Mayne [21] discuss the concept of constructing an MPC
controller to achieve zero offset and state that this method is “similar

18

to what one achieves when using the integral mode in PID-control of an
unconstrained system” [21].

To estimate the disturbance, a Kalman filter will be implemented.

3.3.1 Kalman filter

For implementing an estimator, the Kalman filter is chosen, otherwise
referred to as a linear-quadratic estimator (LQE). The Kalman filter
implementation used is supplied by MATLAB and assumes the system model

xk = Axk +Buk +Gwk ,

yk = Cxk +Hwk + vk ,
(3.29)

where wk and vk are the process noise and measurement noise, respectively.

These are assumed to be white Gaussian noise, which have the following
statistical distribution,

E(wkw
>
k) = QK ,

E(vkv
>
k) = RK ,

(3.30)

where QK and RK are covariance matrices for the given disturbances. These
can either be measured or chosen and tuned, depending on the estimator
performance. With this, the Kalman filter calculates an observer gain matrix
Kf that minimizes the variance of the estimation error.

As opposed to other observers like the Luenberger observer (which was
initially implemented but did not perform well) the tuning parameters for
the Kalman filter have a much more intuitive meaning. For the Luenberger
observer the estimator gain is found by selecting poles of the closed-loop
matrix of the error dynamics (A − LC), which can be a difficult process.
But when tuning the Kalman filter, the tuning parameters are the values
in the process noise covariance matrix QK and the measurement noise
covariance matrix RK . So for instance, a change in the measurement noise of
a certain output would change the smoothness of this estimation, because a
higher measurement noise would mean the filter depends less on this output
measurement.

19

3.4 Slack variables

A common issue when implementing MPC, is the possibility that the system
enters into a state which yields the optimization problem infeasible. This is
common when there is a disturbance in the system or an inaccurate model is
used, such that the system dynamics varies from the prediction of the MPC
controller.

In this case, a slack variable ε can be added to constraints, to transform the
constraints from hard to soft constraints. This slack variable is then added
to the cost function to incentivize the MPC to break the hard constraints
only if necessary.

Regarding slack variables in MPC, one can also reduce complexity by using
the same variable for the whole horizon. However, this leads to the case
where breaking the constraint at one time is just as costly as breaking the
constraint for the whole horizon.

3.5 Stability of MPC

The earliest versions of MPC, for example presented in Richalet et al. [25],
did not guarantee stability. This was achieved through careful tuning of
the cost function and restricting attention to stable plants, and choosing
a large enough optimization horizon. Thus, one could achieve similar
stability properties as an infinite horizon, where guaranteed stability has
been demonstrated.

As was mentioned above, a modification of the optimal control problem
that guaranteed stability is the addition of the terminal cost and terminal
constraint.

The following conditions on the terminal cost and constraint are presented
and proved to ensure closed-loop asymptotic (exponential) stability [22],

1. Xf ⊂ X, is closed and contains the origin ,

2. κ(x) ∈ U ∀ x ∈ Xf ,

3. Xf is a positively invariant set under κ(x) ,

4. F (xN) is a local Lyapunov function .

20

When the specific control problem for this system is presented, it will be
shown that these conditions are met.

3.6 Robustness of MPC

Robustness, in the context of control theory, has to do with the controllers
stability with regard to uncertainty or model inaccuracies. Robust control
methods function properly when exposed to uncertainty, provided the
uncertainty are found within some set. The earliest analyses of the
robustness of MPC can be found in Richalet et al. [25]. They used impulse
response models to investigate robustness in the case of gain mismatch.

There are several approaches to studying robustness of a system. One
can attempt to characterize the disturbance, and then consider all possible
realizations of this disturbance. Or one can consider the robustness of a
closed-loop system, designed using the nominal system, the system without
disturbance. This is called inherent robustness and the analysis presented
here will focus on this. The robustness of receding-horizon control has been
investigated by de Nicolao et al. [6].

It is shown that the robustness of the system,

x+ = fa(x) = Ax+Bu+Gw , (3.31)

is guaranteed for any disturbance w lying in the set,

Da = {w : V (fa(x
∗)) < V (x∗) ∀ x∗ 6= 0 ∈ Rn} , (3.32)

where V (x∗) is the optimal value of the cost function for the problem at any
given time.

In the case of the Quanser helicopter, there are many unmodelled
uncertainties, the main one being the nonlinear characteristics of the system.
Another uncertainty discussed further in section 5.3, is a constant force
affecting the travel of the helicopter.

Since there is no way of guaranteeing that all uncertainties adhere to the
condition of being contained in the setDa, the control presented in this thesis
is not completely robust. However, the conclusion will be that the closed-
loop control of the helicopter is somewhat robust, since the uncertainty will
at times be contained in the given set.

21

One approach to robust model predictive control is tube-based MPC. This
is a variation that ensures that the state trajectory will always be contained
in a tube centered around the nominal state trajectory, given that the
assumptions on the disturbance hold, by tightening the state and control
constraints.

The resulting control problem when attempting to control the, given system
using this model and the implementation developed in Sollie [26], is too
complex, with regard to both problem dimension and computational cost,
so this idea was abandoned quite early in the process.

22

Chapter 4

Quadratic Programming Solver

In order to implement MPC, an open-loop optimal control problem must be
solved online for the controller to obtain its next control input. This problem
must be solved quite efficiently, and to a high degree of accuracy, which
means that the selection and implementation of an optimization algorithm
is important. The control problem is a quadratic-programming problem (QP
problem), which is a linearly constrained quadratic optimization problem.

A new QP solver was presented in 2018 by Stellato et al. [27], and has gained
traction since. The main algorithm is based on the alternating direction
method of multipliers (ADMM), and is a general purpose solver for quadratic
programs. The algorithm carries out an initial matrix factorization, and is
beyond that division-free, which makes it suitable for real-time applications,
such as embedded optimization.

ADMM solves convex optimization problems using a divide-and-conquer
method by breaking the problem up into smaller pieces. It takes the iterative
method from the augmented Lagrange method and forces decomposability,
giving it a smoother convergence but also a faster run-time.

The implementation solves the following QP problem,

min
1

2
z>Pz + q>z

subject to l ≤ Az ≤ u ,
(4.1)

with a positive semidefinite matrix P and optimization variable z.

The ADMM algorithm used in this implementation is presented by Boyd et

23

al. [5]. The initial QP problem is rewritten by adding auxiliary variables
to an equality constrained QP problem and this formulation is then used in
the ADMM algorithm. There are step-size parameters σ, ρ > 0 to determine
step length and the relaxation parameter α ∈ (0, 2).

When solving the equality constrained reformulation of the problem, both a
direct and indirect method can be used. If the direct method is employed,
a factorization of the KKT matrix is performed prior to the first iteration,
because the matrix is identical for every iteration. When the factorization
cost is much higher than the solve cost, this method is useful. If the indirect
method is used, one can remove the Lagrange multiplier from the equality
constrained problem and obtain a simple equation to solve. Using the
indirect method results in a completely division-free algorithm, while the
direct method has one division; the factorization of the KKT matrix prior
to starting.

The termination criteria for the algorithm is that the norms of the primal and
dual residuals are smaller than some tolerance level εprim > 0 and εdual > 0.
These are set to

εprim = εabs + εrel max{‖Axk‖∞, ‖zk‖∞} ,
εdual = εabs + εrel max{‖A>yk‖∞, ‖q‖∞} ,

(4.2)

where the value of εabs can be tweaked by the designer.

Operator splitting methods typically return average accuracy. This
algorithm performs solution polishing after the ADMM terminates to return
a high accuracy solution, which is done by making assumptions about which
constraints are active in the solution.

A shortcoming of this algorithm that is worth mentioning, is that the
convergence time is dependent on the choice of the step-size and relaxation
parameters, σ, ρ and α. This choice is still an open research question, but the
OSQP default parameters have been chosen and tuned by testing millions of
problems with a wide range of dimensions [10].

Since this algorithm in particular can solve optimization problems to
a relative degree of certainty while still using few iterations, therefore
being computationally inexpensive, it has been deemed a practical use for
embedded processors.

Figure 4.1, taken from Stellato et al. [27], displays the computation time of

24

Figure 4.1: Computation time versus problem dimension for OSQP and GUROBI
for 7 benchmark problem classes [27]

the OSQP solver and the GUROBI solver for 7 benchmark problems, and
clearly demonstrates OSQP has a clear advantage in most of the problem.
Specifically, the optimal control problem which has the same characteristics
as the online problem for MPC, performs slightly better with OSQP.

25

26

Chapter 5

Developing a process model

In this section a state-space representation for the helicopter will be
presented. First, a nonlinear model of the helicopter will be derived, with
the three degrees of freedom as states and the actuator voltages as inputs.
This model will then be linearized, and a pitch and elevation controller will
be introduced so the new control inputs become the pitch reference pc and
the elevation reference ec.

5.1 Helicopter model

Nonlinear model.

A schematic figure of the helicopter, with the appropriate definitions, can be
seen in Figure 5.1.

It is assumed that the the forces generated by the propellers is proportional
to the voltages applied,

Ff = KfVf ,

Fb = KbVb ,
(5.1)

where Kf and Kb are the proportionality constants and are assumed to be
identical, (Kf = Kb). According to Newton’s third law of motion,

Fg,f + Fg,b = Ff + Fb = KfV
∗
s , (5.2)

where the voltage sum V ∗s = Vb + Vf is the voltage sum needed to keep
the helicopter in equilibrium. From here, the expression for the motor force

27

Figure 5.1: Diagram of helicopter forces, angles and physical sizes

constant is easily calculated as

Kf =
mg · g
V ∗s

, (5.3)

where g is the gravitational acceleration and mg is the effective mass of the
helicopter.

Moving on to the equations for the helicopter states, Newton’s second law of
rotation regrading the rotation about a single principal axis, states that the
net external torque is equal to the product of the moment of inertia and the
angular acceleration. The equations of motions will be stated for one angle
at a time, starting with the travel angle λ.

The net external torque of travel is∑
τλ = (Fb − Ff)lh cos e sin p , (5.4)

so the angular acceleration for travel can be expressed as

λ̈ = −
Kf lhVd
Jλ

cos e sin p , (5.5)

where the voltage difference Vd = Vf − Vb and the moment of inertia for
travel is Jλ = 4mpl

2
h.

28

Moving on to the pitch angle p the contributions are the propellers force,
such that ∑

τp = (Ff − Fb)lp . (5.6)

This results in the pitch angular acceleration being

p̈ =
Kf lp
Jp

Vd , (5.7)

with the moment of inertia for pitch being Jp = 2mpl
2
p.

For elevation e, the contributions are the propellers affected by the angle of
the pitch as well as the weight of both arms, so∑

τe = (Ff + Fb)lh cos p− 2mpglh cos e+mcglc cos e . (5.8)

The angular acceleration for elevation will be

ë =
1

Je
((mclc − 2mplh)g cos e+Kf lhVs cos p) , (5.9)

where the moment of inertia for elevation is Je = 4mpl
2
h.

Note that all friction, both aerodynamic drag and friction in the joints, has
been neglected.

By defining the constants,

L1 =
Kf lh
Jλ

,

L2 =
Kf lp
Jp

,

L3 =
Kf lh
Je

,

L4 =
g(mclc − 2mplh)

Je
,

(5.10)

the system equations can be written,

λ̈ = L1Vd cos e sin p ,

p̈ = L2Vd ,

ë = L3Vs cos p+ L4 cos e .

(5.11)

Linearization.

29

Since the MPC solves a QP problem at every time step, the system equations
in (5.11) will be linearized around the helicopters equilibrium point.

The linear approximation of the function y = f(x, u) about (x∗, u∗) using
the first-order Taylor series and defining the new states ∆x = (x−x∗),∆u =

(u− u∗) is given,

y = f(x, u) ≈ f(x∗, u∗) +
∂f

∂x
|(x∗,u∗)∆x+

∂f

∂u
|(x∗,u∗)∆u . (5.12)

Given the nonlinear equations of motions of the helicopter system presented
in Equation (5.11), the linear approximation in Equation (5.12) can be used
to obtain a linear approximation.

In addition, the resulting linear system should be a first-order system, so let
the states be

x> =
[
λ λ̇ p ṗ e ė

]
, (5.13)

while the inputs are
u> =

[
Vs Vd

]
. (5.14)

This results in,

ẋ = f(x, u) =

λ̇

L1Vs cos e sin p

ṗ

L2Vd

ė

L3Vs cos p+ L4 cos e

. (5.15)

The equilibrium point of the system x∗ = 0 results in the equilibrium inputs
V ∗s = −L4

L3
, V ∗d = 0. The resulting linearization becomes

ẋ = Ax+Bu ,

A =

0 1 0 0 0 0

0 0 K2 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

, B =

0 0

0 0

0 0

0 K1

0 0

K3 0

,

(5.16)

30

with

K1 = L2 ,

K2 =
L1L4

L3
,

K3 = L3 .

(5.17)

The incremental encoders on the helicopter supply the travel angle, pitch
angle, elevation angle to a Simulink model that calculates the travel rate,
pitch rate and elevation rate. Therefore the output equation becomes

y = Cx+Du ,

C =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, D =

0 0

0 0

0 0

0 0

0 0

(5.18)

31

Plant (helicopter)

Pitch controller (PD)
Elevation controller (PID)

MPC

x

[
Vd

Vs

]

[
p∗c
e∗c

]

Figure 5.2: Diagram of system control architecture

Lower level of control.

When using model predictive control, it is usually part of a multi-level
hierarchy of control functions, where the highest level is the MPC that
returns reference values for some lower level of control. For this reason, a
pitch controller and elevation controller is implemented, and the new control
inputs for the process model used in MPC will be u> =

[
pc ec

]
. Figure 5.2

illustrates the architecture of this control hierarchy.

The controllers for the pitch and elevation are

Vd = Kpp(pc − p)−Kpdṗ ,

Vs = Kep(ec − e)−Kedė ,
(5.19)

where the controller coefficients have been selected by choosing a bandwidth
wp, we and relative damping frequency dp, de for each controller. These values
are found in Appendix A.

32

These are added to the linearized state space in (5.16), and the resulting
discrete state-space representation of the helicopter is,

x+ = Ax+Bu ,

A =

1 h 0 0 0 0

0 1 −hK2 0 0 0

0 0 1 h 0 0

0 0 −hK1Kpp 1− hK1Kpd 0 0

0 0 0 0 1 h

0 0 0 0 −hK3Kep 1− hK3Ked

,

B =

0 0

0 0

0 0

hK1Kpp 0

0 0

0 hK3Kep

,

(5.20)

with x =
[
λ λ̇ p ṗ e ė

]>
, u =

[
pc ec

]>
.

Though a PID controller is implemented for the control of elevation, equation
(5.19) only implements a PD controller for the elevation. Because a PID
controller means augmenting the system to add an integral state, a different
approach is taken. Consider the equation for the elevation acceleration

ë = L3Vs cos p+ L4 cos e , (5.21)

which was linearized to
ë = L3Vs. (5.22)

The term L4 cos e, when the helicopter is around the equilibrium point, which
is the main operating region, can be expressed as

L4 cos e ≈ L4 . (5.23)

This will cause a constant deviation in the elevation if left ignored. For
this reason an integral term is added to the implementation of the elevation
controller, to remove this constant, and these terms are then considered
to cancel each other out, which is why they do not appear in the model
equations.

33

5.2 Selection of constraints

It was necessary to add constraints on the travel λ, pitch p and pitch reference
pc.

The constraints on the travel, λ, is there to ensure feasibility. Starting too
far away from the terminal set Xf leads to infeasibility, because the controller
cannot achieve a state trajectory that ends in the set in N steps. Therefore
a hard constraint on λ is only there to avoid infeasibility during run-time.

The pitch constraint is a so-called soft constraint because slack variables were
implemented for this constraint. The reason for the pitch reference having
a tighter constraint than the pitch is because of possible disturbances in
the actuators. There needs to be a margin in case the pitch reference gives
a larger pitch than the constraint, and the next iteration of the problem
becomes infeasible.

The constraints are

−cλ ≤ λ ≤ cλ , (5.24)

−(cp + εp) ≤ p ≤ (cp + εp) , (5.25)

−cpc ≤ pc ≤ cpc , (5.26)

with the values

cλ = 3.665 rad (210 deg) ,

cp = 0.524 rad (30 deg) ,

cpc = 0.436 rad (25 deg) .

(5.27)

5.3 Modeling the constant disturbance

There is a physical disturbance in the system that is very easy both to notice
and to model.

The disturbance comes from the fact that the propellers in the helicopter
spin in the same direction, thus creating a torque moment around the travel
angle. This leads to a constant drift in the travel, which will be referred

34

to as d. Given the description of this constant disturbance, the following
augmented state-space is presented,[

x+

d+

]
=

[
A Ad

0 1

][
x

d

]
+

[
B

0

]
u ,

y =
[
C Cd

] [x
d

]
+Du ,

(5.28)

with

Ad = h ·

0

1

0

0

0

0

, Cd =

0

0

0

0

0

0

. (5.29)

35

36

Chapter 6

Hardware and Software
Implementation

This chapter focuses on the implementation of an MPC controller on the
helicopter, both the hardware and software aspect. The implementation of
the algorithm described in Chapter 4 will be covered, along with the HIL
architecture of the implementation. Then the implementation of the online
optimal control problem in OSQP is covered. Furthermore, the Simulink
model used is discussed in detail, and the C code used to call the QP solver
is shown and explained.

6.1 OSQP

There is a lot of software available for solving QP problems, all suitable for
different types of problem and different applications.

Numerous reviews have been done on the performance of QP solvers for
embedded MPC, [4], [3]. Suitable alternatives to OSQP include qpOASES,
and CVXGEN, where the latter is a code generation software for convex
optimization. However, both of these are more than five years old, and
therefore outdated.

The QP solver used in this work, was introduced in 2018 by Stellato et al. [27]
for general purpose QP problems. The algorithm used is described in detail in
Chapter 4, and has been implemented in the open-source Operator Splitting

37

Quadratic Program (OSQP) and is written in C with a very small code
footprint. The implementation can be used in C, C++, Fortran, Python,
Matlab, Julia and Rust.

In addition, the QP solver offers a software package in both MATLAB and
Python that can generate C code tailored to a specific quadratic program
[2]. This functionality is used in this project to generate C code designed
specifically for the online optimization problem presented in Chapter 3, and
can then be updated at every time step, using the C interface.

The fact that this solver has both a MATLAB and C code interface and a
code generation software package, made it perfect to use in this project,
where both running a simulation in MATLAB and using C code in the
Simulink model was important.

One downside of this implementation of OSQP is that the code generation
software package enables an embedded flag which then disables the profiling
function. The profiling gives the user the ability to retrieve the solve time,
set up time and update time for the OSQP function. To work around this
and be able to see the solve time of the OSQP, a timer was implemented
separately.

6.2 Hardware-in-the-loop (HIL)

Figure 6.1: Information flow in Hardware-in-the-loop (HIL) testing

Figure 6.1 shows a diagram of the Hardware-in-the-loop setup.

38

The hardware used to steer the helicopter is also supplied. It consists of
the Q8-USB 8 Channel USB Data Acquisition Board and the VoltPAQ-X2
2 Channel Linear Voltage Amplifier from Quanser.

The board is an I/O card made for prototyping and Hardware-in-the-loop
development, and receives the signals from the helicopter, which is equipped
with sensors. The amplifier receives the system inputs from the written
control software supplied by the user and applies voltage to the propellers.

In addition to the hardware described above, Quanser’s 3 DOF helicopter
package also comes with QUARC Real-Time Control Software for MATLAB
and Simulink.

QUARC extends the code generation capabilities already existent in Real-
Time Workshop (now called Simulink Coder), while adding new set of targets
the can change the source code generated by Real-Time Workshop to suit
the particular platform. QUARC then compiles and links this code with
relevant libraries and downloads the code onto the target, which is the Q8
Board. QUARC also has External Mode Communications that allows for
connection to the target in Simulink for receiving the signals in real time.
To enable this, QUARC Targets Library has a whole library of Simulink
blocks that add a lot of HIL functionality, that allows one to use the signals
from the board in the Simulink model.

The Simulink blocks written by QUARC that are used in the Simulink model
are

• HIL Initialize

• HIL Read Encoder Timebase

• HIL Write Analog

These are used for initializing the HIL functionality, reading encoder
information from the helicopter so that it can be utilized in the Simulink
model and writing voltage data to the IO card.

When dealing with a hierarchical control architecture, where the highest
level is MPC and the lower levels are the pitch and elevation controller, the
highest level should have a lower frequency. This is so that the lower level
controllers can have time to reach the given reference value before a new one
is calculated.

39

QUARC fully supports multithreading [20], blocks running on different
sampling intervals are simply split into multiple threads, grouped together
by sampling rate. In this simulation, the lower levels of control run at 50

Hz, while the MPC runs at 12.5 Hz, and is also tested at 25 Hz and 5 Hz.

6.3 Implementing the optimization problem for
OSQP

The optimization problem solved in OSQP has the form,

min
φ

1

2
φ>Pφ+ q>φ

subject to lb ≤ Aφ ≤ ub .
(6.1)

Let the objective function

V (x,u) =
1

2

N−1∑
j=0

(x>nQxn + u>nRun) + x>NPxN , (6.2)

be expressed as

x>Q̃x + u>R̃u , (6.3)

where

Q̃ =

Q

Q
. . .

Q

P

 , R̃ =

R

R
. . .

R

 . (6.4)

Inserting equation (3.13) (x = Suu + Sxx0) results in

V (u) = u>(S>u Q̃Su + R̃)u + 2x>0 S
>
x Q̃Suu + x>0 S

>
x Q̃Sxx0

= u>Hu + x>0 fu + c ,
(6.5)

with
H = S>u Q̃Su + R̃, f = 2S>x Q̃Su , (6.6)

40

and the constant term c being neglected, since it does not affect the optimal
solution.

The term for the cost of the slack variables,

εp
>S̃εp , (6.7)

has to be added as well, where

S̃ =

S

. . .
S

 , εp =

εp0
...

εpN

 . (6.8)

The objective function in equation (6.1) can now be expressed as

1

2

[
u εp

]
· 2 ·

[
H 0

0 S̃

]
·

[
u

εp

]
+
[
f 0

]
·

[
u

εp

]
. (6.9)

Let the constraints x ∈ X, u ∈ U be written as

Cx+Du+ Eεp ≤ e ,
Gxn ≤ h ,

C,G ∈ Ra×n, D ∈ Ra×m ,

(6.10)

with a being the total number of constraints.

Let the constraints for the whole horizon be

C̃x + D̃u + Ẽεp ≤ ẽ , (6.11)

with

C̃ =

C

. . .
C

G

 , D̃ =

D

. . .
D

0 . . . 0

 , Ẽ =

E

. . .
E

0 . . . 0

 , ẽ =

e
...
e

h

 ,

(6.12)

and

x =

x1

x1

. . .

xN−1

 , u =

u0

u1

. . .

uN

 , εp =

εp0
εp1
. . .

εpN

 . (6.13)

41

Again, inserting equation (3.13) into equation (6.11) to remove the state
trajectory, gives

(C̃Su + D̃)u + Ẽεp ≤ ẽ− C̃Sxx0 . (6.14)

Since x0 is a variable, in the sense that it changes for every computation of
the optimization problem, the constraints are split up as follows,

Aφ ≤ bin + cin · x0 , (6.15)

where
A =

[
C̃Su + D̃ Ẽ

]
, bin = ẽ , cin = −C̃Sx . (6.16)

The lower bound lb will only have infinite terms.

The terms G, h and P can easily be removed when the terminal constraint
and cost are not a part of the problem.

Since the upper bound ub = bin + cin · x0 and the linear cost q = x>0 f both
vary with the ’initial state’ x0, the current state of the system, when the
online problem is solved, these arrays will have to be updated before every
call to OSQP.

The MATLAB script that generates the matrices presented here can be found
in appendix B, in listing B.4.

The terminal set for this system,

Xf = {x |Gx ≤ h} (6.17)

is in six dimensions so a visualization of the whole set is not possible.
However, the terminal set has been ’sliced’ through the first and second
dimensions, so the new sliced set is

Xf 1:2 = {x | [Gcol1 Gcol2] x ≤ h} . (6.18)

This attempts to illustrate the constraints of two states in two dimensions,
when the other states are zero. This is shown in figure 6.2.

42

Figure 6.2: A sliced plot of the terminal set Xf

6.4 Simulink Model

The basis for the Simulink model is a model created by Bjarne Anton Foss,
Petter Tøndel, og Geir Stian Landsverk for the original version of the lab in
TTK4135.

The full model is shown in Figure 6.3. The part of the model that was not
developed during this project1 can be found in Appendix C and will not be
discussed here.

Notice the sums in the travel and elevation signal, coming out of the
helicopter interface. These have been added because the goal for the control
of the helicopter was to steer it from one position in travel and elevation,
(λ, e) = (λ0, e0) to the equilibrium point (λ, e) = (0, 0). The encoder values
from the helicopter are set to zero every time Simulink is connected, therefore
constants have to be added to the signal so at start-up, it evaluates its current
position as (λ, e) = (λ0, e0). The MPC and the estimator will be discussed

1the pitch controller (aqua), elevation controller (light blue), and the voltage conversion
and helicopter interface (green)

43

Figure 6.3: Complete Simulink model

in detail. Additionally, the switch block allows the user to easily turn off and
on the estimator functionality, with the flag with_estimator.

The saturation blocks on the control inputs have been added as well. This is
because when OSQP detects an infeasible problem, it returns the maximum
value for the given data type as the solution. In MATLAB, this is NaN and
in C it is ‘2 · 109’. The saturation blocks are added to limit the actual input
applied to the helicopter, as to not damage the equipment. The saturation
is from −1 to 1.

6.4.1 MPC

First, the MPC was implemented, shown in Figure 6.4.

Figure 6.4: Simulink model of MPC block

This block is an S-Function Builder which serves as a wrapper for a generated

44

S-Function in the model. When this block is called, Simulink invokes a
generated S-function that calls the C code provided [16]. The C code that
is called is shown in Listing 6.1.

The new linear cost q_new and upper bound ub_new arrays are defined and
updated based on the input to the block, which is the current state of
the system, (x1 x2 x3 x4 x5 x6 x7). Then the workspace-structure is
updated with these new arrays, in lines 35 and 36, and the problem is solved
in line 40 and in line 44. An array for the optimal state trajectory is defined,
and then using equation (3.13), the optimal state trajectory is obtained.

Listing 6.1: C code in the S-Function Builder block

1 // i n i t i a l i z a t i o n
2 PyTimer ∗ t imer ;
3 t imer = mal loc (s i z e o f (PyTimer)) ;
4 c_f loat q_new [LENGTH_Z] ;
5 c_f loat ub_new [NUM_CONSTRAINTS] ;
6 i n t i ;
7 i n t j ;
8
9 // c a l c u l a t e new l i n e a r co s t
10 f o r (i = 0 ; i < LENGTH_Z; i++)
11 {
12 q_new [i] = ∗x1 ∗ fdata [0] [i] ;
13 q_new [i] += ∗x2 ∗ fdata [1] [i] ;
14 q_new [i] += ∗x3 ∗ fdata [2] [i] ;
15 q_new [i] += ∗x4 ∗ fdata [3] [i] ;
16 q_new [i] += ∗x5 ∗ fdata [4] [i] ;
17 q_new [i] += ∗x6 ∗ fdata [5] [i] ;
18 q_new [i] += ∗x7 ∗ fdata [6] [i] ;
19 }
20
21 // c a l c u l a t e new upper bound
22 f o r (i = 0 ; i < NUM_CONSTRAINTS; i++)
23 {
24 ub_new [i] = bindata [i] ;
25 ub_new [i] += cindata [i] [0] ∗ ∗x1 ;
26 ub_new [i] += cindata [i] [1] ∗ ∗x2 ;
27 ub_new [i] += cindata [i] [2] ∗ ∗x3 ;
28 ub_new [i] += cindata [i] [3] ∗ ∗x4 ;
29 ub_new [i] += cindata [i] [4] ∗ ∗x5 ;
30 ub_new [i] += cindata [i] [5] ∗ ∗x6 ;

45

31 ub_new [i] += cindata [i] [6] ∗ ∗x7 ;
32 }
33
34 // update qp problem
35 ∗ error_flag_q = osqp_update_lin_cost(&workspace , q_new) ;
36 ∗ error_flag_ub = osqp_update_upper_bound(&workspace ,

ub_new) ;
37
38 // s o l v e
39 t i c (t imer) ;
40 osqp_solve(&workspace) ;
41 ∗ solve_time = toc (t imer) ;
42
43 // c a l c u l a t e optimal s t a t e x = Su ∗ u + Sx ∗ x0 ;
44 c_f loat x [LENGTH_X] ;
45 f o r (i = 0 ; i < LENGTH_X; i++)
46 {
47 x [i] = Sxdata [i] [0] ∗ ∗x1 ;
48 x [i] += Sxdata [i] [1] ∗ ∗x2 ;
49 x [i] += Sxdata [i] [2] ∗ ∗x3 ;
50 x [i] += Sxdata [i] [3] ∗ ∗x4 ;
51 x [i] += Sxdata [i] [4] ∗ ∗x5 ;
52 x [i] += Sxdata [i] [5] ∗ ∗x6 ;
53 x [i] += Sxdata [i] [6] ∗ ∗x7 ;
54
55 f o r (j = 0 ; j < LENGTH_U; j++)
56 {
57 x [i] += Sudata [i] [j] ∗ ((&workspace)−>so lu t i on−>x [

j]) ;
58 }
59 }
60 ∗u0_1 = ((&workspace)−>so lu t i on−>x [0]) ;
61 ∗u0_2 = ((&workspace)−>so lu t i on−>x [1]) ;
62 ∗x1_1_opt = x [0] ;
63 ∗x1_2_opt = x [1] ;
64 ∗x1_3_opt = x [2] ;
65 ∗x1_4_opt = x [3] ;
66 ∗x1_5_opt = x [4] ;
67 ∗x1_6_opt = x [5] ;
68 ∗x1_7_opt = x [6] ;

Note that before and after the solve-function is called, a timer is started and

46

stopped, with the call to functions tic() and toc(). These functions are
defined in Listing 6.2, and was taken from one of the files in the the code
generation software package for OSQP, called ‘emosqp_mex.c’.

Listing 6.2: timer.h

1 #inc lude <windows . h>
2 #inc lude <s t r i n g . h>
3
4 typede f s t r u c t {
5 LARGE_INTEGER t i c ;
6 LARGE_INTEGER toc ;
7 LARGE_INTEGER f r eq ;
8 } PyTimer ;
9
10 void t i c (PyTimer∗ t)
11 {
12 QueryPerformanceFrequency(&t−>f r eq) ;
13 QueryPerformanceCounter(&t−>t i c) ;
14 }
15
16 c_f loat toc (PyTimer∗ t)
17 {
18 QueryPerformanceCounter(&t−>toc) ;
19
20 return ((t−>toc . QuadPart − t−>t i c . QuadPart) / (c_f loat) t

−>f r eq . QuadPart) ;
21 }

The functions retrieve a high resolution time stamp before and after the
solve-function is called and terminated along with the frequency of the
performance counter and returns the time in seconds between these two
calls.

For the S-Function to be able to update the problem online, it needs access
to the arrays bin, cin and f , and to obtain the optimal state trajectory it
needs Sx and Su. These are created in MATLAB and need to be defined in
C and added to the ‘workspace.h’-file, where the problem is defined.

This is done in a simple MATLAB script called ‘gen_code_params’, that
generates strings that define the MATLAB arrays as multi-dimensional
arrays in C. An exerpt of this is shown in Listing 6.3, lines 1 to 17. These
are then copied into the ‘workspace.h’ file where the S-Function has access

47

to them. In addition the number of constraints a, the length of x, u and
the optimization variable φ are added as macros in lines 19 to 27, because
they are susceptible to change if the number of constraints or optimization
horizon is changed.

Listing 6.3: Exerpt from gen_code_params.m

1 %% cin
2
3 strng_cin = ’ c_f loat c indata [’ ;
4 strng_cin = s t r c a t (strng_cin , num2str (s i z e (cin , 1) , p r e c i s i o n

)) ;
5 strng_cin = s t r c a t (strng_cin , ’] [’) ;
6 strng_cin = s t r c a t (strng_cin , num2str (s i z e (cin , 2) , p r e c i s i o n

)) ;
7 strng_cin = s t r c a t (strng_cin , ’] = { ’) ;
8 f o r i = 1 : s i z e (cin , 1)
9 strng_cin = s t r c a t (strng_cin , ’ { ’) ;
10 f o r j = 1 : s i z e (cin , 2)
11 strng_cin = s t r c a t (strng_cin , ’ (c_f loat) ’) ;
12 strng_cin = s t r c a t (strng_cin , num2str (c in (i , j) ,

p r e c i s i o n)) ;
13 strng_cin = s t r c a t (strng_cin , ’ , ’) ;
14 end
15 strng_cin = s t r c a t (strng_cin , ’ } , ’) ;
16 end
17 strng_cin = s t r c a t (strng_cin , ’ } ; ’) ;
18
19 %% makros
20 makro_num_constr = ’#de f i n e NUM_CONSTRAINTS’ ;
21 makro_num_constr = [makro_num_constr ’ ’ num2str (s i z e (Ain ,

1))] ;
22 makro_len_z = ’#de f i n e LENGTH_Z’ ;
23 makro_len_z = [makro_len_z ’ ’ num2str (s i z e (Ain , 2))] ;
24 makro_len_x = ’#de f i n e LENGTH_X’ ;
25 makro_len_x = [makro_len_x ’ ’ num2str (system . n ∗ system .N)

] ;
26 makro_len_u = ’#de f i n e LENGTH_U’ ;
27 makro_len_u = [makro_len_u ’ ’ num2str (system .m ∗ system .N)

] ;

The S-Function has certain limitations when used with code generation
support. For instance, inputs and outputs cannot be Simulink buses, so

48

any change in the number of outputs and inputs must be changed manually.

6.4.2 Estimator

The other block developed during this project was the estimator, which is a
simple Kalman filter and can be seen in Figure 6.5.

Figure 6.5: Simulink model of estimator

6.5 Multi-Parametric Toolbox

The software implementation, mainly the MATLAB code, also uses
the Multi-Parametric Toolbox (MPT) 3.0 [11], which is an open-source
MATLAB-based toolbox. This is used to create the structures Polyhedron
and LTIsystem. These are used among other things to define the constraint
set X and U , and to calculate the terminal set Xf .

The command S = Polyhedron(A,B) creates the Polyhedron-structure in
MATLAB equivalent to the set S = {x |Ax ≤ b}.

The command model = LTISystem(’A’, A_K) creates the structure model
for the autonomous system given as

x+ = AKx . (6.19)

The commands

49

model.x.with(setConstraint)
model.x.setConstraint = X

where X is a Polyhedron structure, sets the state constraints of the given
system

x ∈ X . (6.20)

Lastly, X_f = model.invariantSet(); returns the maximal positively
invariant set for the system (6.19).

50

Chapter 7

Results

In this chapter, the results are presented. A numerical simulation in
MATLAB of the controller applied to the system model with a simulated
disturbance is shown in the first section, a long with a single plot showing
the overall solve time of OSQP. In the next section, the result from the HIL
experiments performed on the helicopter will be presented. Since the solve
time of the OSQP is highly relevant when running on the actual hardware,
more focus will be invested on this.

To make it easier to quantify and to compare the performance of the
controller, all test runs attempt to move the system from a starting point in
(λ, e) = (−40,−30) to the equilibrium, and the performance is determined by
how fast and accurate the control of the travel angle is. The initial condition
for the elevation is due to the fact that the helicopter rests on a table when
the Simulink is connected, at a 30 degree angle, so this is added to the signal
so the elevation measurement is accurate for the relative coordinate system
defined.

Due to the constant drift in travel, the pitch will have a constant deviation
so that the travel can approach zero.

For simplicity, when the finite-horizon optimal control problem solved online
contains a terminal cost and a terminal constraint, it will be referred to as
stable MPC. Otherwise, it will be called nominal MPC.

51

7.1 Numerical simulation of helicopter model

The plots from the numerical simulation in MATLAB are presented in this
section. The execution file for the simulation can be seen in Listing B.1
in Appendix B. The system is discretized with a sample time of Ts =

0.08 seconds and optimized over an optimization horizon N = 15, unless
otherwise specified. The system is simulated with a generated disturbance
sequence, containing random numbers between 3 and 3.6 degrees (0.052 and
0.063 radians).

52

0 20 40 60 80 100 120 140

-0.4
-0.2

0
0.2
0.4

p
c
(r
ad

)

Simulation of helicopter

R11 = 0.01

0 20 40 60 80 100 120 140

0

0.05

0.1

0.15

e
c
(r
ad

)

R22 = 1

0 20 40 60 80 100 120 140
-1

0

1

λ
(r
ad

)

system state, Q11 = 4.5

optimal state

0 20 40 60 80 100 120 140

-0.4
-0.2

0
0.2
0.4

λ̇
(r
ad

/s
)

system state, Q22 = 1.3

optimal state

0 20 40 60 80 100 120 140

-0.2

0

0.2

0.4

p
(r
ad

)

system state, Q33 = 1

optimal state

0 20 40 60 80 100 120 140

-0.2
-0.1

0
0.1

ṗ
(r
ad

/s
)

system state, Q44 = 1

optimal state

0 20 40 60 80 100 120 140
-0.6

-0.4

-0.2

0

0.2

e
(r
ad system state, Q55 = 2

optimal state

0 20 40 60 80 100 120 140

time (s)

0

0.05

0.1

ė
(r
ad

/s
)

system state, Q66 = 1

optimal state

Figure 7.1: Simulation of nominal MPC

First, the simulation is controlled with nominal MPC in Figure 7.1. The
travel settles at about 0.2761 radians, with a settling time of about 70

seconds. Notice the pitch also settles at a value above zero. This is proof
enough that a constant disturbance is affecting the system, as the pitch needs
to have a nonzero angle to keep the helicopter still.

53

0 5 10 15 20 25 30 35 40

-0.4
-0.2

0
0.2
0.4

p
c
(r
ad

)

Simulation of helicopter with terminal cost and constraint

R11 = 0.01

0 5 10 15 20 25 30 35 40

0

0.2

0.4

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35 40

-1

-0.5

0

λ
(r
ad

)

system state, Q11 = 4.5

optimal state

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

λ̇
(r
ad

/s
)

system state, Q22 = 1.3

optimal state

0 5 10 15 20 25 30 35 40

-0.4
-0.2

0
0.2

p
(r
ad

)

system state, Q33 = 1

optimal state

0 5 10 15 20 25 30 35 40

-0.2

0

0.2

0.4

ṗ
(r
ad

/s
)

system state, Q44 = 1

optimal state

0 5 10 15 20 25 30 35 40
-0.6

-0.4

-0.2

0

0.2

e
(r
ad system state, Q55 = 2

optimal state

0 5 10 15 20 25 30 35 40

time (s)

0

0.05

0.1

ė
(r
ad

/s
)

system state, Q66 = 1

optimal state

Figure 7.2: Simulation of stable MPC

Next, the terminal constraint and terminal cost is added to attempt to more
quickly steer the system to stability, seen in Figure 7.2. The difference is
quite clear. The settling time of the system is now about 10 seconds, and
λ = 0.1394. Which means, the stability properties of the stable MPC also
affects the constant deviation in travel.

54

0 5 10 15 20 25 30 35

-0.4
-0.2

0
0.2
0.4

p
c
(r
ad

)

Simulation of helicopter with longer horizon

R11 = 0.01

0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35

-1

-0.5

0

0.5

λ
(r
ad

)

system state, Q11 = 4.5

optimal state

0 5 10 15 20 25 30 35

-0.2

0

0.2

0.4

λ̇
(r
ad

/s
)

system state, Q22 = 1.3

optimal state

0 5 10 15 20 25 30 35

-0.4
-0.2

0
0.2
0.4

p
(r
ad

)

system state, Q33 = 1

optimal state

0 5 10 15 20 25 30 35

-0.2

0

0.2

0.4

ṗ
(r
ad

/s
)

system state, Q44 = 1

optimal state

0 5 10 15 20 25 30 35
-0.6

-0.4

-0.2

0

0.2

e
(r
ad system state, Q55 = 2

optimal state

0 5 10 15 20 25 30 35

time (s)

0

0.05

0.1

ė
(r
ad

/s
)

system state, Q66 = 1

optimal state

Figure 7.3: Simulation of nominal MPC with longer horizon

It was mentioned in the introduction of the terminal cost and constraint,
that it is an attempt to emulate a longer optimization horizon without the
computation expense that comes along with that. To illustrate this effect, the
controller with double the optimization horizon, N = 30, has been simulated,
seen in Figure 7.3. This control appears to have the same effect as the
addition of the terminal terms. The travel settles at 0.1336 rad after about
12 seconds. However, the solve time of OSQP increases from 0.553 to 0.816

55

milliseconds because the longer optimization horizon leads to a large problem
dimensions which involves more complex calculations online.

56

0 10 20 30 40 50 60 70

-0.4
-0.2

0
0.2
0.4

p
c
(r
ad

)

Simulation of helicopter with estimator and terminal cost and constraint

R11 = 0.01

0 10 20 30 40 50 60 70

0

0.2

0.4

e
c
(r
ad

)

R22 = 1

0 10 20 30 40 50 60 70

-1

-0.5

0

λ
(r
ad

)

system state, Q11 = 4.5

optimal state

0 10 20 30 40 50 60 70

-0.2

0

0.2

λ̇
(r
ad

/s
)

system state, Q22 = 1.3

optimal state

0 10 20 30 40 50 60 70

-0.4
-0.2

0
0.2

p
(r
ad

)

system state, Q33 = 1

optimal state

0 10 20 30 40 50 60 70

-0.2

0

0.2

0.4

ṗ
(r
ad

/s
)

system state, Q44 = 1

optimal state

0 10 20 30 40 50 60 70
-0.6

-0.4

-0.2

0

0.2

e
(r
ad system state, Q55 = 2

optimal state

0 10 20 30 40 50 60 70

time (s)

0

0.05

0.1

ė
(r
ad

/s
)

system state, Q66 = 1

optimal state

Figure 7.4: Simulation of stable MPC with Kalman filter

To remove the constant offset in travel, the helicopter model is augmented
with an extra state to model the constant disturbance in travel and a Kalman
filter is implemented to estimate this state so the controller can consider
it when optimizing the control input. This is shown in Figure 7.4 to be
successful. Here, λ settles on 0.01254 rad after about 12 seconds.

57

0 10 20 30 40 50 60 70 80 90 100

time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

an
gl
e
(r
ad

)

Disturbance from helicopter simulation

estimated disturbance d̂

simulated disturbance d

Figure 7.5: Estimation of disturbance from simulation

The estimation if the augmented state d from the Kalman filter was very
similar for all simulations, both nominal and stable MPC, therefore only
one example will be shown in Figure 7.5. This particular estimation is from
the simulation described in Figure 7.4 of stable MPC. The estimated value
in pink settles on about 0.06 radians, which as an accurate and smooth
approximation of the generated disturbance sequence also displayed in the
figure.

58

To attempt to quantify all the information obtained from running the
numerical simulations, Table 7.1 summarizes the most important information
from all the simulation results. The discussion chapter will refer to this table
when analyzing the results.

Even though the choice of weights in the control problem usually has a
significant effect on the performance, they remain unchanged in all the
numerical simulations, so they will not be included in the table. To keep the
focus on the results from the actual control of the helicopter, some figures
have not been included although their information is included in the table,
specifically the simulation and solve time of nominal MPC with a filter.
These figures can be found in Appendix D.

Table 7.1: Results from numerical simulations

controller horizon settling time lim λ avg solve time

nominal 15 70 s 0.2761 rad 0.186 ms
nominal 30 12 s 0.1336 rad 0.816 ms

nominal with filter 15 90 s 0.2095 rad 0.196 ms
stable 15 10 s 0.1394 rad 0.553 ms

stable with filter 15 12 s 0.0254 rad 0.547 ms

59

7.2 Experimental results of helicopter performance

In this section, the results from the implementation of the controller being
run on the physical helicopter will be presented. The optimization horizon
is still N = 15 unless otherwise specified. The discretization interval and the
sampling interval of the MPC is 0.08 seconds (12.5 Hz), while the rest of the
model runs at 50 Hz.

Just like in the previous section, a table at the bottom of this section will
summarize key information given in the figures.

60

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
c
(r
ad

)

Helicopter performance, MPC frequency: 12.5 Hz,

R11 = 1.8

0 5 10 15 20 25 30 35

0

0.1

0.2

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35

-0.5

0

0.5

λ
(r
ad

)

system state

optimal state, Q11 = 4.5

0 5 10 15 20 25 30 35

0

0.2

0.4

λ̇
(r
ad

/s
)

system state

optimal state, Q22 = 3.2

0 5 10 15 20 25 30 35

-0.2

0

0.2

p
(r
ad

)

system state

optimal state, Q33 = 0.9

0 5 10 15 20 25 30 35

-0.1

-0.05

0

0.05

ṗ
(r
ad

/s
)

system state

optimal state, Q44 = 1.2

0 5 10 15 20 25 30 35
-0.6

-0.4

-0.2

0

e
(r
ad

)

system state

optimal state, Q55 = 2

0 5 10 15 20 25 30 35

time (s)

-0.1
0

0.1
0.2
0.3

ė
(r
ad

/s
)

system state

optimal state, Q66 = 1

Figure 7.6: Online performance of nominal MPC

Figure 7.6 display the helicopter performance when controlled with nominal
MPC. The value of λ approaches 0.719 rad after about 17 seconds. Notice the
oscillations in the pitch rate ṗ, that are also somewhat present in the pitch
p and pitch reference pc as well. They are due to model inaccuracies caused
by nonlinearities in the system, and will be discussed the next chapter.

61

0 5 10 15 20 25 30 35

time (s)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

so
lv
e
ti
m
e
(s
)

×10−4 Solve time of OSQP

solved

Figure 7.7: OSQP solve time of nominal MPC

A performance of OSQP is illustrated in Figure 7.7. The OSQP has an
average solve time of about 0.09 milliseconds, which is about 800 times faster
than the frequency at which the MPC has to recompute the control input.

62

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
c
(r
ad

)

Helicopter performance, MPC frequency: 12.5 Hz,
with terminal cost and constraint

R11 = 2.7

0 5 10 15 20 25 30 35

0

0.2

0.4

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35

-0.8
-0.6
-0.4
-0.2

0
0.2

λ
(r
ad

)

system state

optimal state, Q11 = 4.5

0 5 10 15 20 25 30 35

0

0.2

0.4

λ̇
(r
ad

/s
)

system state

optimal state, Q22 = 3.2

0 5 10 15 20 25 30 35
-0.4

-0.2

0

0.2

p
(r
ad

)

system state

optimal state, Q33 = 0.9

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

ṗ
(r
ad

/s
)

system state

optimal state, Q44 = 1.2

0 5 10 15 20 25 30 35
-0.6

-0.4

-0.2

0

e
(r
ad

)

system state

optimal state, Q55 = 2

0 5 10 15 20 25 30 35

time (s)

-0.1
0

0.1
0.2
0.3

ė
(r
ad

/s
)

system state

optimal state, Q66 = 1

Figure 7.8: Online performance of stable MPC

By adding a terminal cost and constraint, the controller can be tuned much
more aggressively without risking an unstable result. Figure 7.8 shows this.
Here, λ approaches 0.1675 rad, which is a significant improvement to the
nominal performance. The settling time of the system is closer 15 seconds.

63

0 5 10 15 20 25 30 35

time (s)

0.005

0.01

0.015

0.02

0.025

so
lv
e
ti
m
e
(s
)

Solve time of OSQP

solved

Figure 7.9: OSQP solve time of stable MPC

The solve time of OSQP, shown in Figure 7.9, is now much higher than before.
The average solve time is about 14 milliseconds, more than 150 times slower
than with nominal MPC. This illustrates the increase of computational
complexity when the terminal cost and constraint is added.

64

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
c
(r
ad

)

Helicopter performance, MPC frequency: 12.5 Hz,
with estimator and terminal cost and constraint

R11 = 2.7

0 5 10 15 20 25 30 35
-0.5

0

0.5

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35

-0.8
-0.6
-0.4
-0.2

0
0.2

λ
(r
ad

)

system state

optimal state, Q11 = 3.8

estimated state

0 5 10 15 20 25 30 35
-0.5

0

0.5

λ̇
(r
ad

/s
)

system state

optimal state, Q22 = 2.8

estimated state

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
(r
ad

)

system state

optimal state, Q33 = 0.9

estimated state

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

ṗ
(r
ad

/s
)

system state

optimal state, Q44 = 1.2

estimated state ˆ̇p

0 5 10 15 20 25 30 35

-0.4

-0.2

0

e
(r
ad

)

system state

optimal state, Q55 = 2

estimated state

0 5 10 15 20 25 30 35

time (s)

-0.5

0

0.5

ė
(r
ad

/s
)

system state

optimal state, Q66 = 1

estimated state

Figure 7.10: Online performance of stable MPC with Kalman filter

Now that the controller is stable, a Kalman filter is added to remove the
constant offset. This implementation is successful, seen in Figure 7.10, where
λ settles on 0.04 rad. The implementation of a filter also improved the
settling time of the system, which is now about 8 seconds.

65

0 5 10 15 20 25 30 35

time (s)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

so
lv
e
ti
m
e
(s
)

Solve time of OSQP

solved

Figure 7.11: OSQP solve time of stable MPC with Kalman filter

The average solve time for this case is 12 milliseconds, as shown in Figure
7.11, which is actually lower than the previous performance without the
filter.

66

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
c
(r
ad

)

Helicopter performance, MPC frequency: 25 Hz,
with terminal cost and constraint

R11 = 3.3

0 5 10 15 20 25 30 35

0

0.2

0.4

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

λ
(r
ad

)

system state

optimal state, Q11 = 3.8

0 5 10 15 20 25 30 35

0

0.2

0.4

λ̇
(r
ad

/s
)

system state

optimal state, Q22 = 2.8

0 5 10 15 20 25 30 35
-0.4

-0.2

0

0.2

p
(r
ad

)

system state

optimal state, Q33 = 0.9

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

ṗ
(r
ad

/s
)

system state

optimal state, Q44 = 1.2

0 5 10 15 20 25 30 35
-0.6

-0.4

-0.2

0

e
(r
ad

)

system state

optimal state, Q55 = 2

0 5 10 15 20 25 30 35

time (s)

-0.1
0

0.1
0.2
0.3

ė
(r
ad

/s
)

system state

optimal state, Q66 = 1

Figure 7.12: Online performance of stable MPC with frequency 25 Hz

The controller was also tested with different frequencies. Figure 7.12 shows
the MPC with a sampling time of 0.04 seconds, which is double the sampling
time of the previous results. The travel approaches 0.24 rad after about 20

seconds. Since the horizon over which the MPC optimizes should be constant
regardless of discretization time, the horizon N has to be doubled, when the
frequency is double, so that the controller optimizes over the same time
interval.

67

0 5 10 15 20 25

time (s)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

so
lv
e
ti
m
e
(s
)

Solve time of OSQP

solved

solved inaccurate

Figure 7.13: OSQP solve time of stable MPC with frequency 25 Hz

Figure 7.13 shows the performance of OSQP during this testing. The average
solve time was 59 milliseconds, so a lot of the points are above the sampling
time of 0.04 seconds. This means the actual frequency at which the MPC
returns a control input is lower than 25 Hz. The MPC in this case only
returned 586 control input values, while a simulation time of 25 and a
sampling interval of 0.04 should return 875.

68

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
c
(r
ad

)

Helicopter performance, MPC frequency: 5 Hz,
with terminal cost and constraint

R11 = 2.2

0 5 10 15 20 25 30 35

0

0.2

0.4

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

λ
(r
ad

)

system state

optimal state, Q11 = 3.8

0 5 10 15 20 25 30 35

0

0.2

0.4

λ̇
(r
ad

/s
)

system state

optimal state, Q22 = 3.2

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

p
(r
ad

)

system state

optimal state, Q33 = 0.9

0 5 10 15 20 25 30 35

-0.4
-0.2

0
0.2
0.4

ṗ
(r
ad

/s
)

system state

optimal state, Q44 = 1.2

0 5 10 15 20 25 30 35
-0.6

-0.4

-0.2

0

e
(r
ad

)

system state

optimal state, Q55 = 2

0 5 10 15 20 25 30 35

time (s)

-0.1
0

0.1
0.2
0.3

ė
(r
ad

/s
)

system state

optimal state, Q66 = 1

Figure 7.14: Online performance of stable MPC with frequency 5 Hz

The frequency was also lowered to 5 Hz, to see the effects, as shown in
Figure 7.14. The travel approaches 0.2889 rad after about 16 seconds. The
performance of this controller is not nearly as good as the same controller
running at 12.5 Hz. Since lower weighting on the control input resulted in
oscillations much easier, the tuning is conservative and the constant deviation
is large.

69

0 5 10 15 20 25 30 35

time (s)

-0.02

0

0.02

0.04

0.06

0.08

0.1

an
gl
e
(r
ad

)

Estimated disturbance from helicopter performance

Figure 7.15: Estimated disturbance from Kalman filter

The performance of the Kalman filter can be seen in the helicopter
performances with the filter added. However, the most important element of
the estimator is the modelled disturbance state d. This estimation is shown
in Figure 7.15. The disturbance d settles on 0.075 rad.

70

Again, a table is added to attempt to quantify the results presented from
the numerous experiments on the helicopter. The figures not shown here can
be found in Appendix D, specifically the performance of nominal MPC with
a filter, and the OSQP solve time of the MPC run at 5 Hz. Since the only
weighting variables that vary are the ones related to the travel, travel rate
and pitch reference, these are included.

Table 7.2: Results from online performance

controller settling time lim λ avg. solve time fq

Q11

Q22

R11

nominal 17 s 0.72 rad 0.09 ms 12.5 Hz

4.5

3.2

1.8

nominal with filter 17 s 0.54 rad 0.93 ms 12.5 Hz

3.8

2.8

0.7

stable 15 s 0.17 rad 14.11 ms 12.5 Hz

4.5

3.2

2.7

stable with filter 8 s 0.04 rad 11.8 ms 12.5 Hz

3.8

2.8

2.7

stable 20 s 0.24 rad 59.18 ms 25 Hz

3.9

2.8

3.3

stable 16 s 0.29 rad 2.36 ms 5 Hz

3.8

3.2

2.2

71

72

Chapter 8

Discussion

First and foremost, the MATLAB simulation performs according to the
theory presented, which proves the MPC implementation works as intended.
Adding the terminal constraint and the terminal cost stabilizes the system,
by decreasing both the constant deviation and the settling time (see table
7.1), which was expected, because the MPC now has a hard constraint that
steers the state trajectory to a positively invariant set within the horizon.
In addition, doubling the optimization horizon N gave the same effect as
adding the terminal terms, which was also expected. This is because the
terminal cost and constraint are added so the MPC has the same stability
properties as the infinite horizon case, without having to increase the horizon,
so even though a longer horizon results in the same stability properties, it
is computationally costly. This is shown from the average solve time of the
solver for both the nominal controller with longer horizon, and the stable
controller, shown in table 7.1, where the solve time for the longer horizon
is 1.5 times slower. The terminal cost and constraint give the designer the
ability to decrease the optimization horizon, resulting in a less complex online
control problem.

The implementation of the estimator also resulted in the expected behavior.
It was able to model the disturbance generated in the simulation, and remove
its effects to a large degree.

The numerical simulation performing as expected makes sense, since the
simulation in MATLAB uses the linear helicopter model to calculate the
next state of the ‘actual system’. Since this same model is used in the

73

online predictions in the MPC, the system behaves exactly as the controller
predicted and control input applied is in fact the optimal input.

When it comes to the performance of the actual helicopter, the results varied.
Even though the mere feat of using model predictive control in real time to
control the system is a result in itself, the stability of the system can be
discussed.

The effect of adding the terminal terms was demonstrated to some degree in
real-time, although the settling times did not decrease that much, the travel
settles closes to the equilibrium point, from 0.72 to 0.54 radians, see 7.2.
Observe that when adding the terminal cost and constraint, the weight of
the control input pc was increased significantly. This is because the existence
of the terminal constraint leads to a more aggressive control to ensure the
state trajectory ends in the terminal set within the horizon. This type of
aggressive control leads to oscillations in both the pitch and pitch reference
because of the model inaccuracies. The reason for these oscillations will be
discussed in a later paragraph.

Adding the Kalman filter was successful, almost completely removing the
constant offset in travel, down to 0.04 radians. However, as can be seen
from the estimation of the states, the filter in itself performs rather poorly.
This is most likely due to an inaccurate system model being used for the
estimator, and admittedly the tuning was not very thorough. However,
observe that the estimator without the presence of the terminal terms does
little to nothing to remove the constant deviation. This might be due to the
fact that the estimator only estimates the assumed disturbance, but it is up
to the controller to calculate control inputs that accounts for the disturbance.
The presence of the terminal terms creates a much more stable and reliable
controller, which will to a large degree be able to account for the estimated
disturbance and remove it.

When the Kalman filter was added, the solve time of OSQP decreased slightly
from 14 to 12 milliseconds. In theory, the addition of an estimator should not
affect the computation time that much, since there is no terminal constraint
or cost on the augmented state d. The variation in the solve time is most
likely random, and due to the fact that identical controller and parameters
can steal lead to different performance of the helicopter since the real world
has variations.

74

The frequency of the MPC was chosen as a trade-off between updating the
state of the helicopter in the MPC frequently, and giving the QP-solver
enough time to accurately solve the problem. Note the large and small
oscillations in the pitch reference pc, the pitch p and the pitch rate ṗ. These
oscillation are best demonstrated in the pitch rate in Figure 7.7 where the
pitch rate in particular almost has standing oscillations. The reason for this
is an inaccurate model being used in the MPC calculations. This was shown
in Chapter 5 when the nonlinear model was linearized around the equilibrium
point. An inaccurate model leads to an inaccurate prediction.

To counteract these oscillations, two solutions are suggested. The first is
to increase the weight on the pitch reference, so that the controller does
not return such aggressive control inputs. This will limit the oscillations
both by limiting the actual value of the control input, and because higher
control inputs steer the system away from the equilibrium point, lower input
values will avoid doing this, and the model inaccuracy will be reduced. This
however, gives a slower system. The other solution to counteracting this is
increasing the frequency of the MPC. This will decrease the time between
the calculation of the optimal control problem with an updated state, and
therefore decrease the time the model inaccuracy has to develop. The solve
time of the OSQP determined how much increase is possible.

The selection of the MPC frequency (12.5 Hz) was done with this in mind.
A higher frequency would not have been possible because of the run time
of OSQP and a lower frequency would mean increasing the weight on the
control inputs to avoid oscillations, which gives a slower moving control.

The performance of the QP-solver during the testing is quite impressive.
The fastest average was around 0.09 milliseconds, and for the online problem
with terminal terms it had an average of 14.1 milliseconds. The solve time
of OSQP was the biggest factor when choosing the frequency of the MPC.
Here, 12.5 Hz means it is called every 80 milliseconds, which will guarantee
a solution before the solver is called again.

When the controller was tested with a higher frequency, 25 Hz, the
optimization horizon also had to be doubled. Because to optimize over a
constant horizon in time, the optimization horizon N will vary inversely with
the sampling frequency. Therefore, lowering the frequency means increasing
the optimization horizon in the optimal control problem, thereby increasing
the computational cost of the controller. The average solve time was 59

75

milliseconds, which is higher than the sample time of the OSQP. As a
consequence of this, the MPC did not return the expected amount of control
inputs, 875, but a significantly lower number. Based on the number of control
inputs returner, 586, the simulation time, 35 seconds and the sample time
0.04 seconds, the actual frequency of the MPC in this case was 16.55 Hz.

Also, notice the different solution flags, ‘solved’ and ‘solved inaccurate’, in
Figure 7.13. The inaccurate solution flag means the algorithm fulfilled the
termination criteria, so the solution is within a certain threshold, without
being a local minimum. Since OSQP returns high accuracy solutions,
returning an inaccurate solution does not mean much for the system
performance. Therefore, one could consider increasing the threshold for the
termination criteria, without it having a significant impact on the control.

For the controller with a lower frequency, 5 Hz, the oscillations apparent in
some of the previous performances was more apparent and easier to induce,
by choosing a lower control weight. Due to this, the choice for the weight on
the pitch reference is limited. A lower weighting, leads to more aggressive
control, and because of the lower frequency, the previously mentioned model
inaccuracies have more time to develop before the MPC receives a new state
and the control input is updated.

The selection of the optimization horizon N is also a trade-off, between
stability and computational time. A larger horizon gives a more stable
control, but the online cost and with that the computation time increases.
In the case of the stable MPC, the terminal terms emulates the effect a large
horizon would have, so the horizon for the online performance was chosen
to be N = 15. Because of the terminal constraint, the optimization horizon
also has to be chosen large enough so that the optimal control input can
steer the state trajectory to the terminal set in N steps.

Another aspect worthy of discussion is the computation of the terminal set
Xf . The initial implementation of this calculation attempted to compute the
MPIS by recalculating the set Ωi defined in Section 3.2,

Ωi = {(x,Kx) ∈ Ωi−1 : AK · (x,Kx) ∈ (X× U)} , (8.1)

until it converged. However, after two hours of computing without con-
vergence, this implementation was abandoned. Instead, the implementation
used takes advantage of the Multi-Parametric Toolbox 3.0 and its wide range
o f functionality to compute the maximal positively invariant set. Because

76

of the high dimensions in the state space of this particular system, a lot
of iterations are necessary before these methods converge, so an optimal
implementation of both online and offline calculations is essential.

One of the downsides of this implementation is that for any change in the
MPC cost matrices Q and R, the code has to be generated again. The code
generation software package wipes the directory clean and generates and
links the files again, which takes time. This makes tuning the controller a
tedious process.

8.1 Future work

A flaw in the work presented here that is quite obvious, but only revealed
once the performance of the helicopter was examined, is the model used in
the online optimization. The nonlinear model developed in Chapter 5 was
linearized around the equilibrium point. As a consequence, the inaccuracy
of the model increases further away from this point, which cause oscillations
in some states and limits the frequency selection for the MPC.

Implementing nonlinear MPC would definitely result in a more accurate
model and possibly more stable control, but would also involve finding
an optimization solver for nonlinear optimization problems, suitable for
embedded optimization. A software framework for exactly this purpose
has been presented in 2019 by Englert et al. [7], and implemented in both
MATLAB and C/C++, with sampling times in the millisecond range.

Adding reference tracking in the MPC is another potential extension that
is not out of reach. Using a time-varying signal from Simulink (for example
a sine curve) as the reference for the helicopter to follow, would also take
advantage of this Simulink functionality.

Another improvement is implementing a form of MPC that accounts for
disturbance and is proven to be robust, such as for example tube-based
MPC. This will help with the offset in travel, and could also help with
the inaccurate model if one can find a way to model the nonlinearities as
disturbances.

Put into a larger context, future work involves the continuing development
and application of MPC onto similar systems. This implementation could

77

serve as a basis for other control proposals of MPC or controllers with the
same online computational demand. The fact that model predictive control
of this helicopter was possible, due to the online calculations being computed
fast enough, means further research into this area of MPC has potential and
is therefore advantageous investment of time.

78

Chapter 9

Conclusion

First of all, this thesis is proof-of-concept for linear model predictive control
of a helicopter and similar fast moving systems because of the demonstrated
performance of the solver. MPC of Quanser’s 3 DOF helicopter is made
possible by an effective QP solver, OSQP, with support for embedded
implementation. The solver performs in the average range of 30 milliseconds
per iteration, which is frequent enough for stable control of a helicopter.
Additionally, the support for a real-time control software means a software
implementation can be created in Simulink, with its pragmatic graphical
interface and downloaded onto the embedded hardware.

The addition of a terminal cost and terminal constraint in the open-loop
optimal control problem has been shown to have an effect on stability of
the closed-loop system, as well as allowing the decrease of the optimization
horizon, thereby reducing online complexity. Embedding integral action into
the controller by modelling a constant disturbance as an extra state and using
that model in the MPC prediction, then adding an estimator to estimate the
augmented state, was also demonstrated to be successful.

There are however certain challenges that come with using linear model
predictive control, as the system in question is highly nonlinear and the
model inaccuracies become clear when the helicopter moves away from the
equilibrium point. The introduction of nonlinear model in the prediction
could correct this matter, given that the online computation time stays in
an appropriately low range.

Using MPC to control a propeller under-actuated system such as the

79

Quanser’s 3 DOF helicopter is both a useful area of research and the proof-
of-concept presented in this thesis gives motivation for the development
of future implementations of similar controllers, with the same online
computational demand as MPC. In conclusion, model predictive control of
such a dynamic, fast moving system means the application of MPC can
continue on to similar systems and has also demonstrated the potential
impact this technology can have on industries that rely on this type of
control.

80

Acronyms

ADMM alternating direction method of multipliers.

DARE discrete-time algebraic Riccati equation.
DOF degrees of freedom.

EMPC explicit model predictive control.

HIL Hardware-in-the-loop.

IO input-output.

KKT Karush–Kuhn–Tucker.

LQE linear-quadratic estimator.
LQR linear-quadratic regulator.

MIMO multi-input multi-output.
MPC model predictive control.
MPIS maximal positively invariant set.

NMPC nonlinear model predictive control.

OSQP Operator Splitting Quadratic Program.

PID proportional–integral–derivative.

QP quadratic programming.

81

82

Bibliography

[1] Arican, A. C., Ozcan, S., Kocagil, B. M., Guzey, U. M., Copur, E. H.,
Salamci, M. U., 2018. Linear and nonlinear optimal controller design
for a 3 DOF helicopter. In: 2018 19th International Carpathian Control
Conference (ICCC). IEEE, pp. 185–190.

[2] Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd,
S., Dec. 2017. Embedded code generation using the OSQP solver. In:
IEEE Conference on Decision and Control (CDC).
URL https://doi.org/10.1109/CDC.2017.8263928

[3] Bemporad, Alberto, P. P., 08 2012. Simple and certifiable quadratic
programming algorithms for embedded linear model predictive control.
Vol. 4. pp. 14–20.

[4] Binder, B. J. T., Kufoalor, D. K. M., Johansen, T. A., Sep. 2015.
Scalability of qp solvers for embedded model predictive control applied
to a subsea petroleum production system. In: 2015 IEEE Conference
on Control Applications (CCA). pp. 1173–1178.

[5] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 01 2011.
Distributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends in Machine
Learning 3, 1–122.

[6] de Nicolao, G., Magni, L., Scattolini, R., March 1996. On the
robustness of receding-horizon control with terminal constraints. IEEE
Transactions on Automatic Control 41 (3), 451–453.

[7] Englert, T., Völz, A., Mesmer, F., Rhein, S., Graichen, K., Jan 2019.
A software framework for embedded nonlinear model predictive control
using a gradient-based augmented lagrangian approach (GRAMPC).

83

https://doi.org/10.1109/CDC.2017.8263928

Optimization and Engineering.
URL https://doi.org/10.1007/s11081-018-9417-2

[8] Ferreau, H. J., Almer, S., Verschueren, R., Diehl, M., Frick, D.,
Domahidi, A., Jerez, J. L., Stathopoulos, G., Jones, C., july 2017.
Embedded optimization methods for industrial automatic control. 20th
IFAC World Congress 50, 13194–13209.

[9] Foss, B., Heirung, T., 2016. Merging optimization and control.

[10] Ghadimi, E., Teixeira, A., Shames, I., Johansson, M., March 2015.
Optimal parameter selection for the alternating direction method
of multipliers (admm): Quadratic problems. IEEE Transactions on
Automatic Control 60 (3), 644–658.

[11] Herceg, M., Kvasnica, M., Jones, C., Morari, M., July 17–19 2013. In:
Proc. of the European Control Conference. Zürich, Switzerland, pp.
502–510, http://control.ee.ethz.ch/~mpt.

[12] Ju, Z., Xinyan, C., 2014. Explicit model predictive control of 3-DOF
helicopter, 3083 – 3088.

[13] Kerrigan, E. C., Khusainov, B., Constantinides, G. A., June 2016. What
is different about embedded optimization? In: 2016 European Control
Conference (ECC). pp. 600–600.

[14] Kocagil, B. M., Ancan, A. C., Guzey, U. M., Ozcan, S., Salamci, M. U.,
2017. Controller designs for nonlinear systems with application to 3
DOF helicopter model. Gazi University Journal of Science, Part A:
Engineering and Innovation 4 (3), 47–66.

[15] Maciejowski, J. M., 2001. Predictive Control with Constraints. Prentice
Hall, Harlow.

[16] MathWorks, 2019. S-function.
URL https://www.mathworks.com/help/simulink/slref/
sfunctionbuilder.html

[17] Propoi, A. I., 1963. Application of linear programming methods for the
synthesis of automatic sampled-data systems. Avtomat. i Telemekh 24,
912–920.

84

https://doi.org/10.1007/s11081-018-9417-2
http://control.ee.ethz.ch/~mpt
https://www.mathworks.com/help/simulink/slref/sfunctionbuilder.html
https://www.mathworks.com/help/simulink/slref/sfunctionbuilder.html

[18] Qin, J., Badgwell, T., 07 2003. A survey of industrial model predictive
control technology. Control engineering practice 11, 733–764.

[19] Quanser, 2019. 3 DOF Helicopter. https://www.quanser.com/
products/3-dof-helicopter/, accessed: 2019-06-01.

[20] Quanser, 2019. Multithreading.
URL http://quanser-update.azurewebsites.net/quarc/
documentation/quarc_multithreading.html

[21] Rawlings, J., Mayne, D., 2009. Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing.

[22] Rawlings, J., Mayne, D., Rao, C., Scokaert, P., 2000. Constrained model
predictive control: Stability and optimality. Automatica 36, 789–814.

[23] Richalet, J., Abu El Ata-Doss, S., Arber, C., Kuntze, H., Jacubasch,
A., Schill, W., 07 1987. Predictive functional control - application to
fast and accurate robots. IFAC Proceedings Volumes 20, 251–258.

[24] Richalet, J., Rault, A., Testud, J. L., Papon, J., 1976. Algorithmic
control of industrial processes 10, 1119–1167.

[25] Richalet, J., Rault, A., Testud, J. L., Papon, J., 1978. Model predictive
heuristic control: Applications to industrial processes. Automatica 14,
413–428.

[26] Sollie, H.-I. H., 2018. Tube-based methods for robust linear MPC.
NTNU Project report.

[27] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S., Nov.
2017. OSQP: An operator splitting solver for quadratic programs. ArXiv
e-prints.

[28] Sznaier, M., Damborg, M. J., Dec 1987. Suboptimal control of linear
systems with state and control inequality constraints. In: 26th IEEE
Conference on Decision and Control. Vol. 26. pp. 761–762.

[29] Veeraboina, A.K.; Ordonez, R., 2018. Design and implementation
of linear/nonlinear control methods on 3-DOF helicopter. In: IEEE
National Aerospace and Electronics Conference (NAECON) 2018. pp.
435–442.

[30] Yang, H., Jiang, B., Liu, H. H. T., Yang, H., Zhang, Q., 2019. Attitude

85

https://www.quanser.com/products/3-dof-helicopter/
https://www.quanser.com/products/3-dof-helicopter/
http://quanser-update.azurewebsites.net/quarc/documentation/quarc_multithreading.html
http://quanser-update.azurewebsites.net/quarc/documentation/quarc_multithreading.html

synchronization for multiple 3-DOF helicopters with actuator faults.
IEEE/ASME Transactions on Mechatronics.

[31] Zhai, Y., 2013. Robust observer based model predictive control of a
3-DOF helicopter system. In: Jung, H.-K., Kim, J. T., Sahama, T.,
Yang, C.-H. (Eds.), Future Information Communication Technology
and Applications. Vol. 235 of Lecture Notes in Electrical Engineering.
Springer Netherlands, Ch. 11, pp. 89–100.

[32] Zhai, Y., Nounou, M., Nounou, H., Al-Hamidi, Y., 2010. Model predic-
tive control of a 3-DOF helicopter system using successive linearization.
International Journal of Engineering, Science and Technology 2 (10),
9–19.

[33] Zhang, J., Cheng, X., Zhu, J., 2016. Control of a laboratory 3-DOF
helicopter: Explicit model predictive approach. International Journal of
Control, Automation and Systems 14 (2), 389–399.

86

Appendices

Appendix A

System parameters

Table A.1: Helicopter Parameters and Values

Symbol Parameter Value Unit

g Gravitational acceleration 9.81 m / s
lc Distance from elevation axis to helicopter body 0.65 m
lp Distance from pitch axis to motor 0.17 m
Kf Motor force constant 0.0446 N / V
Je Moment of inertia for elevation 0.338 kg m2

Jλ Moment of inertia for travel 0.338 kg m2

Jp Moment of inertia for pitch 0.0116 kg m2

mp Mass of one motor 0.2 kg
mg Effective mass of the helicopter 0.03 kg
Vs
∗ Voltage sum equilibrium 6.4 V

Vd
∗ Voltage difference equilibrium 0.35 V

Table A.2: Controller Parameters and Values

Symbol Parameter Value

wp Bandwidth for pitch controller 1.8

dp Relative damping for pitch controller 1.0

we Bandwidth for elevation controller 0.5

de Relative damping for elevation controller 1.0

Kpp Proportional constant for pitch controller 4.7163

Kpd Derivative constant for pitch controller 5.2404

Kep Proportional constant for elevation controller 2.7829

Ked Derivative constant for elevation controller 11.1315

Kei Integral constant for elevation controller 0.2783

Appendix B

MATLAB Code

Listing B.1: execute.m

1
2 c l e a r x u v z x_est x_opt
3
4 %% parameters
5 system . Nsim = 650 ; % s imu la t i on time
6 system . s t ab l e = 0 ; % enable te rmina l co s t and termina l

c on s t r a i n t
7 with_estimator = 1 ; % enable Kalman f i l t e r
8 run_sim = 0 ; % enable s imu la t i on
9 run_hel i = 1 ; % enable code gene ra t i on
10
11 %% load system data
12 i n i t ;
13 data ;
14
15 %% MPC ob j e c t i v e func t i on
16 % weight ing
17 % system s t a t e s
18 q_travel = 3 . 8 ; % f o r t r a v e l
19 q_travel_rate = 2 . 8 ; % f o r t r a v e l r a t e
20 q_pitch = 0 . 9 ; % f o r p i t ch
21 q_pitch_rate = 1 . 2 ; % f o r p i t ch ra t e
22 q_elevat ion = 2 ; % f o r e l e v a t i o n
23 q_elevat ion_rate = 1 ; % f o r e l e v a t i o n ra t e
24 q_dist = 0 ; % f o r model led d i s turbance
25 % con t r o l inputs

26 r_pitch_ref = 1 . 2 ; % f o r p i t ch r e f
27 r_e levat ion_re f = 1 ; % f o r e l e v a t i o n r e f
28 co s t . S = 0 . 3 ; % f o r s l a ck va r i ab l e
29
30 %generate matr i ce s Q, Q_heli , R
31 co s t .Q = diag ([q_travel q_travel_rate . . .
32 q_pitch q_pitch_rate . . .
33 q_elevat ion q_elevat ion_rate . . .
34 q_dist]) ;
35 co s t .R = diag ([r_pitch_ref r_e levat ion_re f]) ;
36
37 %% kalman f i l t e r
38 % cr ea t e matr i ce s Q_K, R_K
39 ka lman_f i l t e r ;
40
41 %% o f f l i n e c a l c u l a t i o n s
42 % cr ea t e matr i ce s K, P, X_f , Su , Sx
43 o f f l i n e_ c a l c ;
44
45 %% as s i gn to problem
46 problem . system = system ;
47 problem . c on s t r a i n t s = con s t r a i n t s ;
48 problem . co s t = cos t ;
49 problem . e s t imator = es t imator ;
50 problem . d i s turbance = di s turbance ;
51 [problem . mpc_cost , problem . mpc_constraints] =

gen_mpc_matrices (problem) ; % generate matr i ce s f o r mpc
52
53 %% as s i gn to problem
54 problem . system = system ;
55 problem . c on s t r a i n t s = con s t r a i n t s ;
56 problem . co s t = cos t ;
57 problem . e s t imator = es t imator ;
58 problem . d i s turbance = di s turbance ;
59 [problem . mpc_cost , problem . mpc_constraints] =

gen_mpc_matrices (problem) ; % generate matr i ce s f o r mpc
60
61 %% i n i t i a l va lue
62 t r a v e l_o f f s e t = −50; % f o r t r a v e l
63 e l e v a t i o n_o f f s e t = −30; % f o r e l e v a t i o n
64 L_model = L_K; % as s i gn gain to e s t imator in

model
65

66 i f (run_hel i)
67 %% generate code f o r S−Function
68 % make sure a l l f i l e s in the ’ c_code ’− d i r e c t o r y are c l o s ed
69 gen_code_osqp ; % generate code based on problem data
70 gen_code_params ; % generate s t r i n g s f o r bin , c in , f ,

Su , Sx ,
71 % NUM_CONSTRAINTS, LENGTH_Z, LENGTH_X

, LENGTH_U fo r ’ workspace . h ’
72
73 end
74
75 i f (run_sim)
76 %% dis turbance
77 w_sequence = gen_disturbance (problem) ;
78
79 %% i n i t i a l va lue
80 t r a v e l_o f f s e t = −50; % f o r t r a v e l
81 e l e v a t i o n_o f f s e t = −30; % f o r e l e v a t i o n
82 L_model = L_K; % as s i gn gain to e s t imator in

model
83 system . x0 = [t r a v e l_o f f s e t ∗ DEGTORAD; 0 ;
84 0 ; 0 ;
85 e l e v a t i o n_o f f s e t ∗ DEGTORAD; 0 ;
86 0] ;
87
88 %% s imula t i on
89 f o r i = 1 : system . Nsim
90 % with kalman f i l t e r
91 i f (with_estimator)
92 optimal (i) = on l ine_ca l c (problem , x_est (: , i)) ;
93 u (: , i) = optimal (i) . u (: , 1) ;
94 x_opt (: , i) = optimal (i) . x (: , 1) ;
95 e_f lag (i) = optimal (i) . e ;
96 run_time_sim (i) = optimal (i) . run_time ;
97 x_est (: , i +1) = problem . system .A ∗ x_est (: , i) +

problem . system .B ∗ u (: , i) . . .
98 + L_K ∗ system .C ∗ (x (: , i) − x_est

(: , i)) ;
99 i f ~(i == system . Nsim)
100 x (: , i +1) = problem . system .A ∗ x (: , i) +

problem . system .B ∗ u (: , i) . . .
101 + system . h ∗ E ∗ w_sequence (: , i) ;
102 end

103 % without kalman f i l t e r
104 e l s e
105 optimal (i) = on l ine_ca l c (problem , x (: , i)) ;
106 u (: , i) = optimal (i) . u (: , 1) ;
107 x_opt (: , i) = optimal (i) . x (: , 1) ;
108 e_f lag (i) = optimal (i) . e ;
109 run_time_sim (i) = optimal (i) . run_time ;
110 i f ~(i == system . Nsim)
111 x (: , i +1) = problem . system .A ∗ x (: , i) +

problem . system .B ∗ u (: , i) . . .
112 + system . h ∗ E ∗ w_sequence (: , i) ;
113 end
114 end
115 end
116 end

Listing B.2: offline_calc.m

1 % s t a t e feedback and termina l co s t
2 [K, P] = d lqr (system . A_heli , . . .
3 system . B_heli , . . .
4 co s t .Q(1 : system . n−1, 1 : system . n−1) , . . .
5 co s t .R) ;
6
7 % extend to add system s t a t e d
8 system .K = [−K ze ro s (system .m, 1)] ;
9 co s t .P = [P ze ro s (s i z e (P, 1) , 1) ;
10 z e ro s (1 , s i z e (P, 1) +1)] ;
11 co s t .P(system . n , system . n) = 0 ;
12
13 % generate matr i ce s Sx , Su
14 [Sx , Su] = genMPCprob(system .A, system .B, system .N) ;
15 system . Sx = Sx ;
16 system . Su = Su ;
17
18 % ca l c u l a t e te rmina l c on s t r a i n t s e t
19 % i f a l r eady e x i s t s
20 i f e x i s t ([pwd ’ \ te rmina l_const ra in t . mat ’] , ’ f i l e ’) == 2
21 load ’ t e rmina l_cons t ra in t . mat ’
22 c on s t r a i n t s .G = X_f .A;
23 c on s t r a i n t s . h = X_f . b ;
24 % i f not , c a l c u l a t e
25 e l s e

26 %de f i n e matr i ce s f o r system without augmented s t a t e
27 c on s t r a i n t s . C_heli = [1 0 0 0 0 0 ;
28 −1 0 0 0 0 0 ;
29 0 0 1 0 0 0 ;
30 0 0 −1 0 0 0 ;
31 z e ro s (system .m, system . n−1)] ;
32 c on s t r a i n t s . D_heli = [z e r o s (s i z e (c on s t r a i n t s .C, 1) −

system .m, system .m) ;
33 1 0 ;
34 −1 0] ;
35 c on s t r a i n t s . e_hel i = DEGTORAD ∗ [c_trave l ;

c_trave l ;
36 c_pitch ;

c_pitch ;
37 c_pitch_ref ;

c_pitch_ref] ;
38
39 c on s t r a i n t s . C_K_heli = c on s t r a i n t s . C_heli −

c on s t r a i n t s . D_heli ∗ K;
40 system .A_K_heli = system . A_heli −

system . B_heli ∗ K;
41 c on s t r a i n t s .P = Polyhedron (’A ’ ,

c on s t r a i n t s . C_K_heli , ’ b ’ , c o n s t r a i n t s . e_he l i) ;
42 model_heli = LTISystem (’A ’ , system .

A_K_heli) ;
43 model_heli . x . with (’ s e tCons t ra in t ’) ;
44 model_heli . x . s e tCons t ra in t = con s t r a i n t s .P ;
45 X_f_heli = model_heli . i nva r i an tS e t

() ;
46 % no termina l c on s t r a i n t on d , j u s t z e r o s
47 c on s t r a i n t s .G = [X_f_heli .A, z e r o s (s i z e (X_f_heli .A, 1)

, 1)] ;
48 c on s t r a i n t s . h = X_f_heli . b ;
49 X_f = Polyhedron (c on s t r a i n t s .G, c on s t r a i n t s . h) ;
50 save (’ t e rmina l_cons t ra in t ’ , ’X_f ’)
51 end

Listing B.3: kalman_filter.m

1 % proce s s no i s e
2 w_travel = 0 . 3 5 ; % f o r t r a v e l
3 w_travel_rate = 0 . 1 ; % f o r t r a v e l r a t e
4 w_pitch = 0 . 0 5 8 ; % f o r p i t ch
5 w_pitch_rate = 0 . 4 1 ; % f o r p i t ch ra t e
6 w_elevation = 0 . 2 ; % f o r e l e v a t i o n
7 w_elevation_rate = 0 . 1 ; % f o r e l e v a t i o n ra t e
8 w_dist = 0 . 1 5 ; % f o r model led d i s turbance
9 % measurement no i s e
10 v_travel = 0 . 0 2 ; % f o r t r a v e l
11 v_travel_rate = 0 . 0 1 ; % f o r t r a v e l r a t e
12 v_pitch = 0 . 0 6 ; % f o r p i t ch
13 v_pitch_rate = 0 . 0 7 ; % f o r p i t ch ra t e
14 v_elevat ion = 0 . 0 1 2 ; % f o r e l e v a t i o n
15 v_elevat ion_rate = 0 . 0 1 ; % f o r e l e v a t i o n ra t e
16
17 % generate matr i ce s Q_K, R_K
18 es t imator .Q_K = diag ([w_travel w_travel_rate . . .
19 w_pitch w_pitch_rate . . .
20 w_elevation w_elevation_rate . . .
21 w_dist]) ;
22
23 % measurement no i s e covar iance matrix
24 es t imator .R_K = diag ([v_travel v_travel_rate . . .
25 v_pitch v_pitch_rate . . .
26 v_elevat ion v_elevat ion_rate]) ;
27
28 % ca l c u l a t e Kalman f i l t e r ga in
29 p lant = s s (system .A, [system .B system .G] , system .C, [system .

D system .H] , −1) ;
30 [~ , L_K, ~] = kalman (plant , e s t imator .Q_K, es t imator .R_K) ;

Listing B.4: gen_mpc_matrices.m

1 func t i on [mpc_cost , mpc_constraints] = generate_mpc_matrices
(problem)

2
3 N = problem . system .N;
4 n = problem . system . n ;
5 m = problem . system .m;
6 Sx = problem . system . Sx ;
7 Su = problem . system . Su ;

8
9 i f (problem . system . s t ab l e)
10 C_tilde = [kron (eye (N) , problem . c on s t r a i n t s .C) ;
11 z e ro s (s i z e (problem . c on s t r a i n t s .G, 1) , n ∗ (N

−1)) problem . c on s t r a i n t s .G] ;
12 D_tilde = [kron (eye (N) , problem . c on s t r a i n t s .D) ; z e r o s (

s i z e (problem . c on s t r a i n t s .G, 1) , m∗N)] ;
13 E_tilde = [kron (eye (N) , problem . c on s t r a i n t s .E) ; z e r o s (

s i z e (problem . c on s t r a i n t s .G, 1) , N)] ;
14 e_t i lde = [kron (ones (N, 1) , problem . c on s t r a i n t s . e) ;

problem . c on s t r a i n t s . h] ;
15 Q_big = blkd iag (kron (eye (N−1) , problem . co s t .Q) ,

problem . co s t .P) ;
16 e l s e
17 C_tilde = kron (eye (N) , problem . c on s t r a i n t s .C) ;
18 D_tilde = kron (eye (N) , problem . c on s t r a i n t s .D) ;
19 E_tilde = kron (eye (N) , problem . c on s t r a i n t s .E) ;
20 e_t i lde = kron (ones (N, 1) , problem . c on s t r a i n t s . e) ;
21 Q_big = blkd iag (kron (eye (N) , problem . co s t .Q)) ;
22 end
23
24 R_big = kron (eye (problem . system .N) , problem . co s t .R) ;
25 Q_R_tilde = Su ’ ∗ Q_big ∗ Su + R_big ;
26 S_ti lde = kron (eye (N) , problem . co s t . S) ;
27 H = [Q_R_tilde z e ro s (s i z e (Q_R_tilde , 1) , s i z e (S_ti lde , 2)) ;
28 z e ro s (s i z e (S_ti lde , 1) , s i z e (Q_R_tilde , 1)) S_ti lde] ;
29 f = [2 ∗ Sx ’ ∗ Q_big ∗ Su ze ro s (n , N)] ;
30
31 mpc_constraints . Ain = [C_tilde ∗ Su + D_tilde E_tilde] ;
32 mpc_constraints . bin = e_t i lde ;
33 mpc_constraints . c in = −C_tilde ∗ Sx ;
34 mpc_cost .H = 2 ∗ H;
35 mpc_cost . f = f ;

Listing B.5: gen_code_osqp.m

1
2 n = problem . system . n ;
3 m = problem . system .m;
4 N = problem . system .N;
5
6 %i r r e l e v a n t value , w i l l be updated
7 x0_osqp = [1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1] ;
8
9 P = problem . mpc_cost .H;
10 q = (x0_osqp ’ ∗ problem . mpc_cost . f) ’ ;
11 A = [problem . mpc_constraints . Ain] ;
12 lb = −I n f ∗ ones (s i z e (problem . mpc_constraints . Ain , 1) , 1) ;
13 ub = problem . mpc_constraints . bin + problem . mpc_constraints

. c in ∗ x0_osqp ;
14
15 %% se t up osqp problem
16 qp_problem = osqp ; % c r ea t e

osqp ob j e c t
17 s e t t i n g s = qp_problem . d e f au l t_s e t t i n g s () ; % obta in

d e f ua l t s e t t i n g s
18 s e t t i n g s . verbose = 0 ; %

d i s ab l e p r i n t i n g output
19 qp_problem . setup (H, . . .
20 q , . . .
21 A, lb , ub , . . .
22 s e t t i n g s) ;
23
24 %% generate code
25 % d i r e c t o r y name − i f changing t h i s name , remember to

change the name in ’S−Function Bui lder ’
26 dir_name = ’ c_code ’ ;
27
28 qp_problem . codegen (dir_name , . . .
29 ’ project_type ’ , ’ Make f i l e ’ , . . .
30 ’ parameters ’ , ’ matr i ce s ’ , . . .
31 ’ f o r c e_rewr i t e ’ , t rue) ;
32
33 %% move f i l e s that are generated
34 current_path = pwd ;
35 f i le_names = { ’ aux i l . h ’ , ’ cons tant s . h ’ , ’

glob_opts . h ’ , . . .
36 ’ kkt . h ’ , ’ l i n_a lg . h ’ , ’ osqp . h ’

, . . .
37 ’ osqp_conf igure . h ’ , ’ p ro j . h ’ , ’ qd ld l . h

’ , . . .
38 ’ qd l d l_ in t e r f a c e . h ’ , ’ qdldl_types . h ’ , ’ s c a l i n g

. h ’ , . . .
39 ’ types . h ’ , ’ u t i l . h ’ , ’

workspace . h ’ } ;
40
41 f o r i = 1 : s i z e (f i le_names , 2)
42 c o p y f i l e ([current_path ’ \ ’ dir_name ’ \ in c lude \ ’ char (

f i le_names (i))] , . . .
43 [current_path ’ \ ’ char (f i le_names (i))]) ;
44 c o p y f i l e ([current_path ’ \ ’ dir_name ’ \ in c lude \ ’ char (

f i le_names (i))] , . . .
45 [current_path ’ \ ’ dir_name ’ \ s r c \osqp\ ’ char (

f i le_names (i))]) ;
46 end

Appendix C

Simulink model

Figure C.1: Simulink model

Figure C.2: Helicopter interface

Figure C.3: Pitch controller

Figure C.4: Elevation controller

Figure C.5: Voltage conversion block

Figure C.6: R6 -> R7 block

Appendix D

Additional figures from results

0 20 40 60 80 100 120 140

-0.4
-0.2

0
0.2
0.4

p
c
(r
ad

)

Simulation of helicopter with estimator

R11 = 0.01

0 20 40 60 80 100 120 140

0

0.05

0.1

0.15

e
c
(r
ad

)

R22 = 1

0 20 40 60 80 100 120 140
-1

0

1

λ
(r
ad

)

system state, Q11 = 4.5

optimal state

0 20 40 60 80 100 120 140

-0.4
-0.2

0
0.2
0.4

λ̇
(r
ad

/s
)

system state, Q22 = 1.3

optimal state

0 20 40 60 80 100 120 140

-0.2

0

0.2

0.4

p
(r
ad

)

system state, Q33 = 1

optimal state

0 20 40 60 80 100 120 140

-0.2
-0.1

0
0.1

ṗ
(r
ad

/s
)

system state, Q44 = 1

optimal state

0 20 40 60 80 100 120 140
-0.6

-0.4

-0.2

0

0.2

e
(r
ad system state, Q55 = 2

optimal state

0 20 40 60 80 100 120 140

time (s)

0

0.05

0.1

ė
(r
ad

/s
)

system state, Q66 = 1

optimal state

Figure D.1: Simulation of nominal MPC with Kalman filter

0 10 20 30 40 50 60 70

time (s)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

so
lv
e
ti
m
e
(s
)

×10−3 Solve time of OSQP from helicopter simulation

solved

Figure D.2: OSQP solve time of simulation of nominalMPC with Kalman filter

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
c
(r
ad

)

Helicopter performance, MPC frequency: 12.5 Hz,
with estimator

R11 = 0.7

0 5 10 15 20 25 30 35
-0.2

0

0.2

e
c
(r
ad

)

R22 = 1

0 5 10 15 20 25 30 35

-1.5
-1

-0.5
0

0.5

λ
(r
ad

)

system state

optimal state, Q11 = 3.8

estimated state

0 5 10 15 20 25 30 35
-0.5

0

0.5

λ̇
(r
ad

/s
)

system state

optimal state, Q22 = 2.8

estimated state

0 5 10 15 20 25 30 35
-0.5

0

0.5

p
(r
ad

)

system state

optimal state, Q33 = 0.9

estimated state

0 5 10 15 20 25 30 35

-0.1

0

0.1

ṗ
(r
ad

/s
)

system state

optimal state, Q44 = 1.2

estimated state ˆ̇p

0 5 10 15 20 25 30 35

-0.4

-0.2

0

e
(r
ad

)

system state

optimal state, Q55 = 2

estimated state

0 5 10 15 20 25 30 35

time (s)

-0.5

0

0.5

ė
(r
ad

/s
)

system state

optimal state, Q66 = 1

estimated state

Figure D.3: Online performance of nominal MPC with Kalman filter

0 5 10 15 20 25 30 35

time (s)

1

2

3

so
lv
e
ti
m
e
(s
)

×10−4 Solve time of OSQP

solved

Figure D.4: OSQP solve time of nominal MPC and Kalman filter

0 5 10 15 20 25 30 35

time (s)

0.5

1

1.5

2

2.5

3

3.5

4

so
lv
e
ti
m
e
(s
)

×10−3 Solve time of OSQP

solved

Figure D.5: OSQP solve time of stable MPC with frequency 5 Hz

H
eidi-Irene H

arvey Sollie
Linear M

odel P
redictive C

ontrol of a 3 D
O

F H
elicopter

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Heidi-Irene Harvey Sollie

Linear Model Predictive Control of a 3
DOF Helicopter

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland

June 2019

	Preface
	Abstract
	Sammendrag
	Introduction
	Background
	Motivation
	Outline

	Literature Review
	Quanser's 3 DOF Helicopter
	Embedded Optimization

	Model Predictive Control Theory
	Open-loop optimal control problem
	Terminal cost and terminal constraint
	Integral action in MPC
	Kalman filter

	Slack variables
	Stability of MPC
	Robustness of MPC

	Quadratic Programming Solver
	Developing a process model
	Helicopter model
	Selection of constraints
	Modeling the constant disturbance

	Hardware and Software Implementation
	OSQP
	Hardware-in-the-loop (HIL)
	Implementing the optimization problem for OSQP
	Simulink Model
	MPC
	Estimator

	Multi-Parametric Toolbox

	Results
	Numerical simulation of helicopter model
	Experimental results of helicopter performance

	Discussion
	Future work

	Conclusion
	Acronyms
	Bibliography
	Appendices
	System parameters
	MATLAB Code
	Simulink model
	Additional figures from results

