

Vilius Ciuzelis

Gaussian Processes in non-linear

regression

TTK4550 Fordypningsprosjekt

Trondheim 17. januar 2019

P
ro

s
je

k
to

p
p
g
a
v
e

N
T

N
U

N
o

rg
e

s
 t

e
k
n

is
k
-n

a
tu

rv
it
e

n
s
k
a

p
e

lig
e

u
n

iv
e

rs
it
e
t

F
a

k
u
lt
e

t
fo

r

in
fo

rm
a

s
jo

n
s
te

k
n

o
lo

g
i
o

g

e
le

k
tr

o
te

k
n

ik
k

In
s
ti
tu

tt
 f

o
r

te
k
n
is

k

k
y
b
e

rn
e

ti
k
k

THIS PAGE LEFT INTENTIONALLY BLANK

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

i

Summary

Model estimation and, especially nonlinear, regression has been extensively studied in

the past. The research is heavily used in various industries: manufacturing, process control,

and, in the later decades, artificial intelligence (AI). This paper is looking into the possibility

to use Gaussian Processes regression on an industrial level – modelling and control of a robot

manipulator arm. The advantages of this method are that the modelling is non-parametric and

has guaranteed convergence. No prior model of the system needs to exist to be able to model

the desired system. However, the knowledge of some prior information of the system dynamics

beforehand is not of no use. This information can be used in construction of covariance

function, the heart of Gaussian Processes, and help speed up the regression process.

 Gaussian Process has showed great potential in ability to interpret highly non-linear

models extremely well with minimal tuning. Even though the hyperparameter optimization was

not implemented fully, the resulting research showcases the potential of the method. Equally,

it uncovers maybe the biggest problem with the method – its complexity. Complex derivation

and implementation leads to confusion and frustration when trying to wrap one’s head around

the basics of Bayesian Inference.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

ii

THIS PAGE LEFT INTENTIONALLY BLANK

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

iii

Contents
Summary... i

List of Tables ... v

List of Figures.. v

Nomenclature .. v

I Introduction ... 1

Previous work .. 1

II Background theory ... 3

Robot model ... 3

Equations of Motion .. 3

Kinematics... 4

Gaussian Processes .. 5

Mean function ... 6

Covariance function .. 6

Prior ... 7

Posterior .. 8

Prediction .. 8

Hyperparameters ... 9

III Simulation... 12

Robot arm model .. 12

Controller ... 12

IV Results .. 14

V Discussion .. 16

VI Future Work ... 17

Appendix A ... 20

Derivation of the EOM for 2-link planer manipulator ... 20

Inverse kinematics for 2-link planar manipulator .. 21

Appendix B .. 24

MATLAB code .. 24

Manipulator.m ... 24

startup.m .. 30

GP_regression.m ... 30

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

iv

THIS PAGE LEFT INTENTIONALLY BLANK

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

v

List of Tables

Table 1. Manipulator arm model parameters ... 12

Table 2. Controller gains.. 12

List of Figures

Figure 1. Example of overfitting .. 1
Figure 2. 2-link planar robot manipulator arm model .. 3
Figure 3. Example of multiple sample functions from the prior distribution. 7

Figure 4. Posterior distribution of a rather noisy signal... 8
Figure 5. Algorithm to compute log marginal likelihood and its partial derivatives. 10

Figure 6. Motion trajectory, simulated motion and error dynamics .. 13

Figure 7. Prior and posterior for angular velocity of joint 𝑞2 ... 14

Figure 8. GP regression for joint 𝑞2 .. 14

Figure 9. Prior and posterior for joint angle 𝑞2 ... 15

Figure 10. GP regression for the angular velocity of joint angle 𝑞1 15

Figure 11. Latin Hypercube with two variables. .. 17

Nomenclature

cholesky(𝐴) - cholesky factorization. Returns 𝐿 where 𝐿𝐿\

𝛿𝑝𝑞 - Kronecker delta function which equals to 1 iff 𝑝 = 𝑞 and 0

otherwise

𝐟∗ 𝑜𝑟 f∗ - Gaussian process posterior prediction

𝐟∗̅ 𝑜𝑟 f∗̅ - Gaussian process predictive mean

𝒢𝒫 - Gaussian process with a mean and a covariance function

𝐽 - moment of inertia

𝜇 - mean value

𝑚𝑖 - mass of link 𝑖
𝒩(𝜇, 𝜎2) - Normal (or Gaussian) distribution

𝑛 - number of training inputs

𝑛∗ - number of test inputs

𝑘(𝐱, 𝐱′) - kernel (or similarity) function evaluated at 𝐱 and 𝐱′
𝐾(𝑋, 𝑋) - 𝑛 × 𝑛 covariance matrix

ℒ - Lagrangian

𝑙 - characteristic length-scale parameter

𝑚(𝐱) - mean function

𝜎𝑓
2 - variance of the noise-free signal

𝜎𝑛
2 - variance of the noise

𝑇∗ - kinetic co-energy

tr(A) - trace is the sum of the elements on the main diagonal of a square

matrix. ∑ 𝑎𝑖𝑖
𝑛
𝑖=1 = 𝑎11 + 𝑎22 + ⋯+ 𝑎𝑛𝑛

𝜃 - joint angle

𝑣𝑖 - velocity of link 𝑖

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

vi

𝑉 - potential energy

𝕍 - variance in (C. E. Rasmussen, 2006)

𝑋 - matrix of training inputs

𝑋∗ - matrix of test inputs

𝐱i - training input 𝑖
𝐲 - training targets

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

I Introduction - 1 - Previous work

I Introduction

Previous work

Gaussan Processes have received a lot of attention in the last decades, the leading cause

being machine learning and hype around the Artificial Intelligence or AI (Hopgood 2003). The

truth is, the first GP works with GP date back to as far as 1940’s (Wiener, 1949). It has been

used in geology (Cressie, 1990) and is extensively described by (C. E. Rasmussen, 2006),

which has later become as a go-to work on GP. This particular book has therefore been used as

basis for this paper.

GP is a stochastic process used in statistics and probability theory as a method for

regression or classification when some data about the model is known. In terms of machine

learning – supervised learning method. The main difficulty with finding the correct model is

therefore the trade-off between complexity and overfitting. The model should be complex

enough to model the main dynamics in the system, yet simple enough as to not model the noise,

see Figure 1 below.

The fit is controlled by some free parameters, called the hyperparameters, which are then to be

optimized to ensure best fit to the data at hand. There exists several other data-fitting methods

in both regression and classification (Harvey Motulsky, 2004). Gaussian Processes has proven

itself to be a generally strong method of data-fitting extremely nonlinear models and is easily

scalable to different size models (J. Hensman 2015). It can even be combined with other control

and modelling methods to enhance the method further (J. Kocijan 2004). The downsides of the

method is its complexity when implementing and computational needs. The numerous inverses

Figure 1. Example of overfitting

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

I Introduction - 2 - Previous work

of covariance matrix in GP are computationally expensive (C. E. Rasmussen, 2006).

 As a test case, basic control of a 2-link planar robot manipulator arm has been chosen.

The dynamics of manipulators are highly nonlinear in the sense that joints might have non-

linear friction forces, elasticity and rigidity (or lack thereof) in the links is also highly non-

linear (Cai 2002). Let’s take a look into the robot model itself.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 3 - Robot model

II Background theory

Robot model

Physical manipulator parameters are (loosely) based on Kuka’s own LBR iiwa 14 R280

(GmbH) robot. The mass of the robot was assumed to be uniform such that the masses of the

respective links were simply obtained by linear combination of the lengths of the robot. To

calculate moments of inertia, the arms of the manipulator are modelled as thin, uniform beams.

The inertia about the center of mass is then given by

𝐼𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑚𝑙2

12

The complete overview of the parameters used in the simulation is shown in Table 1 under III

Simulation on page 12. Next, analytical robot model is derived.

Equations of Motion

In order to gather training data for the GP model of the robot, one needs to describe the

model analytically. For that purpose, an energy-based - Lagrange method was used. Let the

total energy in the system be defined as

ℒ = 𝑇∗ − 𝑉

where 𝑇∗ is the so-called kinetic co-energy and 𝑉 is the potential energy in the system. Define

these energies as

Figure 2. 2-link planar robot manipulator arm model

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 4 - Robot model

𝑇∗ = ∑
1

2
𝑚𝑖𝑣𝑖

2

𝑖

𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔ℎ

Equations of motion (EOM) are then found using Lagrangian (Egeland, et al., 2002)

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 𝜏𝑖

For the extensive derivation of the equations of motion, see Appendix A. For completeness,

fully-derived EOM are given below

𝜏1 = (𝐼1 + 𝐼2 + 𝑚1𝐿𝑐1
2 + 𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 − 𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 + 𝑚2𝐿1)𝑔 cos 𝑞1 + 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

𝜏2 = (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 + 𝑚2𝐿𝑐2

2)�̈�2 + 𝑚2𝐿1𝐿𝑐2�̇�1
2𝑠𝑖𝑛 𝑞2

+ 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

These equations can be written in a more compact form, just as in (Egeland, et al., 2002)

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�) + 𝑮(𝒒) = 𝝉

where 𝑴(𝒒) = 𝑴⊤(𝒒) is a positive definite matrix and 𝑮(𝒒) is the gradient of the gravity

potential. The matrix 𝑪(𝒒, �̇�) can be selected to be

𝑪(𝒒, �̇�) = {𝒄𝑗𝑘} = {∑𝒄𝑖𝑗𝑘�̇�𝑖

𝑛

𝑖=1

}

where

𝒄𝑖𝑗𝑘 ≔
𝟏

𝟐
(
𝜕𝒎𝑗𝑘

𝜕𝒒𝒊
+

𝜕𝒎𝑖𝑘

𝜕𝒒𝑗
+

𝜕𝒎𝑖𝑗

𝜕𝒒𝑘
)

are the Christoffel symbols of the first kind. In this case the matrix �̇� − 𝟐𝑪 is skew symmetric.

When it comes to the controller, a simple PD regulator is used

𝝉 = 𝒌𝑑(−�̇�) + 𝒌𝑝(𝒒𝑟 − 𝒒)

where 𝒒𝑟 is the reference trajectory and 𝒌𝑑 and 𝒌𝑑 are control constants. Now that the equation

of motion are described, one needs to describe the input out relationship of the system –

kinematics.

Kinematics

Forward kinematics expresses the position of the end effector as the coordinates in the

xy-plane as a function of joint angles and geometry of the links. These formulas are trivial to

find and can be proven to have the following form

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 5 - Gaussian

Processes

(
𝑥𝑒

𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
)

Inverse kinematics problem, or IKP for short, is sort-of an inverse of the forward

kinematics problem, as the name suggests. The formulation of the problem is as follows: given

the position of the end effector in xy-plane, compute all possible joint angles and link

geometries which correspond to that particular end effector position. Several forms of the

solution exist, each one with different characteristics when it comes to computation complexity

and orientation of the links. The fully-derived formula is given below. For complete derivation

of the formula see Appendix A.

𝑞(𝑥𝑒 , 𝑦𝑒) =

[

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2 (
𝑙2 sin 𝑞2

𝑙1 + 𝑙2 cos 𝑞2
)

atan2(±√1 − (
𝑥𝑒

2+𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒

2 + 𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

]

where 𝑘1 = 𝑙1 + 𝑙2 cos(𝑞2) and 𝑘2 = 𝑙2 sin(𝑞2). The analytical model of the robot arm is now

fully derived. Let’s take a look into the regression process.

Gaussian Processes

 GP is used for making understandings about the relationships between the training and

target data. Said in other words, input-output relationship or the conditional distribution of the

targets, given the inputs (C. E. Rasmussen, 2006). By definition in the same book, a Gaussian

Process “is a collection of random variables, any finite number of which have a joint Gaussian

distribution”. Given a dataset of 𝑛 observations, which we call 𝒟 = (𝐗, 𝐲), a GP is fully

expressed by its mean and covariance functions 𝑚(𝐱) and 𝑘(𝐱, 𝐱′). These functions are defined

as

𝑚(𝐱) = 𝔼[𝑓(𝐱)]

𝑘(𝐱, 𝐱′) = 𝔼[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))]

where 𝑓(𝐱) is the process. A Gaussian Process using formulas above can be denoted as

𝑓(𝐱) ~ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′))

To fully understand GP it is crucial to talk about its structure – its mean and variance functions.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 6 - Gaussian

Processes

Mean function

Since a GP is fully expressed by its mean and a covariance functions or matrices, let’s

take a look into the mean function first. There exist methods of fitting a mean to the data at

hand, however it is often omitted and left zero. The reason behind this is simply that the

covariance function usually takes the mean into the account when computing the variance

matrix. There exist, of course, applications where the data is inherently at a slope or has an

angle, but a suited covariance function will usually cover the increasing/decreasing mean. This

paper will therefore be using a mean function of 0 throughout the derivations and simulations.

Covariance function

Covariance (or kernel) functions contain most of the information about the model.

Assuming the mean function to be zero results in covariance function defining the whole model

by itself! Covariance functions always have one or more free parameters which decide its form.

To accommodate the vast range of possible nonlinear models, a number of kernel functions

have been developed. Both explicit and composite functions. These functions define one or

more of the following aspects of the covariance functions: stationarity, isotropy, smoothness

and periodicity.

Stationarity refers to a stochastic process whose unconditional joint probability

distribution, mean, and variance do not change in time. It means that 𝐱 − 𝐱′ only depends on

the values of 𝐱 and 𝐱′ and not their position (in time?). Isotropy deals with the measurement of

distance. If a function is only dependent on values and not the measurement direction, then the

function is called isotropic. Smoothness is defined by the expected closeness (or similarity)

between input-output pairs. If the expectancy is high, the resulting function will tend to favor

a more rapidly changing model rather than a slower, smoother model.

There exist numerous kernels functions which have different properties and are best

suited for a range of applications. Therefore, the choice of the best-suited kernel function is not

arbitrary. The most common and maybe simplest kernel function is the Squared Exponential

(SE)

𝑘(𝐱, 𝐱′) = σf
2exp(−

1

2
(𝒙 − 𝒙′)⊤𝑴(𝒙 − 𝒙′)) + 𝜎𝑛

2𝛿𝐱𝐱′

where 𝜎𝑓
2 is the variance of the noise-free signal, 𝜎𝑛

2 is the variance of the noise, and 𝛿𝐱𝐱′ is a

Kronecker delta which is 1 if 𝐱 = 𝐱′ and 0 otherwise. 𝑴 is simply a symmetric matrix

containing the characteristic length-scales. It might take one of the following forms, depending

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 7 - Gaussian

Processes

on the values of hyperparameters:

𝑀1 = 𝑙2𝐼, 𝑀2 = 𝑑𝑖𝑎𝑔(𝒍)−2, 𝑀3 = ΛΛ⊤ + 𝑑𝑖𝑎𝑔(𝒍)−2

Parameter 𝑙 in 𝑀2 is called characteristic length-scale. It decides how fast pace of change the

sample functions are to have. Low 𝑙 values will yield a more rapidly changing functions, while

greater values will tend to smooth out the functions. Now that the basics of GP structure are

covered, let’s take a look at the next step of GP regression – prior distribution.

Prior

When choosing hyperparameters manually, or picking the initial values for optimization

later, it is wise to check the function pool for the general form of the functions being drawn,

the so-called prior distribution. This distribution is a multivariate normal (Gaussian)

distribution together with a covariance matrix generated by the chosen kernel function. Firstly,

one needs to compute the 𝑛 × 𝑛 covariance matrix 𝑲∗:

𝐾(𝐗∗, 𝐗∗) = [
𝑘(𝐱1

∗ , 𝐱1
∗) ⋯ 𝑘(𝐱1

∗ , 𝐱n
∗)

⋮ ⋱ ⋮
𝑘(𝐱n

∗ , 𝐱1
∗) ⋯ 𝑘(𝐱n

∗ , 𝐱n
∗)

]

Note that the prior distribution is solely dependent on the training data. One can sample the

desired number of sample functions from GP using the multivariate normal distribution

𝐟∗~𝒩(𝑚(𝐱),𝐾(𝐗∗, 𝐗∗))

Prior functions can be sampled using the following equation:

𝐟prior = cholesky(𝐾(𝐗∗, 𝑿∗) + 𝜎𝑛
2𝐼) ⋅ 𝐛 (1)

where 𝐛 is a 𝑛∗ × 𝑁 matrix of random numbers drawn from a normal (Gaussian) distribution

with 0 mean and standard deviation 𝜎𝑓. An example of such a sample of prior functions is

shown in Figure 3 below.

Figure 3. Example of multiple sample functions from the prior distribution.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 8 - Gaussian

Processes

Posterior

While prior has information about the prior functions which might be used in regression,

posterior shows which functions have been used in the regression (Freitas, 2013):

𝐟posterior = 𝐟∗̅ + cholesky(𝐾(𝐗∗, 𝑿∗) + 𝜎𝑛
2𝐼 − 𝐿𝑘

⊤𝐿𝑘) ⋅ 𝐛

where 𝐿𝑘 = cholesky(𝐾(𝐗, 𝐗) + 𝜎𝑛
2𝐼)−1𝐾(𝐗, 𝐗∗) and 𝒃 similar to (1). The posterior shows the

uncertainty in the prediction very clearly.

Prediction

Realistic observations or measurements are never 100% accurate. Whether because of

the measuring instrument noise, inaccuracies in computing or simply modelling errors, one

must always account for some disturbances in the system. In robust control, the unknown

disturbances are usually modelled as (white) noise. The prior on the observations should

therefore be expressed (C. E. Rasmussen, 2006):

cov(yp, yq) = 𝑘(𝐱p , 𝐱q) + 𝜎𝑛
2𝛿𝑝𝑞 𝑜𝑟 cov(𝐲) = 𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼

where 𝛿𝑝𝑞 is a Kronecker delta which is 1 when 𝑝 = 𝑞, otherwise 0. The joint distribution of

the observations at the test points are (C. E. Rasmussen, 2006):

Figure 4. Posterior distribution of a rather noisy signal

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 9 - Gaussian

Processes

[
𝐲
𝐟∗

] ~𝒩 (𝟎, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2 𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

])

The fully derived conditional on Gaussian prior distribution is then

𝐟∗̅ = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐲

cov(𝐟∗) = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗)

Algorithm used in the simulations is the same as in (C. E. Rasmussen, 2006). The algorithm is

denoted as (2.1) in the book. Given training input 𝑋, training targets 𝐲, covariance function 𝑘,

noise level 𝜎𝑛
2, and test input 𝐱∗. Define the following

𝐿 ≔ 𝑐ℎ𝑜𝑙(𝐾 + 𝜎𝑛
2𝐼)

𝜶 ≔ 𝐿⊤\(𝐿\𝐲)

𝑓∗̅ ≔ 𝐤∗
⊤𝜶

𝐯 ≔ 𝐿\𝐤∗

𝕍[𝑓∗] ≔ 𝑑𝑖𝑎𝑔(𝑘(𝐱∗, 𝐱∗)) − 𝐯⊤𝐯 + 𝜎𝑛
2

log 𝑝(𝐲|𝑋) ≔ −
1

2
𝐲⊤𝜶 − ∑log 𝐿𝑖𝑖

𝑖

−
𝑛

2
log 2𝜋 (2)

where 𝑐ℎ𝑜𝑙(𝐾 + 𝜎𝑛
2𝐼) returns the lower diagonal matrix 𝐿 in 𝐿𝐿⊤ = 𝐾 + 𝜎𝑛

2𝐼. This is done to

ensure stability since the inverse of the 𝐾 matrix tends to be numerically unstable. The

algorithm returns the predictive mean and variance for the noisy test data 𝑦∗. The three terms

in (2) can be interpreted as penalties. The first term penalizes low the data-fit. The second term,

which is only dependent on the covariance matrix 𝐾, is the complexity penalty. The model with

high complexity are usually over-fitted. The last term is the normalization constant. The only

way to control the data-fitting process is to change the hyperparameters of the covariance

function.

Hyperparameters

The optimization of hyperparameters is rather tricky. The problem is non-linear and

computationally costly. Therefore, a well-designed optimization algorithm is needed. To

compute the hyperparameters using the maximization of marginal likelihood with respect to

parameters (C. E. Rasmussen, 2006)

𝜕

𝜕𝜃𝑗
log 𝑝(𝐲|𝑋, 𝜽) =

1

2
𝐲⊤𝐾−1

𝜕𝐾

𝜕𝜃𝑗
𝐾−1𝐲 −

1

2
tr (𝐾−1

𝜕𝐾

𝜕𝜃𝑗
)

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 10 - Gaussian

Processes

=
1

2
tr ((𝜶𝜶⊤ − 𝐾−1)

𝜕𝐾

𝜕𝜃𝑗
)

where 𝜶 = 𝐾−1𝐲. Because of the inversion of matrix 𝐾, gradient based optimizers are advised,

such that steepest descent or congujate gradient method.

The algorithm that (C. E. Rasmussen, 2006) propose to use with congujate gradient method is

shown below:

Conjugate gradient (CG) method would then be used to optimize the hyperparameters (Andrew

V. Knyazev, 2007). These methods usually are more computationally expensive than methods

used in literature, i.e. kernel-alignment by (Nello Cristianini), grid search algorithms (Kupinski

2010), random search (Bergstra 2012), or Bayesian optimization-based search (Snoek 2012).

When dealing with data that is much greater than 1, it might be useful to normalize or

standardize the data first. This should be done to both the training inputs and the training

targets. Then the optimization can be started by initializing the hyperparameters: initialize

length-scale and function variance to 1. Standardization of data is usually done with the

following formula:

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝑥 − 𝜇

𝜎

where 𝜇 is the mean and 𝜎 is the standard deviation of the data explored. The experience also

Figure 5. Algorithm to compute log marginal likelihood and its partial derivatives.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

II Background theory - 11 - Gaussian

Processes

shows that higher initial values for the target function variance yield better performance when

optimizing the other hyperparameters, even though you expect low noise. A small number of

restarts of the optimization algorithm with different initial starting points is a possible remedy

for when local optima is reached (Murray, 2008).

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

III Simulation - 12 - Robot arm

model

III Simulation

The software used in this project thesis is simply MATLAB prerelease version 2018a.

The hardware is a Windows OS based laptop with Intel Core i7-7700 CPU @ 3.60 GHz and 8

GB memory.

Robot arm model

Friction coefficients in the robot joints is chosen to be simply [
10000 0

0 5000
]. The

behavior of the unforced system represents life-like behavior.

Controller

PD-controller gains were found by tuning the controller manually. The final gains used

in the simulation are shown in Table 2.

𝒌𝒑
[
100000 ⋅ 𝑚1𝑙1
25000 ⋅ 𝑚2𝑙2

]

𝒌𝒅
[
15000 ⋅ 𝑚1𝑙1
1000 ⋅ 𝑚2𝑙2

]

Table 2. Controller gains

The values of the gains might not be entirely feasible in a real-world application as they are

relatively high. These gains yield an extremely fast convergence rate and fast error dynamics.

Therefore, they are satisfactory based on the application of the current model.

The motion of the robot was chosen to be a circle with a diameter of the second robot arm link.

This path of motion reveals a sufficient amount of robot dynamics to be analyzed by the GP.

Model parameter LBR iwwa 14’s parameter Value Explanation

𝒍𝟏 𝐷 420 𝑚𝑚 Length of the 1st link

𝒍𝟐 𝐴 − 𝐶 − 𝐷 526 𝑚𝑚 Length of the 2nd link

𝒎𝑻 𝑚𝑇 29,9 𝑘𝑔 Total mass of the robot

𝒎𝟏 − 9,6 𝑘𝑔 Mass of the 1st link

𝒎𝟐 − 12,0 𝑘𝑔 Mass of the 2nd link

𝑰𝟏 − 5640 𝑘𝑔𝑚𝑚2 Inertia of the 1st link

𝑰𝟐 − Inertia of the 2nd link

𝒈 − −9,81 𝑘𝑔𝑚/𝑠2 Gravity constant

Table 1. Manipulator arm model parameters

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

III Simulation - 13 - Controller

The error dynamics show fast convergence with minimal overshoot. They are shown in Figure

6 above.

The sampling values for the GP regression were chosen with an equal amount of spacing

between the data points gathered from the robot motion. Only every 200th point of the data

points was chosen, due to computational expensiveness. This sampling technique does not pose

any real threats to the simulations since the motion is not prone to aliasing or really any other

problems that oscillating motions have. The marginal likelihood function in GP regression did

not perform as expected and has even achieved positive values, which should not be possible.

Figure 6. Motion trajectory, simulated motion and error dynamics

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

IV Results - 14 - Controller

IV Results

The resulting plots are shown in figures below. The (sub-)optimal hyperparameter

values were found using marginal likelihood and tuning the lengthscales values manually.

Since the optimization of the hyperparameters did not work satisfactory it is left out of further

discussion. The covariance function performance was very similar, even though the optimal

values were quite different. MacKay and Squared Exponential were the most promising ones

yielding near-perfect regression. Some of the most interesting results are shown below. The

Figure 8. GP regression for joint 𝑞2

Figure 7. Prior and posterior for angular velocity of joint 𝑞2

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

IV Results - 15 - Controller

brown area surround the prediction is the uncertainty. It is 2 times the standard deviation, that

is just above 95% confidence interval.

Figure 10. GP regression for the angular velocity of joint angle 𝑞1

Figure 9. Prior and posterior for joint angle 𝑞2

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

V Discussion - 16 - Controller

V Discussion

 The results show great algorithm capabilities and versatility to adapt to new data.

Surprisingly little effort is needed to achieve excellent results even when tuning the GP model

manually. Even though the hyperparameter optimization did not work in time, the GP

regression method has shown its strengths and application possibilities. Interestingly enough,

failure to implement the optimizer, shows the great disadvantage with the method – its

complexity. I have found numerous implementations of different parts of the GP regression

and all of them seems to produce somewhat believable results. Which ones were the “correct”

ones, is difficult to say. A strong statistical background is needed to understand and handle this

method if it were used for control, whereas a simple PID controller is simple enough to be

handled regardless of one’s background.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

VI Future Work - 17 - Controller

VI Future Work

The further research ideas presented in this section are the framework for the master

thesis following this paper. The first step is to implement gradient-based hyperparameter

optimization and develop a sparse model. Online covariance function selector would further

improve the data fit. Even though the GP is a very powerful method on its own, it would be

very interesting to see it work together with some other controllers and models. Implementation

of more sophisticated controllers, like (nonlinear) MPC controller, Neural Networks-based

controller and other both industry and novel controllers. It would especially be interesting to

see it work as a standalone model in a model reference control problem, where the requirement

for the model update is of relative low frequency.

Decision theory for selecting new observations contra computational costs of the

system. A bigger comparison of several techniques would be interesting. One promising

technique is the Latin-hypercube sampling which maximizes the minimum distance between

the sampling points (see Figure 11 below). Monte Carlo simulations and Orthogonal sampling

have shown promising results and deserves some attention. Research on hyperparameter

optimality conditions to check whether a true optimum has been reached or the optimizer is

stuck in a local optimum.

Figure 11. Latin Hypercube with two variables.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

VI Future Work - 18 - Controller

VII References

A smooth robust nonlinear controller for robot manipulators with joint stick-slip friction. L.

Cai, G. Song. 2002. Atlanta : IEEE, 2002.

Andrew V. Knyazev, Ilya Lashuk. 2007. Steepest descent and conjugate gradient methods.

[Online] April 2007. https://arxiv.org/pdf/math/0605767.pdf.

Artificial Intelligence: hype or reality? Hopgood, A.A. 2003. s.l. : IEEE, 2003.

C. E. Rasmussen, C. K. I. Williams. 2006. Gaussian Processes for Machine Learning.

Massachusetts : the MIT press, 2006. pp. 13, 106, 114,.

Carl Edward Rasmussen, Chris Williams. 2018. Documentation for GPML Matlab Code

version 4.2. [Online] June 11, 2018. http://www.gaussianprocess.org/gpml/code/matlab/doc/.

Cressie, Noel A. C. 2015. Statistics for Spatial Data. s.l. : Wiley, 2015.

Cressie, Noel Math Geol. 1990. The origins of kriging. s.l. : Kluwer Academic Publishers,

1990. Vol. 22: 239.

Egeland, Olav and Gravdahl, Jan Tommy. 2002. Modeling and simulation for automatic

control. Trondheim : Marine Cybernetics, 2002. pp. 315, 320, 322, 323.

Freitas, Nando de. 2013. CPSC540 Gaussian Process. [Online] January 2013.

https://www.cs.ubc.ca/~nando/540-2013/lectures/l6.pdf.

Gaussian Process - Wikipedia. [Online] https://en.wikipedia.org/wiki/Gaussian_process.

Gaussian process model based predictive control. J. Kocijan, R. Murray-Smith, C. E.

Rasmussen, A. Girard. 2004. Boston : IEEE, 2004.

GmbH, KUKA Roboter. KUKA LBR iiwa Broschure - PDF, page 30. [Online]

https://www.kuka.com/en-

de/services/downloads?terms=Language:en:1;product_name:LBR%20iiwa%2014%20R820.

Harvey Motulsky, Arthur Christopoulos. 2004. Fitting Models to Biological Data Using

Linear and Nonlinear Regression. New York : OXFORD University Press, 2004. 0-19-

517179-9.

Hessmer, Dr. Rainer. 2009. Kinematics for Lynxmotion Robot Arm. [Online] October

2009.

http://www.hessmer.org/uploads/RobotArm/Inverse%2520Kinematics%2520for%2520Robot

%2520Arm.pdf.

Jazar, Reza N. 2010. Theory of Applied Robotics. Kinematics, Dynamics and Control. 2nd.

s.l. : Springer US, 2010. p. 883.

Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm. Jacob Y.

Hesterman, Luca Caucci, Matthew A. Kupinski, Harrison H. Barrett, Lars R. Furenlid.

2010. s.l. : IEEE, June 14, 2010. 11364921.

Murray, Iain. 2008. Introduction to Gaussian Processes, page 34. University of Torronto.

[Online] 2008. https://www.cs.toronto.edu/~hinton/csc2515/notes/gp_slides_fall08.pdf.

Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, Jaz Kondola. [Online]

http://papers.nips.cc/paper/1946-on-kernel-target-alignment.pdf.

Practical Bayesian Optimization of Machine Learning Algorithms. Jasper Snoek, Hugo

Larochelle, Ryan P. Adams. 2012. s.l. : Neural Information Processing Systems (NIPS),

2012.

Random serach for hyper-parameter optimization. James Bergstra, Yoshua Bengio. 2012.

[ed.] Leon Bottou. Montreal : s.n., February 2012, Journal of Machine Learning Research 13.

Samy Youssef, Jeom K. Paik, Yang Seop Kim, Min Soo Kim, Fai Cheng. 2013.

Probabilistic Selection of Ship-Ship Collision Scenarios. Research gate. [Online] June 2013.

https://www.researchgate.net/publication/267607095_Probabilistic_Selection_of_Ship-

Ship_Collision_Scenarios.

Scalable Variational Gaussian Process Classification. James Hensman, Alexander G. de

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

VI Future Work - 19 - Controller

G. Matthews, Zoubin Ghahramani. 2015. 2015.

Technology, National Institue of Standards and. Engineering Statistics Handbook.

[Online] https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm.

Wiener, Norbert. 1949. Extrapolation, Interpolation and Smoothing of Stationary Time

Series. s.l. : MIT Press, 1949.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix A - 20 - Derivation of

the EOM for 2-

link planer

manipulator

Appendix A

Derivation of the EOM for 2-link planer manipulator

Based on (Egeland, et al., 2002)

The planar manipulator has kinetic energy:

𝑇 =
1

2
𝑚1�⃗�𝑐1 ⋅ �⃗�𝑐1 +

1

2
𝑚2�⃗�𝑐2 ⋅ �⃗�𝑐2 +

1

2
�⃗⃗⃗�1 ⋅ �⃗⃗⃗�1

𝑐
⋅ �⃗⃗⃗�1 +

1

2
�⃗⃗⃗�2 ⋅ �⃗⃗⃗�2

𝑐
⋅ �⃗⃗⃗�2

This can be written as

𝑇 =
1

2
𝒎𝟏𝟏�̇�1

2 + 𝒎𝟏𝟐�̇�1�̇�2 +
1

2
𝒎𝟐𝟐�̇�2

2

where

𝒎𝟏𝟏 = 𝐼1𝑧 + 𝐼2𝑧 + 𝑚1𝐿𝑐1
2 + 𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2)

𝒎𝟏𝟐 = 𝒎𝟐𝟏 = 𝐼2𝑧 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2

𝒎𝟐𝟐 = 𝐼2𝑧 + 𝑚2𝐿𝑐2
2

are the elements of the inertia matrix and 𝑞1 and 𝑞2 are the angles between the horizontal plane

and the robot arm 1 and 2 respectively. The potential energy in the system is given by

𝑉 = (𝑚1𝑔𝐿𝑐1 + 𝑚2𝑔𝐿1) sin 𝑞1 + 𝑚2𝑔𝐿𝑐2 sin(𝑞1 + 𝑞2)

Then, from ℒ = 𝑇 − 𝑉 partial derivatives are found to be

𝜕ℒ

𝜕�̇�1
=

𝜕𝑇

𝜕�̇�1
= 𝒎𝟏𝟏�̇�1 + 𝒎𝟏𝟐�̇�2

𝜕ℒ

𝜕�̇�2
=

𝜕𝑇

𝜕�̇�2
= 𝒎𝟏𝟐�̇�1 + 𝒎𝟐𝟐�̇�2

𝜕ℒ

𝜕𝑞1
= −

𝜕𝑉

𝜕𝑞1
= −(𝑚1𝐿𝑐1 + 𝑚2𝐿1)𝑔 cos 𝑞1 − 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

𝜕ℒ

𝜕𝑞2
=

𝜕𝑇

𝜕𝑞2
−

𝜕𝑉

𝜕𝑞2
=

1

2

𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�1

2 +
𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�1�̇�2 − 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

Recalling the chain rule expansion:

𝑑𝑧

𝑑𝑡
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑡

the equations of motion are then found to be:

𝜏1 = 𝒎𝟏𝟏�̈�1 + 𝒎𝟏𝟐�̈�2 + (
𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�2) �̇�1 + (

𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�2) �̇�2 +

𝜕𝑉

𝜕𝑞1

𝜏2 = 𝒎𝟐𝟏�̈�1 + 𝒎𝟐𝟐�̈�2 + (
𝜕𝒎𝟐𝟏

𝜕𝑞2
�̇�2) �̇�1 − (

𝝏𝒎𝟐𝟏

𝝏𝒒𝟐
�̇�1) �̇�2 −

1

2
(
𝜕𝒎𝟏𝟏

𝜕𝑞2
) �̇�1

2 +
𝜕𝑉

𝜕𝑞2

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix A - 21 - Inverse

kinematics for

2-link planar

manipulator

𝜏1 = (𝐼1 + 𝐼2 + 𝑚1𝐿𝑐1
2 + 𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 − 𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 + 𝑚2𝐿1)𝑔 cos 𝑞1 + 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

𝜏2 = (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 + 𝑚2𝐿𝑐2

2)�̈�2 + (𝑚2𝐿1𝐿𝑐2 sin 𝑞2)�̇�1
2

+ 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

∎

Inverse kinematics for 2-link planar manipulator

The derivation of these formulas is borrowed from (Jazar, 2010) and (Hessmer, 2009)

Start with forward kinematics formulas

(
𝑥𝑒

𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
) (1∗)

where all variables are according to Figure 2 on page 3.

Rewrite squares of the end effector position

(
𝑥𝑒

2

𝑦𝑒
2
) = (

𝑙1
2 cos2 𝑞1 + 𝑙2

2 cos2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 cos 𝑞1 cos(𝑞1 + 𝑞2)

𝑙1
2 sin2 𝑞1 + 𝑙2

2 sin2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 sin 𝑞1 sin(𝑞1 + 𝑞2)
)

Use Pythagorean identity

𝑎sin2 𝜃 + 𝑎cos2 𝜃 = 𝑎2

and rewrite

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos 𝑞1 cos(𝑞1 + 𝑞2) + sin 𝑞1 sin(𝑞1 + 𝑞2)]

Use the following identities

sin(𝑎 ± 𝑏) = sin 𝑎 cos 𝑏 ± cos 𝑎 sin 𝑏

cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓ sin 𝑎 sin 𝑏

to prove

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2

+ 2𝑙1𝑙2[cos 𝑞1 (cos 𝑞1 cos 𝑞2 − sin 𝑞1 sin 𝑞2)

+ sin 𝑞1 (sin 𝑞1 cos 𝑞2 + cos 𝑞1 sin 𝑞2)]

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos2 𝑞1 cos 𝑞2 + sin2 𝑞1 cos 𝑞2]

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2 cos 𝑞2

From this follow

𝑞2 = cos−1
𝑥𝑒

2 + 𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix A - 22 - Inverse

kinematics for

2-link planar

manipulator

Since arcsin and arccos are inaccurate for small angles, use the atan2 function:

𝜃2 = atan2(sin 𝜃2 , cos 𝜃2)

= atan2 (±√1 − cos2 𝜃2 , cos 𝜃2)

= atan2(±√1 − (
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

2

,
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

Next, use (1∗) to rewrite 𝑥 and 𝑦:

𝑥 = 𝑘1 cos 𝜃1 − 𝑘2 sin 𝜃1

𝑦 = 𝑘1 sin 𝜃1 + 𝑘2 cos 𝜃1

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝜃2 and 𝑘2 = 𝑙2 sin 𝜃2.

Now, use the following:

𝑟 = √𝑘1
2 + 𝑘2

2

𝛾 = atan2(𝑘2, 𝑘1)

This gives

𝑘1 = 𝑟 cos 𝛾

𝑘2 = 𝑟 sin 𝛾

This leads to

𝑥 = 𝑟 cos(𝛾 + 𝜃1)

𝑦 = 𝑟 sin(𝛾 + 𝜃1)

Finally apply atan2 function to find 𝜃1:

𝛾 + 𝜃1atan2 (
𝑦

𝑟
,
𝑦

𝑟
) = atan2(𝑦, 𝑥)

𝜃1 = atan2(𝑦, 𝑥) − atan2(𝑘2, 𝑘1)

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝜃2 and 𝑘2 = 𝑙2 sin 𝜃2.

The final solution contains ± sign which can be thought of as elbow-up and elbow-down

solutions. Plus sign yields the elbow-up solution, while the minus yields the opposite.

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix A - 23 - Inverse

kinematics for

2-link planar

manipulator

𝑞(𝑥𝑒 , 𝑦𝑒) =

[

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2 (
𝑙2 sin 𝑞2

𝑙1 + 𝑙2 cos 𝑞2
)

atan2(±√1 − (
𝑥𝑒

2+𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒

2 + 𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

]

∎

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 24 - MATLAB

code

Appendix B

MATLAB code

Manipulator.m

%% Robot manipulator Vilius Ciuzelis

% Control parameters

sandbox = 0;

debug = 0;

h = 0.01; % integration step length

time = 50; % the length of simulation

hFig = figure();

% Define model constants

constants = getConstants(sandbox);

% Define trajectory

trajectory = getTrajectory(h, time, constants);

plotTraj(constants, trajectory, hFig);

% Simulate the trajectory using a planar 2-link robot

manipulator arm

data = simulate(h, trajectory, constants, sandbox);

% Present the results

animate(data, constants, hFig);

plotErrDyn(data, hFig);

% Export the data

output = struct('q_1', data.q(1,:), 'q_2', data.q(2,:),

'q_1_dot', ...

 data.omega(1,:),'q_2_dot', data.omega(2,:), 'u_1',

data.tau(1,:), 'u_2', data.tau(2,:));

%% Simulation

function res = simulate(h, traj, constants, sandbox)

 % Get variables

 [q, omega, omega_dot] = getInitialStates;

 [kp, kd] = getGains(constants, sandbox);

 f_coeff = getFCoeff(sandbox);

 storage = getStorage(length(traj));

 x_e = traj(:,1);

 y_e = traj(:,2);

 for i=1:1:length(traj)

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 25 - MATLAB

code

 % --------------------------SENSE----------------

 omega = omega + h*omega_dot;

 q = q + h*omega;

 [storage.l1_pos(:,i), storage.l2_pos(:,i),

storage.ee_pos(:,i)] = forwardKinematics(constants,q);

 [M, C, G] = getModel(constants, q, omega);

 % --------------------------PLAN-----------------

 storage.q_r(:, i) =

inverseKinematics(constants,x_e(i),y_e(i));

 tau = kd*(-omega) + kp*(storage.q_r(:,i)-q) -

f_coeff*omega;

 % --------------------------ACT------------------

 omega_dot=inv(M)*(tau-C*omega-G);

 % Storage

 storage.q(:,i) = q;

 storage.omega(:,i) = omega;

 storage.omega_dot(:,i) = omega_dot;

 storage.tau(:,i) = tau;

 storage.error(:,i) = storage.q_r(:,i)-q;

% error dynamics

 end

 res = struct('q', storage.q, 'omega',

storage.omega,...

 'omega_dot', storage.omega_dot, 'tau',

storage.tau,...

 'ee_pos', storage.ee_pos, 'l1_pos',

storage.l1_pos,...

 'l2_pos', storage.l2_pos, 'error', storage.error,

'q_r', storage.q_r);

end

%% Storage function

function res = getStorage(count)

 [tau, omega, omega_dot, ee_pos, l1_pos, l2_pos,

error, q_r] = deal(zeros(2, count));

 q = zeros(2, count);

 res = struct('q', q, 'omega', omega, 'omega_dot',

omega_dot,...

 'tau', tau, 'ee', ee_pos, 'l1', l1_pos,...

 'l2', l2_pos, 'error', error, 'qr', q_r);

end

%% Storage of constants

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 26 - MATLAB

code

function res = getConstants(sandbox)

 if sandbox

 l_1 = 1;

 l_2 = 0.7;

 m_1 = 1;

 m_2 = 1;

 else

 l_1 = 42;

 l_2 = 52.6;

 m_1 = 9.6156;

 m_2 = 12.0424;

 end

 l_c1 = l_1/2;

 l_c2 = l_2/2;

 g = -9.81;

 I_1 = m_1*l_1^2/12;

 I_2 = m_2*l_2^2/12;

 res = struct('l_1', l_1, 'l_c1', l_c1, 'l_2', l_2,...

 'l_c2', l_c2, 'm_1', m_1, 'm_2', m_2, 'g', g,...

 'I_1', I_1, 'I_2', I_2);

end

%% Manipulator model

function [M, C, G] = getModel(const, q, omega)

 l_1 = const.l_1;

 l_c2 = const.l_c2;

 m_2 = const.m_2;

 M_11 =

const.I_1+const.I_2+const.m_1*const.l_c1^2+m_2*(l_1^2+l_c

2^2+2*l_1*l_c2^2+2*l_1*l_c2*cos(q(2)));

 M_12 = const.I_2 + m_2*(l_c2^2+l_1*l_c2*cos(q(2)));

 M_21 = M_12;

 M_22 = const.I_2+const.m_2*l_c2^2;

 M =[M_11 M_12; M_21 M_22];

 C_11 = -m_2*l_1*l_c2*sin(q(2))*omega(2);

 C_12 = (-m_2*l_1*l_c2*sin(q(2)))*(omega(1)+omega(2));

 C_21 = m_2*l_1*l_c2*sin(q(2))*omega(1);

 C_22 = 0;

 C = [C_11 C_12; C_21 C_22];

 G_1 = -

const.g*((const.m_1*const.l_c1+m_2*l_1)*cos(q(1)) +

m_2*l_c2*cos(q(1)+q(2)));

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 27 - MATLAB

code

 G_2 = -const.g*m_2*l_c2*cos(q(1)+q(2));

 G = [G_1; G_2];

end

%% Friction coefficients

function res = getFCoeff(sandbox)

 if sandbox

 res = [2 0; 0 1];

 else

 res = [10000 0; 0 5000];

 end

end

%% Initial states

function [q, omega, omega_dot] = getInitialStates

 q = [-1; pi/2];

 omega = [0; 0];

 omega_dot = [0; 0];

end

%% Forward kinematics

function [link1, link2, endEffector] =

forwardKinematics(const, q)

 link1 = [0;0];

 link2 = [const.l_1*cos(q(1)); const.l_1*sin(q(1))];

 endEffector =

[const.l_1*cos(q(1))+const.l_2*cos(q(1)+q(2));

 const.l_1*sin(q(1))+const.l_2*sin(q(1)+q(2))];

end

%% Inverse kinematics

function res = inverseKinematics(const, x,y)

 l_1 = const.l_1;

 l_2 = const.l_2;

 res = [atan2(y,x)-atan2(l_2*sin(atan2(sqrt(1-

((x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))^2),...

 (x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))), ...

 l_1+l_2*cos(atan2(sqrt(1-((x^2+y^2-l_1^2-

l_2^2)/(2*l_1*l_2))^2),...

 (x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2)))); ...

 atan2(sqrt(1-((x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))^2),

(x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))];

end

%% Controller gains

function [kp, kd] = getGains(const, sandbox)

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 28 - MATLAB

code

 if sandbox

 k_d1 = 50;

 k_p1 = 500;

 k_d2 = 20;

 k_p2 = 200;

 else

 k_d1 = 30000*const.m_1*const.l_1/2;

 k_p1 = 100000*const.m_1*const.l_1;

 k_d2 = 1000*const.m_2*const.l_2;

 k_p2 = 50000*const.m_2*const.l_2/4;

 end

 kd = [k_d1 0; 0 k_d2];

 kp = [k_p1 0; 0 k_p2];

end

%% Motion trajectory

function [traj, count] = getTrajectory(h, steps, const)

 %% Define The Trajectory

 % Define a circle to be traced over the course of 10

seconds. This circle

 % is in the _xy_ plane with a radius of 0.15.

 t = (0:h:steps-h+1)'; % Time

 count = length(t);

 center = [const.l_1 0];

 radius = 1/2*const.l_2;

 theta = t*(2*pi/t(end));

 points = center + radius*[cos(theta) sin(theta)];

 traj = points;

end

%% Trajectory plotter

function plotTraj(const, traj, Hfig)

 l_1 = const.l_1;

 l_2 = const.l_2;

 [q,~,~] = getInitialStates;

 subplot(2,2,1)

 plot(traj(:,1), traj(:,2));

 grid on;

 title("Planned e.e. trajectory in the reachable

workspace");

 axis([-(l_1+l_2) (l_1+l_2) -(l_1+l_2) (l_1+l_2)]);

 hold on;

 plot([0 cos(q(1))*l_1],[0 sin(q(1))*l_1]);

 hold on;

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 29 - MATLAB

code

 plot([cos(q(1))*l_1

cos(q(1))*l_1+cos(q(1)+q(2))*l_2],[sin(q(1))*l_1

sin(q(1))*l_1+sin(q(1)+q(2))*l_2]);

 hold off;

end

%% Animation

function animate(data, const, hFig)

 subplot(2,2,2);

 if nargin == 2

 hFig = figure();

 end

 d = 100; % FPS

 j=1:d:length(data.q);

 ee_pos = data.ee_pos;

 l2_pos = data.l2_pos;

 for i=1:length(j)-1

 hold off

 plot(ee_pos(1,1:j(i)),ee_pos(2,1:j(i)), "-");

 hold on;

 plot([l2_pos(1,j(i)) ee_pos(1, j(i))],[l2_pos(2,

j(i)) ee_pos(2, j(i))],'o', ...

 [data.l1_pos(1) l2_pos(1,j(i))],[data.l1_pos(2)

l2_pos(2,j(i))],'k',... % first arm

 [l2_pos(1,j(i)) ee_pos(1, j(i))],[l2_pos(2,j(i))

ee_pos(2, j(i))],'k') % second arm

 hold on;

 title('Motion of the robot')

 xlabel('x')

 ylabel('y')

 axis([-const.l_1-const.l_2 const.l_1+const.l_2 -

const.l_1-const.l_2 const.l_1+const.l_2]);

 grid on;

 hold on;

 drawnow;

 end

end

%% Error dynamics plotter

function plotErrDyn(data, hFig)

 steps = 200;

 subplot(2,2,[3,4]);

 plot(1:steps, data.error(:,1:steps));

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 30 - MATLAB

code

 txt = sprintf("Error dynamics in the first %d

simulation steps", steps);

 title(txt);

 legend("Error in q_1", "Error in q_2");

end

startup.m

% startup script to make Octave/Matlab aware of the GPML

package

%

% Copyright (c) by Carl Edward Rasmussen and Hannes

Nickisch 2018-08-01.

disp ('executing gpml startup script...')

mydir = fileparts (mfilename ('fullpath'));

% where am I located

addpath (mydir)

dirs = {'cov','doc','inf','lik','mean','prior','util'};

% core folders

for d = dirs, addpath (fullfile (mydir, d{1})), end

dirs =

{{'util','minfunc'},{'util','minfunc','compiled'}}; %

minfunc folders

for d = dirs, addpath (fullfile (mydir, d{1}{:})), end

addpath([mydir,'/util/sparseinv'])

GP_regression.m

%% GP Vilius Ciuzelis

run startup.m; % For

gpml_randn()

run Manipulator.m

% Globals

global sigma_f sigma_n l gamma

sigma_f = 0.5; %

standard deviation of the noise-free signal

sigma_n = 0.005; %

standard deviation of the noise

l = 10.189; %

Length-scale

gamma = 2; % For use

in gammaExp cov. func. Value must be 2

rng('default'); % For

repeatability

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 31 - MATLAB

code

rngseed = 5;

%% main

input = output.q_1; % true

function

spacing = 100;

% Omitting the first 100 samples, due to very high

transients in u_1

Y = input(100:spacing:end)'; % Target

data

y = Y + 0.005*gpml_randn(rngseed, length(Y) , 1); % Add

some noise

trainingData = 1:length(y);

X = trainingData; %

Training data

m = 100; % number

of test points

Ns = 10; % number

of prior and posterior rnd samples

xs = linspace(X(1), X(end), m)'; % Test

data

% Choose cov function between:

% 'SE', 'MacKay', 'Matern3/2', 'Matern5/2', 'gammaExp',

'exponential'

covFunc = 'SE';

% Sampling from prior

fPrior = getFPrior(xs, covFunc, Ns);

% GP regression

[mu, variance, lml] = getGP(X, xs, y, covFunc);

% Sampling from posterior

fPosterior = getFPost(X, xs, covFunc, mu, Ns, lml);

figure();

hold on; plot(xs,variance);hold off;

f = [mu+2*sqrt(variance); flipdim(mu-

2*sqrt(variance),1)];

fill([xs; flipdim(xs,1)], f, [7 7 7]/8);

hold on; plot(xs, mu, 'b'); plot(X, y, 'r+');

plot(1:length(Y) ...

 , Y); hold off;

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 32 - MATLAB

code

legend('Confidence interval','Predicted mean', 'Test

points', 'True function');

txt = sprintf('GP regression using %s', covFunc);

title(txt);

%% Covariance function

function covariance = kernel(x, x_prime, covType)

 N = max(size(x,1),size(x,2));

 M = max(size(x_prime,1),size(x_prime,2));

 covariance = zeros(N,M);

 for i=1:1:N

 for j=1:1:M

 if nargin == 3

 switch covType

 case 'SE'

 covariance(i,j) =

SE(x(i),x_prime(j));

 case 'MacKay'

 covariance(i,j) =

MacKay(x(i),x_prime(j));

 case 'Matern3/2'

 covariance(i,j) =

Matern32(x(i),x_prime(j));

 case 'Matern5/2'

 covariance(i,j) =

Matern52(x(i),x_prime(j));

 case 'gammaExp'

 covariance(i,j) =

gammaExp(x(i),x_prime(j));

 case 'exponential'

 covariance(i,j) =

exponential(x(i),x_prime(j));

 otherwise

 disp('Invalid covariance function

given. Using SE instead');

 covariance(i,j) =

SE(x(i),x_prime(j));

 end

 else

 disp('Too few arguments given. Exiting');

 return;

 end

 end

 end

end

%% Prior

function fPrior = getFPrior(X_star, covFunc, Ns)

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 33 - MATLAB

code

 m = length(X_star); %

number of test points

 hyp = getHyp;

 Kss = kernel(X_star, X_star, covFunc); % m x

m

 Lss = chol(Kss+hyp.sn^2*eye(m), 'lower'); % m x

m

 b = normrnd(0, hyp.sf, m, Ns); % m x

Ns

 % Should I use Kss or Lss here? What's the

difference?

 fPrior = Kss*b; % m x

Ns

 % Plotter functions

 figure()

 subplot(2,2,2);

 plot(X_star, fPrior);

 hold on;

 plot(X_star, 0*X_star);

 hold on;

 txt = sprintf("Prior distribution samples, \\mu=%d,

\\sigma_n=%.2f, l=%.4f",0,hyp.sf,hyp.l);

 title(txt);

 xlabel('x'); ylabel('y');

 subplot(2,2,1);

 plot(X_star, b);

 title("Samples drawn from the normal distribution");

 legend("Sample 1", "Sample 2", "Sample 3");

 hold on;

 subplot(2,2,3);

 samples = (-3:.1:3);

 norm = normpdf(samples,0,1);

 plot(samples, norm, 'LineWidth', 2);

 hold on;

 histogram(normalize(b), 'Normalization', 'pdf',

'BinMethod', 'auto');

 title("Histogram over normal samples");

 legend("Normal distribution");

 hold off;

end

%% GP regression

function [mean, variance, lml] = getGP(X, X_star, y,

covFunc)

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 34 - MATLAB

code

 % This function uses algorithm 2.1 from

Rasmussen&Williams, 2006

 %

 fprintf("Using %s as covariance function for GP

regression\n", covFunc);

 n = length(X);

 hyp = getHyp;

 % Optimization of the hyperparameters

 % hyp = optimize(y, n, 'Iterations', 100, hyp);

 K = kernel(X,X, covFunc);

 Kss = kernel(X_star, X_star, covFunc); % m x

m

 ks = kernel(X_star, X, covFunc);

 L = chol(K+hyp.sn^2*eye(n), 'lower'); % 2.

L:=cholesky(K+sigma_n^2*I)

 alfa = L'\(L\y); % 3.

alfa:=L^T\(L\y)

 mean = ks*alfa; % 4.

f_star_bar:=k_star^T*alfa

 v = L\ks'; % 5.

v:=L\k_star

 variance = diag(Kss)-dot(v,v)' + hyp.sn^2; % 6.

V[f_star_bar]:=k(x_star,x_star)-v^T*v

 dataFit = (-1/2)*y'*alfa;

 term1 = log(diag(L));

 complPenalty = (-1/2)*sum(term1(:));

 normConst = (-1/2)*n*log(2*pi);

 lml = dataFit+complPenalty+normConst; % 7.

log marginal likelihood;

 display(dataFit(1), 'Data fit');

 display(complPenalty(1), 'Complexity penalty');

 display(normConst(1), 'Normalization constant');

 display(lml(1), 'Log marginal likelihood');

end

%% Posterior

function FPost = getFPost(X, X_star, covFunc, mean, Ns,

lml)

 hyp = getHyp;

 n = length(X); %

number of training points

 m = length(X_star); %

number of test points

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 35 - MATLAB

code

 ks = kernel(X_star, X, covFunc); % m x

n

 K = kernel(X,X, covFunc); % n x

n

 Kss = kernel(X_star, X_star, covFunc); % m x

m

 L = chol(K+hyp.sn^2*eye(n), 'lower');

 Lk = L\ks';

 Lk = Kss+hyp.sn^2*eye(m)-Lk'*Lk;

 L = chol(Lk,'lower');

 b = normrnd(0, hyp.sf, m, Ns); % m x

Ns

 FPost = mean+L*b;

 subplot(2,2,4);

 plot(X_star, FPost);

 hold on;

 plot(X_star, 0*X_star);

 hold on;

 txt = sprintf("Samples from the posterior

distribution, lml %.4f", lml(1));

 title(txt);

 xlabel('x'); ylabel('y');

end

%% Squared Exponential covariance function (2.20) R&W

2006

function res = SE(arg1, arg2)

 hyp = getHyp;

 r = arg1^2+arg2^2-2*arg1*arg2;

 M = hyp.l^2;

 res = hyp.sf^2*exp((-1/2)*M\r)+hyp.sn^2*eq(arg1,

arg2);

end

%% MacKay covariance function, (4.31) R&W 2006

function res = MacKay(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = exp(-2*inv(hyp.l^2)*sin(r/2).^2);

end

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 36 - MATLAB

code

%% Matérn v=3/2 covariance function, (4.17) R&W 2006

function res = Matern32(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = (1+sqrt(3)*r*inv(hyp.l))*exp(-

sqrt(3)*r*inv(hyp.l));

end

%% Matérn v=5/2 covariance function, (4.17) R&W 2006

function res = Matern52(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res =

(1+sqrt(5)*r*inv(hyp.l)+5*r^2*inv(3*hyp.l^2))*exp(-

sqrt(5)*r*inv(hyp.l));

end

%% Gamma-exponential covariance function, (4.18) R&W 2006

function res = gammaExp(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = exp(-(r/hyp.l)^hyp.gamma);

end

%% Exponential covariance function

function res = exponential(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = exp(-r*inv(hyp.l));

end

%% Hyperparameters

function res = getHyp

 global l sigma_f sigma_n gamma

 res = struct('l',l, 'sf', sigma_f , 'sn', sigma_n,

'gamma', gamma);

end

 Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Appendix B - 37 - MATLAB

code

