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Abstract

The recent developments in autonomous package delivery drones show promising results, but

potentially face limitations when it comes to their maximum distance. In this thesis, the

possibility of using public communication to aid in this investigated. This investigation is

realized using a simplified example in the simulation environment Gazebo. It is tested whether

a drone can be made to autonomously detect and land on a bus equipped with a landing platform

on its roof, using computer vision.

Abstrakt

De nylige utviklingene i autonome pakkeleveransedroner gir lovende resultater, men har poten-

siellt begrensninger når det gjelder maksimal avstand de kan dra. I denne oppgaven skal jeg ta for

meg muligheten til å bruke offentlig kommunikasjon for hjelpe med denne begresningen. Denne

forskningen er gjennomført i formen av et forenklet eksempel i simuleringsprogrammet Gazebo.

Det er testet om en drone kan detektere og lande på en buss utstyrt med en landingsplatform,

ved hjelp av datasyn.
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Abbreviations

Pose = The combined vector of position and orientation

SLAM = Simultaneous Localization and Mapping

VSLAM = Visual Simultaneous Localization and Mapping

KF = Keyframe

FOV = Field of view, angle of visibility spanned by a camera

LSD = Large-Scale Direct Monocular SLAM

PTAM = Parrallel TRacking and Mapping

SVO = Semi-direct visual odometry

DSO = Direct Sparse Odometry

DL = Deep Learning

ML = Machine Learning

AR = Augmented Reality

SD = Standard Definition: 360p, 4:3 aspect ratio

HD = High Definition: 1080p, 16:9 aspect ratio

FPS = frames per second (framerate)

POV = Point of view

GPS = Global Positioning System

GNSS = Global Navigation Sattellite System

UGV = Unmanned Ground Vehicle

UAV = Unmanned Aerial Vehicle

AUV = Autonomous Underwater Vehicle
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Chapter 1
Introduction

There has been great strides in the the creation of autonomous drones. As the cost of both drones

and cameras has greatly reduced, the resulting potential for new applications are vast. Drones

made to be autonomous (capable of operating without direct human control) is one of these.

Without direct human control, the use of them for autonomous package delivery is a popular

modern use.

1.1 Recent development of autonomous drones

Simran Brar (2015) describes the recent development of drones for package deliveries, and the

firms that take this approach. Amazon, as the largest online retailer (Simran Brar (2015)), are

among the most notable in this subject with its recent "Amazon prime air" which was launched

in (cite år). "Amazon Prime Air" has been the most public with its research into this technology.

As a majority of the packages ordered through Amazon are fairly small, a large majority of them

can be delivered using drones ?.

Additionally Google has been working on its package delivery project "Project Wing" since

2011. FedEx and DHL among other firms have considered or worked on package delivery

drones as well (Simran Brar (2015) and Vincent and Gartenberg (2019)). "Amazon Prime Air"

however seem to have come the farthest, claiming on a conference this June 5th ? that it will

launch this new delivery service "within the coming months" (Vincent and Gartenberg (2019)).

To summarize, the field of autonomous drones is a state of the art field with possibilities

several businesses are trying to take advantage of. Amazon state that the drone package service
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Chapter 1. Introduction

that will be releaseed within the year (2019) will be using visual techniques to stay robust and

avoid obstacles, and will have a range of 25 km (Wilke (2019)).

1.2 Range limitation and proposal to mend it

This range limitation on the drone is seemingly vast, but will be in this paper considered as an

obstacle. Traveling vast distances while performing tasks and calculations can render a huge

drain on a battery. As the exact technical challenges related to this are known, some assumptions

are made:

• The limitation in the range of the drone is a technical one. It could be the case that this

limitation is mainly caused by legal or safety related issues. This is however assumed not

to be the case.

• The limitation is due to the battery-life of the drone. It could be the case that the limitation

was mainly due to the reach of a signal necessary to communicate with the drones. This

is assumed not to be the case.

With these assumptions made, it is proposed to mend this issue using collective communication

and visual techniques. Could the drone identify vehicles on the way to its destination and use

them for transportation? The drone could identify public communication, namely busses, and

then potentially land on them. Busses often travel for farther distances than the mentioned limit

for drones. This could serve the purpose of using them for transportation, but additionally the

bus could be equipped with technology to charge the battery on the drone while the drone is

landed on it. The technical challenge of this can be split into two problems:

• Identifying the bus: This does not just entail correctly identifying the correct type of public

communication, but also identifying the correct right route. What will be investigated in

this thesis is if this is possible using computer vision, how it can be done and what the

modern ways of doing this entail.

• Landing on the bus: How much of a challenge this is would depend to a large degree on

the type of tracking/detecting implemented for it. What will be investigated in this thesis

is if this can be performed accurately using solely computer vision, and what that would

involve.
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1.3 Application

These are both points that make use of computer vision techniques, and this is the direction

they will be attemptedly solved in this thesis. In this work the feasibility of these two points

will be discussed, using a simplified example. Additionally the field computer vision and

image recognition and the state of the art use of these technologies are discussed. As the field

of VSLAM and computer vision for object avoidance is also heavily related to the field of

autonomous drones, it is explained in the appendix ?.

1.3 Application

The example is investigated using the following tools and software.

1.3.1 ROS

The the major programming will be done using ROS: the Robot Operating System (for more

information about this, see Quigley et al. (2009)). ROS is to be precise not specifically an

operating system, but a baseline program that helps coding in multi thread system, as well

as a resource for easy usability and easy implementations of common algorithms. With ROS

defining the bottom layer of the software, it also serves as a way to keep track of the different

additional programs dependencies (called ROS packages), as well as how the can be used with

each other using what they refer to as topics and services. In this project I mainly used ’ROS

Indigo’, which is an older release of the software, however the amount of packages available for

the ’Indigo’ release justified this decision.

1.3.2 Gazebo

Gazebo is a standard simulator that is often used back to back with ROS, for several use cases

(Koenig and Howard (2004)). It provides a 3D world with a physics engine, where one can

spawn 3d models with actuators, generate sensor signals etc.

The Parrot AR-drone is a currently discontinued consumer quad-copter drone. This drone

was a popular product, mounted with a camera, and controllable using a cellphone for more

information about this product, see ?. Gazebo is issued with as a 3D model of this drone, that

can be controlled in Gazebo. This model of a drone is what will be mainly used for the tasks

presented in this thesis. The drone is equipped with two cameras (one front-facing, and one
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Chapter 1. Introduction

facing downwards), an IMU (intertial measurement unit) and GPS (global positioning system).

The technicalities of these products will be explained further in the sections below.

More about the specifications of the Parrot AR-drone can be studied in .1. For more

information about ROS and Gazebo, see Quigley et al. (2009) and Koenig and Howard (2004).

1.4 Simplified problem that will be considered

Figure 1.1: A different view of the environment
createdf for the simulation.

For this thesis, the problem will be simplified

into the map that can be seen on figure 1.1 and

more descriptively on figure 1.2. The drone

starts at one (x=0,y=0), and needs to make

its way to the goal (x=0,y=50). It does this

by traveling along the road. The presence of

the road along the y-axis at x=20 is assumed

known, however the presence and the position

of the bus is not. Otherwise, recognizing the

road, a well as the obstruction, would be a

great addition but is beyond the scope of this

paper (see section ?? for further work). The

bus is also assumed stationary, however the

challenge relating to the bus moving would

potentially not make a large difference in the

usability of what is presented. More about this

is discussed in section 5. More information

about the bus and the drone models and what

they are equipped with will be explained in

section 4.

On its way, the drone needs to detect the

presence of the bus, interrupting its current

path plan (ie. towards the goal at (x=0,y=50). Using some sort of visual technique it needs to

guide its way to the position of the bus, and then land accurately on top of its landing platform.
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1.4 Simplified problem that will be considered

This essentially splits the problem into three parts.

This problem and the test landscape shown in 1.2 was designed the way it is due to a couple

of requirements that was needed to be fulfilled:

• The test can not solely consist of a drone and a vehicle starting a certain distance apart

with a couple of changed initial parameters, because a movement of the drone needs to

be taken into account as well. A slow detection algorithm would be detrimental in real

life situation, and only real movement and maneuvering by either the drone and/or the bus

would recreate this.

• The goal and starting position should be a certain distance away from each other, creating a

distance that is obstructed an object. This obstruction is not necessary, but creates the need

for some maneuvering from the drone as well as a reasoning behind it. This maneuvering,

essentially an initial reorientation and two left turns, make the drone potentially detect the

bus from several angles and positions. Both along the road and not.

• To make the environment more lifelike and show the location of the road clearly, the

minimalistic road was added.

• In order for as many objects as possible to be trackable or discernable with a camera, as

much detail as possible should be spread out. This especially concerns the area close to

y = 60, as this is the direction the drone will be facing.

• Too many objects can not be placed within a field of view, as a certain amount of 3D detail

can make the Gazebo simulated footage (as well as the entire simulation) lag or stutter.

The amount of objects placed in the area along y = 60 is on the verge creating lag (that

is given the performance of my system which the simulation was running on 6). This is

why the rather large tower and two silos were added.

• For the sake of showing its relation to a real world setting, placing more 3D object in order

to make it look more like a real life environment as possible is desirable. However this

severely limited by potential for lag in the simulation. As not much detail is placed along

the negative y-axis, some is detail is placed there.

• Items can not be placed more than 50 meters away, as this is seemingly the maximum
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Chapter 1. Introduction

rendering distance for the simulated Gazebo footage. Scenery suddenly appearing as one

moves closer might not big problem but it can be an issue with tracking applications.

Figure 1.2: Map of the Gazebo environment that will be used as a simplified problem, rotated for a better
view of the environment.

1.4.1 Scope of this thesis

In order to deal with this problem from all angles, several things could have been worked on.

Some notable points are:

• In the simplified example the bus is assumed stationary. A moving bus could raise the

question of whether or not the drone could remain stationary on a landing platform while

the bus is moving, and under what conditions. This however will not be discussed in this

thesis.

• More accuracy and better performance could potentially be achieved combining several

techniques from different fields, but this will not be discussed.

• There are severel rules and regulations about the use of drones. Newer rules and regulations

about the use of drones in Norway require them not to be used within an arguably large

distance away from people and vehicles. Legalities and issues similar to these is also a

problem for other firms attempting to do perform a drone package delivery (Simran Brar

6



1.4 Simplified problem that will be considered

(2015). Proving the feasibility in the terms of safety or lack of liability will not be

discussed, being beyond the scope of this paper.

What this thesis will discuss is limited to the problem described in the subsection above,

using the Gazebo environment. To what degree this relates to the real world potential issue of

drone package delivery over long distances will discussed more in section 5, however this will

not be the main focus of this work.

1.4.2 Structure of this thesis

This thesis will in section 2 explain the field of computer vision with the main focus on

object detection. The newer field of visual SLAM (simultaneous localization and mapping),

will additionally be explained in the appendix .2.1 due to its inherent relationship to the path

planning and object avoidance used by autonomous package delivery drones.

The results and reasoning behind the techniques used to solve the problems will be explained

in section 4. The results will then be discussed in section 5. In section ?? a conclusion based

on the work in this thesis will be presented.
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Chapter 2
Computer vision for recognition

2.1 Camera Anatomy

In order to gather information about the real world using a camera it can be helpful to first

understand how a camera works.

The projective space

Images are basically created everywhere as light bounce off from everything in all wavelengths

creating a uniform light exposure - a unsharp, blurry image. Focusing the image through a lens

would however make it sharper. That is what a pinhole camera would do, which is essentially

just a hole. The pinhole camera wouldn’t gather much light, nor be very sharp, but it would

create an image.

x a

f f

b

d

Pinhole

Figure 2.1: Pinhole camera model

The image will be created a distance f (known as the focal length) away from the hole,
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Chapter 2. Computer vision for recognition

upside-down. Instead of dealing with the upside down projection, lets assume that the image is

being created on an image plane a distance f infront of the hole (rendering their size the same),

and lets call the hole the ’camera center’. This assumption will only simplify, if you dont care

about how it is infact an upside down image. This is in effect a projective transformation from

P3 to P2. For a an explaination of the projective space see 2.1.1.

Taking into account the triangles of the geometry we get that x1 = f X2
Z . Extending this

into 3D we get the equality below. The coordinates in capital letters denote the position in 3D

space, and the ones in lowercase represent the ones on the image. f is the focal length, and z is

introduced to keep track of the dept (Scelizki (2011) chapter 1).


x

y

z


=


f 0 0 0

0 f 0 0

0 0 1 0





X

Y

Z

1


Definition of the Projective space 2.1.1. Unlike the Euclidian spaceR2 of cartesian coordinates,

the projective spaceP2 describe a point on the 2Dplane using homogenous coordinates, projected

from a 3D point. This entails that any point x̃ can be thought of as a vector, from the image

center to this point, and all vectors in this direction maps to the same 2D point. Or in other

words:

x̃ = (x̃, ỹ, w̃) ∈ P2 7→ x̃ = [x̃, ỹ, w̃]

s.t .

(x̃, ỹ, w̃) = λ(x̃, ỹ, w̃)∀λ ∈ R \ 0

One can easily transfer back and forth between the protective frame and euclidean frame

using that x̃=(x̃,ỹ ,̃z,w̃)7→x=(x̃/w̃, ỹ/w̃, z̃/w̃) ∈R3

A lens, bending all light from an object into a smaller space, gathering more light, would

render a brighter picture. And give us more trigonometry to keep in mind, but basically give the

same effect.
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2.1 Camera Anatomy

Perspective camera model

The model called the perspective camera model uses the projective framework by introducing

that the camera image center is a frame like any other, C, with the wide spanning image plane

with its center at z=1 away fromC. Placed on this image plane is the frame that is playing the part

of the image/sensor itself. In order to simplify the image planes coordinate system to something

more easily scalable, the origin I is moved to the top right with its axis u and v spanning the

image.

In other words we get the two transformations below, one for transforming from 3D to 2D,

the other transformation from the normalized image plane to I.

ũ =


fu s cu

0 fv cv

0 0 1



1 0 0 0

0 1 0 0

0 0 1 0


x̃

Lets scale from meters to pixels. Using the new coordinates u and v with its origin to the

top left of the image plane, as well as working with the resolution in both directions ρu and ρv,

we get the following coordinate transformation.


u

v

w


=


1
ρu

0 0

0 1
ρv

0

0 0 1



x

y

z



u

v

w


=


1
ρu

0 u0

0 1
ρv

v0

0 0 1



f 0 0 0

0 f 0 0

0 0 1 0

︸                               ︷︷                               ︸
K


R t

01x3 1


−1

︸                                                ︷︷                                                ︸
C



X

Y

Z

1


The intrinsic parameters of a camera is given and/or needs to be found beforehand, before

anything more can get done. This will give you the camera calibration matrix K . This describe
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Chapter 2. Computer vision for recognition

things that are innate and unchangeable about the camera itself. The new fu and fv denotes the

vertical and horizontal scale. cv and cu are the optical counterpoints of the image. S is the skew

parameter; if the image is not orthogonal to the z-axis, resulting in somewhat of a distortion.

This is not an ideal parameter to have a great value of. There are also radial and barrel distortions

that can arise from non-optimal cameras, but in effect will appear to some degree in all cameras.

The effect of these other distortions can sadly not be mended in the matrix transformations like

the rest, but is instead usually undistorted beforehand using a seperate procedure for that.

K =


f 0 cu

0 f cp

0 0 1


In order to find out howmuch distortion is present, aswell as all other intrinsic camera parameters,

we calibrate the camera using software such as matlab or opencv. This is typically done using

pictures of a chessboard, with its size and dimensions already known.

Further explanations about how this relates to the calculation of 3D point placements is

described in the appendix section .2.1.

Using the calibration matrix K , one can among other things calculate the field of view of the

camera, and the angle associated to a certain pixel position. Using the calculations above one

can also use this to place the points found on an image in 3D space. This is the technique used

by the drones to avoid obstacles, and is explained in the appendix .2.1.

2.2 Classical Computer Vision

Of all the tasks a computer might perform, object recognition and analyzing a scene remains

one of the most challenging. Even if the recreation of a scene using the techniques described in

.2.1 in the appendix are successful, it does not provide any understanding of what the objects

in scene are. There are several reasons why object recognition is difficult. One points is

that there is a large degree of variability within what could be determined as the same object.

Several seemingly different things can be considered a table for instance, even the same table

can be oriented and placed in such a way that it can be hard to recognize. Additionally, objects

can occlude each other, making eg. having a certain body part visible not a prerequisite for

12



2.2 Classical Computer Vision

something to be recognised as a human (Scelizki (2011) p.577).

"Object detection" is the problemof locating an already specified object, wanting the potential

position of this object within an image. If there is a specific physical instance of an object we

need to locate, the problem is referred to as "instance recognition". Instance recognition can then

be thought of as the next step, as having detected the object is often necessary before attempting

to recognize a certain instance of it. There are other types of recognition problems as well, such

as "category recognition" (for more on this, see Scelizki (2011) chapter 14). This section will

mainly describe the potential frameworks for performing object detection.

Performing object detection can be broken up into two major categories: using classical

computer vision methods and neural networks. In the following section object detection using

classical methods for object detection will be explained, followed by how this is done using

machine learning.

Classical computer vision utilize several arguably simple methods for interpreting an image.

In this section a couple of them will be explained, followed by how they can be used for object

detection.

2.2.1 Filtering

Filtering has several uses in computer vision. It can be used to remove noise and high frequency

detail. This can be realised on an image by calculating new image values for a pixel by letting it

be a function of the average of those surrounding it. This is how it works in a general sense, but

more complexities allowing for maintaining sharp edges etc. exist (Scelizki (2011) chapter 3.).

These remaining sharp edges can be further used in a an edge detector.

When a certain object needs to be tracked, knowledge about its distinct color can often

be present. Using this, one can also use filtering to separate this color from the background.

Leaving one only with the pixels that are important. This can be distinguished using a range

in RGB values, but additionally the color space can be converted into HSV (hue, saturation,

lightness) or HSV (hue, saturation, value). These are alternate representations of the color space

and can be filtered as well. These other representations can among other things make it easier

to filter out grayscale color ranges (Scelizki (2011) chapter 3).
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Chapter 2. Computer vision for recognition

2.2.2 Edge detection

Edges can be described as a rapid intensity variation on an image (Scelizki (2011) chapter 4). In

other words, this can be described as the rate of change in the intensity of the image at different

points, or the gradients. We can describe this using a gradient vector J(x) = ∇I(x) = ( ∂I
∂x , ∂I

∂y )(x)

with I being the image intensities (image brightness, in the grayscale case this would simplify

into being the numerical pixel value), and x being the pixel location. (Scelizki (2011) Chapter

4).

Using a calculation such as this, edge detectors can look at neighbouring pixels and see

compare their intensities in order to detect edges. Additionally, usig this one can seperate the

countour of a shape wanted to distinguish.

If one wanted to find the outline of a blue table, one could start with using a color filter, in

order to then use the edge detector. A framework much like this could be used to provide eg.

the corner points of a table, if its color is distinguishing enough.

2.2.3 Key-points and features

Feature detection and matching are an important section in the field of computer vision, and

is used for several applications, such as image stabilisation and image stitching. A certain

point in the image that stand out, fullfilling some criteria doing so, is called a key-point. This

is essentially a point of interest, and can be used to for tracking. A ’feature’ of an image is

essentially a keypoint being noted and saved, but additionally a detailed description of this part

of the image (known as a desctiptor) is accurately created and stored.

In order to collect these features, one do what is called feature detections. When performing

feature detection, points of interest is identified. These are often chosen due to distinctive part

of the image in the surrounding area of the feature. An example of this is a point feature, using

which one usually describe the surrounding couple of pixels. However this surrounding grid of

pixels (or pixel "patch") need to be different enough from the surrounding pixels, in order to not

be misplaced. These point features can be used to relocate themselves on a scene from another

POV, and find a sparse set of corresponding locations in different images. There are several

different types of features, mainly different due to their different descriptors. The features are

often described by their appearance using the patch of pixels surrounding them. Edges are

another, and can be described by the entire shape against another. For instance could the shape
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2.2 Classical Computer Vision

of a mountain be used as a feature against the background that is the sky. These and more can

be used to analyze pictures and compare them. This would involve finding one feature from one

image in another, and require an accurate feature description.

Patches with large contrast are the easiest to localize. Straight lines suffer from what is

called the aperture problem, in that the gradient in this patch only change in one direction, so

a placement along this line is hard to do. They can infact only be placed along this line in

the orthogonal directon (ie. given that the coordinate of the orthogonal dimension is known).

A feaure that is easier to localize needs changing gradients in two directions significajntly

differnet. How much the gradient changes in directions would depend on the size of the patch,

and introduce the topic of scale invariance. In order to take into account the different potentional

scale of features, one could choose features at different scales. However, it is found that it is more

efficient to extract features that are stable in both localization and scale instead. Another problem

that arise in addition to scale invariance of a feature is rotation invariance, this can be solved

using feature descrpitors that are rotationally invariant, but a better way is found to estimate

a dominant orientation, and use that in the feature desctiptors. So once a feature is detected,

the feature is stored by first finding a re-scaled and re-oriented version with a patch around the

point in question. Additionally, in order to be invariant to changes in lighting (ie. shadows

and the like, can make the feature patch look different) a feature needs to be made invariant to

these changes. This is done in different ways in the different popular feature descriptors. The

popular feature descriptor SIFT(Scale invariant feature transform) for instance simply calculate

the image intensity gradient for the pixels on its patch. This can have the effect of it being

invariant to light changes, as eg. a shadow would not necessarily effect the change in gradient

between the pixels. SIFT computes the intensity gradient in 16x16 patch around the point. It

additionally stores the info of the associatated four quadrants of the patch. All of these values

are saved and a part of the descriptor.

As there are several feature detectors and descriptors, choosing which one to use is an

important task. This is usually solved checking the "repeatability" of the detector, ie. checking

how many of the same features are found in an image transformed in a random way. Even

though diffrerent choices are made in regards to this, depending on the application, Schmidt

Bohr Baukhage (2000) claim that certain operators work best for the feature detection.
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2.3 Tracking

2.3.1 Feature tracking

There are two ways of doing feature tracking: independently find features in all images, and

then match these using their descriptions and the other which is tracking the features. The other

is more used with video, when the next frame is fairly similar to the previous. Here the features

proximity to the location of the one one in the next frame is used to make this process easier. A

search area around the features previous position is used for this. As noise and motion can have

changed the feature, it wont have the exact same description when found again in comparison

to what is stored in the database, but when the likeness between the two is above a cedrtain

threshold it is considered a match. For more ifnormation about this see Scelizki (2011).

2.3.2 Optical flow and tracking

To estimate motion between images an accurate error metric must be chosen. Depending on the

complexity of the motion and precision wanted, several methods can be used. The most general

and challenging version of all of these is the problem of optical flow, which entails estimating

the motion at every pixel. As opposed to the tracking of features, optical flow usually do not

save accurate feature descripter of the keypoints it use. Instead it usually involves minimizing

the brightness or color difference between corresponding pixels summed over the image. This

can be refered to as "brightness constancy assumption", assuming no shade or anything similar

changing the keypoint being tracked. The image intensity (ie. lightness) is tracked assuming

only a change in its position. This is however not enough constraints to solve the problem

(Scelizki (2011) chapter 8.4). There are several algorithms in this subfield, that all take different

assumptions about the problem, making them the appropriate choice in different situations

(Scelizki (2011) chapter 8.4).

Optical flow is a method to discern the movement in images such as edges, and is a technique

within the field of image processing. There are several good algorithms in this field, however

one that is wanted to mention is the Lukas Kanade method. The Lukas Kanade method looks at

image patches of certain features, assuming that motion is constant within this area. This results

in a more sparse set of tracked 2D points (as opposed to other methods for calculating optical

flow, such the Gunnar Farneback Algorithm or the Simple Flow algorithm Bradski (2000)) that

16



2.3 Tracking

potentially track for longer, giving a set that is arguably easier to work with (Scelizki (2011)

chapter 8.4).

2.3.3 Object detection and instance recognition using classical methods

Combining the techniques in the above section one can track objects. As opposed to machine

learning object detectors (that will be explained in the next section) there are different ways of

creating detectors using classical methods. As the object and use case case in question call for

different methods, different methods are used.

In the context of object detection severalmethods are usually stringed together in a "pipeline".

An example of a popular topic in pobject detection is face detection. In this category Viola and

Jones (2001) stand out as the first object detection framework to deliver real-time frame rates, in

addition to great robustness. This is achieved searching for simple features that are usually found

on a face, namely the difference in lightness between the cheeks and the eyes, and afterwards

two other parts of the face. These are called HAAR features (Viola and Jones (2001)). In Viola

Jones face detection they adds up to a small pipeline of feature comparisons. These features are

not like the ones using ie. SIFT, but is still in essence an example of using features for detection.

These cascading Haar features are a popular choice object detection, finding a image intensity

pattern in the object.

Typically object detection use several techniques to work together (or in ’cascade’ or

’pipeline’), in order to create a result that is reliant. Another example of which is the fol-

lowing:

• Filter the color of the item you wish to track.

• Use the area of this filtered color to produce points that can be tracked, using a good

feature descriptor. Combine these to get an estimate of the objects center and change in

position.

• Taking this further, the crossectional area produced by these points can be used to estimate

a change in orientation of the object. Potentially even in 3D.

For object recognition, this type of pipeline is common. If more of the object is known, several

features and their feature descriptors can also be saved in advance. When an area with enough
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inliers is found (much like loop closing in orb, see .2.7), it can be considered a match. There

are programming libraries such a ’Object Recognition Kitchen’ (Willow Garage (????)), that

provide ready-made pipelines databases of features associated with different objects.

A pipeline of techniques used together to perform one precise task arguably provide a less

generalized result than an object detection neural network. However, the use of special purpose

detectors generally produce a more effective and rapid result (Scelizki (2011)), and is for that

among other reasons, often opted for.

2.3.4 Fiducial markers

As opposed to short term tracking using a patch of pixels as a feature, a fiducial marker provides

a very distinctive and potentially already known contrast histogram. This makes it easy to track.

Knowing its size and dimensions as well, one can additionally solve for its entire 3D pose. This

can be solved for in real time using plugins from the opencv library. There are several types of

fiducial markers, and the type tracked using opencv applications is called the Aruco marker.

2.3.5 Opencv applications

’Open computer vision’ is a popular programming library (Bradski (2000)) for real time computer

vision. It offers easy an easy to use framework for several applications, including several of

the mentioned above. Opencv and its applications is often opted for when creating real-time

computer vision software, as they are both fast, reliant and robust (the methods of classical

computer visions reliance and robustness will be discussed more in 5.2).

2.4 Machine Learning

The basic overview of machine learning in the section below is from Elfving (2018).

There are several techniques that can be considered an AI algorithm or method. They’re all

mainly characterized by attempting to mimick a human way of solving a new problem. Machine

Learning are the subset of the AI methods that would use previous data to help them, and would

typically get better and better the more old data they have to work with. As the data being

gathered could be influenced by stochastic properties, the resulting AI would also be, and thus

will not necessarily arrive at neither a perfect answer, nor any answer at all.
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2.4.1 Perceptron

Figure 2.2: Block diagram for a perceptron.

The simplified model of a human brain cell can be made as simple as the model above. The

cell gets a certain electrical signal, and if this signal is above a certain threshold the cell sends

another signal further. Where this limit is however is dependent on the cell. Considering this

model, and adding the possibility of multiple inputs, we find that we can arrive at many binary

classifications as long a set of values were chosen well enough: how much we should weigh

each input signal (often referred to as the input weights), where along the y-axis the threshold

should be (bias) and what threshold the total sum would need to rise above for the cell to give

an input (the activation function). This results in what we call a perceptron. With all of these

chosen correctly one could arrive at any binary linear classification of these input values.

These can also often be refered to as neurons and nodes, all depending on the context.

2.4.2 Artificial Neural Networks

Figure 2.3: Block diagram for a neural network.

If you create a network of perceptrons, ie. letting the output of one or more perceptrons be

the input of another, then you have an artificial neural network. With a high enough amount

19



Chapter 2. Computer vision for recognition

of perceptrons with well enough tuned parameters, any function can be approximated using a

neural net?. The implications of this fact are wast. That means that neural nets could be an

option no matter what the problem is, as long as you have large amounts of data and a way to

express how well the neural net performed.

If you now connect this grid of perceptrons to the grid of pixels that is a picture, one can

get in the same way learn the network to extract something meaningful out of it. A simple

network of about 6 layers of perceptrons, also known as dense layers is bottom tier of ML aided

computer vision. Using this dense 6 layers one can solve the famous MNIST dataset, a dataset

of small grayscale handwritten digits from 0-9. This is considered the "Hello World" of ML

image recognition.

2.4.3 Convolutional layers

There are several ways to store the data of a color image, but a common one is the use the

different channels RGB, for Red Green and Blue color, as all colors can be described as mix

between these. If a neural network where to make use of this, it would have to be connected

to all of these three layers. This means that the input image of a neural net will have 3 layers,

or a depth of 3. Another way to think about this depth of an image is that is another additional

way to describe different features of the one image. Creating more of this depth to signal can

effectively work as a series of ways to express the information stored in the image. There are

several ways of dealing with depth in neural nets. We can get more of it by using convolutional

layers.

Convolutional layers are layers with filters such as the ones below. The filters iterate through

the size of the image, calculating their elementwise matrix multiplication. Using this we can

get more substantial information out of an image. Consider for instance the matrix in 2.4a,

performing an elementwise matrix multiplication with this and a part of an image would output

something close to zero if the part of the image in question was the same shade, no matter the

color. However with a vertical change in shade, it would create an output, being essentially an

edge detector. 2.4b is essentially the same, just being at an angle. There are more of these of

different sizes and shapes. Normal convolutional layers will have random filters, and many of

them. An edge is an example of a feature. With more convultional layers in succession they

will effectively manage to abstract or generalize more and more information, going from edges
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(a) Vertical edge detector
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Figure 2.4: Example off small 3x3 convolutional filters

to basic shapes, to eg. body parts. This additionally has the added effect of not requiring what

is to be detected to be centered in the image, as the convolutions filters are smaller and goes

through the entire picture with the same filter.

Rgb Image

3

rgb image1080

1920

1920

1080

Classifications

1

Figure 2.5: Typical illustration of a convolutional neural network.

Figure 2.5 show a typical convolutional neural network architecture, albeit simplified. Note

the steadily decreasing length and width and increasing depth of the convolutional layers, which

is typical as more features can be extracted and their position matters less. The last layer(s) are

often dense, and the final layer is ofcourse flat, being a series of potential classifications.

2.4.4 Different layers and concepts

There are several other additions to neural networks that are integral parts of the entire ar-

chitecture. There are also variatians of all of these, eg. for a 3D element as well as scalar

value.

Maxpooling

Instead of the convolution where the elementwise matrixmultiplication is calculated, there are

layers where the element with the most value is outputted. This has the added effect of creating
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a layer that can output what has made the biggest impact. Minpooling and average pooling are

also used.

Normalization vs regulatication?

With extreme values on several images, the features in the image are argueably the same with

a lighter image (and especially not for a neural network, as its the correlation with the original

iamge that matters). With very large input values into a perceptron, it needs to adapt its bias

value into something extremely large. With larger differences between elements such as this,

the perceptron generalize worse. Normalization can be used as a alayer, but also as something

that is generally used with all data before both training and forward-passes. It offsets the mean

value of the input and noralize the differences within a certain mean. This makes it easier to

work with and generalize.

Activation functions

There are several activation functions, and the choice of which can play a large role due to their

respective nonlinearities and gradients.

Dropout

Certain neurons are often trained have a large weight and make a big difference, creating the

situation that some neurons are makeing it so that the others are not being trained. In order for a

more robust network, a certain percentage of random nodes are simply turned off during a batch

of training, training all neurons more.

2.4.5 Object detection

Using the techniques described above one can now classify an image to be a member of one

class or another. Another feat however is knowing where in an image an object of a certain class

is. This is typically shown using a bounding box, a box marking a square around an object.

This could can be theoretically achieved using what is called a sliding window. The sliding

window technique marks a small area in our image and feeds it through the neural network

to get a prediction, and does this iterating through the entire image for several different sized
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images. This will eventually provide a large amount of predictions with their corresponding

bounding boxes, where one can disregard the lowest probability predictions, leaving the true

object detections.

Iterating through several different sized windows for the entire image is a very long and

computationally ineffective process however. Instead so called region proposals are calculated

before feeding the resulting region through the neural network. R-CNN (Region - Convolutional

Neural Network) was the first neural network architecture to use region proposals. Instead of

iterating through all potential region sizes, a number of randomly sized frames were generated

and fed through the CNN. After a resulting prediction outputs a large probability, the region is

run through a linear regression to refine the position of the bounding box.

2.4.6 Comparing object detection algorithms

When training a neural network for object detection, as well as comparing the performance

of one method against another, several techniques are used (for more about this see Scelizki

(2011)).

With several algorithms trained on the same dataset, they have a similar starting ground and

can be compared properly. Given a dataset with a correct set of labeled bounding boxes, one

can calculate how much of an overlap this is. This is referred to as the intersection over union

(IoU). In IoU > 0.5 is often considered a correct prediction.

I oU =
AreaO f Overlap
AreaO f Union

(2.1)

Given that a prediction was considered correct, we can define an algorithms number of true

positives (TP), false positives (FP), in order to get the mean average precision (mAP).

Preci sion =
TP

TP + FP
Recal l =

TP
TP + FN

(2.2)

mAp =
1

#classes

∑
c∈classes

#TP
#TP(c) + #FP(c)

(2.3)

Another factor is offcourse the speed of the algorithm, and what range in size of objects the

network can see (the size of the first convolutional layers can make this difference). Even though
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the mAP as functions of size of objects etc., are intersting statistics, the mAP and speed of the

algorithm on a dataset are the most common ways of comparison.

2.4.7 Popular ML object detection algorithms

There are several ML object detection algorithms that perform well, two of the more popular

among these will be presented in this section. These are are YOLO(You Only Look Once) and

SSD(Single Shot Detector). Their performance are arguably among the greater as of this paper,

however no exact claims what algorithm perform the best will be made in this paper, as these

numbers are continously changing.

YOLO: You only look once

Yolo is an example of a image recognition neural network. It gets its name from that it only

do the massive forward pass in the neural network only once per prediction. This is what

makes it among the fastest, as a forward pass through several convolutional layers is the most

computationally demanding.

In order to do this, the frame is divided into a grid of S by S sections. Each section from

then predict N potential bounding boxes. Each of these estimations return a confidence in

the prediction of the bounding box in question contains an object, what the object is, and the

precision of the bounding box.

Considering all of these bounding boxes of predictions, they are all taken into account

making a rough resolution of an estimated bounding box of an object. The bounding boxes with

predictions below a certain threshold are discarded. (LITT FEIL: REWRITE)

YOLO is being updated with newer versions continuously, with the newest version being its

third. However, its main selling point remains being the fastest/computationally lightest. This

section is based on the papers presenting Yolo, for more about it read Joseph Redmon (2018).

SSD: Single Shot Detector

SSD is also popular choice in in object detection. SSD feeds the input through a convolutional

filter, making a feature map. After this a 3x3 kernal is used to find bounding boxes and category

probability. Much like R-CNN, SSD also uses bounding boxes of multiple sizes. It then learns

the correct offset?

24



2.5 Image recognition

So, total SxSxN boxes are forecasted. On the other hand, most of these boxes have lower

confidence scores and if we set a doorstep say 30Single Shot Detector (SSD)

SSD attains a better balance between swiftness and precision. SSD runs a convolutional

network on input image only one time and computes a feature map. Now, we run a small 3×3

sized convolutional kernel on this feature map to foresee the bounding boxes and categorization

probability.

SSD also uses anchor boxes at a variety of aspect ratio comparable to Faster-RCNN and

learns the off-set to a certain extent than learning the box. In order to hold the scale, SSD

predicts bounding boxes after multiple convolutional layers. Since every convolutional layer

functions at a diverse scale, it is able to detect objects of a mixture of scales.

SSD is a healthier recommendation. However, if exactness is not too much of disquiet but

you want to go super quick, YOLO will be the best way to move forward. First of all, a visual

thoughtfulness of swiftness vs precision trade-off would differentiate them well.

SSD is a better option as we are able to run it on a video and the exactness trade-off is very

modest. While dealing with large sizes, SSD seems to perform well, but when we look at the

accurateness numbers when the object size is small, the performance dips a bit. This section is

based on the papers presenting Yolo, for more about it read ?.

2.5 Image recognition

Image recognition could help out with autonomous navigation, being able to identify what is

around the drone, such as poeple and vehicles, so that it can for instance know to avoid them.

As was mentioned in the introduction .2.16 it was suggested to add that the drone could land on

a buss in order to get charged and get further in the correct direction. In order for this to work

the drone would also need to recognize the busses that can provide this service. Lets assume

this service is provided by Trondheims characteristic green public communication AtB, with

its distinct green busses. A neural net could be trained on the identifying these green busses.

Options here would potentially be general color tracking, however this wont be very robust.

Even though this is also the case with ML and that reliance on ML is not optimal (.2.16), this

seems to be the only way to effectively recognize a bus.

From there it was considered what neural network architecture could be used for this. YOLO
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and SSD was the main considerations. An argument could be made about the size recognition

abilities of the two, considering the wanted height of the drones flight. As SSD has a somewhat

lesser ability to recognize smaller objects, as its first convolutional layers are a size of 38x38px,

should it be ruled out? This is noted as just a small dip in performance, and all image recognition

software would naturally perform worse with smaller objects, but the hard limit of 38 by 38

pixels is an interesting point. In other words, the smallest potential feature it can distinguish is

38x38 pixels. This can be mended with a larger image output, but consdering that the standard

ardrone outputs SD, 640×360, we can calculate its maximum bus-observable height considering

the intrinsic camera parameters of the ardrone .2.16 and the size of a bus.

SSD potentially provides a larger accuracy in its recognition as well. However, a more im-

portant point is that YOLO requires less computations, and can then run with a faster framerate

(if real-time performance is wanted). Even if real-time performance is not necessary, the compu-

tational should be considered important when running alongside something as computationally

heavy as VSLAM. It was decided to use YOLO.

YOLO could be trained to identify whatever. There are no dataset full of images of AtB’s

standard Trondheim busses, and creating one is hard, and beyond the scope of this paper. So

instead of training a network on the AtBs distinctive busses, a set of weights for yolo trained on

the VOC12 was used, as the VOC12 dataset has busses (as well as 19 other classes).

Figure 2.6: Yolo recognizing an AtB bus, as well as other vehicles. Note the other bus that would
offcourse also be recognized.
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Literature Review

As the field of computer vision and autonomous navigation have made extreme progress the past

years and is continuously evolving. This is tied to the growing indoor applications for mobile

robotics, that feature several obstacles and does not allow GPS. Reducing the computational

complexity is among the state of the art problems that have been worked on the past years. This

achievement is mainly reached through spatial augmentation, taking advantage of the sparsity

of the SLAM problems high dimensional space (T. Bailey (2006b) and Cadena et al. (2016)).

3.1 State of the art ML Object detection

The field of object detectors using ML is a field with constant improvements, that can be a

challengen to keep track of. The comparisons considered below, as well in the rest of this

work is the current state of the art as of late 2018, according to Joseph Redmon (2018). The

current better performing algorithms for this can be split into the two categories, considering

the accuracy of the speed of its performance. When comparing results, both accuracy and speed

is also important to keep in mind as a high performance in one is can be compensated with low

performance in the other.

3.1.1 Accuracy

Tsung-Yi Lin (2018) introduce the "Retina Net", which provides a close to 40% AP on the

popular "Common Objects in Context" dataset, also known as the COCO (et al (????)) with

5 FPS. It does this by using a combination of previous techniques and introducing a new cost
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function. This is state of the art accuracy, with an also impressive speed. It is troublesome to

achieve both high speed and high accuracy.

3.1.2 Speed

SSD and Yolo are continously facing improvements and updates. The third and newest update

to Yolo (see Joseph Redmon (2018)), seem very fast and accurate. It reports the same accuracy

as SSD, while 3 times the speed. Its accuracy is also comparable to that of the "Retina Net"

by Tsung-Yi Lin (2018), but lower. According to the paper it runs faster than any other current

ML object detector. Joseph Redmon (2018) additionally argues about the accuracy metrics that

COCO uses, and that humans cant even see the difference between an IoU (see 2.4.6) of 0.3 and

0.5. As explained in section 2.4.6, an IoU of more than 0.5 is typically considered a correct

prediction.

3.2 Image recognition aided through VSLAM

The field of visual SLAM (Simultaneous Localization And Mapping) use visual techniques to

map an area. For drones to be able to perform object avoidance visual SLAM is usually the

technology that is being used, making it presumably a technology that is already present in

package delivery drones. As an area is mapped, it is found that image recognition can be used

in cooperation with this technology to provide an even more accurate image recognition, taking

advantage of its ability to place an object in 3D space and then assume a view of it from several

frames. Some knowledge about the technology terms related to VSLAM may be needed to

understand the subsections below. The explanation of the inner workings of this technology,

and more about its state of the art implementations can be found in the appendix .2.16.

3.2.1 Semantic SLAM

Making use of the semantic data gathered through creating a map could be interpretable, and

used. However the problem of semantic information is still in its infancy (Cadena et al. (2016))

even if it is an important problem, as it lacks a cohesive formulation. A basic part of it is

categorization of what it is seeing, however it should involve high level understanding and
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related actions as well. Making use of semantic information in a situation is a very basic idea

for a human, as the semantic information affect all of someones other reasoning.

When it comes to categorization, which is arguably an important part of semantic informa-

tion, several strides have been made. This objective is often also refered to as semantic mapping,

or semantic SLAM. Daniele De Gregorio (2018) and others use object recognition algorithm

alongside SLAM to place objects in 3D space. K. Himri (2018) takes this a step further by using

object recognition in cooperation with SLAM, by using objects as landmarks. Sudeep Pillai

(2015) use SLAM to aid in the object recognition, as on abject in a known 3D space can get a

combined resulting prediction using multiple vantage points. This is essentially showing that

SLAM and object recognition perform better when working together. Trung T. Pham (2018)

make use of DL to create a recognition algorithm that segments and classifies the individual

pixels as members of a class, successfully classifying walls etc. This also has the added ability

of finding the pixels that are not classified: unknown objects. Finding unknown is something

state of the art 2D classification algorithms such as YOLO can not do. Vibhav Vineet (2018)

performs semantic SLAM by identifying a dense on a large scale semantic SLAM outdoors, in

real time. Using the fact that all of these techniques require prior knowledge about the objects

being identified, Fei and Soatto (2018) and Renato F. Salas-Moreno (2013) use a database of 3D

models of the objects it is identifying. Using a 3D model of what is to be identified, it manages

to identify the objects pose as well. This allows it extrapolate information about the rest of the

object, even if parts of it is not within view. In a similar fashion Niko Sünderhauf (2019) use

predictions by YOLOv3 over a couple of frames (see 2.4.3) to create ’Quadrics’ (3D surfaces

such as ellipsoids) to overlap the object. This essentially estimating the 3D shape of an unknown

object.

The semantic mapping with place recognition from Niko Sünderhauf (2016) provide more

semantic information by using a convolutional neural network 2.4.3 for place recognition to

label places in a gradually built map. In Staffan Ekvall (2006) the semantic information about

labeling rooms was done by identifying objects associated with certain room labels.
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3.3 Related work

As explained in 2.3.1, the classical methods of computer vision and recognition is usually a

specialized identifier. This makes it hard to arrive the state of the art within object detection

usijng classical computer vision in general.

In the context of landing quadrotors and with large similarities to the scope of this thesis,

et al. (2017) creates a framework for a quadrotor landing on moving platform. It claims that

it is the first time demonstration of a quadrotor landing on a moving target without relying on

external infrastructure (ie. GPS and IMU). In order to autonomously move it relies on visual

odometry (see .2.1 in the appendix), and no IMU or GPS. The landing was performed using a

fiducial marker on the landing platform, and using which it managed to get great results. Some

other notable points in this work is the use of Kalman filtering to aid with loss of tracking of the

landing platform, and minimum jerk (the third derivative) reference modelling. This work has

similarities to this thesis beyond the actual scope, in that the both the search and movement of

the platform are interesting topics for the future of this project but not within the scope of this

thesis. ? describes other attempts at autonomous landing on statically placed targets, and the

different landing platform markers that can be used. The problem with other methods, such as

identifying an H, or a symbol or a moire pattern is, that it may not be observable for too large

heights. A series of black and white circles was presented as a potential better option (? p.

482-491).

Hoang (2017) also attempts a landing, but on a ground vehicle that is additionally detected.

The quadrotor used in Hoang (2017) has a downwards-facing camera, allowing for continous

following of the vehicle from above, while keeping it in track, and land. In order to perform

this detection in real time, SIFT feature matching is used. Using a set of features stored off-line

for several vehicles, they can then be identfied on-line using a visual-bag-of-words model, as

created by et al. (2004). Bag-of-words is mainly a text categorization tool, that uses a series

of words placed in one bag, to help categorize an entire text into the same bag. If the certain

amount of words found in the text belong in this bag, the entire text is categorized there as well.

The Bag-of-visual-words from et al. (2004) do the same thing stored visual features. Hoang

(2017) further goes into the controller scheme necessary to ensure the track of the vehicle below.
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3.4 Drone Package delivery

The state of the art within drone package delivery in general is briefly touches upon in the

introduction of this thesis. As this is a field with many new commerical developments, it can

be assumed that much of the related state of the art technology is not presented exactly as

its developed. Instead one can get an idea about the current state of the art by reading about

the current benchmarks presented. For description of that beyond what is presented in the

introduction is beyond the scope of this thesis.

31



Chapter 3. Literature Review

32



Chapter 4
Results

The choices made in section above was implemented in ROS and its simulation environment

Gazebo. ROS has several packages made by its community that are made to be easily imple-

mented, several of these were used for the implementations below.

4.1 Simulation and thirdparty packages

As previously mentioned, VSLAM and VO produce several services, such as positioning and

mapping. Due to the promising results of DSO showed in section .2.17, and the potentially less

computational power needed, it was the first choice for a visual odemetry method in the Gazebo

environment. However it was shown that inaccurate pointclouds were very quickly made. Due

to this, it was made clear that maintaining an accurate point cloud for object avoidance is the

most challenging and important, as its added benefits in position comes second to the possibility

of object avoidance in this project. Instead of DSO, a VSLAM or VO that produce a dense

pointcloud, and performs point refinements was needed. As LSD-SLAM fulfilles both of these

requirements, it was chosen. It has the ability to refine the position of points, work on large

scale as well as being selectively dense.

This is not necessarily proving that DSO performs any objectively worse than previously

thought however; the placement of these pointclouds could have potentially rendered a superior

localization of the drone. This is arguably also a symptom of a poor field of view of the drone,

its fast movement in comparison, the lack of detail in the gazebo environment, and its monocular

cameras. Laxit Gavshinde (2013) describes how monocular VSLAM systems often suffer from
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this, as when camera motion is subject to steep changes in orientation, tracked features over

the previous instances are lost. This can make monocular VSLAM estimates highly unreliable,

erroneous and unrecoverable. This might not be a problem in other situations, where loss and

regaining of track rarely happens.

In the subsections below, some of the other additional third party packages used for this will

be explained.

4.1.1 Autonomy Lab: Ardrone Autonomy package

PID controller parameters

Coordinate Kp Ki Kd

Yaw 2 0 1

Roll/pitch 10 0 0.5

XY 5 0 1

Z 5 0 1

Figure 4.1: The PID values
used in the Ardrone Autonomy
package. Note that it addition-
ally use threshold values.

Making a drone hover staticly, and avoid tipping over, is an un-

stable system. Controlling this requires ie. a PID controller.

Developing this however is beyond the scope of this work, and

will instead by solved by using a piece of thirdparty software, in

the form of what is called a ROS package.

The ’Ardrone Autonomy package’ offers an easy to use frame-

work for control, using the standard ROS tools for communica-

tion: topics and services. It has stabilized the drone, and provides

a framework for sending commands to the drone in the form of

angular and linear velocities, as well as taking off and landing the

drone.

This is done using a PID controller. For a basic explanation of PID control, see .3.4 in the

appendix. The PID parameters it used for this can be studied in 4.1. For more information about

this software, see of Simon Fraser University by Mani Monajjemi (2012).

4.1.2 TUM: Ardrone Control package

PID controller parameters

Coordinate Kp Ki Kd

Gaz 0.6 0.1 0.001

Roll/pitch 0.5 0.35 0

Yaw 0.05 0 0

Figure 4.2: ThePD-controller parameters
used in the Tum ardrone package

The ’computer vision group’ of TUM (Technical Uni-

versity of Munich) has also created a package for the

autonomous control of the drone. The ’Tum ardrone

package’ take advantage of "ardrone autonomy", and

has created the basic navigational software needed to

control it to move to a certain coordinate (ie. it has

calculated the inverse kinematics related to controlling
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the drone to stear to a certain coordinate). The standard

PID controller provided by it will be used for the basic

navigational tasks in this work. The PID parameters used in it can be seen in the figure 4.2.

Additionally, the package offers an easy way to use PTAM, in order to position oneself and

navigate solely using the camera, in addition with the IMU. The package provides an easy way

of operating the two, using a GUI. The GUI features an interactive way of sending commands,

a list of the sent commands, and state information about the drone. This software package is the

implementation of the three papers Jakob Engel (2014), Jakob Engel (2012a) and Jakob Engel

(2012b).

4.2 Aided transportation using busses

35.53

29.31

Figure 4.3: The field of view of the ar
parrot drones cameras, illustrated on the
YZ-plane.

As explained in the introduction .2.16, it was wanted to

make the drone try to use public communication to get

to its destination given that it is too far away for the drone

to make it on its own, potentially getting recharged on

its way as well. For this to work it needs to both be able

to recognize the bus, know how to fly well towards it,

as well as be able to land on top of it.

The ardrone continuously knows the remaining ca-

pacity of its battery. Using this and how far away the

goal is it can make a judgement about whether or not it

can travel it on its own or if it needs to make use of a

bus. Given that it knows the location of a road, it could

travel towards it and use it for a certain distance of the journey. The drones ability to recognize

roads would be a good addition to this framework, but is beyond the scope of this paper to

attempt to implement. An assumption will be made that the road is located along the y-axis at

x=20. Having arrived alongside the road the drone will enter a state where it can look for a bus.
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4.3 Identifying a bus

Figure 4.4: 3D model of
the classic AtB bus, in a
Gazebo simulation.

In order to simulate to the interaction between the AtB bus and the

drone, a 3d modell of the ’Man bus model Lion City LE’(?) was

modified to look like an AtB bus, and imported into the Gazebo

simulation (see figure 4.4).

As one can observe on .2.16, Yolo can identify both the bus in the

3D model and the real world AtB bus. The 3D model has also been

modified to have a landing pad on top of it. Further modifications

regarding the landing platform will be discussed further down in this

section.

(a) The 3D model in the gazebo environment,
detected with an 80% certainty.

(b) A real AtB bus,
detected with a 100% certainty

Figure 4.5: Busses being detected by the Yolo object detector.

Travelling alongside the road a safe height should be maintained

to avoid as vehicles etc. An optimal height could also depend on the field of view (angle spanned

by a camera) of the cameras. The field of view can be calculated using:

FOVx = 2 arctan(
w

2 fx
) and FOVy = 2 arctan(

h
2 fx
) , (4.1)

with h and w being respectively the height and width of the image(Bradski (2000)). Using this
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4.3 Identifying a bus

with the calibration matrices of the parrot ardrone cameras (.1) we get that:

FOVf ront : Horizontal =∼ 59.31°, Vertical =∼ 35.53° (4.2)

FOVbottom : Horizontal =∼ 49.95°, Vertical =∼ 29.31° (4.3)

These estimations are also illustrated on ??. Considering that the width of the road in the

example gazebo environment is 22m, the drone could fly at a height of about 9.3m (or more)

above the center of the road and keep the entire width of the road within its field of view, making

the front camera potentially unnecessary for the bus localization. However, as the drone would

potentially in a real world application additionally have need for a bus localization from a far,

this solution was not opted for. In order to test the applicability of bus localization from a far,

the bottom camera will not play a role in the localization of the bus itself. Instead it was decided

that the drone travels alongside the road at a "safe height" of 6 meters, and continues until it is

the closest to the goal while still following the road. For the example in question, that would be

the point (x = 20, y = 50). As the drone travels along the road, the detection of a bus should

make the drone change its path.

The identification of the bus and its position could be done using classical computer vision

methods. This being object detection, a pipeline similar to that described in ?? could be used.

As the object that is wanted to track is additionally known, a series of features could be created

from images of the bus. Then much like the loop closing scheme used by ORB-SLAM described

in .2.7, if enough inliers is found, the bus is detected. This could be used in cooperation with

color filtering, ie. only starting the potential matching thread when the color is present.

As this method of object recognition is concerned with the features found on an object, the

point mentioned in section .2.3 needs to be considered again. While CNN recognize an object

using all of the pixels in the area in question, the positive and negative sides of using the classical

framework as opposed to a CNN is similar to the discussion of feature based versus photometric

error. If the object in question is textureless and it has few or no features, it can not be tracked

or identified using classical feauture based methods (Fei and Soatto (2018)). A CNN could

however be trained to identify it regardless. As the classic AtB bus is a distinctive green color

with a lot of contrast, in this case it will not be problem.
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Using a pipeline of classical computer vision methods would be a more reliant modern

approach. However, as it was desired to involve a CNN as well due to its relation to the field of

computer vision, it was implemented instead. For further work with this, an object recognition

pipeline similar to what described above can be implemented. More about the positive sides of

using classical methods can be read at 5.2. More about recommendations about the techniques

that should have been opted for in further work with this can be read in section 5.

Running on the gazebo simulation along side other pieces of software, YOLOv3 ran at a

speed of only 0.3 FPS. According to Joseph Redmon (2018), it can potentially give much higher

framerates on the right system, however with the system specification described in 6, only 0.3

FPS was possible. Reliance on Yolo alone for navigation was then impossible, as the drone

could have travelled far past the bus before it gets the output from Yolo using this framerate.

Given the assumption that the identification of the AtB bus from afar is only possible using a

ML object detector like Yolo, it was decided to find a way to know to wait for the slow output

of Yolo.

Color filtering

Seperating the color of the distinctive green AtB busses can be done using the opencv application

for fitlering rgb color. After inspection of the color scheme of the busses, as well as the effects

of different lighting, the following ranges of rgb color was arrived at:

• Red: 0-120

• Green: 0-255

• Blue: 0-0

Using these ranges of color, the entire bus can be separated from an image in the gazebo

environment. These ranges can be considered large, and could be narrowed in to get a result

that is more robust to other objects in a similar shade of green. Given that green is a color one

otherwise find a lot of a in nature, and along the streets of Trondheim, simply separating out the

color green from an image and identifying it is not sufficient to recognize the bus. However, taken

into account testing environment in Gazebo described in .2.16 this could provide a sufficient

result.
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4.3 Identifying a bus

Finding the amount of green on the frame and comparing it to a certain threshold. Upon this

being the case, the drone can stop and Yolo start.

Detecting

Figure 4.6: The bounding boxes outputted by Yolo.
Note the several bad predictions, namely the bus
potentially being a bench, and the silo potentially
being a chair.

Given that the recognition of the bus using

Yolo is trusted, one can then wait for Yolo

and its output after first recognizing the right

shade of green being present. Some additions

to this method was considered:

• In order to be more certain of the bus

being of the correct type, instead of sim-

ply another bus next to a patch of grass

in the correct shade, it was suggested

to check the IoU between the bound-

ing box outputted by Yolo and the green

area outputted by the filter.

• The IoU of the filtered image and the

bounding box outputted by Yolo could

be used to refine theRGBfiltering ranges.

This couldmake the tracking easier. Con-

sidering however the often imprecise

bounding box outputted by Yolo, this

would be difficult to implement well.

Given that the resulting gains from these suggestions would also mainly show themselves in the

real world application of this (with other green elements besides the bus), and not in the gazebo

simulation, it was not added. If Yolo predicts the position of a bus, with a probability beyond

a certain threshold the bus is considered detected. Otherwise, if Yolo predicts nothing within a

certain timeframe the drone moves on.
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4.4 Converging on the position of the bus

As the potential detection of the bus happens with the slow frequency of 0.3 FPS, it is difficult

to use it for the guidance of the drone towards the bus. Naturally a reference signal has to be

updated with a high frequency, but even creating such as a signal using the slowly updated Yolo

detections has its problems. In addition to some inaccurate bounding boxes and slow detections,

the factor of the associated delay can be considered a separate issue. As the jaw orientation and

position of the drones drifts, the delay in the signal result in the detecton being aditonally faulty.

Additionally some drift in the position and orientation would make the detection especially

faulty. Considering Yolo as the object detector used, two options to provide a continuous

reference signal were considered:

• Using the bounding box outputted by Yolo, the center of mass can be estimated to be in

its center. Using this the error between the middle of the frame and the center of mass of

the bus can be calculated. This results in a discrepency in pixels, that can be converted

into its corresponding discrepancy in degrees using equation 4.1. Using the control of the

jaw angle of the drone, taking advantage of the accurate information the drone has of its

orientation using an IMU, the estimated orientation could be converged on.

• Using a short term tracker, or a method of optical flow several points will be created that

can keep a continous track of an object.

The latter option was deemed a more robust option and was therefore chosen. This renders the

use of Yolomainly an aid for the detection step, an nothing relating to the position or convergence

on the bus.

Lukas-Kanade Method for optical flow

Figure 4.7: LK method and its 2D tracked points.
Due to the contrast on the bus, several points are
placed there. The points within the bounding box
described above is used.

Generating a sparse pointcloud of 2D tracked

points using the Lukas Kanade method, the

points outside and inside the filtered green

area of the image can be distinguished. Find-

ing the average velocity and direction of these

points, one can then estimate the 2D move-

ment of the previously detected bus, by taking

the average of all the pointwise estimations.
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Using the position and velocity of the point-

cloud, the drone is regulated to keep the point-

cloud in the middle of its FOV, and addition-

ally move forward. However, the LK method

does not necessarily placed its tracked points evenly on the bus, as there are more features on

some places than others. This result in a centroid esimation that will have a certain bias or error.

How detrimental this is function of the robustness of any landing platform tracking (see the next

subsection 4.5 for more information).

Regulating drone position with a PID controller can give smooth convergence to a certain

position, but a drawback is weakness to noisy signals. Noisy feedback signals will result in

noisy inputs, meaning instantaneous large inputs for example, a huge strain on drone motors and

potentially making flight unstable. This can also be the case with sudden large inputs in general.

While the resulting jerk in motion can still create a feasible controller for an unmanned drone,

it proved to be especially detrimental in this case as the quality of the track is dependent on the

camera moving smoothly. A jerk in the position of the drone result in the drone losing track.

One way to mend this is by using a low-pass filter to create a reference model (Fossen (2014),

chapter 10). The reference model will construct a smooth reference input signal for the drone

to follow while tracking the bus position, smoothing the reference and the path and potentially

reducing wear as well.

A common reference model is made with a simple low pass filter. Giving it an order to

realistically to provide a model close to the system dynamics is also common ??. Using the

python SciPy library (Jones et al. (2001–)), a discrete FIR (Infinite Impulse Response) low-pass

filter was made. Through trial and error a FIR filter of order 80 with a cutoff frequency of

0.004 provided the gentle filtering required to provide a smooth signal to the drone, that result

in minimal jerk of its motion. This control scheme is illustrated on figure ??. The resulting

smoothed response of this filtering can be seen on figure 4.8.
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Figure 4.9: The response of a smoothing filter creating a reference model.

Center Of Frame
P-reg

+ SYSTEM
orientation

Meaurement
Average point cloud

position, within
previously detected

bounding box

Reference model
(Low pass filter)

Figure 4.8: Control loop for controlling the yaw and x,y posi-
tion for the

The controller scheme illustrated

in figure ??, makes the drone head

straight for the horizontal position

of the bus, no matter its distance

away. This also refered to as a Line

Of Sight Guidance (Fossen (2014),

chapter 10). There are other meth-

ods of target tracking, however they

would need more information such

as the distance between the drone

and the target. As the angle of the bus itself is not known, estimating the distance to the bus us-

ing the size or the shape of the bounding box is arguably difficult. If the distance was estimated,

the drone could travel along the road for longer. Considering the small scale example taken into

account in this work this will not make any difference either way here. Otherwise this could be

discussed in depth.
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4.4 Converging on the position of the bus

Results of LK-flow aided LOS guidance towards bus

Angle of

bus

Time until de-

tection

Error along y-

axis

-10 >3min F

-10 5 sec 1 m

-5 33 sec 1 m

0 1m 15sec 2.15 m

10 >3min F

20 1m 9sec 5 m

45 1m 20sec 6 m

45 20sec 3 m

60 6 sec 19.5

90 >3min F

90 18sec 3 m

Testing this method to detect and track the bus from several angles give the results that is

shown on 4.4. For a given angle of the bus in relation to the direction of the road, the time until

Yolo detects the bus and error in the x-axis position of the drone in comparison to the bus center

of mass is noted. At the given slow framerate of 0.3 seconds, 3 minutes provide 54 predictions.

With no correct predictions within these 3 minutes and 54 predictions, the score for this angle

is written down as an F.

It was assumed that a certain correlation would emerge, showing less error with a larger

angle. This could be because a a pose of the bus showing more of its features could also make

for an easier prediction. When it comes to the object detection, the results does not show much

correlation between the angle of the bus and these results at all however. Note the case then -10

degrees on the bus was tested twice, with very different results. Through trial and error, no other

techniques seemed to influence when Yolo gave a correct prediction. However, when a detection

was made, the tracking aided by the Lukas-Kanade point-cloud allways came sufficiently close

to the bus. More about what would be considered sufficient is described in the next section.
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4.5 Landing on the roof

(a) Platform with the letter H (b) Platform with ’Aruco marker’

Figure 4.10: Landing platforms considered

MARKER

2.5m

1.46m

1.46m 3m

Figure 4.11: Bus landing platform and its
size.

The drone would approach the bus from a large height

and need to be able to recognize the bus from there, and

know how to land on it safely. Considering this, the

bus could use a distinctive landing platform. The first

version of the bus had a large distinctive H on the top

of it, seeming like an obvious choice. A neural network

could be trained to recognize letters and symbols, and

identify the letter H on top of the bus model and output

its general position. This solution is however neither

robust, reliant(5.2) nor fast enough for the use case of

landing on a detected platform, as the bounding boxes

of image recognition neural networks are often jittery.

Instead it was decided to place an fiducial marker on

top of the platform.

’Aruco markers’ are examples of fiducial markers, that also OpenCv (Bradski (2000)) has an

easy to use framework for detecting (for more about this framework, see 2.3.4). They can can

additionally embed information. Placing this on the bus roof allows the drone to easily get the

markers position and orientation, as well extra data (which can be used for information such as
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the bus route). With the drone retrieving the information by flying above the bus and using its

bottom camera, it does not have to fly around the bus in order to find the route number on the

front or the back of it which would otherwise be a hard and cumbersome task. For this example,

only a standard Aruco marker was chosen.

The landing platform was created to be very large, for it to be an easier time landing, but also

so that smaller errors in its landing could be observed and noted, without the drone tumbling

off the side. The scale of the landing platform can be seen in figure 4.11. The drone would

aim to land on the center of the marker, which it is large enough for (the dimensions of the

ardrone, as well as more information about it can be studied in .1). Considering the real world

applications, such as that the bus could need room for more than one drone, and drone could need

to be recharged, this accuracy in landing (landing in the center of the marker) could arguably

considered the least required. In addition to landing within the surface area of the marker, the

drone should also be orientated towards the front.
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Bus
4.6m

7m

17m

2.3m

1m

18m

10m

Space with track 
for any jaw angle

Space with track 
for some jaw angles

Figure 4.12: The prism in which the bottom camera of the drone can track the Aruco marker.

The FOV of the bottom camera and intricacies of the Aruco tracker limits the space from

which the drone can observe the marker, and that the tracker is being recognized. Through trial

and error, the 3D prism describing this area on figure 4.12 was arrived at. Above a height of

10.2m, the marker can not be tracked anymore, and it also can not maintain a track when it is

closer to the bus than 0.5m, as can be observed on the illustration. The rectangular aspect ratio of

the image allows the drone to keep a track in a slightly larger area when oriented perpendicular

to the platform, which is indicated on the figure with a dotted line.

Initially, a simple script using the wanted orientation and position to the bus was fed into the

TUM ardrone controller. As described in section 4.2, this software package takes an inputted

waypoint, as opposed to a continuously changing reference. In order to refine this estimation

on the way down, the waypoint was reset often towards the platform. Using this it was found
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that one essentially get a sporadic drift in the estimation of the position of the landing platform,

as the position is not continusly being updated. Testing the accuracy in landing that could be

achieved using this framework, several random positions within the prism of good tracking was

tested. In order to test the landing a point system for grading the landings where used. If drone

lands on the marker itself, with the right orientation, it scores 100%. If it lands outside the entire

platform it scores a 0%, and for rest of the platform the score is given by S = |100−50|(Distance

away from center).

This understandably did not give robust results. The tum ardrone framework allows only to

set a staticly placed waypoint, making it very voulnarable to lack of precision in the track of the

marker. For randomly generated positions and jaw-angles within the prism the landings scored

an average of about 57%, with only 60% landing perfectly. These positions were also from

anywhere within the prism. When the tracking and landing procedure starts its more likely on

the rim of the prism, which would alas make the landing even harder. On randomly generated

positions and jaw angles on the rim of the prism, the average landing score falls to about 32%,

with 28% landing perfectly.

Considering a the shortcomings of this framework a new one was attempted. The shortcom-

ings were mainly three-fold: tracking lost with difficult orientations, precision in the descent

and the final landing maneuvering. First of all, in order to make the landing more precise, a

simple P-controller(.3.4) was created (the parameters can be seen at 4.13).

P controller parameters

XY-

motion

Z-

motion

Spin

0.2 0.3 0.05/J(x)

Figure 4.13: Parameters for the
simple P-controller used in the
landing. Note the costfunction
J(x) in the parameter for the
spin input

Attempting to land when the marker is tracked on the far

edges of the frame (indicated by the dotted line on 4.12) can be

a problem. With a simple control loop simply making the drone

converge on the position below, it can make the drone reorient

itself to a jaw-angle with which it has no track of the landing

platform. This situation is also shown in 4.14. To mend this,

one could use the estimated transformation between the drone

and the platform to compare it with the prism in which it would

have a track with every jaw angle. Instead of this however, an

easier solution was chosen, where height and orientation error

was taken into account. First of all, with height discrepancies of more than 7, no changes in

jaw angle is performed. Secondly, a costfunction is made to lessen the input the jaw input for

47



Chapter 4. Results

certain discrepancies in the drones relative x-direction. The function ended up with was J(∆x)

= 1
10|∆x | for ∆x > 1.3, otherwise J(∆x) = 1. This costfunction manifested itself as a factor

in the relative orientation setpoint. This had the wanted effect no diminishing all jaw motion

before the bus landing platform is far enough within the frame for the track to maintained.

Finally, the final maneuvering made within 0-1m above the platform is made without a track.

Any real maneuvering within this range cause inaccuracies. Instead of this, a land command

using 4.1.1 was sent with a height discrepancy of 3 meters, which provided a more presice

landing. As the automated landing command from 4.1.1 on the ardrone provide an arguably

slow landing, the horizontal position of the drone was maintained during it.

Figure 4.14: A POV of the landing platform from
the drone above. The landing platform can be seen
at the top right corner, oriented at about 135 degrees.
Note that any change in orientation on this position
would make the drone lose the tracking.

Using the additions above several ran-

domly generated points within and on the edge

of the prism was tested. In every single case,

as long as a trackwas initially found, the drone

lands with a 100% accuracy.

It was additionally considered to add a ref-

erencemodel much like in section 4.4, consid-

ering potential gains in the quality of tracking

with a smoother path. However it was decided

that this was unnecessary. For a faster conver-

gence to the platform a Kd and Ki factor could

have been added to the regulator. As the sim-

ple use of a P-regulator described above was sufficient for a successful landing, further additions

where not worked on.

4.6 Total algorithm

In figure 4.15 the entire framework and algorithm described in the two subsections above

is illustrated. The two frameworks work well together, but the the detection part is lacking

robustness and accuracy in tracking and detection. However, due to the close proximity and

simplicity of the example used and the very forgiving size of the prism in which accurate landing

can be achieved, the total algorithm show decent results in the following ways:
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• All the different epplications and plugins work well together, and can be started from a

signel launch file.

• It is robust in that the drone can start from any position, and end at the goal unless it spots

something green above a certain threshold.

• Given that Yolo provides a detection it is pretty robust in landing, no matter the angle of

the bus.
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Newest Frame

RGB-Filter

Downscaled Is atleast 10%
green?

Did yolo 
detect a bus within

the time?

Qr-code detected
within time?

Yolo object
recognition

yes

Start timer for 3
seconds

Stand still

no Move on

yes

Start QR-Code
tracker

Start LK-flow tracker

Calculate average 2D
position of the ones
inside the detected

bounding box

Calculate difference
between this position

and centerframe

Low-pass filter

Move forward and
towards reference

Start timer for 10
seconds

Land Move on

Detecting

Tracking 
and landing

Figure 4.15: Flowchart for the tracking and landing of the drone

However, due to extremely slow speed of Yolo, no limit to its detection time could/should be

implemented. Because of this, the additional "Move on" situations in the flowchart describing
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the algorithm were not implemented either.

It was wanted to start the different applications when the algorithm found that they were

needed, however it turned out that the version of ROS used (Indigo) had no support for this.

This makes little difference, but should be changed if implemented in another ROS version due

to the less computational load.

4.6.1 The code

In the appendix .3.4 the entire code used is added. A certain knowledge about the ROS API can

be necessary to understand it all. The .launch file is what can be considered a main file, and

starts all the necessary processes.

Plugins.py checks all the plugins and computer vision applications, and whether or not

detections and thresholds is passed. It keeps control over this and its place in the algorithm

using the array "algoOrder".

mainInteractor.py use the information provided by plugins.py and the measurement devices

to move the drone.
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Chapter 5
Discussion

In the section below, what can be determined using the results is discussed. Additionally,

the additions that can be made to the autonomous vehicle control using these techniques is

considered.

5.1 Computational expenses

As mentioned in 6, the simulations where done on an i7 CPU, without a GPU. Running all the

previously mentioned applications at the same time made the simulation run in a slower speed,

and potentially led to worse result than could be achieved with eg. a GPU.

A drone however would presumably not be equipped with this much processing power on

board, neither as much as described in 6 nor more. Creating something that was computatioanlly

lightweight in order to run on a along side other applications were not among the goals in this

work, but is real concern. The computational power required is not considered or discussed

in this work, but its compatability with a machine with the specs mentioned in 6, is arguably

concerning.

Without getting deep into this problem, some directions one could take in mending this

problem could be:

• Fitting the drone with a stereo camera, with high FOV (eg. what is known as a fish eye

lens). This could help the drone in maintaining track for longer. With an easier tracking,

the system could potentially suffice with a VO system alone, such as the DSO, which

should surprisingly good results. The use of VSLAM is arguably the highest source of
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computational load in this framework.

• The use of neural networks for computer vision is more computationally heavy than other

classical methods in computer vision. Using a different algorithm for the recognition of

the bus could potentially aid in the computational load as well.

• Due to limitations of ROS indigo, several pieces of software have to run simultaneously.

Using a newer version of ROS would allow the software to launch different software such

as eg. the VO only when needed.

• If the computational load is still a problem, the work could potentially done offsite instead,

on a server. However, this would require the drone to get its navigational information in

another way, such as a internet connection (which is another problem).

5.2 Reliance on AI in navigation

As explained in ?? and several other texts, neural networks are universal approximators. How-

ever, their performance is completely reliant on the dataset and how well it is trained on it. If the

real world problem is not represented sufficiently in the dataset, the neural network wont give a

good performance. As mentioned in .2.16, the typical way to compare neural networks is using

their mAP on a given dataset. This doesn’t necessitate a real world performance. The neural

network is limited to a number of factors, such as:

• The dataset, and how well it shows the real world application the neural network needs to

mimic.

• How well the real world application of the drone will be similar to the dataset. A real

world application is continuously changing and can result in situations the network is not

trained for.

• How well the network is trained. It could for instance be overfitted, unable to generalize

to new real worls situations.

As opposed to classical methods in computer vision, you can not prove the performance

of the neural network, which is why it is often not opted for in the field of vehicle navigation.

When it comes to vehicle recongiiton, thera are options in the field of classical computer vision.
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In this work, it was mainly chosen due to its ease of use, stable results in an environment with

limited detail, and the fun of it (?). However, for further work into this concept, its reliance on

neural networks should be avoided. However, it can be argued that as the ML is just a step in the

algorithm, before the drone afterwards uses a seperate classical method in CV for recognizing

the aruco marker. In other words the system has arguably no reliance on ML as the lack of a

aruco marker on top of the vehicle could allow the drone to move on, rendering no error.

5.3 The result

In this section, the results arrived at in the previous chapter will be summarized and generalized.

5.3.1 Object avoidance

Using visual techniques for object avoidance works, in that it is possible. Point clouds and

occupancy maps can be made live as the drone moves around, however the process of combining

these and path planning in order to create a route that avoids crashing into objects can be

computationally heavy.

The framework in Hao-Chih (2012) provided a working result, using both the IMU, PTAM

and LSD fused together with a least square algorithm to create a good estimate of the scale of

the scene. This arguably proved to be too much of a computational load. However, other more

simple frameworks could give a computationally lighter result. An example would be the use of

a stereo camera along with DSO.

5.3.2 Bus recognition, tracking and convergence

With the current framework of detecting the bus, this is a slow process. The detection of the bus

is reliant on a very slow neural network, that is not trained on AtB busses specifically, but the

VOC2012 dataset that features busses in general. Additionally, the use of neural networks for

vehicle control is not considered good practice. However, it can be argued that this use of neural

network does not make it reliant on it. In the case of a bad positive, the drone would continue

along the road when it fails to see the Aruco marker of a roof a bus within a given time. In any

case, there are other approaches could ahve been used for the recognition of the bus
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5.3.3 Bus platform landing

The landing performance of the drone using a fiducial marker to provide track, show a perfect

success rate of a 100%. The bus landing platform was made large so that all discrepancies in

landing was observable easily, and that some results can be made even if the drone misses the

exact mark. However, as the drone managed to land accurately, further work showing the exact

accuracy obtainable should be made (for more about this see ??).

5.4 VSLAM and GPS

As mentioned in .2.16, modern uses of VSLAM combine it with the measurements from IMU

and GPS in factor graphs, creating a sensor fusion. This combined estimate should provide a

more accurate estimate of the pose over time. Asmentioned in .2.16, Rones2019 the disturbances

in the position estimation at .2.16 was due to buildings creating an urban canyon. The results

shown in .2.16 display that the pose estimation using a VSLAM algorithm perform well in the

situations where the GPS fails - situations affected by urban canyons. As the package delivery

drone would have to navigate in urban areas, urban canyons is a problem it will often be affected

by. Additionally, with the dense distribution of personal addresses in urban areas (and potentially

then points the drone must reach), accuracy in positioning is arguably vital.

The modern framework of using VSLAM in cooperation with GPS and IMU with factor

graphs can then potentially be a good option for the setting of a drone navigating in urban areas.

5.4.1 Expanding the elevation masking

The modern framework of using factor graphs to combine the estimations of VSLAM and

GPS create a modern combined estimation a chage in pose, but running VSLAM can be a

computatonally heavy feat. However, considering that the problem of urban canyons relate to

the unknown distance of the multipath signal, the computationally heavy bundle adjustments

may not by needed. Given a simple pointcloud created by a stereo camera, one could use this

directly to aid the GPS by in tree potential ways:

• Expanding the elevation mask to include the elevation angles covered by these points.

However, as only the required minimum of four satellites are guarenteed visible, simply
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removing more satellite signals from your estimation would have to depend on how many

you have available. Letting this factor into the Kalman filter could be a safer option

• Calculating the full length of the multipath signal can also be possible, as the position of

the vehicle in question and the position of what it has potentially bounced off of is known.

• The amount of tracked points can also be used to identify the presence of an urban canyon.

This would not necessarily helping with the precision of the position estimation, but help

with the knowledge of its potential lac of precision.

The standard elevation masking cuts off all satellites situated at a 15 degree elevation angle,

as the estimates using their signals are especially untrustworthy. Signals arriving from angles

where there are obstructions would most likely be multipath signals and also untrustworthy.

Given that we already have an occupancy grid, with information about where some potential

obstructions are, one can potentially use this to expand the elevation masking to where one now

know there is no clear line of sight.

5.5 Further work

The detection and tracking of the bus which was very dependent on ML object detection was

shown to be non-reliant and not robust. Feature tracking could potentially give more robust and

accurate result in both tracking and detection of the bus. The process of creating a bus detector

and tracker using this would require several features from all sides of the bus being created

and stored in a database. Using this AtB bus detector along with others, potentially the ones

provided by Willow Garage (????), could potentially be used to create a navigation framework

that use more semantic information (such as avoiding vehicles etc.).

The tracking performance of the ardrone was severely limited by its field of view, arguably

forcing the choice of LSD instead of DSOwhich performed very well (see section .2.17). With a

drone with a stereo camera with a large field of view, imported into Gazebo this would potentially

not be a problem. For further work, stereo DSO (or one of its many extentions and variations)

with large field of view cameras, should be tested. This should additionally be computationally

lighter.

In order for a computationally light object avoidance, path planning frameworks besides the
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RRT (rapidly exploring random tree, ??) algorithm provided by move-It (section .3.2) should

also be tested.

The landing platform was shown to be more than large enough. If this project is pursued any

further, how small one can make the landing platforms as well how many drones one can safely

fit on top of the bus should be tested. This would involve both the problem of the proximitty of

multiple drones potentially landing and taking-off close to each other, as well as the problem of

wanting the drones to remain stationary as the bus is accelerating etc. Additionally the drone

landing platform should be moved, as it is in its current position replacing a vent that was

originally there.

As described earlier, in order for object avoidance to perform well, accurate localization

is key. This is especially concerning in the context of urban drones, as the problem of urban

canyons (see .2.15) are especially detrimental to GPS data, and can be aided using VSLAM or

VO (this is shown in section .2.17 and figure 3). State of the art uses of VSLAMuse factor graphs

(described in ?) that can efficiently use both GPS and VSLAM data for accurate localization

and mapping.

The need for a road tracking algorithm was realized early on during this work. As the

accurate placement of roads in relation to a drones position is not necessarily easily known using

eg. a map, a tracker would be very helpful. Using classical methods 2.3.1 such as line trackers,

discerning the road should be feasable.

This project was done using ROS Indigo, which was mainly chosen due to LSD-SLAM

not being supported by other ROS distributions. The newer distributions of ROS support

spontaneous launching of ROS packages and threads depending on other factors. This is not

supported by Indigo, and allowing for this would make ROS easier to work with. Indigo is

additionally reaching is end of life the summer of 2019.

Rosbags is the common filetype to store messages and data that is incoming and sendt

between the threads in ROS, using the ROS topics and ROS services. These files can easily

also created and used to simulate a drones performance in the outside world without it being

there. Using rosbag files in order to test the drones ability to create a map of the city on a large

scale, how well it could track and place real world vehicles and how it would navigate would be

interesting to test.

For further work, a test could be made to include the bus moving back and fourth, and with
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the drone taking off from the bus roof when the bus is close to the goal. However, this test ends

with the drone having landed on the bus roof.
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Chapter 6
Conclusion

Checking the feasibility of autonomous drone package delivery using busses for long distances

was tested using a simple example in the ROS simulation environment Gazebo. This test can be

broken up into tree parts: object avoidance and navigation, bus detection for long term tracking,

and bus roof landing. The landing can be considered a success, as a simple P-regulator was

found to provide a very accurate landing, as long as the control of its descent is limited a certain

way described in 4.5. Like the litterature describes, the tracking and detection using ML was

shown to be unreliable and inaccurate. However, due to the simplicity of the example taken into

account it produced a working result. Detection and tracking using a classical feature based

methods seem to be a better option, and should be tested in further work.

What proved to be the most troublesome is the autonomous object avoidance, which proved

to be both complicated and potentially computationally heavy. Without knowing exactly what

system requirements is needed to make the framework tested to run smoothly, it would arguably

be something beyond the specs on the system used for the Gazebo simulation in question, that

can be studied on 6, as the software made the simulation run slow. Presumably, this would

imply that the hardware needed for this computation is beyond what the package delivery drone

could carry. Either simplifications to the object avoidance framework or off-site computations

computing could fix this, but the off-site computations introduce the problem off the need for a

constant eg. internet connection to the drone.
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Appendix A - Hardware Used
The simulations where done using Ubuntu 14.04 LTS, on a Optiplex 9020 Dell Computer. It

the following specifications:

• Memory: 15.6 GB

• Processor: Intel Core i7 @ 3.6 GHz CPU
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• Integrated intel graphics

.1 Information about the Ar parrot drone

The version used in this was the ar drone parrot 2. It is a currently discontinued real quadrotor

product produced by the company Parrot. Without claiming for certain that these specifications

are the same on the real product, the Gazebo realizations have these specifications:

Dimensions: 58.42 x 1.27 x 58.42 cm

Weight: 1.8 kg.

.1.1 Sensors

The drone has an inertail measurement unit (IMU), and a GPS. It has two cameras, on in front

and one placed on the bottom pointing down. Both have the resolution 360x640. They have the

following camera calibration matrices:

K f ront =


561.999146 0 307.433982

0 561.782697 190.144373

0 0 1



Kbottom =


686.994766 0 329.323208

0 688.195055 159.323007

0 0 1


For more information, see Jakob Engel (2014).

.2 Explanation of VSLAM

When talking about computer vision, visual odometry and visual SLAM has to be mentioned, as

it is not only a state of the art series of techniques, but also a field with continues breakthroughs

(T. Bailey (2006a)). It is also a fairly new field, with the first true introduction of the SLAM
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problem was at the 1999 International Symposium on Robotics Research (ISSR’99) . The

continuous breakthroughs can even make it hard to create a detailed overview over the basic

innerworkings of it, as well as what is the most recent breakthoughs. With the reader taking that

into account, this section will give an overview over how the technique can work, as well as how

it does in its 3 most well known and defining algorithms. Essentially all of explanation in this

subsection is taken from the book Multi view geometry (Hartley (2000)).

.2.1 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping in general is a method of using a distance measuring

sensor in order to both create a map of an area, as well as placing oneself in the area in

question. This process would also potentially involve the movement of the subject with the

sensor, rendering this process not completely not straight forward, as a measured change in

a measurement could both potentially mean a change in the position of the measurer, as well

as the points in the surrounding area that is being mapped. SLAM takes into account both

of these possibles and solves this seemingly impossible problem using optimization and error

minimization.

A SLAM algorithm often consists of 3 independent threads: a short term tracking thread,

a long term tracking thread which both feed into a mapping thread. All the different threads

deal with their own responsibilities etc. The short term tracking threads notices the immediate

change in a measurement, and uses this to generate pose estimations. The long term tracking

thread creates what are called loop closures, that is comparing poses and positions of points to

figure out whether it can combine previous estimations update its current. The mapping thread

receives the data of changes of poses and points, and stores this all in a map.

This is an algorithm that can work with any distance measurement sensor, like a laser sensor

or a sonar. However, the sensors that are usually used are RGB-cameras, RGB-D cameras (ones

that see depth using an additional sensor), stereo cameras (two cameras about 10cm apart, so that

the depth of an image can be deduced) and LIDAR (’Light Detecting and Ranging’, a popular

distance sensor using laser pulses). The use of cameras for this instead of depth measurement

sensors is however significantly more difficult. SLAM is often used on autonomous vehicles,

in which LIDAR is often used. Using a LIDAR for navigation however has some downsides

besides it being expensive and large (Fei and Soatto (2018) and Vibhav Vineet (2018)). Tesla
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decided against using LIDAR on their autonomous vehicles and instead use cameras, for this

reason (Crowe (2019)). This work will continue its focus on Visual SLAM using RGB cameras.

Geometric camera model

In section 2 the calculations related to a cameramodel was briefly explained. Scelizki (2011)

chapter 1, takes these further ending with the following equations:

πperspective(x) =

1 0 0

0 1 0

 K
1
z
x =


fu x

z + cu

fv
y
z + cv



π−1
perspective(u, d) =

1
d
K−1


u

1

 =
1
d


u−cu

fu
v−cv

fv

1


Using this, one can express the re-projection of a 3D point into its corresponding one on a

2D image. This is done using the matrix K (expressing the innate camera information) and the

transformation Tcw of its pose.

xc = Rcwx
w + t ccw (1)

.2.2 Short term tracking

Even though we have the ability to now know where a point can be found in the 3D space, it

takes a lot in order to map and track ones own position at the same time. Short term tracking is

the first step to doing visual slam.

Two-view geometry

Considering the geometry, if a change in pose of the camera was correctly estimated, one can

calculate a 3D pose transformation between these two. If the frame from the first pose provided
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Figure 1: The epipolar geometry

a 2D points that stood out, then an ’epipolar plane’ is created. The vector from camera 1 to

camera 2 is estimated (known as the baseline), and so is the vector from camera 1 to the tracked

3D point. These two vectors span the epipolar plane. This plane now intersects the image plane

of camera 2, with a line on which the point in question can be found (known as the epipolar line).

This is called the epipolar constraint. This constraint is expressed using the essential matrix,

and the fundamental matrix, describing the change in pose and the epipolar line, respectively

(Scelizki (2011) p. 471-505).

If the point in question was tracked, and found on the second point of view, then one can

triangulate the position of this 3D point. This can also be used to estimate the position of the

camera, given that the points are stationary. As the pose of a camera is given 6 coordinates, not

many points are needed to track the movement of the camera (only 5 points are in fact needed

as scale is assumed in the monocular case). Using these the movement of the camera itself can

be expressed as a change in pose over time, where estimates are continuously added.

.2.3 Tracking methods

Using visual methods we can look for certain characteristics in the image that has moved, and

use that to get an estimate of a movement or a position on a map. This is also called visual

odometry. Much like the odometry in finding the position of a vehicle by integrating its velocity
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or acceleration, this short term tracking is a short term estimate, but will likely result in large

drifts over time.

There are different ways of doing short term tracking. The main distinction between these

usually lies in ways of defining an discrepancy between frames as feature based approaches

and photometric methods. The photometric method considers the change in the overall image

pixel intensity in every frame. The feature based methods consider certain points that are easier

to spot, also known as a feature. These points are then easy to consider and track one by

one. Additionally, the number of points an algorithm uses or tracks is a normal distinguishing

factor between algorithms. Either for the sake of the tracking or in order to make an accurately

recreation of a 3D space, some VSLAM methods gather a very large amount of points. These

are called dense methods. The ones that collect fewer are called sparse.

Feature based and photometric methods of tracking have their positive and negative sides.

As feature based methods require distinguishing sets of pixels for it keep a track, objects without

discerning small sets of contrast can not be tracked. An example of this would be white wall.

Photometric methods however do not ahve this problem.

Initialize points

An example of a feature based short term tracking method can be described as the following.

First several features are chosen from an image. There are several types of features. As some

need to be found in a completely new image, some features also have a very detailed feature

descriptor eg. what are called ORB and Fast. In either case, a feature is often chosen due to the

local contrasts, and that the gradient in contrasts is changing in every direction, making it easier

to distinguish (ie. a corner detector). After saving the points and the normalized characteristic

gradient in a patch around the chosen point, one could match this point with others by calculating

the difference a certain feature descriptor and the other, and if this is below a certain threshold

it is considered a match.

Considering we have tracked a number of these features through a couple of frames j,

Assuming a known estimation of a tranformation Telno, and a measured u j , one can descrive

the error in estimation of the tranformation as:
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E = π(TCW x̃W
j ) − u j

Then the new estimation of a transformation would be found by minimizing the reprojection

error.

T ∗
CW = argmin

TCW

∑
j




π(TCW xW
j ) − u j




2

This is a highly nonlinear process, and instead solved in different ways such as calculating

linearizations etc.

.2.4 Bundle Adjustment

Bundle adjustments are large optimization calculations VSLAM algorithms take when estimates

its change in pose or placements of 3D points. This is computationally heavy. As the error can

be expressed as:

E = π(g(TWC , xW
j ) − xn, j

The state variable θ can then be found as:

T ∗
CW = argmin

TCW

∑
j




π(TCW xW
j ) − u j




2

Bundle adjustments are usually categorized into what the type of state variables they are

optimizing and whether it is done on a localized smaller version of the map, or the entire map.

• Motion only BA: It assumes that the map and the movement of the points are static and

correct, and tries to optimize the movement of the pose instead. Usually done for a few

iterations until convergence.

• Structure only BA: Given that the change in pose is correct, it optimizes the placement of

the 3D points. Usually done for a few iterations until convergence.
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• Full BA: It assumes nothing and tries to optimize the total error in the map and pose. This

is a computationally heavy process.

Even though different algorithms use these differently, the problem of deciding whether an

observation is due to a change in pose or an inaccuracy or change in an observation, is often

solved simply using a series of bundle adjustments. First one thing is assumed, then the other

(given a certain estimate of pose and structure already available).

.2.5 Mapping

All the points that it manages to place in 3D space, it can use to estimate its own speed and

trajectory, but it is also used to create a map of the area. All the points are put into a 3D map,

along with a represenation of the trajectory that was followed. In order to store this information

well, at a certain point what is called a keyframe is chosen. At a keyframe the pose as well as

the position of the points it can see is saved. Tracking frames (the ones that are not keyframes),

are points in time where its pose and the points are not specifically saved. These are only used

to estimate a change, until a new KF is saved. Having more KF results in a more dense and

complex map, as well as a larger computational load when performing a BA.

When a KF needs to saved is a problem that the mapping thread deals with. this is usually

dependent on a number of different things, such as the number of well tracked points, and how

long it has been since the last. In order to simplify the maps, it is normal to try to mimic a larger

map by adding up smaller consistent ones. THis could essentially make a larger topologically

correct map.

Only taking into account the steps between these keyframes when making a map is what is

called visual odometry. It will most likely create global drift over time. A VSLAM algorithm

however can perform bundle adjustments over old keyframes as well(the entire map), which are

many degrees of freedom, and a reason why pure VSLAM algorithms requires more than VO.

.2.6 Long term tracking

Short term tracking techniques alone result in inaccuracies and global drift. Visual SLAM

techniques however can mend these problems with the additional long term tracking thread.

There are several ways this is achieved, but the general way is to keep track of previous points
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that are added to the map, and optimize over the position over these previous points as well in

order to get a more precise map. Additionally, the long term tracking thread look for what are

called loop closures. Due to the computationally light weight of using short term tracking alone,

several popular methods uses simple visual odometry alone.

Loop closing

It is hard to get a refined map over an area when your estimate continously get worse and worse.

Imagine going for a walk around a building - with a continously worse estimate of where you

are, you wouldn’t even be sure when you have arrived back at where you started if it weren’t for

your ability to recognize where you have been. It is essentially closing an loop on the map and

getting a more refined estimate of previous observations doing it. Loop closures can happen

faily often, when eg. spotting previously mapped points from another point of view, and is an

important addition to framework. Cadena et al. (2016) describes it as an essential part of SLAM,

as the metric information and place recognition goes hand in hand, making the other job easier

and more robust.

The Visual SLAM algorithm do this using several techniques. A potentially easy to un-

derstand way is how it is done in the algorithm ORB-SLAM. In ORB-SLAM all points are

described using their respective features (contrast etc. in the surrounding pixels), along with the

features of all the other points that have been spotted around this point. A bag of words model,

is an AI technique where you take into account a number of information, and try to match this

with another. If there are enough inliers(amount of information in common), the bag-of-words

model determine that they are a match. ORB-SLAM does this with the points it looks at, and

use this to determine whether or not it is looking at a closed loop.

.2.7 Popular VSLAM algorithms

This field is an ongoing one with often new additions and methods being continuously released.

However, a couple of main ones are allready stand out as major contenders. As there are different

ways to do VSLAM, the best way to understand the technicalities is to know how a couple of

the more popular algorithms work.
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SVO and PTAM

SVO and PTAM are two methods that are infact visual odometry, as they do not perform any

loop closing or anything similar. They will then produce a lot of global drift, but locally what

they provide is accurate. SVO is well known enough that is usually mentioned in the context of

VSLAM either way. SVO

SVO is a hybrid tracking method, using both the photometric and feature error. It has two

threads, tracking and mapping.

It initializes a tracking using all the points it can see from the first image to the next and that

it has an estimate for the depth of. It then calculates the photometric error minimization on the

pixels in these features, getting the first estimate of the pose. It then improves this initial guess

using feature alignment. It finds out what key-frame has the best view of a feature, then optimize

using the error in a patch around this feature using the different key-framed poses. Finally it

performs a motion only BA, structure only BA then full BA in local map.

The mapping thread is also in charge of estimating the depth of 2D features for which

the corresponding 3D point is not known. The depth estimate of a feature is modeled as a

probability distribution. Starting off, the variance in this distribution is very high. With every

new observation the distribution is refined more, much like a Kalman filter. The new KF only

make new observations of this feature searching the epipolar line, making the process a bit faster.

When the variance is small enough, the point is converted into a 3D point.

Parallel tracking and mapping (PTAM) is a tracking method for small AR usecases. In other

words, it was created for simulating a 3D object placed on a tracked map. Much like other visual

odometry, it tracks the change of pose in the camera as well as the map, however it works best

locally. PTAM has a tracking and a mapping thread, with the tracking thread also responsible

for rendering graphics when PTAM is used for AR.

The tracking thread use a motion model to estimate positions of previously tracked points,

and minimize the error of re-projecting them onto the image from another pose. The mapping

thread initializes well by maintaining a smooth 2D track of a couple of features, as the camera is

moving sideways then triangulating the base map. In addition to assuming the camera moving

sideways, it creates a good initial map estimation at the cost of assuming the base map is flat

(being meant for small scale AR, this can be a good assumption).
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ORB-SLAM

ORB-SLAM gets its name from using what are called ORB features (Oriented FAST and rotated

BRIEF). This is a feature descriptor made for computer vision situations where the feature needs

to be distinguishable enough to be recognized well.

ORB-SLAM runs 3 threads: tracking, local mapping and loop closure.

The tracking thread localize the camera and decide whether or not to insert a keyframe.

Features from the current KF to the new image are matched and then the transformation is

estimated by motion-only BA. When there is an estimation of the pose and feature matches, the

covisibility graph of keyframes are used to get a local visible map. This local map consists of

keyframes that share map points with the current frame. Through reprojection, matches of the

local map is searched for on the frame and the camera pose is optimized using these matches.

If the tracking is lost, the place recognition module kicks in and tries to relocalize itself.

New KF are taken frequently to ensure robust tracking.

The covisibility graph is a spanning tree linking a KF to the KF with the most points in

common(like looking at the same 3d points). So when a new KF is inserted it needs to be put in

in this covisibility graph, additionally a Bag of Words representation is made for the KF with the

same information. Using the covisibility graph, a point is only placed on the map if it is found

25% of the KF where it is expected. Using epipolar geometry, new map points are created by

triangulating ORB from connected keyframes in the covisibility graph. Additionally, unmatched

ORBs in one keyframe are checked against other unmatched ORBs in the new keyframe to see

if they fit there.

ORB-SLAM then use a local-BA on the current KF and all in its covisibility graph.

To check for loop-closure, the Bag of Words vectors are checked between the new KF and

the neighbors in the covisibility graph. If three loop candidates are detected consecutive it

is regarded as a serious candidate. For these loops a SIM(3) is estimated, and RANSAC is

performed and if there is enough inliers the loop is accepted.

The current KF pose is then adjusted and this is propagated to its neighbors and the corre-

spondingmap-points are fused. Finally a pose graph optimization is performed over the essential

grapth to take out the loop closure created errors along the graph, included scale drift.
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LSD

Large Scale Monocular SLAM (LSD-Slam), is direct semi-sparse method. Not relying on

features separates it a bit from the previously mentioned methods. Its keyframes are created

using a couple of frames, rendering an inverse depth map. The keyframe also stores the depth

variance in this depth map. The map is sparse since the depth and the corresponding variance

is only saved for pixels in neighbors with high gradients. Using this it can incorporate depth

uncertainty into keyframe based tracking, much like SVO.

The tracking thread estimates the pose change by minimizing photo-metric error.

New images that are not used as keyframes are used for depth map estimation of the current

KF, using many small stereo comparisons.

Map optimization Whether or not a KF should be added to the map depends on its distance

and difference in orientation. If a KF is made then points are projected from the old KF into the

new one, and then spatial regularization is performed, along with outlier removal.

After the KF is added to the map, the keyframes expected to be close based on their tracking

checks are used to detect loop-closure. Loop-closure also helps with scale drifts since all

keyframes have a scale and they are set up together.

.2.8 Stereo vs Monocular Cameras

All of these techniques struggle with placing elements in 3D, as it needs to estimate its own

movement in order to triangulate a points 3D position. Additionally, the scale ofmap is unknown,

as all that is known is simply the relative position between points and camera. However, if we

instead had two cameras connectedwith each-other side-by-side, then the transformation between

the two can be considered known, making the placement of these points easier. Infact, the entire

initialization step can be skipped using a so called "stereo camera" as both the depth of the points

are known from the start, and that there is no problems initializing the scale of the scene, as the

transformation between the two cameras is always known.
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Appendix B - State of the art techniques
and additions to VSLAM

The field of VO and VSLAM see new additions and potential techniques added to it continously,

being such a new field. In this section I will go through what is the basic benchmarks for modern

uses of these algorithms. This section, is based heavily on the book Multi View Geometry

(Hartley (2000)).

Factor graphs

When using an algorithm like a SLAM to estimate a change in pose in eg. a vehicle, there are

usually more than just a camera helping you. Instead of getting a live reading of eg. the position

from the VSLAM algorithm, in order to then feed this into a sensor fusion along with eg. the

GPS, this is done in the VSLAM algorithm itself. In order to perform the sensor fusion one

could have used Kalman filters, but in the context of VSLAM there are so many points of data

to take into account that one instead use what are called factor graphs for forward passes. This

is standard for modern SLAM.

Image processing

In order to mend some of the visual problems that can occur, there are some image processing

techniques that can be used on an image before the VSLAM algorithm.

• Remove things that can visually change a lot over time. For instance remove color (using

standard techniques, physics based)

• Perform a night-to-day transform if it is night (using DL, learning based).

In he context of place recognition, the use of map in addition to image processing gets us what

is typically called the belief state. In order to mend the effects of shade and darkness etc., the

modern uses of slam would also directly use DL and computer vision techniques to remove these

or do a night-to-day transfer in order for the algorithms to able to recognize points and perform

loop closures at different times of day.
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Appendix C - Litterature Review in
modern Visual SLAM

Several problems considered in SLAM have essentially created their own fields and variations

on SLAM. Below some of these are presented. Cadena et al. (2016) present these subfields as

the future of SLAM, and where the focus of research should be.

.2.9 Semantic SLAM

Making use of the semantic data gathered through creating a map could be interpretable, and

used. However the problem of semantic information is still in its infancy (Cadena et al. (2016))

even if it is an important problem, as it lacks a cohesive formulation. A basic part of it is

categorization of what it is seeing, however it should involve high level understanding and

related actions as well. Making use of semantic information in a situation is a very basic idea

for a human, as the semantic information affect all of someones other reasoning.

When it comes to categorization, which is arguably an important part of semantic informa-

tion, several strides have been made. This objective is often also refered to as semantic mapping,

or semantic SLAM. Daniele De Gregorio (2018) and others use object recognition algorithm

alongside SLAM to place objects in 3D space. K. Himri (2018) takes this a step further by using

object recognition in cooperation with SLAM, by using objects as landmarks. Sudeep Pillai

(2015) use SLAM to aid in the object recognition, as on abject in a known 3D space can get a

combined resulting prediction using multiple vantage points. This is essentially showing that

SLAM and object recognition perform better when working together. Trung T. Pham (2018)

make use of DL to create a recognition algorithm that segments and classifies the individual

pixels as members of a class, successfully classifying walls etc. This also has the added ability

of finding the pixels that are not classified: unknown objects. Finding unknown is something

state of the art 2D classification algorithms such as YOLO can not do. Vibhav Vineet (2018)

performs semantic SLAM by identifying a dense on a large scale semantic SLAM outdoors, in

real time. Using the fact that all of these techniques require prior knowledge about the objects

being identified, Fei and Soatto (2018) and Renato F. Salas-Moreno (2013) use a database of 3D
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models of the objects it is identifying. Using a 3D model of what is to be identified, it manages

to identify the objects pose as well. This allows it extrapolate information about the rest of the

object, even if parts of it is not within view. In a similar fashion Niko Sünderhauf (2019) use

predictions by YOLOv3 over a couple of frames (see 2.4.3) to create ’Quadrics’ (3D surfaces

such as ellipsoids) to overlap the object. This essentially estimating the 3D shape of an unknown

object.

The semantic mapping with place recognition from Niko Sünderhauf (2016) provide more

semantic information by using a convolutional neural network 2.4.3 for place recognition to

label places in a gradually built map. In Staffan Ekvall (2006) the semantic information about

labeling rooms was done by identifying objects associated with certain room labels.

.2.10 Active SLAM

As opposed to the passive task of creating a map using a position, the dynamic task of changing

the position to improve the map or the pose uncertainty is what is called active SLAM (Cadena

et al. (2016)). Much like the use of loop-closing, active SLAM could help getting consistent map

and tracking, and is therefore an important subject. Active SLAM is complex however, as ties

into the problem of ’exploration vs exploitation’ dilemma. V Le et al. (2019) use what it calls

’active perception’, changing the position to aid in object detection, allways choosing greedy

actions maximizing the potential information was shown to increase detection performance.

Cadena et al. (2016) explains the problems relating active SLAM. There are several frameworks

that that can be used to aid it, but a more popular one follow these basic steps: A couple of

potential vantage points are identified, the action with the largest associated utility is chosen,

the action is done and finally the robot decides whether or not to continue. This tie into the

forecasting of future states, which is a very costly procedure. Solving of this would involve ML.

.2.11 Moving objects

SLAM would take into account all information gathered, even if some was subject to change.

The estimations would improve if the algorithm couldmanagemoving objects, by either ignoring

them or tracking them. The algorithm must not add a moving object to the map assuming it

is stationary (Cadena et al. (2016)). In addition to this rendering a erroneous map, the often

sparse maps created by VSLAM are sensitive to errors like these, potentially resulting in bad
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estimations of pose as well. With this in mind Somkiat Wangsiripitak (2009) track 3D objects

and manage to make the SLAM disregard these. Much like Sudeep Pillai (2015) this shows

that SLAM and object recognition goes hand-in-hand, they were however mainly done on a

small scale. T. Bailey (2006b) consider the applications of SLAM on a large scale, vehicles is

an obvious example of objects that can pose a problem. Vibhav Vineet (2018) blabla. Chieh-

Chih Wang (2007) introduce SLAM-MOT (SLAM and Moving Object Tracking), which allow

for motion modeling of detected objects. It was found that allowing for motion modeling in the

general SLAM framework rendered a too large computational demand, making it infeasable at

the time. Doing in two separate problems however provided great results.

Appendix D - State of the art techniques
and additions to VSLAM

The techniques mentioned in .2.1 are usually the 3 most defining algorithms within the field.

However there are notable additions.

.2.12 DSO

Among the newer algorithms created is DSO - Direct Sparse Odometry (Engel et al. (2016)).

Among the people working on DSO is Prof. Daniel Cremers of the The Technical University

of Munich (TUM). Cremers is on known to be in the forefront of new developments in SLAM,

with also the creation of LSD. As opposed to LSD, DSO is visual odometry but can still provide

great accuracy.

As the name implies, DSO is sparse and uses the photometric error. As opposed to many

othermethods, it uses a joint optimization of all model parameters, ie. bothmotion and geometry.

It achieves real-time performance while doing this by omitting smoothness, which is otherwise

also accounted for. According to Cramer, DSO has been tested to outperform state-of-the-art

both direct and indirect methods in several real world settings. It has several extentions, much

like the other algorithms; it can be used with stereo, using an IMU, aided with DL and added
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extra loop closure detection. As these newer extentions sound promising, I will not take a stance

on these in comparison with others, as this much of an in-depth comparison is beyond the scope

of this paper.

.2.13 Deep learning

SLAM and Visual SLAM is computationally complex problem with an objective ground truth,

which is a sign that DL can make a difference. It has already been shown that it is possible for a

neural network to learn change in pose between between frames, as well as estimating the depth

of a scene Cadena et al. (2016). Yang et al. (2018) show promising results using deep learning

to estimate the change in depth over a couple of frames with a monocular camera, removing the

need for depth estimation and epipolar geometry in VSLAM. This field is however very new. In

June 2018 the first international workshop on deep learning for Visual SLAM was held.

Appendix E - State of the art Path
planning using SLAM

Path planning and object avoidance is a complicated problem. This is especially the case in

SLAM, as object avoidance requires very presize localization (Ivan Maurović (2018)). That is

why modern research on this it often goes hand in hand with the problem of active SLAM, as

a path planning with limited information would improve with the initial or ongoing gathering

of more. In control theory, object avoidance manifests itself in constraints, and a problem that

needs to be solved using techniques such as model predictive control (MPC) (for more about

MPC see Elfving (2018)). Ivan Maurović (2018) use MPC for object avoidance on slow moving

UGV (unmanned ground vehicle), showing MPC working for this usecase. Shoudong Huang

(2006) use the adaptability of a nonlinear MPC further by looking a larger variable amount of

timesteps ahead, and take into account the amount of information and the potential gathering of

more. As information gathering is a trade-off between the amount gained, and the accumulation

of process noise, it is a lot to take into account, and then also computationally heavy. Ivan Mau-

rović (2016) and Ivan Maurović (2017) approaches the problem using Djikstra’s shortest path
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graph algorithms (A* and D* respectively). Faster obstacle avoidance can be achieved using

eg. potential field method and rapidly exploring random tree (RRT) (for more about this see

Omid Esrafilian (2017). Using object recognition for path planning Ha1 and Sattigeri (2012)

identifies obstacles, and places waypoints on the side of their estimated bounding box.

Appendix F - GNSS

When global positioning is required, GNSS (Global Navigation Satelite System) is usually what

is opted for. In order to compare the results found using a VSLAM algorithm with a realistic

option, the technology behind GNSS will be explained in this section.

GNSS (Global Navigation Satellite System) is a common way to provide global geolocation

to eg. a vehicle, using satellites. GPS (Global Positioning System) is the United States ’Global

Positioning System’, which consists of 32 satellites. There are other systems like it, for instance

the Russian GLONASS. When making a GNSS receiver one can take advantage of several of

these, as the more satellites one can take advantage of the better.

As GPS is what is usually opted for, GPS will be used interchangeably with GNSS in this

paper.

.2.14 A basic understanding of GNSS

This section is heavily based on Rones (2019). A GNSS receiver uses a low frequency signal

recieved from a series of satellites which consists of among other things their position, along

with the timestamp from their very accurate atom clocks. Using this timestamp one can measure

the time it has taken the series of signals to reach you and from that calculate their distance to

you. Using a minimum of four different satellite signals like these that have a clear line of sight

to the vehicle in question, one can then solve for its 3D position on the globe. However this

calculation has many complications, among other things the atmospheric effects. It is assumed

that the signal travel in the speed of light in vacuum the entire journey, which is not the case.

Due to all of the complications like these, all GNSS use several satellite signals along with
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Kalman filters and optimization algorithms to remove noise and bias. One of these problems

that are harder to simply correct are what is called urban canyons.

.2.15 Urban canyons

GPS can not be used indoors as the low frequency signals do not penetrate walls, and objects

like it. When you get a GPS signal when indoors, it is more likely due to the signal bouncing

around until you recieve it. This would off course take the signal longer time than for a signal

taking the straight route. The straight route is what is taken into account when calculating its

distance, making a bouncing GPS signal not one to be trusted. The sattelite signal bouncing

off of objects before being received is refered to as a multipath signal, and can occur even with

a straight line of sight to a the satelite, but as the signal that come from the straight path can

easily be distinguished in this situation by choosing the signal (with the timestamp in question)

that was recieved first. So GNSS wont be as accurate indoors. However this effect is also met

when simply being around other objects that can disrupt the measurers field of view from the

satelite - which is common in urban environments. Buildings in cities create what are called

urban canyons, that create a hard time for a GPS to position itself.

.2.16 Elevation angle and elevation masking

Given that a larger elevation angle (angle between the horizon and the vertical axis) to the

satellite generally has a bad effect on the signal, the estimates arrived at from satelites located

at a higher elevation angle are considered more trustworthy. They are then weighted more in

the Kalman filter using all the different satellites. Additionally, GNSS recievers completely

disregard satelites that have an angle below 15 degrees to you, because these would have a

very long time travelling through the atmosphere, and have a much larger probability of being a

multipath signal. This is called elevation masking. Additionally the elevation angle factor into

the Kalman filter used in the estimations (as the lower elevation angle signals travel through the

atmosphere for longer). The train of thought here is that there are often more satelites to choose

from, given that we know their position we can use the to choose the satellites that give us the

best result. Infact in the case of GPS, one is only guaranteed 4 satelites within the elevation

mask, but there are often 5 or 6, and using GLONASS as well it would be even more.
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Appendix G - Testing of VSLAM methods

There are several different camera setups that can be used for this. A monocular (single) camera,

stereo (two) cameras, with varying intrinsic settings, depth sensors etc. A stereo camera would

yield better results, with a denser and more presize pointcloud produced. However, as the

standard ardrone in gazebo setup is with only one camera and it requires some work to set it up

with two cameras, the standard single camera setup was chosen. Additionally, the stereo setup

would not be testable in the real world, as a real life stereo camera was not accessible at the time.

Additionally one could also use cameras with a wider field of view, which would have the

effect of allowing the camera to keep track of more points as it moves around. A too narrow

field of view can result in sudden loss of track as the camera moves around.

Better or more interesting results can also be achieved using depth sensors, with which a

point cloud can be gotten directly from the sensor. This can for instance be gotten using the

Xbox kinect sensor, and is often used for this due too its availability.

.2.17 Testing of DSO, LSD and ORB

In order to test the algorithms on real world data, a small eight minute walk around the campus

park was recorded on a cellphone. Using pictures of a 2D chess-like grid from the same camera,

the Matlab camera calibrator found the intrinsic camera matrix to be:

K =


12575.53 0 958.46

0 1588.14 536.06

0 0 1


Much like the camera used on the ardrone, this camera has a low field of view which makes it

harder to maintain tracking. The camera was handheld while solely concerned with walking,

and on the day it was taken it was starting to rain. All of this can have contributed to a dataset

of a worse quality than it could be. As such, one needs to keep in mind that the results from this

testing does not show its optimal performance, but one under some sub optimal conditions. As

a package delivery drone could be under similar conditions, this is not necessarily a bad thing
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for the test.

Figure 2: A short walk taken while filming with a cellphone. The small trip features two potential loop
closures, and ends where it started

This path was also used in Rones (2019), who used it to test the accuracy of a well tuned

GPS. The results of Rones (2019) can be seen in figure 3. The performance of a GPS on the

same path can be a good comparison, as GPS as one can see what the standard is when it comes

to positioning.

10.396 10.397 10.398 10.399 10.4 10.401 10.402 10.403

63.4196

63.4198

63.42

63.4202

63.4204

63.4206

63.4208

63.421

63.4212

63.4214

63.4216

Figure 3: Results from ? from taking the same path with a GPS. Note the dips in performance in the
lower left corner.

In Rones (2019) it was described that the dips in performance at about (x = 10.398, y =
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62.42) were likely due to the nearby buildings blocking the signal and creating what are called

’urban canyons’ (this is described further at .2.15). As the GPS can output the exact coordinates

of a position, the VSLAM algorithm simply extends the relationsship between points from

one place to another. Its maps are scaleless. However, in order to compare the drift in scale

of the different algorithms tested on this dataset in the sections below, the resulting maps are

proportionally scaled to match the initial left turn. In other words, in order to compare the drift

in scale, the part following the initial left turn is the part that needs to be evaluated.

Testing LSD-SLAM

As one can observe below, LSD-SLAM quickly lost its tracking. This is a poor performance.

When using something like this for positioning, one would attempt to initialize the tracking

again after losing it, worst case producing several piece-wise good estimations of the map. For

the sake of this test however, this was not attempted.

(a) LSD’s performance,
showing how it very
quickly lose track (b) The map produced by LSD slam overlapped with the real map

Figure 4: LSD’s performance

A small sign of drift in scale can be observed, in that the right turn was estimated to happen

before it did.

Testing DSO
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Figure 5: DSO showing an initially accurate point-
cloud. One can distinguish the steps in front of the
university in the foreground, as well as the upcoming
sidewalk in the background

DSOwas suprisingly accurate being an odom-

etry basedmethod. On the figure .2.16 one can

observe the map produced by DSO, and ad-

ditionally the map produced by DSO overlap-

ping the real world map of the walk. Note that

the algorithm produced an accurate enough

result for the entire walk to be distinguish-

able. The areas affected by noise in the results

from Rones2019 due to urban canyons, one

can naturally observe here being completely

free from this error.

Upon comparison with the ground truth, the scale drift is clearly visible however. Addition-

ally it did not maintain its track all the way back to the beginning. The area immediately after

the first left turn, in the middle of the map has several trees, and is apparently an area that makes

these algorithms struggle.

(a) The performance by
DSO, showing that the
shape looks correct, and
that it lost track at one
point.

(b) DSO’s performance on top of the map of the path taken, showing its
large drift in scale

Figure 6: DSO’s performance, showing that it performed very well for just being odometry. The scale
drift however is very noticable
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Testing ORB-SLAM

Figure 7: ORB’s performances on top of the map

ORB SLAM struggled with its tracking in the

same area as as DSO and LSD, but using its

robust loop closure thread it managed to arrive

at an estimation of the movement in the end.

One can see that the estimation of the loop

closure has some errors. If the dataset video

clip had progressed further, it could have con-

tinously created a better estimation of this. In

the figure of its movement estimation in rela-

tion to the map one can see that it is the most affected by scale drift however.

(a) ORB-SLAMs performance, showing
the area where all the algorithms seemed
to struggle tracking

(b) A moment after, having found a loop
closure at the beginning

Figure 8: ORB-SLAM’s performance
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.3 Comparison between SVO, ORB and LSD

As all of these algorithms usually have 3 similar parts, in their own threads, a grid can seem like

an obvious way to compare their inner workings properly.
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Innerworkings of the most popular VSLAM/VO Algorithms
Short term tracking Long term tracking Mapping Extra

Explaination
of term

Localize the camera and
decide when to put in a
new keyframe. Recog-
nize points and estimate
a certain transformation

Loop closures or other, to
perform a larger refine-
ment or minimize drift

When keyframes and
points should be added

Features or
limitations

ORB Tracking Thread Loop Closure Thread Local Mapping Thread
Indirect method 1. Initial pose estimation

or re-localization.
ORB/ FAST features
are matched (guided
match search with
constant velocity),
transform estimated
through motion-BA.

2. Track local map.The
local map(points
seen by covisibility
graph) is projected
onto the frame.
Unmatched orbs
are tried matched,
and then local map
motion-BA..

3. The decision of
adding a keyframe.
Done if more than 20
frames since last, and
more than 50 points
tracked, where max
90 percent old points
(done generously,
making it robust).

Candidates detection: Bag of
words vectors are checked be-
tween new KF and neighbours
in co-visibility graph.

1. If 3 loop candidates in
a row detected: seri-
ous candidate.

2. Compute sim(3). Re-
sults in SIM(3) esti-
mated, RANSAC per-
formed. If enough
inliers are found the
loop is accepted.

3. Loop fusion. This re-
sults in current pose
adjusted and propa-
gated to neighbours
and map points in en-
tire loop, and opti-
mization over the en-
tire graph pose graph.

1. Keyframe insertion
checking the covisi-
bility graph and Bag
of Words.

2. Track local map.The
local map(points
seen by covisibility
graph) is projected
onto the frame.
Unmatched orbs
are tried matched,
and then local map
motion-BA..

3. The decision of
adding a keyframe.
Done if more than 20
frames since last, and
more than 50 points
tracked, where max
90 percent old points
(done generously,
making it robust).

Has a place recog-
nition module, if
tracking is lost.
Uses covisibility
graph and BoW
model
All threads use
the same features

SVO Motion Estimation thread None: Global drift Mapping Thread
Sparse, hybrid-
method 1. Sparse Modelbased

Image Alignment:
Minimize photomet-
ric error on pixels
seen in both new
image and the last
image with known
depth(direct) →
initial guess of
transformation of
pose.

2. Feature Alignment:
Align the initial guess
with the rest of the
map. Improve initial
guess with feature
alignment (find out
what other KF sees
the 3d point), then
minimize photomet-
ric error in patch
around to refine the
pose..

3. Pose & Structure re-
finement: Optimize
pose with motion BA,
structure BA, then full
BA.

12% rule: if distance from pre-
vious KF is more than 12% av-
erage scene depth, new KF cre-
ated.

1. If keyframe: Feature
extraction and initial-
ize depth filters. Ev-
ery depth filter is asso-
ciated to a keyframe,
initialized with high
uncertainty. Its depth
has a corresponding
probability distribu-
tion. It estimates the
depth of 2D features
using probability dis-
tributions, which is
updated with later ob-
servations. Starting
off the mean is the
average scene depth,
high variance.

2. Else: Update depth
filters. When vari-
ance small enough,
the point is made 3D
using π−1, and in-
serted map. Look
for features on the
epipolar line here the
desnity is highest.

Performs no loop
closures, being
VO.
Creates feature
points using
"FAST".
Computationally
lightweight.
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Innerworkings of the most popular VSLAM/VO Algorithms
Short term tracking Long term tracking Mapping Extra

LSD Tracking Thread Map Optimization Thread Depth Map Estimation thread
Semi-dense, di-
rect

Track on current KF: Estimate
pose transformation based on
photometric error. Minimize
photometric error to find pose
. A KF is an image, inverse
depth map and its variance:
K(I , D,V ). It is sparse, as its
only saved for spots of high gra-
dients.

1. Calculate epipolar
line

2. Search for correct dis-
parity

3. Inverse depth from
disparity

Candidates detection: Bag of
words vectors are checked be-
tween new KF and neighbours
in co-visibility graph.

1. If 3 loop candidates in
a row detected: seri-
ous candidate.

2. Compute sim(3). Re-
sults in SIM(3) esti-
mated, RANSAC per-
formed. If enough
inliers are found the
loop is accepted.

3. Loop fusion. This re-
sults in current pose
adjusted and propa-
gated to neighbours
and map points in en-
tire loop, and opti-
mization over the en-
tire graph pose graph.

The map is continusly opti-
mized in the background using
posegraph optimization. Based
on proximitty and then pose we
try to detect loop closures. The
10 closest KF are used for this
when KF is added

1. Find closest KF

2. Estimate SIM(3)
edges (ligning)

3. Map optimization

Incoorporates
depth uncertainty
Large scale

Appendix H - Testing LSD SLAM for
object avoidance in Gazebo

.3.1 Octomap

The use of a VSLAM algorithm would result in what is called a pointcloud. A 3D pointcloud is

an amount of singular points placed in 3D space, but these points are not like pixels, in that they

take up a certain amount of space. They only have a position. A pointcloud does not have any

volume, as its singular points does not. In order to calculate the space occupied in a pointcloud,

one transforms it into an octree (Hao-Chih (2012)).

When an object or point is found, one can show its 3D position with a volume using a

bounding box - a box indicating the bounds of the object or points in question. This bounding

box can be made in a certain size, resulting in fewer bounding boxes. In 2D this bounding box
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can be thought of a pixel. When more resolution is needed, bounding boxes could be made

smaller. In this case, in 2D the bounding box would be split into 4 - making it a quad-tree. In

3 dimensions this potential change in resolution makes it an oct-tree. It is from this selectively

dense resolution that octrees gets its name (Hao-Chih (2012)).

The ROS octomap package is a standard package that comes with the ROS installation. It is

used to create 3D bounding boxes, also known as occupancy grids, using pointclouds. In order to

use this to create 3D obstructions on map, the octomap package is normally used. Octomap can

be modified to take full advantage of the octree datatype, by creating its characteristic selectively

dense resolution, but this will not be used here. (Hao-Chih (2012)).

.3.2 Move it

Move it a motion planning framework made for ROS, that is made for motion planning in

cooperation with octomap and its occupancy grid mapping. The move it package for ROS

is a program mainly made for stationary robot arms, that solves for a 3D movement avoiding

obstructions. It uses an RRT algorithm to do this (Hao-Chih (2012)).

.3.3 Ardrone indoor navigation package Hao-Chih (2012)

Figure 9: Using the VSLAM frame-
work from , two buildings are detected,
and moveit creates the path of going in-
between the two.

As previously mentioned, the ardrone has a monocular

camera. VSLAM on a monocular camera come with

the side effect issues estimating scale. The scale of

the scene would have to be initialized or estimated.

This estimation is performed by LSD. In order to get a

better estimation of the scale, a package from a Hao-

Chih (2012) estimates this by getting both an estimation

from PTAM, LSD-SLAM and the IMU and using a

recursive least-square algorithm it continously improves

until when a user has observed a convergence. It then

feeds this easily into the previously mentioned Move-it

package, that then make short term waypoints using the

TUM ardrone package. For more information about

this framework see Hao-Chih (2012).
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.3.4 Results

The framwork created inHao-Chih (2012)was shown to

work, as detections can bemade, and then avoided. This

could be shown to allow the drone to move accross the

test environment made in Gazebo. However, running

this in real time on a system with the specifications described in 6 went slow.

Appendix I - PID explained

The explaination of this basic controller is taken from Elfving (2018).

Figure 10: Block diagram for a PID controller

Linear control is often great to take advantage of when possible because of its simplicity,

robustness and that it can possibly deal with some strongly nonlinear processes.

One of the earliest controllers, and one that has got a lot of good faith, is the PID controller.

Because of its robustness, tune-ability as well as its simplicity to implement, it has remained

one of the most popular as well the most widely used controllers out there. The PID works like

this: Using a sensor to get a measurement of the process you are trying to control, you use that

measurement in a feedback-loop and compare it to the reference value - the value that you’re

trying to get your system to converge to. This error in measurement, you feed back. The input

to the system can be something proportional to this error. This is what is called a Proportional

controller, as the input is proportional to the error. A PID controller also adds an element that

integrates the total error over time, and adds that as well as a factor proportional to the errors
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rate of change. Tuning the PID ie. changing the constants Kp,Ki and Kd , will often be a trade-off

between wanting a robust or an optimally performing controller (Fossen (2014)).

Modern uses of the PID also has high pass filter on the derivative term. This makes the faster

oscillations not being taken into account in the derivative term, as these are in practice noise.

In the context of state of the art vehicle control one might also add a factor that is inversely

proportional to the acceleration, and connected through a lowpass-filter, so that careful and slow

movements of eg. a ship, are made even more so (Fossen (2014)).

Appendix J - Code

.3.5 Main launch file
1 <?xml version="1.0" encoding="utf-8"?>

2

3

4 <launch>

5 <!-- GENERAL -->

6 <arg name="launch_prefix" default=""/>

7

8 <!-- Bus aiding tools and republish-->
9 <node pkg="my_package" type="plugins.py" name="bus_tools" output="screen" launch-prefix="">

10 </node>

11

12

13 <!-- Resize image to look for green size (1/32 crop for simplicity) -->
14 <include file="$(find ros_imresize)/launch/imresize.launch" />

15 <param name="/ros_imresize/resize_width" value="20" />

16 <param name="/ros_imresize/resize_height" value="15" />

17 <param name="/ros_imresize/topic_crop" value="/businteract/image" />

18 <param name="/ros_imresize/camera_info" value="/ardrone/camera_info" />

19

20 <!-- Look for green, output as white and black -->
21 <include file="$(find opencv_apps)/launch/rgb_color_filter.launch" />

22

23 <!-- Start yolo -->

24 <include file="$(find darknet_ros)/launch/darknet_ros.launch" />

25

26 <!-- Start LK opencv -->

27 <include file="$(find opencv_apps)/launch/lk_flow.launch" />

28

29 <!-- Start aruco marker -->
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30 <include file="$(find ar_track_alvar)/launch/pr2_indiv_no_kinect.launch" />

31

32

33 <!-- Drone navigation -->

34 <node pkg="my_package" type="interactorMain.py" name="drone_node" output="screen" launch-prefix="">

35 </node>

36

37 </launch>

.3.6 Main interactor and state manager
1 #!/usr/bin/env python

2 from __future__ import division
3 import rospy
4 from std_msgs.msg import String
5 import std_msgs.msg
6 from dynamic_reconfigure.msg import ConfigDescription
7 import re
8 from sensor_msgs.msg import Imu
9 from geometry_msgs.msg import Vector3

10 from std_msgs.msg import Empty
11 import math
12 from geometry_msgs.msg import Vector3Stamped
13 from nav_msgs.msg import Odometry
14 from geometry_msgs.msg import Twist
15 from visualization_msgs.msg import Marker
16 from octomap_msgs.msg import Octomap
17 from nav_msgs.msg import OccupancyGrid
18 import time
19 from geometry_msgs.msg import PoseStamped
20 from sensor_msgs.msg import Image
21 import os
22 from scipy import zeros, signal, random
23 import matplotlib.pyplot as plt
24

25

26 class DroneState:
27 def __init__(self):
28

29 # HARDWARE

30 self.position = [0, 0, 0]

31 self.orientation = [0, 0, 0]

32

33 # NAVIGATION

34 self.goalProximitty = 2

35 self.goal = [3, 50]

36 self.safeHeight = 10

37 self.relativeBusPos = [0, 0, 0]

38

39 startState = "asleep"
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40 self.state = startState

41 self.stateMemory = [startState]

42 self.semaphore = False

43 self.test = True

44 self.cameraRes = 640 # as the horizontal is the only used

45 self.batteryLevel = 0.2 # percentage

46 self.thresholdBus = 0.4

47

48 # Drones and additions

49 self.nickname = random.randint(0, 9)

50

51 # road

52 self.carRoad = [20, None] # road moves along y axis at x = -3

53 self.alongRoad = False

54 self.twistMemory = [0] * 10

55 self.linearMemoryX = [0] * 10

56 self.linearMemoryY = [0] * 10

57 self.oriDiscrepancy = 0 # mainly for LOS bus tracking

58 self.gpsEnabled = True

59 self.waypointQ = []

60

61 # debug

62 self.iterator = 0

63 self.inputs = []

64 self.debugconst = 0

65 self.testlist = []

66 self.talkative = False

67 self.updateCounter = 0

68

69 # landing

70 self.loopFreq = 10

71 self.busLoopIter = self.loopFreq - 3

72

73 # standards

74 self.landmessage = {"ori": 0, "pos": [0, 0, 0], "mode": "", "delay": 1}

75 print("initialized")
76

77 def continouslyCommence(self, data, pubCom):
78 self.statemachine(data, pubCom)

79 self.lowlevelcontroller(data, pubCom)

80

81 def filter_sbs(self, data):
82 """

83 Filter generate

84

85 Using sci py a filtered version is returned, using 50 and 0.04 as of now

86

87 Args:

88 data: list of measured discrepancy to regulate

89

90 Returns:
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91 filtered response list

92

93 Raises:

94 None as of now

95 """

96

97 b = signal.firwin(50, 0.04)

98 z = signal.lfilter_zi(b, 1)

99 result = zeros(len(data))

100 for i, x in enumerate(data):
101 result[i], z = signal.lfilter(b, 1, [x], zi=z)

102 return result # could have had just the final input here: [-1]

103

104 def getRefModel(self, measuredLx, measuredLy, measuredT):
105 """

106 Get the refmodel signal

107

108 Get the refmodel for the current timstep

109

110 Args:

111 measuredx: discrep x

112 measuredy: discrep y

113 measuredz: discrep z

114

115

116 Returns:

117 reference response lists x,y,z

118

119 Raises:

120 None as of now

121 """

122 self.twistMemory.append(measuredT)

123 self.linearMemoryX.append(measuredLx)

124 self.linearMemoryY.append(measuredLy)

125 refLx = self.filter_sbs(self.linearMemoryX)

126 refLy = self.filter_sbs(self.linearMemoryY)

127 refT = self.filter_sbs(self.twistMemory)

128

129 return refLx, refLy, refT
130

131 def callbackBattery(self, data): # should take com and vallback live battery signal

132

133 self.batteryLevel = data

134

135 def callbackBusevent(self, data, pubCom):
136 """

137 Changes state bc busevent

138

139 When plugins have measured thresholds broken they send messages dealt with here

140

141 Args:
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142 data: message sendt

143 pubCom: communicatio channel

144

145 Returns:

146 nothing

147 changes only state variables

148

149 Raises:

150 None as of now

151 """

152 msg = interpret(data)

153 if self.talkative:
154 print("4. Callback busevent {}. msg is {}".format(self.state, msg))
155

156 if msg[0] == "greenSpotted" and self.state == "onTheRoad":
157 if self.state != "onhold":
158 self.stateMemory.append("onhold")

159 self.state = "onhold"

160 print("Amount of green above threshold. Hold up")
161

162 if (
163 (msg[0] == "LOShere:")

164 and (self.state == "onhold" or self.state == "onLOS")
165 and not (self.semaphore)
166 ):

167 pcHorizontal = float(msg[1])

168 if pcHorizontal:
169 self.oriDiscrepancy = self.cameraRes / 2 - pcHorizontal

170

171 self.semaphore = True

172 self.setTumautoCommand("c clearCommands", pubCom)

173 self.setTumautoCommand("u l Autopilot: Cleared Command Queue", pubCom)

174

175 if self.state != "onLOS":
176 self.stateMemory.append("onLOS")

177 self.state = "onLOS"

178 self.debugconst = float(msg[1])

179

180 self.semaphore = False

181

182 def safeClearQueue(self, pubCom):
183 self.setTumautoCommand("u l Autopilot: Cleared Command Queue", pubCom)

184 self.setTumautoCommand("c clearCommands", pubCom)

185

186 def goToRoad(self):
187 """

188 Go to road

189

190 Add the closest road intersection points to waypoint queoue

191

192 Args:
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193

194 Returns:

195 nothing

196 changes only state variables

197

198 Raises:

199 None as of now

200 """

201 roadHeight = 8

202 roadIntercept = [None, None]

203 if self.carRoad[0]:
204 roadIntercept = [self.carRoad[0], self.position[1], roadHeight]

205 roadOutercept = [self.carRoad[0], self.goal[1], roadHeight]

206 elif self.carRoad[1]:
207 roadIntercept = [self.position[1], self.carRoad[1], roadHeight]

208 roadOutercept = [self.goal[1], self.carRoad[1], roadHeight]

209

210 forward = 0.5 * self.forwardAngle(roadIntercept) * 180 / math.pi

211 roadAngle = forward + 90

212

213 self.waypointQ.append(roadIntercept)

214 self.waypointQ.append(roadOutercept)

215 self.waypointQ.append(self.goal)

216

217 def convergeOnCoordinate2(self, goal, wantedOri=0, mode="default", delay=0):
218 """

219 Converge on coordinate

220

221 Create an input converging on goal

222

223 Args:

224 goal: the goal position

225 wanted orientation: the orientation wanted when having converged

226 mode: different aggressiveness and tuning of P parameters

227 delay: delay in twist convergence

228

229 Returns:

230 nothing

231 changes only state variables

232

233 Raises:

234 None as of now

235 """

236 pub = rospy.Publisher("cmd_vel", Twist, queue_size=1)

237

238 if talkative:
239 print("Objective aquired: {}{}".format(data[0], data[1]))
240 posDiscrepancy = [

241 goal[0] - self.position[0],

242 goal[1] - self.position[1],

243 goal[2] - self.position[2],
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244 ]

245 oriDiscrepancy = self.orientation[2] - wantedOri

246

247 distance = math.sqrt(posDiscrepancy[0] ** 2 + posDiscrepancy[1] ** 2)

248 distanceError = math.sqrt(posDiscrepancy[0] ** 2 + posDiscrepancy[1] ** 2)

249 heightError = posDiscrepancy[2]

250

251 ##REGULATION. P-reg

252 if mode == "default":
253 kpT = 0.6 # 0.5 #angular

254 kpL = 0.8 # 0.2 #linear

255 kpH = 0.7 # vertical

256 if mode == "easy":
257 kpT = 0.001 # 0.5 #angular

258 kpL = 0.001 # 0.2 #linear

259 kpH = 0.001 # vertical

260 if mode == "delay":
261 kpT = 0.05 / delay

262 kpL = 0.3

263 kpH = 0.2

264 if mode == "forward":
265 kpT = 0.3

266 kpL = 0.7

267 kpH = 0.2

268

269 rotationMatrix = [

270 math.cos(self.orientation[2] * math.pi / 180),

271 math.sin(self.orientation[2] * math.pi / 180),

272 -math.sin(self.orientation[2] * math.pi / 180),

273 math.cos(self.orientation[2] * math.pi / 180),

274 ]

275 convertedCord2 = [

276 posDiscrepancy[0] * rotationMatrix[0]

277 + posDiscrepancy[1] * rotationMatrix[1],

278 posDiscrepancy[0] * rotationMatrix[2]

279 + posDiscrepancy[1] * rotationMatrix[3],

280 ]

281 convertedCorderu = [convertedCord2[0], convertedCord2[1]]

282 delay = 1

283 if distanceError > 3:
284 delay = 10

285 wantedOri = (

286 math.atan2(convertedCorderu[1], convertedCorderu[0]) * 180 / math.pi

287 )

288

289 inputT = kpT * wantedOri

290 inputLx = kpL * convertedCorderu[0]

291 inputLy = kpL * convertedCorderu[1]

292 inputH = kpH * heightError

293

294 ##CREATE MESSAGE

103



295 twist = Twist()

296 twist.angular.x = 0

297 twist.angular.y = 0

298 twist.angular.z = inputT

299 twist.linear.x = inputLx

300 twist.linear.y = inputLy

301 twist.linear.z = inputH

302 pub.publish(twist)

303

304 def forwardAngle(self, wantedPos):
305 """

306 Forward Angle

307

308 Get the angle that would correspond to forward, given a change in position from current to wanted position

309

310 Args:

311 goal: the goal position

312 wanted orientation: the orientation wanted when having converged

313 mode: different aggressiveness and tuning of P parameters

314 delay: delay in twist convergence

315

316 Returns:

317 nothing

318 changes only state variables

319

320 Raises:

321 None as of now

322 """

323

324 posDiscrep = [self.position[0] - wantedPos[0], self.position[1] - wantedPos[1]]

325 return math.atan2(posDiscrep[1], posDiscrep[0])
326

327 def initAutoTum(self, pubCom):
328 """

329 initTum

330

331 Sends all the initial messages to TUM AR-Ardrone controller, in order for it to start successfully.

332

333 Args:

334 pubCom: the channel to TUM-ardrone communication

335

336 Returns:

337 nothing

338 changes only state variables

339

340 Raises:

341 None as of now

342 """

343 self.setTumautoCommand("c autoInit 500 800", pubCom)

344 self.setTumautoCommand("c setMaxControl 1", pubCom)

345 self.setTumautoCommand("c setInitialReachDist 0.5", pubCom)
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346 self.setTumautoCommand("c StayWithDis 0.5", pubCom)

347 self.setTumautoCommand("c setMaxControl 1", pubCom)

348

349 # started continously with framwthread

350 def lowlevelcontroller(self, data, pubCom):
351 """

352 lowlevelcontroller

353

354 Finite State Machine, in charge of delegating lowlevel controller schemes, depending on current state

355

356 Args:

357 pubCom: the channel to TUM-ardrone communication

358

359 Returns:

360 nothing

361

362 Raises:

363 None as of now

364 """

365

366 if self.state == "onhold":
367 # control instead of the current 'hover' by 'autonomy' could be implemented
368

369 # The waiting functionalities, forcing a switch of states if no bus is found should be added here.

370 # For testing purposes, and due to extreme waiting times by yolo it is not implemented.

371 return
372 elif self.state == "onLOS":
373 self.convergeOnRefmodel(

374 signalDiscrep=self.oriDiscrepancy, wantedOri=0, mode="easy", delay=1

375 )

376 elif self.state == "onLanding" and not (self.semaphore):
377 self.iterator += 1

378 dist2d = math.sqrt(

379 self.landmessage["pos"][0] ** 2 + self.landmessage["pos"][1] ** 2

380 )

381 dist3d = math.sqrt(dist2d ** 2 + self.landmessage["pos"][2] ** 2)

382 if dist3d < 3:
383 pub3 = rospy.Publisher("ardrone/land", Empty, queue_size=1)

384 pub3.publish()

385 self.convergeOnPlatform(

386 self.landmessage["pos"],

387 oriDiscrepancy=self.landmessage["ori"],

388 mode="delay",

389 delay=self.landmessage["delay"],

390 )

391 elif self.waypointQ:
392 totalPosError = d3Distance(posDiscrep(self.waypointQ[0], self.position))

393 if (totalPosError) < 3:
394 self.waypointQ.pop(0)

395 self.convergeOnCoordinate2(

396 self.waypointQ[0], wantedOri=0, mode="forward", delay=0
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397 )

398

399 def statemachine(self, data, pubCom):
400 """

401 lowlevelcontroller

402

403 Finite State Machine, in charge of delegating lowlevel controller schemes, depending on current state

404

405 Args:

406 pubCom: the channel to TUM-ardrone communication

407

408 Returns:

409 nothing

410

411 Raises:

412 None as of now

413 """

414 if talkative:
415 print(
416 "I am drone{}. Story: Im {}\n\n".format(self.nickname, self.stateMemory)
417 )

418 if self.state == "asleep" and not (self.semaphore):
419 self.semaphore = True

420 rospy.sleep(3)

421 print("decided to sleep")
422 self.semaphore = False

423 if self.state != "onGround":
424 self.stateMemory.append("onGround")

425 print(self.stateMemory)
426 self.state = "onGround"

427

428 if (
429 (self.batteryLevel <= self.thresholdBus)

430 and not (self.alongRoad)
431 and (self.goal)
432 and (self.state == "online")
433 and not (self.semaphore)
434 ):

435

436 self.semaphore = True

437 thresholdStop = 0.2

438 thresholdBus = 0.4

439 self.goToRoad()

440 self.alongRoad = True

441 if self.talkative:
442 print("STATE ORDERS 3: go to road")
443 if self.state != "onTheRoad":
444 self.stateMemory.append("onTheRoad")

445

446 self.state = "onTheRoad"

447 rospy.sleep(3)
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448 self.semaphore = False

449

450 elif ((self.state == "onGround") and (self.goal)) and not (self.semaphore):
451 self.semaphore = True

452 self.initAutoTum(pubCom)

453 print("sent init sequence")
454 self.setTumautoCommand("u l Autopilot: Cleared Command Queue", pubCom)

455 self.setTumautoCommand("u l Autopilot: Start Controlling", pubCom)

456 self.setTumautoCommand("c clearCommands", pubCom)

457 self.setTumautoCommand("c takeoff", pubCom)

458 self.setTumautoCommand("c start", pubCom)

459

460 if self.state != "online":
461 self.stateMemory.append("online")

462

463 self.state = "online"

464 self.semaphore = False

465

466 elif self.state == "online" and self.goal and not (self.semaphore):
467 self.semaphore = True

468 command = "c goto {} {} {} 0".format(self.goal[0], self.goal[1], height)

469 self.setTumautoCommand(command, pubCom)

470 if self.state != "onmove":
471 self.stateMemory.append("onmove")

472 self.state = "onmove"

473 self.semaphore = True

474

475 elif self.state == "undefined": # testing purposes

476 self.iterator += 1

477 if self.iterator > 300:
478 print("change state")
479 self.state = "onTheRoad"

480

481 elif (self.state == "onLOS") and not (self.semaphore):
482 self.semaphore = True

483 print("onLOS state through testnav")
484

485 self.semaphore = False

486

487 def gps(self, data):
488 if self.gpsEnabled:
489 self.position = [

490 data.pose.pose.position.x,

491 data.pose.pose.position.y,

492 data.pose.pose.position.z,

493 ]

494

495 ##ESTIMATES

496 def callbackTumpose(self, data): # if estimation paradigm etc is used, without gps

497 if not (self.gpsEnabled):
498 self.position = [
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499 data.pose.position.x,

500 data.pose.position.y,

501 data.pose.position.z,

502 ]

503 quatOri = data.pose.orientation

504 eul = quat_to_euler(quatOri.x, quatOri.y, quatOri.z, quatOri.w)

505 self.orientation = eul

506

507 def setPosEstimate(self, data):
508 self.updateCounter += along

509

510 updateFreq = 4 # usikker paa denne. Rostopic hz

511 h = along / updateFreq

512 if self.gpsEnabled:
513 return
514

515 self.position[0] += data.vector.x * h

516 self.position[1] += data.vector.y * h

517 self.position[2] += data.vector.z * h

518

519 if self.updateCounter > 5:
520 self.printStats()

521 self.updateCounter = 0

522

523 def setPosGPS(self, data): # doesnt work.

524 self.updateCounter += 1

525 self.position[0] = data.pose.pose.position.x

526 self.position[1] = data.pose.pose.position.y

527 self.position[2] = data.pose.pose.position.z

528

529 if self.updateCounter > 5:
530 self.updateCounter = 0

531 self.gotoGoal()

532

533 ##TROUBLESHOOTING

534 def printStats(self):
535 print(
536 "hello, Im {}! Pos:{}, {}, {}".format(

537 self.nickname,

538 round(self.position[0], 2),

539 round(self.position[1], 2),

540 round(self.position[2], 2),

541 )

542 )

543 print(
544 "\t\t\tOri:{}, {}, {}".format(
545 round(self.orientation[0], 2),

546 round(self.orientation[1], 2),

547 round(self.orientation[2], 2),

548 )

549 )
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550

551 ##CALLBACK

552 def callbackImu(self, data):
553 header = data.header

554 ori = data.orientation

555 self.orientation = quat_to_euler(ori.x, ori.y, ori.z, ori.w)

556

557 def callbackVelo(self, data):
558 # if talkative: print("EstimatePOS: {}".format(data))

559 self.setPosEstimate(data)

560

561 def callbackMarker(self, data, pubCom):
562 self.state = "onLanding"

563 self.iterator = 0

564 quatOri = data.pose.orientation

565 eulOri = quat_to_euler(quatOri.x, quatOri.y, quatOri.z, quatOri.w)

566

567 self.busLoopIter = 0

568 self.relativeBusPos = [

569 data.pose.position.x,

570 data.pose.position.y,

571 data.pose.position.z,

572 ] # realtive down doesnt matter?

573 self.landOnBusInput(self.relativeBusPos, eulOri[2], pubCom)

574

575 def landOnBusInput(self, relativePosition, angle, pubCom):
576 if self.relativeBusPos > 3:
577 self.setTumautoCommand("c clearCommands", pubCom)

578 self.setTumautoCommand("u l Autopilot: Cleared Command Queue", pubCom)

579 dist = max(self.position[2] - 4.6, 1)

580 if dist > 7:
581 angle = 0

582 delay = 1

583 if abs(self.relativeBusPos[0]) > 1.3:
584 # fast turning will lose track

585 delay = 10 * abs(self.relativeBusPos[0])

586 posDiscrepancy = relativePosition

587 self.landmessage.clear()

588 self.landmessage["pos"] = posDiscrepancy

589 self.landmessage["ori"] = angle

590 self.landmessage["delay"] = delay

591 self.state = "onLanding"

592

593 ##CONTROL AND DRONE STATE VARIABLE FUNCTIONS

594

595 def setTumautoCommand(self, command, pubCom):
596 rate = rospy.Rate(3)

597 msg = String()

598 msg.data = command

599 pubCom.publish(msg)

600
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601 def straightForward(angle):
602 """This returns this thing

603

604 This is a function that descirptiuon

605

606 Args:

607 angle: a float to convert

608

609 Returns:

610 converted angle from radians to degrees

611

612 Raises:

613 FileNotFoundError: Wrong location on file system

614 """

615 rad = angle * (math.pi / 180)

616 x = math.cos(rad)

617 y = math.sin(rad)

618 return x, y
619

620 def setGoal(self, pos, place="end"):
621 if talkative:
622 print("Objective aquired: {},{}".format(data[0], data[1]))
623 if not (place) or place == "end":
624 self.waypointQ.append(pos)

625 return
626 if place == "start": # neccessary?

627 print("unimplemented")
628 return
629

630 def convergeOnPlatform(
631 self, posDiscrepancy, oriDiscrepancy=0, mode="default", delay=0

632 ):

633 """Converge on platform

634

635 Using some addons, it converges to a continously updated position

636

637 Args:

638 posDiscrepancy: list 3d

639 posDiscrepancy: list 3d (not used as of now)

640 mode: default main

641

642 Returns:

643 None as of now

644

645 Raises:

646 None as of now

647 """

648 pub = rospy.Publisher("cmd_vel", Twist, queue_size=1)

649 if talkative:
650 print("Objective aquired: {}{}".format(data[0], data[1]))
651 distance = math.sqrt(posDiscrepancy[0] ** 2 + posDiscrepancy[1] ** 2)
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652 distanceError = math.sqrt(posDiscrepancy[0] ** 2 + posDiscrepancy[1] ** 2)

653 heightError = posDiscrepancy[2]

654 ##CONTROL. P-reg

655 if mode == "default":
656 kpT = 0.8 # angular

657 kpL = 0.8 # linear

658 kpH = 0.8 # vertical

659 if mode == "easy":
660 kpT = 0.001 # angular

661 kpL = 0.001 # linear

662 kpH = 0.001 # vertical

663 if mode == "delay":
664 kpT = 0.05 / delay

665 kpL = 0.3

666 kpH = 0.2

667 inputT = kpT * oriDiscrepancy * (-1)

668 inputLx = kpL * posDiscrepancy[0] * (-1)

669 inputLy = kpL * posDiscrepancy[1] * (-1)

670 inputH = kpH * heightError * (-1)

671 ##CREATE MESSAGE

672 twist = Twist()

673 twist.angular.x = 0

674 twist.angular.y = 0

675 twist.angular.z = inputT

676 twist.linear.x = inputLy

677 twist.linear.y = inputLx

678 twist.linear.z = inputH

679 pub.publish(twist)

680 if self.talkative:
681 print("Wanted values: {},{}".format(self.goal[0], self.goal[1]))
682 print("Current values:{},{}".format(self.position[0], self.position[1]))
683 print(
684 "Distance error: {}, angle error: {}".format(

685 distanceError, oriDiscrepancy

686 )

687 )

688 print("Resulting in inputs:{}and{},{}".format(inputT, inputLx, inputLy))
689

690 # creating a guidance control using refmodel, in this case only used for bus track with LK

691 def convergeOnRefmodel(
692 self, signalDiscrep=None, wantedOri=None, mode="default", delay=1

693 ):

694 """Converge on ref model

695

696 Using some addons, it converges to the filtered response of signal given

697

698 Args:

699 posDiscrepancy: list 3d

700 posDiscrepancy: list 3d (not used as of now)

701 mode: default main

702
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703 Returns:

704 None as of now

705

706 Raises:

707 None as of now

708 """

709 pub = rospy.Publisher("cmd_vel", Twist, queue_size=1)

710 if self.talkative:
711 print("Objective aquired: {}{}".format(data[0], data[1]))
712 landDetectionHeight = 13

713 heightError = landDetectionHeight - self.position[2]

714

715 refLx, refLy, refT = self.getRefModel(

716 0, 0, signalDiscrep

717 ) # only used for jaw as of now

718

719 ##CONTROL. #P-reg as of now

720 if mode == "default":
721 kpT = 0.05 # angular

722 kpL = 0.2 # linear

723 kpH = 0.6 # vertical

724 if mode == "easy":
725 kpT = 0.0003 # angular

726 kpL = 0.2 # linear

727 kpH = 1.3 # vertical

728 if mode == "forward":
729 kpT = 0.5 # angular

730 kpL = 0.5 # linear

731 kpH = 0.2 # vertical

732 inputT = kpT * refT[-1]

733 inputLx = (

734 10

735 ) # kpL*refLx[-1] #Refmodel unused as constant 10 forward works well

736 inputLy = kpL * refLy[-1]

737 inputH = kpH * heightError

738 ##PLOT REFMODEL PERFORMANCE

739 if self.test:
740 if len(self.twistMemory) > 300:
741 l1 = plt.plot(self.twistMemory, label="Raw measured input")

742 l2 = plt.plot(refT, label="Rerence model")

743 plt.title("Reference model response")

744 plt.xlabel("Timestep")

745 plt.ylabel("Input")

746 plt.grid(True)

747 plt.setp(l1, "color", "r", "linewidth", 2.0, "linestyle", "--")

748 plt.setp(l2, "color", "b", "linewidth", 2.0)

749 plt.legend()

750 plt.show()

751 ##CREATE MESSAGE

752 twist = Twist()

753 twist.angular.x = 0
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754 twist.angular.y = 0

755 twist.angular.z = inputT

756 twist.linear.x = inputLx

757 twist.linear.y = inputLy

758 twist.linear.z = inputH

759 pub.publish(twist)

760 if self.talkative:
761 print("Current values:{},{}".format(self.position[0], self.position[1]))
762 print(
763 "Distance error: {}, angle error: {}".format(

764 distanceError, oriDiscrepancy

765 )

766 )

767 print("\nResulting in inputs:{},{},{}\n\n".format(inputT, inputLx, inputLy))
768

769

770 # SMALL AIDING FUNCTIONS

771

772

773 def interpret(data):
774 """

775 inpret message

776

777 Put message from plugins in an easier to use list format

778

779 Args:

780 data string

781

782 Returns:

783 list

784

785 Raises:

786 None as of now

787 """

788 msg = str(data.data)

789 msgList = msg.split()

790 return msgList
791

792

793 def interpretCom(msg):
794 return msg.split("\n")
795

796

797 def bin2Rad(a):
798 return (a + 1) * pi
799

800

801 def orientNormal(ori): # normalized and in radians

802 """

803 orientnormal

804
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805 Angle grom the gazebo simulation is oriented -180 from what is common, and is in radians

806

807 Args:

808 gazebo generated jaw angle in radians

809

810 Returns:

811 normalized jaw angle i degrees

812

813 Raises:

814 None as of now

815 """

816 return (ori + 180) * math.pi / 180
817

818

819 def getWantedAngle(posx, posy): # normalized and in radians

820 """

821 Get jaw angle

822

823 Get the jaw angle from a 2d positional angle discre

824

825 Args:

826 two lists a,b

827

828 Returns:

829 difference list c

830

831 Raises:

832 None as of now

833 """

834 wanted = math.atan2(posy, posx)

835 return (
836 wanted

837 ) # +math.pi #range correction, making it between 0 and 2pi (moved to main)

838

839

840 def getBusPass():
841 """

842 get bus pass

843

844 Can be implemented /expanded to involve whether the bus is correct considering route and direction, as well as battery level

845

846 Args:

847 unimplemented

848

849 Returns:

850 True

851

852 Raises:

853 None as of now

854 """

855 return True
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856

857

858 def posDiscrep(a, b):
859 """

860 vector from 2 positions

861

862 This returns discrepancy/difference between positions

863

864 Args:

865 two lists a,b

866

867 Returns:

868 difference list c

869

870 Raises:

871 None as of now

872 """

873 if len(a) == 2:
874 a.append(0)

875 if len(b) == 2:
876 b.append(0)

877 return [b[0] - a[0], b[1] - a[1], b[2] - a[2]]
878

879

880 def d3Distance(discrep):
881 """

882 Norm 2

883

884 position to the corresponding 3D distance

885

886 Args:

887 position discrepancy in a list

888

889 Returns:

890 scalar distance

891

892 Raises:

893 None as of now

894 """

895 plane = math.sqrt(discrep[0] ** 2 + discrep[1] ** 2)

896 return math.sqrt(plane ** 2 + discrep[2] ** 2)
897

898

899 def quat_to_euler(x, y, z, w):
900 """

901 This returns euler angles

902

903 Quaternion to euler transformation

904

905 Args:

906 x,y,z,w quat in list
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907

908 Returns:

909 euler list of angles

910

911 Raises:

912 None as of now

913 """

914 t0 = +2.0 * (w * x + y * z)

915 t1 = +1.0 - 2.0 * (x * x + y * y)

916 X = math.degrees(math.atan2(t0, t1))

917

918 t2 = +2.0 * (w * y - z * x)

919 t2 = +1.0 if t2 > +1.0 else t2
920 t2 = -1.0 if t2 < -1.0 else t2
921 Y = math.degrees(math.asin(t2))

922

923 t3 = +2.0 * (w * z + x * y)

924 t4 = +1.0 - 2.0 * (y * y + z * z)

925 Z = math.degrees(math.atan2(t3, t4))

926 return [X, Y, Z]
927

928

929 # MAIN THREAD CONTROL

930

931

932 def listener():
933 rospy.init_node("droneRun", anonymous=True)

934 pubCom = rospy.Publisher("tum_ardrone/com", String, queue_size=1)

935 ##

936 rospy.Subscriber(

937 "/businteract/cmd", String, my_drone.callbackBusevent, callback_args=pubCom

938 )

939 rospy.Subscriber("/ground_truth/state", Odometry, my_drone.gps)

940 rospy.Subscriber(

941 "/visualization_marker", Marker, my_drone.callbackMarker, callback_args=pubCom

942 )

943 rospy.Subscriber("/ardrone/imu", Imu, my_drone.callbackImu)

944 rospy.Subscriber("/tum_ardrone/pose", PoseStamped, my_drone.callbackTumpose)

945 rospy.Subscriber(

946 "/ardrone/image_raw", Image, my_drone.continouslyCommence, callback_args=pubCom

947 )

948 ##

949 rospy.spin()

950

951

952 my_drone = DroneState()

953

954 if __name__ == "__main__":
955 talkative = False

956 try:
957 listener()
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958 print("Cycle")
959 except rospy.ROSInterruptException:
960 pass

.3.7 Plugin control
1 #!/usr/bin/env python

2 from __future__ import division
3 import rospy
4 from std_msgs.msg import String
5 from string import split
6 from dynamic_reconfigure.msg import ConfigDescription
7 import re
8 from sensor_msgs.msg import Imu
9 from geometry_msgs.msg import Vector3

10 from std_msgs.msg import Empty
11 import math
12 from geometry_msgs.msg import Vector3Stamped
13 from nav_msgs.msg import Odometry
14 from geometry_msgs.msg import Twist
15 from visualization_msgs.msg import Marker
16 from octomap_msgs.msg import Octomap
17 from nav_msgs.msg import OccupancyGrid
18 from darknet_ros_msgs.msg import BoundingBoxes
19 from opencv_apps.msg import FlowArrayStamped
20 from sensor_msgs.msg import Image
21 import opencv_apps
22 import cv_bridge
23 from cv_bridge import CvBridge
24 import time
25 from std_srvs.srv import Empty
26

27

28 class BusEncounter:
29 def __init__(self):
30 # STATE EVEN VARIABLES

31 self.greenConfirmed = False

32 self.busConfirmed = None

33 self.flowState = 0

34 self.cloudcenter = [0, 0]

35

36 # ALGORITHM ORDER CONTROL

37 self.algoOrder = [0, 0, 0]

38

39 # DEBUG

40 self.talkative = False

41

42 def encounterControl(self, pubBusCmd): # started every frame

43 """

44 State machine
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45

46 Started every frame, it changes state and parts of bus encounter using the other plugins

47

48 Args:

49 pubBusCmd: bus even channel

50

51 Returns:

52 None, only changes state

53

54 Raises:

55 None as of now

56 """

57 if self.talkative:
58 print(
59 "3. encountercontrol! {}, sending it to callbusevent".format(

60 self.cloudcenter[0]

61 )

62 )

63

64 if not (self.algoOrder[0] * self.algoOrder[1]):
65 if self.talkative:
66 print("-conditions not met to continue 3")
67 return
68 elif not (self.algoOrder[2]):
69 if self.talkative:
70 print("-conditions met to continue 3")
71 spawnPoints = rospy.ServiceProxy("lk_flow/initialize_points", Empty)

72 spawnPoints()

73

74 self.algoOrder[2] = 1

75

76 msg = "LOShere: {} {}".format(self.cloudcenter[0], self.cloudcenter[1])

77 pubBusCmd.publish(msg)

78

79 def callbackBusCmd(self, data, pubBusCmd):
80 """

81 Bus Cmd message Postbox

82

83 Event messages are handled

84

85 Args:

86 data: the message

87 pubBusCmd: Channel for event communication

88

89 Returns:

90 None, only changes state

91

92 Raises:

93 None as of now

94 """

95 msg = interpret(data)
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96 if self.talkative:
97 print("2. cmdCallback sees that {} msg gives {}".format(msg[0], msg[1]))
98

99 if msg[0] == "-greenSpotted":
100 if self.algoOrder[0] and self.algoOrder[1]:
101 return
102 self.algoOrder[0] = 1

103

104 if self.algoOrder[0] and self.algoOrder[1]:
105 return
106

107 elif msg[0] == "-busSpotted:":
108

109 self.busConfirmed = [msg[1], msg[2], msg[3], msg[4]]

110 elif msg[0] == "-Flowcloud:":
111

112 self.cloudcenter = [msg[1], msg[2]]

113 if self.talkative:
114 print("CLOUDCENTER: {}".format(self.cloudcenter))
115 if self.talkative:
116 print("Update on cloudcenter is well {}".format(self.cloudcenter))
117

118 def callbackFlow(self, data, pubBusCmd):
119 """

120 flowCloudCallback

121

122 LK flow produces a list of point with velocities and positions

123

124 Args:

125 data: flow list

126 pubBusCmd: bus even channel

127

128 Returns:

129 None, only changes state

130

131 Raises:

132 None as of now

133 """

134 if self.talkative:
135 print("1, but will I continue?: {}".format(self.busConfirmed))
136 if not self.busConfirmed:
137 return # As LK is much faster than Yolo, this point is often arrived at.

138

139 trackedPoints = len(data.flow)

140 direc = 0

141

142 flowpointInside = []

143 for i in data.flow:
144 if isInBB(i.point, self.busConfirmed):
145 flowpointInside.append(i)

146 if not (flowpointInside):
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147 return
148 totalVel, direction, avg = getPointCloudVel(flowpointInside) # the one

149 if self.talkative:
150 print(
151 "1. {}/{}, says: cloudvel at {} is: {} in direction {}".format(

152 len(flowpointInside),

153 trackedPoints,

154 avg,

155 round(totalVel, 2),

156 direction,

157 )

158 )

159 msg = "Flowcloud: {} {}".format(avg[0], avg[1])

160 pubBusCmd.publish(msg)

161

162

163 def getSimplePointVel(flowpoint):
164 """

165 Get point velocity

166

167 Get the velocity of one points 2d movement

168

169 Args:

170 flowpoint LK object. Has a velocity member variable

171

172 Returns:

173 totalVel: the total velocity scalar value

174 ratio: ratio of totalVel in a sideways direction vs up/down.

175

176 Raises:

177 None as of now

178 """

179

180 vel = flowpoint.velocity

181 totalVel = math.sqrt(vel.x ** 2 + vel.y ** 2)

182 if vel.y < 0.0001:
183 vel.y = 0.1

184 ratio = abs(vel.x) / abs(vel.y)

185

186 direction = "still"

187 if totalVel > 5:
188 if ratio > 80:
189 direction = "sideways"

190 elif ratio < 0.01:
191 direction = "updown"

192

193 return totalVel, ratio
194

195

196 def getPointVel(flowpoint):
197 """
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198 Gets all velocities (can be mixed with getSimplePoint)

199

200 Args:

201 flowpoint LK object. Object with velocity member variable

202

203 Returns:

204 2D vel object with x and y

205 totalVel: scalar

206 ratio: ratio of totalVel in a sideways direction vs up/down.

207

208 Raises:

209 None as of now

210 """

211 vel = flowpoint.velocity

212 totalVel = math.sqrt(vel.x ** 2 + vel.y ** 2)

213 if vel.y < 0.0001:
214 vel.y = 0.1 # float zero division

215 ratio = abs(vel.x) / abs(vel.y)

216 return vel, totalVel, ratio
217

218

219 def getPointCloudVel(flowpoints):
220 """

221 GetPointCloudVeloxcity

222

223 Gets the average velocity of the entire point cloud using all points

224

225 Args:

226 flowpoints LK object list. Has velocity member variables

227

228 Returns:

229 cloudTotalVel: the total velocity scalar value

230 direction: String with updown vs sideways, as in the motion of PC

231 avg: the average point position, used to estimate center of mass of PC

232

233 Raises:

234 None as of now

235 """

236 vels = [0, 0]

237 avgPoints = [0, 0]

238 totalVels = 0

239 ratiosum = 0

240 for i in flowpoints:
241 pointVel, totalVel, pointRatio = getPointVel(i)

242 vels[0] += pointVel.x

243 vels[1] += pointVel.y

244 totalVels += totalVel

245 ratiosum += pointRatio

246 avgPoints[0] += i.point.x

247 avgPoints[1] += i.point.y

248 length = len(flowpoints)
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249 if not length:
250 return
251 cloudVel = [vels[0] / length, vels[1] / length]

252 cloudTotalVel = totalVels / length

253 cloudRatio = ratiosum / length

254 avg = [avgPoints[0] / length, avgPoints[1] / length]

255 direction = "still"

256 if cloudTotalVel > 5:
257 if cloudRatio > 80:
258 direction = "sideways"

259 elif cloudRatio < 0.01:
260 direction = "updown"

261 return cloudTotalVel, direction, avg
262

263

264 def callbackBB(data, pubBusCmd):
265 """

266 Callback BB

267

268 Save the bounding box outputted by Yolo if its certainty of a bus is beyond a certain threshold

269

270 Args:

271 Data: bounding box object on the form [xmin ymin xmax ymax]

272 pubBusCmd: channel for bus event communication

273

274 Returns:

275

276 Raises:

277 None as of now

278 """

279 if (not (newEncounter.algoOrder[0])) or newEncounter.algoOrder[1]:
280 return
281

282 numberOfObjects = len(data.bounding_boxes)

283 for obj in data.bounding_boxes:
284 if obj.Class == "bus" and obj.probability > 0.55:
285 msg = (

286 "busSpotted: "

287 + str(obj.xmin)

288 + " "

289 + str(obj.ymin)

290 + " "

291 + str(obj.xmax)

292 + " "

293 + str(obj.ymax)

294 )

295 pubBusCmd.publish(msg)

296 newEncounter.algoOrder[1] = 1

297

298

299 def isInBB(point, bb):
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300 """

301 isin BB

302

303 Given a 2 position, it checks if it is within the given bounding box

304

305 Args:

306 point: a list of 2 points

307 bb: a list with the 4 corner points of the bounding box

308

309 Returns:

310

311 Raises:

312 None as of now

313 """

314 expansion = 10 # pixels of area expanded larger

315 bb0 = float(bb[0])

316 bb1 = float(bb[1])

317 bb2 = float(bb[2])

318 bb3 = float(bb[3])

319 if (
320 (point.x > (bb0 - expansion))

321 and ((point.x - expansion) < bb2)
322 and (point.y > (bb1 - expansion))
323 and ((point.y - expansion) < bb3)
324 ):

325 return True
326 return False
327

328

329 def callbackRepublish(data, args):
330 """

331 Callback republish

332

333 Republishes the image, starts encounter control in the framerate of the camera

334

335 Args:

336 Data: the image

337 args[0]: image publishing channel

338 args[1]: bus event channel

339

340 Returns:

341 None

342 Raises:

343 None as of now

344 """

345 if False:
346 print("algorder in callbackim, {} ".format(newEncounter.algoOrder))
347

348 pubImage = args[0]

349 pubBusCmd = args[1]

350
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351 pubImage.publish(data)

352

353 newEncounter.encounterControl(pubBusCmd)

354

355

356 def callbackImage(image, pubBusCmd): # checks how green it is

357 """

358 Callback image

359

360 Republishes the image, starts encounter control in the framerate of the camera

361

362 Args:

363 Data: the image

364 args[0]: image publishing channel

365 args[1]: bus event channel

366 """

367 bridge = CvBridge()

368 img = bridge.imgmsg_to_cv2(image, desired_encoding="passthrough")

369 totalElements = len(img) * len(img[0])

370 elemsum = 0

371 avgPos = [0, 0]

372 for i in range(len(img)):
373 for j in range(len(img[i])):
374 if img[i][j]:
375 avgPos[0] += i

376 avgPos[1] += j

377 elemsum += 1

378 avgPos[0] = avgPos[0] / image.height

379 avgPos[1] = avgPos[1] / image.width

380 ratio = 100 * elemsum / totalElements

381

382 if elemsum > 7:
383 msg = "greenSpotted {} {}".format(avgPos[0], avgPos[1])

384 pubBusCmd.publish(msg)

385

386

387 def interpret(data):
388 msg = str(data.data)

389 msgList = msg.split()

390 return msgList
391

392

393 def listener():
394 rospy.init_node("greenCheck", anonymous=True)

395 pubBusCmd = rospy.Publisher("/businteract/cmd", String, queue_size=1)

396 pubImage = rospy.Publisher("/businteract/image", Image, queue_size=1)

397

398 ##

399 imgCallArgs = (pubImage, pubBusCmd)

400 rospy.Subscriber(

401 "/ardrone/image_raw", Image, callbackRepublish, callback_args=(imgCallArgs)
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402 )

403 rospy.Subscriber(

404 "/rgb_color_filter/image", Image, callbackImage, callback_args=(pubBusCmd)

405 )

406 rospy.Subscriber(

407 "/darknet_ros/bounding_boxes",

408 BoundingBoxes,

409 callbackBB,

410 callback_args=(pubBusCmd),

411 )

412 rospy.Subscriber(

413 "/lk_flow/flows",

414 FlowArrayStamped,

415 newEncounter.callbackFlow,

416 callback_args=(pubBusCmd),

417 )

418 rospy.Subscriber(

419 "/businteract/cmd",

420 String,

421 newEncounter.callbackBusCmd,

422 callback_args=(pubBusCmd),

423 )

424

425 print("No subscription errors")
426 rospy.spin()

427

428

429 newEncounter = BusEncounter()

430

431 if __name__ == "__main__":
432 try:
433

434 listener()

435 except rospy.ROSInterruptException:
436 pass
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