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Abstract

The main motivation of this project is to lay the groundwork for a robot cell
calibration system, using HTC VIVE - a virtual reality (VR) system with pre-
cise room-scale tracking. A VIVE tracking system was installed for Thrivaldi
- the KUKA robotics laboratory at NTNU ITK. The main goal was then to
calibrate the tracking system for Thrivaldi, and evaluate the calibrated system.
A calibration procedure was established based on an algorithm by Park and
Martin [1]. HTC VIVE and this algorithm was set up in Robotic Operating
System (ROS) - an open-source framework for writing software for robots. Two
methods was established for the calibration: a manual and an automated one.
The manual method was used because of problems with the current ROS setup
for Thrivaldi. The calibrated system has a steady-state error within the robot’s
workspace, in the range of 0.5 to 1.5 cm and 0.2 to 0.7 degrees for transla-
tions and orientations respectively. This error is not a conclusive measure of
the VIVE’s accuracy, and the error can potentially be reduced by an order of
magnitude.



Chapter 1

Introduction

Robotic workcells for various manufacturing processes have to be calibrated such
that the robot knows the location of parts, tools and surfaces in the environ-
ment. The calibration can be performed by moving the robot to points in its
environment, where the points are registered with the robot as a measurement
system. These points can then be mapped to their corresponding points in an
object model, and the mapping returns the relation between the robot and this
object.

The procedure of calibrating complex robot cells can become laborious and
expensive. This calibration can be further complicated by mobile robots that
change their locations in the production, or processes that should be changed
quickly and often. The question then arises: “How can we perform robot cell
calibration easier and quicker?”. A proposed answer to this question could be
the use of an HTC VIVE for rapid robot cell calibration.

The HTC VIVE is a virtual reality (VR) system developed by HTC and Valve
corporation. This system has become one of the best VR experiences available
to consumers, and has the highest revenue share on the VR market [2]. The
system’s success is probably rooted in its innovative technology for tracking
the users hands and head. It is able to perform room-scale tracking with sub-
millimeter precision within a diagonal area up to 5 m. These specifications are
impressive for a consumer-grade product such as the HTC VIVE, and it could
potentially be used for robot cell calibration if the accuracy is sufficient. The
initial plan was therefore to set up an HTC VIVE for use in Robotic Operating
System (ROS) - an open-source framework for writing software for robots. This
setup can then be used to assess the feasibility of using an HTC VIVE for rapid
robot cell calibration.
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Chapter 1. Introduction

There was initially four main tasks planned for this project:

1. Set up an HTC VIVE with the Ubuntu operating system

2. Establish an overview of the existing VIVE-ROS bridging attempts

3. Set up an HTC VIVE for use in ROS

4. Evaluate the HTC VIVE accuracy for robot cell calibration

The first three tasks was mostly finished during a summer job at SINTEF
Digital, and the last task was also initiated. Using the HTC VIVE with Ubuntu
was simple and turned out to be plug and play. However, the existing VIVE-
ROS bridging attempts was badly documented or did not work with newer
software versions. A ROS node was therefore set up in order to make the
features of HTC VIVE devices available in ROS. This node and relevant findings
from the summer job will be presented in the introduction, together with the
necessary equipment and software for this project. An extra emphasis will also
be put on the HTC VIVE and its tracking system, in order to understand the
technology and evaluate the system’s accuracy.

The intention of this text is not to describe ROS in an in-depth manner, as it
is a huge framework, and there are a lot of free and comprehensive resources
available online. Enough information will be given to understand the context of
how ROS is used in the text, and related resources will also be referenced where
appropriate. If the reader is new to ROS, it is recommended to read [3][4] for a
general overview of the framework and its tools.

In order to use the VIVE tracking system for rapid robot cell calibration, the
position and orientation (pose) of the tracked devices must be known relative
to the robot and its environment. This text is therefore primarily concerned
with how a calibration procedure can be established for the tracking system.
The calibration procedure should generalize with minor adjustments to any
industrial manipulator that is supported by ROS. A VIVE tracking system was
installed for Thrivaldi - the KUKA robotics laboratory at NTNU ITK. The
main goal is then to calibrate the tracking system for Thrivaldi, and evaluate
the calibrated system.
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Chapter 1. Introduction 1.1. Equipment

Figure 1.1: HTC VIVE head-mounted display (HMD) and one controller for
each hand

1.1 Equipment

1.1.1 HTC VIVE (Pro)

The HTC VIVE is a room-scale VR system, allowing the user to freely walk
around a diagonal area of up 5 m and interact with an environment. Steuer [5]
defined VR as “a real or simulated environment in which a perceiver experiences
telepresence”, where telepresence is defined as “the experience of presence in an
environment by means of a communication medium”. The main medium is in
this case a head-mounted display (HMD) that is worn on the users head. This
HMD immerses the user in a visualized environment, by displaying a 3D image
through lenses in the HMD. There are also controllers and trackers available
that allows the user to interact directly with the environment. The trackers are
functionally similar to controllers, but have a smaller puck-like form factor and
there are no connected inputs. The specifications of the HMD is listed in table
1.1, and a standard HTC VIVE kit is shown in figure 1.1.
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Chapter 1. Introduction 1.1. Equipment

Tracking technology

The technology that enables the HTC VIVE to track devices in a room-scaled
environment is called SteamVR tracking. This technology sweeps the room
horizontally and vertically with 850 nm infrared (IR) laser lines from one or two
inertial base stations in the room. These base stations contains a pair of DC
motors (Nidec B2044N01) that spins at a rate of 120 Hz, where one motor is
turned by 90° and phase shifted by 180° from the other motor. In other words,
each motor takes turns sweeping the room horizontally and vertically through a
wheel-mounted line lens with a field of view of 120°. The base stations also takes
turns sweeping the room in a similar manner, where one of the base stations
acts as a master, and the other acts as a slave. This gives the tracking system
an update rate of 60 Hz.

The base stations contains an array of 15 IR LEDs (Vishay VSMY3850), which
floods the tracking volume with ∼1.8 MHz modulated pulses at the start of
each sweep. These pulses are used for time synchronization and transmission
of omnidirectional optical transmitter (OOTX) data. This data provides the
tracked devices with identification of the base stations, their factory calibration
data and current status [6].

The tracking works by measuring the time difference between synchronization
pulses and line sweeps, from surface-mounted IR photodiodes on the tracked
devices. This time difference is used to compute the angle of a base station’s
motor, and computing both motor angles gives the intersection between two
(perpendicular) planes - a line. The line is projected from a base station towards
an IR photodiode on the surface of a tracked device.

In normal operation, multiple IR photodiodes are hit by the laser during a single
line sweep, and multiple projected lines are computed. The position of the IR
photodiodes along these lines are however unknown, but the geometric relation-
ship between the IR photodiodes are known. Estimating the pose of a tracked
device based on this knowledge is similar to the Perspective-n-Point (PnP) prob-
lem, where n is the number of 3D points (IR photodiode positions). Solving
this problem is equivalent to finding the transformation that maps points from
a local device frame to a global tracking frame, which respects the constraints
that are given by the projected lines.
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Accuracy and precision

The SteamVR tracking technology is advertised with sub-millimeter precision,
which is an impressive feat for a consumer-grade product such as the HTC
VIVE. Niehorster et al. [7] tested the HTC VIVE HMD, and compared its
accuracy and precision to a research-grade tracking system. They showed that
the average positioning error was 17 mm with 9 mm standard deviation, and
the RMS noise levels was below 0.2 mm and 0.02°.

There was however a systematic offset in their measurements, which suggests
that the HTC VIVE uses a reference plane that is tilted away from the physical
ground plane. These offsets also changed whenever the HMD regained tracking
after occlusion, making a calibration procedure to remove the offsets hard in
practice. They therefore concluded that the HTC VIVE was not suited for
scientific experiments if loss of tracking was likely.

Borges et al. [8] showed a similar precision as Niehorster, but also tested the
dynamic accuracy and precision for robotics applications. The dynamic accu-
racy was shown to be in the millimeter to meter range with best case 2.36 mm
and worst case 0.80257 m. They showed that the VIVE’s tracking algorithm
weighted inertial measurements more to produce smooth trajectories for VR ap-
plications. Hence, the tracking algorithm is unsuited for robotics applications,
where accuracy and repeatability are key.

Borges et al. also introduced their own tracking algorithm for robotics appli-
cations [9]. Their algorithm outperformed the VIVE’s algorithm by up to two
orders of magnitude in dynamic accuracy. The HTC VIVE algorithm does how-
ever outperform their algorithm by over an order of magnitude in the stationary
case.

The 60 Hz update rate of the tracking system would cause motion sickness on
its own. Each tracked device therefore contains an inertial measurement unit
(IMU), providing estimated poses between the tracking updates. The specifica-
tions of this IMU is given by table 1.2. A Kalman filter is used for sensor fusion
in order to combine the measurements from IMU and tracking system, and the
poses are updated at 220-360 Hz depending on the device type [10].
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Chapter 1. Introduction 1.1. Equipment

Screen: Dual AMOLED 3.5" diagonal
Resolution: 1440 x 1600 pixels per eye (2880 x 1600 pixels combined)
Refresh rate: 90 Hz
Field of view: 110 degrees

Audio:
Hi-Res certificate headset

Hi-Res certificate headphone (removable)
High impedance headphone support

Input: Integrated microphones
Connections: USB-C 3.0, DP 1.2, Bluetooth

Sensors: SteamVR Tracking, G-sensor, gyroscope, proximity, IPD sensor

Ergonomics:

Eye relief with lens distance adjustment
Adjustable IPD

Adjustable headphone
Adjustable headstrap

Table 1.1: HTC VIVE HMD specifications [11]

Range Gyro Full Scale Range Gyro Sensitivity Gyro Rate Noise Accel Full Scale Range Accel Sensitivity
(°/sec) (LSB/°/sec) °/sec/

√
Hz (g) LSB/g

0 ± 250 131 0.01 ± 2 16384
1 ± 500 65.5 0.01 ± 4 8192
2 ± 1000 32.8 0.01 ± 8 4096
3 ± 2000 16.4 0.01 ± 16 2048

Table 1.2: HTC VIVE accelerometer and gyroscope specifications [12]

1.1.2 Thrivaldi

Thrivaldi is a KUKA robotics laboratory at the Department of Engineering
Cybernetics, Norwegian University of Science and Technology (NTNU). The
laboratory consists of a robot cell containing two, 6 degrees of freedom (DOF),
KUKA KR 16 industrial robots. One of these robots is mounted on a 3-axis
gantry system from Güdel, giving it 9 DOF in total. Thereby the anglicized
name Thrivaldi (Þrívaldi), a 9-headed jötunn from Norse mythology.

The setup and interface of the laboratory was documented extensively by Erik-
sen in his Master thesis [13], and practical documentation is also available from
an online repository [14]. MoveIt! is a motion planning library for ROS, and
the existing MoveIt! setup for Thrivaldi was used in order to plan and execute
trajectories for the robot.
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Chapter 1. Introduction 1.2. Software

1.2 Software

1.2.1 Robotic Operating System (ROS)

Robotic Operating System (ROS) is an open-source collection of frameworks for
writing software for robots, commonly referred to as a middleware. At its core
it offers a communication system, which provides a message passing interface
between distributed nodes. This infrastructure forces the user to implement
clear interfaces between the nodes in their system, making ROS a distributed
and modular framework by design [15]. The main motivation behind ROS
is code reusability in robotics research and development. ROS has an active
community with a large collection of tools and libraries, which simplifies the
task of writing complex and robust software for robots.

1.2.2 VIVE bridge

VIVE bridge is a ROS node that makes use of the OpenVR software development
kit (SDK) by Valve, allowing access to VR hardware such as the HTC VIVE in
a ROS environment. The package exposes the pose of each tracked device as
a coordinate frames with respect to an inertial tracking frame, which coincides
with the master base station. Linear and angular velocities (twists) from the
IMU in each device, and inputs from the axes and buttons on each controller
are also published as messages.

The inertial tracking frame is defined relative to some arbitrary inertial frame
that is chosen by the user, in order to make sense of the environment. These
frames are related by a transformation that is exposed as x, y, z and roll, pitch,
yaw (RPY) parameters. A standard interface is provided to change the pa-
rameters at any time. The robot cell or any other space is then calibrated by
updating these parameters.

The source code is not publicly available at the present time, but the package
documentation is attached in appendix A. It is recommended that the reader
skims through this documentation for an overview of the capabilities and usage
of the package.
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Chapter 2

VIVE-workcell setup

The base stations have to be securely set up in the workcell before calibration can
be performed. Tripods could be used to install the base stations in a temporary
setup for workcell calibration tasks. These tripods have to be extended to over
2 m above ground with standard ¼” UNC threaded camera mounts. This kind
of setup could work for Thrivaldi.

The tripods do however take up space and could be moved around unintention-
ally in the robot cell, invalidating the last calibration. Tripods are therefore
unsuited for experimental purposes, where it is important that the setup does
not change between experiments. The base stations were for this reason firmly
mounted in a fixed setup for Thrivaldi as shown in figure 2.1. The HMD was
also kept visible in the robot cell at all times during use, in order to avoid the
problems described by Niehorster et al. [7].

The considerations when setting up base stations in a workcell are the same,
regardless of the method of choice. A setup should follow the recommendations
of the official VIVE support [16], where the base stations should be:

• Above head height, ideally more than 2 m above ground

• Angled down between 30 and 45 degrees

These recommendations were followed for Thrivaldi by mounting the base sta-
tions ∼3 m above ground, facing 45° down toward the center of the robot cell.
Base stations have a field of view of 120°, leaving 30-45° for adjustment. The
optimal setup is therefore not strict in the sense that the base stations have to
be placed perfectly. Most importantly, the base stations should be placed such
that their view of each other and the workcell is unobstructed. It is also impor-
tant that the base stations’ field of view overlaps as much as possible within the
intended tracking volume. This is because the tracking system’s update rate is
halved to 30 Hz if the tracked device is hit by only one base station.
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Chapter 2. VIVE-workcell setup 2.1. Internal HTC VIVE calibration

Figure 2.1: Base stations mounted below h-beams in the roof.

Figure 2.2 shows the tracking area of the current setup for Thrivaldi, and covers
most of the robot cell. The base station shown in green should ideally be rotated
a few degrees anti-clockwise while keeping the HMD within the tracking area.
However, the current setup has no problems tracking the area under and in front
of the gantry. In addition, the computer desk in front of the robot cell is also
tracked with the current setup.

2.1 Internal HTC VIVE calibration

The setup has to be internally calibrated with the SteamVR software for HTC
VIVE [17]. This calibration is done via a room setup tool, where a room-scale
setup of the HTC VIVE is performed. The calibration process is completed by
following simple on-screen instructions and prompts. Both controllers are put
on the ground to calibrate the floor, and the boundary of the tracking area is
traced with a controller. The traced boundaries are used in a system called
Chaperone, in order to warn the user about physical obstructions. This system
displays a grid within the HMD whenever the user approaches an obstruction,
and it is therefore important for user safety in VR applications using the HMD.
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Chapter 2. VIVE-workcell setup 2.1. Internal HTC VIVE calibration

Figure 2.2: Plan view of the robot cell, where the base stations’ field of view is
shown in red (master) and green (slave). Each square corresponds to 1m2.
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Chapter 3

VIVE-workcell calibration

In order to use the VIVE tracking system for rapid robot cell calibration, the
pose of the tracked devices must be known relative to the robot and its environ-
ment. This chapter is motivated by a need to establish a calibration procedure
for the tracking system. If we are able to find the pose of a single tracked device
with respect to the robot, we are also able to find the other devices through
their shared inertial frame. We therefore need a method to find the pose of a
single tracked device relative to the robot.

Finding the pose of a wrist-mounted sensor with respect to a robot’s wrist
frame is known as the hand-eye calibration problem. This problem got its name
from the robotics community, where a camera (eye) was attached to the robot’s
gripper (hand) [18][19]. Similarly, it is possible to attach a tracked device to the
robot’s gripper, a VIVE controller in this case, and find the pose of this device
by using one of the many solutions to the hand-eye problem.

Knowing the pose of a tracked device relative to the robot, it is a simple task to
compute the transformation between the robot’s inertial frame and the tracking
system’s inertial frame. A method is therefore needed to solve the hand-eye
calibration problem, and interestingly, this problem has a lot in common with
pose estimation. This is not surprising as we want to estimate the pose of our
sensor with respect to the robot.

11



Chapter 3. VIVE-workcell calibration 3.1. Problem formulation

A

X

X

B

Figure 3.1: Geometric interpretation of the AX = XB problem

3.1 Problem formulation

AX = XB, A,B,X ∈ SE(3) (3.1)

The standard hand-eye calibration problem was formulated by Shiu and Ahmad
[20]. They stated the problem as (3.1), an equation of homogeneous transforma-
tions, where A is a change in the robot’s wrist pose, B is the sensor displacement
from changing the wrist pose, and X is an unknown transformation relating the
wrist frame to the sensor frame. Figure 3.1 shows a geometric interpretation of
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Chapter 3. VIVE-workcell calibration 3.2. Overview of solutions

AX = XB

Axis-angle (decoupled) Screw theory (coupled)

Shiu and Ahmad (1991) Lie group theory

Park and Martin (1994)

Chen (1991) Dual quaternion

Daniilidis (1999)

Figure 3.2: A couple of hand-eye problem representations, and associated solu-
tions presented in the literature.

this problem. The unknown transformation X is constant under the assumption
that the tracked device is firmly attached to the robot’s gripper.

3.2 Overview of solutions

Hand-eye calibration is an established field with a large body of literature. Some
of the approaches and contributions in this field will be presented, before one
of them is picked for implementation. Shiu and Ahmad [20] used an angle-axis
representation of (3.1) and least-squares fitting to solve the rotational part of X,
and then solved the translational part with the rotation. They also showed that
at least two pairs of A and B are necessary to get a unique solution. Similarly,
Park and Martin [1] also decoupled the rotation and translation, and presented
a method using Lie group theory and least-squares fitting.

Decoupling the rotation and translation, despite it’s simplicity, has the problem
that errors in the rotational part could propagate to the translational part [19].
Chasles’ theorem, as stated by Chen [21], says that a rigid body displacement
can be composed of a translation along a unique screw axis, and a rotation
about the same axis. This representation of a rigid body displacement is known
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Chapter 3. VIVE-workcell calibration 3.3. Solving AX = XB on the Euclidean Group

as a screw. Chen [21] was the first that solved both parts of X simultaneously
by applying the theory of screws [19]. Similarly, Daniilidis [22] applied unit dual
quaternions - an algebraic representation of screws. Interestingly, the hand-eye
problem (3.1) can be reduced to solving a second order equation, by using dual
quaternions to represent the transformations A,B and X.

The solutions introduced here and their relations are summarized in figure 3.2.
There are many other solutions that is not mentioned in this text, and more
comprehensive resources are available in [19][23]. Of the mentioned solutions,
Park and Martin [1] were chosen specifically for its elegance, and it will be
explained, implemented and tested in the forthcoming sections of the report.

Daniilidis’ [22] solution was also briefly implemented and tested, and even
though it is interesting and computationally efficient, it will not be presented
here due to its use of dual quaternions. This decision was mainly the outcome
of time constraints. If the reader is interested, it is recommended to read Ken-
wright [24] for a beginners guide to dual quaternions before reading the paper
by Daniilidis [22].

3.3 Solving AX = XB on the Euclidean Group

Park and Martin [1] used Lie group theory to concisely state the conditions
for existence and uniqueness of their solutions. The input to their method is
measured pairs of homogeneous transformation matrices (A, B) ∈ SE(3), where
SE(3) is the special Euclidean group of dimension 3 defined by:

SE(3) =
{

T | T =
([

R ~r
0 1

])
, R ∈ SO(3), ~r ∈ R3

}
(3.2a)

SO(3) =
{

R | R ∈ R3×3, RT R = I3, det (R) = 1
}

(3.2b)
so(3) =

{
ω | ω ∈ R3×3, ωT = −ω

}
(3.2c)

This group is a smooth manifold with the group structure SO(3)×R3, such that
the group operations are smooth maps - a Lie group. The most important Lie
group property for our purposes, is the existence of a well-defined logarithmic
mapping (3.3b) from the manifold to a local Euclidean structure on the manifold.
This local structure is associated with the tangent space at the group’s identity
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element, called the group’s associated Lie algebra. The inverse exponential
mapping (3.3a) is also well defined.

exp : SO(3) 7→ so(3) (3.3a)
log : so(3) 7→ SO(3) (3.3b)

With this knowledge in mind, let us start by writing out the standard hand-eye
problem as:

AX = XB (3.4a)(
RA ~rA

0 1

)(
RX ~rX

0 1

)
=
(

RX ~rX

0 1

)(
RB ~rB

0 1

)
(3.4b)

RA RX = RX RB (3.4c)
RA ~rX + ~rA = RX ~rB + ~rX (3.4d)

(RA − I3)~rX = RX ~rB − ~rA (3.4e)

The main result of Park and Martin [1] is that an exact solution to (3.1) exists
if and only if:

‖log (A)‖ = ‖log (B)‖, A, B ∈ SE(3) (3.5)

Where the logarithm of a homogeneous transformation matrix T ∈ SE(3) is
given by:

log (T) =
[
log (R) T−1

v 7→r ~r
01×3 0

]
=
[
θ[~k]×

[∫ 1
0 exp (θ[~k]×s) ds

]−1
~r

01×3 0

]
∈ se(3)

(3.6)

The ordered pair (θ,~k) in (3.6) is the angle-axis parameters of a rotation matrix
R, and [~k]× is the skew-symmetric matrix form of vector ~k. These parameters
are given by (3.7), which implies that the angle θ is not unique when the trace
of rotation matrix Tr (R) is equal to −1 (θ = ±π). If the angle θ is not unique,
then the logarithm in (3.6) is also not unique.
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θ = arccos
(

Tr (R)− 1
2

)
, [~k]× = 1

2 sin (θ)
(
R −RT

)
(3.7a)

[~k]× :=

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 ∈ so(3), ~k =

k1
k2
k3

 ∈ R3 (3.7b)

The element T−1
v 7→r ~r in (3.6) comes from the fact that the exponential of log (T )

should result in T , leaving behind the translation ~r in this element. It is possible
to compute this element as (3.8c) from Tv 7→r T

−1
v 7→r = I3 as shown in Condurache

[25], where Tv 7→r is given by (3.8b) and I3 is the 3 × 3 identity matrix. The
mapping Tv 7→r is in fact a screw that maps a local vector ~v on the manifold to
a translation ~r. This mapping corresponds to integrating the vector ~v over a
rotation R (from I3 to R), resulting in a screw motion over the rotation.

exp (θ[~k]×s) = I3 + sin (θs)[~k]× + [1− cos (θs)] [~k]2× (3.8a)

Tv 7→r =
∫ 1

0
exp (θ[~k]×s) ds = I3 + 1− cos (θ)

θ
[~k]× + θ − sin (θ)

θ
[~k]2× (3.8b)

T−1
v 7→r =

[∫ 1

0
exp (θ[~k]×s) ds

]−1

= I3 −
1
2θ[

~k]× +
[
1− θ

2 cot
(
θ

2

)]
[~k]2× (3.8c)

The rotation RX is assumed to be decoupled from the translation ~rX in this
solution to the hand-eye problem, and it is therefore only the rotational part
of (3.6) that is considered. This assumption simplifies (3.5) to its rotational
part (3.9a), which can be further simplified as (3.9c) for positive angles and axis
vectors of unit length.

‖θA [~kA]×‖ = ‖θB [~kB ]×‖ (3.9a)
|θA| = |θB |, ‖~kA‖, ‖~kB‖ = 1 (3.9b)

θA = θB , θA, θB ≥ 0 (3.9c)

It is now simple to show the main result of Shiu and Ahmad [20] from (3.4c),
where they have used the identities; R exp ([~k]×)RT = exp (R [~k]×RT ), R [~k]×RT =

16



Chapter 3. VIVE-workcell calibration 3.3. Solving AX = XB on the Euclidean Group

[R~k]× for any skew-symmetric matrix [~k]×, and R = exp (θ[~k]×) is the angle-
axis parametrization of rotation matrix R:

RA = RXRBRT
X (3.10a)

exp
(
θA[~kA]×

)
= RX exp

(
θB [~kB ]×

)
RT

X = exp
(
θB [RX

~kB ]×
)

(3.10b)

θA[~kA]× = θB [RX
~kB ]× (3.10c)

θA
~kA = RXθB

~kB (3.10d)
~kA = RX

~kB , θA = θB ≥ 0 (3.10e)

The result in (3.10e) implies that any exact solution to (3.4c) is independent of
the angles θA and θB , except for the special case where both axis vectors ~kA

and ~kB are collinear. This result is however not true in general, because the
measured pairs of A and B are affected by noise. The more general result in
(3.10d) is therefore used to estimate a solution to (3.4c) instead. A least squares
minimization problem (3.11a) can then be formulated from (3.10d) to find this
solution, where the objective is minimized over all the measured pairs of A and
B. Similarly, by assuming that the rotation RX is decoupled and known, a
least squares minimization problem (3.11b) can be formulated from (3.4e) to
estimate the translation ~rX .

R̂X = arg min
RX

n∑
i=1
‖RXθB

~kB − θA
~kA‖2 (3.11a)

r̂X = arg min
~rX

n∑
i=1
‖(RAi − I3)~rX + ~rAi − R̂X ~rBi‖2 (3.11b)

Solving the minimization problems in (3.11) is a lot simpler than solving the
coupled problem, and their optimal solutions do in fact have a closed form. Park
and Martin [1] showed that the optimal rotation R̂X can be expressed explicitly
as (3.12a), where they have used a result by Nadas [26]. This rotation is unique
ifMTM , as defined by (3.12a), is non-singular and has no repeated eigenvalues.
This will be satisfied in general, making the rotation unique [1]. The optimal
translation r̂X is then also unique, and it is simply given by the linear least
squares solution (3.12b), where C† is the left Moore-Penrose inverse.
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R̂X =
(
MT M

)− 1
2 MT , M =

n∑
i=1

(
θBi

~kBi

)T

θAi
~kAi

(3.12a)

r̂X = C† ~d =
(
CT C

)−1 CT ~d (3.12b)

C =


C1
C2
...

Cn

 =


I3 −RA1

I3 −RA2
...

I3 −RAn

 ∈ R3n×3, ~d =


~d1
~d2
...
~dn

 =


~rA1 −RX~rB1

~rA1 −RX~rB2
...

~rA1 −RX~rBn

 ∈ R3n

(3.12c)

The closed-form least squares solution by Park and Martin [1] can now be sum-
marized as algorithm 1, where a singular-value decomposition (SVD) is used
to compute the symmetric and positive definite square root (MTM)−1/2. The
transformation between the robot’s inertial frame and the tracking system’s
inertial frame is then given by:

Tbs
i = Tbs

s Ts
wTw

b Tb
i ∈ SE(3), Ts

w = X̂ (3.13)

Where {i}, {b} and {w} are the robot’s inertial, base and wrist frames re-
spectively, and {s}, {bs} are the tracking system’s sensor and inertial frames
respectively. This transformation is used to update the configuration of the
vive_bridge node, and the necessary transformations are measured upon com-
pleting the calibration.
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Algorithm 1: A possible implementation of the closed-form least squares so-
lution by Park and Martin [1].
Data: Pairs of wrist and sensor displacements:

{(A, B)1, (A, B)2, . . . , (A, B)n} , A,B ∈ SE(3)
Initialize M = 03×3, C = 03n×3, ~d = 03n;
for i = 1 to n do

M = M + (θBi
~kBi)T θAi

~kAi ;
end
Compute SVD of MTM = UΣV T ;
Compute rotation R̂X = U Σ−0.5 V T MT ;
for i = 1 to n do

Ci = I3 −RAi
;

~di = ~rAi − R̂X~rBi ;
end
Compute translation ~rX =

(
CT C

)−1 CT ~d;

Result: Transformation from wrist to sensor: X̂ =
[

R̂X r̂X

01×3 1

]
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ROS implementation

Algorithm 1 was implemented in a ROS node with two available services; add_sample
and compute_transform. These services are defined by their request and re-
sponse message structures, which are shown in code listings 1 and 2, where the
separator - - - splits the upper request- and lower response message. Imple-
menting the algorithm in this manner builds on the modularity of ROS, making
it easy to use for any ROS related project. Beginner level tutorials on how to
interact with ROS services are available in [27] [28].

The intended use of the services is to send measured pairs of A and B, by
calling the add_sample service with single pairs (A, B)n as request messages.
The service then returns the number of sampled pairs n as a response mes-
sage. If more than a single pair has been sampled, it is possible to compute the
unknown transformation X̂. This transformation is computed by calling the
compute_transformation service with an empty request message. The service
then returns the transformation, but only if the computation was successful,
which is indicated by the success flag in code listing 2. Unsuccessful computa-
tions occurs when the logarithm mapping (3.6) is not unique, or there are less
than two sampled pairs of A and B.

1 # Wrist transformation between two poses
2 geometry_msgs/TransformStamped A
3 # Sensor transformation between two poses
4 geometry_msgs/TransformStamped B
5 ---
6 # Number of sampled pairs (A, B)
7 uint16 n

Listing 1: Message definition of the add_sample service

1 ---

20



Chapter 4. ROS implementation 4.1. Measuring wrist and sensor displacements

2 # Transformation from wrist to sensor
3 bool success
4 geometry_msgs/TransformStamped X

Listing 2: Message definition of the compute_transform service

4.1 Measuring wrist and sensor displacements

A,B,T ∈ SE(3), i ≥ 1 (4.1a)
Ai = Twi+1 T−1

wi
(4.1b)

Bi = Tsi+1 T−1
si

(4.1c)

An important element to consider when using algorithm 1, is how the pairs
of wrist and sensor displacements are measured, and how these measurements
influence the accuracy of the solution. The pairs are initially measured as two
wrist and two sensor poses for each pair (A, B)i. These poses are then used
to compute their consecutive displacements from (4.1), where Twi

are the wrist
poses and Tsi

are the sensor poses of measurement i.

Ts = Tw X (4.2)

It does not matter in which reference frame the measured poses are expressed in
(except itself), provided that the wrist and sensor poses are expressed in their
respective inertial frames for all poses. The sensor poses are also constrained
by (4.2), as a result of the sensor being firmly attached to the robot’s wrist. It
is therefore only our choice of wrist poses that can influence the accuracy of the
solution. Tsai and Lenz [18] showed the following steps to improve the accuracy
of hand-eye calibration:

1. Maximize rotations between each consecutive pose

2. Minimize distance between the sensor and its tracking system

3. Minimize translations between each consecutive pose

4. Calibrate the sensor

5. Calibrate the robot
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The wrist poses should therefore be chosen such that consecutive rotations are
maximized, and consecutive translations are minimized for the wrist and sensor.
It is not surprising that the translations should be minimized, as it is a necessary
condition for the exact and optimal result in (3.5). The other steps, specifically
robot calibration, is outside the scope of this text, and the VIVE tracking system
was fixed and calibrated as shown in chapter 2.

In order to measure the pairs of wrist and sensor poses, a VIVE controller was
attached to the robot’s gripper as shown in figure 4.1. These poses were mea-
sured by using tf2 - the transform library in ROS. The wrist poses were received
with respect to the robot’s base coordinate system, and the sensor poses were
received with respect to the tracking system’s inertial frame, which coincides
with the master base station. Two different methods were implemented as ROS
nodes, for measuring the necessary poses and interacting with the add_sample
and compute_transform services:

Method 1: Manual measurements

The manual method is intended for the user to move the robot manually,
and sample poses with the VIVE controller. Grip and menu buttons on
the controller are mapped to the add_sample and compute_transform
services respectively. The grip button is located on both sides of the
controller’s handle, and the menu button is on top of the controller’s
front face. Calibration is performed by manually moving the robot, and
the grip button is pressed to measure and sample the necessary poses.
The calibration is then completed by pressing the menu button, which
automatically updates the configuration of the vive_bridge package.

Method 2: Automated measurements

The current implementation of the automated method is based on ran-
domly generated wrist poses. These poses are generated from the normal
vector of a sphere with radius r ∈ [ra, rb), polar angle θ ∈ [θa, θb) and
azimuthal angle φ ∈ [φa, φb) drawn from uniform distributions. Two ran-
dom poses are generated for each wrist pose, where the first pose is used
as translation and the second pose is used as orientation. The robot is
moved to n randomly generated wrist poses, and the necessary poses are
sampled after each move is finished. The calibration is then completed
automatically after sampling n points.
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Figure 4.1: VIVE controller firmly attached to the robot’s gripper
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4.2 MoveIt! issues

The automated method uses the MoveIt! setup for Thrivaldi to move the robot.
This setup currently has two problems that causes the robot to stop abruptly
while executing trajectories:

• Software end stops in the robot (safety limits for joints)

• Speed singularity when stopping

The online documentation for Thrivaldi states that the joint limits for MoveIt!
should be 5° stricter than the software end stops in the robot [29]. These joint
limits are not relaxed in the current MoveIt! setup, and causes the robot to stop
when the end stops are reached. The robot has to be manually moved away
from the end stops whenever one is reached. This problem was solved by simply
relaxing the joint limits in the MoveIt! setup.

The speed singularity occurs when the robot is about to stop, and seems to be
caused by a discrepancy between the robot and the computer controlling it. An
error message is displayed on the robot with the text; “COMMAND VELOC-
ITY EXCEEDED A4 (9243 %)”. This error also occurs when the trajectory
is parameterized to be slow (10% of normal velocity), which suggests that the
robot thinks that it has stopped when it is still moving. The discrepancy could
be caused by different ramp down\goal tolerances between the robot and the
MoveIt! setup. This hypothesis was not tested due to time constraints, and will
have to be assessed in future work.

4.3 VIVE-Thrivaldi calibration

The VIVE calibration for Thrivaldi was performed by using the manual method
from section 4.1. This method was chosen because of the MoveIt! problems
described in section 4.2. A relatively small number of samples, n = 11, was
therefore used for the manual calibration. Figure 4.2 shows a visualization of
the robot cell after this calibration was performed.

Park and Martin [1] performed simulations with small amounts of added noise
(0.7 %) to show the performance of their algorithm. These simulations suggests
an error of 0.2 % in the translation for n = 11 samples. The performance of the
calibrated system will be evaluated further in chapter 5.
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Figure 4.2: Visualization of the robot cell after calibration
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Chapter 5

Evaluation, future work and
conclusion

The initial plan was to evaluate the calibrated system by performing sets of
automated measurements with the robot, where the VIVE controller is kept
fixed in the robot’s gripper after calibration. These sets would then be measured
at points in a 3D grid, similar to the 2D grid measurements by Niehorster et
al. [7]. However, the measurements were not automated because of the MoveIt!
problems described in section 4.2. A simple test of arbitrary robot displacements
was therefore performed instead, in order to show the dynamic behaviour of the
calibrated system.

The X̂ transformation from the calibration was used together with the forward
kinematics of the robot, in order to compute the controller pose. This pose can
then be assumed to be an approximation of the ground truth, which based on the
robot’s repeatability of 0.1 mm indicates the calibrated system’s performance.
Under this assumption, the error is given by the measured controller pose from
the tracking system with respect to the ground truth. This error in translation
and orientation is shown for arbitrary robot displacements in figure 5.1 and 5.2
respectively, where Φ6 is a metric for 3D rotations that is given by [30]:

Φ6(R1, R2) = ‖log (R1, R2)‖ (5.1)

The arbitrary robot displacements in figure 5.1 and 5.2 are separated by red
lines. Each displacement consists of a translation in the range of 1-2 m, and
a basic rotation in the range of 45-90°. These displacements shows an indica-
tion of the tilted reference plane that was mentioned in section 1.1.1. In other
words, the error depends on the location of the tracked device. This spatial
dependency is shown as a steady-state error or bias that changes for each dis-
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Figure 5.1: Absolute error in the controller translation for arbitrary displacements.

Figure 5.2: Absolute error in the controller orientation for arbitrary displacements.
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placement. Transformation (3.13) is therefore only valid for the location where
the calibration was completed.

The error dynamics in figure 5.1 and 5.2 shows approximately first order re-
sponses with time constant T ≈ 25.5s. These responses have a steady-state
error within the robot’s workspace, in the range of 0.5 to 1.5 cm and 0.2 to
0.7 degrees for translations and orientations respectively. Niehorster et al. [7]
showed that the accuracy is in the mm range if the tilted reference plane is taken
into account. It should therefore be possible to fit the steady-state error of floor
measurements to a plane. The main challenge is then to make the procedure of
fitting the plane easy and quick for the user, but this challenge will have to be
assessed in future work.

5.1 Future work

The calibration procedure presented in this text has a few problems that have a
negative impact on the calibrated system. A relatively small number of samples,
n = 11, was used to manually calibrate the system. The simulations by Park
and Martin [1] suggests that this number of samples gives an error of 0.2% in
translation. This error can be reduced by using more samples, but the problems
in section 4.2 has to be fixed in order to be practical.

Another interface called KUKAVARPROXY (KVP) can be used instead of the
MoveIt! setup to control the robot. More importantly, it is important to use
a robot interface to properly evaluate the calibrated system. An automated
calibration method should also follow the steps by Tsai and Lenz [18] in section
4.1 to improve the accuracy. It should also be possible to estimate the tilted
reference plane described by Niehorster et al. [7] from automated measurements.
Taking this plane into account can potentially improve the accuracy of the
calibrated system by an order of magnitude. Another option could be to make
use of libsurvive - an open-source alternative to the OpenVR SDK [31].

Furthermore, there are three main directions that this project can branch into:

1. Robot cell calibration system

2. Real-time tracking for robotics

3. Robot calibration of Thrivaldi
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The HTC VIVE has an update rate of 220-360 Hz, which is sufficient for robotics
applications. However, Borges et al. [8] concluded that the VIVE’s algorithm
was unsuited for robotics, because it weighted inertial measurements more to
produce smooth trajectories. They also introduced their own algorithm in order
to improve the VIVE’s dynamic accuracy [9]. This algorithm was implemented
by using the libsurvive library. An opportunity can therefore be to implement
this library in the vive_bridge node, and try different tracking algorithms. It
is also possible to custom fit robots with sensors for the VIVE tracking system.
The Shoto SteamVR tracking hardware developement kit (HDK) from Triad
Semiconductor can be used to quickly prototype tracked objects [32].

The calibrated system can currently be used to place objects with cm accuracy.
This accuracy can be sufficient for calibration purposes, depending on the ap-
plication. The HTC VIVE can be used to place collisions in a robot cell for
instance, and the main challenge of such an application is how the robot cell
should be represented. Robot calibration of Thrivaldi is the least likely contin-
uation of this project, because it requires a very accurate tracking system.

5.2 Conclusion

The main goal of setting up and calibrating an HTC VIVE for Thrivaldi was
achieved. A calibration procedure was established based on an algorithm by
Park and Martin [1], in order to achieve this goal. Figure 4.2 shows the robot
cell after the calibration was performed, and it is hard to distinguish between
the real and virtual robot cell with the naked eye. The calibrated system has
a steady-state error within the robot’s workspace, in the range of 0.5 to 1.5 cm
and 0.2 to 0.7 degrees for translations and orientations respectively. This error
was computed based on a simple test of arbitrary robot displacements. The
results are therefore not conclusive on the VIVE’s accuracy, and the error can
potentially be reduced by an order of magnitude. A tilted reference coordinate
system turned out to have the greatest negative impact on the VIVE’s accuracy.
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vive_bridge
vive_bridge is a Robotic Operating System (ROS) package that utilises the OpenVR SDK by Valve, to make VR
devices such as the HTC VIVE available in a ROS environment. The package is inspired by an existing vive_ros
package by RoboSavvy, and it exposes a lot of the same functionality. The essentials of the OpenVR SDK is
explained in great detail in the OpenVR Quick Start guide by Kevin Kellar. The guide is also saved locally in this
package under the doc/CassieVrControls.wiki folder.

Features
The package supports the following types of devices:

HMD (Head-Mounted Display)
Controller
Tracker
Lighthouse

The package exposes the position and orientation (pose) of each device as coordinate frames relative to the
world_vr frame in the tf tree, which is configurable relative to the world frame. The naming scheme of each
coordinate frame follows the following structure: <device type>_<serial number>, e.g.
controller_LHR_FF6FFD46. The serial number is used both internally and externally (in the package) to uniquely
identify tracked devices. This results in a structure similar to the tf tree example that is shown below:

The package can also publishes the linear and angular velocities (twists) of tracked devices as a
geometry_msgs/TwistStamped message on the /vive_node/twist/<device type>_<serial number> topic, e.g.
/vive_node/twist/controller_LHR_FF6FFD46. Axes and buttons on controllers can also be published as a
sensor_msgs/Joy message on the /vive_node/joy/<device type>_<serial number> topic, e.g.
/vive_node/joy/controller_LHR_FF6FFD46. Joy messages are only published when the controllers are interacted
with. These publishers are not enabled by default, but they are easily enabled during runtime by using the
rqt_reconfigure package.

Visualization

It is also possible to visualize the tracked devices by using a MarkerArray display in RViz. The mesh files are
defined in the launch/vive_node.launch file as parameters for each type of device:

hmd_mesh_path
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controller_mesh_path
tracker_mesh_path
lighthouse_mesh_path

The tracked devices are then visualized by adding /vive_node/rviz_mesh_markers as Marker Topic in a
MarkerArray display.

The mesh files has to be supported by RViz, i.e. .stl, .mesh (Ogre) or .dae (COLLADA).

Requirements

OpenVR SDK

The package requires the OpenVR SDK, which has to be built from the newest available source. It is possible
to download and build the source in the correct folder by utilising the following commands:

cd ~ 
mkdir lib 
cd lib 
git clone https://github.com/ValveSoftware/openvr.git 
cd openvr 
mkdir build 
cd build 
cmake -DCMAKE_BUILD_TYPE=Release ../ 
make 

It is also possible to specify which folder the OpenVR SDK should be located in, by changing the
CMakeLists.txt file in the package directory:

set(OPENVR "$ENV{HOME}/lib/openvr") 

Steam and SteamVR

SteamVR is available through Steam, which is utilised for configuration and room setup. It is also required for
running this package by itself, as it depends on the vrserver process running in the background. This is a
requirement because the OpenVR part of the package runs as a background application (OpenVR API
Documentation):

VRApplication_Background - The application will not start SteamVR. If it is not already running the call with
VR_Init will fail with VRInitError_Init_NoServerForBackgroundApp.

Steam is installed by following the Getting Started guide on their Steam for Linux tracker. SteamVR should be
installed automatically by Steam if there is any VR devices present on your computer. It is also important to
meet the GRAPHICS DRIVER REQUIREMENTS and the USB DEVICE REQUIREMENTS on their SteamVR for
Linux tracker. A complete guide on getting the HTC VIVE up and running in SteamVR is available from: HTC
Vive Installation Guide.
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Installation
The package is built by cloning this repository into your catkin workspace (catkin_ws/src directory) and then
making it with catkin_make

Usage
The package is simply run by launching the following launch file: roslaunch vive_bridge
vive_node.launch

You may have to change the directory paths for Steam and your Catkin workspace in the /scripts/launch.sh
shell script depending on their location. The package assumes that the directories are in their defuault locations.

STEAM_RUNTIME=$HOME/.steam/steam/ubuntu12_32/steam-runtime 
CATKIN_WS=$HOME/catkin_ws 

Applications are generally run through the Steam runtime by running the run.sh script. The script is in the
steam-runtime folder, and takes the application as an argument for the script.
~/.steam/steam/ubuntu12_32/steam-runtime/run.sh
~/catkin_ws/devel/lib/vive_bridge/vive_bridge_node

Interacting with the node

The vive_node publishes information about the currently tracked devices to the
/vive_node/tracked_devices topic. This topic uses a custom vive_bridge/TrackedDeviceStamped.msg
message that contains information about:

frame_id - Fixed VR frame (within the message header)
uint8 device_count - Number of tracked devices
uint8[] device_classes - Classes of tracked devices (classes are defined within the message):

uint8 HMD=1 
uint8 CONTROLLER=2 
uint8 TRACKER=3 
uint8 LIGHTHOUSE=4 

string[] device_frames - Child frames associated with each tracked device

The frame names within the device_frames field can then be used to find the joy and twist topics of each
tracked device, e.g. the twist topic of the first tracked device could be:

"/vive_node/twist/" + msg_.device_frames[0]

It is also possible to request this information from the /vive_node/tracked_devices service, which requests
a std_msgs/Empty message, and responds with the same format as the
vive_bridge/TrackedDeviceStamped.msg. The frame_id is however included as it's own field in the
response, instead of being included in the message header.
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Controller axes and buttons

The package currently supports all inputs from the HTC VIVE controller, and the sensor_msgs/Joy messages
have the following format:

axes[0] - Trackpad x
axes[1] - Trackpad y
axes[2] - Trigger
buttons[0] - Menu
buttons[1] - Grip
buttons[2] - Trackpad
buttons[3] - Trigger

The package also emulates a numpad when pressing different points on the trackpad button:

buttons[ 4] - 1 Left down
buttons[ 5] - 2 Center down
buttons[ 6] - 3 Right down
buttons[ 7] - 4 Left center
buttons[ 8] - 5 Center
buttons[ 9] - 6 Right center
buttons[10] - 7 Left up
buttons[11] - 8 Center up
buttons[12] - 9 Right up

The x and y values from touching the trackpad is used to find the corresponding numpad key. The header also
contains the frame_id associated with the tracked device.

Configuration

The position and orientation (pose) of each device is defined relative to the world_vr frame, which has the
same position as one of the lighthouses. This frame has to be defined relative to some defined world frame to
make sense of the environment. The transformation between these frames are exposed as x-, y-, z- and roll-,
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pitch-, yaw- (RPY) offset parameters by the dynamic_reconfigure package. This package provides a standard
way to change the offset parameters at any time without having to restart the node, and also provides a
graphical user interface (GUI) to change these parameters by using rqt_reconfigure:

rosrun rqt_reconfigure rqt_reconfigure.

The parameters from dynamic_reconfigure are currently not saved automatically, and they therefore have to
be updated manually in the /launch/vive_launch.launch file (see param), and in the
/cfg/DynReconf.cfg file (see How to Write Your First .cfg File).

Coordinate systems

  

Tracked devices follows the following coordinate system conventions:

X-axis equates to pitch
Y-axis is up and equates to yaw (except for the VIVE Tracker, which has Z-axis down)
Z-axis is approach direction and equates to roll (except for the VIVE Controller, which has Z-axis
pointing the opposite way)

The VIVE Tracker coordinate system is rotated 180° around the x-axis such that the z-axis points upwards. This
is because we want the tracker to match the orientation of our reference frame (world), when it is placed
horizontally on the ground.

Compatibility
The package was tested with:
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HTC VIVE with OpenVR SDK 1.0.15 and Ubuntu 16.04 LTS running ROS Kinetic Kame (1.12.13)

To-do list
Save and load the parameters that are changed by dynamic reconfigure
Implement libsurvive - lightweight HTC Vive library as an alternative interface to the OpenVR SDK
Implement handling of tracked devices with virtual functions for drop-in support of alternative
interfaces
Implement haptic feedback on the VIVE Controllers


	Introduction
	Equipment
	HTC VIVE (Pro)
	Thrivaldi

	Software
	Robotic Operating System (ROS)
	VIVE bridge


	VIVE-workcell setup
	Internal HTC VIVE calibration

	VIVE-workcell calibration
	Problem formulation
	Overview of solutions
	Solving A X = X B on the Euclidean Group

	ROS implementation
	Measuring wrist and sensor displacements
	MoveIt! issues
	VIVE-Thrivaldi calibration

	Evaluation, future work and conclusion
	Future work
	Conclusion

	VIVE Bridge documentation

