
M
orten A

stad
Vive for R

obotics

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Morten Astad

Vive for Robotics

Rapid Robot Cell Calibration

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl

June 2019

Morten Astad

Vive for Robotics

Rapid Robot Cell Calibration

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

This thesis is dedicated to my fiancée, whose unending support has
helped me through thick and thin during my 6 years of higher edu-
cation. This also holds true for my family and close friends who have
always been there for me.

— Morten Astad

This page is intentionally left blank.

ii

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

0BMSc thesis assignment

Name of the candidate: Morten Astad
Subject: Engineering Cybernetics
Title:

1BBackground:
HTC Vive is quite famous for their new virtual reality gaming headset. It has quickly become one of the best in
the market. One of the reasons for its success was the innovative technology for tracking users' hands and
head. In many industrial automation cases, a robot work cell must be calibrated such that the location of
tools, surfaces, and parts are known to the robot. This can be done by jogging the robot (moving it by the
remote controller), or by guiding the robot by hand (when the robot is in compliant mode), to specific
setpoints in the work cell and recording their location. Another way is to construct the work cell with a high-
degree of positional accuracy. In general for robots performing many tasks, and visiting many locations, this is
time consuming and requires the robot to be installed ahead of time, or expensive and laborious.

In this master thesis the student is to explore the use of an HTC Vive for rapid robot cell calibration. The work
will be focused on interfacing the HTC Vive with ROS: robotic operating system, and investigating the
usefulness of the HTC Vive for positioning objects and obstacles in a robot cell.

Tasks:
1. Create a calibration procedure for the HTC Vive controller for use in rapid robot cell calibration. The

positioning error should be <1cm, ideally around ~1mm
a. Map and investigate biases
b. Investigate technological limitations of the HTC Vive for sub-centimetric positioning errors

2. Design a robot cell calibration procedure for some standard geometric primitives (e.g.
plane/sphere/box). This includes:

a. Allow for placement of objects by using the HTC Vive controllers
b. Allow for sampling points on an object using the HTC Vive controllers
c. Use said sampled points to place 3D objects in a virtual robot cell scene
d. Save the resulting scene to an appropriate format (e.g. SDF/URDF)

3. Test the procedure on an assembly use-case

To be handed in by: 10/6-2019

Jan Tommy Gravdahl
Professor, supervisor

This page is intentionally left blank.

iv

A B S T R A C T

The use of an HTC Vive; a virtual reality (VR) system and its
innovative tracking technology is explored in order to create an
approximate one-to-one mapping to the virtual representation
of a robot cell. This mapping is found by performing hand-
eye calibration, establishing a spatial relationship between the
inertial frames of the robot cell and tracking system.

Automated calibration procedures were realized as open-
source robotic operating system (ROS) packages, together with
a framework that was used to define geometric primitives such
as boxes, spheres, cylinders and cones in the coordinates of the
robot cell. This framework was tested on an assembly scenario,
where the outline of a mock-up was defined by registering
points with a Vive Tracker. The dimensions of the mock-up were
defined with a centimetric accuracy and a millimetric deviation
between similar parts.

The calibrated system has problems that are related to specific
issues of the tracking technology. These issues, their cause, and
potential fixes are outlined in a concise manner after thoroughly
studying them. A considerable effort has been directed towards
trying to reduce the influence of a spatially dependant bias
on the tracking. This effort culminated in a minor millimetric
accuracy improvement, resulting in a centimetric positioning
error overall. The potential use cases of the calibrated system are
limited by its accuracy, and depends on the required tolerances.

v

This page is intentionally left blank.

vi

S A M M E N D R A G

Bruken av en HTC Vive; et system for virtuell virkelighet og
dets innovative sporingsteknologi er utforsket for å opprette en
tilnærmet en-til-en avbildning til den virtuelle representasjonen
av en robot celle. Denne avbildningen ble funnet ved å bruke
hand-eye kalibrering.

Automatiserte kalibreringsprosedyrer ble realisert som Robot
Operating System (ROS) pakker basert på åpen-kildekode, sam-
men med et rammeverk som ble brukt for å definere geometriske
former slik som bokser, kuler, sylindre og kjegler i koordinatene
til robot cellen. Dette rammeverket ble testet i et monteringssce-
nario, der omrisset av en mock-up ble definert ved å registrere
punkter med en Vive Tracker. Dimensjonene av mock-upen ble
definert med en nøyaktighet i centimeterstørrelse og et avvik i
millimeterstørrelse mellom lignende deler.

Det kalibrerte systemet har flere utfordringer som er relatert
til spesifikke problemer med sporingsteknologien. Disse prob-
lemene, hvordan de oppstår, og mulige løsninger er lagt frem på
en kortfattet måte etter å ha studert dem grundig. En betraktelig
innsats har blitt rettet mot å prøve å redusere virkningen av
en bias som avhenger av lokasjonen til de sporede enhetene.
Dette arbeidet oppnådde en mindre nøyaktighetsforbedring i
millimeterstørrelse, som resulterte i et måleavvik i centimeter-
størrelse. De mulige bruksområdene til det kalibrerte systemet
er begrenset av nøyaktigheten, og avhenger av de nødvendige
toleransene.

vii

This page is intentionally left blank.

viii

We have to prove that digital manufacturing is inclusive.
Then, the true narrative will emerge: Welcome, robots.

You’ll help us. But humans are still our future.

— Joe Kaeser [1]

A C K N O W L E D G M E N T S

First and foremost, I would like to thank my supervisors: Math-
ias Hauan Arbo, Jan Tommy Gravdahl and Esten Ingar Grøtli,
for invaluable input throughout the project period. The help
that I received with practical aspects of the project, from the
hard working people at the mechanical workshop in the depart-
ment of engineering cybernetics, NTNU, was also very much
appreciated. I would also like to thank the LibSurvive commu-
nity for help with implementing their library, and providing
documentation and interesting discussions on the VIVE and its
tracking system.

The work presented in this thesis was partially funded by the
Research Council of Norway through the projects SFI Manufac-
turing (contract number: 237900) and Dynamic Robot Interaction
and Motion Compensation (contract number: 270941).

Morten Andre Astad
Trondheim
June 10, 2019

ix

This page is intentionally left blank.

x

C O N T E N T S

1 introduction 1

1.1 Previous work 2

1.2 Structure 3

1.3 Mathematical notation 3

2 hardware and software 5

2.1 Thrivaldi 5

2.2 Leica Absolute Tracker AT960 5

2.3 Robotic Operating System (ROS) 5

2.3.1 Robot geometry library 6

2.3.2 MoveIt 6

2.3.3 RViz 9

2.4 Vive Bridge 9

2.5 libsurvive 10

2.6 Other libraries 10

2.6.1 Eigen 10

2.6.2 Sophus 11

2.6.3 Ceres solver 11

3 theory 13

3.1 Hand-eye calibration 13

3.1.1 Problem formulation 13

3.1.2 Overview of solutions 15

3.1.3 Solving AX = XB on the Euclidean Group 15

3.2 Quaternion averaging 21

3.3 Closed-form solution of absolute orientation 25

3.4 Perpendicular distance from a point to a line 27

4 htc vive 29

4.1 Lighthouse tracking 29

4.1.1 Lighthouse tracking 2.0 31

4.2 Accuracy and precision 32

4.3 Tracking issues 32

4.4 Minor issues 33

4.4.1 Controller timeout 34

4.4.2 Tracker roles 34

5 vive-robot cell setup and calibration 37

5.1 Internal Vive calibration 37

5.2 Existing calibration procedure 39

5.2.1 Generating sample poses for calibration 39

5.2.2 Computing the mapping 40

5.2.3 Performing the calibration for Thrivaldi 40

xi

xii contents

6 improving the calibrated system 43

6.1 Improving the existing calibration procedure 43

6.1.1 Sampling procedure 43

6.1.2 Reducing the mapping error 44

6.1.3 Nonlinear optimization step 45

6.2 Mapping the error with a robot 46

6.2.1 Generating a set of sampling poses 47

6.2.2 Running the sampling procedure 49

6.3 Mapping the error with a laser tracker 52

6.3.1 Reasons for the large changes in offset 54

6.4 LibSurvive 56

7 rapid robot cell calibration 59

7.1 Defining geometric primitives from points 59

7.1.1 Plane of finite size 59

7.1.2 Box 61

7.1.3 Sphere 62

7.1.4 Cylinder and Cone 63

7.2 Representing a virtual robot cell in ROS 65

7.2.1 Simulation Description Format (SDF) 65

7.3 Calibration Tool 66

7.4 Assembly scenario 68

8 discussion, future work and conclusion 71

8.1 Discussion 71

8.1.1 Summarizing the tracking issues 71

8.1.2 Improving the calibration procedure 73

8.2 Future work 74

8.3 Conclusion 75

Appendix
a vive bridge ros package readme 79

b submitted conference paper to iccma 2019 89

bibliography 97

1
I N T R O D U C T I O N

The use of traditional industrial robots in small and medium-
sized enterprises (SMEs) is often too inflexible for the current
market demands of the manufacturing industries. SMEs are
companies whose staff headcount is less than 250 employees,
and are often referred to as the backbone of Europe’s economy,
providing the majority of all new jobs. The European Commis-
sion considers SMEs and entrepreneurship as key to ensuring
economic growth, innovation, job creation, and social integration
in the European Union (EU) [2].

SMErobotics was an EU-funded research project that ran from
2012 to 2016, and aimed to create robots suitable for SMEs. A
published article about the project suggested that one of the
main challenges preventing adoption of industrial robots in
SMEs, is the fact that current robot programming techniques
are not suitable for frequent changes of often highly customized
products manufactured in small batches [3]. The demanding
situation of manufacturing within SMEs is apparent in this
challenge, where flexibility and versatility are required traits in
order to accommodate a wide range of products with small lot
sizes.

SMErobotics demonstrated multiple solutions that focused
on intuitive human–robot interaction (HRI) and robust auto-
matic operation through embedded cognition, of which this
thesis will focus primarily on the former. These solutions ties
into the research area of robust and flexible automation, which
aims to overcome such challenges with novel technologies and
methodologies.

This thesis explores the use of an HTC Vive, a virtual reality
(VR) system codeveloped by Valve and HTC, in order to create
an approximate one-to-one mapping to the virtual representa-
tion of a robot cell. The innovative technology that allows for
such a mapping in a room-scaled environment is called light-
house tracking. This technology is able to track the user’s hands,
head or other objects in real-time through tracked devices. The
devices have sub-millimeter precision within an area, whose
diagonal is up to 5 meters in length. These specifications are
remarkable for a consumer-grade product such as the Vive, and

1

2 introduction

its relatively low retail price makes it an affordable tracking
solution.

A potential use case is the ability to program robot systems
with the intuitive user interface that VR experiences such as the
Vive provides. Assuming that mapping a robot cell to its virtual
counterpart is possible with sufficient accuracy; the interface
could enable the user to interact directly with the robot and its
environment. The user could then define the location of parts,
surfaces and tools for the robot without any expertise in robotics,
by simply pointing a tracked device at their respective locations
in the robot cell.

The work on creating such a user interface has been focused
on interfacing with Robot Operating System (ROS); an open-
source collection of frameworks for writing software for robots.
Most of the methods presented in this thesis are implemented
as ROS packages in some shape or form, and ROS has been an
invaluable asset in the development flow of this work.

1.1 previous work

This thesis is written as the continuation of a summer job at
SINTEF Digital and a specialization project [4], and aims to
build upon and complete unfinished tasks from the project.
Software for interfacing the Vive with ROS was created during
the summer job, and this software has been developed further
throughout the last year (2018 - 2019). The specialization project
was: primarily concerned with how a calibration procedure can be
established for the Vive’s tracking system.1 This procedure will be
introduced in chapter 5.

Since the work that is presented in this thesis is closely linked
to the specialization project, specified parts of the text will be
reproduced from the specialization project. This text has been
typeset as shown above in a different font with a footnote to
distinguish it from the new content. Marks for these footnotes
in the text will refer to the same footnote on this page, as it is
the only footnote that was used in this thesis.

Two problems related to specific issues of the Vive’s tracking
system was identified in the specialization project; the tracking
dynamics of the Vive was very slow and the tracking was af-
fected by a spatially dependant bias. This thesis will focus on

1 This text has been reproduced from a specialization project that is
closely linked to the work that is presented in this thesis [4].

1.2 structure 3

trying to understand these issues and explore potential solutions
to (hopefully) achieve sub-centimetric accuracy.

1.2 structure

The thesis is split into 7 chapters:

chapter 2 Gives a brief overview of the hardware and soft-
ware that was used in this work.

chapter 3 Presents the theory that is used throughout this
thesis, with an emphasis on hand-eye calibration
and quaternion averaging.

chapter 4 Introduces the Vive and its tracking system in a
thorough manner.

chapter 5 Explains how the Vive was set up in a robot cell,
and introduces the calibration procedure from the
specialization project.

chapter 6 Tests several approaches to improve the accuracy
and precision of the calibrated system, including
mapping the spatially dependant bias.

chapter 7 Presents a framework that was used to define
the virtual representation of an assembly scenario
with geometric primitives.

chapter 8 Summarizes the findings of this work, and gives a
brief discussion on each of them before concluding
the thesis.

1.3 mathematical notation

The following notation will be used consistently:

• Vectors and matrices are shown with bold text in equa-
tions, and points will generally be represented as vectors.
However, vectors and matrices in the main text will not be
typeset as bold, in order to avoid distracting elements that
sticks out in the text.

• 0m×n and Im×n denotes a m× n matrix with zeros and
ones along its diagonal respectively.

4 introduction

• A rigid transformation T01 is defined as the transformation
that maps a vector from frame {1} to frame {0}:

p0 = T01 p1, p0, p1 ∈ Rn, T01 ∈ SE(3) (1.1)

Where SE(3) is the special Euclidean group of dimension
3, as defined by (3.3).

• Operators mapping a vector to a matrix have been sur-
rounded by brackets in order to explicitly show that the
resulting matrix is multidimensional. An example of such
an operator is the vee-operator [·̂], as defined by (3.25b).

2
H A R D WA R E A N D S O F T WA R E

This chapter gives a brief overview of the hardware and software
that was used in this work. As the Vive is the main subject of
this thesis, it will be explored in more detail in chapter 4.

2.1 thrivaldi

Thrivaldi is a KUKA robotics laboratory at the Department of Engi-
neering Cybernetics, NTNU. The laboratory consists of a robot cell
containing two, 6 degrees of freedom (DOF), KUKA KR16-2 industrial
robots. One of which is mounted on a 3-axis gantry system from
Güdel, giving it 9 DOF in total. Thereby the anglicized name Thrivaldi
(Þrívaldi), a 9-headed jötunn from Norse mythology.

The setup and interface of the laboratory was documented exten-
sively by Eriksen in his Master thesis [5], and practical documentation
is also available online [6].1

2.2 leica absolute tracker at960

The Leica Absolute Tracker AT960 is a portable 6-DOF laser
measurement system from Hexagon Manufacturing Intelligence.
It is intended for large-scale metrology applications, and allows
for a large 360° measurement volume of up to 160 m in diameter.
This volume depends on the model and type of measurement
(3D or 6-DOF).

The AT960-SR short range model that was used in this project
has a maximum volume of 12 m in diameter for 3D measure-
ments. This model was used to track the position of a 1.5 inch
sphere-shaped red ring reflector to within an absolute accuracy
of 15 microns.

2.3 robotic operating system (ros)

ROS is an open-source collection of frameworks for writing software
for robots, commonly referred to as a middleware. At its core it offers
a communication system, which provides a message passing interface
between distributed nodes. This infrastructure encourages the user to

5

6 hardware and software

implement a clear interface between the nodes in their system, making
ROS a distributed and modular framework by design [7].

The main motivation behind ROS is code reusability in robotics
research and development. And ROS has an active community with
a large collection of tools and libraries, which simplifies the task of
writing complex and robust software for robots.1

2.3.1 Robot geometry library

There are many coordinate frames in a robot system. These
frames and their relationships are maintained in a distributed
tree structure that is buffered in time with the tf2 transform
library for ROS [8]. This library allows the user to transform
vectors, quaternions, poses and so forth between any two frames
in the tree structure. It also acts as a buffer for the poses of
the tracked devices, which are available in any frame of the
transform tree, and to all nodes in the ROS environment.

2.3.2 MoveIt

MoveIt is a motion planning library for ROS, and the existing
MoveIt setup for Thrivaldi was used in order to plan and execute
trajectories for the robot. This hardware-agnostic framework
enables the use of any ROS-Industrial supported robot with a
MoveIt package.

The primary move group interface of MoveIt makes use of
kinematic robot states to plan the trajectory. These states contains
the desired joint positions, velocities, accelerations and efforts at
the start and goal of a trajectory. Figure 2.1 shows an example
of start and goal states with different joint positions. It is also
possible to introduce path constraints along the trajectory.

2.3.2.1 Safety

The robot could cause harm to itself or its environment. This
is especially true for the MoveIt interface that is used with
Thrivaldi, which overrides some of the safety features of the
KUKA robot controller (KRC) [5]. It is therefore important that
the MoveIt interface is configured properly. Most notably, there
were two issues that could cause harm:

• The gripper was not defined as a part of the robot, and
planned trajectories could self-intersect with the gripper.

2.3 robotic operating system (ros) 7

Center (XYZ) -0.40 0.49 1.22

Size (XYZ) 3.25 3.25 1.63

Table 2.1: MoveIt workspace bounds in meters, as defined by a box
relative to the root coordinate system that is shown in figure
2.2.

• The workspace bounds of MoveIt were not configured
properly, and allows for trajectories that could slam the
robot into the ground. Although the KRC would emer-
gency stop the robot before it reaches the floor, it would
still try to reach the floor. This behaviour is undesired and
could be harmful for the robot.

Joint limits on the robot’s wrist axes, 5 and 6, were changed
to ±π/2, such that the self-intersections are impossible. These
joint limits are defined in the config\joint_limits.yaml-file of the
MoveIt configuration package for Thrivaldi:

floor_joint_a5:

has_velocity_limits: true

max_velocity: 5.75958653158

has_acceleration_limits: false

max_acceleration: 0

max_position: 1.570796

min_position: -1.570796

floor_joint_a6:

has_velocity_limits: true

max_velocity: 10.7337748998

has_acceleration_limits: false

max_acceleration: 0

max_position: 1.570796

min_position: -1.570796

An identical change was also performed on the joint limits of
the gantry robot. The workspace bounds of MoveIt was modified
to better reflect the (KUKA KR16-2) robot’s workspace, includ-
ing the floor. These bounds were reconfigured as represented
by the blue box in figure 2.2 to the values in table 2.1.

2.3.2.2 Pre-planning robot trajectories

The last safety measure was to ensure that the planned robot
trajectories are correct in the first place. A MoveIt based interface
was created in order to pre-plan all of the trajectories. These tra-
jectories are pre-planned by setting the goal state of a trajectory
as the start state of the next trajectory, as shown in listing 2.1.

8 hardware and software

Figure 2.1: Start and goal states of the robot, as shown in green and
orange respectively. The primary move group interface of
MoveIt plans a trajectory that satisfies these start and goal
constraints.

Figure 2.2: New MoveIt workspace bounds.

2.4 vive bridge 9

It is then possible to pre-plan all of the robot trajectories.
And the user can verify that the trajectories are correct, before
running a full experiment with the verified trajectories. This
method also has the added benefit that the trajectories can be
executed identically over multiple runs. The execution stops
automatically if the robot’s start or goal states deviates from the
pre-planned states at any point during the execution.

2.3.3 RViz

RViz is a 3D visualizer for ROS that provides a graphical user
interface (GUI). It is able to visualize data from the message
definitions of ROS through so-called displays, which are stan-
dardized for displaying specific message types or composition
of message types. RViz will be used to present a 3D visualization
of the virtual robot cell, and every figure of it in this thesis was
taken directly from RViz.

2.3.3.1 Rviz Visual Tools

Rviz Visual Tools is a library that wraps the message definitions
of ROS to display geometric primitives and meshes in Rviz via
helper functions in C++. This library will be used to visualize
objects in the robot cell, as represented by geometric primitives.

2.4 vive bridge

Vive Bridge is a ROS node that makes use of SteamVR through the
OpenVR software development kit (SDK) by Valve, allowing access to
VR hardware such as the Vive in a ROS environment. The package

Listing 2.1: Setting the goal state of a trajectory as the start state of the
next trajectory.

if (move_group.plan(plan)) { // If planning was successful

// Get goal state of this plan as its joint positions

std::vector<double> positions = plan.trajectory_.

joint_trajectory.points.back().positions;

// Set joint positions in a robot state object

state->setVariablePositions(joint_names, positions);

// Set goal state of this plan as start state of next plan

move_group.setStartState(*state);

}

10 hardware and software

exposes the pose of each tracked device as a coordinate frame with
respect to an inertial tracking frame. These frames are maintained in
the transform tree.

The inertial tracking frame is defined relative to some arbitrary
inertial frame that is chosen by the user, in order to make sense
of the environment. These frames are related by a transformation
that is exposed as x, y, z and roll, pitch, yaw (RPY) parameters. A
standard interface is provided to change the parameters at any time.
The robot cell or any other space is then calibrated by updating these
parameters.1

Other features of the package includes: controller inputs, hap-
tic feedback (vibration), linear and angular velocities (twists)
and 3D visualization in RViz of the tracked devices. A standard
interface to interact with and calibrate the node at any time
is also available through the dynamic reconfigure package for
ROS.

The package is open-source under the MIT License and it is
freely available from: https://github.com/mortaas/vive_rrcc.
The documentation for this package has been included in ap-
pendix A, and it is recommended that the reader skims through
this documentation for an overview of the complete package.

2.5 libsurvive

Libsurvive is a library that aims to reverse engineer and be an
open-source alternative to the SteamVR software stack by Valve.
In other words, it provides everything that is needed to perform
lighthouse tracking, from low-level device drivers to a high-level
application programming interface (API).

Contrary to OpenVR, this library allows for access to the
low-level components of the lighthouse tracking. It supports
the use of different tracking algorithms, or so-called posers,
which have been implemented by its community. The default
tracking algorithm was tested in this work, and according to the
developers, this should yield optimal results.

2.6 other libraries

2.6.1 Eigen

Eigen is a C++ template library for linear algebra. This library
has been used for most of the computations in this work. ROS
has a compatibility package named eigen_conversions, which is

https://github.com/mortaas/vive_rrcc

2.6 other libraries 11

able to convert back and forth between the message definitions
of ROS and the matrix format of Eigen.

2.6.2 Sophus

The Sophus library implements Lie groups and their opera-
tions using the Eigen library, and also includes the required
definitions for automatic differentiation (AD) with the Ceres
solver.

2.6.3 Ceres solver

Ceres solver is an open source C++ library for modeling and
solving non-linear least squares problems [9]. It has been used
to solve several optimization problems throughout this work.
A brief explanation on how to use this library will be given in
section 6.1.3.

12 hardware and software

This page is intentionally left blank.

3
T H E O RY

This chapter presents the theory that is used throughout this
thesis. An emphasis will be placed on hand-eye calibration and
quaternion averaging. It is assumed that the reader is familiar
with the use of homogeneous transformation matrices, quater-
nions and coordinate frames. The reader is referred to [10] for
an introduction to these topics.

3.1 hand-eye calibration

The text in this section about hand-eye calibration is based on a
specialization project that is closely linked to the work that is
presented in this thesis [4].

Finding the pose of a sensor with respect to a robot’s tool
frame is known as the hand-eye calibration problem. This prob-
lem got its name from the robotics community, where a camera
(eye) was attached to the robot’s gripper (hand).

3.1.1 Problem formulation

The standard hand-eye calibration problem was formulated by
Shiu and Ahmad [11]. They stated the problem as an equation
of homogeneous transformations:

AX = XB, A, B, X ∈ SE(3) (3.1)

Where A depicts a change in the robot’s tool pose, B represents
the resulting sensor displacement from changing the tool pose,
and X is an unknown transformation relating the tool frame to
the sensor frame. The unknown transformation X is constant
under the assumption that the sensor is firmly attached to the
robot’s gripper. Figure 3.1 shows a geometric interpretation of
this problem.

13

14 theory

Figure 3.1: Geometric interpretation of the AX = XB problem, show-
ing two different robot states [4].

AX = XB

Axis-angle (decoupled) Screw theory (coupled)

Shiu and Ahmad (1991) Lie group theory

Park and Martin (1994)

Chen (1991) Dual quaternion

Daniilidis (1999)

Figure 3.2: A couple of hand-eye problem representations, and associ-
ated solutions presented in the literature [4].

3.1 hand-eye calibration 15

3.1.2 Overview of solutions

Hand-eye calibration is an established field with a large body of lit-
erature. Shiu and Ahmad [11] used an angle-axis representation of
(3.1) and least-squares fitting to solve the rotational part of X, and
then solved the translational part with the rotation. They also showed
that at least three pairs of A and B are necessary to get a unique
solution. Similarly, Park and Martin [12] also decoupled the rotation
and translation, and presented a method using Lie group theory and
least-squares fitting.

Decoupling the rotation and translation, despite it’s simplicity, has
the problem that errors in the rotational part could propagate to the
translational part. Chasles’ theorem, as stated by Chen [13], says
that a rigid body displacement can be composed of a translation
along a unique screw axis, and a rotation about the same axis. This
representation of a rigid body displacement is known as a screw.
Chen was the first that solved both parts of X simultaneously by
applying the theory of screws. Similarly, Daniilidis [14] applied unit
dual quaternions, an algebraic representation of screws. Interestingly,
the hand-eye problem (3.1) can be reduced to solving a second order
equation, by using dual quaternions to represent the transformations
A, B and X.

The solutions introduced here and their relations are summarized
in figure 3.2. There are many other solutions that are not mentioned,
and a more comprehensive resource is available in [15]. Of the men-
tioned solutions, Park and Martin [12] were chosen specifically for its
mathematical elegance.1

3.1.3 Solving AX = XB on the Euclidean Group

Park and Martin [12] used Lie group theory to concisely state
the conditions for existence and uniqueness of their solutions.
The input to their method is measured pairs of homogeneous
transformation matrices (Ai, Bi) ∈ SE(3), as defined by the
deviation between consecutive samples of tool {t} and sensor {s}
poses:

Ai = T−1
ti

Tti+1 , Tti , Tti+1 ∈ SE(3) (3.2a)

Bi = T−1
si

Tsi+1 , Tsi , Tsi+1 ∈ SE(3) (3.2b)

Where SE(3) is the special Euclidean group of dimension 3:

16 theory

SE(3) :=

{
T | T =

([
R r

01×3 1

])
, R ∈ SO(3), r ∈ R3

}
(3.3a)

SO(3) :=
{

R | R ∈ R3×3, RTR = I3×3, det (R) = 1
}
(3.3b)

This Lie group is a C∞ or smooth manifold with the group
structure SO(3)×R3, such that its group operations are smooth
maps, that is, derivatives of all orders exist. The most important
Lie group property for the purpose of this derivation, is the exis-
tence of a well-defined logarithmic mapping from the manifold
to a local Euclidean structure on the manifold:

log : SO(3) 7→ so(3) (3.4)

Where so(3) is defined by:

so(3) :=
{
[ω̂] | [ω̂] ∈ R3×3, [ω̂]T = −[ω̂]

}
(3.5)

And [k̂] is the skew-symmetric matrix form of a vector k:

[k̂] :=

0 −k3 k2

k3 0 −k1

−k2 k1 0

 ∈ so(3), k =

k1

k2

k3

 ∈ R3 (3.6)

This local structure is associated with the tangent space at the
group’s identity element, called the group’s Lie algebra. The
inverse exponential mapping is also well defined:

exp : so(3) 7→ SO(3) (3.7)

With this knowledge in mind, let us start by expanding the
standard hand-eye problem (3.1) as:

(
RA rA

01×3 1

)(
RX rX

01×3 1

)
=

(
RX rX

01×3 1

)(
RB rB

01×3 1

)

(3.8a)

RA RX = RX RB (3.8b)
RA rX + rA = RX rB + rX (3.8c)

(RA − I3×3) rX = RX rB − rA (3.8d)

3.1 hand-eye calibration 17

The main result of Park and Martin [12] is that an exact
solution to (3.1) exists if and only if:

‖log (A)‖ = ‖log (B)‖, A, B ∈ SE(3) (3.9)

Where the logarithm of a homogeneous transformation matrix
T ∈ SE(3) is given by:

log (T) =

[
log (R) T−1

v 7→r r
01×3 0

]
(3.10a)

=

θ[k̂]

[∫1
0 exp (θ[k̂] s)ds

]−1
r

01×3 0

 ∈ se(3) (3.10b)

And the ordered pair (θ, k) in (3.10) is the angle-axis parame-
ters of a rotation matrix R. These parameters are given by:

θ = arccos
(

Tr (R) − 1

2

)
, [k̂] =

1

2 sin (θ)

(
R − RT

)
(3.11)

Angle θ is not unique when the matrix trace Tr (R) is equal to
(−1), as θ = ±π. If the angle θ is not unique, then the logarithm
in (3.10) is also not unique.

The T−1v 7→r r element in logarithm (3.10) is not needed for this
deduction, but it is included for completeness. It is possible
to compute this element from Tv 7→r T−1v 7→r = I3×3, as shown in
Condurache [16]:

T−1
v 7→r =

[∫1
0

exp (θ[k̂] s)ds

]−1
(3.12a)

= I3×3 −
1

2
θ[k̂] +

[
1−

θ

2
cot
(
θ

2

)]
[k̂]2 (3.12b)

Where Tv 7→r is an integral of the Rodrigues’ rotation matrix:

Tv 7→r =
∫1
0

exp (θ[k̂] s)ds

= I3×3 +
1− cos (θ)

θ
[k̂] +

θ− sin (θ)

θ
[k̂]2

(3.13a)

exp (θ[k̂] s) = I3×3 + sin (θ s)[k̂] + [1− cos (θ s)] [k̂]2

(3.13b)

18 theory

Rotation RX is assumed to be decoupled from the translation
rX in this solution to the hand-eye problem, and it is only the
rotational part of (3.10) that is considered. This assumption
simplifies (3.9) to its rotational part:

‖θA [k̂A]‖ = ‖θB [k̂B]‖ (3.14)

Which can be further simplified as (3.15b) for axis vectors of
unit length and positive angles:

|θA| = |θB|, ‖k̂A‖, ‖k̂B‖ = 1 (3.15a)
θA = θB, θA, θB > 0 (3.15b)

It is now simple to show the main result of Shiu and Ahmad
[11] from (3.8b):

θAkA = RXθBkB (3.16a)
kA = RXkB, θA = θB > 0 (3.16b)

Where they have used the identities:

R exp ([k̂])RT = exp (R [k̂]RT) (3.17a)

R [k̂]RT = [R k̂] (3.17b)

For any skew-symmetric matrix [k̂]. And R = exp (θ[k̂]) is the
angle-axis parametrization of rotation matrix R:

RA = RXRBRTX (3.18a)

exp
(
θA[k̂A]

)
= RX exp

(
θB[k̂B]

)
RTX = exp

(
θB[RXk̂B]

)

(3.18b)

θA[k̂A] = θB[RXk̂B] (3.18c)

The result in (3.16b) implies that any exact solution to (3.8b)
is independent of the angles θA and θB; except for the special
case where both axis vectors kA and kB are collinear. However,
this result is not true in general, as the measured pairs of A and
B are affected by noise. Therefore, the more general result in
(3.16a) is used to estimate a solution to (3.8b) instead.

A least squares minimization problem (3.19) can be formu-
lated from (3.16a) to estimate a solution to the hand-eye problem

3.1 hand-eye calibration 19

(3.1). The objective is minimized over all the N measured pairs
of A and B:

R̂X = arg min
RX

N∑
i=1

‖RXθBkB − θAkA‖2 (3.19)

Similarly, by assuming that the estimated rotation R̂X is decou-
pled and known, a least squares minimization problem (3.20)
can be formulated from (3.8d) to estimate the translation rX:

r̂X = arg min
rX

N∑
i=1

‖
(
RAi − I3×3

)
rX + rAi − R̂X rBi‖2 (3.20)

Separately solving the minimization problems in (3.19) and
(3.20) is simpler than solving the coupled problem, and their
optimal solutions do in fact have a closed form. The optimal
rotation R̂X can be expressed explicitly as (3.21):

R̂X =
(

MTM
)−12 MT , M =

n∑
i=1

(
θBikBi

)T
θAikAi (3.21)

This rotation is unique if MTM is non-singular and has no
repeated eigenvalues. These requirements will be satisfied in
general, making the rotation R̂X unique [12]. The optimal trans-
lation r̂X is then also unique, and it is simply given by the linear
least squares solution:

r̂X = C†d =
(

CTC
)−1

CT d (3.22a)

C =

C1
C2
...

Cn

=

I3×3 − RA1
I3×3 − RA2

...
I3×3 − RAn

∈ R3n×3 (3.22b)

d =

d1
d2
...

dn

=

rA1 − RXrB1
rA1 − RXrB2

...
rA1 − RXrBn

∈ R3n (3.22c)

Where C† is the left Moore-Penrose inverse. The closed-form
least squares solution by Park and Martin [12] can now be
summarized as algorithm 1.

20 theory

Algorithm 1: An implementation of the closed-form least
squares solution by Park and Martin [12].

Data: Pairs of tool and sensor displacements (N > 3):
{(A, B)1, (A, B)2, . . . , (A, B)N} , A, B ∈ SE(3)

Initialize M = 03×3, C = 03N×3, d = 03n;

for i = 1 to n do
M = M + (θBikBi)

T θAikAi ;
end

Compute SVD of MTM = UΣVT ;

Compute rotation R̂X = UΣ−0.5 VTMT ;

for i = 1 to n do
Ci = I3×3 − RAi ;
di = rAi − R̂XrBi ;

end

Compute translation rX =
(
CTC

)−1 CT d;

Result: Transformation from tool to sensor: X̂ =

[
R̂X r̂X

01×3 1

]

Singular-value decomposition (SVD) was used to compute
the symmetric and positive definite square root (MTM)−1/2.

3.2 quaternion averaging 21

3.2 quaternion averaging

Quaternion averaging can be used to combine multiple pose
measurements in a simple filter to reduce the influence of noise.
Consider a set of n unit quaternions Q = {q0, q1, ..., qn} ∈H∗,
where H∗ is given by (3.23), and S3 is called the unit 3-sphere
(4D unit sphere).

H∗ :=
{

q | q =
[
η εT

]T
, η ∈ R, ε ∈ R3, qTq = 1

}
∈ S3

(3.23)

The goal is to find the average of these unit quaternions in
an optimal manner. Markley et al. [17] derived and presented
an algorithm that determines the optimal average from a set
of weighted quaternions. They noted that there are mainly two
challenges when averaging quaternions:

• Ensure that the resulting average is a unit quaternion:

qTq = 1 (3.24)

• Handle the 2 to 1 homomorphism from unit quaternions
to the 3D rotation group SO(3), that is, q and −q maps to
the same rotation matrix R(q)

These challenges are solved by mapping the unit quaternions
to rotation matrices R(q) with (3.25), and then finding the aver-
age of these rotation matrices.

R(q) =
(
η2 − εTε

)
I3×3 + 2

(
εεT − η[ε̂]

)
∈ SO(3) (3.25a)

[ε̂] :=

0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 ∈ so(3) (3.25b)

The average quaternion q can then be found as the minimizer
of a weighted sum of squared Frobenius norms, which induces a
squared distance between the average q and the unit quaternions
Q. This minimization problem is given by:

q = arg min
q∈S3

n∑
i=1

wi ‖R(q) − R(qi)‖2F (3.26)

22 theory

This expression can be simplified as shown in (3.27), by using
the definition of the Frobenius norm, properties of orthogonality
(RTR = RRT = I3×3), and the matrix trace (Tr {R} = Tr {RT }):

‖R(q) − R(qi)‖2F := Tr
{
[R(q) − R(qi)]

T [R(q) − R(qi)]
}
(3.27a)

= Tr
{
[R(q)]TR(q) − 2 R(q)[R(qi)]

T + [R(qi)]
TR(qi)

}
(3.27b)

= 2Tr
{

I3×3 − R(q)[R(qi)]
T
}
= 6− 2Tr

{
R(q)[R(qi)]

T
}

(3.27c)

The simplified expression reveals that the original minimiza-
tion problem (3.26) can be restated as the simpler maximization
problem:

q = arg max
q∈S3

Tr
{
R(q)BT

}
, B :=

n∑
i=1

wiR(qi) ∈ R3×3 (3.28)

Where B is known as the attitude profile matrix, because it
includes all the information that is known about the orientation
[17]. This simplified problem is in a form that is found when
solving Wahba’s problem, whose goal is to find the optimal
rotation matrix between two sets of vectors [18]. It is possible
to use any solution from the literature on this problem, notably
Davenport’s q-method [19] and the computationally efficient
QUaternion ESTimator (QUEST) algorithm [20]. The algorithm
that is presented here, by Markley et al., uses Davenport’s q-
method as a basis for its solution.

The trace in (3.28) can be split into three simpler parts by
using the mapping (3.25) for R(q):

Tr
{
R(q)BT

}
= Tr

{[(
η2 − εTε

)
I3×3 + 2

(
εεT − η[ε̂]

)]
BT
}

(3.29a)

=
(
η2 − εTε

)
Tr {B}+ 2Tr

{
εεTBT

}
− 2ηTr

{
[ε̂]BT

}
(3.29b)

The fact that the matrix trace is invariant under cyclic permu-
tations can then be used to further simplify the second part:

2Tr
{

BεεT
}
= 2Tr

{
εTBε

}
= 2εTBε = εT

(
B + BT

)
ε (3.30)

3.2 quaternion averaging 23

Evaluating the third part shows that it can be expressed as a
dot product:

Tr
{
[ε̂]BT

}
= Tr

0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

(3.31a)

= −ε3B2,1 + ε2B3,1 + ε3B1,2 − ε1B3,2 − ε2B1,3 + ε1B2,3
(3.31b)

=
[
ε1 ε2 ε3

]

B2,3 −B3,2

B3,1 −B1,3

B1,2 −B2,1

 = εT [B − BT]∨ (3.31c)

Where [·]∨ is the inverse (vee) operator of (3.25b), and maps
a skew-symmetric matrix to its vector representation. It is now
possible to write the trace in a quadratic form:

Tr
{
R(q)BT

}
= η2 Tr {B} + η

(
[BT − B]∨

)T
ε

+ εT [B − BT]∨η + εT
(
B + BT − Tr {B}

)
ε

(3.32a)

= qTKq, K :=

[
Tr {B}

(
[BT − B]∨

)T

[B − BT]∨ B + BT − Tr {B}I3×3

]
(3.32b)

The matrix is known as Davenport’s K matrix, and by using
the definition of B in (3.28), it can be simplified to:

K =

n∑
i=0

wi

[
4η2i − qTi qi 4ηiε

T
i

4ηiεi 4εiε
T
i − qTi qiI3×3

]

=

n∑
i=0

wi

[
4qiqTi − qTi qiI4×4

] (3.33)

The part that is subtracted from this matrix is simply a con-
stant diagonal matrix, as qi is a unit quaternion, and it does not
change the solution. This results in the final representation of
the maximization problem:

q = arg max
q∈S3

1

2
qTMq, M :=

n∑
i=1

wi qiqTi (3.34)

24 theory

The Lagrangian of this problem and its derivative, where q is
subject to the constraint of being a unit quaternion, is given by:

L(q, λ) =
1

2
qTMq − λ(qTq − 1) (3.35a)

∇qL(q, λ) = Mq − λq = 0 (3.35b)

It is now simple to see that the optimal average is the eigen-
vector of M that corresponds to the largest eigenvalue. The first
challenge of averaging quaternions is then solved by simply
normalizing the eigenvector. The sign in front of q does not
change the solution of (3.34), and the second challenge is also
solved.

3.3 closed-form solution of absolute orientation 25

3.3 closed-form solution of absolute orientation

Assume that a set of 3D-points are measured in two different
coordinate frames. The problem of finding the transformation
that relates these frames is known as absolute orientation. Horn
presented a closed-form solution to the least-squares problem of
absolute orientation [21], which was simplified by representing
the rotation as a unit quaternion. The solution starts with two
sets of correspondent 3D-points:

{ai}, {bi} ai, bi ∈ R3, i ∈ {1, . . . , N} ⊂N (3.36)

Which are related by a rigid transformation from ai to bi:

bi = sRai + r, R ∈ SO(3), r ∈ R3 (3.37)

Where s is a scalar scaling factor. The problem of finding this
transformation can be stated as a least-squares minimization
problem:

min
R̂∈SO(3), r̂∈R3

N∑
i=1

‖bi − sR̂ai − r̂‖2 (3.38)

It is possible to simplify this problem by referring the points
to their centroids:

ãi = ai − ā
b̃i = bi − b̄

ā =
1

n

N∑
i=1

ai, b̄ =
1

n

n∑
i=1

bi (3.39)

By exploiting the fact that the optimal translation is equal to
the difference between the centroids, as expressed with aligned
coordinates:

r̂ = b̄ − R̂ā (3.40)

Which results in the simplified sum:

N∑
i=1

‖b̃i − sR̂ãi‖2 =
N∑
i=1

b̃Ti b̃i − 2sb̃Ti R̂ãi + s2ãTi ãi (3.41)

26 theory

Maximizing the middle term of this result is the same as
minimizing the least-squares problem (3.38):

max
R̂∈SO(3)

N∑
i=1

sb̃Ti R̂ãi (3.42)

The simplified problem can then be expressed in a quadratic
form, which does not depend on the scaling factor, by represent-
ing the optimal rotation with a unit quaternion q̂:

max
q∈H∗

N∑
i=1

(
q̂T
[
0 ãi

]T
q̂∗
)T [

0 b̃i
]T

= q̂TNq̂ (3.43)

Where H∗ is the group of unit quaternions (3.23), q∗ is the
quaternion conjugate

[
η − εT

]T , and N is a symmetric 4× 4
matrix:

Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy + Szz

(3.44)

The trace of this matrix Tr (N) is equal to zero, and its elements
are given by:

Smn =

N∑
i=1

ãTm, ib̃n, i, m, n ∈ {x, y, z} (3.45)

Solving (3.43) is similar to the problem of solving (3.34), and
the optimal solution is the eigenvector of N that corresponds to
the largest eigenvalue. The optimal rotation R̂(q), as given by
(3.25), can then be used to solve for the translation r̂ in (3.40).
Horn et al. [21] also presented an optimal scaling factor, which
does not depend on the rotation or translation:

ŝ =

√√√√
∑N
i=1‖ai‖2∑N
i=1‖bi‖2

(3.46)

3.4 perpendicular distance from a point to a line 27

x1

x2

x0

d

x3
(x1-x3)

(x0-x1)

Figure 3.3: A point x0 with perpendicular distance d from a line that
is defined by the points x1 and x2.

3.4 perpendicular distance from a point to a line

The vector from a line to a point in R3, which is perpendicular
to the line, has the shortest possible length from the line to
the point. Figure 3.3 shows this length as the perpendicular
distance d from a point x3 on the line to a point x0. This per-
pendicular distance and its corresponding vector will be used
to define unique geometric primitives in 3D space. The line can
be parameterized from two points x1 and x2 on the line:

t
(x2 − x1)
‖x1 − x2‖

+ x1, t ∈ R (3.47)

The point on this line that has the shortest distance to x0, can
be found from the projection of vector (x0 − x1) onto the line.
This projection results in a parameter t as the dot product:

t = (x0 − x1)T
(x2 − x1)
‖x2 − x1‖

(3.48)

Substituting this parameter into equation (3.47) gives the
point:

x3 =
[
(x0 − x1)T (x2 − x1)

‖x2 − x1‖

]
(x2 − x1)
‖x1 − x2‖

+ x1 (3.49)

The perpendicular distance vector d is then given by:

d = (x0 − x3) =
[
(x1 − x0)T (x1 − x2)

‖x1 − x2‖

]
(x1 − x2)
‖x1 − x2‖

+ (x0 − x1)

28 theory

(3.50)

Which can be expressed as the composition of vectors (x1−x3)
and (x0 − x1), as shown in figure 3.3.

The dot product of a vector with itself gives its squared length:

‖d‖2 = dTd =

[
(x1 − x2)T (x1 − x0)

‖x1 − x2‖

]2
+ ‖x0 − x1‖2

+

[
(x1 − x2)T (x1 − x0)
‖x1 − x2‖2

]
2 (x1 − x2)T (x0 − x1)

=
‖x0 − x1‖2‖x1 − x2‖2 −

[
(x0 − x1)T (x1 − x2)

]2

‖x1 − x2‖2

=
‖(x0 − x1)× (x1 − x2)‖2

‖x1 − x2‖2
(3.51)

Where the expression has been simplified with the scalar
quadruple product identity:

‖a× b‖2 = ‖a‖2‖b‖2 − (aTb)2, a, b ∈ R3 (3.52)

Taking the square root of the resulting expression gives the
beautiful equality:

‖d‖ = ‖(x0 − x1)× (x1 − x2)‖
‖x1 − x2‖

=
‖(x1 − x0)× (x2 − x1)‖

‖x2 − x1‖
(3.53)

4
H T C V I V E

The Vive is a room-scale VR system, allowing the user to freely walk
around in a diagonal area of up 5 m and interact with an environment.
Steuer [22] defined VR as “a real or simulated environment in which
a perceiver experiences telepresence”, where telepresence is defined
as “the experience of presence in an environment by means of a
communication medium”. In this work, the environment is a virtual
representation of a robot cell.

The main medium is in this case a head-mounted display (HMD)
that is worn on the users head. This HMD immerses the user in a
visualized environment, by displaying a 3D image through lenses in
the HMD. There are also controllers and trackers available that allows
the user to interact directly with the environment. The trackers are
functionally similar to controllers, but they have a smaller puck-like
form factor and there are no connected inputs, such as buttons.1

Viewing the virtual robot cell through the HMD was not
considered as a part of this work, as the main purpose was
to explore the positioning capabilities of the tracked devices.
However, an open-source plugin already exists to display the
3D view of RViz in the HMD [23].

4.1 lighthouse tracking

The technology that enables the Vive to track devices in a room-scaled
environment is called lighthouse tracking. This outside-in technology
sweeps the room horizontally and vertically with 850 nm infrared (IR)
laser lines from one or multiple stationary base stations in the room.
These base stations contains a pair of DC motors that spins at a rate
of 120 Hz, where one motor is turned by 90° and phase shifted by 180°
from the other motor. In other words, each motor takes turns sweeping
the room horizontally and vertically through a wheel-mounted fresnel
lens with a field of view of 120°. The base stations also takes turns
sweeping the room in a similar manner, where one of the base stations
acts as a master (a or b mode) and the other acts as a slave (c mode).
This gives the tracking system an update rate of 60 Hz.

The base stations contains an array of 15 IR LEDs, which floods
the tracking volume with 1.8 MHz modulated pulses at the start
of each sweep. These pulses are used for time synchronization and

29

30 htc vive

Figure 4.1: Vive Pro head-mounted display (HMD) and one controller
for each hand [4].

transmission of omnidirectional optical transmitter (OOTX) data.
This data provides the tracked devices with identification of the base
stations, their factory calibration data and current status [24].

The tracking works by measuring the time difference between syn-
chronization pulses and line sweeps, as perceived from surface-mounted
IR photodiodes on the tracked devices. This time difference is used
to compute the angle of a base station’s motor, and computing both
motor angles gives the intersection between two perpendicular planes, a
line. The line is projected from a base station towards an IR photodiode
on the surface of a tracked device.

In normal operation, multiple IR photodiodes are hit by the laser
during a single line sweep, and multiple projected lines are computed.
The positions of the IR photodiodes along these lines are unknown,
but the geometric relationship between the IR photodiodes are known.
Estimating the pose of a tracked device based on this knowledge is
similar to the Perspective-n-Point (PnP) problem [25], where n is the
number of 3D points (IR photodiode positions). Solving this problem is
equivalent to finding the transformation that maps points from a local
device frame to a global tracking frame, which respects the constraints
that are given by the projected lines.1

The tracked devices also contains an inertial measurement
unit (IMU), which provides faster updates from their relative
motion in between the updates from the lighthouse tracking.
The poses of the tracked devices are updated at 220-360 Hz
depending on the type of device [26]. The measurements are
sub-sampled in the Vive Bridge package at a rate of 120 Hz by
default.

4.1 lighthouse tracking 31

Base Station Sensor / ASICCompatibility

(Sync on Beam)

SteamVR Tracking 2.0

SteamVR Tracking 1.0

Discrete (HTC Vive)

TS3633 ASIC

TS4231 ASIC

Figure 4.2: Device compatibility between SteamVR 2.0 and 1.0 tracking
[27].

4.1.1 Lighthouse tracking 2.0

The description that is provided about the lighthouse tracking
in section 4.1, only explains how the first generation of the
technology works. There are two major differences with how
the tracking works in the second revision:

• There is only one motor with two wheel-mounted fres-
nel lenses, which are arranged in such a way that their
projected laser lines do not intersect with each other.

• The synchronization pulse is removed, and the (OOTX)
data and time synchronization is modulated directly on
the laser lines instead.

These changes have the consequence that the second revision
of the base stations are more reliable (less components), but
the tracked devices also have to support the 2.0 tracking. New
revisions of the tracked devices (2018) support both versions, as
shown in figure 4.2.

Performing synchronization on the laser beam increases the
diagonal of the tracking area to 10 meters. It is possible to
increase the tracking area even further by introducing more base
stations, which also reduces the risk of losing tracking.

32 htc vive

Figure 4.3: The robot was moved quickly between two states in order
to test the tracking dynamics.

4.2 accuracy and precision

The lighthouse tracking is advertised with sub-millimeter precision,
which is an impressive feat for a consumer-grade product such as
the Vive. Niehorster et al. [28] tested the Vive HMD, and compared
its accuracy and precision to a research-grade tracking system. They
showed that the average positioning error was 17 mm with 9 mm
standard deviation, and the RMS noise levels was below 0.2 mm and
0.02°.

Borges et al. [29] showed a similar precision as Niehorster, but also
tested the dynamic accuracy and precision for robotics applications.
The dynamic accuracy was shown to be in the millimetric to metric
range with a best case of 2.36 mm and a worst case of 0.80257 m.1

4.3 tracking issues

Two problems related to specific issues of the Vive’s tracking
system were identified in the specialization project [4]:

1. Niehorster et al. [28] reported that poses measured with
the Vive are provided in a reference frame, which is tilted
with respect to the physical ground plane.

2. Borges et al. [29] showed that the Vive’s tracking algorithm
gives greater weight to its inertial measurements, in order
generate smooth trajectories for VR applications.

This prioritization of inertial measurements can clearly be
seen in figure 4.4, where a tracked device was moved quickly
between two points as shown in figure 4.3. The figure shows

4.4 minor issues 33

Figure 4.4: Error response from moving a tracked device quickly be-
tween two points. The move starts at 302.4 s, and it lasts
approximately 2 s.

that the error is converging a lot faster when the tracked device
is moving, which then slowly approaches its final value with
an overdamped (second order) impulse response. Convergence
can take as long as 500 seconds, and causes an error in the
millimetric range when measuring the position of a device
before it has converged. Figure 4.4 also shows that the steady-
state error of a tracked device depends on its location.

4.4 minor issues

There are a few minor inconveniences with the default SteamVR
settings, and it is not immediately obvious how some of these
settings can be changed. It can be especially hard to change
settings on the Linux version of SteamVR, where the user inter-
face does not always work as intended. Some settings are also
“hidden” within multiple layers of virtual reality menus. Luckily,
SteamVR provides a local web console when it is running:
http://localhost:8998/console/index.html

Where all the settings can be changed.

http://localhost:8998/console/index.html

34 htc vive

4.4.1 Controller timeout

The default behaviour of the Vive controllers is to timeout and
turn off after 5 minutes without interaction. This behaviour can
be impractical for calibration purposes, where the Vive controller
can turn off between or during measurements. The controller
has to be turned on manually by the user after a timeout, which
is not optimal when there is a safety fence between the user and
the Vive controller. However, it is easy to disable this timeout
with a single command in the web console:

settings power.turnOffControllersTimeout 0

4.4.2 Tracker roles

The Vive Trackers are general purpose devices, and can take on
different roles. This role can change abruptly with the default
behaviour of the trackers (held in hand). A tracker can take on
the role of a Vive controller, effectively replacing the spot of
an existing controller, if SteamVR thinks you are holding the
tracker in one of your hands.

The role switching of Vive trackers is currently not supported
within the Vive Bridge package, and results in trackers that
behaves like controllers after switching their role. An existing
controller may stop working as only two controllers are allowed
at a time. This behaviour is undesired, and the easiest fix is to
disable the role switching altogether, with the instructions that
are shown below:

1. List tracker settings in the web console with the following
command:

settings trackers./devices/htc/vive_trackerLHR-

This command should return the current tracker roles:

Mon Apr 08 2019 16:05:39.851 - [Console] trackers./

devices/htc/vive_trackerLHR-4AB25273: "TrackerRole_

Handed,TrackedControllerRole_Invalid"

Mon Apr 08 2019 16:05:39.851 - [Console] trackers./

devices/htc/vive_trackerLHR-9C8FB0EC: "TrackerRole_

Handed,TrackedControllerRole_Invalid"

2. Note the serial numbers 4AB25273 and 9C8FB0EC that
identify the trackers. The role switching of these trackers
is then disabled with the following commands:

4.4 minor issues 35

settings trackers./devices/htc/vive_trackerLHR-4AB25273

TrackerRole_None

settings trackers./devices/htc/vive_trackerLHR-9C8FB0EC

TrackerRole_None

36 htc vive

This page is intentionally left blank.

5
V I V E - R O B O T C E L L S E T U P A N D C A L I B R AT I O N

In order to use the Vive’s tracking system for robot cell calibration,
the pose of the tracked devices must be known relative to the robot
and its environment. This chapter is primarily concerned with how a
calibration procedure can be established for the tracking system.

The base stations have to be securely set up in the robot cell before
a calibration can be performed. Tripods could be used to install the
base stations in a temporary setup for robot cell calibration tasks.
These tripods have to be extended to over two meters above the
ground with standard quarter inch UNC threaded camera mounts.

The tripods takes up space and could be moved around uninten-
tionally in the robot cell, invalidating the last calibration. Tripods are
unsuited for experimental purposes, where it is important that the
setup does not change between experiments. The base stations were
for this reason firmly mounted in a fixed setup for Thrivaldi, as shown
in figure 5.1. A setup should follow the recommendations of the official
Vive support [30], where the base stations should be:

• Above head height, ideally more than 2 m above ground

• Angled down between 30 and 45 degrees

These recommendations were followed for Thrivaldi by mounting a
pair of first-generation base stations three meters above the ground,
facing 45° down towards the center of the robot cell. The base stations
have a field of view of 120°, leaving 30-45° for adjustment. The optimal
setup is not strict in the sense that the base stations have to be placed
perfectly. Most importantly, the base stations should be placed such
that their view of each other and the robot cell is unobstructed. It is
also important that their field of view overlaps as much as possible
within the intended tracking volume.

Figure 5.2 shows the tracking area of the current setup for Thrivaldi,
which covers most of the robot cell. This setup has no problems
tracking the area under and in front of the gantry.

5.1 internal vive calibration

The setup has to be internally calibrated with SteamVR. This cali-
bration is done via the room setup tool, where a room-scale setup is

37

38 vive-robot cell setup and calibration

HTC VIVE Pro HMD

HTC VIVE

Base Station

HTC VIVE

Base Station

Gantry mounted

KUKA KR16

Floor mounted

KUKA KR16

Figure 5.1: Setup of the Vive’s tracking system in a robot cell. The base
stations are rigidly mounted on aluminum brackets below
h-beams in the roof structure.

Figure 5.2: Plan view of the robot cell, where the base stations’ field
of view is shown in red (master) and green (slave). Each
square corresponds to one square meter [4].

5.2 existing calibration procedure 39

performed. The calibration process is completed by following simple
on-screen instructions and prompts. Both controllers are put on the
ground to calibrate the floor, and the boundary of the tracking area
is traced with a Vive controller. The traced boundaries are used in
a system called Chaperone, in order to warn the user about physical
obstructions. This system displays a grid within the HMD whenever
the user approaches the boundary. It is important for user safety in
VR applications using the HMD.1

5.2 existing calibration procedure

One-to-one mapping from a robot cell to its virtual counterpart
was established in [4] by finding a spatial relationship between
the inertial frames of robot cell and tracking system. This rela-
tionship was found by employing hand-eye calibration; in order
to estimate the rigid transformation X̂ between a tracked device
that was firmly attached to the robot’s gripper and an arbitrary
tool frame of the robot.

The hand-eye calibration was solved by using a closed form so-
lution by Park and Martin [12]. Their method was derived in sec-
tion 3.1 as algorithm 1, where the input is at least three measured
pairs of homogeneous transformation matrices (Ai, Bi) ∈ SE(3).
These pairs are defined in (3.2) as the deviation between consec-
utive samples of tool and sensor poses.

5.2.1 Generating sample poses for calibration

Tool poses are generated for sampling the necessary poses with
a robot. Their position is selected at random within a spherical
volume element, and their orientation is picked from the normal
vector at this position as from the surface of a sphere. The
positions can take on any value within the spherical volume
element that is parameterized as shown in figure 5.3. Each tool
pose can then be represented as a homogeneous transformation
from the robot’s base {b} to tool {t} frame:

Ttb =

Rz, θRx,φ Rz, θRx,φ

[
0 0 r

]T

01×3 1

 (5.1)

Where Rx,φ and Rz, θ are basic rotations about the x-axis and
z-axis by an angle φ and θ respectively, and r is the radius of a
sphere.

40 vive-robot cell setup and calibration

θ1

φ1

θ2

φ2

r1

r2

Figure 5.3: Spherical volume element that is defined by the spherical
coordinates (r ∈ [r1, r2] , θ ∈ [θ1, θ2] , φ ∈ [φ1, φ2]) in a
right-handed coordinate system.

Tsai et al. [31] observed that the rotation between consecutive
sensor poses, and the translation between consecutive tool poses
should be maximized and minimized respectively; in order to
improve the accuracy of the hand-eye calibration. Thus, the
translations and rotations are generated from two sets of param-
eters in smaller and larger ranges about the same point. This
method of randomly generating tool poses for sampling within
a range is flexible and generalizes well for different setups.

5.2.2 Computing the mapping

The mapping from robot cell {rc} to tracking system {vr} is
computed from the final samples of tool and sensor poses, and
the estimated solution X̂ from solving the hand-eye calibration:

Tvrrc = (Trct)
−1X̂ Tvrs , X̂ = T̂st (5.2)

The resulting transformation is then used to calibrate the sys-
tem by automatically updating the corresponding relationship
in the transform tree. This relationship is updated by changing
x, y, z, roll, pitch and yaw parameters in the Vive bridge node
through its dynamic reconfigure interface.

5.2.3 Performing the calibration for Thrivaldi

A Vive controller was firmly attached to the gripper of the floor
mounted robot, as shown in figure 5.4. And 51 tool poses were

5.2 existing calibration procedure 41

Figure 5.4: Vive controller firmly attached to the robot’s gripper.

generated in the range (r ∈ [1.4, 1.6] , θ ∈ [−5π/16, −3π/16] , φ ∈
[π/8, 3π/16]) for positions and range (r ∈ [1.4, 1.6] , θ ∈ [0, −π/2] ,
φ ∈ [5π/16, 11π/16]) for orientations, with origin at the robot base.
This range corresponds to sampling sensor poses in close prox-
imity to the tool pose of the floor mounted robot in figure 5.5.
The synthetic tests in [12] suggests that this number of samples
should result in a solution that is close to convergence. A wait
time of 20 seconds was used in between each sample, in order
for the tracking dynamics to settle within a reasonable range of
a few millimeters.

42 vive-robot cell setup and calibration

Figure 5.5: Virtual representation of the robot cell after calibration, as
visualized in RViz.

6
I M P R O V I N G T H E C A L I B R AT E D S Y S T E M

The calibrated system has a few problems that are related to
specific issues of the lighthouse tracking. This chapter will focus
on trying to understand these issues, and come up with poten-
tial solutions that could improve the tracking performance in
the robot cell. A special emphasis will be placed on the spatially
dependant bias, as it is the biggest hurdle to overcome for sub-
centimetric accuracy.

Three different approaches were tested in order to improve
the accuracy and precision of the calibrated system:

1. Improve the existing calibration procedure.

2. Map the spatially dependant bias within the tracking vol-
ume, and investigate the possibility of correcting this error.

3. Implement the libsurvive library as an alternative to Valve’s
SteamVR and OpenVR SDK.

6.1 improving the existing calibration procedure

6.1.1 Sampling procedure

The measured poses of a tracked device are subject to noise
in the sub-millimetric and sub-degree range. This noise may
cause a small but visible discrepancy in the mapping between
the robot cell and tracking system. It is easy to remove this
discrepancy under a few assumptions about the measurements:

• The device is stationary when measuring its pose, such
that the zero-frequency component (mean) and inherent
noise are the only signal properties that are measured.

• The sampling frequency is constant, such that the weight
of each measurement is equal.

A simple filter to remove the noise under these assumptions
is the average of multiple measurements. Averaging the position
of a tracked device is trivial, but how the orientation should be

43

44 improving the calibrated system

179.96

179.98

180

Z-Axis

-0.01

0

0.01

Y-Axis

10 20 30 40 50 60 70 80 90 100 110 120
-20

-10

0

#10-3 X-Axis

Samples

R
ot

at
io

n
 (

d
eg

re
es

)

Figure 6.1: An example that shows the stationary orientation of a Vive
controller, which has been converted into the blue ZYX
Euler angles. The average of this orientation is shown in
red with an increasing number of samples to the right, and
the yellow lines are the result of averaging 1000 samples.

averaged is not obvious. There are many different representa-
tions of an orientation, and many different methods of averaging
a set of orientations exists. Quaternion averaging was chosen
because of the fact that quaternions are the de-facto method of
representing orientations in ROS.

A method of averaging quaternions was derived from a paper
by Markley et al. [17] in section 3.2. The method results in
figure 6.1, where the noise is reduced by almost two orders of
magnitude with 120 samples. Employing this method on the
measurements removed the discrepancy when calibrating the
system.

6.1.2 Reducing the mapping error

It was noted in [4] that the steady-state error of a tracked device
depends on its location. This spatial dependency makes the
mapping from the existing calibration procedure accurate at only
one location: the final sensor pose, where system was calibrated.
It should be possible to reduce this error by computing an
average of the mapping from multiple poses.

6.1 improving the existing calibration procedure 45

A transformation between the inertial frames of robot cell
{rc} and tracking system {vr} can be computed for each of the
measured poses from the hand-eye calibration:

Tvrrc = (Trct)
−1X̂ Tvrs , X̂ = T̂st (6.1)

These transformations can then be averaged in the same way as
the sampled poses in section 6.1.1. For simplicity, the measure-
ments from the hand-eye calibration were used to compute the
averaged mapping. This average resulted in a minor accuracy
improvement in the millimetric range.

Measurements from the hand-eye calibration are not suited for
computing an average, as the translations between consecutive
tool poses should be minimized in order to improve the accuracy
of the solution [31]. It is possible that a larger sampling volume
could additionally reduce the error. However, this was not tested
due to time constraints and will have to be assessed in future
work.

6.1.3 Nonlinear optimization step

The closed form solution to the hand-eye calibration is based
on a decoupled solution, where the rotation is assumed to be
decoupled from the translation. Although algorithm 1 is robust
with many measurements, solving the rotational part first before
using it to solve the translational part propagates an error to
the translation. An extra optimization step was added to reduce
this error, where the following cost function was minimized:

min
X∈SE(3)

N∑
i=1

ρi, ρi = log
(
(AiX)−1XBi

)
∈ se(3) (6.2)

Here, N is the number of measured pairs (Ai, Bi), (·)−1 is the
SE(3) group inverse and log (·) is the matrix logarithm, which
maps elements in the group of rigid transformations SE(3) into
elements of its tangent space se(3). The residual is represented
as a vector with 6 elements.

The cost function can be defined in a straightforward way by
using the Sophus library. A functor is an object that behaves
like a function by overloading its ()-operator, and it is defined
as shown in listing 6.1 to evaluate the residual ρi in (6.2) for the
non-linear least squares Ceres solver [9].

46 improving the calibrated system

Note that the residuals in listing 6.1 are computed directly
from their definition in (6.2), and Sophus uses the SE(3) group
operations to compute them and their derivatives. A least squares
problem is then defined by adding a residual block for each of
the N measured pairs to a Ceres problem object, as shown in
listing 6.2.

The residual blocks are defined from the cost functor with
measured pairs (Ai, Bi) ∈ SE(3) as its input, and the closed
form solution to the hand-eye calibration is used as an initial
guess for the solver. The problem is then solved by the solver,
and details about the termination state of the solver are printed
to the console. A comparison between the solutions before and
after the optimization step are also printed to the console as
homogeneous transformation matrices:

[INFO] [1554998264.773617329]: Before optimization:

-0.0664468 -0.384709 0.920643 -0.0703492

-0.00455076 0.92279 0.385277 -0.0167372

-0.99778 0.0214108 -0.0630671 0.224237

0 0 0 1

[INFO] [1554998264.814470110]: After optimization:

-0.0665727 -0.384724 0.920628 -0.0703145

-0.00395554 0.922769 0.385333 -0.0168156

-0.997774 0.0220111 -0.062953 0.224193

0 0 0 1

Although the resulting change is small (within a sub-millimetric
range for the position); the optimization step significantly re-
duced the error in (6.2) when using fewer than 11 samples. This
finding indicates that the implemented hand-eye calibration is
robust, and it does not cause the spatially dependent error that
is observed with the calibrated system.

6.2 mapping the error with a robot

An automated sampling procedure was created in order to
measure the offset error within a section of the tracking volume.
This procedure uses the same setup as the calibration procedure,
with a tracked device firmly attached to the robot.

The forward kinematics of the robot was used as a ground
truth for the measurements, as the robot was assumed to be
at least two orders of magnitude more accurate than the light-
house tracking. This assumption is not necessarily true, since
the specification that is provided for the robot is a measure of
its repeatability, not a guarantee that its Denavit–Hartenberg

6.2 mapping the error with a robot 47

1
2

3

1

2

L

W

{O}

p0

Figure 6.2: A 2× 3 point lattice with total length L and total width W,
where the center of the lattice has been offset by an amount
p0 ∈ R3 with respect to an arbitrary reference frame {O}.

parameters are correct. The Denavit–Hartenberg parameters that
are used in the KRC appears standard from the design with
nominal values, and not individually calibrated to each robot.

6.2.1 Generating a set of sampling poses

The sampling procedure consists of a set of points that are
generated from m × n point lattices, as shown in figure 6.2.
Each lattice is defined by its total length L and total width W,
which are split into a grid of m×n rectangles. The points are
then located at intersections between the perpendicular grid
lines of these rectangles. Each rectangle has sides of length L/m

and width W/n, which defines the distances between consecutive
points in the lattice.

The points are generated iteratively from left to right, alter-
nating between up and down. It is also possible to reverse the
order of these points, such that points in layers of alternating
order can be stacked in a contiguous manner. This stacking is
accomplished by moving each layer a given amount (x0, y0, z0)
relative to a shared reference frame. The algorithm for generat-
ing a single layer of such a point lattice can then be summarized
as algorithm 2.

Each point defines a sensor position that should be sampled
with the robot, which has to approach the positions with a
reachable orientation. The positions have to be mapped to a
tool pose that the robot can reach, in order to utilize the robot’s
workspace. Poses are defined such that the tracked device is
radially aligned with the robot facing it, and horizontally aligned

48 improving the calibrated system

with the point lattice. That is, the poses are aligned with the
robot base but orientated for best reachability.

The desired sensor orientation can be found by simply ro-
tating a predefined orientation of the tracked device, which
corresponds to the robot base at a zero degrees angle. This
orientation depends on how the tracked device is attached to
the robot, and the calibration setup for Thrivaldi results in a
downwards facing z-axis relative to the robot base. The desired
rotation for this setup is then given by a basic rotation about the
z-axis by an angle:

θ = − atan2 (y, x) (6.3)

Here, it is assumed that the 2D-coordinates (x, y) of the sensor
position is given with respect to the robot base. The desired
rotation is represented internally in the node as a quaternion:

q(θ) =

[
cos
(
θ

2

)
0 0 sin

(
θ

2

)]T
∈H∗ (6.4)

The desired sensor orientation can then be computed by rotat-
ing the predefined (zero degrees) orientation with this quater-
nion. This orientation and its corresponding position can be rep-
resented as a homogeneous transformation matrix T sb ∈ SE(3),
from the robot’s base frame {b} to the desired sensor frame {s}.
The desired tool pose of the robot is then given by:

Tbt = Tbs Tst, Tst = X̂ (6.5)

Where {t} is the robot’s tool frame, and X̂ is the estimated solu-
tion from the hand-eye calibration.

A tool pose is computed for each of the generated lattice
points. The computed poses are then used to plan the neces-
sary robot trajectories for sampling the points with MoveIt. The
sensor pose is sampled between each trajectory, and the pro-
gram waits a predefined time before sampling, in order for the
robot- and tracking dynamics to settle down. Each sample is
compared with an ideal sensor pose, which is computed from
the forward kinematics of the robot and the estimated solution
X̂ from solving the hand-eye problem:

T̃src = Tvrrc Tsvr − (Trct)
−1X̂ (6.6)

6.2 mapping the error with a robot 49

The wait time can be as large as 500 seconds for the tracking
dynamics to settle down, and running the sampling procedure
with 84 lattice points takes 12 hours to finish. The robot is not
moving during most of the procedure, as it is mostly waiting to
sample a point.

Algorithm 2: A simple lattice point generator

Input: x0, y0, z0, L, W ∈ R, m, n ∈N, frev ∈ {0, 1}
Output: p ∈ R3×(m+1)(n+1)

// Initialize constants:

L2 = L/2, W2 = W/2;
Ln = L/m, Wn = W/n;
// Reverse order if the reverse flag is 1

rev = 1− 2 frev;
// Set positive y-direction

dir = 1;

// Generate lattice points

for i = 0 to n do
for j = 0 to m do
p [{1, 2, 3}] [(m+ 1) i+ j] =

x0

y0

z0

+ rev

(Lmi− L2)

(Wnj−W2)dir

0

end

// Reverse y-direction

dir = (−1)dir;
end

return p;

6.2.2 Running the sampling procedure

A tracking volume of L ×W × H = 1.0m × 3.0m × 1.0m =

3.0m3 in the center of the robot cell was split into (m+ 1)(n+

1)(o + 1) = (3 + 1)(6 + 1)(2 + 1) = 84 distributed points for
sampling. The same points were sampled eight times, but the
measurements from the tracking system were offset during the
second and seventh run. This offset caused a systematic error
with multiple modes, as shown in figure 6.3.

50 improving the calibrated system

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Absolute error [m]

0

20

40

60

80

100

120

140

Figure 6.3: Frequency distribution of the measurement error along
the x-, y-, z-axis and their absolute values with the robot’s
forward kinematics (FK) as a ground truth. The y-axis
shows the number of samples in each bin.

Figure 6.4: Comparison of the sampled sensor positions from the sec-
ond run, which was sampled with the Vive tracker and
the robot’s forward kinematics (FK) as a ground truth. The
positions are expressed relative to the robot’s base frame,
and the error is visualized as red arrows.

6.2 mapping the error with a robot 51

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Absolute error [m]

0

5

10

15

20

25

30

35

40

Figure 6.5: Frequency distribution of the measurement error from the
first two runs along the x-, y-, z-axis and their absolute val-
ues with the robot’s forward kinematics (FK) as a ground
truth. The y-axis shows the number of samples in each bin.

It was easy to identify if an offset had occurred, as a large
change in the error was observed between two consecutive
points. The offset that occurred during the second run is rec-
ognized as the red arrows with a relatively large magnitude in
figure 6.4. Sampled points with an offset error were considered
outliers and excluded from the samples, leaving almost every
point from the first two runs. Excluding these points resulted
in a more sensible frequency distribution of the measurement
error, as shown in figure 6.5.

The resulting means along the axes were found to be [-
0.003363, 0.0002183, 0.0003022] meters with standard deviation
[0.0119, 0.01468, 0.009321] meters. The cause of the negative bias
along the x-axis was not well-understood, but it is small and
the tracking dynamics suggests that it is caused by a larger drift
along the x-axis. These results indicate a random measurement
error in the centimetric range, and the maximum absolute error
was 8 cm.

The resulting mean absolute error of the calibrated system
was 17 mm with 13 mm standard deviation. This error is equal
to the average positioning error that was reported by Niehorster
et al. [28], but the standard deviation is 4 mm higher than their
findings. The similar results indicates that the calibrated system

52 improving the calibrated system

Leica Absolute Tracker AT960

HTC VIVE Pro HMD

Universal Robots UR10

LEICA

RED-RING

REFLECTOR

(RRR) 1.5”

HTC VIVE

Tracker

Figure 6.6: Experimental setup for sampling sensor positions with a
Leica and Vive Tracker. The y-axis shows the number of
samples in each bin.

performs comparably to the Vive. However, the measurement
error was found to be nonlinear within the tracking volume.

6.3 mapping the error with a laser tracker

A similar sampling procedure was run with a Leica Absolute
Tracker AT960, as a sub-millimetric ground truth for the position
of a tracked device. This sampling was coordinated with SINTEF
Manufacturing, and was performed at their laboratory with the
experimental setup that is shown in figure 6.6 and 6.9. The setup
equipped a Universal Robots UR10 robot with a 1.5 inch red
ring reflector and a Vive tracker.

A tracking volume of L×W ×H = 1.8m× 0.9m× 0.2m =

0.324m3 in front of the robot was split into (m+ 1)(n+ 1)(o+

1) = (6+ 1)(3+ 1)(2+ 1) = 84 distributed points, which were
sampled with both the Leica and the Vive. The tool orientation
was constrained towards the Leica tracker, such that the reflector
was visible at all the sampling poses. However, MoveIt did not
always satisfy the constraint during execution of a trajectory.

The sampled positions have to be expressed in a shared refer-
ence frame in order to compare them. A transformation from the
robot’s base frame to an arbitrary reference frame of the Leica

6.3 mapping the error with a laser tracker 53

-3

y [m]

-2.5
-0.25

-0.2

-2

x [m]

-0.15

-0.1

z
[m

]

1

-0.05

0.5 0

0

-0.5

0.05

-1 -1.5

Leica
Error
VIVE

Figure 6.7: Comparison of the sensor positions that was sampled with
the Leica reflector and Vive tracker. The positions are ex-
pressed relative to an arbitrary reference frame of the Leica
tracker, and the errors are visualized as red arrows.

tracker is required. Horn’s quaternion-based method [21] was
used to find the optimal transformation between these frames.
The method is described in section 3.3, and takes two sets of
correspondent 3D-points in their respective frames as an input.

Ideal Vive tracker positions from the forward kinematics of
the robot were used to find the required transformation. The
mean absolute error of the transformed positions relative to the
Leica tracker was 1.6 mm with a maximum error of 3.4 mm.
This transformation was then used to transform the sampled
Vive tracker positions to the Leica’s reference frame, resulting
in the comparison that is shown in figure 6.7.

A large error was observed during the sampling, which seem-
ingly switched its value at random whenever the robot was
moving. This type of error was described by Niehorster et al.
[28], as a large change in offset whenever the tracking was briefly
lost. This brief loss of tracking can be recognized as the spikes
in figure 6.7.

The resulting measurement error is an order of magnitude
worse than the previous results, and shows the importance of
avoiding this error. Although the large changes in offset makes
it hard to assess the accuracy of the calibrated system, it still

54 improving the calibrated system

0 200 400 600 800 1000 1200 1400 1600 1800
Time (seconds)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Y-
Po

si
ti
on

VIVE Tracker
Base Station

Figure 6.8: Y-position of the Vive tracker and one of the base stations
during the sampling procedure. The position of the base
station has been scaled and offset to make it easier to dis-
cern an instantaneous change in the offset of both devices.

provides insights into the inner workings of the Vive and its
tracking system.

6.3.1 Reasons for the large changes in offset

The large changes in offset that happened during the sampling
were not immediately well-understood. It was noted that the
changes occurred instantaneously for all of the tracked devices
between two consecutive samples, including one of the base
stations. This behaviour can be seen in figure 6.8, where the
y-positions of the Vive tracker and one of the base stations are
shown.

The poses of the base stations were initially thought to be
constant at all times after the internal Vive calibration, but this
is clearly not the case. According to the inventor of lighthouse
tracking, Alan Yates (Reddit user vk2zay in the provided ref-
erence); the error occurs whenever the base stations disagree
with each other by a large amount [32]. The error is caused
by a recalibration of the base stations, in order to reduce the
discrepancy between them. This recalibration shows up as a
bootstrapping of one of the base stations in the web console:

6.3 mapping the error with a laser tracker 55

Leica Absolute Tracker AT960

HTC VIVE Pro HMD

HTC VIVE Base Station

HTC VIVE Base Station

Figure 6.9: Experimental setup for sampling sensor positions with a
Vive- and Leica tracker, as seen from the side.

lighthouse: LHR-F7EF5940 C: ----- BOOTSTRAPPED base 591F485E (

immediate) distance 2.20m velocity 0.01m/s recorded pitch

~38.9 deg roll ~-4.7 deg -----

lighthouse: LHR-F7EF5940 C: ----- CALIBRATED base 591F485E at

pitch 39.29 deg roll -4.58 deg -----

lighthouse: LHR-F7EF5940 C: ----- SECONDARY base A9C7E2D4

distance 2.51m -----

lighthouse: LHR-F7EF5940 C: ----- RELATIONSHIP bases 591F485E <->

a9c7e2d4 distance 3.37m, angle 178.29 deg -----

The large changes in offset were likely caused by the grating
in figure 6.6, which partially concealed the light sensors on the
HMD and Vive tracker for at least one of the base stations. This
cause fits with the fact that a recalibration almost never occurred
with the Thrivaldi setup, where the HMD was kept visible to
both base stations at all times.

From the layout of the experimental setup, it seems probable
that the location of the base station behind the Leica tracker in
figure 6.9 was the problem. The HMD should have been moved
to the front of the grating, and the base station should have been
moved to the other side of the Leica tracker.

Internal recalibration of the base stations invalidates the con-
figuration of the Vive Bridge package, which has to be recali-
brated after such an event. A monitor was added to the Vive
Bridge package to continuously check if the position of a base

56 improving the calibrated system

Figure 6.10: The LibSurvive calibration tool before (left) and after
(right) the reflections in the orange ring was removed
with a black piece of fabric, where the points should be
clustered together.

station has changed, and warn the user if a recalibration has
occurred:

[LIGHTHOUSE MONITOR] Pose of lighthouse_LHR-F7EF5940 has changed.

Tracked devices have likely also changed their pose.

If the tracked device that was used to calibrate the Vive Bridge
package to a robot cell, still is fixed to the robot; the transforma-
tion from the previous hand-eye calibration is valid. It is then
possible to quickly recalibrate the Vive Bridge package without
performing a new hand-eye calibration, by passing a true/false
argument to the calibration package.

6.4 libsurvive

The LibSurvive library was tested as an alternative to Valve’s
SteamVR and OpenVR SDK. It was implemented by wrapping
its C API in an object with helper functions. These functions
return or write data with the same structures that the OpenVR
SDK uses. It was then possible to reuse the node portion of the
Vive Bridge package, in order to expose the same functionality
as with SteamVR to the ROS environment.

The LibSurvive API initially lacked some of the existing func-
tionality in the Vive Bridge package. This missing functionality
was requested in a pull request on the software repository for
LibSurvive [33], and the functionality was added by the devel-
opers after some dialogue. It was then possible to implement
the library in the Vive Bridge package with minor workarounds.

An error in the way that the button inputs were handled
was found during the implementation of LibSurvive. This error

6.4 libsurvive 57

was reported in its own issue on the software repository for
LibSurvive [34], and was promptly fixed by the developers.

LibSurvive was initially unable to internally calibrate the Vive
setup. After a lengthy discussion with the developers and some
trial and error, it was noted that the calibration worked with any
other tracked device than the HMD. The Vive Pro HMD was
untested with LibSurvive up until this point, and the developers
found that the IMU scaling was wrong. This scaling was fixed
by the developers, and the internal calibration of LibSurvive
worked but not flawlessly.

Although the internal calibration of LibSurvive worked, it
would randomly fail from time to time and the tracking was
affected by jitter. The fencing system that encloses the robot cell
was suspected to be the cause, as it consists of clear polycarbon-
ate that could cause reflections. This suspicion was confirmed
with the calibration tool for LibSurvive, which is able to visual-
ize the reflections in a 2D map.

Figure 6.10 shows the situation before and after the black piece
of fabric in figure 5.1 was added to the robot cell. This change
fixed the tracking jitter with LibSurvive, and the SteamVR track-
ing was also more robust in general. The resulting tracking
dynamics of LibSurvive was a lot faster than SteamVR, and con-
verged within tens of milliseconds for fast movements between
two points.

The LibSurvive tracking uses an arbitrary reference frame at
the tracked device that was used for internal calibration, and it
has to be calibrated separately from the SteamVR tracking. The
calibration was performed in the same way as shown in section
5.2.3, and the hand-eye calibration returned a solution that was
approximately equal to solutions from SteamVR with the same
setup.

The spatially dependant bias of the calibrated system was
about an order of magnitude worse than that of the SteamVR
tracking. Although the tracking dynamics was a lot faster, the
larger error made LibSurvive a nonviable alternative to SteamVR
for the purposes of robot cell calibration.

58 improving the calibrated system

Listing 6.1: Defining a functor for the Ceres solver

struct HandEyeCostFunctor {

EIGEN_MAKE_ALIGNED_OPERATOR_NEW

// Constructor

HandEyeCostFunctor(Sophus::SE3d A, Sophus::SE3d B) :

A(A), B(B) {}

// Overload ()-operator

template <class T>

bool operator()(T const* const sX, T* sResiduals) const

{

// Map input arrays to Sophus and Eigen objects

Eigen::Map<Sophus::SE3<T> const> const X(sX);

Eigen::Map<Eigen::Matrix<T, 6, 1>> Residuals(sResiduals);

// Compute residuals

Residuals =

((A.cast<T>() * X).inverse() *
(X * B.cast<T>())).log();

return true;

}

Sophus::SE3d A, B;

};

Listing 6.2: Defining a Ceres problem from the functor

// Instantiate a Ceres problem

ceres::Problem problem;

for (int i = 0; i < N; i++) {

// Define cost function from hand-eye functor with pair (A_i,

B_i) as input

ceres::CostFunction* cost_function =

new ceres::AutoDiffCostFunction<HandEyeCostFunctor,

Sophus::SE3d::DoF,

Sophus::SE3d::

num_parameters>

(new HandEyeCostFunctor(A[i].cast<double>(),

B[i].cast<double>()));

// Add residual block for each pair (NULL: no loss function)

problem.AddResidualBlock(cost_function, NULL, X.data());

}

7
R A P I D R O B O T C E L L C A L I B R AT I O N

A framework was created in order to define the virtual repre-
sentation of objects or features of objects in the robot cell. This
framework allows the user to register points on the surface of
these objects with a tracked device, and interactively define the
objects with geometric primitives. The framework was imple-
mented in its own ROS node, which gets the the registered
points from the transform tree in the coordinates of the robot
cell.

7.1 defining geometric primitives from points

The framework consists of multiple methods that are used to
define geometric primitives such as boxes, spheres, cylinders
and cones. These methods are general in the sense that they do
not depend on the type of device that is used to register the
surface points, and can be defined by using the Vive controller,
tracker or even the HMD.

The choice of which primitives to implement was partially
inspired by Miller et al. [35], whose paper presented a method
of automatic grasp planning for robotic hands from primitives.
Their grasping simulator, GraspIt, is available as a ROS package
and presents the best grasps to the user based on provided prim-
itives. This simulator was envisioned as a part of the framework
to test a grasping scenario for an assembly use-case. However, it
was not implemented due to time constraints and will have to
be assessed in future work.

7.1.1 Plane of finite size

A plane of finite size can be uniquely defined in 3D space from
three points x0, x1, x2 ∈ R3. These points are used to define the
orientation of the plane from basis vectors:

bx =
x1 − x0
‖x1 − x0‖

, by =
x2 − x⊥
‖x2 − x⊥‖

, bz = bx × by (7.1)

59

60 rapid robot cell calibration

x0

x1

x2

x⊥
(x1-x0)

(x2-x⊥)

Figure 7.1: Defining a unique plane from three 3D points.

Where x⊥ is the point on the line from x0 to x1 that is closest
to x2, as shown in figure 7.1:

x⊥ = x0 −
[
(x0 − x2)T bx

]
bx (7.2)

This point is defined such that the basis vectors are orthogonal,
which can be used to form the rotation matrix:

R =
[
bx by bz

]
∈ SO(3). (7.3)

The translation to the center of the plane is then given by:

t = x⊥ + 1/2 (Lbx +W by) ∈ R3 (7.4)

Where L and W is the length and width of the plane respec-
tively:

L = ‖x1 − x0‖, W = ‖x1 − x⊥‖ (7.5)

7.1.1.1 Angular error

This method has the nice property that the angular error ∆θ is
reduced with distance d:

d =
h+∆h

tan (θ+∆θ)
=
1− tan (θ) tan (∆θ)

tan (θ) + tan (∆θ)
(h+∆h) (7.6)

As shown in figure 7.2. Solving this expression for tan (∆θ)

gives:

tan (∆θ) =
∆h

d+ (h+∆h) tan θ
(7.7)

7.1 defining geometric primitives from points 61

Δθ

θ

Δh

h

r'

r

d

Figure 7.2: The effect of a height error ∆h at a distance d on the
angular error ∆θ.

Which for small-angle approximation results in:

∆θ ≈ ∆h
d

, θ, ∆θ ≈ 0 (7.8)

This approximation acts as an upper bound on the angular
error ∆θ that is caused by the height error ∆h. It also implies
that the angular error ∆θ is (at least) inversely proportional to
the distance d. Another implication of this property is that the
longest side of the plane should be measured first, as an error
in the x-axis also affects the y-axis.

7.1.1.2 Defining an arbitrary coordinate frame

This method of defining a plane could be used as an alternative
to an automated alignment and correction method by Peer et
al. [36]. They proposed the use of three Vive Trackers arranged
on a frame, in order to align the virtual space with the physical
ground and fix the tilt that was reported by Niehorster et al.
[28]. Similarly, it is possible to define the ground plane with
the method that is described here, and fix the issue with three
points and one tracked device instead.

7.1.2 Box

A box can be uniquely defined in 3D space from four points
x0, x1, x2, x3 ∈ R3. The first three points are used to define a
plane of the box in the same way as shown in section 7.1.1. This
plane gives the orientation of the box as a rotation matrix, and
it is possible to compute the height H of the box by introducing
a fourth point x3:

H = (x3 − x⊥)T bz. (7.9)

62 rapid robot cell calibration

The translation to the center of the box is then given by:

t = x⊥ + 1/2 (Lbx +W by +Hbz) ∈ R3 (7.10)

This method of defining a box, where the x- and y-axes are
locked in place with the second and third points respectively, is
intuitive to use. The framework visualizes a point, line, plane
and box in that order for every point that is defined by the user.

7.1.3 Sphere

A sphere can be uniquely defined in 3D space from four non-
coplanar points x0, x1, x2, x3 ∈ R3 on its surface. The distance
between these points and the center point c ∈ R3 of the sphere
should be equal to its radius r:

(xi − c)T (xi − c) − r2 = xTi xi +
[
xTi 1

] [−2c
cTc − r2

]
= 0 (7.11)

A system of linear equations can be defined from this expres-
sion and four points:

xT0 1

xT1 1

xT2 1

xT3 1

[
−2c

cTc − r2

]
=

xT0x0
xT1x1
xT2x2
xT3x3

(7.12)

The center point c and radius r of the sphere is then found
from the solution to this system. This method is not robust and
it is very important the points are non-coplanar. Therefore, an
extra optimization step with N points was added; where the
following cost function was minimized with the solution to
(7.12) as an initial guess for the Ceres solver:

min
c∈R3, r∈R

N∑
i=1

(xi − c)T (xi − c) − r2 (7.13)

It is then possible for the user to define as many points as
needed to fit a sphere to an object.

7.1 defining geometric primitives from points 63

θ

x1

x0

x1

x0

xi xid dx⊥ x⊥

Figure 7.3: Defining a cylinder or cone from surface points xi with
perpendicular distance d from an axis that is defined by
the points x0 and x1.

7.1.4 Cylinder and Cone

The cylinder and cone cases are based on the perpendicular dis-
tance d between surface points xi and an axis line that is defined
from two points, as shown in figure 7.3. A beautiful formula
for this distance was derived in section 3.4. For simplicity, it is
assumed that the axis is approximated from the two first points.
Each surface point xi should have a perpendicular distance d
that is equal to the radius of the cylinder. The cylinder case can
then be given as the minimization problem:

min
x0, x1∈R3, r∈R

N∑
i=2

‖(x1 − x0)× (xi − x1)‖2
‖xi − x1‖2

− r2 (7.14)

Similarly, (xi− x1) is the hypotenuse of a right triangle, which
together with an angle θ relative to the axis can be used to
compute the perpendicular distance d. The cone case can then
be given as the minimization problem:

min
x0, x1∈R3, θ∈[0,π/2〉

N∑
i=2

‖(x1 − x0)× (xi − x1)‖2
‖xi − x1‖2

−‖xi−x1‖2 [sin (θ)]2

(7.15)

These minimization problems were solved with the Ceres
solver, where at least 6 surface points are required. Radius
r0 = 0.5m and angle θ0 = π/4 was used as an initial guess

64 rapid robot cell calibration

for the solver, and the solution to both problems converges in
general; given that the two first points are registered in such a
way that they give the general direction of the axis. An example
of such points would be to define the first and second point at
the base and apex of a cone object respectively.

Knowing the axis of a cylinder or cone, it is possible to re-
define the bottom point x0 with an extra point xN+1 that is
projected onto the axis:

x0 = x1 +
[
(xN+1 − x1)T (x0 − x1)

‖x0 − x1‖

]
(x0 − x1)
‖x0 − x1‖

(7.16)

This expression can also be used to redefine the top point x1
of the cylinder with an extra point xN+2. The translation to the
center of the cylinder is then given by:

tcylinder = 1/2(x0 + x1) (7.17)

And the translation to the cone is defined at its apex:

tcone = x1 (7.18)

The orientation is defined similarly to the plane case in section
7.1.1 with an arbitrary rotation about the cylinder or cone axis,
which is chosen as the x-axis:

x⊥ = x1 +
[
(x2 − x1)T bx

]
bx (7.19a)

bx =
x0 − x1
‖x0 − x1‖

, by =
x2 − x⊥
‖x2 − x⊥‖

, bz = bx × by (7.19b)

R =
[
bx by bz

]
∈ SO(3) (7.19c)

Where the first surface point x2 is used to compute the basis
vector of the y-axis. The complete procedure to define a cylinder
or cone can then be summarized as follows:

1. Define an approximation of the axis with the two first
points from x0 to x1, as shown in figure 7.3

2. Register at least 6 surface points or more in order to com-
pute the necessary parameters

3. Define the bottom point x0 of the cylinder or cone

4. Define the top point x1 of the cylinder

7.2 representing a virtual robot cell in ros 65

7.2 representing a virtual robot cell in ros

The objects are defined internally in the ROS node with their
pose and parameters, as defined in section 7.1. These objects
and their constituent parts such as: points, lines and planes for
the box case, points and spheres for the sphere case, and points
and lines (axes) for the cylinder or cone case, are visualized in
real-time as they are being defined. The primitives are displayed
to the user by publishing them to RViz through the RViz Visual
Tools wrapper.

The virtual representation of the robot cell has to be saved to
an appropriate file format, in order to make use of it for other
applications. In order of importance, the format should be:

1. Standardized with its own specification

2. Suitable for describing objects and environments for robotics
applications

3. Parseable with a C++ or Python interface

4. Preferably supported by MoveIt and RViz

5. Human-readable

Universal Robot Description Format (UDRF) has historically
been the format that is used to describe a robot in ROS. This
format satisfies most of the requirements, but it is not suited for
describing complex environments with multiple robots and sen-
sor systems. It has several shortcomings that was documented
by Chitta [37] in the URDF 2.0 specification.

URDF was designed to describe a single robot, not complex
environments. For instance, the robots and gantry in Thrivaldi
are described as a single entity in the URDF. Therefore, the
Simulation Description Format (SDF) was chosen instead, as it
checks all the requirements except for MoveIt and RViz support.

7.2.1 Simulation Description Format (SDF)

SDF is a human readable Extensible Markup Language (XML)
format that describes objects and environments for robot sim-
ulators, visualization, and control. This format was created to
solve the shortcomings of URDF, and provides a complete and
scalable description for robots and their environment. It was
originally developed as a part of the Gazebo robot simulator
and also contains additional simulation-specific elements.

66 rapid robot cell calibration

The format was implemented by wrapping its C++ API in an
object with helper functions. These functions were defined to
add the implemented primitives to an SDF file, as per the SDF
specification [38]. Primitives such as a box can then be added to
an SDF file with a single function call:

AddBox(-0.75243, -1.12828 , 0.146555, // x, y, z - position

3.09398, -0.003191, 0.028503, // R, P, Y - orientation

1.19128, 0.12283 , 0.016055, // L, W, H - dimensions

" root") // reference frame

Which results in the following output to the SDF file:

<model name= ’box_0 ’>
<static>1</static>

<!-- x, y, z, roll, pitch, yaw relative to frame -->

<pose frame= ’ root ’>-0.75243 -1.12828 0.146555 3.09398 -0.003191

0.028503</pose>

<link name= ’ link ’>
<collision name= ’ collision ’>
<geometry>

<box>

<!-- length, width, height -->

<size>1.19128 0.12283 0.016055</size>

</box>

</geometry>

</collision>

<visual name= ’ visual ’>
<geometry>

<box>

<!-- length, width, height -->

<size>1.19128 0.12283 0.016055</size>

</box>

</geometry>

</visual>

</link>

</model>

7.3 calibration tool

The initial implementation of the ROS node used the position
of a Vive controller, which was offset from its reference frame
as shown in figure 7.4. It was then possible to press the flat face
of the controller against a surface, and register a point in the
center of the torus shaped controller head with the grip button.

The offset was measured from a CAD model of the controller,
which could introduce a millimetric error due to manufacturing
tolerances. A larger error is introduced by the user, as the center
of the torus shaped controller head was used as a scope to

7.3 calibration tool 67

2.755 cm

2.591 cm

Grip button

Figure 7.4: Reference frame of the Vive controller, which was offset to
its flat top surface. The grip button was used to register
the surface points when pressed.

Figure 7.5: Drawing of the spike probe, where the dimensions are
millimetric and the threads are standard ¼” UNC.

crudely aim at and register the desired points. The bulky exterior
of the controller also makes it hard to register points in small
places. Additionally, the reference frame is located inside the
controller, making it difficult to validate the offset with direct
measurements. Therefore, a calibration tool was made from a
Vive tracker with a spike probe attached to it, as shown in figure
7.5 and 7.6. The spike probe was fabricated from a nylon rod by
the mechanical workshop at the institute.

The spike probe was not completely straight when screwed
into the Vive tracker, so a calibration procedure is required.
The reference frame of the Vive tracker is located at its camera
mount, which makes it easy to calibrate and validate the probe
tip.

A calibration procedure was implemented in its own ROS
node, where the probe tip is held at a fixed point while the
user rotates the Vive tracker around this point. The Vive tracker
positions that are measured in this configuration should all
be located on a sphere with center at the probe tip. It is then
possible to use the method described in section 7.1.3 to find the
parameters of this sphere. Knowing the center point c of the

68 rapid robot cell calibration

Figure 7.6: Calibration tool based on a Vive tracker with a 15 cm
long and 1 cm thick spike probe screwed into its ¼” UNC
threaded camera mount.

sphere, the translation from the Vive tracker to the probe tip can
be computed as an average from N measured points xi on the
sphere:

t =
1

N

N∑
i=1

R−1 (c − xi) , R ∈ SO(3), c, xi ∈ R3 (7.20)

Where R−1 rotates the points into the Vive tracker frame, and
the points are averaged in order to reduce the measurement
error. A console command for sending the tool frame to the
transform tree is then printed to the console:

rosrun tf2_ros static_transform_publisher 0.00284715 0.00161493

0.150659 0 0 0 1 tracker_LHR_9C8FB0EC_tool0

tracker_LHR_9C8FB0EC

This command defines a transformation from the Vive tracker
to its attached probe tip in the transform tree. The calibration
tool can then be used to define objects in the same way as with
the controller.

7.4 assembly scenario

The framework was tested on a assembly scenario provided
by Mjøs metallvarefabrikk that is shown in figure 7.7, where a
mock-up for inserting a rotor into a motor frame was mapped
with a tracked device. The calibration tool was used to register
the necessary points to define collisions in the assembly scenario,
by pointing the probe tip at edges of the wood and pressing the
grip button on a Vive controller.

7.4 assembly scenario 69

Figure 7.7: Assembly scenario.

Figure 7.8: Virtual representation of the assembly scenario. The red
sphere represents the tip of the calibration tool.

70 rapid robot cell calibration

Figure 7.8 shows the virtual representation of the scenario,
which was meticulously defined in about five minutes. The di-
mensions of the Euro-pallet in this figure were defined with
centimetric accuracy and a millimetric deviation between similar
parts. This accuracy is similar to that of the calibrated system,
which limits the potential use-cases of the framework and de-
pends on the required tolerances.

8
D I S C U S S I O N , F U T U R E W O R K A N D
C O N C L U S I O N

8.1 discussion

The calibration procedure presented in this thesis relies on a
method of hand-eye calibration that does not depend on the
choice of coordinates. The procedure was implemented in its
own ROS node, which can be run with any ROS-Industrial
supported robot through the hardware-agnostic MoveIt library.
It generalizes well for different setups, and was successfully
tested with the floor and gantry mounted KUKA KR16-2 robots,
and a Universal Robots UR10 robot in another robot cell.

The calibrated system has a few problems that are related
to specific issues of the lighthouse tracking. These issues have
been prevalent throughout this project, and a disproportionate
amount of time has been spent on trying to understand them.
This effort has been important in order to perform reliable
measurements with the Vive and understand its intricacies and
limitations.

The tracking issues are mentioned in literature about the Vive
and its tracking system, but the documentation on troubleshoot-
ing and correcting them is sparse. The findings of this project
will hopefully rectify some of this sparsity by outlining the is-
sues, their cause, and potential fixes in a concise manner. These
findings were also summarized in the article of appendix B.

8.1.1 Summarizing the tracking issues

8.1.1.1 Switching Bias

Niehorster et al. [28] observed a large systematic error that
switched its value whenever tracking was briefly lost. According
to the inventor of lighthouse tracking, Alan Yates (Reddit user
vk2zay in the provided reference); the error occurs whenever the
base stations disagree with each other by a large amount [32].
The error is caused by a recalibration of the base stations, in
order to reduce the discrepancy between them. This recalibration

71

72 discussion, future work and conclusion

shows up as a bootstrapping of one of the base stations in the
web console of SteamVR.

The resulting error is nonlinear in Euclidean space, as the
pose of the base stations is changed internally in the tracking
system. It was noted that this change occurs instantaneously for
all devices, and a monitor was added to the ROS node in order
to warn the user if a recalibration has occurred.

The recalibration can be avoided, for the most part, by always
keeping a tracked device in a location that is visible to both
base stations without risk of concealment. The central and out
of the way placement of the HMD in figure 5.1 was done for
this purpose.

8.1.1.2 Prioritizing inertial measurements

Borges et al. [29] showed that the Vive’s tracking algorithm gives
greater weight to its inertial measurements, in order to generate
smooth trajectories for VR applications. This weighting can
clearly be seen in figure 4.4, where a tracked device was moved
quickly between two points. The figure shows that the error is
converging a lot faster when the tracked device is moving, which
then slowly approaches its final value with an overdamped
(second order) impulse response.

Convergence of the tracking dynamics can take as long as 500

s, and causes an error in the millimetric range when measuring
the position of a tracked device before it has converged. The
only known way of avoiding this error is the use of a third
party tracking algorithm, which is exactly what Borges et al.
introduced in their article [29].

An open-source back-end such as LibSurvive has to be used
in place of SteamVR, in order to use a third party tracking
algorithm. The tracking dynamics of LibSurvive was a lot faster
than SteamVR, and converged within tens of milliseconds for
fast movements between two points.

8.1.1.3 Tracking Jitter

The final and perhaps most common issue is tracking wobble
and jitter, which is caused by reflections from the environment.
Robot cells, for instance, are often enclosed by a fencing system
with clear polycarbonate for safety reasons. This enclosure may
cause reflections that have a negative impact on the robustness
of the tracking.

8.1 discussion 73

The LibSurvive library is able to visualize reflections in a 2D
map through its calibration tool, as shown in figure 6.10. This
figure shows the situation before and after the black piece of
fabric in figure 5.1 was added to the robot cell. Removing the
reflections resulted in more robust tracking for SteamVR, and
the LibSurvive tracking would not work properly without this
change.

8.1.1.4 Tilted reference frame

Niehorster et al. [28] reported that poses measured with the Vive
are provided in a reference frame that is tilted with respect to
the physical ground plane. This issue is caused by the fact that
the reference frame is aligned with the gravity vector, which is
estimated with an IMU in the tracked device.

The tilted reference frame is a symptom of sensor bias in
the IMU [39], and the solution is to either return the device or
recalibrate the IMU [40]. Access to the calibration tools requires
a SteamVR tracking license. The tilted floor is not an issue for
the calibration procedure that is presented in this thesis, as it
relies on an external calibration that does not depend on the
choice of coordinates.

8.1.2 Improving the calibration procedure

Three different approaches were tested in order to improve the
accuracy and precision of the calibration procedure. Of these,
trying to improve the hand-eye calibration with a nonlinear
optimization step had the least impact. The implemented hand-
eye calibration method by Park and Martin [12] is robust with
the number of samples that was used in this project (51), but the
optimization step significantly reduced the error in (6.2) when
using fewer than 11 samples.

A method of averaging quaternions by Markley et al. [17] was
also tested, in order to remove a small but visible discrepancy
in the mapping between the robot cell and tracking system. The
discrepancy was caused by the fact that mapping (5.2) from the
existing calibration procedure was based on only one location.
This mapping was not robust, and the sub-millimetric and sub-
degree noise in the pose of the tracked devices propagated to
the mapping. The quaternion averaging reduced this noise by
almost two orders of magnitude and removed the discrepancy.

74 discussion, future work and conclusion

Quaternion averaging was also tested to compute an average
of mapping (5.2) from the hand-eye calibration measurements.
This average resulted in a minor accuracy improvement in the
millimetric range. The spatially dependent error was found to be
a random error in section 6.2.1, and it is possible that averaging
the mapping over the intended tracking volume gives the best
possible solution for the current calibration procedure.

It is also possible that the Euclidean parameterization of map-
ping (5.2) is not optimal. The base stations are similar to camera
systems in the sense that both of them can be represented with
a projective model. However, there are no canonical camera
models to reference when modeling the base stations [41].

Calibrating the tracking system on a lower level with a projec-
tion model could yield better results, but would likely require
a considerable effort to implement. An open-source back-end
such as LibSurvive would have to be used to access the required
low-level components of the tracking system.

8.2 future work

The following points were recognized as potential directions for
future work:

• Explore the use of second-generation (2.0) base stations.
This revision has several improvements, which are men-
tioned in section 4.1.1, over the first-generation base sta-
tions that was used in this project. The Vive Bridge pack-
age should support the use of 2.0 base stations through
SteamVR without any changes. The LibSurvive community
is currently working on support for the 2.0 base stations.

• Implement a tracking algorithm that is more suited for
robotics. The tracking dynamics of SteamVR is very slow
(500 s), and the default LibSurvive tracking results in a
large spatially dependant bias.

• Find a more optimal mapping from the robot cell to its
virtual representation to reduce the spatially dependent
error. Perhaps through the use of the projection model in
[41]?

• Implement augmented reality by projecting RViz over a
video feed from the front-facing HMD camera. An open-
source plugin already exists to display the 3D view of RViz
in the HMD [23].

8.3 conclusion 75

• Implement support for other sensor systems. For instance,
the Vive could be used for intuitive interaction with a
vision system in the robot cell.

• Expand the feature set of the framework to support grasp-
ing scenarios. This would require that the underlying con-
trol algorithm exhibits sufficient robustness to positioning
errors.

8.3 conclusion

The work on this project culminated in a set of ROS nodes for:
interfacing the Vive with ROS, calibrating its tracking system to a
robot cell or an arbitrary reference frame, running an automated
sampling procedure of uniformly distributed points with a robot,
calibrating the position of a probe tip relative to a tracked device
and positioning of objects or features of objects in the robot cell.
All of the methods presented in this thesis generalizes well for
different setups.

The calibration procedure for the Vive’s tracking system ex-
hibited a centimetric positioning error within the robot cell. This
error is larger than the goal of sub-centimetric accuracy, and
several approaches of little or no avail were tested while trying
to reach this goal. However, a substantial amount of knowledge,
which the writer would personally have loved to know from the
get go, has been gathered on the Vive and its tracking system.
Hopefully, this knowledge will prove to be useful for others
working with the Vive in the future.

The robot cell calibration procedure consists of a framework
with multiple methods, which are used to define geometric
primitives such as boxes, spheres, cylinders and cones in the
coordinates of the robot cell. This framework was tested on a
mock-up for inserting a rotor into a motor frame, where the
outline of the mock-up was defined with a spike probe that was
attached to a Vive Tracker.

The dimensions of the mock-up were defined with centimetric
accuracy and a millimetric deviation between similar parts. This
accuracy is similar to that of the calibrated system, which limits
the potential use-cases of the framework and depends on the
required tolerances. The calibrated system could be used for
crude positioning of objects, such as for collision avoidance or
high-level planning.

76 discussion, future work and conclusion

This page is intentionally left blank.

A P P E N D I X

77

A
V I V E B R I D G E R O S PA C K A G E R E A D M E

This appendix contains the documentation for the Vive Bridge
ROS package as it is given in its online repository. Vive Bridge
is an open-source ROS package under the MIT License, which
was created during a summer job at SINTEF Digital and further
developed throughout this project. It is freely available from
https://github.com/mortaas/vive_rrcc.

79

https://github.com/mortaas/vive_rrcc

80 vive bridge ros package readme

This page is intentionally left blank.

README.md 6/10/2019

1 / 7

Vive Bridge
Vive Bridge is a Robotic Operating System (ROS) package that utilises the OpenVR SDK by Valve, or
alternatively LibSurvive, to make VR devices such as the HTC VIVE available in a ROS environment. The
package is inspired by an existing vive_ros package by RoboSavvy, and it exposes a lot of the same
functionality. The essentials of the OpenVR SDK is explained in great detail in the OpenVR Quick Start guide
by Kevin Kellar. The guide is also saved locally in this package under the doc/CassieVrControls.wiki
folder.

Features
The package supports the following types of devices:

HMD (Head-Mounted Display)
Controller
Tracker
Lighthouse

The package exposes the position and orientation (pose) of each device as coordinate frames relative to the
world_vr frame in the tf tree, which is configurable relative to the world frame. The naming scheme of each
coordinate frame follows the following structure: <device type>_<serial number>, e.g.
controller_LHR_FF6FFD46. The serial number is used both internally and externally (in the package) to uniquely
identify tracked devices. This results in a structure similar to the tf tree example that is shown below:

The package can also publish the linear and angular velocities (twists) of tracked devices as a
geometry_msgs/TwistStamped message on the /vive_node/twist/<device type>_<serial number> topic, e.g.
/vive_node/twist/controller_LHR_FF6FFD46. Axes and buttons on controllers can also be published as a
sensor_msgs/Joy message on the /vive_node/joy/<device type>_<serial number> topic, e.g.
/vive_node/joy/controller_LHR_FF6FFD46. Joy messages are only published when the controllers are interacted
with. These publishers are not enabled by default, but they are easily enabled during runtime by using the
rqt_reconfigure package.

Visualization

It is also possible to visualize the tracked devices by using a MarkerArray display in RViz. The mesh files are
defined in the launch/vive_node.launch file as parameters for each type of device:

vive bridge ros package readme 81

README.md 6/10/2019

2 / 7

hmd_mesh_path
controller_mesh_path
tracker_mesh_path
lighthouse_mesh_path

The mesh files has to be supported by RViz, i.e. .stl, .mesh (Ogre) or .dae (COLLADA).

The tracked devices are then visualized by adding /vive_node/rviz_mesh_markers as Marker Topic in a
MarkerArray display.

The following warning message is normal when starting the node:

[WARN] [1552396105.439729800]: Topic '/vive_node/rviz_mesh_markers' unable to
connect to any subscribers within 0.5 sec. It is possible initially published
visual messages will be lost.

It just indicates that no nodes received the mesh markers that are published when the vive node starts.

Requirements

OpenVR SDK

The package requires the OpenVR SDK, which has to be built from the newest available source. It is possible
to download and build the source in the correct folder by utilising the following commands:

cd ~
mkdir lib
cd lib
git clone https://github.com/ValveSoftware/openvr.git
cd openvr
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make

It is also possible to specify which folder the OpenVR SDK should be located in, by changing the
CMakeLists.txt file in the package directory:

set(OPENVR "$ENV{HOME}/lib/openvr")

LibSurvive

The package requires LibSurvive, which is an open-source and reverse engineered driver, API and tools for the
HTC VIVE.

82 vive bridge ros package readme

README.md 6/10/2019

3 / 7

cd ~
mkdir lib
cd lib
git clone https://github.com/cnlohr/libsurvive.git
cd libsurvive
make

It is also possible to specify which folder LibSurvive should be located in, by changing the CMakeLists.txt file in
the package directory:

set(OPENVR "$ENV{HOME}/lib/libsurvive")

You also have to install the udev rules that comes with LibSurvive:

cd lib/libsurvive
sudo cp useful_files/81-vive.rules to /etc/udev/rules.d/
sudo udevadm control --reload-rules && udevadm trigger

Steam and SteamVR

SteamVR is available through Steam, which is utilised for configuration and room setup. It is also required for
running this package by itself, as it depends on the vrserver process running in the background. This is a
requirement because the OpenVR part of the package runs as a background application (OpenVR API
Documentation):

VRApplication_Background - The application will not start SteamVR. If it is not already running the call with
VR_Init will fail with VRInitError_Init_NoServerForBackgroundApp.

Steam is installed by following the Getting Started guide on their Steam for Linux tracker. SteamVR should be
installed automatically by Steam if there is any VR devices present on your computer. It is also important to
meet the GRAPHICS DRIVER REQUIREMENTS and the USB DEVICE REQUIREMENTS on their SteamVR for
Linux tracker. A complete guide on getting the HTC VIVE up and running in SteamVR is available from: HTC
Vive Installation Guide.

Installation
The package is built by cloning this repository into your catkin workspace (catkin_ws/src directory) and then
making it with catkin_make

Usage
The package is simply run by launching the following launch file: roslaunch vive_bridge
vive_node.launch

vive bridge ros package readme 83

README.md 6/10/2019

4 / 7

Alternatively, the package can be run with LibSurvive by launching the following launch file: roslaunch
vive_bridge survive_node.launch. The package should expose the same functionality with LibSurvive.

You may have to change the directory paths for Steam and your Catkin workspace in the /scripts/launch.sh
shell script depending on their location. The package assumes that the directories are in their defuault locations.

STEAM_RUNTIME=$HOME/.steam/steam/ubuntu12_32/steam-runtime
CATKIN_WS=$HOME/catkin_ws

Applications are generally run through the Steam runtime by running the run.sh script. The script is in the
steam-runtime folder, and takes the application as an argument for the script.
~/.steam/steam/ubuntu12_32/steam-runtime/run.sh
~/catkin_ws/devel/lib/vive_bridge/vive_bridge_node

Interacting with the node

The vive_node publishes information about the currently tracked devices to the
/vive_node/tracked_devices topic. This topic uses a custom vive_bridge/TrackedDeviceStamped.msg
message that contains information about:

frame_id - Fixed VR frame (within the message header)
uint8 device_count - Number of tracked devices
uint8[] device_classes - Classes of tracked devices (classes are defined within the message):

uint8 HMD=1
uint8 CONTROLLER=2
uint8 TRACKER=3
uint8 LIGHTHOUSE=4

string[] device_frames - Child frames associated with each tracked device

The frame names within the device_frames field can then be used to find the joy and twist topics of each
tracked device, e.g. the twist topic of the first tracked device could be:

"/vive_node/twist/" + msg_.device_frames[0]

It is also possible to request this information from the /vive_node/tracked_devices service, which requests
a std_msgs/Empty message, and responds with the same format as the
vive_bridge/TrackedDeviceStamped.msg. The frame_id is however included as it's own field in the
response, instead of being included in the message header.

Controller axes and buttons

The package currently supports all inputs from the HTC VIVE controller, and the sensor_msgs/Joy messages
have the following format:

axes[0] - Trackpad x

84 vive bridge ros package readme

README.md 6/10/2019

5 / 7

axes[1] - Trackpad y
axes[2] - Trigger
buttons[0] - Menu
buttons[1] - Grip
buttons[2] - Trackpad
buttons[3] - Trigger

The package also emulates a numpad when pressing different points on the trackpad button:

buttons[4] - 1 Left down
buttons[5] - 2 Center down
buttons[6] - 3 Right down
buttons[7] - 4 Left center
buttons[8] - 5 Center
buttons[9] - 6 Right center
buttons[10] - 7 Left up
buttons[11] - 8 Center up
buttons[12] - 9 Right up

The x and y values from touching the trackpad is used to find the corresponding numpad key. The header also
contains the frame_id associated with the tracked device.

Haptic Feedback

The package supports activating the rumble feature of the HTC VIVE controller. Rumble is activated by
sending a sensor_msgs/JoyFeedback message to the /vive_node/joy/haptic_feedback topic of type
TYPE_RUMBLE. The id of the HTC VIVE controller corresponds with the order from the
/vive_node/tracked_devices topic, and the intensity is the duration of the vibration.

Configuration

The position and orientation (pose) of each device is defined relative to the world_vr frame, which has the
same position as one of the lighthouses. This frame has to be defined relative to some defined world frame to

vive bridge ros package readme 85

README.md 6/10/2019

6 / 7

make sense of the environment. The transformation between these frames are exposed as x-, y-, z- and roll-,
pitch-, yaw- (RPY) offset parameters by the dynamic_reconfigure package. This package provides a standard
way to change the offset parameters at any time without having to restart the node, and also provides a
graphical user interface (GUI) to change these parameters by using rqt_reconfigure:

rosrun rqt_reconfigure rqt_reconfigure.

The parameters from dynamic_reconfigure are saved and loaded automatically from the
/cfg/dynparam.yaml file.

Coordinate systems

Tracked devices follows the following coordinate system conventions:

X-axis equates to pitch
Y-axis is up and equates to yaw (except for the VIVE Tracker, which has Z-axis down)
Z-axis is opposite of approach direction and equates to roll

The VIVE Tracker coordinate system is rotated 180° around the x-axis such that the z-axis points upwards. This
is because we want the tracker to match the orientation of our reference frame (world), when it is placed
horizontally on the ground.

Compatibility
The package was tested with:

86 vive bridge ros package readme

README.md 6/10/2019

7 / 7

HTC VIVE with OpenVR SDK 1.2.10 and Ubuntu 16.04 LTS running ROS Kinetic Kame (1.12.13)

To-do list

vive bridge ros package readme 87

88 vive bridge ros package readme

This page is intentionally left blank.

B
S U B M I T T E D C O N F E R E N C E PA P E R T O I C C M A
2 0 1 9

This appendix contains the pre-review version of an article that
was submitted to the 7th International Conference on Control,
Mechatronics and Automation (ICCMA 2019). The article sum-
marizes some of the results that is presented in this work.

89

90 submitted conference paper to iccma 2019

This page is intentionally left blank.

Vive for Robotics: Rapid Robot Cell Calibration

Morten Andre Astad1, Mathias Hauan Arbo1, Esten Ingar Grøtli2, and Jan Tommy Gravdahl1

Abstract— The use of an HTC Vive; a virtual reality (VR)
system and its innovative tracking technology is explored in
order to create an approximate one-to-one mapping to the
virtual representation of a robot cell. The mapping is found
by performing hand-eye calibration, establishing a spatial
relationship between the inertial frames of the robot cell and the
tracking system. One of the main contributions of this article
is the development of an open-source robotic operating system
(ROS) package for VR devices such as the HTC Vive. The
package includes automated calibration procedures such that
the devices gives a centimetric measurement error in the robot
cell. The calibrated system has problems that are related to
specific issues of the tracking technology. This article outlines
these issues, their cause, and potential fixes in a concise manner.
A simple assembly scenario is presented, where the outline of
objects in the robot cell are defined by registering points with
the HTC Vive tracker. The potential use cases of the calibrated
system are limited by its accuracy, and depends on the required
tolerances.

I. INTRODUCTION

Industrial robots are often too inflexible for the current
market demands of small- and medium-sized enterprises
(SMEs). As part of the EU funded research project SMEr-
obotics, [12] suggest that one of the main challenges prevent-
ing the adoption of industrial robots in SMEs is that current
robot programming techniques are not suitable for frequent
changes of often highly customized products manufactured
in small batches.

This article explores the use of an HTC Vive, a virtual
reality (VR) system codeveloped by Valve and HTC, for
rapid robot cell calibration. By creating an approximate one-
to-one mapping to the virtual representation of a robot cell,
one can quickly place objects and obstacles as necessary.
The innovative technology that allows for positioning in a
room-scaled environment is called lighthouse tracking. This
technology is able to track the user’s hands, head, or other
objects in real-time through tracked devices. The devices
have sub-millimeter precision within an area whose diagonal
is up to 5 meters in length.

The outside-in tracking system of the Vive sweeps the
room horizontally and vertically with 850 nm infrared (IR)
laser lines at a fixed frequency, from one or multiple station-
ary base stations in the room. Light sensors on the tracked
devices are hit periodically by the laser lines, and their
position and orientation (pose) is reconstructed by solving
a problem that is similar to the Perspective-n-Point (PnP)

1Morten Andre Astad (mortaas@stud.ntnu.no), Mathias Hauan Arbo, and
Jan Tommy Gravdahl are with the Department of Engineering Cybernetics,
Norwegian University of Science and Technology (NTNU), Trondheim,
Norway

2Esten Ingar Grøtli is with SINTEF Digital, Trondheim, Norway

problem [5]. The tracked devices also contain an inertial
measurement unit (IMU) that provides faster updates than the
ones from the lighthouse tracking. This gives the devices low
frequency measurements of absolute position and orientation,
and faster updates of the relative motion of the devices.

In [9] the accuracy and viability of an HTC Vive are de-
scribed for scientific research. They concluded that the Vive
was unsuited for scientific experiments if loss of tracking was
likely, as a large systematic error was observed that changes
whenever the tracking was briefly lost. This error makes it
difficult to establish a calibration procedure that aligns the
real and virtual coordinate space. However, it is possible to
avoid this error by taking measures against its cause, which
will be presented together with a calibration procedure that
does not depend on the choice of coordinates.

The main contributions of this article are: elaborating on
the issues related to the HTC Vive, development of open-
source software for calibration with respect to an industrial
robot, development of open-source software for defining
points, planes and boxes in a virtual environment, as well
as presenting an assembly use-case example.

The article is split into 3 main parts. Section II describes
how the Vive was integrated in a software environment for
robots, and includes the theory and methods that was used
to automatically calibrate the tracking system. Section III
gives an overview on how the tracking system was set up,
calibrated and evaluated in a robot cell, and also presents
a simple assembly scenario that was defined with collidable
objects using a tracking device. Section IV discusses specific
issues of the lighthouse tracking, as they are prevalent, and
getting the Vive to work properly without understanding
these issues and how to fix them can be quite challenging.

The work is based on the master thesis of Astad [1], which
we refer the reader to for more in-depth implementation
details.

II. SYSTEM INTEGRATION AND THEORY

A. Hand-Eye Calibration

The standard hand-eye calibration problem was formulated
in [15], where the problem was stated as an equation of
homogeneous transformations:

AX = XB, A,B,X ∈ SE(3) (1)

where A depicts a change in the robot’s tool pose, B rep-
resents the resulting sensor displacement from changing the
tool pose, and X is an unknown transformation relating the
tool frame to the sensor frame. The unknown transformation
X is constant under the assumption that the sensor is rigidly

submitted conference paper to iccma 2019 91

Fig. 1. Geometric interpretation of the AX = XB problem, showing two
different robot states.

attached to the robot and its tool frame. Fig. 1 shows a
geometric interpretation of this problem.

The hand-eye calibration was solved by utilising the closed
form solution in [10]. The input to this method is measured
pairs of transformations (Ai, Bi) ∈ SE(3), as defined by
the deviation between consecutive samples of tool {t} and
sensor {s} poses:

Ai = T−1ti Tti+1 , Tti , Tti+1 ∈ SE(3) (2a)

Bi = T−1si Tsi+1 , Tsi , Tsi+1 ∈ SE(3) (2b)

and a solution requires at least three of these pairs. The
method solves the rotational part first before using it to solve
the translational part, which propagates an error from rotation
to translation. An extra optimization step was added to reduce
this error, where the following cost function was minimized
with the closed form solution to the hand-eye calibration as
a seed for the solver:

min
X∈SE(3)

N∑

i=1

log
(
(AiX)−1XBi

)
(3)

Here, N is the number of measured pairs (Ai, Bi), (·)−1 is
the SE(3) group inverse and log (·) is the matrix logarithm,
which maps elements in the group of rigid transformations
SE(3) into elements of its tangent space se(3). This step
significantly reduced the error when using fewer than 10
measured pairs.

B. Generating Sample Poses

For automatic calibration, tool poses are generated for
sampling the necessary poses with a robot. Their position
is selected at random within a spherical volume element,
and their orientation is picked from the normal vector at this
position as from the surface of a sphere. The positions can
take on any value within the spherical volume element that
is parameterized as shown in Fig. 2. Each tool pose can then
be represented as a homogeneous transformation from the
robot’s base,{b}, to tool, {t}, frame:

Tt
b =

[
Rz, θRx, φ Rz, θRx, φ

[
0 0 r

]T
01×3 1

]
(4)

θ1

φ1

θ2

φ2

r1

r2

Fig. 2. Spherical volume element that is defined by the spherical
coordinates (r ∈ [r1, r2] , θ ∈ [θ1, θ2] , φ ∈ [φ1, φ2]) in a right-handed
coordinate system.

where Rx, φ and Rz, θ are basic rotations about the x-axis
and z-axis by an angle φ and θ respectively, and r is the
radius of a sphere. [17] observed that the rotation between
consecutive sensor poses, and the translation between con-
secutive tool poses should be maximized and minimized
respectively; in order to improve the accuracy of the hand-
eye calibration. Therefore, the translations and rotations are
generated from two sets of parameters in smaller and larger
ranges about the same point. This method of randomly
generating tool poses for sampling within a range is flexible
and generalizes well for different setups. It was tested with
the floor and gantry mounted KUKA KR16 robots presented
in this article, and a Universal Robots UR10 robot that was
mounted on a freestanding frame.

C. Robot Operating System Package

The Robotic Operating System (ROS) is an open-source
middleware solution for robotics. At its core it offers a
communication system, which provides a message pass-
ing interface between distributed nodes. One of the main
contributions of the work that is presented in this article
was the development of a ROS package named vive rrcc.
This package makes VR devices such as the Vive available
in a ROS environment by utilising SteamVR through the
OpenVR SDK by Valve.

The package exposes the pose of each tracked device as a
coordinate frame with respect to an inertial tracking frame.
These frames and their relationships are maintained in a
distributed tree structure that is buffered in time with the tf2
transform library for ROS [6]. This library allows the user to
transform vectors, quaternions, poses and so forth between
any two frames in the tree structure. It also acts as a buffer
for the poses of the tracked devices, which are available in
any frame of the transform tree, and to all nodes in the ROS
environment.

Other features of the package includes controller inputs,
haptic feedback, linear and angular velocities (twists) and
3D visualization of the tracked devices, and a standard
interface to interact with and calibrate the node in realtime.
The LibSurvive library [3] was also implemented as an
alternative to SteamVR and OpenVR. Unlike OpenVR, this
library allows for access to the low-level components of

92 submitted conference paper to iccma 2019

the lighthouse tracking and supports the use of different
community implemented tracking algorithms.

The generated sample poses can be automatically realized
on the robot system. Robot trajectories are planned from
the generated tool poses with the MoveIt library [4], a
motion planning framework that is integrated with ROS. Tool
and sensor poses are then sampled from the transform tree
between each executed trajectory, and the program waits a
predefined time before sampling, in order for the robot and
tracking dynamics to settle. This hardware-agnostic approach
can be used on any ROS-Industrial supported robot with a
MoveIt package.

The sampled poses of a tracked device are subject to
noise in the sub-millimetric and sub-degree range, which may
introduce a small error in the calibrated system. This noise
was reduced by almost two orders of magnitude by using the
quaternion averaging method in [8] and 120 samples.

The ROS package is open-source under the
MIT License and is freely available from https:
//github.com/mortaas/vive rrcc.

D. Calibrating the Tracking System

One-to-one mapping from a robot cell to its virtual rep-
resentation is established by finding a spatial relationship
between the inertial frames of the robot cell and tracking
system. This relationship was found by employing hand-eye
calibration, in order to estimate the rigid transformation X̂
between a tracking device that is firmly attached to the robot
and an arbitrary tool frame of the robot.

A transformation between the inertial frames of robot cell
{rc} and tracking system {vr} is computed for each of the
measured sample poses, with the estimated solution X̂ from
solving the hand-eye problem:

Tvr
rc = (Trc

t)−1X̂Tvr
s , X̂ = T̂s

t (5)

where Tvr
rc is the transformation from the inertial frame

of the robot cell to the inertial frame of the Vive system
according to the calibration, Ts

vr is the transformation to
the tracking device frame relative to the Vive system, and
(Trc

t)−1 is the tool frame relative to the robot cell.
These transformations are then averaged in the same way

as the sampled poses, in order to reduce a small nonlinear and
spatially dependent error of the tracking system. The result-
ing average is used to calibrate the system by automatically
updating the corresponding relationship in the transform tree.
Figure 5 shows the virtual representation of the robot cell
after performing this calibration.

E. Rapid Obstacle Placement

A simple framework was created in order to define col-
lidable objects with geometric primitives, such as boxes,
spheres, cylinders, and cones, in the virtual robot cell using
the tracking devices. This section presents the box case.

A box can be uniquely defined in 3D space from four
points x0, x1, x2, x3 ∈ R3. The first three points are used

x0

x1

x2

x⊥

(x1-x0)

(x2-x⊥)

Fig. 3. Defining a unique plane from three 3D points.

to define the orientation of the box from basis vectors:

bx =
x1 − x0
‖x1 − x0‖

, (6a)

by =
x2 − x⊥
‖x2 − x⊥‖

, (6b)

bz = bx × by (6c)

where x⊥ is the point on the line from x0 to x1 that is closest
to x2, as shown in Fig. 3:

x⊥ = x0 −
[
(x0 − x2)T bx

]
bx. (7)

This can be used to form the rotation matrix:

R =
[
bx by bz

]
∈ SO(3). (8)

It is now possible to define the length L, width W and height
H of the box by introducing the fourth point x3:

L = ‖x1−x0‖, W = ‖x1−x⊥‖, H = (x3−x⊥)T bz. (9)

The translation to the center of the box is then given by:

t = x⊥ + 1/2 (Lbx +W by +H bz) ∈ R3 (10)

This method of defining a box is intuitive, and the framework
visualizes a point, line, plane and box in that order for each
point that is defined by the user. The recorded collidable
objects are saved as Simulation Description Format (SDF)
files, a human readable XML format that describes objects
and environments for robot simulators, visualization, and
control.

The planar part of this method could be used as an
alternative to the automated alignment and correction method
in [11]. Where three Vive Trackers affixed to a frame is
utilised in order to align the virtual space with the physical
ground, and fix the tilt that was reported in [9]. Similarly, it
is possible to define the ground plane with the method that
is described here, and fix the issue using only one tracked
device and defining three points instead.

III. EXPERIMENTAL SETUP

A. Vive-Robot Cell Setup

The system was tested on the robot cell with an approxi-
mate size of 6m×4m×4m, shown in Fig. 4. The robot cell
consists of two KUKA KR 16 industrial robots; one of which
is mounted on the floor, and the other is mounted on a gantry
system from Güdel. Both base stations are mounted below H-
beams in the roof structure, following the recommendations
from HTC. The base stations have a field of view of 120°,

submitted conference paper to iccma 2019 93

HTC VIVE Pro HMD

HTC VIVE

Base Station

HTC VIVE

Base Station

Gantry mounted

KUKA KR16

Floor mounted

KUKA KR16

Fig. 4. Setup of the Vive’s tracking system in a robot cell.

Fig. 5. The virtual representation of the robot cell after calibration, as
visualized in RViz.

leaving 30-45° for adjustments. The base stations should be
placed such that their view of each other and the robot cell
is unobstructed. It is also important that their field of view
overlaps as much as possible within the intended tracking
volume. A Vive Pro Starter Kit with first-generation base
stations was used, which provides updates at a rate of 220-
370 Hz depending on the type of tracked device [7]. The
measurements are sub-sampled in the ROS package at a rate
of 120 Hz by default.

B. Calibration of the Mapping

A tracked device was firmly attached to the gripper of the
floor robot, and 51 tool poses was generated in the range
(r ∈ [1.4, 1.6] , θ ∈ [−5π/16, −3π/16] , φ ∈ [π/8, 3π/16]) for
positions and range (r ∈ [1.4, 1.6] , θ ∈ [0, −π/2] , φ ∈
[5π/16, 11π/16]) for orientations, with origin at the robot base.
This range corresponds to sampling sensor poses in close
proximity to the tool pose of the floor mounted robot in
Fig. 5. And the synthetic tests in [10] suggests that this
number of samples should result in a solution that is close
to convergence, which is further refined by solving the
minimization problem in (3). A wait time of 20 seconds was
used in order for the tracking dynamics to settle within a
reasonable range of a few millimeters. An RViz visualization
of the robot cell after calibration is given in Fig. 5.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Absolute error [m]

0

5

10

15

20

25

30

35

40

Fr
eq

u
en

cy

Fig. 6. Frequency distribution of the measured error along the x-, y-, z-
axis and their absolute values with the forward kinematics of the robot as
a ground truth.

C. Testing the Calibrated System

A volume of 1.0m × 3.0m × 1.0m in the center of
the robot cell was sampled with the calibrated system at
4 × 7 × 3 distributed points, in order to show an indication
of its accuracy. The sampling was performed with the same
setup as the calibration, with a tracked device firmly attached
to the robot. Each sample was compared with an ideal sensor
pose, which was computed with the forward kinematics of
the robot and the estimated solution X̂ from solving the
hand-eye problem:

T̃s
rc = Tvr

rc T
s
vr − (Trc

t)−1X̂ (11)

with transformations defined as in 5.
The sampling procedure was run twice in order to validate

the runs against each other, and resulted in the frequency
distribution of Fig. 6. This distribution has a small negative
bias along the x-axis, where the resulting mean along the
axes was found to be [−0.003363, 0.0002183, 0.0003022]
meters with standard deviation [0.0119, 0.01468, 0.009321]
meters. The cause of this bias is not well-understood, but the
tracking dynamics seems to imply that it is caused by a larger
drift along the x-axis. These results indicates a measurement
error in the centimetric range, and the maximum absolute
error was 8 cm.

D. Assembly Use-Case

The calibrated system was tested on a simple assembly
scenario that is shown in Fig. 7, where a mock-up for insert-
ing a rotor into a motor housing was mapped with a tracking
device. A simple tool was made from a tracked device with
a spike probe attached to it, as shown in Fig. 8. The tool
was used to register the necessary points to define collisions
in the assembly scenario, by pointing the spike at points and
pressing a button. Figure 9 shows the virtual representation
of the scenario, which was meticulously defined in about five
minutes. The dimensions of the Euro-pallet in this figure was
defined with centimetric accuracy and a millimetric deviation
between similar parts.

94 submitted conference paper to iccma 2019

Fig. 7. Assembly scenario.

Fig. 8. Simple tool based on an HTC Vive Tracker with a 15 cm long and
1 cm thick spike probe screwed into its quarter inch UNC threaded camera
mount.

IV. DISCUSSION

The calibrated system has a few problems that are related
to specific issues of the lighthouse tracking. These issues
are mentioned in literature about the Vive and its tracking
system, but the documentation about troubleshooting and
correcting them is sparse. This article hopes to rectify some
of this sparsity by outlining the issues, their cause, and
potential fixes in a concise manner.

1) Prioritizing Inertial Measurements: [2] showed that
the Vive’s tracking algorithm gives greater weight to its
inertial measurements in order generate smooth trajectories
for VR applications. This weighting can clearly be seen in
Fig. 10, where a tracked device was moved quickly between
two points. The error is converging a lot faster when the
tracked device is moving, which then slowly approaches
its final value with an overdamped (second order) impulse
response. Although the wait time that was used for calibra-
tion is low relative to the tracking dynamics and causes a
millimetric error, the hand-eye calibration is robust.

Convergence can take as long as 500 seconds, and causes
an error in the millimetric range when measuring the position

Fig. 9. Virtual representation of the assembly scenario, as visualized in
RViz. The red sphere is the tip of the spike probe.

Fig. 10. Error response from moving a tracked device quickly between
two points. The move starts at 302, 4 seconds, and it lasts approximately 2
seconds.

of a device before it has converged. The only known way
of avoiding this error is the use of a third party tracking
algorithm, which is exactly what Borges et al. introduced in
their article [2]. An open-source back-end such as LibSurvive
has to be used in place of SteamVR, in order to use a third-
party tracking algorithm.

2) Tilted Reference Frame: [9] reported that poses mea-
sured with the Vive are provided in a reference frame that is
tilted with respect to the physical ground plane. This issue
is caused by the fact that the reference frame is aligned with
the gravity vector, which is estimated with an IMU in the
tracked device. The tilted reference frame is a symptom of
sensor bias in the IMU [16], and the solution is to either
return the device or recalibrate the IMU [14]. Access to the
calibration tools requires a SteamVR tracking license. The
tilted floor is not an issue for the calibration procedure that is
presented in this article, as it relies on an external calibration
that does not depend on the choice of coordinates.

3) Switching Bias: [9] also observed a large systematic
error that switched its value whenever tracking was briefly
lost. According to the inventor of lighthouse tracking, Alan
Yates (Reddit username: vk2zay), the error occurs when-
ever the base stations disagree with each other by a large
amount [13]. The error is caused by a recalibration of the
base stations, in order to reduce the discrepancy between
them. This recalibration shows up as a bootstrapping of one
of the base stations in the web console of SteamVR. The
resulting error is nonlinear in Euclidean space, as the pose of
the base stations is changed internally in the tracking system.
It was noted that this change occurs instantaneously for all
devices, and a monitor was added to the ROS node in order
to warn the user if a recalibration has occurred.

This recalibration can be avoided for the most part, by
always keeping a tracked device in a location that is visible
to both base stations without risk of concealment. The head-
mounted display (HMD) in Fig. 4 was used for this purpose.

4) Tracking Jitter: The final and perhaps most common
issue is tracking wobble and jitter, which is caused by re-
flections from the environment. Robot cells, for instance, are
often enclosed by a fencing system with clear polycarbonate
for safety reasons. This enclosure causes reflections that may

submitted conference paper to iccma 2019 95

Fig. 11. The LibSurvive calibration tool before (left) and after (right) the
reflections in the orange ring was removed with a black piece of fabric,
where the points should be clustered together.

have a negative impact on the robustness of the tracking.
The LibSurvive library is able to visualize the reflections

in a 2D map through its calibration tool, as shown in Fig. 11.
And this figure shows the situation before and after the
black piece of fabric in Fig. 4 was added to the robot cell.
Removing the reflections resulted in more robust tracking
for SteamVR, and the LibSurvive tracking would not work
properly without this change.

V. CONCLUSION

In this article a set of ROS packages are presented that
were developed for calibration of an HTC Vive with respect
to a robot cell, and rapid placement of collidable objects and
identifying relevant points in the robot cell. The procedure
is hardware-agnostic and can run on any system with ROS-
Industrial and MoveIt! plugin. The calibration was tested
using a KR16 and an assembly use-case was presented. The
calibration showed a centimetric positioning error, which
suggests that the system can be used for crude positioning of
objects, such as for collision avoidance or high-level plan-
ning, or if the underlying control algorithm exhibits sufficient
robustness to positioning errors. The article outlines some of
the most common tracking issues, and gives a description of
how to resolve them.

ACKNOWLEDGMENT

The work reported in this paper was partially funded
by the Research Council of Norway through the projects
SFI Manufacturing (contract number: 237900) and Dynamic
Robot Interaction and Motion Compensation (contract num-
ber: 270941). The authors would like to thank the LibSurvive
community for their troubleshooting and advice, and Rune
Sandøy of SINTEF Manufacturing and Mjøs Metallvarefab-
rikk for the assembly usecase.

REFERENCES

[1] M. A. Astad. “VIVE for Robotics.” Master Thesis.
Department of Engineering Cybernetics, NTNU, 2019.

[2] M. Borges, A. Symington, B. Coltin, T. Smith, and R.
Ventura. “HTC Vive: Analysis and Accuracy Improve-
ment.” In: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Oct. 2018,
pp. 2610–2615.

[3] C. Lohr et al. Lightweight HTC Vive Library. [Online;
accessed 27-May-2019]. 2019. URL: https : / / github.
com/cnlohr/libsurvive.

[4] S. Chitta, I. Sucan, and S. Cousins. “MoveIt! [ROS
Topics].” In: IEEE Robotics Automation Magazine
19.1 (Mar. 2012), pp. 18–19.

[5] M. A. Fischler and R. C. Bolles. “Random Sample
Consensus: A Paradigm for Model Fitting with Ap-
plications to Image Analysis and Automated Cartog-
raphy.” In: Commun. ACM 24.6 (June 1981), pp. 381–
395.

[6] T. Foote. “tf: The transform library.” In: 2013 IEEE
Conference on Technologies for Practical Robot Ap-
plications (TePRA). Apr. 2013, pp. 1–6.

[7] O. Kreylos. “Lighthouse tracking examined.” In: URL:
http://doc-ok.org (2016). [Online; accessed 25-May-
2019].

[8] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Osh-
man. “Averaging quaternions.” In: Journal of Guid-
ance, Control, and Dynamics 30.4 (2007), pp. 1193–
1197.

[9] D. C. Niehorster, L. Li, and M. Lappe. “The Ac-
curacy and Precision of Position and Orientation
Tracking in the HTC Vive Virtual Reality System
for Scientific Research.” In: i-Perception 8.3 (2017),
p. 2041669517708205.

[10] F. C. Park and B. J. Martin. “Robot sensor calibration:
solving AX=XB on the Euclidean group.” In: IEEE
Transactions on Robotics and Automation 10.5 (Oct.
1994), pp. 717–721.

[11] A. Peer, P. Ullich, and K. Ponto. “Vive Tracking
Alignment and Correction Made Easy.” In: 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces
(VR). Mar. 2018, pp. 653–654.

[12] A. Perzylo et al. “SMErobotics: Smart Robots for
Flexible Manufacturing.” In: IEEE Robotics Automa-
tion Magazine 26.1 (Mar. 2019), pp. 78–90.

[13] Reddit. Controllers jump when changing base station
line of sight. [Online; accessed 13-May-2019]. 2017.
URL: https://www.reddit.com/r/Vive/comments/5tafa5/
controllers jump when changing base station line/.

[14] Reddit. Fix for Slanted Floor Issue - IMU Recali-
bration. [Online; accessed 15-May-2019]. 2017. URL:
https : / / www. reddit . com / r / Vive / comments / 6tzthx /
fix for slanted floor issue imu recalibration/.

[15] Y. C. Shiu and S. Ahmad. “Calibration of wrist-
mounted robotic sensors by solving homogeneous
transform equations of the form AX=XB.” In: IEEE
Transactions on Robotics and Automation 5.1 (Feb.
1989), pp. 16–29.

[16] Steam. Floor Tilt a Hardware or Software Issue?
[Online; accessed 15-May-2019]. 2016. URL: https :
/ / steamcommunity. com / app / 358720 / discussions / 0 /
353916981477560813/?tscn=1490201536.

[17] R. Y. Tsai and R. K. Lenz. “A new technique for
fully autonomous and efficient 3D robotics hand/eye
calibration.” In: IEEE Transactions on Robotics and
Automation 5.3 (June 1989), pp. 345–358.

96 submitted conference paper to iccma 2019

B I B L I O G R A P H Y

[1] J. Kaeser. “Why Robots Will Improve Manufacturing Jobs.”
In: Why Robots Will Improve Manufacturing Jobs (Sept. 2017).
url: http://time.com/4940374/joe-kaeser-siemens-
robots-jobs/.

[2] G. Papadopoulos, S. Rikama, P. Alajääskö, A. Airaksi-
nen Z. Salah-Eddine (Eurostat Structural business statis-
tics), and H. Luomaranta (Statistics Finland). “Statistics on
small and medium-sized enterprises.” In: Eurostat Statistics
Explained (2018). issn: 2443-8219. url: https://ec.europa.
eu/eurostat/statistics-explained/index.php?title=

Statistics_on_small_and_medium-sized_enterprises.

[3] A. Perzylo et al. “SMErobotics: Smart Robots for Flexible
Manufacturing.” In: IEEE Robotics Automation Magazine
26.1 (Mar. 2019), pp. 78–90. issn: 1070-9932. doi: 10.1109/
MRA.2018.2879747.

[4] M. A. Astad. VIVE-Workcell Setup and Calibration. Depart-
ment of Engineering Cybernetics, NTNU, 2018.

[5] I. Eriksen. “Setup and Interfacing of a KUKA Robotics
Lab.” Master Thesis. Department of Engineering Cyber-
netics, NTNU, 2017.

[6] Department of Engineering Cybernetics, NTNU. Thri-
valdi Documentation. [Online; accessed 24-April-2019]. url:
https://github.com/itk-thrivaldi/Documentation.

[7] Open Source Robotics Foundation. ROS Core Components.
[Online; accessed 5-May-2019]. url: http://www.ros.org/
core-components/.

[8] T. Foote. “tf: The transform library.” In: 2013 IEEE Confer-
ence on Technologies for Practical Robot Applications (TePRA).
Apr. 2013, pp. 1–6. doi: 10.1109/TePRA.2013.6556373.

[9] Sameer Agarwal, Keir Mierle, et al. Ceres Solver. http:
//ceres-solver.org.

[10] O. Egeland and J. T. Gravdahl. Modeling and simulation for
automatic control. Vol. 76. Marine Cybernetics Trondheim,
Norway, 2002.

97

http://time.com/4940374/joe-kaeser-siemens-robots-jobs/
http://time.com/4940374/joe-kaeser-siemens-robots-jobs/
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Statistics_on_small_and_medium-sized_enterprises
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Statistics_on_small_and_medium-sized_enterprises
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Statistics_on_small_and_medium-sized_enterprises
https://doi.org/10.1109/MRA.2018.2879747
https://doi.org/10.1109/MRA.2018.2879747
https://github.com/itk-thrivaldi/Documentation
http://www.ros.org/core-components/
http://www.ros.org/core-components/
https://doi.org/10.1109/TePRA.2013.6556373
http://ceres-solver.org
http://ceres-solver.org

98 bibliography

[11] Y. C. Shiu and S. Ahmad. “Calibration of wrist-mounted
robotic sensors by solving homogeneous transform equa-
tions of the form AX=XB.” In: IEEE Transactions on Robotics
and Automation 5.1 (Feb. 1989), pp. 16–29. issn: 1042-296X.
doi: 10.1109/70.88014.

[12] F. C. Park and B. J. Martin. “Robot sensor calibration: solv-
ing AX=XB on the Euclidean group.” In: IEEE Transactions
on Robotics and Automation 10.5 (Oct. 1994), pp. 717–721.
issn: 1042-296X. doi: 10.1109/70.326576.

[13] H. H. Chen. “A screw motion approach to uniqueness
analysis of head-eye geometry.” In: Proceedings. 1991 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. June 1991, pp. 145–151. doi: 10.1109/CVPR.
1991.139677.

[14] K. Daniilidis. “Hand-Eye Calibration Using Dual Quater-
nions.” In: The International Journal of Robotics Research 18.3
(1999), pp. 286–298. doi: 10.1177/02783649922066213.

[15] M. Feuerstein. Hand-Eye Calibration. Nov. 2009. url: http:
//campar.in.tum.de/Chair/HandEyeCalibration.

[16] D. Condurache and V. Martinusi. “Computing the Loga-
rithm of Homogenous Matrices in SE(3).” In: 1st Interna-
tional Conference “Computational Mechanics and Virtual
Engineering”, COMEC 2005, Brasov, Sept. 2005. isbn: 973-
635-593-4.

[17] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman.
“Averaging Quaternions.” In: Journal of Guidance, Control,
and Dynamics 30.4 (2007), pp. 1193–1197. doi: 10.2514/1.
28949.

[18] G. Wahba. “A Least Squares Estimate of Satellite Atti-
tude.” In: SIAM Review 7.3 (1965), pp. 409–409. doi: 10.
1137/1007077.

[19] F. L. Markley and D. Mortari. “Quaternion attitude esti-
mation using vector observations.” In: Journal of the Astro-
nautical Sciences 48.2 (Apr. 2000), pp. 359–380.

[20] I. Y. Bar-Itzhack and Y. Oshman. “Attitude Determination
from Vector Observations: Quaternion Estimation.” In:
IEEE Transactions on Aerospace and Electronic Systems AES-
21.1 (June 1985), pp. 128–136. issn: 0018-9251. doi: 10.
1109/TAES.1985.310546.

https://doi.org/10.1109/70.88014
https://doi.org/10.1109/70.326576
https://doi.org/10.1109/CVPR.1991.139677
https://doi.org/10.1109/CVPR.1991.139677
https://doi.org/10.1177/02783649922066213
http://campar.in.tum.de/Chair/HandEyeCalibration
http://campar.in.tum.de/Chair/HandEyeCalibration
https://doi.org/10.2514/1.28949
https://doi.org/10.2514/1.28949
https://doi.org/10.1137/1007077
https://doi.org/10.1137/1007077
https://doi.org/10.1109/TAES.1985.310546
https://doi.org/10.1109/TAES.1985.310546

bibliography 99

[21] B. K. P. Horn. “Closed-form solution of absolute orien-
tation using unit quaternions.” In: J. Opt. Soc. Am. A 4.4
(Apr. 1987), pp. 629–642. doi: 10.1364/JOSAA.4.000629.

[22] J. Steuer. “Defining Virtual Reality: Dimensions Determin-
ing Telepresence.” In: Journal of Communication 42.4 (1992),
pp. 73–93. doi: 10.1111/j.1460-2466.1992.tb00812.x.

[23] A. Gilerson. RVIZ Plugin for the HTC Vive. [Online; ac-
cessed 09-June-2019]. url: https://github.com/AndreGilerson/
rviz_vive_plugin.

[24] GitHub user: nairol. Lighthouse Reverse-Engineered Doc-
umentation. [Online; accessed 5-May-2019]. url: https:
//github.com/nairol/LighthouseRedox.

[25] M. A. Fischler and R. C. Bolles. “Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography.” In: Com-
mun. ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782.
doi: 10.1145/358669.358692.

[26] O. Kreylos. “Lighthouse tracking examined.” In: URL:
http://doc-ok.org (2016). [Online; accessed 25-May-2019].
url: http://doc-ok.org/?p=1478.

[27] Steam. SteamVR Tracking Technology Update. [Online; ac-
cessed 15-May-2019]. 2017. url: https://steamcommunity.
com / games / steamvrtracking / announcements / detail /

1264796421606498053.

[28] D. C. Niehorster, L. Li, and M. Lappe. “The Accuracy and
Precision of Position and Orientation Tracking in the HTC
Vive Virtual Reality System for Scientific Research.” In:
i-Perception 8.3 (2017), p. 2041669517708205. doi: 10.1177/
2041669517708205.

[29] M. Borges, A. Symington, B. Coltin, T. Smith, and R. Ven-
tura. “HTC Vive: Analysis and Accuracy Improvement.”
In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Oct. 2018, pp. 2610–2615. doi:
10.1109/IROS.2018.8593707.

[30] HTC Corporation. Tips for setting up the base stations. [On-
line; accessed 05-May-2019]. url: https://www.vive.com/
eu/support/vive-pro-hmd/category_howto/tips-for-

setting-up-the-base-stations.html.

https://doi.org/10.1364/JOSAA.4.000629
https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
https://github.com/AndreGilerson/rviz_vive_plugin
https://github.com/AndreGilerson/rviz_vive_plugin
https://github.com/nairol/LighthouseRedox
https://github.com/nairol/LighthouseRedox
https://doi.org/10.1145/358669.358692
http://doc-ok.org/?p=1478
https://steamcommunity.com/games/steamvrtracking/announcements/detail/1264796421606498053
https://steamcommunity.com/games/steamvrtracking/announcements/detail/1264796421606498053
https://steamcommunity.com/games/steamvrtracking/announcements/detail/1264796421606498053
https://doi.org/10.1177/2041669517708205
https://doi.org/10.1177/2041669517708205
https://doi.org/10.1109/IROS.2018.8593707
https://www.vive.com/eu/support/vive-pro-hmd/category_howto/tips-for-setting-up-the-base-stations.html
https://www.vive.com/eu/support/vive-pro-hmd/category_howto/tips-for-setting-up-the-base-stations.html
https://www.vive.com/eu/support/vive-pro-hmd/category_howto/tips-for-setting-up-the-base-stations.html

100 bibliography

[31] R. Y. Tsai and R. K. Lenz. “A new technique for fully
autonomous and efficient 3D robotics hand/eye calibra-
tion.” In: IEEE Transactions on Robotics and Automation 5.3
(June 1989), pp. 345–358. issn: 1042-296X. doi: 10.1109/
70.34770.

[32] Reddit. Controllers jump when changing base station line of
sight. [Online; accessed 13-May-2019]. 2017. url: https://
www.reddit.com/r/Vive/comments/5tafa5/controllers_

jump_when_changing_base_station_line/.

[33] M. A. Astad. Moved API structs from source to header file
#143. [Online; accessed 07-June-2019]. 2019. url: https:
//github.com/cnlohr/libsurvive/pull/143.

[34] M. A. Astad. button_process: SurviveObject is 0 when pressing
the grip button or when (first) touching the touchpad #141. [On-
line; accessed 07-June-2019]. 2019. url: https://github.
com/cnlohr/libsurvive/issues/141.

[35] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen.
“Automatic grasp planning using shape primitives.” In:
2003 IEEE International Conference on Robotics and Automa-
tion (Cat. No.03CH37422). Vol. 2. Sept. 2003, 1824–1829

vol.2. doi: 10.1109/ROBOT.2003.1241860.

[36] A. Peer, P. Ullich, and K. Ponto. “Vive Tracking Align-
ment and Correction Made Easy.” In: 2018 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR). Mar. 2018,
pp. 653–654. doi: 10.1109/VR.2018.8446435.

[37] S. Chitta. URDF 2.0: Update the ROS URDF Format. [On-
line; accessed 07-June-2019]. url: http://sachinchitta.
github.io/urdf2/.

[38] Open Source Robotics Foundation. SDF specification. [On-
line; accessed 08-June-2019]. 2019. url: http://sdformat.
org/spec.

[39] Steam. Floor Tilt a Hardware or Software Issue? [Online; ac-
cessed 15-May-2019]. 2016. url: https://steamcommunity.
com/app/358720/discussions/0/353916981477560813/

?tscn=1490201536.

[40] Reddit. Fix for Slanted Floor Issue - IMU Recalibration. [On-
line; accessed 15-May-2019]. 2017. url: https : / / www .

reddit.com/r/Vive/comments/6tzthx/fix_for_slanted_

floor_issue_imu_recalibration/.

https://doi.org/10.1109/70.34770
https://doi.org/10.1109/70.34770
https://www.reddit.com/r/Vive/comments/5tafa5/controllers_jump_when_changing_base_station_line/
https://www.reddit.com/r/Vive/comments/5tafa5/controllers_jump_when_changing_base_station_line/
https://www.reddit.com/r/Vive/comments/5tafa5/controllers_jump_when_changing_base_station_line/
https://github.com/cnlohr/libsurvive/pull/143
https://github.com/cnlohr/libsurvive/pull/143
https://github.com/cnlohr/libsurvive/issues/141
https://github.com/cnlohr/libsurvive/issues/141
https://doi.org/10.1109/ROBOT.2003.1241860
https://doi.org/10.1109/VR.2018.8446435
http://sachinchitta.github.io/urdf2/
http://sachinchitta.github.io/urdf2/
http://sdformat.org/spec
http://sdformat.org/spec
https://steamcommunity.com/app/358720/discussions/0/353916981477560813/?tscn=1490201536
https://steamcommunity.com/app/358720/discussions/0/353916981477560813/?tscn=1490201536
https://steamcommunity.com/app/358720/discussions/0/353916981477560813/?tscn=1490201536
https://www.reddit.com/r/Vive/comments/6tzthx/fix_for_slanted_floor_issue_imu_recalibration/
https://www.reddit.com/r/Vive/comments/6tzthx/fix_for_slanted_floor_issue_imu_recalibration/
https://www.reddit.com/r/Vive/comments/6tzthx/fix_for_slanted_floor_issue_imu_recalibration/

bibliography 101

[41] J. D. Bergman. BSD Calibration Values. [Online; accessed 09-
June-2019]. url: https://github.com/cnlohr/libsurvive/
wiki/BSD-Calibration-Values.

https://github.com/cnlohr/libsurvive/wiki/BSD-Calibration-Values
https://github.com/cnlohr/libsurvive/wiki/BSD-Calibration-Values

M
orten A

stad
Vive for R

obotics

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Morten Astad

Vive for Robotics

Rapid Robot Cell Calibration

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl

June 2019

	Dedication
	Foreword
	Abstract
	Sammendrag
	Acknowledgments
	Contents
	1 Introduction
	1.1 Previous work
	1.2 Structure
	1.3 Mathematical notation

	2 Hardware and software
	2.1 Thrivaldi
	2.2 Leica Absolute Tracker AT960
	2.3 Robotic Operating System (ROS)
	2.3.1 Robot geometry library
	2.3.2 MoveIt
	2.3.3 RViz

	2.4 Vive Bridge
	2.5 libsurvive
	2.6 Other libraries
	2.6.1 Eigen
	2.6.2 Sophus
	2.6.3 Ceres solver

	3 Theory
	3.1 Hand-eye calibration
	3.1.1 Problem formulation
	3.1.2 Overview of solutions
	3.1.3 Solving AX = XB on the Euclidean Group

	3.2 Quaternion averaging
	3.3 Closed-form solution of absolute orientation
	3.4 Perpendicular distance from a point to a line

	4 HTC Vive
	4.1 Lighthouse tracking
	4.1.1 Lighthouse tracking 2.0

	4.2 Accuracy and precision
	4.3 Tracking issues
	4.4 Minor issues
	4.4.1 Controller timeout
	4.4.2 Tracker roles

	5 Vive-robot cell setup and calibration
	5.1 Internal Vive calibration
	5.2 Existing calibration procedure
	5.2.1 Generating sample poses for calibration
	5.2.2 Computing the mapping
	5.2.3 Performing the calibration for Thrivaldi

	6 Improving the calibrated system
	6.1 Improving the existing calibration procedure
	6.1.1 Sampling procedure
	6.1.2 Reducing the mapping error
	6.1.3 Nonlinear optimization step

	6.2 Mapping the error with a robot
	6.2.1 Generating a set of sampling poses
	6.2.2 Running the sampling procedure

	6.3 Mapping the error with a laser tracker
	6.3.1 Reasons for the large changes in offset

	6.4 LibSurvive

	7 Rapid Robot Cell Calibration
	7.1 Defining geometric primitives from points
	7.1.1 Plane of finite size
	7.1.2 Box
	7.1.3 Sphere
	7.1.4 Cylinder and Cone

	7.2 Representing a virtual robot cell in ROS
	7.2.1 Simulation Description Format (SDF)

	7.3 Calibration Tool
	7.4 Assembly scenario

	8 Discussion, future work and conclusion
	8.1 Discussion
	8.1.1 Summarizing the tracking issues
	8.1.2 Improving the calibration procedure

	8.2 Future work
	8.3 Conclusion

	Appendix
	A Vive Bridge ROS package README
	B Submitted conference paper to ICCMA 2019
	 Bibliography

