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Summary 

Model estimation and, especially nonlinear, regression has been extensively studied in 

the past. The research is heavily used in various industries: manufacturing, process control, 

and, in the later decades, artificial intelligence (AI). This paper is looking into the possibility 

to use Gaussian Processes regression on an industrial level – modelling and control of a robot 

manipulator arm. The advantages of this method are that the modelling is non-parametric and 

has guaranteed convergence. No prior model of the system needs to exist to be able to model 

the desired system. However, the knowledge of some prior information of the system dynamics 

beforehand is not of no use. This information can be used in construction of covariance 

function, the heart of Gaussian Processes, and help speed up the regression process. 

 Gaussian Process has showed great potential in ability to interpret highly non-linear 

models extremely well with minimal tuning. Even though the hyperparameter optimization was 

not implemented fully, the resulting research showcases the potential of the method. Equally, 

it uncovers maybe the biggest problem with the method – its complexity. Complex derivation 

and implementation leads to confusion and frustration when trying to wrap one’s head around 

the basics of Bayesian Inference.  
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Nomenclature 

 

cholesky(𝐴) - cholesky factorization. Returns 𝐿 where 𝐿𝐿\ 

𝛿𝑝𝑞 - Kronecker delta function which equals to 1 iff 𝑝 = 𝑞 and 0 

otherwise 

𝐟∗ 𝑜𝑟 f∗  - Gaussian process posterior prediction  

𝐟∗̅ 𝑜𝑟 f∗̅  - Gaussian process predictive mean 

𝒢𝒫   - Gaussian process with a mean and a covariance function 

𝐽   - moment of inertia 

𝜇   - mean value 

𝑚𝑖  - mass of link 𝑖 
𝒩(𝜇, 𝜎2) - Normal (or Gaussian) distribution 

𝑛   - number of training inputs 

𝑛∗  - number of test inputs 

𝑘(𝐱, 𝐱′)  - kernel (or similarity) function evaluated at 𝐱 and 𝐱′ 
𝐾(𝑋, 𝑋)  - 𝑛 × 𝑛 covariance matrix 

ℒ   - Lagrangian  

𝑙   - characteristic length-scale parameter 

𝑚(𝐱)  - mean function  

𝜎𝑓
2  - variance of the noise-free signal 

𝜎𝑛
2  - variance of the noise 

𝑇∗  - kinetic co-energy 

tr(A)  - trace is the sum of the elements on the main diagonal of a square 

matrix. ∑ 𝑎𝑖𝑖
𝑛
𝑖=1 = 𝑎11 + 𝑎22 + ⋯+ 𝑎𝑛𝑛 

𝜃   - joint angle 

𝑣𝑖  - velocity of link 𝑖 
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𝑉  - potential energy 

𝕍  - variance in (C. E. Rasmussen, 2006) 

𝑋  - matrix of training inputs 

𝑋∗  - matrix of test inputs 

𝐱i  - training input 𝑖 
𝐲   - training targets 
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I Introduction 

Previous work 

Gaussan Processes have received a lot of attention in the last decades, the leading cause 

being machine learning and hype around the Artificial Intelligence or AI (Hopgood 2003). The 

truth is, the first GP works with GP date back to as far as 1940’s (Wiener, 1949). It has been 

used in geology (Cressie, 1990) and is extensively described by (C. E. Rasmussen, 2006), 

which has later become as a go-to work on GP. This particular book has therefore been used as 

basis for this paper. 

GP is a stochastic process used in statistics and probability theory as a method for 

regression or classification when some data about the model is known. In terms of machine 

learning – supervised learning method. The main difficulty with finding the correct model is 

therefore the trade-off between complexity and overfitting. The model should be complex 

enough to model the main dynamics in the system, yet simple enough as to not model the noise, 

see Figure 1 below. 

The fit is controlled by some free parameters, called the hyperparameters, which are then to be 

optimized to ensure best fit to the data at hand. There exists several other data-fitting methods 

in both regression and classification (Harvey Motulsky, 2004). Gaussian Processes has proven 

itself to be a generally strong method of data-fitting extremely nonlinear models and is easily 

scalable to different size models (J. Hensman 2015). It can even be combined with other control 

and modelling methods to enhance the method further (J. Kocijan 2004). The downsides of the 

method is its complexity when implementing and computational needs. The numerous inverses 

Figure 1. Example of overfitting 
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I Introduction - 2 - Previous work   

of covariance matrix in GP are computationally expensive (C. E. Rasmussen, 2006). 

 As a test case, basic control of a 2-link planar robot manipulator arm has been chosen. 

The dynamics of manipulators are highly nonlinear in the sense that joints might have non-

linear friction forces, elasticity and rigidity (or lack thereof) in the links is also highly non-

linear (Cai 2002). Let’s take a look into the robot model itself. 
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II Background theory 

Robot model 

Physical manipulator parameters are (loosely) based on Kuka’s own LBR iiwa 14 R280 

(GmbH) robot. The mass of the robot was assumed to be uniform such that the masses of the 

respective links were simply obtained by linear combination of the lengths of the robot. To 

calculate moments of inertia, the arms of the manipulator are modelled as thin, uniform beams. 

The inertia about the center of mass is then given by 

𝐼𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑚𝑙2

12
  

The complete overview of the parameters used in the simulation is shown in Table 1 under III 

Simulation on page 12. Next, analytical robot model is derived.  

 

Equations of Motion 

In order to gather training data for the GP model of the robot, one needs to describe the 

model analytically. For that purpose, an energy-based - Lagrange method was used. Let the 

total energy in the system be defined as  

ℒ = 𝑇∗ − 𝑉 

where 𝑇∗ is the so-called kinetic co-energy and 𝑉 is the potential energy in the system. Define 

these energies as 

Figure 2. 2-link planar robot manipulator arm model 
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𝑇∗ = ∑
1

2
𝑚𝑖𝑣𝑖

2

𝑖

 

𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔ℎ 

Equations of motion (EOM) are then found using Lagrangian (Egeland, et al., 2002) 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 𝜏𝑖 

For the extensive derivation of the equations of motion, see Appendix A. For completeness, 

fully-derived EOM are given below  

𝜏1 = (𝐼1 + 𝐼2 + 𝑚1𝐿𝑐1
2 + 𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 − 𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 + 𝑚2𝐿1)𝑔 cos 𝑞1 + 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 

𝜏2 = (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 + 𝑚2𝐿𝑐2

2 )�̈�2 + 𝑚2𝐿1𝐿𝑐2�̇�1
2𝑠𝑖𝑛 𝑞2

+ 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 

These equations can be written in a more compact form, just as in (Egeland, et al., 2002) 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�) + 𝑮(𝒒) = 𝝉 

where 𝑴(𝒒) = 𝑴⊤(𝒒) is a positive definite matrix and 𝑮(𝒒) is the gradient of the gravity 

potential. The matrix 𝑪(𝒒, �̇�) can be selected to be  

𝑪(𝒒, �̇�) = {𝒄𝑗𝑘} = {∑𝒄𝑖𝑗𝑘�̇�𝑖

𝑛

𝑖=1

} 

where  

𝒄𝑖𝑗𝑘 ≔
𝟏

𝟐
(
𝜕𝒎𝑗𝑘

𝜕𝒒𝒊
+

𝜕𝒎𝑖𝑘

𝜕𝒒𝑗
+

𝜕𝒎𝑖𝑗

𝜕𝒒𝑘
) 

are the Christoffel symbols of the first kind. In this case the matrix �̇� − 𝟐𝑪 is skew symmetric. 

When it comes to the controller, a simple PD regulator is used 

𝝉 = 𝒌𝑑(−�̇�) + 𝒌𝑝(𝒒𝑟 − 𝒒) 

where 𝒒𝑟 is the reference trajectory and 𝒌𝑑 and 𝒌𝑑 are control constants. Now that the equation 

of motion are described, one needs to describe the input out relationship of the system – 

kinematics. 

 

Kinematics 

Forward kinematics expresses the position of the end effector as the coordinates in the 

xy-plane as a function of joint angles and geometry of the links. These formulas are trivial to 

find and can be proven to have the following form 
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Processes   

(
𝑥𝑒

𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
) 

Inverse kinematics problem, or IKP for short, is sort-of an inverse of the forward 

kinematics problem, as the name suggests. The formulation of the problem is as follows: given 

the position of the end effector in xy-plane, compute all possible joint angles and link 

geometries which correspond to that particular end effector position. Several forms of the 

solution exist, each one with different characteristics when it comes to computation complexity 

and orientation of the links. The fully-derived formula is given below. For complete derivation 

of the formula see Appendix A. 

𝑞(𝑥𝑒 , 𝑦𝑒) =

[
 
 
 
 
 

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2 (
𝑙2 sin 𝑞2

𝑙1 + 𝑙2 cos 𝑞2
)

atan2(±√1 − (
𝑥𝑒

2+𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒

2 + 𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

]
 
 
 
 
 

 

 

where 𝑘1 = 𝑙1 + 𝑙2 cos(𝑞2) and 𝑘2 = 𝑙2 sin(𝑞2). The analytical model of the robot arm is now 

fully derived. Let’s take a look into the regression process. 

 

Gaussian Processes 

 GP is used for making understandings about the relationships between the training and 

target data. Said in other words, input-output relationship or the conditional distribution of the 

targets, given the inputs (C. E. Rasmussen, 2006). By definition in the same book, a Gaussian 

Process “is a collection of random variables, any finite number of which have a joint Gaussian 

distribution”. Given a dataset of 𝑛 observations, which we call 𝒟 = (𝐗, 𝐲), a GP is fully 

expressed by its mean and covariance functions 𝑚(𝐱) and 𝑘(𝐱, 𝐱′). These functions are defined 

as 

𝑚(𝐱) = 𝔼[𝑓(𝐱)] 

𝑘(𝐱, 𝐱′) = 𝔼[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))] 

where 𝑓(𝐱) is the process. A Gaussian Process using formulas above can be denoted as 

𝑓(𝐱) ~ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) 

To fully understand GP it is crucial to talk about its structure – its mean and variance functions. 
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Processes   

Mean function 

Since a GP is fully expressed by its mean and a covariance functions or matrices, let’s 

take a look into the mean function first. There exist methods of fitting a mean to the data at 

hand, however it is often omitted and left zero. The reason behind this is simply that the 

covariance function usually takes the mean into the account when computing the variance 

matrix. There exist, of course, applications where the data is inherently at a slope or has an 

angle, but a suited covariance function will usually cover the increasing/decreasing mean. This 

paper will therefore be using a mean function of 0 throughout the derivations and simulations.  

 

Covariance function 

Covariance (or kernel) functions contain most of the information about the model. 

Assuming the mean function to be zero results in covariance function defining the whole model 

by itself! Covariance functions always have one or more free parameters which decide its form. 

To accommodate the vast range of possible nonlinear models, a number of kernel functions 

have been developed. Both explicit and composite functions. These functions define one or 

more of the following aspects of the covariance functions: stationarity, isotropy, smoothness 

and periodicity. 

Stationarity refers to a stochastic process whose unconditional joint probability 

distribution, mean, and variance do not change in time. It means that 𝐱 − 𝐱′ only depends on 

the values of 𝐱 and 𝐱′ and not their position (in time?). Isotropy deals with the measurement of 

distance. If a function is only dependent on values and not the measurement direction, then the 

function is called isotropic. Smoothness is defined by the expected closeness (or similarity) 

between input-output pairs. If the expectancy is high, the resulting function will tend to favor 

a more rapidly changing model rather than a slower, smoother model.  

There exist numerous kernels functions which have different properties and are best 

suited for a range of applications. Therefore, the choice of the best-suited kernel function is not 

arbitrary. The most common and maybe simplest kernel function is the Squared Exponential 

(SE) 

𝑘(𝐱, 𝐱′) = σf
2exp(−

1

2
(𝒙 − 𝒙′)⊤𝑴(𝒙 − 𝒙′)) + 𝜎𝑛

2𝛿𝐱𝐱′  

where 𝜎𝑓
2 is the variance of the noise-free signal, 𝜎𝑛

2 is the variance of the noise, and 𝛿𝐱𝐱′ is a 

Kronecker delta which is 1 if 𝐱 = 𝐱′ and 0 otherwise. 𝑴 is simply a symmetric matrix 

containing the characteristic length-scales. It might take one of the following forms, depending 
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Processes   

on the values of hyperparameters: 

𝑀1 = 𝑙2𝐼,                       𝑀2 = 𝑑𝑖𝑎𝑔(𝒍)−2,                           𝑀3 = ΛΛ⊤ + 𝑑𝑖𝑎𝑔(𝒍)−2 

Parameter 𝑙 in 𝑀2 is called characteristic length-scale. It decides how fast pace of change the 

sample functions are to have. Low 𝑙 values will yield a more rapidly changing functions, while 

greater values will tend to smooth out the functions. Now that the basics of GP structure are 

covered, let’s take a look at the next step of GP regression – prior distribution. 

Prior 

When choosing hyperparameters manually, or picking the initial values for optimization 

later, it is wise to check the function pool for the general form of the functions being drawn, 

the so-called prior distribution. This distribution is a multivariate normal (Gaussian) 

distribution together with a covariance matrix generated by the chosen kernel function. Firstly, 

one needs to compute the 𝑛 × 𝑛 covariance matrix 𝑲∗: 

𝐾(𝐗∗, 𝐗∗) = [
𝑘(𝐱1

∗ , 𝐱1
∗) ⋯ 𝑘(𝐱1

∗ , 𝐱n
∗ )

⋮ ⋱ ⋮
𝑘(𝐱n

∗ , 𝐱1
∗) ⋯ 𝑘(𝐱n

∗ , 𝐱n
∗ )

] 

Note that the prior distribution is solely dependent on the training data. One can sample the 

desired number of sample functions from GP using the multivariate normal distribution 

𝐟∗~𝒩(𝑚(𝐱),𝐾(𝐗∗, 𝐗∗)) 

Prior functions can be sampled using the following equation: 

𝐟prior = cholesky(𝐾(𝐗∗, 𝑿∗) + 𝜎𝑛
2𝐼) ⋅ 𝐛 (1) 

where 𝐛 is a 𝑛∗ × 𝑁 matrix of random numbers drawn from a normal (Gaussian) distribution 

with 0 mean and standard deviation 𝜎𝑓. An example of such a sample of prior functions is 

shown in Figure 3 below. 

 

Figure 3. Example of multiple sample functions from the prior distribution. 
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Posterior 

While prior has information about the prior functions which might be used in regression, 

posterior shows which functions have been used in the regression (Freitas, 2013): 

𝐟posterior = 𝐟∗̅ + cholesky(𝐾(𝐗∗, 𝑿∗) + 𝜎𝑛
2𝐼 − 𝐿𝑘

⊤𝐿𝑘) ⋅ 𝐛 

where 𝐿𝑘 = cholesky(𝐾(𝐗, 𝐗) + 𝜎𝑛
2𝐼)−1𝐾(𝐗, 𝐗∗) and 𝒃 similar to (1). The posterior shows the 

uncertainty in the prediction very clearly. 

 

 

Prediction 

Realistic observations or measurements are never 100% accurate. Whether because of 

the measuring instrument noise, inaccuracies in computing or simply modelling errors, one 

must always account for some disturbances in the system. In robust control, the unknown 

disturbances are usually modelled as (white) noise. The prior on the observations should 

therefore be expressed (C. E. Rasmussen, 2006): 

 

cov(yp, yq) = 𝑘(𝐱p , 𝐱q) + 𝜎𝑛
2𝛿𝑝𝑞 𝑜𝑟 cov(𝐲) = 𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼 

 

where 𝛿𝑝𝑞 is a Kronecker delta which is 1 when 𝑝 = 𝑞, otherwise 0. The joint distribution of 

the observations at the test points are (C. E. Rasmussen, 2006): 

 

Figure 4. Posterior distribution of a rather noisy signal 
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[
𝐲
𝐟∗

] ~𝒩 (𝟎, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2 𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

])  

 

The fully derived conditional on Gaussian prior distribution is then 

𝐟∗̅ = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐲 

cov(𝐟∗) = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗) 

 

Algorithm used in the simulations is the same as in (C. E. Rasmussen, 2006). The algorithm is 

denoted as (2.1) in the book. Given training input 𝑋, training targets 𝐲, covariance function 𝑘, 

noise level 𝜎𝑛
2, and test input 𝐱∗. Define the following 

𝐿 ≔ 𝑐ℎ𝑜𝑙(𝐾 + 𝜎𝑛
2𝐼) 

𝜶 ≔ 𝐿⊤\(𝐿\𝐲) 

𝑓∗̅ ≔ 𝐤∗
⊤𝜶 

𝐯 ≔ 𝐿\𝐤∗ 

𝕍[𝑓∗] ≔ 𝑑𝑖𝑎𝑔(𝑘(𝐱∗, 𝐱∗)) − 𝐯⊤𝐯 + 𝜎𝑛
2  

log 𝑝(𝐲|𝑋) ≔ −
1

2
𝐲⊤𝜶 − ∑log 𝐿𝑖𝑖

𝑖

−
𝑛

2
log 2𝜋  (2) 

where 𝑐ℎ𝑜𝑙(𝐾 + 𝜎𝑛
2𝐼) returns the lower diagonal matrix 𝐿 in 𝐿𝐿⊤ =  𝐾 + 𝜎𝑛

2𝐼. This is done to 

ensure stability since the inverse of the 𝐾 matrix tends to be numerically unstable. The 

algorithm returns the predictive mean and variance for the noisy test data 𝑦∗. The three terms 

in (2) can be interpreted as penalties. The first term penalizes low the data-fit. The second term, 

which is only dependent on the covariance matrix 𝐾, is the complexity penalty. The model with 

high complexity are usually over-fitted. The last term is the normalization constant. The only 

way to control the data-fitting process is to change the hyperparameters of the covariance 

function. 

 

Hyperparameters 

The optimization of hyperparameters is rather tricky. The problem is non-linear and 

computationally costly. Therefore, a well-designed optimization algorithm is needed. To 

compute the hyperparameters using the maximization of marginal likelihood with respect to 

parameters (C. E. Rasmussen, 2006) 

𝜕

𝜕𝜃𝑗
log 𝑝(𝐲|𝑋, 𝜽) =

1

2
𝐲⊤𝐾−1

𝜕𝐾

𝜕𝜃𝑗
𝐾−1𝐲 −

1

2
tr (𝐾−1

𝜕𝐾

𝜕𝜃𝑗
) 



 Vilius Ciuzelis  

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION 

 

II Background theory - 10 - Gaussian 

Processes   

=
1

2
tr ((𝜶𝜶⊤ − 𝐾−1)

𝜕𝐾

𝜕𝜃𝑗
) 

where 𝜶 = 𝐾−1𝐲. Because of the inversion of matrix 𝐾, gradient based optimizers are advised, 

such that steepest descent or congujate gradient method.  

The algorithm that (C. E. Rasmussen, 2006) propose to use with congujate gradient method is 

shown below: 

Conjugate gradient (CG) method would then be used to optimize the hyperparameters (Andrew 

V. Knyazev, 2007). These methods usually are more computationally expensive than methods 

used in literature, i.e. kernel-alignment by (Nello Cristianini), grid search algorithms (Kupinski 

2010), random search (Bergstra 2012), or Bayesian optimization-based search (Snoek 2012). 

 

When dealing with data that is much greater than 1,  it might be useful to normalize or 

standardize the data first. This should be done to both the training inputs and the training 

targets. Then the optimization can be started by initializing the hyperparameters: initialize 

length-scale and function variance to 1. Standardization of data is usually done with the 

following formula: 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝑥 − 𝜇

𝜎
 

where 𝜇 is the mean and 𝜎 is the standard deviation of the data explored. The experience also 

Figure 5. Algorithm to compute log marginal likelihood and its partial derivatives. 
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shows that higher initial values for the target function variance yield better performance when 

optimizing the other hyperparameters, even though you expect low noise. A small number of 

restarts of the optimization algorithm with different initial starting points is a possible remedy 

for when local optima is reached (Murray, 2008).   
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III Simulation 

The software used in this project thesis is simply MATLAB prerelease version 2018a. 

The hardware is a Windows OS based laptop with Intel Core i7-7700 CPU @ 3.60 GHz and 8 

GB memory.  

Robot arm model 

Friction coefficients in the robot joints is chosen to be simply [
10000 0

0 5000
]. The 

behavior of the unforced system represents life-like behavior. 

Controller 

PD-controller gains were found by tuning the controller manually. The final gains used 

in the simulation are shown in Table 2. 

𝒌𝒑 
[
100000 ⋅ 𝑚1𝑙1
25000 ⋅ 𝑚2𝑙2

] 

𝒌𝒅 
[
15000 ⋅ 𝑚1𝑙1
1000 ⋅ 𝑚2𝑙2

] 

Table 2. Controller gains 

The values of the gains might not be entirely feasible in a real-world application as they are 

relatively high. These gains yield an extremely fast convergence rate and fast error dynamics. 

Therefore, they are satisfactory based on the application of the current model. 

The motion of the robot was chosen to be a circle with a diameter of the second robot arm link. 

This path of motion reveals a sufficient amount of robot dynamics to be analyzed by the GP. 

Model parameter  LBR iwwa 14’s parameter  Value Explanation 

    

𝒍𝟏 𝐷 420 𝑚𝑚 Length of the 1st link 

𝒍𝟐 𝐴 − 𝐶 − 𝐷 526 𝑚𝑚 Length of the 2nd link 

𝒎𝑻 𝑚𝑇 29,9 𝑘𝑔 Total mass of the robot 

𝒎𝟏 − 9,6 𝑘𝑔 Mass of the 1st link 

𝒎𝟐 − 12,0 𝑘𝑔 Mass of the 2nd link 

𝑰𝟏 − 5640 𝑘𝑔𝑚𝑚2 Inertia of the 1st link 

𝑰𝟐 −  Inertia of the 2nd link 

𝒈 − −9,81 𝑘𝑔𝑚/𝑠2 Gravity constant 

Table 1. Manipulator arm model parameters 
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The error dynamics show fast convergence with minimal overshoot. They are shown in Figure 

6 above. 

 

The sampling values for the GP regression were chosen with an equal amount of spacing 

between the data points gathered from the robot motion. Only every 200th point of the data 

points was chosen, due to computational expensiveness. This sampling technique does not pose 

any real threats to the simulations since the motion is not prone to aliasing or really any other 

problems that oscillating motions have. The marginal likelihood function in GP regression did 

not perform as expected and has even achieved positive values, which should not be possible.  

  

Figure 6. Motion trajectory, simulated motion and error dynamics 
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IV Results 

The resulting plots are shown in figures below. The (sub-)optimal hyperparameter 

values were found using marginal likelihood and tuning the lengthscales values manually. 

Since the optimization of the hyperparameters did not work satisfactory it is left out of further 

discussion. The covariance function performance was very similar, even though the optimal 

values were quite different. MacKay and Squared Exponential were the most promising ones 

yielding near-perfect regression. Some of the most interesting results are shown below. The 

Figure 8. GP regression for joint 𝑞2 

Figure 7. Prior and posterior for angular velocity of joint 𝑞2 
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brown area surround the prediction is the uncertainty. It is 2 times the standard deviation, that 

is just above 95% confidence interval.  

 

 

  

Figure 10. GP regression for the angular velocity of joint angle 𝑞1 

Figure 9. Prior and posterior for joint angle 𝑞2 
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V Discussion 

 The results show great algorithm capabilities and versatility to adapt to new data. 

Surprisingly little effort is needed to achieve excellent results even when tuning the GP model 

manually. Even though the hyperparameter optimization did not work in time, the GP 

regression method has shown its strengths and application possibilities. Interestingly enough, 

failure to implement the optimizer, shows the great disadvantage with the method – its 

complexity. I have found numerous implementations of different parts of the GP regression 

and all of them seems to produce somewhat believable results. Which ones were the “correct” 

ones, is difficult to say. A strong statistical background is needed to understand and handle this 

method if it were used for control, whereas a simple PID controller is simple enough to be 

handled regardless of one’s background.  
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VI Future Work 

The further research ideas presented in this section are the framework for the master 

thesis following this paper. The first step is to implement gradient-based hyperparameter 

optimization and develop a sparse model. Online covariance function selector would further 

improve the data fit. Even though the GP is a very powerful method on its own, it would be 

very interesting to see it work together with some other controllers and models. Implementation 

of more sophisticated controllers, like (nonlinear) MPC controller, Neural Networks-based 

controller and other both industry and novel controllers. It would especially be interesting to 

see it work as a standalone model in a model reference control problem, where the requirement 

for the model update is of relative low frequency.  

Decision theory for selecting new observations contra computational costs of the 

system. A bigger comparison of several techniques would be interesting. One promising 

technique is the Latin-hypercube sampling which maximizes the minimum distance between 

the sampling points (see Figure 11 below). Monte Carlo simulations and Orthogonal sampling 

have shown promising results and deserves some attention. Research on hyperparameter 

optimality conditions to check whether a true optimum has been reached or the optimizer is 

stuck in a local optimum.  

 

 

Figure 11. Latin Hypercube with two variables. 
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Appendix A 

Derivation of the EOM for 2-link planer manipulator 

Based on (Egeland, et al., 2002) 

The planar manipulator has kinetic energy: 

𝑇 =
1

2
𝑚1�⃗�𝑐1 ⋅ �⃗�𝑐1 +

1

2
𝑚2�⃗�𝑐2 ⋅ �⃗�𝑐2 +

1

2
�⃗⃗⃗�1 ⋅ �⃗⃗⃗�1

𝑐
⋅ �⃗⃗⃗�1 +

1

2
�⃗⃗⃗�2 ⋅ �⃗⃗⃗�2

𝑐
⋅ �⃗⃗⃗�2 

This can be written as 

𝑇 =
1

2
𝒎𝟏𝟏�̇�1

2 + 𝒎𝟏𝟐�̇�1�̇�2 +
1

2
𝒎𝟐𝟐�̇�2

2 

where  

𝒎𝟏𝟏 = 𝐼1𝑧 + 𝐼2𝑧 + 𝑚1𝐿𝑐1
2 + 𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2) 

𝒎𝟏𝟐 = 𝒎𝟐𝟏 = 𝐼2𝑧 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2 

𝒎𝟐𝟐 = 𝐼2𝑧 + 𝑚2𝐿𝑐2
2    

are the elements of the inertia matrix and 𝑞1 and 𝑞2 are the angles between the horizontal plane 

and the robot arm 1 and 2 respectively. The potential energy in the system is given by 

𝑉 = (𝑚1𝑔𝐿𝑐1 + 𝑚2𝑔𝐿1) sin 𝑞1 + 𝑚2𝑔𝐿𝑐2 sin(𝑞1 + 𝑞2) 

Then, from ℒ = 𝑇 − 𝑉 partial derivatives are found to be 

𝜕ℒ

𝜕�̇�1
=

𝜕𝑇

𝜕�̇�1
= 𝒎𝟏𝟏�̇�1 + 𝒎𝟏𝟐�̇�2 

𝜕ℒ

𝜕�̇�2
=

𝜕𝑇

𝜕�̇�2
= 𝒎𝟏𝟐�̇�1 + 𝒎𝟐𝟐�̇�2   

𝜕ℒ

𝜕𝑞1
= −

𝜕𝑉

𝜕𝑞1
= −(𝑚1𝐿𝑐1 + 𝑚2𝐿1)𝑔 cos 𝑞1 − 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 

𝜕ℒ

𝜕𝑞2
=

𝜕𝑇

𝜕𝑞2
−

𝜕𝑉

𝜕𝑞2
=

1

2

𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�1

2 +
𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�1�̇�2  − 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)  

Recalling the chain rule expansion: 

𝑑𝑧

𝑑𝑡
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑡
   

the equations of motion are then found to be: 

𝜏1 = 𝒎𝟏𝟏�̈�1 + 𝒎𝟏𝟐�̈�2 + (
𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�2) �̇�1 + (

𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�2) �̇�2 +

𝜕𝑉

𝜕𝑞1
 

𝜏2 = 𝒎𝟐𝟏�̈�1 + 𝒎𝟐𝟐�̈�2 + (
𝜕𝒎𝟐𝟏

𝜕𝑞2
�̇�2) �̇�1 − (

𝝏𝒎𝟐𝟏

𝝏𝒒𝟐
�̇�1) �̇�2 −

1

2
(
𝜕𝒎𝟏𝟏

𝜕𝑞2
) �̇�1

2 +
𝜕𝑉

𝜕𝑞2
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𝜏1 = (𝐼1 + 𝐼2 + 𝑚1𝐿𝑐1
2 + 𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 − 𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 + 𝑚2𝐿1)𝑔 cos 𝑞1 + 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 

𝜏2 = (𝐼2 + 𝑚2𝐿𝑐2
2 + 𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 + 𝑚2𝐿𝑐2

2 )�̈�2 + (𝑚2𝐿1𝐿𝑐2 sin 𝑞2)�̇�1
2

+ 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)   

∎ 

 

Inverse kinematics for 2-link planar manipulator 

The derivation of these formulas is borrowed from (Jazar, 2010) and (Hessmer, 2009) 

Start with forward kinematics formulas 

(
𝑥𝑒

𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
) (1∗) 

where all variables are according to Figure 2 on page 3. 

Rewrite squares of the end effector position 

(
𝑥𝑒

2

𝑦𝑒
2
) = (

𝑙1
2 cos2 𝑞1 + 𝑙2

2 cos2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 cos 𝑞1 cos(𝑞1 + 𝑞2)

𝑙1
2 sin2 𝑞1 + 𝑙2

2 sin2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 sin 𝑞1 sin(𝑞1 + 𝑞2) 
 ) 

Use Pythagorean identity 

𝑎sin2 𝜃 + 𝑎cos2 𝜃 = 𝑎2 

and rewrite 

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos 𝑞1 cos(𝑞1 + 𝑞2) + sin 𝑞1 sin(𝑞1 + 𝑞2)] 

Use the following identities 

sin(𝑎 ± 𝑏) = sin 𝑎 cos 𝑏 ± cos 𝑎 sin 𝑏 

cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓ sin 𝑎 sin 𝑏 

to prove 

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2

+ 2𝑙1𝑙2[cos 𝑞1 (cos 𝑞1 cos 𝑞2 − sin 𝑞1 sin 𝑞2)

+ sin 𝑞1 (sin 𝑞1 cos 𝑞2 + cos 𝑞1 sin 𝑞2)] 

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos2 𝑞1 cos 𝑞2 + sin2 𝑞1 cos 𝑞2] 

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2 cos 𝑞2 

From this follow 

𝑞2 = cos−1
𝑥𝑒

2 + 𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
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Since arcsin  and arccos  are inaccurate for small angles, use the atan2 function: 

𝜃2 = atan2(sin 𝜃2 , cos 𝜃2) 

= atan2 (±√1 − cos2 𝜃2 , cos 𝜃2) 

= atan2(±√1 − (
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

2

,
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

Next, use (1∗) to rewrite 𝑥 and 𝑦: 

𝑥 = 𝑘1 cos 𝜃1 − 𝑘2 sin 𝜃1 

𝑦 = 𝑘1 sin 𝜃1 + 𝑘2 cos 𝜃1 

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝜃2 and 𝑘2 = 𝑙2 sin 𝜃2. 

Now, use the following: 

𝑟 = √𝑘1
2 + 𝑘2

2 

𝛾 = atan2(𝑘2, 𝑘1) 

This gives 

𝑘1 = 𝑟 cos 𝛾 

𝑘2 = 𝑟 sin 𝛾 

This leads to 

𝑥 = 𝑟 cos(𝛾 + 𝜃1) 

𝑦 = 𝑟 sin(𝛾 + 𝜃1) 

Finally apply atan2 function to find 𝜃1: 

𝛾 + 𝜃1atan2 (
𝑦

𝑟
,
𝑦

𝑟
) = atan2(𝑦, 𝑥) 

𝜃1 = atan2(𝑦, 𝑥) − atan2(𝑘2, 𝑘1) 

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝜃2 and 𝑘2 = 𝑙2 sin 𝜃2. 

 

The final solution contains ± sign which can be thought of as elbow-up and elbow-down 

solutions. Plus sign yields the elbow-up solution, while the minus yields the opposite. 
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𝑞(𝑥𝑒 , 𝑦𝑒) =

[
 
 
 
 
 

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2 (
𝑙2 sin 𝑞2

𝑙1 + 𝑙2 cos 𝑞2
)

atan2(±√1 − (
𝑥𝑒

2+𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒

2 + 𝑦𝑒
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

]
 
 
 
 
 

 

∎ 
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Appendix B 

MATLAB code 

Manipulator.m 

 
%% Robot manipulator Vilius Ciuzelis 

  

% Control parameters 

sandbox = 0; 

debug = 0; 

h = 0.01;       % integration step length 

time = 50;      % the length of simulation 

hFig = figure(); 

  

% Define model constants 

constants = getConstants(sandbox); 

  

% Define trajectory 

trajectory = getTrajectory(h, time, constants); 

plotTraj(constants, trajectory, hFig); 

  

% Simulate the trajectory using a planar 2-link robot 

manipulator arm 

data = simulate(h, trajectory, constants, sandbox); 

  

% Present the results 

animate(data, constants, hFig); 

plotErrDyn(data, hFig); 

  

% Export the data 

output = struct('q_1', data.q(1,:), 'q_2', data.q(2,:), 

'q_1_dot', ... 

    data.omega(1,:),'q_2_dot', data.omega(2,:), 'u_1', 

data.tau(1,:), 'u_2', data.tau(2,:)); 

  

%% Simulation 

function res = simulate(h, traj, constants, sandbox) 

    % Get variables 

    [q, omega, omega_dot] = getInitialStates; 

    [kp, kd] = getGains(constants, sandbox); 

    f_coeff = getFCoeff(sandbox); 

    storage = getStorage(length(traj)); 

     

    x_e = traj(:,1); 

    y_e = traj(:,2);     

     

    for i=1:1:length(traj) 
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        % --------------------------SENSE----------------

---------- 

        omega = omega + h*omega_dot; 

        q = q + h*omega; 

        [storage.l1_pos(:,i), storage.l2_pos(:,i), 

storage.ee_pos(:,i)] = forwardKinematics(constants,q); 

        [M, C, G] = getModel(constants, q, omega); 

        % --------------------------PLAN-----------------

--------- 

        storage.q_r(:, i) = 

inverseKinematics(constants,x_e(i),y_e(i)); 

        tau = kd*(-omega) + kp*(storage.q_r(:,i)-q) - 

f_coeff*omega; 

        % --------------------------ACT------------------

-------- 

        omega_dot=inv(M)*(tau-C*omega-G); 

        % Storage 

        storage.q(:,i) = q; 

        storage.omega(:,i) = omega; 

        storage.omega_dot(:,i) = omega_dot; 

        storage.tau(:,i) = tau; 

        storage.error(:,i) = storage.q_r(:,i)-q;            

% error dynamics 

    end 

         

    res = struct('q', storage.q, 'omega', 

storage.omega,... 

        'omega_dot', storage.omega_dot, 'tau', 

storage.tau,... 

        'ee_pos', storage.ee_pos, 'l1_pos', 

storage.l1_pos,... 

        'l2_pos', storage.l2_pos, 'error', storage.error, 

'q_r', storage.q_r); 

end 

  

%% Storage function 

function res = getStorage(count) 

    [tau, omega, omega_dot, ee_pos, l1_pos, l2_pos, 

error, q_r] = deal( zeros(2, count) ); 

    q = zeros(2, count); 

    res = struct( 'q', q, 'omega', omega, 'omega_dot', 

omega_dot,... 

        'tau', tau, 'ee', ee_pos, 'l1', l1_pos,... 

        'l2', l2_pos, 'error', error, 'qr', q_r); 

end 

  

%% Storage of constants 
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function res = getConstants(sandbox) 

    if sandbox 

        l_1 = 1; 

        l_2 = 0.7; 

        m_1 = 1; 

        m_2 = 1; 

    else 

        l_1 = 42; 

        l_2 = 52.6; 

        m_1 = 9.6156; 

        m_2 = 12.0424; 

    end 

     

    l_c1 = l_1/2; 

    l_c2 = l_2/2; 

    g = -9.81; 

    I_1 = m_1*l_1^2/12; 

    I_2 = m_2*l_2^2/12; 

     

    res = struct('l_1', l_1, 'l_c1', l_c1, 'l_2', l_2,... 

        'l_c2', l_c2, 'm_1', m_1, 'm_2', m_2, 'g', g,... 

        'I_1', I_1, 'I_2', I_2); 

end 

  

%% Manipulator model 

function [M, C, G] = getModel(const, q, omega) 

    l_1 = const.l_1; 

    l_c2 = const.l_c2; 

    m_2 = const.m_2; 

     

    M_11 = 

const.I_1+const.I_2+const.m_1*const.l_c1^2+m_2*(l_1^2+l_c

2^2+2*l_1*l_c2^2+2*l_1*l_c2*cos(q(2))); 

    M_12 = const.I_2 + m_2*(l_c2^2+l_1*l_c2*cos(q(2))); 

    M_21 = M_12; 

    M_22 = const.I_2+const.m_2*l_c2^2; 

    M =[M_11 M_12; M_21 M_22]; 

     

    C_11 = -m_2*l_1*l_c2*sin(q(2))*omega(2); 

    C_12 = (-m_2*l_1*l_c2*sin(q(2)))*(omega(1)+omega(2)); 

    C_21 = m_2*l_1*l_c2*sin(q(2))*omega(1); 

    C_22 = 0; 

    C = [C_11 C_12; C_21 C_22]; 

     

    G_1 = -

const.g*((const.m_1*const.l_c1+m_2*l_1)*cos(q(1)) + 

m_2*l_c2*cos(q(1)+q(2))); 
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    G_2 = -const.g*m_2*l_c2*cos(q(1)+q(2)); 

    G = [G_1; G_2]; 

end 

  

%% Friction coefficients 

function res = getFCoeff(sandbox)  

    if sandbox 

        res = [2 0; 0 1]; 

    else 

        res = [10000 0; 0 5000]; 

    end 

end 

  

%% Initial states 

function [q, omega, omega_dot] = getInitialStates 

    q = [-1; pi/2]; 

    omega = [0; 0]; 

    omega_dot = [0; 0]; 

end 

  

%% Forward kinematics 

function [link1, link2, endEffector] = 

forwardKinematics(const, q) 

    link1 = [0;0]; 

    link2 = [const.l_1*cos(q(1)); const.l_1*sin(q(1))]; 

    endEffector = 

[const.l_1*cos(q(1))+const.l_2*cos(q(1)+q(2));  

        const.l_1*sin(q(1))+const.l_2*sin(q(1)+q(2))]; 

end 

  

%% Inverse kinematics 

function res = inverseKinematics(const, x,y) 

    l_1 = const.l_1; 

    l_2 = const.l_2; 

     

    res = [atan2(y,x)-atan2(l_2*sin(atan2(sqrt(1-

((x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))^2),... 

    (x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))), ... 

    l_1+l_2*cos(atan2(sqrt(1-((x^2+y^2-l_1^2-

l_2^2)/(2*l_1*l_2))^2),... 

    (x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2)))); ... 

    atan2(sqrt(1-((x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))^2), 

(x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2))]; 

end 

  

%% Controller gains 

function [kp, kd] = getGains(const, sandbox) 
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    if sandbox 

        k_d1 = 50; 

        k_p1 = 500; 

        k_d2 = 20; 

        k_p2 = 200; 

    else 

        k_d1 = 30000*const.m_1*const.l_1/2; 

        k_p1 = 100000*const.m_1*const.l_1; 

        k_d2 = 1000*const.m_2*const.l_2; 

        k_p2 = 50000*const.m_2*const.l_2/4; 

    end 

    kd = [k_d1 0; 0 k_d2]; 

    kp = [k_p1 0; 0 k_p2]; 

end 

  

%% Motion trajectory 

function [traj, count] = getTrajectory(h, steps, const) 

    %% Define The Trajectory 

    % Define a circle to be traced over the course of 10 

seconds. This circle 

    % is in the _xy_ plane with a radius of 0.15. 

    t = (0:h:steps-h+1)'; % Time 

    count = length(t); 

    center = [const.l_1 0]; 

    radius = 1/2*const.l_2; 

    theta = t*(2*pi/t(end)); 

    points = center + radius*[cos(theta) sin(theta)]; 

  

    traj = points; 

end 

  

%% Trajectory plotter 

function plotTraj(const, traj, Hfig) 

    l_1 = const.l_1; 

    l_2 = const.l_2; 

     

    [q,~,~] = getInitialStates; 

    subplot(2,2,1) 

    plot(traj(:,1), traj(:,2)); 

    grid on; 

    title("Planned e.e. trajectory in the reachable 

workspace"); 

    axis([-(l_1+l_2) (l_1+l_2) -(l_1+l_2) (l_1+l_2)]); 

    hold on; 

    plot([0 cos(q(1))*l_1],[0 sin(q(1))*l_1]); 

    hold on; 
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    plot([cos(q(1))*l_1 

cos(q(1))*l_1+cos(q(1)+q(2))*l_2],[sin(q(1))*l_1 

sin(q(1))*l_1+sin(q(1)+q(2))*l_2]); 

    hold off; 

end 

  

%% Animation 

function animate(data, const, hFig) 

    subplot(2,2,2); 

    if nargin == 2 

        hFig = figure(); 

    end 

    d = 100;    % FPS 

    j=1:d:length(data.q); 

     

    ee_pos = data.ee_pos; 

    l2_pos = data.l2_pos; 

     

    for i=1:length(j)-1 

        hold off 

        plot(ee_pos(1,1:j(i)),ee_pos(2,1:j(i)), "-"); 

        hold on; 

        plot([l2_pos(1,j(i)) ee_pos(1, j(i))],[l2_pos(2, 

j(i)) ee_pos(2, j(i))],'o', ... 

         [data.l1_pos(1) l2_pos(1,j(i))],[data.l1_pos(2) 

l2_pos(2,j(i))],'k',... % first arm 

        [l2_pos(1,j(i)) ee_pos(1, j(i))],[l2_pos(2,j(i)) 

ee_pos(2, j(i))],'k') % second arm 

        hold on; 

  

        title('Motion of the robot') 

        xlabel('x') 

        ylabel('y') 

        axis([-const.l_1-const.l_2 const.l_1+const.l_2 -

const.l_1-const.l_2 const.l_1+const.l_2]); 

        grid on; 

        hold on; 

        drawnow; 

    end 

end 

  

%% Error dynamics plotter 

function plotErrDyn(data, hFig) 

    steps = 200; 

    subplot(2,2,[3,4]); 

    plot(1:steps, data.error(:,1:steps)); 
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    txt = sprintf("Error dynamics in the first %d 

simulation steps", steps); 

    title(txt); 

    legend("Error in q_1", "Error in q_2"); 

end 

 

startup.m 

 
% startup script to make Octave/Matlab aware of the GPML 

package 

% 

% Copyright (c) by Carl Edward Rasmussen and Hannes 

Nickisch 2018-08-01. 

  

disp ('executing gpml startup script...') 

mydir = fileparts (mfilename ('fullpath'));                 

% where am I located 

addpath (mydir) 

dirs = {'cov','doc','inf','lik','mean','prior','util'};           

% core folders 

for d = dirs, addpath (fullfile (mydir, d{1})), end 

dirs = 

{{'util','minfunc'},{'util','minfunc','compiled'}};     % 

minfunc folders 

for d = dirs, addpath (fullfile (mydir, d{1}{:})), end 

addpath([mydir,'/util/sparseinv']) 

 

GP_regression.m 

 
%% GP Vilius Ciuzelis 

  

run startup.m;                                  % For 

gpml_randn() 

run Manipulator.m 

  

% Globals 

global sigma_f sigma_n l gamma 

sigma_f = 0.5;                                  % 

standard deviation of the noise-free signal 

sigma_n = 0.005;                                % 

standard deviation of the noise 

l = 10.189;                                      % 

Length-scale 

gamma = 2;                                      % For use 

in gammaExp cov. func. Value must be 2 

rng('default');                                 % For 

repeatability 
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rngseed = 5; 

%% main  

input = output.q_1;                             % true 

function 

spacing = 100; 

  

% Omitting the first 100 samples, due to very high 

transients in u_1 

Y = input(100:spacing:end)';                   % Target 

data 

y = Y + 0.005*gpml_randn(rngseed, length(Y) , 1 );  % Add 

some noise 

  

trainingData = 1:length(y);                      

X = trainingData;                               % 

Training data 

  

m = 100;                                        % number 

of test points 

Ns = 10;                                        % number 

of prior and posterior rnd samples 

xs = linspace(X(1), X(end), m)';                % Test 

data              

  

% Choose cov function between:  

% 'SE', 'MacKay', 'Matern3/2', 'Matern5/2', 'gammaExp', 

'exponential' 

covFunc = 'SE';                               

  

% Sampling from prior 

fPrior = getFPrior(xs, covFunc, Ns); 

  

% GP regression  

[mu, variance, lml] = getGP(X, xs, y, covFunc); 

  

% Sampling from posterior 

fPosterior = getFPost(X, xs, covFunc, mu, Ns, lml); 

  

figure(); 

hold on; plot(xs,variance);hold off; 

f = [mu+2*sqrt(variance); flipdim(mu-

2*sqrt(variance),1)]; 

fill([xs; flipdim(xs,1)], f, [7 7 7]/8); 

hold on; plot(xs, mu, 'b'); plot(X, y, 'r+'); 

plot(1:length(Y) ... 

    , Y); hold off; 
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legend('Confidence interval','Predicted mean', 'Test 

points', 'True function'); 

txt = sprintf('GP regression using %s', covFunc); 

title(txt); 

%% Covariance function 

function covariance = kernel(x, x_prime, covType) 

    N = max(size(x,1),size(x,2)); 

    M = max(size(x_prime,1),size(x_prime,2)); 

    covariance = zeros(N,M); 

    for i=1:1:N 

        for j=1:1:M 

            if nargin == 3 

                switch covType 

                    case 'SE' 

                        covariance(i,j) = 

SE(x(i),x_prime(j)); 

                    case 'MacKay' 

                        covariance(i,j) = 

MacKay(x(i),x_prime(j)); 

                    case 'Matern3/2' 

                        covariance(i,j) = 

Matern32(x(i),x_prime(j)); 

                    case 'Matern5/2' 

                        covariance(i,j) = 

Matern52(x(i),x_prime(j)); 

                    case 'gammaExp' 

                        covariance(i,j) = 

gammaExp(x(i),x_prime(j)); 

                    case 'exponential' 

                        covariance(i,j) = 

exponential(x(i),x_prime(j)); 

                    otherwise 

                        disp('Invalid covariance function 

given. Using SE instead'); 

                        covariance(i,j) = 

SE(x(i),x_prime(j)); 

                end 

            else 

                disp('Too few arguments given. Exiting'); 

                return;                 

            end 

        end 

    end 

end 

  

%% Prior 

function fPrior = getFPrior(X_star, covFunc, Ns) 
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    m = length(X_star);                             % 

number of test points 

    hyp = getHyp; 

    Kss = kernel(X_star, X_star, covFunc);          % m x 

m 

    Lss = chol(Kss+hyp.sn^2*eye(m), 'lower');       % m x 

m 

    b = normrnd(0, hyp.sf, m, Ns);                  % m x 

Ns 

    % Should I use Kss or Lss here? What's the 

difference? 

    fPrior = Kss*b;                                 % m x 

Ns 

     

    % Plotter functions 

    figure() 

    subplot(2,2,2); 

    plot(X_star, fPrior); 

    hold on; 

    plot(X_star, 0*X_star); 

    hold on; 

    txt = sprintf("Prior distribution samples, \\mu=%d, 

\\sigma_n=%.2f, l=%.4f",0,hyp.sf,hyp.l); 

    title(txt); 

    xlabel('x'); ylabel('y'); 

  

    subplot(2,2,1); 

    plot(X_star, b); 

    title("Samples drawn from the normal distribution"); 

    legend("Sample 1", "Sample 2", "Sample 3"); 

    hold on; 

     

    subplot(2,2,3); 

    samples = (-3:.1:3); 

    norm = normpdf(samples,0,1); 

    plot(samples, norm, 'LineWidth', 2); 

    hold on; 

    histogram(normalize(b), 'Normalization', 'pdf', 

'BinMethod', 'auto'); 

    title("Histogram over normal samples"); 

    legend("Normal distribution"); 

    hold off; 

end 

  

%% GP regression 

function [mean, variance, lml] = getGP(X, X_star, y, 

covFunc) 
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    % This function uses algorithm 2.1 from 

Rasmussen&Williams, 2006 

    % 

    fprintf("Using %s as covariance function for GP 

regression\n", covFunc); 

    n = length(X); 

    hyp = getHyp; 

     

    % Optimization of the hyperparameters 

    % hyp = optimize(y, n, 'Iterations', 100, hyp); 

     

    K = kernel(X,X, covFunc); 

    Kss = kernel(X_star, X_star, covFunc);          % m x 

m 

    ks = kernel(X_star, X, covFunc); 

     

    L = chol(K+hyp.sn^2*eye(n), 'lower');           % 2. 

L:=cholesky(K+sigma_n^2*I) 

    alfa = L'\(L\y);                                % 3. 

alfa:=L^T\(L\y) 

    mean = ks*alfa;                                 % 4. 

f_star_bar:=k_star^T*alfa          

    v = L\ks';                                      % 5. 

v:=L\k_star 

    variance = diag(Kss)-dot(v,v)' + hyp.sn^2;      % 6. 

V[f_star_bar]:=k(x_star,x_star)-v^T*v 

    dataFit = (-1/2)*y'*alfa; 

    term1 = log(diag(L)); 

    complPenalty = (-1/2)*sum(term1(:)); 

    normConst = (-1/2)*n*log(2*pi); 

    lml =  dataFit+complPenalty+normConst;          % 7. 

log marginal likelihood; 

    display(dataFit(1), 'Data fit'); 

    display(complPenalty(1), 'Complexity penalty'); 

    display(normConst(1), 'Normalization constant'); 

    display(lml(1), 'Log marginal likelihood'); 

end 

  

%% Posterior 

function FPost = getFPost(X, X_star, covFunc, mean, Ns, 

lml) 

    hyp = getHyp; 

    n = length(X);                                  % 

number of training points 

    m = length(X_star);                             % 

number of test points 



 Vilius Ciuzelis  

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION 

 

Appendix B - 35 - MATLAB 

code   

     

    ks = kernel(X_star, X, covFunc);                % m x 

n 

    K = kernel(X,X, covFunc);                       % n x 

n 

    Kss = kernel(X_star, X_star, covFunc);          % m x 

m 

     

    L = chol(K+hyp.sn^2*eye(n), 'lower'); 

    Lk = L\ks'; 

    Lk = Kss+hyp.sn^2*eye(m)-Lk'*Lk; 

    L = chol(Lk,'lower'); 

     

    b = normrnd(0, hyp.sf, m, Ns);                  % m x 

Ns 

  

    FPost = mean+L*b; 

  

    subplot(2,2,4); 

    plot(X_star, FPost); 

    hold on; 

    plot(X_star, 0*X_star); 

    hold on; 

    txt = sprintf("Samples from the posterior 

distribution, lml %.4f", lml(1)); 

    title(txt); 

    xlabel('x'); ylabel('y'); 

end 

  

%% Squared Exponential covariance function (2.20) R&W 

2006 

function res = SE(arg1, arg2) 

    hyp = getHyp; 

    r = arg1^2+arg2^2-2*arg1*arg2; 

    M = hyp.l^2; 

    res = hyp.sf^2*exp((-1/2)*M\r)+hyp.sn^2*eq(arg1, 

arg2);  

end 

  

%% MacKay covariance function, (4.31) R&W 2006 

function res = MacKay(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

     

    res = exp(-2*inv(hyp.l^2)*sin(r/2).^2); 

end 
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%% Matérn v=3/2 covariance function, (4.17) R&W 2006 

function res = Matern32(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = (1+sqrt(3)*r*inv(hyp.l))*exp(-

sqrt(3)*r*inv(hyp.l)); 

end 

  

%% Matérn v=5/2 covariance function, (4.17) R&W 2006 

function res = Matern52(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = 

(1+sqrt(5)*r*inv(hyp.l)+5*r^2*inv(3*hyp.l^2))*exp(-

sqrt(5)*r*inv(hyp.l)); 

end 

  

%% Gamma-exponential covariance function, (4.18) R&W 2006 

function res = gammaExp(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = exp(-(r/hyp.l)^hyp.gamma);  

end 

  

%% Exponential covariance function 

function res = exponential(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = exp(-r*inv(hyp.l)); 

end 

  

%% Hyperparameters 

function res = getHyp 

    global l sigma_f sigma_n gamma 

    res = struct( 'l',l, 'sf', sigma_f , 'sn', sigma_n, 

'gamma', gamma); 

end 
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