
N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lt
et

 fo
r 

in
fo

rm
as

jo
ns

te
kn

ol
og

i o
g 

el
ek

tr
ot

ek
ni

kk
In

st
itu

tt
 fo

r 
te

kn
is

k 
ky

be
rn

et
ik

k

M
as

te
ro

pp
ga

ve

Andreas Torgrimsen Eggesvik

Robot for automated seaweed
deployment and harvesting

Masteroppgave i Kybernetikk og robotikk
Veileder: Morten Omholt Alver, Torfinn Solvang

Juli 2019





Andreas Torgrimsen Eggesvik

Robot for automated seaweed
deployment and harvesting

Masteroppgave i Kybernetikk og robotikk
Veileder: Morten Omholt Alver, Torfinn Solvang
Juli 2019

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for teknisk kybernetikk





Abstract
On a global scale, the total market for kelp is growing rapidly. In order to meet the de-
mand and keep cost of production down, there is a need for technology development and
automation in the kelp cultivation and harvest process.

A concept for a modular cultivation plant designed to enable a high degree of automation
named SPOKe has previously been proposed. This concept consists of a ring-shaped plant
and a manipulator capable of both attaching kelp seeds to the plant and harvesting the full
grown kelp. The manipulator in this concept can be attached or detached to the plant,
enabling a single manipulator to operate several plants.

The work of this report includes describing the desired behaviour of the manipulator.
Based on this desired behaviour, a control system is developed. This control system cre-
ates a continuous desired path for the manipulator. In order for the controller to be capable
of operating the manipulator, the propulsion and sensory systems of the manipulator was
specified.

A physical prototype of the SPOKe concept was developed in order to test the controller
and the viability of the propulsion and sensory systems, as well as the viability of the con-
cept in general. In order to create a physical prototype capable of performing the desired
tasks, several specific design decisions had to be made. This prototype includes a com-
puter, sensors and motors and a touch screen. The control system can be initialised, started
and stopped by the user though a touch screen.

The prototype proved to be able to physically move the tool effortlessly in all desired po-
sitions, validating the plausibility of the design. The trajectories created by the controller
are all as desired. Due to time constraints, only one of the two positional sensors was
tested. The controllers ability to control the motor, and make the manipulator follow the
trajectories could therefore not be tested.

i



ii



Sammendrag
Det globale markedet for sukkertare er raskt voksende. For å møte markedets behov og
samtidig holde produksjonskostnader nede, er det nødvendig å utvikle teknologi som au-
tomatiserer prosessen med å så og høste denne taren.

Et design for taredyrkningsanlegg kalt SPOKe er tidligere blitt foreslått. Dette designet
er laget med tanke på å være skalerbart og å automatisere dyrkeprosessen. Dyrkningsan-
legget består av en ringformet struktur hvor man kan feste tau som eiker på et sykkelhjul.
På dette tauet er det sådd sukkertare. En robotmanipulator har som oppgave å spenne opp
tauet og høste tau med ferdiggrodd tare. Denne roboten er løs fra ringstrukturen og kan
løsnes og festes etter behov. På denne måten kan én robot så og høste tare fra flere dyrkn-
ingsanlegg.

I denne rapporten beskrives den ønskede oppførselen til denne roboten. Deretter utvikles
et kontrollsystem som lager en kontinuerlig bane som roboten skal følge for å holde øns-
ket oppførsel. For at kontrolleren skal være i stand til å kontrollere bevegelsen til roboten
spesifiseres det hvilke sensorer og pådragsorgan roboten skal ha.

For å teste kontrollsystemet og funksjonaliteten til designet, utvikles det en fysisk proto-
type av SPOKe konseptet. For å kunne lage en fysisk prototype var det nødvendig å ta noen
designvalg for robotens utforming. Prototypen som ble utviklet består av en ringstruktur
og en robot som styres av en datamaskin, og har motorer, sensorer og en trykkskjerm.
Kontrollsystemet kan initialiseres, startes og stoppes fra trykkskjermen.

Prototypen som ble utviklet var fysisk i stand til å bevege seg på alle ønskede måter.
Banene laget av kontrolleren var alle som ønsket. Grunnet tidsbegrensning ble kun én av
de to posisjonssensorene testet. Det var derfor heller ikke mulig å teste om kontrolleren
var i stand til å sørge for at roboten fulgte den ønskede banen.

iii



iv



Preface

This thesis concludes my M.Sc degree in Cybernetics and Robotics at Department of En-
gineering Cybernetics at Norwegian University of Science and Technology (NTNU).

The thesis is based on previous work conducted by Emil Bale for the research organisation
SINTEF, in introducing the SPOKe concept. The work done for SINTEF by Ingrid Wiik
has also been valuable during the process of writing this report. This thesis is a contin-
uation of the work done in my specialisation project. some sections from that report are
recited here.

I would like to thank my supervisor Morten Omholt Alver both for the interest shown in
my work, and for being supporting through the last year. I would also like to thank my
co-supervisor Torfinn Solvang at SINTEF. The practical know-how and drive to make this
project happen has been very helpful throughout the last year. Having two supervisors
enthusiastic and engaged in the work I’ve done has been motivating and inspiring.

The creation of the digital model for the prototype as well as the physical implementa-
tion of it including mounting of the electronics has been done by Daniel Bogen working
at the workshop of the Department of Engineering Cybernetics. When I five months ago
described the concept of the prototype with limited specifics relating to implementation,
I had never believed a prototype as well built as this would be the end result. With my
limited experience of evaluating physical practicality of solutions, it has been very helpful
be able to present ideas and get feedback on the feasibility of my proposals.

The cost of materials for the prototype was funded by SINTEF through the MACROSEA
project and the labor cost for the prototype was funded by the Department of Engineering
Cybernetics.

Working with electronics for the prototype has been a pleasure thanks to the student work-
shop “Omega Verksted”. The student workshop with its variety of tools, electrical com-
ponents as well as curious and helpful students has been a good place to get to know. The
H-bridge used to control the motors is developed at Omega Verksted by students.

Working on this master thesis has been easier thanks to my fellow students in the office,
who have been engaged and committed to both fun and contestation. A special thanks
goes to Eva Kristiansen, for being both a good friend and sparring partner.

Andreas Torgrimsen Eggesvik
Trondheim, June 2019

v



vi



Chapter 1
Introduction

1.1 Motivation

This motivation is a direct citation from the project report [1].

The global market for kelp grows rapidly. In 2008, the global production was at 16.8 mil-
lion tonnes, with a value of 7.4 million USD [2]. The global production of farmed aquatic
plants reached 27.3 million tonnes in 2014 [3]. This development is expected to continue,
and it is expected that the potential for micro-algae production in Norway can reach 20
million tonnes, for a value of 40 Billion NOK by 2050 [4].

One reason for the big market potential for kelp, is the need for new ways to produce
sustainable food to feed the growing global population. The increase in world population
will require an increase of 69% crop calories in 2050 compared to 2006 [5]. Kelp can
be a food-source both directly and indirectly as feed source for both land and sea-based
livestock.

Another reason for the potential in production of kelp is the transition in the energy sec-
tor from being heavily fossil-fuel dependant, to being based on renewable energy. This
transition needs to be quick, in order to limit the global effects of climate change. The
best case scenario by IPCC estimates that the proportion of energy sourcing from bio-fuel
will increase from 3% today to 27% in 2050 [4]. Bio-fuel based on energy sourcing from
algal production has potential to be part of this increase, and in opposition to many other
bio-fuel based solution, it does not require using resources currently utilised for food pro-
duction. The three prerequisites for having a large micro-algae production in Norway by
2050 is according to a SINTEF report [4] listed as

• The exploitation of macroalgae for applications requiring high production volumes,
such as bioenergy and feedstuffs, must be maximised.

1



• Universal acceptance of a further expansion of the areas of coastal waters occupied
by mobile facilities and the development of space-efficient cultivation technologies.

• Know-how and technology are developed which enable the full exploitation of har-
vested biomass (the bio-refinery concept).

Three examples of state of the art technology for kelp cultivation is briefly described in
the report by Emil Scott Bale [6]. The three different designs from Seaweed Energy solu-
tions, Seaweed AS and AT-Sea/SIOEN are illustrated in Figure 1.1. Common for all these
technologies is labour extensive harvesting methods and low degree of automation.

(a) Seaweed Energy solutions
production site [7].

(b) Seaweed AS cultivation
system Buland 10 [8].

(c) Algaesheet from
At-Sea/SIOEN [9].

Figure 1.1: Current Kelp cultivation technologies.

SINTEF is a Norwegian research organisation with projects in a large variety of research
areas. One of these projects is named “MACROSEA”. The goal of the MACROSEA
project is “successful and predictable production of high quality biomass thereby making
significant steps towards industrial macroalgae cultivation in Norway” [10]. As a part of
this project, a concept for a macroalgae cultivation plant has been developet. The concept
developed by Bale was named Standardized Production of Kelp, SPOKe. In the SPOKe
concept, kelp is cultivated on a one-dimensional substrate (rope), which is attached to
a structure made up of two rings illustrated in Figure 1.2. The goal of MACROSEA
SPOKe was the possibility of automation and scalability. The carrier rope attachment
points and tool for this concept were developed further in the report “Concept development
of details for macroalgae cultivation” [11]. A mathematical model for the movement in one
dimension of the manipulator submerged in water has been developed [1]. Considerations
for propulsion and sensory system has also previously been made [1]. This report will
focus on the automation aspect of the SPOKe concept, and implementation considerations
related to automation.

2



Figure 1.2: Spoke ring structure and manipulator [6]

1.2 Basic Theory

1.2.1 Workspace and operational space
All manipulators are designed to perform operations. In order to do this, the manipulator
is equipped with a tool suitable for the operation performed. The pose of this tool can be
described by its position and orientation. In three dimensions, this results in two three-
dimensional vectors, one for position and one for orientation. This results in a pose vector
x, with x ∈ R6. This vector is named operational space [12].

Joints on a manipulator will have geometrical constraints limiting the space in which they
can move. As a result of this, the tool can only operate in a subset of the operational
space, namely the workspace. The workspace consists of all physically possible poses of
the manipulator tool.

1.2.2 Joint variable, Joint space configuration space
Each joint in a robot manipulator has a variable configuration. The parameter used to de-
scribe the configuration of each joint is names a “joint variable”. For linear actuator joints,
this variable describes the extension of the joint. For rotary joints, this variable describes
the rotation of the joint. The set of all joint parameters are named the joint space. This
causes the dimensions of the joint space to be equal the number of joints of the manipulator.

The configuration of a robot is a description of its geometry. The space in which the
manipulator can operate is named configuration space. Assuming the individual links of

3



the manipulator are rigid, the configuration space can be described by the joint variables.
This property causes terms “joint space” and ”configuration space” to describe the same
space.

1.2.3 Inverse kinematics
When describing a desired pose of the tool of a robot, it is intuitive to describe it in config-
uration space x ∈ R6. In order to control the robot movement, positions in configuration
space needs to be transformed to orientations of the actuators q ∈ n for n actuators (joint
space). The transformation from configuration space to joint space is named “Forward
kinematics”. The transformation from joint space to configuration space, is named “In-
verse kinematics” [12].

Depending on robot configuration, solutions of inverse kinematics will differ and is not
always unique. The solution can be non existing, unique, multiple or infinite. The process
of estimating the pose of the manipulator based on joint variables is only straight forward
when the solution of the inverse kinematics is unique.

1.2.4 Over actuated system
An over actuated system is a system containing more actuators than degrees of freedom.
An object moving in space has six degrees of freedom, three for position (x, y, z) and three
for orientation (φ, θ, ψ). For a system to arbitrarily control every degree of freedom sepa-
rately, six actuators are needed, one for each degree of freedom. By using seven actuators
to move in six-dimensions, the system is over actuated. An over actuated system can still
operate in all six degrees of freedom, while it also achieves a set of new properties, due to
redundancy in the design. Properties of over-actuated include possibility to control move-
ment to minimise power consumption, wear and tear, singularity avoidance and avoiding
forbidden sectors.

1.2.5 Velocity kinematics
In order to control a manipulator by describing velocities in configuration space, a relation
between velocity in configuration space (ẋ) and velocity in joint space (q̇) must be found.
This is described by the velocity kinematics as:

ẋ = Jq̇ (1.1)

and the inverse transformation is described by

q̇ = J−1ẋ (1.2)

where J is called the ”Jacobian matrix”. If the robot is equally actuated, the jacobian matrix
is a square matrix. If the robot however is over-actuated, the matrix J is a fat matrix. The
Jacobian matrix is a function of the joint variables. The rank of the matrix is the maximal
number of independent columns or rows. For a manipulator to be able to move the tool

4



in an arbitrary direction, having six joints is in it self not necessarily sufficient, the rank
of the Jacobian matrix must also at all times be six. Configurations of the manipulator
where the Jacobian matrix does not have full rank are called ”singularities”. Among the
reasons for these being interesting is that at singularities, bounded end-effector velocities
can correspond to unbounded joint velocities [12].

1.2.6 Control allocation
This is a topic for over-actuated systems, which we don’t have. We could however possibly
ended up with over-actuated system, and knowing its complications helped argue for not
getting over actuated.

1.2.7 Path and Trajectory planning
When controlling a manipulator, an initial and final configuration is defined. As there
might be obstacles between the two configurations, a path must be found, avoiding the
obstacles. A path is defined as a continuous map τ : [0, 1] → Q, with τ(0) = qinit and
τ(1) = qfinal [12]. A trajectory is a function of time q(t), such that q(t0) = qinit and
q(tf ) = qfinal. Here, tf − t0 is the time it takes to move from the initial to final config-
uration. By considering the parameter of τ as a variable of time, a path is a special case
of a trajectory, with the time parameterized by the amount of time is takes to execute the
movement.

The path is often calculated by an initial and a final configuration and constraints on move-
ment. The desired initial and final configuration can be described by specific values to all
derivatives of the joint variables. The constraints on movement can consist of positions
which the manipulator should avoid, or limitations on velocities and accelerations along
the trajectory. In a scenario with no obstacles and no constraints on movement, a trajectory
can be calculated solely based on initial and final configuration, given the initial and final
time. In order to describe a trajectory as a polynomial, there must be the same number of
variables in the polynomial as constraints.

Point to point trajectory

Given two scalar points with constraints on velocity both at initial and final position as
given in 1.3-1.6, the trajectory can be described by a polynomial with four coefficients.

q(t0) = q0 (1.3)
q̇(t0) = v0 (1.4)
q(tf ) = qf (1.5)
q̇(tf ) = vf (1.6)

By describing the trajectory as a third degree polynomial, the trajectory gets the form of
equation 1.7.

5



q(t) = a0 + a1t+ a2t
2 + a3t

3 (1.7)

Combining this equation with the constraints, we get four equations with four unknowns:

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 (1.8)

v0 = a1 + 2a2t0 + 3a3t
2
0 (1.9)

qf = a0 + a1tf + a2t
2
f + a3t

3
f (1.10)

vf = a1 + 2a2tf + 3a3t
2
f (1.11)

These equations can be written in matrix form:
1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f



a0
a1
a2
a3

 =


q0
v0
qf
vf

 (1.12)

Ma = b (1.13)

From equation 1.13 equation, the parameters of the trajectory, a can be found by a =
M−1b. This approach can be used to create trajectories of higher order by applying more
restrictions on initial and final acceleration.

A point to point trajectory described by a polynomial of degree five, calculated by initial
and final constraints for position, velocity and acceleration, is illustrated in figure 1.3.

Figure 1.3: Position, velocity and acceleration plot of a trajectory of a polynomial of degree five
[12].

Linear segments with parabolic blends For some operations, having constraints on the
start and end positions alone is not satisfactory. In situations where it is desired to have a
constant velocity along the path, a trajectory can be calculated using Linear segments with
parabolic blends (LSPB) [12]. This trajectory planning can be considered a point to point
trajectory with an additional two points between the initial and final position. This results

6



in a trajectory consisting of three components, first a parabolic trajectory moving from
initial configuration to constant velocity, then a linear trajectory and finally a parabolic
trajectory moving from the constant velocity to the final configuration. The parabolic
blends ensure both the end-conditions and the constant velocity constraints are met.

A plot of a LSPB trajectory is illustrated in figure 1.4. This trajectory is computed with the
constrained desired constant velocity at 60 deg/sec and both initial and final velocity equal
zero. The initial position is zero, and the final position is 40 deg. The parabolic blends are
modelled by a polynomial of degree two, as the point to point trajectories for the parabolic
blends have a total of three constraints.

Figure 1.4: Position, velocity and acceleration plot of a linear segment with parabolic blends trajec-
tory [12].

1.2.8 Rotary Encoder
A rotary encoder is a sensor that converts angular position to a digital or analogue out-
put signal used to estimate the angle of a shaft. Rotary encoders are generally divided in
two categories: absolute encoders and incremental encoders. Absolute encoders output a
signal corresponding to the current shaft angle relative to absolute zero angle. Reading
absolute angle is practical as it does not require the user to keep track of every signal pro-
duced by the encoder. This allows the user to read the value from the encoder only then
it is needed, while keeping track of the number of rotations in scenarios where the shaft
rotates more than 360 deg. This type of encoding does however require more space for the
encoder, restricting the resolution of the sensor [13]. An incremental encoder sends out
a binary signal on the out-port, acting like a square wave as the shaft rotates. This signal
gives no information on the orientation of the shaft relative to an absolute zero position
like an absolute encoder does. The change in signal from the incremental encoder however
represents an incremental change in position. By counting all signal changes from a known
position and knowing the number of cycles per revolution for the encoder, the orientation
of the shaft can be known exact. As the signals relate to a change in position, the outputs
from the encoder must be continuously counted in order keep the estimated shaft angle
accurate, not drifting from the true value. As incremental encoders are able to send data at
high rate and with low latency, these are commonly used for high speed real-time applica-
tions. The signals from an incremental encoder are represented using quadrature encoding.

7



Quadrature encoding

By counting the rising or falling edges of the square wave produced by the encoder when
it rotates, the position change of the encoder can be estimated. By only having one out-
put however, it is impossible to get information about the direction of rotation. In order to
know this, incremental encoders are equipped with two sensors and has two outputs named
A and B. The square wave from these sensors when rotating the shaft are shifted with a
90 deg offset. The relation between these two pulses gives directional information [13].
Depending on the state of pulse B when pulse A is rising, the direction of rotation can be
determined: If pulse train A leads B, the shaft rotates clockwise. Similarly, the signal on
output B leads signal A, the shaft rotates counter clockwise. By counting only the rising
edges of output A, it is possible to detect as many positions per rotation as there are cunts
per turn on the sensor. By also counting the falling edges of output A, it is possible to
detect two times as many positions as there are counts per turn on the sensor. As these two
pulse trains are 90 degrees out of face, rising and falling edges of both signal A and B can
be used to determine directional change in position. This enables the possibility to count
four times the number of positions for each rotation as there are counts on the encoder
[14]. The different types of data evaluations are illustrated in Figure 1.5.

Figure 1.5: Quadrature encoder evaluation for counter clockwise rotation [15]

As incremental encoders depend on counting rising and falling edges of the signals, and
only gives information on position change, it is prone to errors. If the shaft speed is too
fast for the decoder to read, some increments can be missed, causing the estimated shaft
angle to drift from the true shaft angle. In order to solve this problem, many incremental

8



encoders are equipped with a third channel sending a signal when the shaft is at a specific
position, sending one signal for each rotation. This signal is named the “index” signal,
often referred to as Z. The index signal makes it possible to know when the shaft has
reached a full rotation and to compensate for the accumulated error.

1.3 Problem description
Existing process and methods for cultivation of macro algae are industrially under-developed
and labour intensive. As the global demand for macro algae increase, there is a need for
technology development and automation of both the cultivation and harvest process.

The research organisation SINTEF has through its project MACROSEA presented a modu-
lar concept for cultivation of macro algae, named Standardised Production of Kelp (SPOKe).
The concept includes a manipulator operating the cultivation substrate which is attached
to a ring structure moored to the sea floor. The SPOKe concept requires further develop-
ment both in form of theoretical evaluation of potential and limitations, as well as practical
implementation and testing.

Building on the work done relating to the SPOKe concept, the assignment is structured to
the following tasks:

• Investigate different specific design implementations required to form a prototype
based on the SPOKe concept. This involves solutions to include the attachment
points for the carrier rope to the work space of the manipulator. Design of the at-
tachment points and mechanism to tighten the rope as well as propulsion and sensory
system enabling control of the manipulator should also be investigated.

• Describe and propose solutions for the control problem of deploying rope with kelp
seeds on the cultivation plant.

• Develop a prototype based on the SPOKe concept for testing the implementation of
the control system.

1.4 Outline
The work in this project involves understanding the already proposed Macrosea SPOKe
concept, make changes to the concept for it to be possible to implement, developing a
physical prototype and finally controlling the prototype to do simple movement.

Chapter 2: Current SPOKe concept, describes the original SPOKe concept. This includes
motivation, unique features and geometry. A set of joint variables are proposed for further
development. The chapter also briefly describes some limitations to the concept.

In chapter 3: Extending SPOKe design, several design changes to the original concept
are proposed. The new proposals include mechanisms for securing the rope, connecting

9



it to the ring structure, tightening the rope as well as proposing a propulsion and sensory
system for movement. The prototype is based on these choices.

Chapter 4 describes the mechanical and electrical components of the prototype.

In chapter “5 Control of robot manipulator”, the control problem is introduced. The state
machine describing system operations is described as well as the implementation of the
controller based on the state machine. Calculation of trajectories based on point refer-
ences is also described in this chapter.

The experiments used to test the functionality of the prototype are described in chapter “6
Experiments”. The results from these experiments are presented in chapter “7 Results”.

Finally, the results are discussed in the final chapter, “8 Discussion”. Here the relevance
of the prototype and tests are also discussed. The chapter ends with recommendations for
future work for further development of the SPOKe concept.

10



Chapter 2
Current SPOKe concept

In the report “Development of area efficient and standardized structures for large-scale
macroalgae cultivation”, Emil Scott Bale introduced a concept for large scale production
of kelp [6]. The goal of the MACROSEA project is “successful and predictable production
of high quality biomass thereby making significant steps towards industrial macroalgae
cultivation in Norway” [10]. The concept developed by Bale was named Standardized Pro-
duction of Kelp, SPOKe. In the SPOKe concept, kelp is cultivated on a one-dimensional
substrate, which is attached to a structure made up of two rings, as illustrated in Figure
1.2. When the carrier rope is attached to the ring structure, it looks like spokes on a wheel.
This concept is designed to make it possible to automate the process of deploying the car-
rier rope, harvest the kelp and detach the carrier rope after or during harvest. The SPOKe
concept is proposed to have a mooring-system inspired by the fish cultivation industry.
This allows several ring structures to be attached to the same anchor-points on the seabed
and makes the plant modular.

The deployment and detachment of the carrier rope, as well as harvesting of the kelp, is
proposed done using a manipulator. In order to do this, the manipulator must be able to
attach to the ring structure and move a tool to any position between the two rings. The
manipulator will have a propulsion system allowing the rail to move angular along the
ring structure, and a separate propulsion system allowing the tool to move along the rail

Figure 2.1: Surface vessel feeding rope to manipulator [11].

11



Figure 2.2: Attachment mechanism for SPOKe manipulator

of the manipulator. The carrier rope as well as power, is provided to the manipulator by a
surface vessel as illustrated in figure 2.1. This then goes through the tool of the manipula-
tor, which is capable of connecting the rope to connection points on the ring structure. By
moving the tool of this manipulator between the connection points on the ring structure,
this manipulator will be able to perform its proposed tasks. The SPOKe concept achieves
its potential for scalability by allowing the manipulator to be independent of the ring struc-
ture. This way, the expensive manipulator required to perform the proposed tasks can be
used to operate several ring structures. A small number of manipulators can then be used
to operate a large number of kelp cultivation plants. The manipulators can be moved from
one ring structure to the next on a boat.

The attachment mechanism keeping the manipulator attached to the ring structure in this
design, is a gripping mechanism on each side of the rail of the manipulator. This attach-
ment mechanism is illustration in figure 2.2. The grip is connected to the rail in one single
joint, which can be used to change the configuration of the grip to either be open or closed.
When the manipulator is moved from the boat down the ring structure, the grip is open.
Once the manipulator hits the ring structure, the grip closes, ensuring the manipulator is
locked in place.

2.1 Geometry
In this report, many components of the SPOKe design will be referenced. The ring struc-
ture refers to the structure consisting of the outer ring, inner ring, and the support beams
connecting the two. The moving beam containing actuators for moving in both radial and
tangential direction, is referred to as the manipulator. The part of the manipulator moving
in angular direction, is called the rail. The part of the manipulator moving linearly along
the rail is called the gantry robot. The mechanism on the gantry robot for feeding rope to
the ring structure is called the tool. The attachment-points for the carrier rope on the ring
structure, are referred to as cleats. These cleats are positioned both on the inner and the
outer ring.

12



The manipulator moves along the ring structure between the cleats in order to attach the
carrier rope to them. As the movement about the ring is defined by these cleats, both
position must be known exact. The extension of the cleats can be described both by length
and by angle about the centre of the ring structure, as illustrated in figure 2.3a. The relation
between the arc of a circle and the length of that arc, is given by equation 2.1. The radius
of the inner ring in this illustration is r3 and the radius of the outer ring is r4. As the length
of the clams are short relative to the radius of the circle, their arc length is assumed equal
to their length.

α =
l

r
(2.1)

(2.2)

The arc between the clams on one ring must at least be as large as the arc of the clams on
the other ring for there to be an equal amount of clams on both rings. This is illustrated in
figure 2.3b and 2.3c. In this illustration, the circles on each side of the clams illustrates the
dimension of the tool. The clams are positioned in a way that allows rope to be attached
between them to be parallel to the rail of the manipulator. When the manipulator tool is
next to a clam on one of the rings, it will be positioned next to a clam on the other ring by
only moving along the gantry robot. In order for this to be possible, the spacing between
the clams on the inner ring is equal to the angle of a clam on the outer ring, in addition to
the size of two tool diameters, as illustrated in figure 2.3b and 2.3c. The dimensions for
the clams are summarised in table 2.1.

length arc angle [rad] spacing length spacing [rad]
Inner clam l2 α2 = l2

r3
2dt + α2r3 2 dt

r3
+ α2

Outer clam l1 α1 = l1
r4

2dt + α1r4 2 dt

r4
+ α1

Table 2.1: Clam dimensions

When describing possible tool positions relative to the ring structure, a coordinate frame is
needed. A Cartesian coordinate system attached to the SPOKe system with origin located
in the centre of the ring structure is illustrated in Figure 2.4 by the x and y axis. The z
direction follows the right hand rule. As the SPOKe concept is circular, it is more intuitive
to describe positions using polar coordinates. A position in polar coordinates is given by
a distance r relative to origin of the cartesian coordinate system and an angle θ relative to
the x-axis.

The ring structure is anchored to the seabed using a mooring system, with some slack.
When subjected to waves and changing current, the orientation and position of the ring
structure will vary. This work will focus on the movement of the manipulator relative to
the ring structure, and the position and orientation of the ring structure is not considered.

In order to describe the geometry of the SPOKe module, several parameters are named
and described. The angle θ1 is defined as the angle between the x-axis and the line inter-

13



(a) Cleat dimension relation.

(b) Spacing between outer clams. (c) Spacing between inner clams.

Figure 2.3: Geometry of clams

secting both the origin of the cartesian coordinate system and the tool. The length r1 is
the distance from origin to the tool of the manipulator. The coordinate pair θ1 and r1 is
therefore the polar representation of the position of the tool as is illustrated in Figure 2.4.
The length r2 describes the distance from the anchor point of the rail on the inner ring to
the tool.

The angle θ4 is the angle between the x-axis and the line intersecting both the SPOKe
origin and the anchor-point of the rail on the outer circle, as illustrated in Figure 2.5. The
distance from origin to the outer circle is defined as r4, and the total length of the rail is
named ltotal.

14



Figure 2.4: The illustration shows how the angles θ1, θ2, θ3, φ3 and lengths r1, r2, r3 relate to the
robot-configuration. The SPOKe-frame is illustrated in x-y.

2.2 Modelling, Workspace and joint variable of the SPOKe
system

As the manipulator only moves in two dimensions, the x-y plane, the orientation only
varies about the z-axis. The purpose of the tool is to be the link between the rope con-
nected to the boat and the rope connected to the ring structure. Depending on the tool
design, it is possible for the tool to fulfil its task independently of its orientation. Due
to these properties of the manipulator, it is possible to model the pose in only two di-
mensions. The choice of joint variables for the manipulator will affect the complexity
of control. Three different representations are considered, namely [θ1, r1]

T , [θ2, r2]
T and

[θ4, r2]
T .

The polar representation using θ1 and r1 as joint variables gives an intuitive representa-
tion of the position of the tool-frame. The task of the manipulator is to attach ropes as
angled spokes as illustrated in Figure 2.6. When the gantry robot moves along the rail
while the angle of the rail is constant, both θ1 and r1 will vary. This property will result
in the variables θ1 and r1 oscillating when the manipulator attaches the rope to the ring

15



Figure 2.5: The illustration shows how the angles θ2, θ3, θ4, φ4 and lengths r3, r4, ltotal relate to
the robot-configuration. The SPOKe-frame is illustrated in x-y.

structure. This representation is therefore not optimal for controlling the main tasks of the
manipulator.

By using the parameters θ2 and r2 for representing the movement under attachment of
the rope, the angle θ2 is strictly increasing, while only r2 is oscillating. In the scenario
where angle of the rail is constant while the tool moves along the rail, only the value of r2
changes. In reality, the angular movement of the rail is controlled by a motor placed by
the outer ring. It can therefore be considered more intuitive to represent the manipulator
movement by using the angle θ4 instead of the angle θ2. Based on these considerations,
the workspace is described by the vector of joint variables x = [θ4, r2]

T . These two vari-
ables will form the basis of a coordinate frame which will be named the SPOKe coordinate
frame.

2.3 Coordinate transformations

This section will describe equations for transformation between different variables de-
scribing the pose of the SPOKe manipulator. As described in the previous section, the
rail is oriented with an angle offset relative to the radial direction of the ring structure.
Transformation between different variables therefore require the introduction of geomet-
ric properties of the SPOKe manipulator. The angle φ4 as illustrated in Figure 2.5 is a

16



Figure 2.6: Spokes are slightly angled

constant angle describing the geometry of the manipulator. Angles θ3 and θ2 shown in the
same illustration has constant offset values relative to θ4. In figure 2.4, φ3 is illustrated as
an angle varying as the tool moves along the rail, while φ1 is a constant angle given by the
manipulator dimensions. Relations of several of the geometric parameters of the SPOKe
manipulator are given in the equations 2.3 - 2.9.

φ4 = cos−1(
r23 + r24 − l2total

2r3r4
) (2.3)

φ1 = cos−1(
l2total + r23 − r24

2ltotalr3
) (2.4)

θ2 = θ4 − sin−1(sin(φ4)
ltotal − r4
ltotal

) (2.5)

θ3 = θ4 − φ4 (2.6)

r1 =
√
r22 + r23 − 2r2r3cos(φ1) (2.7)

φ3 = cos−1(
r21 + r23 − r22

2r1r3
) (2.8)

θ1 = θ4 + φ3 − φ4 (2.9)

The values for the angle θ4 and the length r2 can be estimated based on values given by
sensors on the joints. When controlling the manipulator to move the tool to a specific po-
sition on the ring structure, it is intuitive to give the instruction in polar coordinates θ1, r1.
The transformation from polar coordinates to joint variables are given in the equations

17



2.10 and 2.11. Equation 2.11 shows that r2 > 0 for r1 > r3.

θ4 = θ1 + φ4 − φ3 (2.10)

r2 = r3cos(φ1) +
√
r23cos

2(φ1)− r23 + r21 (2.11)

The inverse kinematics is given by equations 2.7 and 2.9. As the length r1 is defined as a
positive value, the inverse kinematics never has multiple solutions. The solutions for the
inverse kinematics has unique solutions for r22 + r23 > 2r2r3cos(φ1).

On the prototype, the manipulator is attached to the ring structure with a set of wheels.
Assuming there is no slip between the wheels and the ring structure, their position can be
represented by their orientation. Assuming that the movement of the gantry robot along
the rail also involves a wheel with no slip, the position along the rail can be represented
by the orientation of this wheel. Estimating position based on integrating the values from
motion sensors such as as incremental encoders, is named odometry.

The relation between the orientation of the wheel connected to joint variable r2 and the
actual length r2 is illustrated in Figure 2.7a. From this illustration, it follows that the
relation between motor angle and joint variable r2 is given by Equation 2.12. In this
equation, Rm1 is the radius of the wheel and δγ is the change in angle of the wheel given
in radians.

δr2 = Rm1δγ (2.12)

Similarly to this transformation, the transformation for the second joint variable, θ4 is
given by Equation 2.13. In this equation δφ represents the change in angle of the wheel.

δθ4 =
Rm2

r4
δφ (2.13)

18



(a) Relation between motor angle r2. (b) Relation between motor angle φ and joint variable θ4.

Figure 2.7: Relation between motor angles and joint variables r2 and θ4.

2.4 Design limitations
When introducing the SPOKe concept, a three dimensional model was created in order
to explore the immediate possibilities and limitations of the SPOKe design. This model
also creates the basis for further design development. This model does not take in to con-
sideration actuator design, choice of sensors, exact movement limitation, material choice
or structural integrity. This allows the concept to illustrate requirements for the SPOKe
concept without applying limitations to future considerations needed to be taken. Before
creating a physical prototype based on this model, there are five important aspects of the
design that need further development:

• In the existing model of the SPOKe manipulator, the tool does not have the reach
ability to move the rope about the cleats. The manipulator must have a workspace
including the clams both on the inner and outer ring in order to attach the rope to
the ring structure.

• The design of the cleats must be chosen. The cleats should be designed for easy
attachment of the rope. Further, the rope should not detach from the ring structure,
even if the rope breaks at some point.

19



• In the existing model, there is not defined what mechanism should be used to tighten
the rope between the cleats. There are several possible solutions that must be con-
sidered.

• Propulsion systems making the manipulator capable of moving both joints should
be defined. In this, the unique challenges resulting from the ring structure being
submerged in sea water should be considered.

• A proposal must be made of sensors capable of measuring the pose of the manipu-
lator accurately enough to ensure precise movement. What sensors relevant for the
manipulator will depend on what propulsion system is chosen.

These considerations will be further explored in the next chapter.

20



Chapter 3
Extending SPOKe design

This chapter will look in to different designs aimed at extending the original SPOKe model
when it comes to the five points mentioned in section 2.4. These design changes are
necessary for the manipulator to attach rope to the ring structure. The first three sections
of this chapter each describe design proposals for fixing different task operations: 3.1, 3.2
and 3.3. Section 3.4 examines combinations of the previously described design proposals.
Finally, a propulsive and sensory system is defined in section 3.5, and an arm is considered
for stability purpose in section 3.6.

3.1 Securing rope
In order to make sure that the rope is attached securely to the ring structure and does not
loosen, a design for securing the rope needs to be chosen. This securing of the rope has
three purposes:

1. Ensure the rope does not fall off the ring structure.

2. Ensure that the rope does not slide on the ring structure.

3. Ensure that the rope does not loosen if the rope breaks at one point.

Two different designs are considered, and differs in what purposes they fulfil.

3.1.1 Clam cleat based connection
Clam cleats are u-shaped tracks with angled teeth inside, as shown in Figure 3.1b. When
pulling the rope through the clam cleat in one direction, the rope moves through with little
friction. When pulling the rope in the other direction, the teeth grip on to the rope, and
their angle force the rope more tightly in to the clam cleat. In order to securely attach a
rope using a normal clam cleat, the rope needs to be pulled tightly in one direction, creat-
ing a large rope tension. This tension enables the teeth to grip and lock the rope in place.

21



A lock like this only locks the rope in one direction.

A design for rope attachment based on clam cleats was introduced by Ingrid Wiik [11].
This design is illustrated in Figure 3.1a. In this design, the cleat has two clams with teeth
tightening the rope in opposite directions. This allows the cleat to fixate the rope from
moving in both directions. The downside with this design in the challenges it introduces
when it comes to mounting. As the two clams are faced in opposite directions, the rope
can not simply be tightened by pulling it in one direction as for a regular clam cleat. A
mechanism involving a drop-formed manipulator was therefore introduced for attaching
the rope to the locking mechanism. In order to avoid the rope falling off the ring structure,
the locking mechanism is positioned horizontally. The tension of the rope will naturally
keep it from falling out of the opening on the locking mechanism. If the rope breaks
at one point, the rope will have slack and no tension to the clam. Without tension, the
clam can not ensure the rope does not loosen in the open part of the locking mechanism.
This locking mechanism fulfils design-purpose 1. and 2. described in section 3.1 but not 3.

(a) Locking mechanism using cleat with two clams [11] (b) A standard clam cleat [16].

Figure 3.1: Clam cleat based locking mechanisms for rope.

3.1.2 Bolt design

A different design is the bolt design. This involves a bolt being inserted through the rope
and a bollard with a notch, as illustrated in figure 3.2. When the rope has high tension over
the bollard, the bolt will lock it in place and the notch will help to keep the orientation

22



of the rope stable. If the rope breaks at one point, the bolt will keep it locked in place at
the bollard, and keep it from unwinding. As the rope is locked in place using a bolt, the
bollard does not need teeth for keeping the rope tight. The kelp seeds passing through this
bollard is therefore handled more gently compared to kelp passing through a clam cleat.
In order to get the desired tension of the rope, metres of the rope may have to move past
the bollard, making the potential for damage large.

This design fulfils all three purposes of the securing mechanism. This does however re-
quire a manipulator on each side of the rail to insert the bolt under deployment and pull
it out during harvest. Alternatively, the bolt could be inserted only on one of the rings,
allowing some rope to unwind.

Figure 3.2: Locking mechanism using a bolt through rope.

3.2 Connecting rope

In order to include the locking mechanism for the rope in the work space of the manipu-
lator, the current SPOKe design needs modification. The current design only allows the
gantry-robot to move close to the ring, but not around it, as illustrated in Figure 3.3. This
does not enable the tool to connect the rope to the ring structure. In this section, two
alternative designs for this will be presented. The designs differ in number of actuators,
complexity of attachment and complexity of inverse kinematic.

23



Figure 3.3: Geometric limitations of original three dimensional model.

3.2.1 Extended rail

One way for the gantry robot to access the mounting points on the ring structure is to
extend the rail to allow the gantry robot to move past the mounting points for the rope.
An illustration of this is shown in Figure 3.4. As the rail in this design extends past both
the inner and outer ring, the grip holding the rail attached to the ring structure must be
modified. As the tool now moves past the mounting points for the rope, the grip can no
longer consist of one joint attached to each side of the rail. This mechanism can however
be implemented using two joints on each side of the rail, as shown by the red structure in
figure 3.4. Assuming each joint is controlled by a motor, this design will require a total of
four motors for the grip mechanism alone. The largest downside of this is the cost of the
two extra motors. The complexity of movement for this design is low, as the rope can be
moved in the desired pattern only using two motors: one controlling movement radially
and one controlling movement of the gantry robot. Using this design, the manipulator will
have the same amount of actuators as degrees of freedom. Further, the geometry of the
manipulator causes the inverse kinematics to be simple to calculate.

Figure 3.4: Extended rail design.

24



3.2.2 Robot arm on the gantry robot

A different solution to include the attachment points to the work space of the manipulator
is to add an extra joint for the manipulator. This joint is attached to an arm. The tool
of the manipulator will then be positioned on the end of the arm controlled by this third
joint. This arm allows the system to move the rope over the connection-points on the ring-
structure as illustrated in figure 3.5. Having a manipulator with three joints enables ability
for more complex coordinated movements as the manipulator will be over actuated.

Figure 3.5: Short rail design with extra joint.

By having an arm attached to the gantry-robot, the system is over-actuated. Movement in
two dimensions is controlled by three actuators. This makes the inverse kinematics more
complex as there are infinitely many joint configurations that allows for any position of the
tool. This design has a grip mechanism involving only two joints, similar to the original
model.

3.3 Tightening rope

In order for the ropes to not be intertwined, they need to be tightened sufficiently. There
are several possible designs that allow this. Three will be presented. All three includes a
winch, and differs in where this winch is positioned; on the boat, on the gantry robot or on
the rail.

25



3.3.1 Winch on boat

The winch on the boat can be used to tighten the rope attached to the spoke system. The
boat will need to have a winch for pulling rope during harvest, so this design does not
require any extra equipment. It does however require high tension between the boat and
the ring-structure. This will require a high force output from the winch, and make the
movement of the manipulator more difficult to control.

Figure 3.6: Winch positioned on the boat.

3.3.2 Winch in the gantry robot

The winch could alternatively be positioned inside the gantry robot. Two possible imple-
mentations of this in relation to the SPOKe concept has been introduced [11]. These two
winch designs are illustrated in figure 3.7. In order to not damage the kelp seeds on the
rope, the rope should be handled as gently as possible. In order for the winch to pull the
rope, there must be large friction between the rope and the winch. As the design on the
left has a larger contact area between the rope and the wheel, high friction can be achieved
with lower force on the rope. This design will therefore be the one of the two damaging
the kelp seeds the least.

Figure 3.7: Illustration of two different winch designs in gantry robot [11].

26



Figure 3.8: Rope lock in the gantry robot.

High tension on the rope connected to the manipulator affects the forces on the manipulator
both in angular and radial direction [1]. The forces required by the gantry robot to have
a constant position while the winch described above tightens the rope, is a function of
the tension of the rope. By simply locking the rope in place in side the gantry robot and
moving along the rail, the same tension will be achieved, requiring the same force from the
gantry robot. This will be referred to as rope lock, and an example of this is illustrated in
figure 3.8. This solution is simpler compared to installing a winch inside the gantry robot,
as the lock can be implemented using only one motor. The lock can be controlled using
only two configurations: on and off. On top of this, a lock will take up less space than a
wheel based winch. By locking the rope in place like this, only the portion of the rope that
is locked will experience a high force. Compared to the winch, which has to apply a force
to larger portions of the rope, this solution is gentle to more of the kelp passing through
the tool.

3.3.3 Winch on the rail
One winch can be placed in the centre of the rail. Alternatively, a winch can be positioned
at each side of the rail, requiring two winches. A challenge with mounting the rail to the
rail is connecting the rope to the winch, and moving the winch so that it does not collide
with the rope as the manipulator moves along its trajectory. All the attachment points for
the rope on the ring structure has the same position in z direction in a coordinate system
fixed to the ring structure. This cause all the rope to have the approximately the same
position in z direction, given the tension is sufficiently high. Any point of the manipulator
that intersects with the rope will obstruct the movement of the manipulator. The challenge
of positioning the winch on the rail is therefore to both enable it operating the rope, and
not intersect with the rope. This can be done both by using a winch that is fixed, or a winch
capable of moving.

Fixed winch on rail

A winch could be fixed to the rail. Because the winch is fixed to the rail, only the gantry
robot can create movement relative to the winch. This causes the gantry robot to require
one more joint in order to connect the rope to the winch as illustrated in Figure 3.9a. This
can be solved by adding a robot arm to the gantry robot, moving horizontally similar to
the one described in section 3.2.2. Mounting the rope to the winch requires coordinated
movement with the arm and the gantry robot, as illustrated in figure 3.9b. As the arm

27



rotates while the gantry robot moves along the rail, the tool can be controlled to attach the
rope to the fixed rail. As the winch is fixed, it has to be positioned at a height where it does
not intersect with the rope. This requires the arm capable of moving in two dimensions,
one for moving the rope to the height of the winch, and one for attaching the rope to the
winch. This could be designed as a cylindrical arm or polar robot, both without radial
movement. With this design, the complexity of movement is increased. As the manip-
ulator is equipped with an extra arm with two joints, it consists of a total of four joints,
and moves in three degrees of freedom. This makes the manipulator over actuated, and
increase complexity of control.

(a) Fixed winch and robot arm on SPOKe model.(b) Winch positioned on rail, with arm on gantry.

Figure 3.9: Winch fixed to rail

Movable winch on rail

An alternative to having the winch fixed to the rail, is making the winch movable. This
way, the winch can move down to operate the rope, and move up when the manipulator
moves. By enabling the winch to move in and out of the intersection with the rope, the
manipulator itself does not need to be changed from the original model design.

One possible implementation of this is using a winch composed of two movable wheels
mounted on the rail, as illustrated in Figure 3.10. The wheels are pushed against each
other with the rope in between them. This creates a high tension between the rope and
the wheels. By rotating the wheels, the rope gets pulled with the wheels due to the high
friction. This design will require one motor in order to rotate the wheel and one motor for
pushing the two wheels tightly together. Springs are used to get desired force between the
wheels. In order to move the wheels away from the rope once the rope is tight, two extra
joints are needed as illustrated in figure 3.11. If each of these joints are controller by a
motor, this design requires four motors for each winch.

In order to tighten the rope at both ends of the rail, two winches like these are needed, one
on each end of the rail. Alternatively, a single winch can be positioned in the centre of the
rail. The two designs of winch on the rail rail are summarised in table 3.1.

28



Figure 3.10: Movable winch design

(a) Winch configuration operating rope. (b) Winch configuration out of the way.

Figure 3.11: Movable winch on gantry

Property Fixed winch Movable winch
N of motors per winch 1 4
Manipulator degrees of 3 2
freedom required
Manipulator joints 4 2
required

Table 3.1: Properties of the three winch designs

3.4 Design proposals
The previous three sections describes three different important design decisions that must
be made. By combining the the different solutions to a more total manipulator design, it is
possible to more easily compare them, and make an informed decision on what solutions
should be implemented to the SPOKe concept. As there are three different design aspects

29



each with several concepts for implementation, all possible combinations result in 20 dif-
ferent possible manipulator designs. This section will describe three of these, and present
them as proposals for manipulator design. Among these three, one is chosen to form the
basis for a physical prototype.

All three examples are based on bolt locking, as this is the only design capable of fulfilling
all three requirements of the securing mechanism. As the third requirement, ”ensure that
the rope does not loosen if the rope breaks at one point” is assumed critical, this is the
only viable designs among the three. In all three following examples, the bolt is assumed
to be attached used only on the outer ring. The motor inserting and pulling out the bolt is
assumed to be positioned fixed on the rail. The concrete design of this mechanism will not
be proposed here, and will have to be developed in the future.

3.4.1 Proposal 1: Extended arm, rope lock
This first configuration consists of extended rail and rope lock in the gantry robot. The
combination of the extension of the rail and using the lock inside the gantry robot enables
the manipulator to attach the rope to the ring structure using only two degrees of freedom.

(a) Bolt connection. (b) Extend Rail design (c) Winch in ganry robot.

Figure 3.12: The three design components in example 1.

Figure 3.13: Design proposal 1 for manipulator.

30



3.4.2 Proposal 2: Extended arm with winch on rail
The second design proposal for the manipulator consists of extending the rail, and using
a winch attached to the rail structure as illustrated in figure 3.15. In this proposal, the
only task of the gantry robot is to move the rope from the inner to the outer ring. This
enables the possibility for the gantry robot to be implemented as a passive component,
not requiring power transfer by positioning the drive train for the movement of the gantry
robot fixed to the rail. Not having power transfer to this moving component will can make
implementation easier and potentially make the system easier to maintain.

(a) Bolt connection. (b) Extend Rail design (c) Movable winch design.

Figure 3.14: The three design components in example 2.

The winch used in this proposal is the movable winch illustrated in figure 3.14c. Having
only one winch positioned in the centre of the rail allows the design to reduce the total
number of motors by four compared to attaching one winch at each end of the rail.

Figure 3.15: Design proposal 2 for manipulator. Only one winch, in the middle of the rail used to
tighten rope in both directions.

3.4.3 Proposal 3: Extra robot-arm and fixed winch on rail
The third proposal consists of a winch fixed on the rail and an arm attached to the gantry
robot. The arm has two joints, enabling it to attach rope to the winch which is positioned

31



higher than the rope attached to the ring, in order to not intersect it. Compared to he two
other proposals, this rail is easier to attach to the ring structure, as the grip about the ring
only requires one joint. As the gantry-robot is equipped with an arm, this example re-
quires power transfer to the gantry robot. The extra arm gives the total manipulator two
extra joints. The manipulator is this proposal is over actuated as it has four joints moving
in three dimensions. Although it is over actuated, the control of the manipulator can be
simplified by describing it as a combination of several simple control states. With this de-
sign, SPOKe system can be tasked with more complex tasks in the future, that can possibly
be easier to solve with an arm.

(a) Bolt connection.
(b) Stationary winch on rail de-
sign with arm.

Figure 3.16: The three design components in example 2.

The combination of these three design choices, are combined in example 3, illustrated in
Figure 3.16.

Figure 3.17: Design proposal 3 for manipulator.

3.4.4 Comparing the three proposals
The three designs are compared in Table 3.2. The table considers one motor for attaching
the bolt on the outer ring, and no bolt on the inner ring.

Comparing the three designs, it becomes apparent proposal 1 is has least complexity both
when it comes to number of motors and number of actuators required to do all required

32



Property Example 1 Example 2 Example 3
Power needed in gantry-robot Yes No Yes
N actuators needed total 8 11 8
N actuators for movement of rope 2 2 3
N actuators for tightening rope 2 4 4
Over-actuated movement No No Yes

Table 3.2: Properties of the three examples

tasks. Example 2 has the highest number of motors. This is a result of this design re-
quiring four motors for attaching the manipulator to the ring structure, and four motors
for the winch design. These motors does not bring much extra complexity from a control
perspective, as they only are required for mounting- and dismounting processes. Extra
motors does however bring extra cost to construction and extra overhead for maintenance.

When it comes to controlling the robot, having an equally actuated manipulator is a ben-
efit. For proposal 1 and 2, every position in configuration space corresponds only one
position in joint space. In proposal 3, which is over-actuated, control becomes more dif-
ficult. Every position in configuration space corresponds to infinitely many positions in
joint space.

The complexity of proposal 3 allows it to do more complex movements than the other
two proposal. Among the three examples, this is the only one capable of moving in three
dimensions. This extra capability enables the manipulator to do operations that the two
other designs can not. With the current tasks assigned to the manipulator however, this
movement is not needed. It is also not required in order to do other tasks already proposed
for the manipulator in the future, such as monitoring status of growth.

The viability of proposal 1 is dependant on the gantry-robots ability to tighten the rope.
The motor driving the gantry-robot will in this design require a larger force output than in
the other examples. For the full scale manipulator, this motor must be able to pull the 15 m
long rope to create a satisfactory tension. Assuming the mechanism for movement of the
manipulator is capable of producing the required force, proposal 1 is used for the further
work in this report.

3.5 Propulsion and sensory system

The choice of propulsion and sensory system is an important aspect of the design process.
The main challenge is controlling the movement of the manipulator in angular direction.
In this movement, the rail moves along the ring structure. This is challenging as the ring
structure, being submerged in water for long periods of time potentially has a slippery
and uneven surface. A second challenge is constraints on the geometry of the propulsion
system, due to the geometry of the ring structure and the ropes that need to be connected

33



to it. Movement of the gantry robot along the rail is less challenging as the rail has no
obstacles. Also, as the rail is not submerged in water over longer periods of time, it will
be less slippery.

The growth on the ring structure will potentially cause the ring structure to have a low
friction coefficient. According to the Coulomb friction model given in 3.5, in order to get
enough friction, a high force pushing the wheel to the ring is required.

ffriction = µP

Three different propulsion systems for the SPOKe manipulator has already been described
and compared: Designs based on two ”trilateral-wheeled robots” which are illustrated
in Figure 3.19b, a ”Stewart-Gough platform” illustrated in Figure 3.19a and the use of
a water-jet thruster where described and compared in the project report [1]. Both the
trilateral-wheeled design and the Stewart-Gough platform are based on increasing friction
by using actuators to create a force towards the ring structure from several angles. The
description of these three propulsion designs, are sourced from that report. Another option
for propulsion compared in this section is based on a gear and a roller chain. At the end of
this section, all four are compared.

Figure 3.18: Obstacles on the outer ring of the SPOKe system

Trilateral-wheeled robot

As the trilateral-wheel design is dependant on not slipping, the rotation of the wheels can
be used as a relatively accurate estimate of the position of the robot. An example of a
rod-climbing robot with wheels is the trilateral-wheeled climbing robot illustrated in Fig-
ure 3.19a [17]. In this design, the wheels are placed with 120◦ between them. Due to
the obstacles on the geometry of the outer and inner ring, implementation of the trilateral-
wheeled robot for the SPOKe system will require modification. These obstacles are illus-
trated in Figure 3.18. One of these obstacles is the carrier rope and it’s attachment point
on the ring structure. The beams connecting the inner and outer ring are also obstacles that

34



have to be avoided. The third obstacle is the connection point for the anchoring ropes of
the ring structure. In order to avoid obstacles while moving, two trilateral-wheeled robots
should be positioned in line.

(a) Trilateral-wheeled robot (b) Stewart-Gough platform.

Figure 3.19: Two propulsion systems

Stewart-gough platform

An implementation of this is is the Stewart-Goughs design robot, where two rings with
clamping mechanisms are moved relative to each other by linear actuators in parallel. A
spesific implementation is illustrated in 3.19b [18]. Its base design is a Stewart-Gough
platform, where a planes position and orientation is controlled by linear actuators in par-
allel. Because of this design, it is commonly named a Stewart-Gough robot (SG-robot).
This design allows the robot to be locked on to the ring with pads, that can be designed
to have high friction. As the robot at all times has one ring mounted at the ring, it will be
able to move with high precision, as the extension of the actuators can be measured with
high precision. Using this design for moving in tangential direction, the robot can use the
measurements from the actuators to get an accurate position estimate.

Having the linear actuators in parallel makes the robot capable of producing a large force.
This design does however suffer from the same limitation as the trilateral rod-climbing
robot when it comes to obstacles. In order to pass the obstacles illustrated in 3.18, there
needs to be developed a mechanism for opening one of these rings as a time. Obstacle one
is the anchor points connecting the ring structure to the mooring system. Obstacle two is
the support structure connecting the outer ring with the inner ring. Obstacle three is the

35



carrier rope attached to the cleats. On top of this, the linear actuators needs to be positioned
in a specific way. This means that the SG-robot needs to be developed further in order to
meet the specific requirements of the SPOKe geometry. Assuming that an independent
locking mechanism for the two rings can be solved simply with one rotational actuator on
each ring, the SG-robot would have a total of two rotary actuators and 14 linear actuators.
This robot has high potential when considering both precision and force output.

Thruster

The geometric limitations affecting the two actuator-models described previously are due
to the need of producing high friction. Having an actuator that is not dependent on friction
would therefore aid in avoiding this problem. An under-water thruster, like a water-jet or
propeller is therefore considered. This thruster can be placed on the outer part of the robot
arm. One downside with having a thruster as actuator is the fact that the position of the arm
is not a simple function of actuator input and actuator state. Another downside compared
to the previous two, is that the thruster does not cause the manipulator to lock on to the ring
structure. These two properties then needs to be achieved by other mechanisms. By using
a thruster, the arm will only need one actuator in order to move in tangential direction. If
the thruster can only produce force in one direction, two actuators are needed.

Gear and roller chain

The submerging in water will potentially cause shells and seaweed to grow on the ring
structure. This will cause trouble for a propulsion system based on a rack and a pinon.
If there are shells or other growth between the teeth in the linear gear, the connection be-
tween the gear and the linear gear can be poor. This can ultimately cause the gear to slip,
and make movement difficult.

Figure 3.20: Gear and roller chain

36



An alternative design to using linear gear, is using a roller chain. The the roller chain is
positioned along the ring structure with space between the ring and chain as illustrated
in figure 3.20. When shells and seaweed grow on a roller chain, the gear will be able to
operate the chain and push the growth out of it. By ensuring that there is space behind the
chain, this mechanism could work even with a lot of growth. Growth pushed behind the
chain will be pushed in to the space behind the roller chain and possibly detach. Using a
rotary gear as propulsion system allows the position to be estimated accurately by a rotary
encoder. As the gear locks the motor position to the ring, the movement can be done with
high precision.

Comparison

In table 3.3, the four designs are listed and several aspects are compared. In the project
report [1], using a gear with roller chain was not considered. The two designs based on
clamping the ring structure (Trilateral wheel and Stewart-Gough platform), suffers from
high complexity, while at the same time having a big challenge with obstacle avoidance.
The report therefore concluded to proceed using a water-jet thruster as propulsion system.
This will however require a complicated system of sensors for estimating the pose of the
manipulator. When including the gear and roller chain in the comparison, it becomes clear
that this is the alternative with the most benefits. It differs from the water-jet thruster
design in that it allows for higher precision position estimates because it has an encoder
locked to the gear. The movement in radial position can also be done using a gear and a
roller chain.

Design
Trilateral

Wheeled Robot
Stewart-Gough

platform
Water-jet
thruster

Gear with
roller chain

Friction
dependant Yes Yes No Yes
Number of
actuators 14 16 1 (2) 1
Obstacle

avoidance Difficult Difficult Easy Easy
Position estimate

accuracy High High Low High
Complexity High High Low Low
Includes gripping

mechanism Yes Yes No No

Table 3.3: Comparison of actuator models

3.6 Arm to centre of ring
As described in section 2.2, the rail is not parallel to the radial direction of the ring struc-
ture. This means that the rail is not positioned at the shortest distance from the inner- to the
outer ring. If the rail was positioned strictly radially, and had length equal to the distance

37



between the two rings, the rail would naturally keep the desired position. The rail would
this way be kept stable because of geometry constraints. As the rail in reality is off-angle
as illustrated in Figure 3.21, this property does not keep the position stable. Further, due
to the geometry constraints illustrated in Figure 3.18, gripping all the way around the ring
to keep the rail locked in the desired angle while moving will be difficult.

Figure 3.21: The angle offset between spoke and straight radial direction.

In order to fix this problem, the rail can be extended with an “arm” from the part of the
rail close to the inner ring, to the centre of the ring. This way, the manipulator will have
a point with a fixed position, and cannot move out of the desired angle. This arm can be
connected to a pole fixed to the ring structure. The manipulator will still be able to move
in angular direction, and the arm ensured that the manipulator keeps the desired offset
angle φ2. Another possible solution to this problem, is extending the arc length of the
mechanism holding the rail connected to the ring structure. By having a sufficiently long
arc length, the angle illustrated in Figure 3.21 will be held stable during movement about
the ring structure.

38



Chapter 4
Prototype

A prototype was developed to implement the design choices in example 1 described in
section 3.4.1. The main purpose of the prototype is to further explore the possibilities and
limitations of the SPOKe concept. At this stage, it was decided that the prototype should
be only a quadrant of the ring-structure. The mechanism for connecting a bolt through
the rope in order to attach the rope securely is not implemented in this prototype. Instead,
cleats are positioned both on the outer and inner ring. The cleats on the outer ring has teeth
for holding the rope tight, while the cleats on the inner ring has no teeth. This prototype
was not made to be waterproof as the cost of waterproofing would be out of budget.

4.1 Design

The prototype design is based on design considerations described in section 3.4.4, 3.5 and
3.6. A 3D model of the prototype was designed in the program Solidworks by Daniel
Bogen. The size requirement for the prototype is that it should be able to fit through a
normal-sized door, which is about 2.1 m tall. Restricting the radius to 2 m, the prototype
has a radius six times smaller than what is suggested by Bale [6]. The number of cleats
about the ring structure is equal what was used by Bale in his calculations. Many of the
size-choices are based on the dimensions of the components available. Based on the 3D
model, the physical prototype was also made by Danial Bogen.

The model of the prototype is illustrated in Figure 4.1. The material of both the ring and
the rail is aluminium, and the wheels between the rail and ring are made up of plastic. In
order to simulate the rope being fed from a vessel over the water surface, the prototype has
a pole from which the rope is fed down to the tool. Power transfer to the gantry robot is
connected to this pole.

39



Figure 4.1: Model of the prototype.

The translation gear and roller chain mechanism is implemented for movement in both
along the ring and along the rail. One roller chain is mounted along the outer ring, as
shown in Figure 4.2a. The gear is positioned behind the plastic protection cover. The gear
is pushed tight to the chain by springs. For movement pf the gantry robot, the roller chain
is mounted along the rail. The chain is connected to the gear with plastic wheels on each
side, as illustrated in Figure 4.2b, ensuring the gear and roller chain do not slip.

The mechanism for gripping the rope tight based on the design of a rope clamp with self-
breaking functionality as shown in figure 4.3a. When the clamp is not closed, the rope
moves though the tool with little resistance. When closed, the teeth on the clamp creates
high friction to the rope, effectively slowing down movement of the rope. As the rope
passes through the clamp when in locked state, the grip of the clamp tightens until the grip
stops the rope from moving. This locking mechanism only locks the rope from moving in
one direction and is disengaged by moving the rope in the other direction, or by pulling the
clamp. The implementation of this locking mechanism is shown in figure 4.3b. A spring
pulls the clamp, causing the clamp to lock by default. A stepper motor is used to push the
grip to open and close.

40



(a) Chain along outer ring. (b) Chain along rail, with gear.

Figure 4.2: Gear and roller chain implementations

(a) Rope clamp [19] (b) Rope clamp on prototype

Figure 4.3: Rope clamps

The manipulator and ring structure are two separate components, and the manipulator can
be taken on and off the ring structure. When the manipulator is positioned on the rail, it
can be locked in place by a grip. There are four grips on the manipulator, two on each
end of the rail. These grips are locked in place by a screw acting as a hinge, and a second
screw locking the grip in place. By taking out the bolt, the grip can move about the hinge,
and be locked in two different configurations, as shown in figure 4.4.

41



(a) Grip in closed configuration. (b) Caption

Figure 4.4: Prototype implementation of grip attaching manipulator to ring.

4.2 Electric hardware specification
The prototype is equipped with motors and sensors to enable controlling the movement.
The electronics is powered by a 30V power supply.

4.2.1 Motor and limit switches
The motors used to control the movement of the robot both in radial and angular direc-
tion are the 90W graphite brushed motors RE 35 from Maxon motor. The motors have a
nominal voltage of 30V. These motors can be controlled by controlling their input volt-
age. The stepper motor HSR-5990TG is used to push the grip to open and close. This
supply voltage for this stepper motor is in the range 6-7.4V, and it can be controlled using
a 50 Hz PWM signal. A stepper is a closed loop system with an integrated regulator. The
pulse-width of the control signal for these types of motors is mapped to a specific shaft
angle. At both ends of the rail, there is positioned limit switches, signalling the controller
when the gantry robot is positioned at the end of the rail. There are also one limit switch
on each side of the arc length. These sensors are used under initialisation of the system to
get to a defined position. The limit switches are also used to ensure the controller does not
destroy the manipulator by forcing movement beyond what is physically possible without
breaking the prototype.

4.2.2 H-bridge
A h-bridge is used to control the voltage input of the motors. A H-bridge is an electric
circuit that can control the sign of the output-voltage when given an input voltage, and two
control signals. The H-bridge can also stop the voltage from flowing through it, stopping
the motor. This allows the motor to be controlled to run in both directions, and to stop. In
order to control the force created by the motor, the power transferred to the motor is con-
trolled by turning the power output of the H-bridge off and on again quickly. This reduces
the mean power transfer to the motor, making it possible to effectively control the force it
produce. This power switching is done by the means of a Pulse Width Modulated (PWM)

42



A B M A M B
1 1 0 0
0 0 0 0
1 0 VCC M GD M
0 1 GD M VCC M

Table 4.1: H-bridge port value table

signal. A PWM-signal illustrated in Figure 4.5, is a rectangular pulse wave, described by
a frequency and a pulse width. By having a high frequency PWM-signal controlling the
H-bridge, the motor behaves similar to receiving a constant power input equal to the mean
power delivered by the PWM-controlled H-bridge.

Figure 4.5: PWM signal [20], frequency = 1/period.

The H-bridge used for this prototype is the ”Omega Verksted H-bridge”, rated for 19A
and 100V shown in Figure 4.6a. This H-bridge uses four MOSFETs in order to control
the voltage, and two switches in order to protect against short circuiting. The high voltage
signal for the motors are connected to port VCC M and GD M. The ports A and B control
the polarity of the output signal. When both ports have equal value, the output signal is
zero. The functionality of the A and B ports is of the H-bridge is given in table 4.1. The
PWM-signal is connected to port VCC.

This specific H-bridge requires 5V signals for the A and B ports. As the GPIO-ports of
the Raspberry Pi B+ has signals of 3.3V, the signal voltage needs to be amplified. A way
to do this is using a logic-level translator. For this prototype, a bi-directional logic level
translator is used. This translator takes in 3.3V, 5V, ground and is able to translate four
individual signals from 3.3 V to 5 V. This is enough to control both H-bridges. The 5V
power signal is produced by a 30V-5V DC-DC converter. The circuit containing these
components is illustrated in Figure 4.6b

The two LED components on the H-bridge caused a voltage drop which made it impossible
for this setup to properly set the A and B ports high. The two LEDs are therefore not added
to the prototype, and the circuit is instead open.

43



(a) Omega verksted H-bridge. (b) Motor driver card.

Figure 4.6: Control cards for the two DC motors.

4.2.3 Gear and Encoder
The HEDS 5540 encoder by Maxon Motor with a resolution of 500 is mounted on the
back of the motor. The gearhead “GP 32 A” from Maxon Motor, with a reduction of 23
is mounted on the motor. By counting both rising and falling edges of the encoder, this
gear-encoder combination allows the system to read the motor position with a resolution
of 46’000 ticks for one rotation. This resolution is higher than what is required for this
system, and can be scaled down in software. The gear reduction causes the index signal Z
from the encoder to be activated 23 times for each rotation of the shaft.

4.3 Dimensions
The dimensions of the prototype are listed in table 4.2. The parameters are related to the
prototype as illustrated in Figure 2.4, 2.5, 2.7, 2.3a and 3.21. The gear radius Rm2 is
not measured, but is estimated using equation 2.12 and 5.15. By moving the gantry robot
along the rail, the total change in shaft angle γ is estimated based on the data received from

44



the encoders and the change in r2 is known to be ltotal. The radius of the gear moving
along the ring structure was not estimated as the encoder data from that manipulator could
not be received in time.

Parameter Value Unit
r3 0.519 m
r4 2.01 m
ltotal 1.711 m
φ1 2.32 rad
φ4 0.63 rad
Rm1 0.0286 m
Rm2 Not estimated m
l1 157 mm
l2 60 mm
α1 0.078 rad
α2 0.116 rad

Table 4.2: Dimensions of prototype

4.4 Controller
The hardware has several requirements of the controller: 3 PWM signals, 4 digital out-
puts, 6 digital inputs and the ability to read encoder signals from two rotary encoders with
quadratic encoding. On top of this, it is desired to have a graphical user interface that can
give the user information about the state of the manipulator. The user should also be able
to start and stop the process by the push of a button.

The controller chosen for this prototype is the Raspberry Pi B+, with the Monarco HAT
(Hardware Attachd on Top) extension. The Monarco HAT extension gives the Raspberry
more precise input and output operations and mechanisms for handling short-circuits and
reverse polarity. The raspberry is practical to use in the prototype stage of development.
Other solutions considered is the use of an Arduino or a portable data acquisition module
(PDAM), for use with a computer over usb. Both these two alternatives are dependant on a
computer for writing, storing and compiling the program for the system. As this prototype
should be as stand-alone as possible, the Raspberry Pi with the Monarco HAT was decided
to be the solution most appropriate for this prototype.

4.4.1 Raspberry Pi
The raspberry Pi B+ is a small computer that among other IO-ports has USB, wireless net-
work card, HDMI. This computer also has 40 accessible pins, including 27 general purpose
input and output (GPIO) pins. The Raspberry Pi B+ also has dedicated connection points
for camera and multi-touch-screen. The computer can run most common programming
languages, and the GPIO ports are easy to control.

45



Port type Number of ports Description
Digital IN 4 3.5-30 VDC
Analog IN 2 0-10V / 0-20mA, 12-bit
Digital OUT 4 1 A, 5 V
Analog OUT 4 0-10 V, 20 mA
1W 5V OUT 1

Table 4.3: Available ports on the Monarco HAT

This computer lacks some functionality required by the physical prototype. It does not
support output signal modulated with Pulse Width Modulation (PWM) or quadrature sig-
nal decoding.

4.4.2 Monarco HAT
In order to extend the functionality of a Raspberry Pi computer, a standard for add-on
boards has been introduced named “Hardware Attached on Top” HAT. One module using
this standard is the Monarco HAT. The Monarco is equipped with its own micro-controller
that enables functionality that is not available in the Raspberry Pi. This includes hardware
counters that can be used for counting the signals from the encoders. The digital output
ports supports signals modulated using PWM for frequencies up to 100 kHz, up to 16
bit resolution. The communication between the Raspberry Pi and the Monarco HAT is
done over SPI. The open source library for the Monarco is created for the programming
language C. Based on this, Bjarne Kvæstad has created a wrapper for the programming
language Python. This wrapper is what is used in the software for the prototype.

The Monarco HAT communicates with the Rasperry Pi using the 40 pin header. Relevant
ports available on the Monarco Hat are described in table 4.3.

Figure 4.7: Monarco hat [21].

Not all Raspberry GPIO-ports are used by the Monarco. GPIO-Ports not used are 4, 7,
12, 13, 16-19, 22, 25 and 27. These are available for other purposes, and will be used for

46



the H-bridge to control the voltage sign. They are also used to measure the state of the
limit switches. The Monarco and Raspberry Pi ports used are listed in table 4.4. For the
Raspberry pi there are two different ways of numbering the pins, either by their position
on the board or by their GPIO number. The connection between the different electrical
components are shown in figure 4.8.

Figure 4.8: Connection of electronics scheme.

4.4.3 Raspberry Pi Touch Display and Kivy
For user input and displaying system state, the 7 inch official Raspberry Pi touch display
is used. This display takes 5V from the dedicated display power pins named P4 on the
monarco HAT. The communication between the screen and the Raspberry Pi B+ is done
over the display serial interface (DSI) screen-port. The display has a refresh-rate of 60 fps,
and has multi-touch capabilities for up to 10 inputs.

Kivy is an open source Python library developed in order to work with multi-touch dis-
plays such as the Raspberry Pi touch display. This library is is well documented and
enables quick and easy interface development. The library has several modules for cre-
ating a layout on the display on which different elements can be positioned. The layout
used in this prototype is the module ”BoxLayout”. The layout can be filled with different
elements such as sliders and buttons for touch input, or labels and plots for displaying
information.

The display on this prototype is illustrated in figure 4.9 and has a plot showing reference
and estimated position for both r2 and θ4. One label displays the numeric values of the
current estimation of r2 and θ4 and another label shows the current state of the system,

47



Hardware Port Usage
Monarco +24V IN +30V power supply
Monarco GND IN GND power supply
Monarco DOUT1 Gantry motor PWM
Monarco DOUT2 Ring motor PWM
Monarco DOUT4 Grip motor PWM
Monarco DIN1&DIN2 Gantry encoder A&B
Monarco DIN3&DIN4 Ring encoder A&B
Monarco 1W 5V OUT Grip motor VIN
Monarco GND Grip motor GND

Raspberry Pi 15(22)&22(25) Gantry motor A&B
Raspberry Pi 13(27)&11(17) Ring motor A&B
Raspberry Pi 32(12) Limit switch 1
Raspberry Pi 33(13) Limit switch 2
Raspberry Pi 35(16) Limit switch 3
Raspberry Pi 36(19) Limit switch 4
Raspberry Pi 7(4) Gantry encoder Z
Raspberry Pi 12(18) Ring encoder Z
Raspberry Pi 2(+5VDC) Encoder power
Raspberry Pi 1(+3.3 VDC) logiv-level converter LV
Raspberry Pi 6(GND) logic-level converter GND
Raspberry Pi 9 (GND) encoder and limit switch GND

Table 4.4: Table of ports used by the Raspberry Pi and the Monarco HAT.
For Raspberry Pi notation is BOARD(GPIO)

described further in section 5.2. The display also has two buttons, one green button acting
as both initialising and start button, depending on what state of the system. The other
button is a red stop button. The display also has a slider, making it possible for the operator
to change the finishing time used by the trajectory planner to calculate the trajectory, as
described in section 5.3.

48



Figure 4.9: Touch display layout.

49



50



Chapter 5
Control of robot manipulator

The goal of the SPOKe concept is to deploy kelp seeded rope and harvest the full grown
kelp in partly automated operations. In the full size SPOKe product, there are many op-
erating tasks that needs to be done in order to reach this goal. The tasks required for
deployment alone are summarised in the bullet-points below.

• The seeds must be attached to a carrier rope.

• The SPOKe manipulator that is stored on the boat has to be lowered and attached to
the ring structure.

• The seeded rope must be fed to the manipulator.

• The two ends of the rope has to be attached securely to the ring structure.

• The manipulator has to attach the carrier rope to the cleats on the ring structure.

• The manipulator must detach from the ring structure and be lifted up to the boat.

In addition to this, when harvesting the kelp, three additional tasks must be perforemed:

• The manipulator must detach the two ends of the carrier rope.

• The kelp must be harvested from the carrier rope and stored.

• The carrier rope must be detached from the anchor points on the ring structure

This work will focus on the task of attaching the carrier rope to the cleats on the ring
structure. It is assumed that the first end of the carrier rope already is attached before the
operation begin. Attaching the other end of the carrier rope to the ring structure is also not
considered.

51



5.1 Control problem in general

Before the operation starts, the robot has to be positioned in a defined state. This is
achieved by moving the manipulator to a position where two limit switches both are acti-
vated. The limit switches have a fixed position and defines the state of the manipulator.

In order to attach the carrier rope to the mounting points created by the clam cleats on the
ring structure, the manipulator must operate both in radial and angular direction. The tool
of the manipulator has to move the carrier rope between the mounting points on the inner
and outer ring without hitting them. This involves moving the tool both outwards and in-
wards. The manipulator also has to direct the rope around the clam cleat on the outer ring
in order for the rope to connect and attach. The rope must also be moved around the cleat
on the inner ring. The size of the clams must be known and represented as angle relative
to the ring structure. The inner clams and outer clams will not necessarily have the same
angle. In order to tighten the rope attached to the ring structure, the manipulator has to
grip the rope and tighten it about the cleat.

5.2 State machine

A state machine is a method of categorising movement in tasks, forming a high abstraction
level description of the operations performed by a system. The state machine describes the
high level operations done by each state, and the requirements for transitioning from one
state to the next. This allows for developing the details of the operations done by a state
independently of the other states. It is also a tool for describing the top level functionality
of a system, without requiring detailed description of implementation.

The movement described in the previous section can be considered a motion along the
shortest path from one point to the next, in addition to some movement that tightens the
rope about the clam cleat. The SPOKe concept is designed in such a way that the spokes
are parallel to the rail when the rail is positioned at the anchor-point for the rope, illus-
trated in Figure 5.1. This simplifies the point to point motion in all states and allows for
point to point motion in only one dimension at each state. Motion between the cleats are
then represented by movement solely in r2, while motion about the cleats can be repre-
sented by movement solely in angular direction θ4. These operations can be described by
a state machine as illustrated in Figure 5.2. Illustration of the behaviour of the six states
are shown in Figure 5.3 and 5.4. In state 2, the manipulator has to a distance equal the
length of the outer clam plus the diameter of the tool, in order to move past the clam. The
angle θ4 must then increase by α1 + dt/r4. As the manipulator in state 5 moves about the
inner clam, the change in θ4 must be equal α2 + dt/r3. Both in state 4 and 5, the starting
point of the calculated trajectory is unknown until entering the state, as the value of r2 is
dependent on when the rope has sufficient tension.

52



Figure 5.1: Spokes are parallel to the manipulator.

1
Move

radially out

2
Move

angular outer

3
Tighten rope

4
Move

radially in

5
Move

angular inner

6
Tighten rope

Initial state

Initialising
End

C1

C1

C2C1

C1

C2

Init button pressed

Start button pressed

Rope attached to
last cleat

Figure 5.2: State machine for manipulator operation

53



Transition condition Description
C1 The controller is at the end of the trajectory and

the error on the two state variables are less than
a specified threshold.

C2 The system detects that the velocity in r2 is slowing
down, while the signal to the motor is constant.

Table 5.1: State machine transitions

(a) State 2 (b) State 3 (c) State 4

Figure 5.3: The three states attaching the rope about the clam on outer ring.

54



(a) State 5 (b) State 6 (c) State 1

Figure 5.4: The three states attaching the rope about the clam on inner ring.

The system starts off in an initial state where the configuration of the robot is unknown.
The system will stay in this state until the initialise button is pressed. The system then
goes into initialising state, where the manipulator moves to a known configuration. The
manipulator remains in this configuration until the start button is pressed, which makes
the state machine transition to the first state in the operational-state loop. The conditions
for transition between the operational states are shown in table 5.1. When the system has
moved along the entire path it transitions to the end state, where it stops.

5.2.1 Error States

During the operations of the system, there are several error states which the system can
reach. In order to represent the transition between the normal operation of the system and
the error states, all the states 1-6 are represented as a super-state named ”Operational”.
The state machine describing the error states is illustrated in Figure 5.5. The transitions
between the states are explained in table 5.2

55



Operational

Initializing

Stop

StuckIn contact

Emergency
stop

EC1

EC2
S1

EC5

EC3

EC2

EC1

EC2

EC4

EC2

EC5

Figure 5.5: State machine for error states

Transition condition Description
S1 Start button pressed
EC1 Stop button on touch display pressed by operator.
EC2 Start button on touch display pressed by operator.
EC3 Movement slowing down relative to control input,

or current spike to motor.
EC4 Contact sensor activated.
EC5 Emergency button pressed.

Table 5.2: Transitions for error state machine

Stuck

The movement of the manipulator can be obstructed, rendering the robot unable to move
in a certain direction. There can be several causes of this obstruction, for example the
carrier rope may be stuck and not being fed to the robot, an object may get stuck in one
of the chains or an object may be positioned in the trajectory of the robot. This condition
can be detected by measuring the current flowing through the motors, and detecting a
motor current above a certain threshold. If the system reach this state, the manipulator
should stop, and the person operating it should find the source of the error. Once the error
source is handled, the system should continue its work by a press of the start button on
the display. This sensor was not implemented to the prototype. Using a hall-effect based
sensor connected to the analogue input ports on the monarco is a good and non-invasive
way of measuring the current to the motors.

56



In contact

During the operations done by the manipulator, the position is estimated based on the sig-
nals form the encoder. As the controller might miss some of the signals from the encoder,
this position estimate can drift away from the actual position. This drift can at one point
be significant enough to cause the manipulator to try to move the tool through the cleats.
If the cleats are strong enough, this can be detected as the error state Stuck. If the cleats
are weak however and printed in PLA plastic as the ones on the prototype, the cleats may
be destroyed before the stuck condition is met. This state can be implemented like the
stuck state, only with different a transition condition. This condition can be sensor input
from a simple contact sensor positioned on the tool of the manipulator. A sensor like this
is however not implemented to the prototype.

Stop

During the operation of the manipulator, the person operating the system should at all
times be able to stop the movement. This can be done by pressing the ”stop” button on
the touch display. When the system is in the stop state, the motors are turned off. By
pressing the start button, the system transitions back to the state in which it left when the
stop button was pressed.

Emergency stop

In the emergency stop state, power to the motors is stopped by a physical power switch.
This button can be pressed at all times and is the most secure way for the operator to stop
the manipulator movement as it is physical and involves no software.

5.3 Trajectory of Point-to-point motion
As the robot moves through the states, the movement of four of the six states can be
described as point to point trajectories as described in section 1.2.7. The trajectory is cal-
culated as the robot enters the state based on the configuration of the robot. As the two
dimensions r2 and θ4 are linearly independent, the trajectory of the two dimensions can
be calculated independently. This section will describe how the trajectory is calculated in
one dimension.

By describing the trajectory as a linear segment with parabolic blends (LSPB), the manipu-
lator can accelerate, hold a constant velocity before it decelerates to full stop. The concept
of LSPB is described in section 1.2.7. The trajectory is described by three equations, one
for each of the three segments of the trajectory illustrated in figure 5.6, where the segments
are separated by dotted lines. When calculating the LSPB trajectory, constraints are set on
initial conditions, final conditions as well as the constant velocity. When calculating the
parabolic components of the trajectory, parabolic blend time needs to be defined, as it is
one of the parameters used to calculate the parabolic trajectory. Blend time is the amount
of time the parabolic components of the trajectory takes from start to finish. This way,
the blend time dictates how quickly the trajectory accelerates. As the LSPB trajectory is

57



t
0

t
b

t
f
-t

b
t
f

trajectory

Figure 5.6: Plot of a LSPB trajectory.

defined by an initial configuration q0, final configuration qf , the constant velocity V as
well as the start and end time, the blend time is dictated by the relation between these
variables. Assuming the blend time is equal for both parabolic blends, it can be calculated
by equation 5.1.

tb =
q0 − qf + V (̇tf − t0)

V
(5.1)

By describing the parabolic blends as a quadratic differential function, the first blend func-
tion can be calculated by spesific values for initial position, initial velocity and the desired
constant velocity after the blend. These constraints on the quadratic trajectory can be de-
scribed in matrix form as shown in equation 5.2. The three variables can be solved for,
using the three conditions as shown in equation 5.3 and 5.4. The trajectory can then be
described by equation 5.5. In these equations, q0 = q(t = t0) represents the positional
variable at time zero.

1 t0 t20
0 1 2t0
0 1 2tb

a10a11
a12

 =

q0v0
vb

 (5.2)

M1a1 = b1 (5.3)

a1 = M−11 b1 (5.4)

q(t) = a10 + a11t+ a12t
2 , for t ∈ [0, tb] (5.5)

58



The trajectory for the segment of linear velocity is calculated by the equations 5.6 and 5.7.

a2 =

[
a20
a21

]
=

[
1
2 (q0 + qf − V tf )

V

]
(5.6)

q(t) = a20 + a21t , for t ∈ (tb, tf − tb) (5.7)

The last parabolic blend transitions the trajectory from constant velocity to a desired po-
sition and velocity. The constraints for this part of the trajectory is the constant velocity
at time t = tf − tb and a defined position and velocity at time t = tf . These constraints
are described in matrix form in equation 5.8 and the unknowns can be solved similar to
equation 5.4. Here vf−b = v(t = tf − tb). The resulting trajectory is given in equation
5.9.

0 1 2(tf − tb)
1 tf t2f
0 1 2tf

a30a31
a32

 =

vf−bqf
vf

 (5.8)

q(t) = a30 + a31t+ a32t
2 , for t ∈ [tf − tb, tf ] (5.9)

The final trajectory is a function of these three trajectories, and is given in equation 5.10.
The seven constraints required to calculate this final trajectory are q0, v0, t0, qf , vf , tf and
V . An alternative to using the desired constant velocity as a constraint is using the blend
time as a constraint. The desired constant velocity can then be calculated as a function of
tb using equation 5.1.

q(t) =

 a10 + a11t+ a12t
2 , for t ∈ [0, tb]

a20 + a21t , for t ∈ (tb, tf − tb)
a30 + a31t+ a32t

2 , for t ∈ [tf − tb, tf ]
(5.10)

Limitations for the constraints

In order to calculate a LSPB trajectory, the choice of constraints is not arbitrary. The
blending time is bounded by lower and upper bounds as described by equation 5.11 [12].
If the blend time is larger than half of the total time for the trajectory, there will be no
linear segment in the trajectory, and the trajectory will not be LSPB. If the blend time on
the other hand is zero, the resulting trajectory is purely linear. Using equation 5.11 and
5.1, this restriction on tb can be described as a restriction on the desired constant velocity
as given in in equation 5.12. This restriction on the desired velocity is illustrated in Figure
5.7. In order for the trajectory to in fact be LSPB, the constraints therefore must be chosen
according to equation 5.12.

0 <tb ≤
tf − t0

2
(5.11)

qf − q0
tf − 2t0

<V ≤ 2(qf − q0)
tf − t0

(5.12)

59



0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

trajectory

(a) V =
qf−q0
tf−2t0

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

trajectory

(b) V =
1.5qf−q0
tf−t0

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

trajectory

(c) V =
2qf−q0
tf−t0

Figure 5.7: LSPB for three different values of V.

5.4 Controller
The controller is based on the state machine described in section 5.2. In state 1, 2, 4 and
5, a point to point trajectory is created based on initial configuration when transitioning to
the state, and the desired position at the end of the state. A PID controller is implemented
for controlling r2, and a separate PID controller is created for controlling θ4. The output
from the PID controller is calculated by equation 5.13 and 5.14. This controller uses
the difference in position, velocity and accumulated difference in position between the
estimated position and the reference, to create a control signal for the motor.

[h]u(t) = Kpe(t) +Ki

∫
e(t)dt+Kp

de

dt
(5.13)

e(t) = q(t)− qd(t) (5.14)

The LSPB trajectory created for point to point motion is used as the reference to the PID
controllers. At all times, only one variable needs a trajectory. The other variable has a
constant desired position. The PID controller is chosen as controller in order to follow
the time varying trajectory and to ensure the reference is reached, even when exposed to
slowly varying external forces as the force acting on the manipulator from the rope. The
PID controller used in the Python program is the PID library created by Caner Durmusoglu
[22].

5.4.1 Program implementation
The controller described above is implemented in Python 3 in the code and is given pub-
lished to a public GitHub repository [23]. The program is divided in the seven modules
illustrated in Figure 5.8. The program is made up of two processes running simultane-
ously, the one controlling touch inputs and updating the screen is named SPOKe GUI.
This process registers button presses, movement of the slider and updates the plot, shown
in Figure 4.9. When a button is pressed or the slider is moved, this information is trans-
ferred to the second process using classes from the Python module “multiprocessing”. The
second process is a loop in the module named “SPOKe Controller”. This loop is an imple-
mentation of the state machine described in Section 5.2. The SPOKe Controller processes

60



SPOKe_GUI SPOKe_Controller SPOKe_IO

SPOKe_Geometry

pymonarco

Trajectory_PlanningPID

Figure 5.8: Python program architecture.

imports functions from the other modules. The SPOKe IO module controls the ports of
the Monarco HAT and the GPIO pins of the Raspberry Pi. It uses the pymonarco module
to read sensor data and to control the speed and direction of the two DC motors, as well
as the reference for the stepper-motor. The Geometry module contains specific geometric
properties of the SPOKe prototype, and has functions for the geometric transformations
described in Section 2.3. The module Trajectory Planning is use to calculate LSPB trajec-
tories as described in section 5.3. This module is also used to calculate the position along
a given LSPB trajectory, at a given time.

Encoder implementation

As described in section 4.4.2, the Monarco HAT has functionality for decoding quadrature
encoding signals. This implementation takes in the A and B signals and returns the number
of counted signals using quadruple evaluation. As the encoder rotates clockwise the value
increases, while it decrease as the encoder rotates counter clockwise. The value returned
by the Monarco HAT is two bytes, which results in a value in the range 0 - 65’535. When
the counter moves past the size limit, it continues to count from 0. As the counter counts
backwards past the smallest value, it continues from 65’535. As the gear used has a reduc-
tion of 1:23, the encoder has a resolution of 500. Combined with the quadruple evaluation,
each rotation of the shaft results in 46’000 ticks. This resolution makes the system able to
detect position with a resolution of 360◦/46′000 = 7.8◦ ∗ 10−3. This resolution is a lot
higher than what is needed by this system. The incoming counter value is therefore scaled
down by a factor of 46, resulting in a resolution of 0.36◦.

The module “SPOKe IO” receives the Monarco HAT counter value and use the difference
in counter value between each call to determine what direction the encoder rotates, com-
pensating for the situations where the Monarco counter overflows. The pseudo code for
this behaviour is shown in algorithm 1 from line 4 to 13. In this algorithm the lines 1 to
3 describe globally accessible variables. If the absolute value of the difference between
the newest value from the Monarco counter and the previously received value is greater
than 23’000, corresponding to a rotation of 180◦, the most probable reason for this integer

61



Algorithm 1 update counter

1: previous received value
2: counter scaling rest
3: local counter
4: procedure UPDATE COUNTER(ENCODER NUMBER)
5: encoder number
6: new value = monarco.read counter(encoder number)
7: diff = new value - previous received value
8: if abs(diff) < 23’000 then
9: increase = diff

10: else if new value < previous received value then
11: increase = diff + 65’536
12: else if new value > previous received value then
13: increase = diff - 65’536
14:
15: counter scaling rest += increase % 46
16: rest overflow = counter scaling rest // 46
17: increase += rest overflow
18: counter scaling rest -= rest overflow * 46
19: local counter += increase // 46
20: previous received value = new value

overflow. If the new value is smaller than the previously received value, the rotation is
positive and has passed the integer overflow value of 65’535. The real increase is there-
fore what is shown in line 11 of the algorithm. Similarly, if the new value is more than
23’000 greater than the previously received value, the counter has passed zero, counting
down from 65’535. The real difference in value is therefore what is given in line 11.

Before the increase is added to the local counter in the “SPOKe IO” module, the values
are scaled down by a factor of 46. This scaling is shown in algorithm 1 in line 15 to 19.
The down-scaled increase in count value is then added to a globally accessible variable
named “local counter”. Finally, the algorithm stores the newly received value, so that it
can be compared next time the algorithm is called.

Dictated by line 8 in the algorithm, the “Update counter” function only works as intended
if the shaft rotates less than 180◦ between each function call. This function must therefore
be called often in order for it to work properly. As there are two encoders, one set of vari-
ables needs to be stored and used for each encoder. The accessible variable “local counter”
can be transformed to shaft angle in radians through eq. (5.15).

θshaft = local counter ∗ 2π ∗ 46
46000

(5.15)

As some ticks might not be read properly, an error can accumulate throughout the run-time
of the system. In order to compensate for this, every time the index signal Z is high, the

62



algorithm “index value high” shown in algorithm 2 is run. First the counter is updated by
running algorithm 1. The variable firstZTickValue1 is equal to the value of local counter1
the first time the index signal is triggered after initialisation. When the index signal is
high while the encoder has counted a number close to a full rotation (1000/23), the value
zCount1 is changed according to the direction of rotation, as shown in the lines 5 to 9 in
the algorithm. This variable represents the number of full rotations for the encoder since
the first time the index signal was high. This way it can be used to represent the correct
number of ticks the counter should have counted at the exact time the index signal is high.
If the counted values for the encoder is not close to a full rotation when z is high, the
zCount1 variable remains unchanged. This is typically the case in a situation where the
shaft rotation changes direction and hit the same index signal twice. Once the value for
the index counter is updated, the local counter is set to the correct value for the given
number of index signals. The counter scaling rest variable is also reset. As this algorithm
is specific for encoder number 1, an algorithm with similar behaviour and its own variables
is implemented for the second encoder.

Algorithm 2 index value1 high

1: firstZTickValue1
2: ZCount1
3: procedure INDEX VALUE1 HIGH
4: update counter(1)
5: diff = local counter1 - firstZTickValue1 - zCount1 * 10′000

23
6: if diff > 500/23 then
7: zCount1 += 1
8: else if diff < -500/23 then
9: zCount1 -= 1

10:
11: local counter1 = firstZTickValue1 + zCount1 * 10′000

23
12: counter scaling rest = 0

63



64



Chapter 6
Experiments

This chapter contains description of experiments that should be performed in order to val-
idate the usability of the physical design of the prototype, usability of the sensory system,
implementation of the state machine with LSPB trajectory, motor control and behaviour
of the controlled system. In these tests, the threshold value for θ4 in order to transition
between states is 0.0023 radians. This corresponds to a positional accuracy of 5 mm along
the outer ring. The threshold value for r2 is set to 5mm.

6.1 Movement along trajectory without motor input
The first experiment addresses the physical movement functionalities of the prototype as
well as the accuracy of the position estimation. The experiment involves moving the ma-
nipulator in angular direction from the limit switch on the right to the one on the left with
r2 constant. Next, the tool moves from the limit switch on the inner part of the rail, to
the outer limit switch while the angle θ4 is constant. During this movement, the encoder
values will be used for position estimation. The resulting position estimate at the end of
the two movements are recorded. These values should be the maximum possible value
of θ4 and r2 respectively. This experiment is done 20 times, and the position estimate is
reset before each experiment. As the movement is done by hand and not by motor control,
the velocity along the trajectory will vary between experiments. The resulting positional
estimates should not vary much, in order to be reliable enough to be used as inputs to the
controller.

6.2 State machine trajectory
Assuming the controller is capable of keeping the position of the manipulator equal to
the trajectory, the program should start, and create the entire trajectory required for the
manipulator to attach the rope to the ring structure. The trajectory generation should be
initiated by pressing a button on the touch screen. For the test to be success-full, all

65



trajectories should be LSPB trajectories starting at the position of the manipulator when
entering a new state, and ending at the desired position. For the gantry robot, this means
that the trajectories will end at r2 = 0 or r2 = ltotal. For the movement along the ring
structure, this means that the desired position will increase with either α1 + dt/r4 or
α2 + dt/r3. The trajectory should stop once the last clam has been reached, which is for
θ = π/2

6.3 Following trajectory in angular direction
This experiment involves calculating and following a trajectory varying in θ4. This be-
haviour is the behaviour required by the system in state 2 and 5, as described in section
5.2. The trajectory is calculated based on the starting position and the desired final value.
The total length of the trajectory is equal to the size of the outer clam cleat. Both the
reference and the positional data for the system during the experiment is stored. This ex-
periment is successful if the controller is capable of following the trajectory with little
error and little over-shoot. The test ends when the transitional condition for the controller
in state 2 and 5 is met, namely that the trajectory is at an end, and the error in θ4 is below
the threshold of 0.0023 radians.

6.4 Tightening rope
The third experiment involves tightening the rope, as well as moving the tool along the rail.
This movement is similar to what is required for the system to operate state 6 and 1 as it is
described in section 5.2. This includes locking the grip around the rope, moving the tool
to tighten the rope. As the current sensor is not implemented, the rope will be tightened
using a constant signal to the DC motor of 10% duty cycle for 2 seconds before the grip
is released. After this, the trajectory for r2 should be calculated from the position of the
manipulator after the rope is tightened to the desired final position. The manipulator should
then follow this trajectory. The desired position for the angle θ4 is constant. The positional
data of the manipulator during this operation is stored, as well as the desired trajectory. For
this test to be successful, the error in θ4 should always be below the threshold of 0.0023
radians. The grip should be able to hold the rope tight enough to create a high tension for
the rope before releasing it. The error in r2 should be low while following the trajectory,
and most importantly the gantry robot should not touch the limit switch on the end of the
rail. The threshold value for r2 of 5mm should be achieved before the experiment ends.

6.5 Rope deployment
The last experiment involves the entire process for deploying the rope to the ring structure
from start to end. The system starts at state “Initial state”, with one end of the rope already
attached to the inner circle. By pressing the init button, the manipulator moves to the
position where the limit switch on the inner side of the rail and the right side or the ring
is active. Next, the start button is then pressed, starting transitioning the system to state 1.
The system then iterates through the states, until the rope is tightened about the last clam

66



cleat. After this, the system transitions to the state “End”. For this test to be successful, the
whole deployment task of the manipulator must be successful. This implies that the system
is capable of attaching the rope to all the clams of the ring structure. The limit switches
should not be touched under the experiment, and the clams should not be touched by the
tool. When the rope is attached about the last clam, the manipulator should have a constant
position in both r2 and θ4

67



68



Chapter 7
Results

The prototype was finished one week before the deadline for delivery of this master thesis.
That week the Monarco HAT got destroyed due to a short circuit when switching the GPIO
pins. As there was no time to receive new hardware in time, many of the results where not
possible to attain. This section presents the positional data for r2 in the first experiment,
as well as the trajectory plots for the second experiment.

7.1 Movement along trajectory without motor input

The manipulator was able to move unrestricted in both r2 and in θ4 direction. The resulting
position estimation at the end point of the movement in r2 are illustrated in the histogram
in figure 7.1. The size of the bins in this histogram is 40 cm. During three of the tests,
the counter on the Monarco reset and stopped counting. The three bins only containing
a single value contains the results for these unsuccessful tests. The resulting values for
the successful tests are shown in the histogram in figure 7.2. The size of the bins in this
histogram is 5 mm. Not counting the three faulty results, the mean value is 1.7114 m, with
a variance of 6.8 ∗ 10−6m. Not counting the outliers shown in the figure 7.2, the mean
value is 1.7123 with a variance of 4.6 ∗ 10−7m.

69



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

m

0

2

4

6

8

10

12

14

16

18

Figure 7.1: Position estimation in r2 including results from tests with error.

1.702 1.704 1.706 1.708 1.71 1.712 1.714

m

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 7.2: Position estimation in r2

70



7.2 State machine trajectory
A plot of the trajectory for r2 and θ4 for the six first states is shown in figure 7.3. The
trajectory for r2 and θ4 from start to beginning of the run-time of the program is shown in
figure 7.3.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

r
2
 [m]

4
 [rad]

Figure 7.3: Trajectory for manipulator in r2 and θ4 though 4 states.

0 50 100 150 200 250 300 350 400 450 500

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

r
2
 [m]

4
 [rad]

Figure 7.4: Trajectory for manipulator in r2 and θ4 from the beginning of the trajectory.

71



72



Chapter 8
Discussion

8.1 Prototype functionality

The prototype proved to be able to move the tool effortlessly along the rail, as well as
moving the rail radially along the arc. This renders the prototype able to physically move
along the desired trajectory for employing the carrier rope to the ring structure. This be-
haviour shows that the design of the prototype based on extending the rail with movement
based on gear and roller chain is promising.

8.1.1 Encoder values

The decoding of the encoder signals resulted in an accurate estimate for the position at the
end of the trajectory in r2. The variance of the estimate was 7.2 ∗ 10−3 mm, correspond-
ing to 34 ticks. Among the 20 tests of the encoder, three of the tests where faulty. This
was due to the counter on the Monarco HAT resetting during the run time. The counted
values received from the monarco counter then ended up being the difference in counts
since last function call, and not the accumulated ticks received over time. This resulted
in the SPOKe IO module not changing the position estimate after the reset, making the
estimated position stuck at the last estimate calculated before the reset. Having a fail-rate
of 15% is not satisfactory, and if this was to happen while the system was controlled by a
controller, this would most likely result in a crash.

The encoder for θ4 was not tested due to a short circuit destroying the Monarco HAT. A
replacement Monarco was not attainable before deadline. This encoder is identical to the
one used for measuring r2 and the implementation of reading the two encoders is also
identical. It is therefore reason to believe results for this encoder will be similar to the
results achieved for the encoder on the gantry robot.

73



8.1.2 Motor control
The stepper was never tested with the 5V output of the Monarco. As the stepper motor
is rated for voltages in the range 6-7.4 V, a separate power will most likely be required
to control it. The 5V power supply for the stepper motor was chosen based on inaccurate
information about the requirements for the motor.

When testing the H-bridge from “Omega Verksted”, it became apparent that it did not
work as expected. Using a PWM signal on the v cc port did not make it possible to control
the velocity of the manipulator. Instead, the motor had the same speed for all pulse widths
tested for the PWM signal. By keeping the vcc port high, and using PWM signals for A
and B, the H-bridge was able to both control the motor direction. As the Monarco HAT
only has four digital out ports capable of sending PWM signals, and the two DC motors
and the stepper motors requires a total of five PWM signals, it is not able to control all
three motors. This problem can be solved in two different ways.

Switching circuit

Between the Monarco and the H-bridge, there can be positioned a switching circuit. The
behaviour of this switch should be as described by table 8.1, and the switch time must be
high enough to switch the PWM signal. This can be achieved using a dual Solid State
Relay (SSR) as the ASSR-4128-002E illustrated in figure 8.1. This circuit requires an
inverter, for example the SN74HC14AN. This way, a single PWM signal can be switched
between the A and B pins on the H-bridge. As the A and B connectors, this circuit will give
the behaviour required to control the H-bridge. One signal from the controller can then
be used to decide the motor direction, and a single PWM channel can be used to control
the motor velocity in both directions. The only change required to the Python program
using this method is when controlling the motor direction; only one pin needs to be set,
compared to two in the current implementation. As this is fairly easy to implement, this is
the recommended solution to the PWM shortage problem.

Figure 8.1: Switch circuit for control of H-bridge [24].

74



EN A B
1 PWM 0
0 0 PWM

Table 8.1: Switch behaviour

Micro-controller

Another approach for controlling the manipulators is using a micro-controller with at
least four PWM-capable ports. A micro-controller capable of this is the widely used AT-
mega328P. Communication with the micro-controller could be made as simple as sending
six signals; four for directional data for the two DC motors, and two PWM signals repre-
senting the desired pulse-width. The four directional signals can be interpreted as digital
signals, and the PWM signal can be interpreted as an analogue input. This functionality
can quickly be implemented in a micro-controller. A more accurate implementation would
however be to use serial communication between the micro-controller and Raspberry pi.
The Monarco HAT uses all the I2C capable pins of the Raspberry Pi, and these pins are
advised not to be used for other purposes. Using the monarco serial communication using
RS-485 is still possible. Using serial communication with the micro-controller, accurate
data describing desired pulse width and motor direction can be communicated. Four PWM
signals from the micro-controller can then be used to control the DC-motors. By imple-
menting this using serial communication, code for the communication must be added to
the controller running on the Raspberry Pi. The behaviour of the micro-controller must
also be implemented.

Using a micro-controller for the implementation of motor control takes away one key
advantage of using the Monarco HAT. Using this implementation, the only benefit of the
Monarco is the decoding of the quadrature encoder signals. This can also be achieved on
the micro controller. By implementing quadrature decoding on the micro-controller, there
is no longer a use for the Monarco HAT in this prototype.

8.1.3 State machine

As the positional data for both r2 and θ4 was never received, the transitional conditions
for the state machine described in section 5.2 could never be achieved and tested. By not
requiring the position in r2 and θ4 to be below a certain threshold in order to transition
between states, the trajectories created by the state machine could still be tested. As the
transitional condition for state 3 and 6 is solely dependant on sensory data, the state-
machine transitions away from these states as soon as it is transitioned to them. These two
states therefore has no impact on the plot of the trajectory. The plot in figure 7.3 shows
the desired trajectory for the first states. The plot illustrates that the trajectories are LSPB
trajectories, and behaves as specified. Figure 7.4 shows that the trajectory behaves as
specified for many iterations of the state loop described in section 5.2. From time t ≈ 380,
the speed of the trajectories is doubled.

75



8.1.4 Controller
The PID controllers for controlling the manipulator to follow the desired trajectories could
not be tested. As the Monarco was short circuited and got destroyed, the control of the
motors where never tested. The PID library implemented has however been tested for
a motor controllable in both direction and velocity and worked as specified. Tuning the
PID controller has to be done once the control of the motors is fixed. Once the control of
direction and position of both motors can be achieved, simple control of the manipulator
will be quick to implement as the trajectories are calculated by the state machine.

8.2 Prototype relevance for full scale
The prototype was developed in order to receive relative information about the needs and
potential of a potential full sized implementation of the SPOKe system. There are however
several differences to the test of the prototype compared to the proposed full sized system
effecting the relevance of the prototype. These are listed below.

• The desired tension of the rope for this prototype is a lot smaller than what will be
desired tension for the fully sized system. The relevance of the prototype depends
on the ability to scale the propulsion system and rigidity of the system to enable
the required increase in tension. The propulsion design for this prototype should be
capable of scale to produce a higher force output without requiring much change.

• The rings of the prototype are made out of bent aluminium pipes. These have small
irregularities compared to a perfect circle arc, and the rigidity of the aluminium
cause the shape to not vary during testing. The proposed material for the rings of
the full scale system is HDPE plastic with a diameter of 25 m. Depending on how
these rings are reinforced, these ring shapes will deviate from a perfect circle in a
varying extent. The prototype manipulator in this work is designed with springs to
allow the ring structure to have some deviation from a perfect circle arc. However
if the full scale system has large deviations, this design may not be satisfactory.

• The reinforcement of the prototype is made out of aluminium beams. This support
structure for the SPOKe system is proposed to be made out of HDPE. The prototype
was not intended to give data on the requirements of the support system for a fully
sized system. When a model is made using HDPE, different considerations must be
made in relation to the structural integrity of the ring structure.

• The prototype has not implemented the mechanism for attaching the rope to the
cleats using a bolt as described in 3.4. Instead, the prototype uses cleats on both the
inner and the outer ring, with the outer cleats being clam cleats. The prototype does
therefore not give information on whether the bolt design is a viable alternative or
not.

• As the ring structure of this prototype is made up of aluminium, the buoyancy forces
are smaller than the gravitational forces, causing this prototype to sink. This proto-
type can therefore not be used to test behaviour of the system floating in water. The
materials and electronics of this prototype is also not waterproof.

76



8.3 Test relevance for real case scenario
The test environment used in this work included many simplifications relative to a real
case scenario. Below is an evaluation of the assumptions made during the test of the
manipulator.

• The test scenario assumes no water and no current, meaning no external forces act-
ing on the manipulator other than gravity. In reality, the forces acting on the ma-
nipulator due to drag on the manipulator from the current may be significant. In a
scenario assuming constant current, the drag effect due to the current will vary over
time. The force required by an actuator positioned 12.5 m from the centre of the
ring to compensate for current of 1.5 m/s acting perpendicular to the spoke manip-
ulator is 38 N [1]. While this is not a large force, it will affect the control of the
manipulator and should be compensated for.

• The test assumes no current and no waves. This results in the ring structure having a
constant orientation and position during the test. This cause the gravitational forces
on the manipulator to be constant, and other external forces to be zero. In reality,
both the position and the orientation of the ring structure will move relative to the
seabed over time. For a manipulator to operate under these conditions, a more ad-
vanced controller might be necessary to compensate for the variation in force acting
on it. To what extent the ring structure will change pose, and in what rate is not
considered in this work. The effect from this factor is therefore not known.

• The propulsion system created for this prototype was made to be able to work under
conditions where the ring structure is subject to algae and shell growth. The test
scenarios in this work does however not put this property to a test.

• The test assumed one end of the rope already was attached to the ring structure, and
did not consider the challenge of attaching the other end to the ring structure after
the rope was deployed. For the real case scenario, this challenge must be solved.

• In a system with current, the rope may have to to be semi-tight during the whole
process, in order to not intertwine with the already attached rope. This effect is not
experienced on this prototype.

8.4 Future work
• Finish the prototype and perform the tests described in this thesis. This includes do-

ing changes required to control all four motors and using a current sensor to measure
the current flowing to the motors.

• Consider using a more complex trajectory generator creating trajectories for the
manipulator to move in more than one dimension than at a time.

• Implement the bolt mechanism for securing the rope to the ring structure.

77



• Find a way to connect the two ends of the rope to the ring structe, one before and
one after the attachment of the rope.

• Do structural integrity analysis for the plant made up of HDPE, as well as the ma-
nipulator.

• Estimate the normal un-regularities of circular HDPE structures, and create a proto-
type ring structure consisting of this material.

• Look in to a robust mechanism for attaching the manipulator to the ring structure.

• Create a water-proof prototype of the manipulator.

• Perform tests of the behaviour of the manipulator under water, with and without
current.

78



Bibliography

[1] A. T. Eggesvik, “Robot for automated seaweed deployment and harvesting,” tech.
rep., NTNU, 2018.

[2] A. Chapman, P. Stévant, J. Schipper, Øyvind Kråkås, B. Aspøy, and A. Stavland,
“Markedsvurdering for bærekraftig algedyrking i integrert multitrofisk akvakultur
(imta)-anlegg.,” tech. rep., Møreforskning, 2014.

[3] T. H. Nilsen, “Analysis of the kelp farming industry in norway with regard to concep-
tual design of vessles for harvesting and deployment operations.,” tech. rep., NTNU,
2018.

[4] T. Olafsen, U. Winther, Y. Olsen, and J. Skjermo, “Value creation based on produc-
tive oceans in 2050,” tech. rep., Sintef, 2012.

[5] T. Searchinger, C. Hanson, J. Ranganathan, B. Lipinski, R. Waite, R. Winterbottom,
A. Dinshaw, and R. Heimlich, “Creating a sustainable food future,” tech. rep., World
Recources institute, 2014.

[6] E. S. Bale, “Development of area efficient and standardized structures for large-scale
macroalgae cultivation,” tech. rep., Sintef, 2017.

[7] S. E. Solutions, “Production site.” www.seaweedenergysolutions.com,
2018. [Online; accessed 4-December-2018].

[8] V. fiskeredskap, “Production site concept.” vaerlandetfiskeredskap.no,
2018. [Online; accessed 4-December-2018].

[9] At-Sea, “Production site.” https://sioen.com/en/news/
at-sea-turnkey-farm, 2019. [Online; accessed 16-June-2019].

[10] Sintef, “Sintef - MACROSEA.” https://www.sintef.no/projectweb/
macrosea/, 2019. [Online; accessed 27-May-2019].

[11] I. Wiik, “Concept development of details for macroalgae cultivation - an in-depth
studies of development and testing of rope attachment, deploying and harvesting in

79

www.seaweedenergysolutions.com
vaerlandetfiskeredskap.no
https://sioen.com/en/news/at-sea-turnkey-farm
https://sioen.com/en/news/at-sea-turnkey-farm
https://www.sintef.no/projectweb/macrosea/
https://www.sintef.no/projectweb/macrosea/


an automatized macroalgae cultivation [summer intern report, macrosea project],”
tech. rep., Sintef, 2018.

[12] M. V. Mark W. Spong, Seth Hutchinson, Robot Modeling and Control. JOHN WI-
LEY & SONS, INC., 2005.

[13] O. A. Olsen, Industrielle målemetoder. Odd Arild Olsen forlag, 2015.

[14] Hengstler, Enkoders programme. Hengstler, 2006.

[15] Dynapar, “QuadratureEncoding.” https://www.dynapar.com/
technology/encoder_basics/quadrature_encoder/, 2019. [Online;
accessed 2-June-2019].

[16] SVB, “Clam cleat.” https://www.svb24.com/product/gallery/1488,
2019. [Online; accessed 2-June-2019].

[17] S. H. Lee, “Design of the out-pipe type pipe climbing robot,” tech. rep., Andong
National University, 2012.

[18] O. R. Rafael Aracil, Rouque J. Saltarén, “A climbing parallel robot,” IEEE Robotics
& Automation Magazine, pp. 16–22, 2006.

[19] G. Climbing technology, “Rope Clamp.” https://www.grube.eu/
forestry/rope-climbing-equipment/rope-equipment/
rope-clamps/3882/ct-rollnlock-rope-clamp-en-567/
en-12278, 2019. [Online; accessed 5-June-2019].

[20] AndroidDev, “PWM.” https://developer.android.com/things/sdk/
pio/pwm, 2019. [Online; accessed 2-May-2019].

[21] M. S. Group, “Clam cleat.” https://www.monarco.io/, 2019. [Online; ac-
cessed 5-June-2019].

[22] C. Durmusoglu, “PID library.” https://github.com/ivmech/ivPID/
blob/master/PID.py, 2019. [Online; accessed 15-Feb-2019].

[23] A. T. Eggesvik, “Production site.” https://github.com/
AndreasTEggesvik/SPOKeControl, 2019. [Online; accessed 13-June-
2019].

[24] m. Avago, “Avago SSR.” https://no.mouser.com/ProductDetail/
Broadcom-Avago/ASSR-4128-002E?qs=9%2FrGSQZ%
252BqohR4F3xbo8K1w%3D%3D, 2019. [Online; accessed 13-June-2019].

80

https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
https://www.svb24.com/product/gallery/1488
https://www.grube.eu/forestry/rope-climbing-equipment/rope-equipment/rope-clamps/3882/ct-rollnlock-rope-clamp-en-567/en-12278
https://www.grube.eu/forestry/rope-climbing-equipment/rope-equipment/rope-clamps/3882/ct-rollnlock-rope-clamp-en-567/en-12278
https://www.grube.eu/forestry/rope-climbing-equipment/rope-equipment/rope-clamps/3882/ct-rollnlock-rope-clamp-en-567/en-12278
https://www.grube.eu/forestry/rope-climbing-equipment/rope-equipment/rope-clamps/3882/ct-rollnlock-rope-clamp-en-567/en-12278
https://developer.android.com/things/sdk/pio/pwm
https://developer.android.com/things/sdk/pio/pwm
https://www.monarco.io/
https://github.com/ivmech/ivPID/blob/master/PID.py
https://github.com/ivmech/ivPID/blob/master/PID.py
https://github.com/AndreasTEggesvik/SPOKeControl
https://github.com/AndreasTEggesvik/SPOKeControl
https://no.mouser.com/ProductDetail/Broadcom-Avago/ASSR-4128-002E?qs=9%2FrGSQZ%252BqohR4F3xbo8K1w%3D%3D
https://no.mouser.com/ProductDetail/Broadcom-Avago/ASSR-4128-002E?qs=9%2FrGSQZ%252BqohR4F3xbo8K1w%3D%3D
https://no.mouser.com/ProductDetail/Broadcom-Avago/ASSR-4128-002E?qs=9%2FrGSQZ%252BqohR4F3xbo8K1w%3D%3D


N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lt
et

 fo
r 

in
fo

rm
as

jo
ns

te
kn

ol
og

i o
g 

el
ek

tr
ot

ek
ni

kk
In

st
itu

tt
 fo

r 
te

kn
is

k 
ky

be
rn

et
ik

k

M
as

te
ro

pp
ga

ve

Andreas Torgrimsen Eggesvik

Robot for automated seaweed
deployment and harvesting

Masteroppgave i Kybernetikk og robotikk
Veileder: Morten Omholt Alver, Torfinn Solvang

Juli 2019


	Preface
	Introduction
	Motivation
	Basic Theory
	Workspace and operational space
	Joint variable, Joint space configuration space
	Inverse kinematics
	Over actuated system
	Velocity kinematics
	Control allocation
	Path and Trajectory planning
	Rotary Encoder

	Problem description
	Outline

	Current SPOKe concept
	Geometry
	Modelling, Workspace and joint variable of the SPOKe system
	Coordinate transformations
	Design limitations

	Extending SPOKe design
	Securing rope
	Clam cleat based connection
	Bolt design

	Connecting rope
	Extended rail
	Robot arm on the gantry robot

	Tightening rope
	Winch on boat
	Winch in the gantry robot
	Winch on the rail

	Design proposals
	Proposal 1: Extended arm, rope lock
	Proposal 2: Extended arm with winch on rail
	Proposal 3: Extra robot-arm and fixed winch on rail
	Comparing the three proposals

	Propulsion and sensory system
	Arm to centre of ring

	Prototype
	Design
	Electric hardware specification
	Motor and limit switches
	H-bridge
	Gear and Encoder

	Dimensions
	Controller
	Raspberry Pi
	Monarco HAT
	Raspberry Pi Touch Display and Kivy


	Control of robot manipulator
	Control problem in general
	State machine
	Error States

	Trajectory of Point-to-point motion
	Controller
	Program implementation


	Experiments
	Movement along trajectory without motor input
	State machine trajectory
	Following trajectory in angular direction
	Tightening rope
	Rope deployment

	Results
	Movement along trajectory without motor input
	State machine trajectory

	Discussion
	Prototype functionality
	Encoder values
	Motor control
	State machine
	Controller

	Prototype relevance for full scale
	Test relevance for real case scenario
	Future work

	Bibliography

