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Abstract

In this report the findings of experimental tests and system identification of the milliAmpere
ferry is presented. The focus of this report is to identify a three degree of freedom ship model
that describes the dynamics of the ferry, a thruster model describing propeller and azimuth
dynamics and a wind load model describing the wind forces on the ferry. By using optimal
control theory, a simulation-based identification method is implemented in Matlab and used to
identify the models. The optimal solution is found by defining an optimal control problem and
then transcribing it into an nonlinear program and solving it using an interior point method. The
identification method is tested and verified by using simulation data obtained from simulating
a grey box model. The method is further validated by identifying two dynamic ship models
for the milliAmpere ferry, and models for its thrusters. Their performance is verified by cross
validation. In addition the wind model is used to find the operating capabilities of the ferry.
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Sammendrag

I denne avhandlingen presenteres funnene av eksperimentelle tester og systemidentifikasjon av
milliAmpere fergen. Fokuset i denne rapporten er identifisere en skipsmodell med tre frihets-
grader som beskriver fergens dynamikk, en thrustermodell som beskriver propell og asimut-
dynamikk og en vindlastmodell som beskriver vindkraften som virker påferga. Ved åbruke
optimal kontrollteori implementeres en simuleringsbasert identifiseringsmetode i Matlab og
brukes til åidentifisere modellene. Den optimale løsningen er funnet ved ådefinere et optimalt
kontrollproblem og ved åtranskribere det til et ikke-lineært program og løse det ved hjelp av
interior-point metode. Identifikasjonsmetoden er testet og verifisert ved åbruke simuleringsdata
hentet fra en grey-box modell. Metoden er ytterligere validert ved åidentifisere to dynamiske
skipsmodeller for ferga, og modeller for dens thrustere. Modellenes ytelse er verifisert ved
kryssvalidering.
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Chapter 1
Introduction

1.1 Motivation

Autonomous ships are gaining interest rapidly in both research and commerce. A lot of money
is being invested in this field and the global interest is increasing. Yara with KONGSBERG will
be releasing a fully electric container ship in 2020 and it is planned to be fully autonomously
operational by 2022 (Skredderberget, 2018). Figure 1.1 shows an illustration of the planned
container ship. Rolls-Royce with Finferries recently did a demonstration with a car ferry in
Finland, which navigated fully autonomously on its voyage (Rolls-Royce, 2018). Norway is a
coastal country with numerous fjords, river and islands which needs crossings and infrastructure
related to transportation of goods and people. In 2017 it was approximately 150 ferry connec-
tions in Norway, (Bitar, 2017). Also across the world there are numerous urban areas that are
built around canals, Figure 1.2 shows an illustration of the small urban passenger ferry concept.
A bridge is an expensive investment with high maintenance cost and also an obstacle for marine
traffic. Instead by using a fully electric autonomous ferry, flexible urban transportation at low
cost and which is more environmentally friendly can be achieved. An accurate mathematical
description of a ships dynamics is a necessity in order to make a ship autonomous.

In the city of Trondheim in Norway, it is planned to have a small passenger ferry which will
replace the need of a bridge. The Autoferry project, at NTNU, with the vessel milliAmpere,
is catching publicity in the media with its goal to make an ”on demand” fully autonomous
passenger ferry (Stensvold, 2018), (Heggdal, 2016).

1



Chapter 1. Introduction

Figure 1.1: Illustration of the autonomous, zero-emission container vessel Yara Birkeland. Courtesy of
Yara International ASA.

Figure 1.2: Illustration of the new urban ferry in Trondheim. Courtesy of Petter Mustvedt, Institute of
Design, NTNU.
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1.1 Motivation

Figure 1.3: Me, Emil Thyri and Brage Sæther out performing experiments on the milliAmpere, on the
30.05.2019. Courtesy of Brage Sæther.

Figure 1.4: Map showing the planned route for the autonomous ferry in Trondheim. Courtesy of Egil
Eide, NTNU.

The milliAmpere ferry is an autonomous experimental platform with the purpose to be the
foundation for the development of technology for a full scale autonomous urban ferry that will

3



Chapter 1. Introduction

transfer passengers safely over Nidelva in Trondheim. Figure 1.4 shows the planned route for
the ferry. For further research on milliAmpere and on its way to become fully autonomous it is
necessary to have an accurate mathematical description of its dynamics, to be used for control
and simulation purposes.

1.2 Related Work

There exists several methods for identifying model parameters. A common approach is to sepa-
rate transient elements and steady state elements and use linear regression to find an estimate for
the parameter values. In (Eriksen and Breivik, 2017) a non-first-principles model is identified.
The model is describing the motion of a high-speed autonomous surface vehicle. The parameter
values are found by using weighted linear least squares regression with a regularization term to
penalize large parameter values. The model is verified by comparing simulated vessel response
and experimental data, and is used in a controller with feed-forward terms. In (Fossen et al.,
1996) an offline parallel extended Kalman filter (EKF) algorithm is used to estimate the param-
eters for a nonlinear dynamic positioned ship model. Three different ship maneuvers is used in
a decoupled identification scheme. The identified parameters in the first scheme is used as input
in the next scheme until all parameters are identified. The method is verified by implementing
and testing it on a supply vessel and comparing the results with experimental data. In (Taylor,
2000) a linear time invariant model of a Burke Class Destroyer is identified by using a online
parameter estimator. By using an EKF the linear damping parameters and hydrodynamic coeffi-
cients are estimated. Experimental data is generated by conducting maneuvers with a nonlinear
model of the ship. The identified model is then validated by using it in model based control
design.

1.3 Problem Description

Through experimental work and system identification techniques, an accurate mathematical
description of the dynamics of the milliAmpere ferry and its actuators should be developed. In
particular the following models must be identified:

• Fully-Coupled ship model

• Surge-decoupled ship model

• Azimuth angle model

• Motorspeed model

• Wind-load model

With these models a foundation for future work regarding prototyping, control and simulation is
established. By looking into optimization theory and combining it with classical identification
techniques, a tool for system identification should be made, verified and put into use.

4



1.4 Contributions

1.4 Contributions
A identification method which is based on optimal control theory is implemented and tested on
experimental data. The method is able to identify a fully-coupled 3DOF model. The models are
well suited to be used for both control and simulation purposes. The dynamic ship models are
presented by a fully coupled and a surge-decoupled model. The thruster dynamics is described
by a first order model for the propeller dynamics and a sigmoid-function-model representing
the azimuth dynamics. The presented models are verified by cross validation. In addition to
the ship and thruster dynamics, a wind model based on the ship’s projected area is proposed. A
total of three experiments (Appendix A and B) are designed and performed on the ferry which
provide the experimental data used to identify and verify the models. Also, during the analysis
of the experimental data a fault connected to the thruster control system was discovered and
corrected.

1.5 Outline
This thesis is organized in the following manner: In Chapter 2 background theory about ship
models, thruster models and wind model structures is presented, followed by system identifica-
tion theory. In Chapter 3, the experimental results from the system identification are presented.
Last, in Chapter 4 the conclusion and further work is presented.
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Chapter 2
Background Theory

In Section 2.1 the theory behind the ship model is given. Followed by the thruster models in
Section 2.2 and wind load model in section 2.3. Finally, system identification theory is presented
in Section 2.4.

The notation for marine vessels used in this thesis is adapted from SNAME (1950) and is
put together with the vectorial notation by (Fossen, 2011). The resulting ship model is known
as the ”standard model” for marine control systems design and is well suited for computer
implementation and control systems due to useful model properties.

2.1 Ship Model
Mathematical models are used to describe the motion of physical systems under the influence
of external forces and is a powerful tool when designing control systems, studying stability
properties and for estimation. A 3DOF nonlinear model is proposed together with a thruster
model describing the thruster dynamics and a wind model describing environmental forces.
The resulting model will be used for simulation, prediction and control. Ship models vary in
complexity, and the complexity is dependent on the usage of the model. Different models are
used in seakeeping and maneuvering and the number of degrees of freedom is an important
aspect. The following model is based on maneuvering theory (Fossen, 2011), and is a nonlinear
mass-damper system which describes coupled motion in 3DOF with environmental forces and
moments. The milliAmpere ferry is operating in conditions where waves will not have a notice-
able impact on the behaviour of the vessel and wave forces are therefore omitted in the model.
The following equations form the basis of a dynamical ship model:

η̇ = R(ψ)ν (2.1)

Mν̇ +C(ν)ν +D(ν)ν = τ + τwind (2.2)

where the pose, velocity and control-action vectors are:

η = [x, y, ψ]T (2.3)

ν = [u, v, r]T (2.4)

τ = [X, Y,N ]T (2.5)

7



Chapter 2. Background Theory

and the rotation matrix:

R(ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 . (2.6)

Figure 2.1: Illustration of the different DOFs for a ship. Courtesy of Fossen (2011).

The pose vector η is defined in North-East-Down (NED) coordinate system. The x axis points
towards true north, y axis towards east and z is pointing downwards. Since milliAmpere will
be navigating in a local area, an Earth fixed tangent plane on the surface is used for navigation.
This is referred to as flat earth navigation (Fossen, 2011), and one can assume that this is an
inertial frame. The linear and angular velocities, ν are defined in body-fixed reference frame,
with ob in center of object (CO). This is a moving coordinate frame that is fixed to the vessel,
where xb is in the longitudinal axis, yb the transverse axis and z the normal axis from top to
bottom. The 3DOF, that is surge, sway and yaw can is illustrated in Figure 2.1.

A ship that accelerates or decelerates through water must move or deflect some volume of
the surrounding water as it moves through it. This is known as hydrodynamic added mass, and
the effective mass is considered to be the sum of the body mass and the hydrodynamic added
mass. This concerns both the inertia matrix M and the Coriolis and Centripetal matrix C(ν),
such that:

M = MRB +MA (2.7)

C(ν) = CRB(ν) +CA(ν) (2.8)

The inertia matrix is positive definite and constant, and is defined as:

M :=




m−Xu̇ −Xv̇ −myg −Xṙ

−Yu̇ m− Yv̇ mxg − Yṙ
−myg −Nu̇ mxg −Nv̇ Iz −Nṙ


 (2.9)
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2.1 Ship Model

From a controller and simulation perspective, only the sum of mass and added mass is impor-
tant, also when identifying parameters experimentally it is difficult to separate inertia param-
eters from added mass parameters, thus the mass and added mass term can be added together
into one value. The inertia matrixM then becomes

M =



m11 m12 m13

m21 m22 m23

m31 m32 m33


 . (2.10)

The Coriolis and Centripetal matrix C(ν) can be expressed as a function of the inertia matrix
M such that it always will be skew-symmetric, that is

C(ν) = −C(ν)T (2.11)

where

C(ν) =




0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0


 (2.12)

and

c13(ν) = −m21u−m22v −m23r (2.13a)
c23(ν) = m11u+m12v +m13r (2.13b)
c31(ν) = −c13(ν) (2.13c)
c32(ν) = −c23(ν). (2.13d)

Hydrodynamic damping is defined as the sum of linear viscous damping and nonlinear damp-
ing, where the nonlinear damping terms are based on cross-flow drag theory and second-order
modulus functions, (Fossen, 2011). It is convenient to write the total hydrodynamic damping as

D(ν) = DL +DNL(ν) (2.14)

where DL is the linear damping matrix and DNL(ν) the nonlinear damping matrix. The hy-
drodynamic damping matrix is positive definite and defined as:

D(ν) =



d11(ν) d12 d13
d21 d22(ν) d23(ν)
d31 d32(ν) d33(ν)


 (2.15)
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where

d11(ν) = −Xu −X|u|u|u| −Xuuuu
2 (2.16a)

d12 = −Xv (2.16b)
d13 = −Xr (2.16c)
d21 = −Yu (2.16d)

d22(ν) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv2 (2.16e)
d23(ν) = −Yr − Y|v|r|v| − Y|r|r|r| (2.16f)

d31 = −Nu (2.16g)
d32(ν) = −Nv −N|v|v|v| −N|r|v|r| (2.16h)
d33(ν) = −Nr −N|v|r|v| −N|r|r|r| −Nrrrr

2. (2.16i)

The presented model has properties such as symmetry, skew-symmetry and positive definite-
ness which are key elements in nonlinear control design and estimation theory. It is also a fully
coupled model where it is assumed to be coupled effects in all DOF. However, under the as-
sumption that the origin CO coincides with the CG, that is [xg, yg]

T = 0, and by looking at
symmetry considerations, the expressions forM , C(ν) andD(ν) can be simplified. By using
symmetry, it can be assumed that surge is decoupled from sway and yaw and the system equa-
tions reduces, such that inertia matrix becomes:

M =



m11 0 0

0 m22 m23

0 m32 m33.


 (2.17)

and Coriolis and Centripetal matrix becomes

C(ν) =




0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0


 (2.18)

where

c13(ν) = −m22v −m23r (2.19a)
c23(ν) = m11u (2.19b)
c31(ν) = −c13(ν) (2.19c)
c32(ν) = −c23(ν). (2.19d)

The damping matrix becomes
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2.2 Thruster Model

D(ν) =



d11(ν) 0 0

0 d22(ν) d23(ν)
0 d32(ν) d33(ν)


 (2.20)

where the elements in (2.20) are the same as in (2.16a), (2.16e), (2.16f), (2.16h) and (2.16i).
Even though there will be coupling terms in all DOF, many of these are considered so small that
they can be neglected. However, for small vessels such as milliAmpere coupled effects will have
a greater impact on the dynamics than for large vessels. Therefore both the fully coupled system
and the surge-decoupled system will be used as candidate models for the system identification
method. The resulting models will be verified and their performance compared in Chapter 3

2.2 Thruster Model
To develop a simulation model of the milliAmpere ferry it is important to know the dynamics
of the thrusters as the generated force is the main contributor to control forces on a vessel. The
actuator system on the milliAmpere ferry consists of two azimuth thrusters, one at the front and
one aft. at the vessel. The thruster configuration can be seen in Figure 2.2. The thruster forces
are defined by azimuth angles α = [α1, α2]

T and thrust force F = [F1, F2]
T . The propellers

are fixed-pitched, therefore the force components are mainly dependent on the rotational speed
of the propeller.

Figure 2.2: Thruster configuration of the milliAmpere ferry. Courtesy of Torben et al. (2019).

Thrust Transformation
The milliAmpere ferry is categorized as a fully-actuated vessel, as it has control inputs in all
3DOF (Fossen, 2011). In the system identification method it is necessary to know the control-
action vector τ in (2.2). The experimental data consist of measurements of azimuth angle and
thrust, where the latter is obtained by a mapping between rpm to Newton Appendix D. This
does that a transformation is needed. The transformation can be expressed as:

τ = T (α)F (2.21)

where T (α) is the thrust configuration matrix, α is the azimuth angles and F the thrust force.
The control-action vector is obtained by decomposing the thrust forces in F . The thrust config-
uration matrix for the milliAmpere then becomes:
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Chapter 2. Background Theory

T (α) =




cosα1 cosα2

sinα1 sinα2

Lx sinα1 Lx sinα2


 (2.22)

where Lx is the length from CO to the center of the thrusters.

Figure 2.3: Two azimuth thruster located fore and aft on the milliAmpere ferry. Courtesy of Egil Eide,
NTNU.

Azimuth Angle

By looking at experimental data obtained in (Pedersen, 2018), the dynamics for the azimuth
angle have a behaviour that is S-shaped. This behaviour is seen in Figure 2.4. The sigmoid-
function is a function that is well known for having the characteristic S-shaped curve. The
sigmoid function can be expressed as:

S(x) =
x√

x2 + ε2
. (2.23)

By using (2.23), the dynamics of the azimuth angle can be written as:

α̇ = Kα
(αd − α)√

(αd − α)2 + ε2
(2.24)

where α is the azimuth angle, αd is the desired azimuth angle, Kα > 0 is a constant repre-
senting the rotational transmission velocity, and ε is a tuning parameter to adjust the transient
convergence behavior. When saturated, that is |(αd − α)| � ε, the slope is defined by Kα.

12



2.3 Wind Load Model

Figure 2.4: Experimental data of azimuth angles obtained in (Pedersen, 2018).

Motor Speed
The propulsion system consists of an electric motor, shaft and propeller. It is typical to assume
that the dynamics of the electrical parts of the system are much faster than the propeller shaft
dynamics, and therefore it can be neglected. The thrust is provided by the rotating propeller
and the modelling of thrust produced by a propeller is a complicated task, mainly because of
the numerous thrust losses that occur when a propeller is rotating through a fluid. As stated
in (Pivano, 2008) it is difficult to develop a finite-dimensional analytic model from the laws of
physics. In this thesis it is focused upon identifying a model that reflects the dynamic behaviour
of the actuators of the milliAmpere ferry, that is given by experimental data. For this it is pro-
posed a non-first-principles motor-speed model. This is also encouraged by the experimental
data as the obtained motor-speed data has a relatively large sampling time of h = 0.42s, which
makes it difficult to obtain reliable transient behaviour of the motor-speed dynamics. By exper-
iments a mapping between motor-speed and force is obtained to express the produced thrust.
This mapping will also implicitly take the propeller fluid-dynamics, hydrodynamic added mass
and other aspects into account. The proposed motor speed model is expressed as

ω̇ = Kω(ωd − ω), (2.25)

where ω is rotational the motor speed and ωd is the desired motor speed. The parameter coeffi-
cient Kω > 0 is representing inertia of shaft, electric motor and propeller, hydrodynamic added
mass and other physical aspects. This coefficient will be identified experimentally.

2.3 Wind Load Model
During execution of prior experiments on milliAmpere it was experienced that it was very prone
to wind forces. As seen in Figure 2.3 milliAmpere has a flat bottom which often gives poor
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Chapter 2. Background Theory

directional stability, and vulnerable to wind disturbances.
Wind can be defined as the natural movement of air relative to the earth surface. Wind

induced loads on a surface are in general time dependent due to natural fluctuations in the air
velocity. However, in many situations it is sufficient to know the mean wind force and a simpli-
fied model is often enough to be used for simulation and control. The model presented in this
section is a coarse wind load model designed to be used for control and simulation purposes
of a marine vessel, such that τwind in (2.2) is known. The wind model is based on the ship’s
projected area. As described in (Fossen, 2011), wind forces and moment in 3DOF, on a moving
marine vessel can be expressed as:

τwind = qa




CX(γrw)AFw
CY (γrw)ALw

CN(γrw)ALwLoa


 (2.26)

where the dynamic wind pressure is

qa =
1

2
ρa,TV

2
rw. (2.27)

The ρa,T is the mass density of air at a given temperature T and the relative mean wind speed is
defined as:

Vrw =
√
u2rw − v2rw (2.28)

with the relative velocities defined by vessel and wind velocities such that:

urw = u− uw (2.29a)
vrw = v − vw. (2.29b)

The wind direction relative to the vessel is described by the angle of attack which can be calcu-
lated using the relative velocities

γrw = −atan2(vrw, urw) (2.30)

The non-dimensional wind coefficients CX(γrw), CY (γrw) and CN(γrw) in (2.26) are numeri-
cally computed using the expressions:

CX(γw) = −CDlAF
cos(γw)

1− δ
2
(1− CDl

CDt
sin2(2γw)

(2.31a)

CY (γw) = −CDt
sin(γw)

1− δ
2
(1− CDl

CDt
sin2(2γw)

(2.31b)

CN(γw) = (
sL
Loa
− 0.18(γw −

π

w
))CY (γw) (2.31c)
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2.3 Wind Load Model

The longitudinal and lateral resistance coefficients CDlAF , CDt and cross force coefficient δ
are chosen by using row ”8. Ferry” in the table presented in Figure 2.5, and

CDl = CDlAF (γw)
AFw
ALw

(2.32)

The frontal and lateral surface area of a vessel are denoted by AFw and ALw while Loa is
the length over all. For the milliAmpere ferry a 3D computer-aided design model is used to
calculate these parameters. These can be found in Table 2.1.

Parameter Value

AFw 2.9m2

ALw 8.6m2

Loa 5m
sL 0m

Table 2.1: Wind-model parameters for the milliAmpere ferry.

Figure 2.5: Coefficients of lateral and longitudinal resistance, cross-force and rolling moment. Courtesy
of Fossen (2011).

This concludes the wind load model. By using the presented wind model a capability plot is
made. A capability plot visualizes the limits of the wind speeds a vessel can operate in. The
capability plot for milliAmpere can be seen in Figure 2.6. The capability plot shows that it can
handle very high wind speeds directly in surge, but can only handle wind speeds up to 12m

s
in

the range [45◦, 135◦] and [225◦, 270◦].
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Chapter 2. Background Theory

Figure 2.6: Capability plot of the milliAmpere ferry. The line represent maximum relative wind-speed
at given angle.
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2.4 Model Identification

2.4 Model Identification
In this section the background theory for the experiment design and data processing is presented.
Followed by the theory for the optimization based system identification method.

Design of Experiments

To be able to get the necessary information about the dynamics of the vessel and thrusters, it
is important to have an experiment that is well suited. As described in (Eriksen and Breivik,
2017), a similar structure for a test plan is developed for experiments on milliAmpere. This can
be found in Appendix A and Appendix B. The experiments need to produce data that consists
of both transient and steady state behaviour of the vessel and thrusters. To be able to produce
accurate parameters, the data gathered must be representative of the whole operating space.
For the dynamics of the vessel several tests are constructed which gives data of both coupled
and non coupled motion. As the diagonal damping terms are of 3rd-order, a minimum of three
steady state values must be obtained in each DOF. The commanded input is given in percent
and the implemented control-allocation is used to calculate desired angles and motor speed. For
the thruster dynamics, seperate tests are constructed for the azimuth angles and motor speeds.
The azimuth angle is given in degrees, and motorspeed in revolutions per minute (rpm).

Data Extraction

From the experiments, experimental data is collected in datasets. One experiment includes
several datasets which are to be used to identify the different models.

When processing the data it was noted that the collected data in the datasets have differ-
ent sampling times. This will cause problems when they are used together in the identification
method. Data for velocity have a sampling time of h = 0.05 seconds and data for propeller
speed have sampling time of 0.42 seconds, while data of azimuth angle are sampled every 0.1
seconds. By interpolating the data, they are are fitted to the sampling time, h = 0.1 seconds.
Under the implementation and testing of the identification method it was noted that it used
relatively long time when identifying the coupled ship model due to the large number of deci-
sion variables and model parameters. To lower the calculation cost it was decided to use the
sampling time h = 0.1 for all datasets by interpolation. The method used for interpolating is
Matlab’s ”linear”, which linearly interpolates the values at neighboring grid points. Measure-
ment points outside the domain is evaluated with an extrapolation strategy equal to the one used
in interpolation.

Each dataset contains data of velocities ν̄ = [ū, v̄, r̄]T , rotational velocity for the propellers
ω̄ = [ω̄1, ω̄2]

T and azimuth angles for the thrusters ᾱ = [ᾱ1, ᾱ2]
T . Note that symbols with a

bar, as x̄, indicates that the value is experimentally obtained and not estimated.
Data from multiple experiments are gathered and put in the same set. Datasets for each of

the three models are built. As the different models requires different data it is convenient to
extract the necessary data into new sets on the form:

Dk = {(x̄T10, x̄T11, ...x̄T1N1
, x̄T20, x̄

T
21, ..., x̄

T
JNJ

),

(ūT10, ū
T
11, ..., ū

T
1N1

, ūT20, ū
T
21, ..., ū

T
JNJ

)} (2.33)
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where J is the number of datasets used and N is the length of each dataset. By using (2.33)
a set for ship model, azimuth model and motor-speed model is constructed:

D1 = {(ν̄T10, ν̄T11, ...ν̄T1N1
, ν̄T20, ν̄

T
21, ...ν̄

T
JNJ

),

(ūT10, ū
T
11, ..., ū

T
1N1

, ūT20, ū
T
21, ..., ū

T
JNJ

)} (2.34a)

D2 = {(ᾱT10, ᾱT11, ...ᾱT1N1
, ᾱT20, ᾱ

T
21, ...ᾱ

T
JNJ

),

(ᾱTd10 , ᾱ
T
d11
, ..., ᾱTdJN1

, ᾱTd20 , ᾱ
T
d21
, ..., ᾱTdJNJ

)} (2.34b)

D3 = {(ω̄T10, ω̄T11, ...ω̄T1N1
, ω̄T20, ω̄

T
21, ...ω̄

T
JNJ

),

(ω̄Td10 , ω̄
T
d11
, ..., ω̄Td1N1

, ω̄Td20 , ω̄
T
d21
, ..., ω̄TdJNJ

)} (2.34c)

where (2.34a) through (2.34c) are the data sets used for the identification of ship model,
azimuth model and motor speed model, respectively. Before the data is being used in the iden-
tification analysis a wild point filtering is done which gives an error if a wild point is found in
one of the datasets. A wild point is defined by that the magnitude of the change is larger than a
given value, that is

wk > δmax (2.35)

where
wk := xk+1 − xk, ∀ k ∈ [0, 1, ..., N − 1] (2.36)

Problem Formulation
The system identification problem can be formulated in a way that is similar to model predictive
control (MPC). By simulating the dynamics of a candidate model at each timestep a dynamic
optimization problem is solved. The same problem formulation is being used for the ship and
thruster models, therefore a general notation will be used here. The bar notation, x̄, is used for
values that comes from experimental data and x is representing decision variables while the
parameter vector P is representing model parameters that is to be identified. By formulating
the problem as an Optimal Control Problem (OCP), it can be expressed as

min
P ,x

∫ tf

0

L(x(t), x̄(t),P ) dt (2.37a)

s.t ẋ(t) = f(x(t), ū(t),P ) ∀t ∈ [0, tf ] (2.37b)
h(x(t)) ≤ 0 ∀t ∈ [0, tf ]. (2.37c)

(2.37d)
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where the solution is a set of parameters P that minimizes the objective function, which is the
weighted least squares (Hastie, 2009):

L(x(t), x̄(t),P ) = (x(t)− x̄(t))TW (x(t)− x̄(t)) (2.38)

where the weight coefficients Wmn > 0 such that, W = diag(W11,W22, ...,Wmn). A problem
can be defined as a convex program if the objective function is convex, the equality constraints
are linear and inequality constraints concave (Nocedal and Wright, 2006). The objective func-
tion (2.38) is convex and has a global minimum at x = x̄ thus there is a set of P that gives
a global optimal solution. However the equality constraint (2.37b) is nonlinear making this a
nonconvex problem. This implies that it exists many local minimums making the solution sen-
sitive for the initial guesses for P . The initial guesses should therefore be chosen such that the
solution converges to a global minimum. The approach used for the initial guess is explained in
for the different models in Chapter 3.

Multiple Shooting

To find a solution of the OCP (2.37) a numerical approach is used. By using multiple shooting
the OCP is transcribed into an NLP. The key idea of multiple shooting is that the integration
function can be made arbitrarily linear by reducing the integration time. By discretizing the
input variables u on the time grid [t0, t1, ..., tN ], the function f(x, ū) is integrated on the time
intervals [tk, tk+1]. The integrator function then becomes F (xk, ūk). This will form a trajectory
which is physically meaningful when the shooting gaps are closed, that is

F (xk, ūk)− xk+1 = 0, k ∈ [0, 1, .., N ]. (2.39)

It can be seen in Figure 2.7 how the trajectory is forming as the shooting gaps are closing (blue
line).

Figure 2.7: Showing how the integration is performed on the time intervals with step time h = 0.1.
From (Gros, 2017).
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The result is a sparse NLP on the form

min
w

φ(w, w̄) (2.40a)

s.t g(w) = 0 (2.40b)
h(w) ≤ 0. (2.40c)
wlb ≤ w ≤ wub (2.40d)
w(0) = w̄(0) (2.40e)

where the decision vectorw = [xT10,x
T
11, ...,x

T
1N1

,xT20,x
T
21, ...,x

T
JNJ

,P T ]T contains the de-
cision variables xjk and model parameters P . The experimental data vector w̄ is obtained from
(2.33). The shooting constraints (2.39) are included in (2.40b) and are integrated with Runge
Kutta method of 4th order (RK4), such that

x11 = F (x10, ū10) (2.41)

g(w) =




F (x10, ū10)− x11

...
F (x1N1−1, ū1N1−1)− x1N1

F (x20, ū20)− x21

...
F (xJNJ−1, ūJNJ−1)− xJNJ




= 0. (2.42)

The objective function from (2.38) becomes

φ(w, w̄) =
J∑

j=1

Nj∑

n=1

(xjn − x̄jn)TW j(xjn − x̄jn) (2.43)

This concludes the formulation of the identification method. It is implemented using the CasADi
(v.3.4.5) framework (Andersson et al., 2018) together with Matlab vR2018b.The NLP is solved
using the interior point method Interior Point OPTimizer (IPOPT) (Wächter and Biegler, 2005).
The nonlinear solver is an interior point algorithm, and is used with a Eclipse Public License,
which is an open source software license. The solution of the NLP provides the optimal set
of estimated w and model parameters P . The measurement data may be influenced by noise.
Noise with zero mean is filtered by the loss function when the size of the data set is large.

Regularization
When an analysis corresponds too closely to a dataset the problem with overfitting can occur.
Overfitting is unwanted due to the lack of predictive robustness of the identified model. The
predictive abilities of the model gives good results for data used in the analysis but tends to give
large prediction errors for unseen data, thus it looses generality. This tends to occur when the
ratio between model parameters and data points becomes too small. Regularization introduces
a penalty term to the objective function with the purpose to penalize large parameter values.
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This results in a more general model that captures the underlying dynamics but not noise and
data errors. By introducing a regularization term to the objective function, (2.43) becomes

φ(w, w̄) =
J∑

j=1

Nj∑

n=1

(xjn − x̄jn)TW (xjn − x̄jn) + λR(P ) (2.44)

where R(P ) is the L2 norm ||P ||2 also known as ridge regression. The regularization weight
λ > 0 is a hyperparameter and is defined by cross validation (CV).

Cross Validation
Cross validation is a widely used method for estimating prediction errors and to validate the
performance of a model. By testing the model on datasets not used in the identification process
statistical errors like overfitting can be detected. CV can also be used to find the value of hyper-
parameters. These are parameters that has to be defined before the final parameter estimation
is performed. The regularization weight λ is a hyper parameter and can be determined by CV.
The principle is to divide available data into a training set and validation set. The training set is
used for parameter estimation and the validation set is used to evaluate the loss. By minimiz-
ing the loss with respect to λ, the value of λ is defined by the value giving the least loss after
all data has been though training and validation set. In sparse data sets it is recommended by
Hastie (2009) to use K-Fold CV which splits the data into equal sized parts. A special case of
K-fold CV is ”leave one out”, which evaluates all combinations of leaving one sample for the
validation set. This can also be used to verify a model’s performance.
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Chapter 3
System Identification Results

In this chapter, the theory presented in Chapter 2 is put into use. First a grey box model is
identified, and by comparing estimated to actual model parameters the identification method is
verified. In Section 3.3 the results of the ship model identification is is presented. The results
for the thruster dynamics is presented in Section 3.6 and 3.7. By using the identified models
and testing them with experimental data not used in the identification part, a cross validation is
performed to give an overview of the model’s performance.

3.1 Grey Box Simulation
A greybox model is implemented in Matlab using the model parameters presented in (Lyn-
gstadaas et al., 2018), shown in Table 3.1. A recap from Chapter 2. The ship model is expressed
as

Mν̇ +C(ν)ν +D(ν)ν = τ (3.1)

withM , C(ν) andD(ν) defined by the surge-decoupled structure given by

M =



m11 0 0

0 m22 m23

0 m32 m33.


 (3.2)

C(ν) =




0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0


 (3.3)

D(ν) =



d11(ν) 0 0

0 d22(ν) d23(ν)
0 d32(ν) d33(ν)


 (3.4)

The grey-box model is implemented with two thrusters located fore and aft, 0.5m from CO.
The thruster dynamics are ideal with the same control allocation that is used on the milliAmpere
ferry. Max thrust per thruster is set to be 100N . The control allocation is an implementation of
the work presented in (Torben et al., 2019).
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According to the test plan Appendix A, experiments are simulated with the grey-box model
and simulation data is gathered in sets. A total of 15 maneuvers are simulated and the simulation
data are created by using a RK4 method. It is also added uniformly distributed noise in the
interval [−0.05, 0.05] to the simulation data. By structuring a NLP as in section 2.4 and solving
with the IPOPT method a solution is found.

3.1.1 Problem Formulation
By using the NLP as it is defined in (2.40) with the velocities ν = [u, v, r] and input forces and
moment τ̄ = T (ᾱ)F̄ , the problem formulation for the greybox model becomes

min
w

φ(w, w̄) (3.5a)

s.t g(w) = 0 (3.5b)
h(w) ≤ 0. (3.5c)
wlb ≤ w ≤ wub (3.5d)
w(0) = w̄(0) (3.5e)

where

φ(w, w̄) =
J∑

j=1

Nj∑

n=1

(νjn − ν̄jn)TW j(νjn − ν̄jn) + λR(P ) (3.6a)

w = [νT10,ν
T
11, ...,ν

T
1N ,ν

T
20,ν

T
21, ...,ν

T
JNJ

, P T ]T (3.6b)

w̄ = [ν̄T10, ν̄
T
11, ...ν̄

T
1N1

, ν̄T20, ν̄
T
21, ...ν̄

T
JNJ

]T (3.6c)

and the equality constraints

g(w) =




F (ν10, τ̄ 10)− ν11

...
F (ν1N1−1, τ̄ 1N1−1)− ν1N1

F (ν20, τ̄ 20)− ν21

...
F (νJNJ−1, τ̄ JNJ−1)− νJNJ




= 0 (3.7)

The model parameters to be identified are:

P = [m11,m22,m23,m32,m33, Xu, X|u|u, Xuuu,

Yv, Y|v|v, Yvvv, Y|r|v, Yr, Y|v|r, Y|r|r, Nv, N|v|v, N|r|v, Nr, N|r|r, Nrrr, N|v|r] (3.8)

For the greybox model the weight matrix W is weighted diagonal ones and hyperparameter
λ = 0.

3.1.2 Identification Results
The simulation data of the grey-box model is gathered in a dataset and used in the identification
method. The identification results for the grey-box model are presented in Figure 3.1, showing
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the estimated and simulated velocities. The identified parameters are presented in Table 3.1.
Figure 3.2 shows the simulated model input.

Figure 3.1: Simulated and estimated velocities after the parameters has been identified for the grey-box
model.
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(a) Thrust and azimuth angle for thruster 1.

(b) Thrust and azimuth angle for thruster 2.

Figure 3.2: Simulated data used in the parameter estimation for the grey-box model. Force and azimuth
angle for the two thrusters on the grey-box model.
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3.2 milliAmpere

Parameter Original Value Estimated Value Unit

m11 131.182 131.095 kg
m22 156.810 156.682 kg
m23 0.525 0.457 kg
m32 0.157 0.151 kg
m33 75.967 75.910 kgm2

Xu −2.262 −2.379 kg
s

X|u|u 0.000 0.000 kg
s

Xuuu −8.557 −8.532 kg
s

Yv −4.673 −4.317 kg
s

Y|v|v −0.398 −1.822 kg
s

Yvvv −313.300 −312.217 kg
s

Y|r|v −0.805 −1.822 kg
s

Yr −7.250 −7.224 kg
s

Y|v|r −0.845 −1.113 kg
s

Y|r|r −3.450 −3.481 kg
s

Nv 0.000 0.000 kg
s

N|v|v −0.209 −0.0342 kg
s

N|r|v 0.08 0.158 kg
s

Nr −6.916 −6.905 kg
s

N|r|r −4.734 −4.825 kg
s

Nrrr −0.147 −0.068 kg
s

N|v|r 0.08 0.075 kg
s

Table 3.1: Grey-box model parameter values and estimated parameter values.

3.1.3 Discussion
By comparing the original parameter values to the estimated values in Table 3.1 it can be seen
that the system identification method is able to find the underlying model structure with added
noise. The parameters are not identical due to the added noise but lie very close to the original
ones. These results also indicates that the experiments presented in Appendix A are sufficient
regarding to collect enough information about the system to be able to identify the model pa-
rameters.

3.2 milliAmpere
milliAmpere is an autonomous experimental platform with the purpose of testing and devel-
oping autonomous systems. The ferry has a rectangular shaped symmetric hull design. The
propulsion system consists of two azimuth thrusters located at the centerline fore and aft of the
vessel, 1.8m from CO. The vessel is fully electric and has a battery bank of 14.4kWh. The
specification for the milliAmpere ferry can be found in Table 3.2.
Throughout the semester one week was intended to be used to perform experiments on the
milliAmpere ferry. The experiments took place at the harbor basin near ”Brattørkaia” in Trond-
heim. The ferry was launched on the 07.04.2019 after having rewiring and maintenance work

27



Chapter 3. System Identification Results

Figure 3.3: Me, Emil Thyri and Brage Sæther out performing experiments on the milliAmpere ferry at
the harbor basin Brattørkaia on the 30.05.2019. Courtesy of Brage Sæther.

Component Description

Hull length 5m
Hull Width 2.8m
Propulsion 2× 2kW Azimuth Thrusters
Battery 6× 2.4kWh
Positioning VECTOR VS330, GNSS and RTK
Sensors Xsens MTi-10 IMU, Radar, Lidar

Table 3.2: milliAmpere spesifications.

during the winter. As the experiments were very dependent on having good weather conditions,
several test days were postponed. In May it was an incident including the milliAmpere ferry
which led to usage prohibition. The experiments on the ferry had to be further postponed, and
the experiments took place in week 22. The final data was gathered on the 30.05.2019.

28



3.3 Surge-Decoupled Model for milliAmpere

When performing the experiments the control system aboard was used. The control sys-
tem gives out a value between [−100, 100]%. By using a mapping between percent, rpm and
thrust force, the input value coming from the control system is converted to thrust. This map-
ping is necessary to be able to convert rpm measurements to newton in the system identification
method. The mapping is found in Appendix D is developed by using the results of a bollard pull
test found in Appendix C. Figure 3.4 shows the relationship between rpm and Newton. Dur-
ing the execution of the motion experiments presented in Appendix A there was experienced
difficulties. As the experiments are performed outside, there are specially two external factors
that will influence the system significantly, that is wind and ocean-currents. At the test day
the wind-speed was about 1 − 3m

s
with wind-gusts up to 6m

s
classified as light breeze accord-

ing to the Beaufort Scale (for Maritime Meteorology, 1970). It was experienced that even small
wind-speeds influenced the ferry motion, and this caused some challenges with the non-coupled
motion tests making them drift into coupled motion. This resulted in that the non-coupled mo-
tion tests were done by manual control of the ferry with the remote radio-control to compensate
for external forces. The effect of this will be discussed in section 3.5.

Figure 3.4: Mapping between rpm and Newton for one thruster, by using tables in Appendix D.

3.3 Surge-Decoupled Model for milliAmpere

By using the surge-decoupled model structure presented in Section3.1 a solution is found by
solving the NLP.
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3.3.1 Problem Formulation

The problem formulation for the surge-decoupled model is the same as in (3.5) through (3.7),
with the weights presented in Table 3.3. The model parameters to be identified are:

P = [m11,m22,m23,m32,m33, Xu, X|u|u, Xuuu,

Yv, Y|v|v, Yvvv, Y|r|v, Yr, Y|v|r, Y|r|r, Nv, N|v|v, N|r|v, Nr, N|r|r, Nrrr, N|v|r] (3.9)

Weight Value

λ 0.001
Wsurge diag(1, 0.1, 0.1)
Wsway diag(0.1, 1, 0.1)
Wyaw diag(0.1, 0.1, 1)
Wall diag(1, 1, 1)

Table 3.3: Weighting parameters for the surge-decoupled model.

The value for the hyperparameter was found by trying out several values and used the one that
gave least error in the verification set. The weights are chosen such that it reduces the effect
of coupled motion during the noncoupled tests in surge, sway and yaw. It is also added an
inequality constraint for the linear terms in the damping matrix (2.15) to ensure it to be positive
definite. The inequality constraint is

h(w) =

[
Xu

Xu(YvNr − YrNv)

]
> 0 (3.10)

3.3.2 Identification Results

The identification results with the surge-decoupled model (3.2)-(3.4) for the milliAmpere are
presented in Figure 3.5, showing the estimated and measured velocities. The identified param-
eters are presented in Table 3.4. Figure 3.6 shows the measured input.
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3.3 Surge-Decoupled Model for milliAmpere

Figure 3.5: Experimental data and estimated velocities after the parameters have been identified for the
surge-decoupled model.
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(a) Thrust and azimuth angle for thruster 1

(b) Thrust and azimuth angle for thruster 2

Figure 3.6: Experimental data used in the parameter estimation for the surge-decoupled model. Thrust
and azimuth angle for the two thrusters on the milliAmpere ferry.
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Parameter Estimated Value Unit

m11 2389.657 kg
m22 2533.911 kg
m23 62.386 kg
m32 28.141 kg
m33 5068.910 kgm2

Xu −27.632 kg
s

X|u|u −110.064 kg
s

Xuuu −13.965 kg
s

Yv −52.947 kg
s

Y|v|v −116.486 kg
s

Yvvv −24.313 kg
s

Y|r|v −1540.383 kg
s

Yr 24.732 kg
s

Y|v|r 572.141 kg
s

Y|r|r −115.457 kg
s

Nv 3.524 kg
s

N|v|v −0.832 kg
s

N|r|v 336.827 kg
s

Nr −122.860 kg
s

N|r|r −874.428 kg
s

Nrrr 0.000 kg
s

N|v|r −121.957 kg
s

Table 3.4: Estimated parameter values for surge-decoupled model.

3.3.3 Verification

By using data from experiments that are not used in the identification process the surge-decoupled
models performance is evaluated. The model is simulated with a RK4 method and compared
with the experimental data. The verification results are presented in Figure 3.7. The error from
the verification can be seen in Figure 3.8.
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Figure 3.7: Comparison of experimental data and simulated data with the parameters for surge-
decoupled model.
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3.4 Fully-Coupled Model for milliAmpere

Figure 3.8: Showing the error between experimental and simulated data with the surge-decoupled model.

3.3.4 Discussion
The identification results show that the estimated velocities are fitting quite well to the mea-
sured. It can be seen in Figure 3.5 that the estimation of the noncoupled surge and sway veloc-
ities is performing well. has some deviation for the noncoupled steps in surge, sway and yaw.
These effects may be a result of that CO is deviating from CG, as well as influence by external
forces.

The verification results are confirming that the model is able to predict velocities reasonably
well. It can be seen in Figures 3.7 and 3.8 that the model is under-predicting surge and yaw
velocities but predicts sway with good accuracy.

3.4 Fully-Coupled Model for milliAmpere
By using the fully-coupled model structure, a solution is found by solving the NLP. A recap
from chapter 2. The model is expressed as

Mν̇ +C(ν)ν +D(ν)ν = τ (3.11)

withM , C(ν) andD(ν) defined by the fully coupled structure are given by
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M =



m11 m12 m13

m21 m22 m23

m31 m32 m33


 (3.12)

C(ν) =




0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0


 (3.13)

D(ν) =



d11(ν) d12 d13
d21 d22(ν) d23(ν)
d31 d32(ν) d33(ν)


 . (3.14)

3.4.1 Problem Formulation

The problem formulation for the fully coupled model is the same as in (3.5) through (3.7) with
the fully-coupled structure given by (3.12) through (3.14). The weights are presented in Table
3.5. By using the same experimental data as in surge-decoupled model the parameters for the
fully-coupled model are identified. The model parameters to be identified are:

P = [m11,m12,m13,m21,m22,m23,m31,m32,m33, Xu, X|u|u, Xuuu, Xv, Xr,

Yu, Yv, Y|v|v, Yvvv, Y|r|v, Yr, Y|v|r, Y|r|r, Nu, Nv, N|v|v, N|r|v, Nr, N|r|r, Nrrr, N|v|r] (3.15)

Weight Value

λ 0.001
Wsurge diag(1, 0.1, 0.1)
Wsway diag(0.1, 1, 0.1)
Wyaw diag(0.1, 0.1, 1)
Wall diag(1, 1, 1)

Table 3.5: Weighting parameters for the fully coupled model.

The value for the hyperparameter is found by trying out several values and used the one that
gave least error in the verification set. It is also added an inequality constraint for the linear
terms in the damping matrix (2.15) to ensure it to be positive definite. The inequality constraint
is

h(w) =

[
Xu

Xu(YvNr − YrNv)

]
> 0 (3.16)

3.4.2 Identification Results

The identification results for the fully coupled model for milliAmpere are presented in Figure
3.9, showing the estimated and measured velocities. The identified parameters are presented in
Table 3.6 and Figure 3.6 shows the measured model input.
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3.4 Fully-Coupled Model for milliAmpere

Figure 3.9: Experimental data and estimated velocities after the parameters has been identified for the
fully coupled model.
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Parameter Estimated Value Unit

m11 2389.173 kg
m12 −12.536 kg
m13 39.776 kg
m21 27.147 kg
m22 2530.602 kg
m23 −20.612 kg
m31 112.965 kg
m32 −0.606 kg
m33 5068.800 kgm2

Xu −27.408 kg
s

X|u|u −107.555 kg
s

Xuuu −14.874 kg
s

Xv 39.398 kg
s

Xr 104.568 kg
s

Yu −45.037 kg
s

Yv −61.927 kg
s

Y|v|v −84.895 kg
s

Yvvv −45.394 kg
s

Y|r|v −1475.115 kg
s

Yr 35.525 kg
s

Y|v|r 546.700 kg
s

Y|r|r −60.848 kg
s

Nu 41.789 kg
s

Nv 16.464 kg
s

N|v|v −18.003 kg
s

N|r|v 320.144 kg
s

Nr −120.483 kg
s

N|r|r −870.050 kg
s

Nrrr 0.000 kg
s

N|v|r −271.946 kg
s

Table 3.6: Estimated parameter values for the fully coupled model.

3.4.3 Verification

By using data from experiments that are not used in the identification process the fully-coupled
model’s performance is evaluated. The model is simulated with a RK4 method and compared
with the experimental data. The verification results are presented in Figure 3.10. The error from
the verification can be seen in Figure 3.10.
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Figure 3.10: Comparison of experimental data and simulated values with the estimated parameters for
fully coupled model.
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Figure 3.11: Showing the error between experimental data and simulated with the fully coupled model.

3.5 Summary & Discussion of the Ship Model Results
The identification results in Figure 3.5 and 3.9 shows that the fully-coupled model has similar
results as the surge-decoupled model. The estimated velocities are following the measured
well. Also, on the measured velocities there is an oscillating pattern in surge and sway during
the steps in yaw. This are most likely coming from that CO deviates from CG. In the proposed
models, it is assumed that CO equals CG and this is reflected in the results as the estimated
surge and sway velocities seems to be close to zero during steps in yaw. This can also be seen
in the verification results, in Figure 3.7 and 3.10, as the simulated surge and sway velocity is
close to zero when rotating in yaw.

In Table 3.7 a comparison between the two models can be seen. The best values are pre-
sented as bold fonts. The fully-coupled model has less mean-absolute-error on predicting surge
and yaw velocities but slightly more for the yaw velocity. Also, the fully-coupled model gives
a lower objective function value.

In the verification of the two models it can be seen in Figure 3.7 and 3.10 that both models
has some deviations at the transient peek in surge velocity, as if the model has more weight than
it should. The same can be seen for the yaw velocity. In addition it seems like the yaw dynam-
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3.5 Summary & Discussion of the Ship Model Results

Surge-Decoupled Model Fully-Coupled Model Unit
1
N

∑N
k=1 |ūk − uk| 0.1062 0.1035 m

s
1
N

∑N
k=1 |v̄k − vk| 0.0959 0.0966 m

s
1
N

∑N
k=1 |r̄k − rk| 2.6468 2.7875 deg

s

φ(w, w̄) 4.63545 4.53572

Table 3.7: Mean absolute error between estimated and experimental data for velocities with surge-
decoupled and fully coupled model. The bottom line shows the objective function value for the solution
of the NLP.

ics has more damping than it should, as it has some stationary deviation around 400s. These
deviations can also be a result of external forces acting on the vessel during the experiments.

The noncoupled tests were performed with manual control to compensate for external dis-
turbances. In Figure 3.6 the compensation is clearly visible for the surge test. In the proposed
models, external disturbances are not modelled. This does that the system identification method
will try to compensate for the unknown external forces by adjusting the parameters so that the
model will ”generate” energy i.e a negative definite system, which is highly unwanted. This
caused a challenge during the identification process as the estimated nonlinear damping matrix
D(ν) turned out to not be positive definite. The linear damping terms are forced to build a
positive definite linear damping matrix by the inequality constraint in (3.16). The same could
not be done with the nonlinear damping terms as it turned out to be too demanding to cal-
culate in the system identification method. However, as mentioned in section 2.4 the initial
parameters guess is crucial to find a global optimal solution. As a result of this the diagonal
model-elements was first identified. These elements were then locked with an allowed interval
of ±10% of the identified parameter values. Then a new identification was run, identifying all
of the model parameters using the results from the first identification as an initial parameter
guess for the second. This gave a positive definite D(ν) for both the surge-decoupled model
and the fully-coupled model.

Also there could be several other factors that can be a source of error in the identification of
the ship models:

• Sensor uncertainty for the IMU .

• Sensor uncertainty for the GPS.

• CO deviates from CG.

• Influence of environmental forces like wind and currents.

• Variable mass distribution of the vessel due to people aboard the vessel during experi-
ments.

• Interpolation in data processing.

• Delay caused by the embedded software and hardware.

• Cavitation of the propellers.

• Inaccuracy in the rpm to Newton mapping.
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3.6 Azimuth Model for milliAmpere
Recap from Chapter 2, The candidate model for the azimuth angle dynamics is expressed as

α̇ = Kα
(αd − α)√

(αd − α)2 + ε2
. (3.17)

3.6.1 Problem Formulation
By using the NLP as defined in (2.40) with the azimuth angles α = [α1, α2] and the desired
anglesαd = [αd1, αd2] as input , the problem formulation for the azimuth angle model becomes

min
w

φ(w, w̄) (3.18a)

s.t g(w) = 0 (3.18b)
h(w) ≤ 0. (3.18c)
wlb ≤ w ≤ wub (3.18d)
w(0) = w̄(0) (3.18e)

where

φ(w, w̄) =
J∑

j=1

Nj∑

n=1

(αjn − ᾱjn)TW j(αjn − ᾱjn) + λR(P ) (3.19a)

w = [αT10,α
T
11, ...,α

T
1N ,α

T
20,α

T
21, ...,α

T
JNJ

, P T ]T (3.19b)

w̄ = [ᾱT10, ᾱ
T
11, ...ᾱ

T
1N1

, ᾱT20, ᾱ
T
21, ...ᾱ

T
JNJ

]T (3.19c)

and the equality constraints

g(w) =




F (α10, ᾱd10)−α11

...
F (α1N1−1, ᾱd1N1−1

)−α1N1

F (α20, ᾱd20)−α21

...
F (αJNJ−1, ᾱdJNJ−1

)−αJNJ




= 0 (3.20)

The model parameters to be identified are:

P = [Kα1 , Kα2 , ε1, ε2] (3.21)

The weights can be seen in Table 3.8. As the ratio between model parameters and data points
are relatively large the challenge with overfitting is marginal. Therefore, the hyperparameter λ
is set to zero. As for the weighting matrix, it is set to diagonal one.

Weight Value

λ 0
W diag(1, 1, )

Table 3.8: Weighting parameters for the azimuth angle model.
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3.6.2 Identification Results
The experimental data is provided by following the test plan in Appendix B. By the experi-
mental data and (3.17) as a candidate model in the identification method, the parameters are
identified. The identification results for the azimuth angle model are presented in Figure 3.12,
showing the estimated, measured and reference azimuth angle. The identified parameters are
presented in Table 3.9.

Figure 3.12: Experimental data and estimated azimuth angles after the parameters has been identified
for the azimuth-angle model.

Parameters Estimated value

Kα1 34.458
Kα2 37.526
ε1 6.277
ε2 7.721

Table 3.9: Parameters for Azimuth angle model

3.6.3 Verification
The verification results are presented in Figure 3.14. The error from the verification can be seen
in Figure 3.15.
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Figure 3.13: Delay in the azimuth dynamics.

Figure 3.14: Comparison of experimental data and simulated values for Azimuth angle model.
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Figure 3.15: Error between experimental data and simulated azimuth angle.

3.6.4 Discussion
The identification results show that the estimated azimuth angle is fitting the measured well.
However, it is a significant time delay in the azimuth dynamics. It takes about 0.4 seconds for
the azimuth servo to respond to the reference input. This delay can be seen in Figure 3.13. Time
delay is not modelled in the proposed azimuth model and it seems that this is the main source
to the error shown in Figure 3.15. There could be several sources for this time delay:

• Sampling time for the controller loop

• Backlash in gear between azimuth servo and azimuth shaft.

• Backlash in azimuth shaft and encoder.

• Delay in electronic communication.

• Delay in reading and publishing encoder data.

The verification results show that the model is giving errors in the transient parts of the mo-
tion. The proposed model seems to fit the actual behaviour very well, but is under-performing
due to time delay in the thruster-control system.
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Also, during the analysis of the azimuth identification results a bug connected to the thruster-
control system was discovered and fixed. When the azimuth servo was ordered to go clockwise
after a step in reference angle, the immediate response was a short counter-clockwise motion
before moving in the desired clockwise direction. This behaviour can be seen in Figure 2.4 in
Chapter 2.

3.7 Motor-Speed Model for milliAmpere
A recap from Chapter 2. The motorspeed model is expressed as

ω̇ = Kω(ωd − ω), (3.22)

3.7.1 Problem Formulation
By using the NLP as defined in (2.40) with the azimuth angles ω = [ω1, ω2] and the desired
angles ωd = [ωd1, ωd2] as input , the problem formulation for the azimuth angle model becomes

min
w

φ(w, w̄) (3.23a)

s.t g(w) = 0 (3.23b)
h(w) ≤ 0. (3.23c)
wlb ≤ w ≤ wub (3.23d)
w(0) = w̄(0) (3.23e)

where

φ(w, w̄) =
J∑

j=1

Nj∑

n=1

(ωjn − ω̄jn)TW j(ωjn − ω̄jn) + λR(P ) (3.24a)

w = [ωT10,ω
T
11, ...,ω

T
1N ,ω

T
20,ω

T
21, ...,ω

T
JNJ

, P T ]T (3.24b)

w̄ = [ω̄T10, ω̄
T
11, ...ω̄

T
1N1

, ω̄T20, ω̄
T
21, ...ω̄

T
JNJ

]T (3.24c)

and the equality constraints

g(w) =




F (ω10, ω̄d10)− ω11

...
F (ω1N1−1, ω̄d1N1−1

)− ω1N1

F (ω20, ω̄d20)− ω21

...
F (ωJNJ−1, ω̄dJNJ−1

)− ωJNJ




= 0 (3.25)

The model parameters to be identified are:

P = [Kω1 , Kω2 ] (3.26)

The weights can be seen in Table 3.10. As the ratio between model parameters and data points
are relatively large the challenge with overfitting is marginal. Therefore, the hyperparameter λ
is set to zero. As for the weighting matrix, it is set to diagonal one.
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Weight Value

λ 0
W diag(1, 1)

Table 3.10: Weighting parameters for the motorspeed model

3.7.2 Identification Results
The experimental data is provided by following the test plan in Appendix B. By using the ex-
perimental data and (3.22) as a candidate model in the identification method, the parameters are
identified. The current version of CasADi (v.3.4.5) has a challenge with handling large values
for the decision variables. The experimental data of motor speed has the unit rpm which has a
relatively large magnitude. This implies that for the identification of motor-speed dynamics the
data had to be scaled down before being used in the identification method. After the identifica-
tion the data was re-scaled back to the original quantity. This is simply implemented by using
a scaling constant. The identification results for the motor-speed model are presented in Figure
3.16, showing the estimated, measured and reference motor speed. The identified parameters
are presented in Table 3.11.

Parameters Estimated value

Kω1 0.563
Kω2 0.591

Table 3.11: Parameters for motor speed model
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Figure 3.16: Experimental data and estimated motor speeds after the parameters has been identified for
the motor-speed model.

3.7.3 Verification

The verification results are presented in Figure 3.17 showing the comparison between simulated
and measured motor speed. The error from the verification can be seen in Figure 3.18.

3.7.4 Discussion

The identification results show that the estimated motor-speeds fits the measurements with some
deviations, specially in the transient part. Although it is difficult to get information about the
underlying model dynamics of the motor speeds due to the large sampling time of 0.42 sec-
onds, the first order model seem to give a decent prediction. The verification results seems to
show better performance, as the simulated motor speeds follows the measured with reasonable
good accuracy, as seen in Figure 3.17. An explanation could be that the reference data in the
identification part is a step, while the reference-data in the verification part is coming from the
remote controller. This will give a smoother reference trajectory which is easier for the model
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Figure 3.17: Comparison of experimental data and simulated values for motor-speed model.

to follow.
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Figure 3.18: Error between experimental data and simulated motor speed.

3.8 Applications of the Models
The presented models in this thesis are suitable for many applications like simulation, proto-
typing, motion control, collision avoidance etc. The models have already been used to develop
motion control and collision avoidance systems. By using (2.2) a feed-forward controller can
be expressed as:

τ FF = Mν̇d +C(νd) +D(νd). (3.27)

where the desired acceleration and velocities are coming from a reference filter. The refer-
ence filter is generating a feasible smooth trajectory. More about how the models are used for
navigation and motion control can be found in (Sæther, 2019).

In (Thyri, 2019) the surge-decoupled model is used to develop collision avoidance systems.
In Figure 3.19 it can be seen a collision avoidance scenario where the surge-decoupled model
is used to simulate the behaviour of the ferry.

Today as the computing power is at a relative high level, it makes it possible to have a digital
twin. A digital twin is in this context a digital replica of a vessel described using mathematics.
The idea is to have a dynamic ship model that runs in real time together with the physical
vessel. This can be used for control and decision taking, fault detection and diagnosis, real-time
optimization, predict errors before they happen, update dynamic models when they deviate
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Figure 3.19: Collision avoidance scenarios. Blue, purple and orange are avoiding the red objects by
using different collision-avoidance methods. Courtesy of Thyri (2019).

from the real dynamics of the vessel etc. The identified models in this thesis can be used in the
foundation for a digital twin for the milliAmpere ferry.
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Chapter 4
Conclusion & Further Work

Throughout this thesis, an optimization based identification method has been implemented,
verified and used to identify the dynamics of the milliAmpere ferry and its propulsion system.
The identified models are:

• A 3DOF Fully-coupled ship model.

• A 3DOF Surge-decouplde ship model.

• Azimuth angle model.

• Motorspeed model.

• Wind-load model.

By designing and performing experiments, experimental data is obtained and used in the iden-
tification method. The method is based on optimal control theory and by solving an NLP, an
optimal solution is found that gives the estimated model parameters. By reproducing the pa-
rameters of a grey-box model with good accuracy the method is verified. The surge-decouped
parameters can be found in Table 3.4 and the fully-coupled model parameters can be found in
Table 3.6. The dynamics of milliAmpere ferry is well described by the two identified ship mod-
els. Both of the models are performing well and give similar results. The fully coupled model
has a marginally better performance but it is advantageous to use the surge-decoupled model as
it is a less complex model. The thruster dynamics is well explained by the proposed azimuth
and motor-speed model. Both can be used together with the proposed ship models to form a
simulator of the milliAmpere ferry. The thruster model parameters can be found in Table 3.9
and Table 3.11. In addition to the ship and thruster dynamics, a wind model based on the ship’s
projected area is proposed. The proposed wind model correspond well with the experienced
wind influence on the vessel during experiments.

The following further work can be considered:

• Improve the system identification methods abilities to handle process and measurement
noise to avoid parameter drift due to external disturbances and sensor inaccuracy.

• Design a speed controller to be used for gathering experimental data.

• The presented models gives a foundation for the concept of a digital twin. Further re-
search on what is required towards a full implementation of a digital twin.
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• Automatic system identification.
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Model Identification Experiments on milliAmpere

Test Plan for Motion Tests

Anders Aglen Pedersen

April 2019

Safety

When operating the vessel at sea it must always be two persons on board. The location of the safety
equipment and a plan for act due to unsuspected events like loss of propulsion, system failure, power
loss, fire etc. must be undergone for all operators.

Test goal

The main goal for this experiment is to gather transient and steady state data for coupled and uncoupled
motion to be used in model identification of coupled ship model.

1 Test platform

The control system on board will be used for logging the desired input force and output velocities.
The vessel has two thrusters than can rotate 360 degrees, [−180◦, 180◦] where 0◦ is in surge. The
control system will be used to manually set the desired input force. The system runs ROS which has
implemented a tool called rosbag that is an unified console tool for recording data, playback data, and
other operations. This will be used for logging data. Also during the experiments it is important to make
the weight distribution of the vessel as balanced as possible. The persons aboard must be in positions
such that the added mass wont affect center of gravity.

2 Identification experiment

This experiment consists of both uncoupled and coupled motion tests. The uncoupled tests will specially
be used to achieve robust data for the diagonal inertia and damping terms in the model, while the
coupled tests will generate data for the coupling terms in the model. The input force can be mapped in

T = {τ ∈ R3| − 100% ≤ τ ≤ 100%},

where τ is the input force in percent. By using the control allocation, the azimuth angles and motor
speeds are calculated by the control allocation when giving it the desired input force.

2.1 Uncoupled Motion Tests

Three tests in surge sway and yaw where the input force are incremented for each step. Make sure that
a new rosbag is created and logging is started. Write down the time from the system clock.
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Surge

τu ∈ {




40%
0
0


 ,




60%
0
0


 ,




80%
0
0


}, (1)

1. Start at ν = 0, input force τ = [0, 0, 0]T and azimuth angles α = [0, 0]T .

2. Start the step series according to (1) and let the vessel reach steady state for 5 seconds.

3. Set input force to zero and let the vessel come to full stop.

4. Initiate next command in (1) and let vessel reach steady state for 5 seconds.

5. Repeat 3 and 4 until last step in (1) is reached.

Figure 1: Surge test

Sway

τu ∈ {




0
40%

0


 ,




0
60%

0


 ,




0
80%

0


}, (2)

1. Start at ν = 0, input force τ = [0, 0, 0]T and azimuth angles α = [90◦, 90◦]T .

2. Start the step series according to (2) and let the vessel reach steady state for 5 seconds.

3. Set input force to zero and let the vessel come to full stop.

4. Initiate next command in (2) and let vessel reach steady state for 5 seconds.

5. Repeat 3 and 4 until last step in (2) is reached.
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Figure 2: Surge test

Yaw

τu ∈ {




0
0

40%


 ,




0
0

60%


 ,




0
0

80%


}, (3)

1. Start at ν = 0, input force τ = [0, 0, 0]T and azimuth angles α = [90◦,−90◦]T .

2. Start the step series according to (3) and let the vessel reach steady state for 5 seconds.

3. Set input force to zero and let the vessel come to full stop.

4. Initiate next command in(3) and let vessel reach steady state for 5 seconds.

5. Repeat 3 and 4 until last step in (3) is reached.

Figure 3: Surge test
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2.2 Coupled Motion Tests

Two tests in surge-sway, surge-yaw and sway-yaw.

Surge-Sway

τu ∈ {




40%
80%

0


 ,




80%
40%

0


}, (4)

1. Start at ν = 0.

2. Start the step series according to (4) and let the vessel reach steady state for 5 seconds.

3. Set input force to zero and let the vessel come to full stop.

4. Initiate next command in (4) and let vessel reach steady state for 5 seconds.

5. Repeat 3 and 4 until last step in (4) is reached.

Figure 4: Surge test

Surge-Yaw

τu ∈ {




40%
0

80%


 ,




80%
0

40%


}, (5)

1. Start at ν = 0.

2. Start the step series according to (5) and let the vessel reach steady state for 5 seconds.

3. Set input force to zero and let the vessel come to full stop.

4. Initiate next command in (5) and let vessel reach steady state for 5 seconds.

5. Repeat 3 and 4 until last step in (5) is reached.
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Figure 5: Surge test

Sway-Yaw

τu ∈ {




0
40%
80%


 ,




0
80%
40%


}, (6)

1. Start at ν = 0.

2. Start the step series according to (6) and let the vessel reach steady state for 5 seconds.

3. Set input force to zero and let the vessel come to full stop.

4. Initiate next command in (6) and let vessel reach steady state for 5 seconds.

5. Repeat 3 and 4 until last step in (6) is reached.

Figure 6: Surge test
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Model Identification Experiments on milliAmpere

Test Plan for Thrusters

Anders Aglen Pedersen

May 2019

Safety

When operating the vessel at sea it must always be two persons on board. The location of the safety
equipment and a plan for act due to unsuspected events like loss of propulsion, system failure, power
loss, fire etc. must be undergone for all operators.

Test goal

The main goal for this experiment is to gather transient and steady state data for thruster states, that
is rotational velocity for the two propellers [ω1, ω2]T and azimuth angles [α1, α2]T .

1 Test platform

The control system on board runs ROS which has implemented a tool called rosbag that is an unified
console tool for recording data, playback data, and other operations. This will be used for logging data.
The data consists of desired motor speeds and azimuth angles and the actual motor speed and azimuth
angles. The vessel has two thrusters than can rotate ±180 degrees, [−180◦, 180◦] where 0◦ is in surge
direction. The azimuth angle is given in degrees and motorspeed in percent of revolutions per minute
[rpm]. The control system will be used to manually control the desired thruster force and angles.

2 Thruster Identification Experiment

The actuator space can be mapped in

A = {α ∈ S2| − 180◦ ≤ α ≤ 180◦}

and
W = {ω ∈ R2| − 100% ≤ ω ≤ 100%}

where ω is motorspeed in percent and α is azimuth angle in degrees.

2.1 Experiment

Make sure that a new rosbag is created and logging is started. Write down the time from the system
clock.

1



2.1.1 Azimuth angle test

Commanded steps for azimuth angles are given by

α ∈ {(25, 25), (−25,−25), (90, 90), (−90,−90)}◦

1. Start at α = [0, 0]T for azimuth angles.

2. Initiate first command in α and let the thrusters reach desired azimuth angles.

3. Set azimuth angles to α = [0, 0]T and let the thrusters reach desired azimuth angles.

4. Initiate next command in α and let the thrusters reach desired azimuth angles.

5. Repeat 3 and 4 until last step in α is reached.

2.1.2 Motor speed test 1

This test maps the motorspeed dynamics from zero speed to a commanded speed then back to zero. The
commanded steps for motorspeeds are given by

ω ∈ {(25, 25), (50, 50), (100, 100), (−25,−25), (−50,−50), (−100,−100)}% (1)

1. Start at ν = 0 and use α = [90, 90]T for thruster angles.

2. Start the step serie according to (1) and let the propellers reach steady state motion for 5 seconds

3. Set thrust force to zero and let the propellers come to full stop.

4. Initiate next command in (1) and let the propellers reach steady state motion for 5 seconds.

5. Repeat 3 and 4 until last step in (1) is reached.

2.1.3 Motor speed test 2

This test maps the motorspeed dynamics from a commanded step to another commanded step. The
commanded steps for motorspeeds are given by

ω ∈ {(−100,−100), (100, 100)}% (2)

1. Start at ν = 0 and use α = [90, 90]T for thruster angles.

2. Start the step serie according to (2) and let the propellers reach steady state motion for 5 seconds

3. Initiate next command in (2) and let the propellers reach steady state motion for 5 seconds.

4. Set thrust force to zero and let the propellers come to full stop.
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Bollard Pull Test

This test was performed by Tobias Torben, 06.06.2018.

Motor Speed [%] FT 1[N] FT 2[N] FT Reversed [N] RT [N] Both Thrusters [N]

5 - 0 0 0 -
10 - 29.43 0 0 0
15 - 58.86 0 9.81 -
20 - 68.67 0 29.43 78.48
25 - 88.29 9.81 68.67 -
30 107.91 117.72 29.43 88.29 166.77
35 - 147.15 49.05 137.34 -
40 166.77 186.39 68.67 166.77 304.1
45 - 215.82 88.29 215.82 -
50 264.87 264.87 107.91 264.87 480.69
55 - 323.73 137.34 323.73 -
60 372.78 382.59 176.58 372.78 716.13
65 - 412.02 206.01 392.4 -
70 421.83 431.64 225.63 412.02 784.8
75 - 451.26 245.25 431.64 -
80 441.45 461.07 255.06 451.26 863.28
85 - 480.69 - 470.88 -
90 480.69 490.5 264.87 490.5 -
95 - 500.31 284.49 500.31 -
100 490.5 500.31 294.3 500.31 -

Table 1: Results from bollard pull test. FT: Front Thruster, RT: Rear Thruster.
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Motor speed and Thrust

Anders Aglen Pedersen

Table showing a mapping between percent, forward/reversed motor-speed and thrust for the milliAmpere
ferry. The reversed rpm is slightly higher than forward rpm at [90-100]% due to cavitation of the
propellers.

[%] Forward [rpm] Thrust [N] Reversed [rpm] Reversed Thrust [N]

5 0 0 0 0
10 719 0 719 0
15 1056 9 1056 0
20 1392 29 1392 0
25 1728 68 1728 9
30 2071 88 2071 29
35 2351 137 2351 49
40 2662 166 2662 68
45 2987 215 2987 88
50 3352 264 3352 107
55 3625 323 3625 137
60 3960 372 3960 176
65 4177 392 4177 206
70 4393 412 4393 225
75 4455 431 4455 245
80 4517 441 4517 255
85 4708 470 4708 259
90 4900 480 4900 264
95 5100 500 5300 284
100 5300 500 5400 294

Table 1: Percent, rpm and thrust mapping.

1



Figure 1: Motor speed and thrust for the milliAmpere ferry.

2



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s 
th

es
is

Anders Aglen Pedersen

Optimization Based System
Identification for the milliAmpere
Ferry

Master’s thesis in Cybernetics & Robotics
Supervisor: Morten Breivik & Glenn Bitar

June 2019


	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Related Work
	Problem Description
	Contributions
	Outline

	Background Theory
	Ship Model
	Thruster Model
	Wind Load Model
	Model Identification

	System Identification Results
	Grey Box Simulation
	Problem Formulation
	Identification Results
	Discussion

	milliAmpere
	Surge-Decoupled Model for milliAmpere
	Problem Formulation
	Identification Results
	Verification
	Discussion

	Fully-Coupled Model for milliAmpere
	Problem Formulation
	Identification Results
	Verification

	Summary & Discussion of the Ship Model Results
	Azimuth Model for milliAmpere
	Problem Formulation
	Identification Results
	Verification
	Discussion

	Motor-Speed Model for milliAmpere
	Problem Formulation
	Identification Results
	Verification
	Discussion

	Applications of the Models

	Conclusion & Further Work
	Bibliography
	Appendices
	Test Plan for Coupled Tests
	Test Plan for Thrusters
	Bollard Pull Test
	Motor Speed to Thrust

